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1 Introduction

This section of notes discusses some of the fundamental processes involved in electric machin-
ery. In the section on energy conversion processes we examine the two major ways of estimating
electromagnetic forces: those involving thermodynamic arguments (conservation of energy) and
field methods (Maxwell’s Stress Tensor). In between these two explications is a bit of description
of electric machinery, primarily there to motivate the description of field based force calculating
methods.

The subsection of the notes dealing with losses is really about eddy currents in both linear and
nonlinear materials and about semi-empirical ways of handling iron losses and exciting currents in
machines.

2 Energy Conversion Process:

In a motor the energy conversion process can be thought of in simple terms. In “steady state”,
electric power input to the machine is just the sum of electric power inputs to the different phase
terminals:

P = v
i
Mechanical power is torque times speed:
P, =T9
And the sum of the losses is the difference:

P,=P,- P,
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Figure 1: Energy Conversion Process

It will sometimes be convenient to employ the fact that, in most machines, dissipation is small
enough to approximate mechanical power with electrical power. In fact, there are many situations in
which the loss mechanism is known well enough that it can be idealized away. The “thermodynamic”
arguments for force density take advantage of this and employ a “conservative” or lossless energy
conversion system.

2.1 Energy Approach to Electromagnetic Forces:

<+

Magnetic Field
System

Figure 2: Conservative Magnetic Field System

To start, consider some electromechanical system which has two sets of “terminals”, electrical
and mechanical, as shown in Figure 2. If the system stores energy in magnetic fields, the energy
stored depends on the state of the system, defined by (in this case) two of the identifiable variables:
flux (A), current () and mechanical position (z). In fact, with only a little reflection, you should
be able to convince yourself that this state is a single-valued function of two variables and that the
energy stored is independent of how the system was brought to this state.

Now, all electromechanical converters have loss mechanisms and so are not themselves conser-
vative. However, the magnetic field system that produces force is, in principle, conservative in the
sense that its state and stored energy can be described by only two variables. The “history” of the
system is not important.

It is possible to chose the variables in such a way that electrical power into this conservative



system is:

dA
Pe i ) i .—
vi =t

Similarly, mechanical power out of the system is:
dz
pm o — fe2”
! dt

The difference between these two is the rate of change of energy stored in the system:

aWo,
2 m _ pe_ pm
dt

It is then possible to compute the change in energy required to take the system from one state to
another by:
a
Win(a) — Win(b) = / id\ — fedz
b

where the two states of the system are described by a = (Ag,z4) and b = (Ap, zp)

If the energy stored in the system is described by two state variables, A and z, the total
differential of stored energy is:

AWy, = Wi X + W

E)\ oz

and it is also:
dW,, = id\ — fCdz

So that we can make a direct equivalence between the derivatives and:

W

"= ox

This generalizes in the case of multiple electrical terminals and/or multiple mechanical termi-
nals. For example, a situation with multiple electrical terminals will have:

dWm = Zikd}\k — fed:c
k
And the case of rotary, as opposed to linear, motion has in place of force f¢ and displacement
z, torque T¢ and angular displacement 6.
In many cases we might consider a system which is electricaly linear, in which case inductance
is a function only of the mechanical position z.

Az) = L(z)1

In this case, assuming that the energy integral is carried out from A = 0 (so that the part of the
integral carried out over z is zero),

| 1 A2
W= | ——MA=2-2
™ /0 L(z) 2 L(z)

This makes L .8 1
e__ T2 Y -
;= 2/\ Oz L(x)
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Note that this is numerically equivalent to

£ = 2t La)

This is true only in the case of a linear system. Note that substituting L(x)i = X too early in the
derivation produces erroneous results: in the case of a linear system it is a sign error, but in the
case of a nonlinear system it is just wrong.

2.1.1 Coenergy

We often will describe systems in terms of inductance rather than its reciprocal, so that current,
rather than flux, appears to be the relevant variable. It is convenient to derive a new energy
variable, which we will call co-energy, by:

Wy, = Aiti — Wi
1

and in this case it is quite easy to show that the energy differential is (for a single mechanical
variable) simply:
dW,, = Aedig + fodz
k

so that force produced is: /
f e = 8Ia/Vm
z
Consider a simple electric machine example in which there is a single winding on a rotor (call
it the field winding and a polyphase armature. Suppose the rotor is round so that we can describe
the flux linkages as:

Ao = Lgiq+ Lapip + Lapic + M COS(pO)’if
2.

A = Lgpiq + Lgtp + Lgpic + M cos(p@ — ?)Zf
2
Ae = Lgpiq + Lgpipy + Lotic + M COS(pe + ?ﬂ-)zf

2 2
Af = Mcos(p)ia + M cos(pd — ?ﬂ-)z’b + M cos(pf + ?ﬂ') + Lyig

Now, this system can be simply described in terms of coenergy. With multiple excitation it
is important to exercise some care in taking the coenergy integral (to ensure that it is taken over
a valid path in the multi-dimensional space). In our case there are actually five dimensions, but
only four are important since we can position the rotor with all currents at zero so there is no
contribution to coenergy from setting rotor position. Suppose the rotor is at some angle 8 and that

the four currents have values i40, %50, %co and i 9. One of many correct path integrals to take would
be:

’ g0 . .
W, = / Lgigdi,
0

150

+ /0 (Lapiao + Lais) diy



+ / Labiao + Lapivo + Laic) dic

(=)

27
+ / (M cos(pf)iqo + M cos(pf — ?)zbo + M cos(pf + 3 — )ico + szf) dig
0

The result is:
! . l .2 ) ) .. .. ..
W, = 2La ig0 + 90 T %eo ) + Lab (Gaotbo + Taoico + icolbo)
. . . 2 . 2 1.
+Miyg (’Lao cos(pf) + ipo cos(pd — ?W) + 4.0 cos(pf + ?ﬂ)) + §szfc0

If there is no variation of the stator inductances with rotor position 6, (which would be the
case if the rotor were perfectly round), the terms that involve L, and L(ab) contribute zero so that
torque is given by:

oW,

T, =
00

2 2
= —pMipg (iao sin(pf) + iy sin(pb — ?W) + %co sin(ph + ?ﬂ))

We will return to this type of machine in subsequent chapters.

2.2 Continuum Energy Flow

At this point, it is instructive to think of electromagnetic energy flow as described by Poynting’s
Theorem:
S=ExH

Energy flow S , called Poynting’s Vector, describes electromagnetic power in terms of electric and
magnetic fields. It is power density: power per unit area, with units in the SI system of units of
watts per square meter.

To calculate electromagnetic power into some volume of space, we can integrate Poyting’s Vector
over the surface of that volume, and then using the divergence theorem:

P:—# S - iida = — V - Sdv
vol

Now, the divergence of the Poynting Vector is, using a vector identity:

V-§ = V- (ExH)=H-VxE-E-VxH
- 0B . -
= -H-——-F-J
ot
The power crossing into a region of space is then:
P= E.-J+H- 0B dv
vol ot

Now, in the absence of material motion, interpretation of the two terms in this equation is fairly
simple. The first term describes dissipation:

—

= |EfPo = |1’



The second term is interpreted as rate of change of magnetic stored energy. In the absence of
hysteresis it is:
ow, -
m — H el
ot ot

e ()B e ()H () ].

OB _ g .o 0 (L g
ar = Mol - =5 | grolH| )

which is straightforwardedly interpreted as rate of change of magnetic stored energy density:
1 2
Wm = §N0|H |

Some materials exhibit hysteretic behavior, in which stored energy is not a single valued function
of either B or H, and we will consider that case anon.

2.3 Material Motion

In the presence of material motion ¥, electric field E'ina “moving” frame is related to electric field
FE in a “stationary” frame and to magnetic field B by:

E=E+7xB

This is an experimental result obtained by observing charged particles moving in combined electric
and magnetic fields. It is a relatavistic expression, so that the qualifiers “moving” and “stationary”
are themselves relative. The electric fields are what would be observed in either frame. In MQS
systems, the magnetic flux density B is the same in both frames.

The term relating to current density becomes:

— =

E-J:(E'—ﬁxé)-f

We can interpret E'-J as dissipation, but the second term bears a little examination. Note
that it is in the form of a vector triple (scalar) product:

-

—xB-J=—-%-BxJ=-%-JxB

This is in the form of velocity times force density and represents power conversion from electro-
magnetic to mechanical form. This is consistent with the Lorentz force law (also experimentally
observed):
F=JxB
This last expression is yet another way of describing energy conversion processes in electric
machinery, as the component of apparent electric field produced by material motion through a

magnetic field, when reacted against by a current, produces energy conversion to mechanical form
rather than dissipation.



2.4 Additional Issues in Energy Methods

There are two more important and interesting issues to consider as we study the development
of forces of electromagnetic origin and their calculation using energy methods. These concern
situations which are not simply representable by lumped parameters and situations that involve
permanent magnets.

2.4.1 Coenergy in Continuous Media

Consider a system with not just a multiplicity of circuits but a continuum of current-carrying paths.
In that case we could identify the co-energy as:

W :/ /,\(a')df-da
area

where that area is chosen to cut all of the current carrying conductors. This area can be picked to
be perpedicular to each of the current filaments since the divergence of current is zero. The flux A
is calculated over a path that coincides with each current filament (such paths exist since current
has zero divergence). Then the flux is:

A@) = / B.dis
Now, if we use the vector potential A for which the magnetic flux density is:
B=VxA

the flux linked by any one of the current filaments is:
\@) = ]{ A.di

where dZ is the path around the current filament. This implies directly that the coenergy is:

W,’n:/ /fA‘-dde-da
area JJ

Now: it is possible to make d? coincide with da@ and be parallel to the current filaments, so that:

w! = [ A-dJdv
vol

2.4.2 Permanent Magnets

Permanent magnets are becoming an even more important element in electric machine systems.
Often systems with permanent magnets are approached in a relatively ad-hoc way, made equivalent
to a current that produces the same MMF as the magnet itself.

The constitutive relationship for a permanent magnet relates the magnetic flux density B to
magnetic field H and the property of the magnet itself, the magnetization M.

Ezuo(ﬁ—i-l\;f)
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Now, the effect of the magnetization is to act as if there were a current (called an amperian current)
with density:
J'=VxM

Note that this amperian current “acts” just like ordinary current in making magnetic flux density.
Magnetic co-energy is:
W! = A-VxdMdv

m
vol

Next, note the vector identity
V- (CxD)=D-(vxC)-C-(VxD)
So that:
Wi= [ =V (Axdl)dv+ [ (v A)-ditdo

Then, noting that B=VxA4:

W :—# AxdMds+ [ B-dMdv
vol
The first of these integrals (closed surface) vanishes if it is taken over a surface just outside the
magnet, where M is zero. Thus the magnetic co-energy in a system with only a permanent magnet
source is
W), = B-dMdv
vol

Adding current carrying coils to such a system is done in the obvious way.

2.5 Electric Machine Description:

Actually, this description shows a conventional induction motor. This is a very common type of
electric machine and will serve as a reference point. Most other electric machines operate in a
fashion which is the same as the induction machine or which differ in ways which are easy to
reference to the induction machine.

Consider the simplified machine drawing shown in Figure 3. Most (but not all!) machines we
will be studying have essentially this morphology. The rotor of the machine is mounted on a shaft
which is supported on some sort of bearing(s). Usually, but not always, the rotor is inside. I have
drawn a rotor which is round, but this does not need to be the case. I have also indicated rotor
conductors, but sometimes the rotor has permanent magnets either fastened to it or inside, and
sometimes (as in Variable Reluctance Machines) it is just an oddly shaped piece of steel. The stator
is, in this drawing, on the outside and has windings. With most of the machines we will be dealing
with, the stator winding is the armature, or electrical power input element. (In DC and Universal
motors this is reversed, with the armature contained on the rotor: we will deal with these later).

In most electrical machines the rotor and the stator are made of highly magnetically permeable
materials: steel or magnetic iron. In many common machines such as induction motors the rotor
and stator are both made up of thin sheets of silicon steel. Punched into those sheets are slots
which contain the rotor and stator conductors.
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Figure 3: Form of Electric Machine

Figure 4 is a picture of part of an induction machine distorted so that the air-gap is straightened
out (as if the machine had infinite radius). This is actually a convenient way of drawing the machine
and, we will find, leads to useful methods of analysis.

What is important to note for now is that the machine has an air gap g which is relatively
small (that is, the gap dimension is much less than the machine radius r). The machine also has a
physical length 1. The electric machine works by producing a shear stress in the air-gap (with of
course side effects such as production of “back voltage”). It is possible to define the average air-
gap shear stress, which we will refer to as 7. Total developed torque is force over the surface area
times moment (which is rotor radius):

T =210 < 1>

Power transferred by this device is just torque times speed, which is the same as force times
surface velocity, since surface velocity is u = r{2:

P,=QOT=21rl<1T>u

If we note that active rotor volume is 7r2/, the ratio of torque to volume is just:

T _ 2
Vr =2<T>
Now, determining what can be done in a volume of machine involves two things. First, it is

clear that the volume we have calculated here is not the whole machine volume, since it does not
include the stator. The actual estimate of total machine volume from the rotor volume is actually
quite complex and detailed and we will leave that one for later. Second, we need to estimate the
value of the useful average shear stress. Suppose both the radial flux density Br and the stator
surface current density Kz are sinusoidal flux waves of the form:

B, = V2B cos (pf — wt)
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K, = V2K cos (pd — wt)

Note that this assumes these two quantities are exactly in phase, or oriented to ideally produce
torque, so we are going to get an “optimistic” bound here. Then the average value of surface

traction is:
27

1
<T>=— B, K,df = ByK|
2w Jo

This actually makes some sense in view of the empirically derived Lorentz Force Law: Given a
(vector) current density and a (vector) flux density. In the absence of magnetic materials (those
with permeability different from that of free space), the observed force on a conductor is:

F=JxB
Where J is the vector describing current density (A/m?2) and B is the magnetic flux density
(T). This is actually enough to describe the forces we see in many machines, but since electric
machines have permeable magnetic material and since magnetic fields produce forces on permeable
material even in the absence of macroscopic currents it is necessary to observe how force appears
on such material. A suitable empirical expression for force density is:

F:fxé—%(ﬁ-ﬁ)Vu

where H is the magnetic field intensity and y is the permeability.
Now, note that current density is the curl of magnetic field intensity, so that:

F o= (Vx#)xuf— (7 H)Vn

And, since:



force density is:

ol
I

. L1 -
M(H-V)H—iuv(H-H) -
. . 1 /o 4
N(H-V)H—V(EM(H-HD
This expression can be written by components: the component of force in the i’th dimension is:
0 0 (1
F, = H,— |Hi— — | = H?
j u;( kaxk) i B <2u; k>

Now, see that we can write the divergence of magnetic flux density as:

%(ﬁ-ﬁ)V,u

= 0
V-B=) —uHr,=0
Xk: il
and
,uk ka.’L‘k z—kaxku ki zkaxku k
but since the last term in that is zero, we can write force density as:

_ 9 . s 2
Fy = oz (MHsz 25zk ;Hn>

where we have used the Kroneker delta d§;; = 1 if ¢+ = k, 0 otherwise.
Note that this force density is in the form of the divergence of a tensor:

0
Fy=—T,
or
F = Vg

In this case, force on some object that can be surrounded by a closed surface can be found by
using the divergence theorem:

F=[ Fav= lv-gdu:#g-ﬁda

vol vO

or, if we note surface traction to be 7; = >°; Tixni , where n is the surface normal vector, then the
total force in direction i is just:

f: ?{Tida = fZZ’iknkda
§ k

The interpretation of all of this is less difficult than the notation suggests. This field description
of forces gives us a simple picture of surface traction, the force per unit area on a surface. If we just
integrate this traction over the area of some body we get the whole force on the body. Note that

11



this works if we integrate the traction over a surface that is itself in free space but which surrounds
the body (because we can impose no force on free space).

Note one more thing about this notation. Sometimes when subscripts are repeated as they are
here the summation symbol is omitted. Thus we would write 7; = >, Tipng = Tipng.

Now, if we go back to the case of a circular cylinder and are interested in torque, it is pretty
clear that we can compute the circumferential force by noting that the normal vector to the cylinder
is just the radial unit vector, and then the circumferential traction must simply be:

To = poHrHyg

Simply integrating this over the surface gives azimuthal force, and then multiplying by radius
(moment arm) gives torque. The last step is to note that, if the rotor is made of highly permeable
material, the azimuthal magnetic field is equal to surface current density.

3 Tying the MST and Poynting Approaches Together

Contour Field Region

Figure 5: Illustrative Region of Space

Now that the stage is set, consider energy flow and force transfer in a narrow region of space as
illustrated by Figure 5. The upper and lower surfaces may support currents. Assume that all of the
fields, electric and magnetic, are of the form of a traveling wave in the x- direction: Re {ej (‘”t_’”)}.

If we assume that form for the fields and also assume that there is no variation in the z- direction
(equivalently, the problem is infinitely long in the z- direction), there can be no x- directed currents
because the divergence of current is zero: V - J=0 Ina magnetostatic system this is true of
electric field E too. Thus we will assume that current is confined to the z- direction and to the two

surfaces illustrated in Figure 5, and thus the only important fields are:
E = i.Re{E,"F}

iuRe { Hyel =k |

+ ZyRe {ﬂyej(wt_m)}

an]
Il

We may use Faraday’s Law (V X E = —%—?) to establish the relationship between the electric

and magnetic field: the y- component of Faraday’s Law is:
jEE, = —jwpoH,
or

E,=-2

12



The phase velocity u,, = % is a most important quantity. Note that, if one of the surfaces is
moving (as it would be in, say, an induction machine), the frequency and hence the apparent phase
velocity, will be shifted by the motion. We will use this fact shortly.

Energy flow through the surface denoted by the dotted line in Figure 5 is the component of
Poynting’s Vector in the negative y- direction. The relevant component is:

R w
Sy = (E x H)y = B.H, = — 7 poHy H,

Note that this expression contains the xy component of the Maxwell Stress Tensor T, =
poHy Hy so that power flow downward through the surface is:

w
S = —Sy = EHOHZEHZ} = UphTwy
The average power flow is the same, in this case, for time and for space, and is:
1 0
<8 >=JRe{B,H;} = uph%Re {#,m;}

We may choose to define a surface impedance:

which becomes:

Zs= —Mouphg—y = —pouph R

Lz
where now we have defined the parameter R to be the ratio between y- and x- directed complex
field amplitudes. Energy flow through that surface is now:

1 .
S = —Re{B,H;} = ;Re{|H,2,)

4 Simple Description of a Linear Induction Motor

9 ej(ool-kx)

< l =0 zs \% L

e x

P

Figure 6: Simple Description of Linear Induction Motor

The stage is now set for an almost trivial description of a linear induction motor. Consider the
geometry described in Figure 6. Shown here is only the relative motion gap region. This is bounded
by two regions of highly permeable material (e.g. iron), comprising the stator and shuttle. On the
surface of the stator (the upper region) is a surface current:

K, =1i,Re { KZSej(wt*kw)}

13



The shuttle is, in this case, moving in the positive x- direction at some velocity u. It may also be
described as an infinitely permeable region with the capability of supporting a surface current with
surface conductivity o, so that K,, = o, F,.

Note that Ampere’s Law gives us a boundary condition on magnetic field just below the upper
surface of this problem: H, = K, so that, if we can establish the ratio between y- and x- directed
fields at that location,

< Ty >=DRe{H,H;} = BK. [Re {E}

Note that the ratio of fields H Y /H, = R is independent of reference frame (it doesn’t matter
if we are looking at the fields from the shuttle or the stator), so that the shear stress described by
Tyy is also frame independent. Now, if the shuttle (lower surface) is moving relative to the upper
surface, the velocity of the traveling wave relative to the shuttle is:

w
Us = Upp — U = S

k

where we have now defined the dimensionless slip s to be the ratio between frequency seen by the
shuttle to frequency seen by the stator. We may use this to describe energy flow as described by
Poynting’s Theorem. Energy flow in the stator frame is:

Supper = Uph Ty

In the frame of the shuttle, however, it is

Siower = tsTzy = sSupper

Now, the interpretation of this is that energy flow out of the upper surface (Supper) consists of
energy converted (mechanical power) plus energy dissipated in the shuttle (which is Sy, here.
The difference between these two power flows, calculated using Poynting’s Theorem, is power
converted from electrical to mechanical form:

Sconverted = Supper(l —s)

Now, to finish the problem, note that surface current in the shuttle is:

!
Kzr = Ezas = _usﬂoasﬂy

where the electric field E; is measured in the frame of the shuttle.
We assume here that the magnetic gap g is small enough that we may assume kg < 1. Ampere’s
Law, taken around a contour that crosses the air-gap and has a normal in the z- direction, yields:

OH,
g oz

= Kzs + Kzr
In complex amplitudes, this is:

_jkgﬂy =K, ,+K, =K, — ,U'Ouso'sﬂy

14



or, solving for Hy.
IKzs 1

Y kg 1+t

Average shear stress is

. HoUsTs
Ho Ko |Kzs|2 J Ho |Kzs‘2 kg
<Tpy>=—ResH H, ¢ =— Re . -
oy >= "y Re{H,H, } = kg THIEEE T2 ke (e

5 Surface Impedance of Uniform Conductors

The objective of this section is to describe the calculation of the surface impedance presented by a
layer of conductive material. Two problems are considered here. The first considers a layer of linear
material backed up by an infinitely permeable surface. This is approximately the situation presented
by, for example, surface mounted permanent magnets and is probably a decent approximation to
the conduction mechanism that would be responsible for loss due to asynchronous harmonics in
these machines. It is also appropriate for use in estimating losses in solid rotor induction machines
and in the poles of turbogenerators. The second problem, which we do not work here but simply
present the previously worked solution, concerns saturating ferromagnetic material.

5.1 Linear Case

The situation and coordinate system are shown in Figure 7. The conductive layer is of thicknes T’
and has conductivity ¢ and permeability pg. To keep the mathematical expressions within bounds,
we assume rectilinear geometry. This assumption will present errors which are small to the extent
that curvature of the problem is small compared with the wavenumbers encountered. We presume
that the situation is excited, as it would be in an electric machine, by a current sheet of the form

K, = Re {Kej(wt—lcx)}

Conductive Slab Hy
> y

AL L»
T X
Permeable Surface

Figure 7: Axial View of Magnetic Field Problem

In the conducting material, we must satisfy the diffusion equation:
— OH

V2H = poo—-

Koo ot

15



In view of the boundary condition at the back surface of the material, taking that point to be
y = 0, a general solution for the magnetic field in the material is:

H, = Re{Asinhayej(wt_kz)}

H, = Re{ngcoshayej(‘“t_kz)}

where the coefficient « satisfies:
o = jwpoo + k*

and note that the coefficients above are chosen so that H has no divergence.
Note that if k is small (that is, if the wavelength of the excitation is large), this spatial coefficient

o« becomes )
1+
a=——

0
where the skin depth is:
2

wloo

)=

To obtain surface impedance, we use Faraday’s law:

— 0B
VXFE=——
ot
which gives:
w
Ez = —Ho0 E_y
Now: the “surface current” is just
Ks = _Ew
so that the equivalent surface impedance is:
E w
Z = —% = jup— cothaT
—H, Py

A pair of limits are interesting here. Assuming that the wavelength is long so that & is negligible,
then if oT is small (i.e. thin material),

w 1
Z — jUp—— = —
4 JMOQQT oT
On the other hand as o1 — oo,
14
z- -1
od

Next it is necessary to transfer this surface impedance across the air-gap of a machine. So, with
reference to Figure 8, assume a new coordinate system in which the surface of impedance Z, is
located at y = 0, and we wish to determine the impedance Z = —E,/H, at y = g.

In the gap there is no current, so magnetic field can be expressed as the gradient of a scalar
potential which obeys Laplace’s equation:

H=-Vy

16
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Figure 8: Impedance across the air-gap

and
V=0

Ignoring a common factor of e/(“*=5%) we can express H in the gap as:

H, = jk(g,e+9 ™)
H, = —k(p, -y )

At the surface of the rotor,
Ez - _E;UZS
or

—opo (¥, —¥_) = ikZ. (¥, +4_)

and then, at the surface of the stator,

L B wh et et

H, Woﬁﬁe’w +9_e ks

A bit of manipulation is required to obtain:

7o @ [ (wpo — jkZ,) — e (wpuo + jRZ,)
2T IR R (wppo — GRZ,) + € F9 (wpao + jEZ,)

It is useful to note that, in the limit of Z, — oo, this expression approaches the gap impedance

_ Who

Zy=3j W29
and, if the gap is small enough that kg — 0,

Z = 24|12,

17



6 Iron

Electric machines employ ferromagnetic materials to carry magnetic flux from and to appropriate
places within the machine. Such materials have properties which are interesting, useful and prob-
lematical, and the designers of electric machines must deal with this stuff. The purpose of this
note is to introduce the most salient properties of the kinds of magnetic materials used in electric
machines.

We will be concerned here with materials which exhibit magnetization: flux density is something
other than B = Moﬁ . Generally, we will speak of hard and soft magnetic materials. Hard materials
are those in which the magnetization tends to be permanent, while soft materials are used in
magnetic circuits of electric machines and transformers. Since they are related we will find ourselves
talking about them either at the same time or in close proximity, even though their uses are widely
disparite.

6.1 Magnetization:

It is possible to relate, in all materials, magnetic flux density to magnetic field intensity with a
consitutive relationship of the form:

§2M0<ﬁ+M)

where magnetic field intensity H and magnetization M are the two important properties. Now,
in linear magnetic material magnetization is a simple linear function of magnetic field:

-

M = me_j
so that the flux density is also a linear function:
B=po(1+xm)H

Note that in the most general case the magnetic susceptibility cm might be a tensor, leading
to flux density being non-colinear with magnetic field intensity. But such a relationship would still
be linear. Generally this sort of complexity does not have a major effect on electric machines.

6.2 Saturation and Hysteresis

In useful magnetic materials this nice relationship is not correct and we need to take a more general
view. We will not deal with the microscopic picture here, except to note that the magnetization is
due to the alignment of groups of magnetic dipoles, the groups often called domaines. There are
only so many magnetic dipoles available in any given material, so that once the flux density is high
enough the material is said to saturate, and the relationship between magnetic flux density and
magnetic field intensity is nonlinear.

Shown in Figure 9, for example, is a “saturation curve” for a magnetic sheet steel that is
sometimes used in electric machinery. Note the magnetic field intensity is on a logarithmic scale.
If this were plotted on linear coordinates the saturation would appear to be quite abrupt.

At this point it is appropriate to note that the units used in magnetic field analysis are not
always the same nor even consistent. In almost all systems the unit of flux is the weber (W), which
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Figure 9: Saturation Curve: Commercial M-19 Silicon Iron
Courtesy of United States Steel Corporation. (U.S. Steel). U.S. Steel accepts no
liability for reliance on any information contained in the graphs shown above.

is the same as a volt-second. In SI the unit of flux density is the tesla (T), but many people refer to
the gauss (G), which has its origin in CGS. 10,000 G = 1 T. Now it gets worse, because there is an
English system measure of flux density generally called kilo-lines per square inch. This is because
in the English system the unit of flux is the line. 10® lines is equal to a weber. Thus a Tesla is 64.5
kilolines per square inch.

The SI and CGS units of flux density are easy to reconcile, but the units of magnetic field
are a bit harder. In SI we generally measure H in amperes/meter (or ampere-turns per meter).
Often, however, you will see magnetic field represented as Oersteds (Oe). One Oe is the same as
the magnetic field required to produce one gauss in free space. So 79.577 A/m is one Oe.

In most useful magnetic materials the magnetic domaines tend to be somewhat “sticky”, and a
more-than-incremental magnetic field is required to get them to move. This leads to the property
called “hysteresis”, both useful and problematical in many magnetic systems.

Hysteresis loops take many forms; a generalized picture of one is shown in Figure 10. Salient
features of the hysteresis curve are the remanent magnetization B, and the coercive field H.. Note
that the actual loop that will be traced out is a function of field amplitude and history. Thus there
are many other “minor loops” that might be traced out by the B-H characteristic of a piece of
material, depending on just what the fields and fluxes have done and are doing.

Now, hysteresis is important for two reasons. First, it represents the mechanism for “trapping”
magnetic flux in a piece of material to form a permanent magnet. We will have more to say about
that anon. Second, hysteresis is a loss mechanism. To show this, consider some arbitrary chunk of
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Figure 10: Hysteresis Curve Nomenclature

material for which we can characterize an MMF and a flux:

F o= NI:/ﬁ-defl

v L
> — /—dt:// B.dA
N Area

Energy input to the chunk of material over some period of time is

w:/VIdt:/chﬁ://ﬁ-dZ// dB - dA dt
t

Now, imagine carrying out the second (double) integral over a continuous set of surfaces which
are perpendicular to the magnetic field H. (This IS possible!). The energy becomes:

w—////H dBdvol dt

and, done over a complete cycle of some input waveform, that is:

w = // W, dvol
vol
W, = fﬁ.dg
t

That last expression simply expresses the area of the hysteresis loop for the particular cycle.

Generally, for most electric machine applications we will use magnetic material characterized
as “soft”, having as narrow a hysteresis loop (and therefore as low a hysteretic loss) as possible. At
the other end of the spectrum are “hard” magnetic materials which are used to make permanent
magnets. The terminology comes from steel, in which soft, annealed steel material tends to have
narrow loops and hardened steel tends to have wider loops. However permanent magnet technology
has advanced to the point where the coercive forces possible in even cheap ceramic magnets far
exceed those of the hardest steels.
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6.3 Conduction, Eddy Currents and Laminations:

Steel, being a metal, is an electrical conductor. Thus when time varying magnetic fields pass
through it they cause eddy currents to flow, and of course those produce dissipation. In fact, for
almost all applications involving “soft” iron, eddy currents are the dominant source of loss. To
reduce the eddy current loss, magnetic circuits of transformers and electric machines are almost
invariably laminated, or made up of relatively thin sheets of steel. To further reduce losses the steel
is alloyed with elements (often silicon) which poison the electrical conductivity.

There are several approaches to estimating the loss due to eddy currents in steel sheets and in
the surface of solid iron, and it is worthwhile to look at a few of them. It should be noted that this
is a “hard” problem, since the behavior of the material itself is difficult to characterize.

6.4 Complete Penetration Case

i

\ \
Figure 11: Lamination Section for Loss Calculation

Consider the problem of a stack of laminations. In particular, consider one sheet in the stack
represented in Figure 11. It has thickness £ and conductivity o. Assume that the “skin depth”
is much greater than the sheet thickness so that magnetic field penetrates the sheet completely.
Further, assume that the applied magnetic flux density is parallel to the surface of the sheets:

B =1i.Re {V2Bye’'}
Now we can use Faraday’s law to determine the electric field and therefore current density in

the sheet. If the problem is uniform in the x- and z- directions,

OE,

= —jwnB
Ay JwobDo

Note also that, unless there is some net transport current in the x- direction, £ must be anti-
symmetric about the center of the sheet. Thus if we take the origin of y to be in the center, electric
field and current are:

—JjwBoy

I~ &
8

: = —JjwBooy
Local power dissipated is

J 2
P(y) = wBjoy? = 17
g
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To find average power dissipated we integrate over the thickness of the lamination:

t t
< P>= g/2 P(y)dy = ngBga/z yidy = inBthO'
t Jo t 0 12

Pay attention to the orders of the various terms here: power is proportional to the square of
flux density and to the square of frequency. It is also proportional to the square of the lamination
thickness (this is average volume power dissipation).

As an aside, consider a simple magnetic circuit made of this material, with some length £ and
area A, so that volume of material is /A. Flux lined by a coil of N turns would be:

A=N®=NAB,

and voltage is of course just V = jwL. Total power dissipated in this core would be:

1 v?
P = Al w"Bjt'o = 7

where the equivalent core resistance is now

A12N?
R. = ? ot?

6.5 Eddy Currents in Saturating Iron

The same geometry holds for this pattern, although we consider only the one-dimensional problem
(k — 0). The problem was worked by McLean and his graduate student Agarwal [2] [1]. They
assumed that the magnetic field at the surface of the flat slab of material was sinusoidal in time
and of high enough amplitude to saturate the material. This is true if the material has high
permeability and the magnetic field is strong. What happens is that the impressed magnetic field
saturates a region of material near the surface, leading to a magnetic flux density parallel to the
surface. The depth of the region affected changes with time, and there is a separating surface (in
the flat problem this is a plane) that moves away from the top surface in response to the change
in the magnetic field. An electric field is developed to move the surface, and that magnetic field
drives eddy currents in the material.

Figure 12: Idealized Saturating Characteristic
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Assume that the material has a perfectly rectangular magnetization curve as shown in Figure 12,
so that flux density in the x- direction is:

B, = Bysign(H,)

The flux per unit width (in the z- direction) is:

—0o0
d = / B.dy
0
and Faraday’s law becomes:
00
“ot

while Ampere’s law in conjunction with Ohm’s law is:

H
OH, =oF,
Jy

Now, McLean suggested a solution to this set in which there is a “separating surface” at depth ¢
below the surface, as shown in Figure 13 . At any given time:

Hy, = H,yt) (1+%)

Separating Surface

Penetration
Depth

Figure 13: Separating Surface and Penetration Depth

That is, in the region between the separating surface and the top of the material, electric field
E, is uniform and magnetic field H; is a linear function of depth, falling from its impressed value at
the surface to zero at the separating surface. Now: electric field is produced by the rate of change
of flux which is:

0P o¢
E,=—=2B,—
ot T ot
Eliminating E, we have:
o¢ H,
U2 =
¢ ot oBy
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and then, if the impressed magnetic field is sinusoidal, this becomes:

d¢>  Hy, .
= t
dt O'B() | S ‘
This is easy to solve, assuming that ( =0 at ¢t =0,
C 2H0 . wt
= n—
U)O'B() 2

Now: the surface always moves in the downward direction (as we have drawn it), so at each half
cycle a new surface is created: the old one just stops moving at a maximum position, or penetration

depth:
2H
§=4)—2
LUO'B()

This penetration depth is analogous to the “skin depth” of the linear theory. However, it is an
absolute penetration depth.
The resulting electric field is:

2H0 wt
Ez = W COS 7

O<wt<w
This may be Fourier analyzed: noting that if the impressed magnetic field is sinusoidal, only the
time fundamental component of electric field is important, leading to:

8 Hp .
c =305 (coswt + 2sinwt + ...)
Complex surface impedance is the ratio between the complex amplitude of electric and magnetic
field, which becomes:
E 8 1
Z,="F2=——(2+47

Thus, in practical applications, we can handle this surface much as we handle linear conductive
surfaces, by establishing a skin depth and assuming that current flows within that skin depth of
the surface. The resistance is modified by the factor of % and the “power factor” of this surface is
about 89 % (as opposed to a linear surface where the “power factor” is about 71 %.

Agarwal suggests using a value for By of about 75 % of the saturation flux density of the steel.

7 Semi-Empirical Method of Handling Iron Loss

Neither of the models described so far are fully satisfactory in describing the behavior of laminated
iron, because losses are a combination of eddy current and hysteresis losses. The rather simple
model employed for eddy currents is precise because of its assumption of abrupt saturation. The
hysteresis model, while precise, would require an empirical determination of the size of the hysteresis
loops anyway. So we must often resort to empirical loss data. Manufacturers of lamination steel
sheets will publish data, usually in the form of curves, for many of their products. Here are a few
ways of looking at the data.
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A low frequency flux density vs. magnetic field (“saturation”) curve was shown in Figure 9.
Included with that was a measure of the incremental permeability

, dB

T

In some machine applications either the “total” inductance (ratio of flux to MMF) or “incremental”
inductance (slope of the flux to MMF curve) is required. In the limit of low frequency these numbers
may be useful.

For designing electric machines, however, a second way of looking at steel may be more useful.
This is to measure the real and reactive power as a function of magnetic flux density and (sometimes)
frequency. In principal, this data is immediately useful. In any well-designed electric machine the
flux density in the core is distributed fairly uniformly and is not strongly affected by eddy currents,
ete. in the core. Under such circumstances one can determine the flux density in each part of the
core. With that information one can go to the published empirical data for real and reactive power
and determine core loss and reactive power requirements.
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Figure 14: Real and Apparent Loss: M19, Fully Processed, 29 Ga

Courtesy of United States Steel Corporation. (U.S. Steel). U.S. Steel accepts no liability
for reliance on any information contained in the graphs shown above.

Figure 14 shows core loss and “apparent” power per unit mass as a function of (RMS) induction
for 29 gage, fully processed M-19 steel. The two left-hand curves are the ones we will find most
useful. “P” denotes real power while “P,"” denotes “apparent power”. The use of this data is quite
straightforward. If the flux density in a machine is estimated for each part of the machine and the
mass of steel calculated, then with the help of this chart a total core loss and apparent power can
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Table 1: Exponential Fit Parameters for Two Steel Sheets
29 Ga, Fully Processed

M-19 M-36
Base Flux Density By 1T 1T
Base Frequency fo 60 Hz 60 Hz
Base Power (w/Ib) Py 0.59 0.67
Flux Exponent €B 1.88 1.86
Frequency Exponent €p 1.53 1.48
Base Apparent Power 1 V Ay 1.08 1.33
Base Apparent Power 2 V A; .0144 .0119
Flux Exponent €0 1.70 2.01
Flux Exponent €1 16.1 17.2

be estimated. Then the effect of the core may be approximated with a pair of elements in parallel
with the terminals, with:

q|V|?

R, = L
¢ P
2

x, = 4V

2 _ p2

a

O
I
T@

Where ¢ is the number of machine phases and V' is phase voltage. Note that this picture is, strictly
speaking, only valid for the voltage and frequency for which the flux density was calculated. But
it will be approximately true for small excursions in either voltage or frequency and therefore
useful for estimating voltage drop due to exciting current and such matters. In design program
applications these parameters can be re-calculated repeatedly if necessary.

“Looking up” this data is a it awkward for design studies, so it is often convenient to do a
“curve fit” to the published data. There are a large number of possible ways of doing this. One
method that has bee found to work reasonably well for silicon iron is an “exponential fit”:

€
ren(z) (7))
By fo
This fit is appropriate if the data appears on a log-log plot to lie in approximately straight lines.
Figure 15 shows such a fit for the same steel sheet as the other figures.
For “apparent power” the same sort of method can be used. It appears, however, that the simple
exponential fit which works well for real power is inadequate, at least if relatively high inductions

are to be used. This is because, as the steel saturates, the reactive component of exciting current
rises rapidly. I have had some success with a “double exponential” fit:

B\ B\
A~ VA | — A | —
v v O<Bo) v 1<Bo)

To first order the reactive component of exciting current will be linear in frequency.
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M-19, 29 Ga, Fully Processed
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Figure 15: Steel Sheet Core Loss Fit vs. Flux Density and Frequency

In the disk that is to be distributed with these notes there are a number of data files representing
properties of different types of nonoriented sheet steel. The format of each of the files is the same:
two columns of numbers, the first is flux density in Tesla, RMS, 60 Hz. The second column is watts
per pound or volt-amperes per pound. The materials are denoted by the file names, which are
generally of the format: “M-Mtype-Proc-Data-Gage.prn”. The coding is relatively dense because
of the short file name limit of MSDOS. Mtype is the number designator (as in M-19). Proc is “f”
for fully processed and “s” for semiprocessed. Data is “p” for power, “pa” for apparent power.
Gage is 29 (.014” thick), 26 (.0185” thick) or 24 (.025” thick). Example: m19fp29.prn designates
loss in M-19 material, fully processed, 29 gage.

Also on the disk are three curve fitting routines that appear to work with this data. (Not all of
the routines work with all of the data!). They are:

1. efit.m implements the single exponential fit of loss against flux density. Use: in MATLAB
type
efit <return>.
The program prompts
fit what (name.prn) ==

Enter the file name for the material designator without the .prn extension. The program
will think about the problem for a few seconds and put up a plot of its fit with points
noting the actual data. Enter a <return> and a summary of the fit turns up, including the
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fit parameters and an error indication. These programs use MATLAB’s fmins routine to
minimize a mean-squared error as calculated by the auxiliary function fiterr.m.

2. e2fit.m implements the double exponential fit of apparent power against flux density. Use
is just like efit. It uses the auxiliary function fit2err.m.

3. pfit.m uses the MATLAB function polyfit to fit a polynomial (in B) to the data.
Most of the machine design scripts enclosed with the material for this special summer subject

employ the exponential fits for core iron developed here.
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