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Problem Set 4 Solutions February 22, 2003

Problem 1: Real and reactive power at the sending and receiving ends (with sign convention into
the line terminals are:

P, =-P = sin §
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This is easily calculated and plotted: see the script which is appended to this solution. The
circle diagram that results is shown in Figure 1. The maximum power that can be handled
by this line is:

13,8002
Phax = ———— ~ 16.84 x 10°
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or just about 16.8 MW.
x10° Transmission Line Circle Diagram
ol T T T T T
20
15
E 10F
sk
ok
-5
S s o o051 5 2 25

Real Power

Figure 1: Transmission Line Circle Diagram

To compensate to unity power factor we first find the required phase angle for that power
level:
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~ .6359radians ~ 36.4°




Then if the sending end power factor is unity,
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and C evaluates to 45.84uF.

Finally, for the 6.979 part of the problem, note that in some sense this whole thing can be
parameterized by the angle §. If the capacitance value affects voltage and the voltage in turn
affects the phase angle required to push power through the line, we can look first at the back
end of the problem, which is voltage:

If real power is

ViV,
pP= ;{L’ sin g
we can get, first, the angle:
5 = sin12LL
= sin
VsVr

Then observe that if the load has unity power factor:
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We may solve this for capacitance. (Does this sound familiar?)

1 1 174
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This is done in the second part of the script appended and the results are plotted in Figure 2
(actually, this is a reversed axis plot of C vs. V. We take some comfort in noting that this
plot appears to agree with our earlier calculation of required capacitance when the sending
and receiving end voltages have the same magnitude.

Problem 2: The three phase voltages are:
va = V2-277cos(wt)
2
vy = V2277 cos(wt — ?ﬂ)
2
ve = V2277 cos(wt + ?ﬂ)
and the center point of this source is grounded.

B We take this one out of order as it is the easiest. The voltages across each of the resistances
is defined by the matching source, so that:

ia = V2-cos(wt)
. 27
iy = V/2-cos(wt— ?)

2
ic = V2-cos(wt+ %)
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Figure 2: Receiving Voltage vs. Capacitance

A Noting that in part B, the sum of the three currents is zero, the neutral point at the
junction of the three resistors can (and in fact will be) at zero potential and so the
currents are exactly the same.
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Figure 3: Three-Phase Voltages

C Refer to Figure 3. The voltage across the resistor is:
2
Vap = Vg — Up = V2 X 277 (cos wt — cos(wt — %) = V2 x V/3 x 277 cos(wt + %))

and of course v/3 x 277 ~ 480. So

480

tg = —ip = V2 x 331 (coswt + %) = .816 cos (wt + %)

D Since 3 x 277 = 831 this load is equivalent to that of Part A and so the currents are the
same. If you want you can do this the hard way by following the recipe for Part E and
adding the two resistor currents at each node.



E This one involves computing the two resistor voltages:

2
Vap =Ug—p= V2x277 (cos wt — cos(wt — —W)) = /2 x /3 x 277 cos(wt + %)

3
47 5T
Vea =Ve—vg= V2x27T cos(wt + ?) —coswt ) = V2 x V3 x 277 cos(wt + F)
Noting that coswt + ‘%r = —coswt — &, we may use the identity:

cos(wt — %) + cos(wt + %) = 2cos wtcos% = V3 coswt

and, using the results obtained in Part C,

tg = V2 cos wt
iy = —V2x.577cos(wt+ %)
ie = —V2x.577cos(wt — %)

F This is just like case B, except for phase C is not connected:

tq = V2 x cos wt

2
1y = V2 x cos (wt - ?ﬂ)
ic = 0

Problem 3: This one is best done graphically. Note that the current through the ground resistor is
just the sum of the three phase currents. Shown in Figure 4 is the same figure that established
the currents, but with this summation shown.
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Figure 4: Currents

Now, the voltages in the individual resistors will be just the current sources times the one
ohm resistance. The voltage across the ground resistance will, similarly, be just the bottom
trace times the one ohm.



Problem 4: For 6.979 If we are to write expressions for the currents, they would be:

. Vg = Up,
la — R
. Vp = Un
i = R
. Ve = Un
e = R

where v, is the voltage of the ’star point’ with respect to ground. Now we may note that,
since the sum of the three currents must be zero the star point voltage must be the average

of the three phase voltages:
Vg +Up + U

Uy = 3
which may be estimated graphically: see Figure 5
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Figure 5: Voltage Source Waveforms

Now we may use this to find the voltage across each of the resistances, by graphically sub-
tracting the neutral, or star point voltage from the phase voltage. This is shown for Phase A
in Figure 6. Current in that lead will have the same shape. The same procedure follows for
the other two phases: the answers are identical but shifted by 120 degrees.
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Figure 6: Reconstructed Phase A to Neutral Voltage
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Figure 7: Three Phase Voltages with Neutral Open



Appendix: MATLAB script for Problem 1:

% PS 4, Problem 1

V = 13800;

L = .03;

C = 100e-6;
om = 377;

X1 = omx*L;

Xc = 1/(om*C) ;

delt = 0:pi/100:pi;

Ps = (V"2/X1) .* sin(delt);
Qs = V"2%(1/X1-1/Xc) - (V*2/X1) .* cos(delt);
figure(1)

plot(Ps, Qs)

axis equal

grid on

title(’Transmission Line Circle Diagram’)
ylabel (’Reactive Power’);

xlabel (’Real Power’);

Pmax = max(Ps)

% last part

Pr = 10e6;

Vr = 12000:10:15000; % try this range
d = asin((X1*Pr) ./ (V .* Vr)); % angle required to make power
Cr = (1/(om*X1)) .* (1 - (V ./ Vr) .* cos(d));
figure(2)

plot(Cr, Vr)

title(’Compensating Cap’) ;

ylabel(’Receiving Voltage’)
xlabel(’Capacitance Value’)

grid on



