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Abstract

Designing robust algorithms for mobile agents with reliable communication is difficult due
to the distributed nature of computation, in mobile ad hoc networks (MANETs) the matter is
exacerbated by the need to ensure connectivity. Existing distributed algorithms provide coordi-
nation but typically assume connectivity is ensured by other means. We present a connectivity
service that encapsulates an arbitrary motion planner and can refine any plan to preserve connec-
tivity (the graph of agents remains connected) and ensure progress (the agents advance towards
their goal). The service is realized by a distributed algorithm that is modular in that it makes
no assumptions of the motion-planning mechanism except the ability for an agent to query its
position and intended goal position, local in that it uses 1-hop broadcast to communicate with
nearby agents but doesn’t need any network routing infrastructure, and oblivious in that it does
not depend on previous computations.

We prove the progress of the algorithm in one round is at least Ω(min(d, r)), where d is
the minimum distance between an agent and its target and r is the communication radius. We
characterize the worst case configuration and show that when d ≥ r this bound is tight and
the algorithm is optimal, since no algorithm can guarantee greater progress. Finally, we show
all agents get ε-close to their targets within O(D0/r + n2/ε) rounds where n is the number of
agents and D0 is the sum of the initial distances to the targets.



1 Introduction

Motivation and Related Work Designing robust algorithms for mobile agents with reliable
communication is difficult due to the distributed nature of computation. If the agents form a
mobile ad hoc network (MANET) there is an additional tension because communication is neces-
sary for motion-planning, but agent movement may destabilize the communication infrastructure.
As connectivity is the core property of a communication graph that makes distributed computa-
tion possible, algorithms for MANETs must reconcile the interaction between communication and
motion planning in order to preserve connectivity.

Existing distributed algorithms for MANETs provide coordination but typically sidestep the
issue of connectivity by assuming it is ensured by other means. For example, algorithms on rout-
ing [7, 10], leader election [9], and mutual exclusion [14] for MANETs assume they run on top of
a mobility layer that controls the trajectories of the agents. Those algorithms deal with connec-
tivity by assuming the mobility layer guarantees that every pair of nodes that need to exchange a
message are connected at some instant or transitively through time, otherwise they work on each
independent connected cluster. On the other hand, work on flocking [11, 6], pattern formation [4],
and leader following [2] provides a mobility layer for a MANET that determines how agents will
move. Again connectivity is sidestepped by assuming coordination runs atop a network layer that
ensures it is always possible to exchange information between every pair of agents. The service
we present would thus enable to execute the flocking algorithm of [11] using the routing algorithm
of [10], or running the leader follower algorithm of [2] using the leader election service of [9],
with the formal guarantee that connectivity is maintained and progress is made. The connectivity
service allows an algorithm designer to focus on the problems which are specific to the application
(i.e., search and rescue, demining fields, space exploration, etc.) without having to deal with the
additional issues that arise when there is no fixed communication infrastructure. We expect that
algorithms designed on top of this service will be easier to prove correct because the safety and
progress properties are maintained orthogonally by the guarantees of the service.

Some algorithms developed in the control theory community are preoccupied with preserving
connectivity, though they have limited applicability because they make restrictive assumptions
about the goal and computation model. For example, a centralized method preserves connectivity
by solving a constrained optimization problem [15] but doesn’t exploit the locality of distributed
computation, an algorithm for second-order agents [12] is centralized and conservatively preserves all
edges, and another algorithm maintains connectivity but only works for agents converging to a single
target position [1]. In this paper we focus on providing formal termination and progress guarantees,
a preliminary version of the algorithm appeared in a previous paper [3] with no guarantees.

Communication Model We assume each agent is equipped with a communication device that
permits reliable broadcasting to all other agents within some communication radius r. Without
loss of generality we suppose r = 1 throughout. The service operates in synchronous rounds, it
assumes access to a positioning device; relative position between neighboring agents is sufficient,
but for ease of exposition we assume absolute position is available. Finally the service assumes the
existence of a motion planner which is queried at each round for the desired target position, the
service produces a trajectory which preserves connectedness and, when possible, gets closer to the
target.

Contributions We present a distributed connectivity service that modifies an existing motion
plan to ensure connectivity using only local information and without making any assumptions of
the current and goal configurations. In particular, even if the goal configuration is disconnected,
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the service guarantees connectivity while trying to get each agent as close as possible to its target.
Furthermore, the connectivity service only requires the immediate intended trajectory and the
current position, but it is stateless, and hence oblivious. The service is also robust to the motion of
each agent in that the refined plan preserves connectivity irrespective of the agents’ speed changes.
Therefore agents remain connected throughout their motion even if they only travel a fraction
(possibly none) of their trajectory.

Connectivity is a global property, so determining whether an edge can be removed without dis-
connecting the graph may require traversing the whole graph. However, exploiting the distributed
nature of a team of agents requires allowing each agent to perform tasks with a certain degree of
independence, so communicating with every agent in the graph before performing each motion is
prohibitive. To solve this we parametrize the service with a filtering method that determines which
edges must be preserved and which can be removed, we also suggest several local algorithms which
can be used to implement this filtering step.

We define progress as the quantification of how much closer each agent gets to its target in a
single round. Our algorithm guarantees that the total progress is at least min(d, r) in configurations
where every agent wants to move at least some distance d and the communication radius is r.
Furthermore, we exhibit a class of configurations where no local algorithm can do better than
this bound, hence under these conditions the bound is tight and the algorithm is asymptotically
optimal. In the last section we prove all agents get ε-close to their target within O(D0/r + n2/ε)
rounds where D0 is the total initial distance to the targets and n is the number of agents. Since
the motion of the agents occurs in a geometric space and the service deals directly with motion
planning, most progress arguments rely on geometrical reasoning.

We introduce some notation and definitions in §2. In §3 we present the intersecting disks
connectivity service and discuss its parametrization in a filtering function. We prove the algorithm
preserves connectivity and produces robust trajectories (§4). In §5 we prove that any lower-bound
on progress for chains also applies for general graphs. We start §6 by giving a lower bound on
progress of a very restricted class of chains with only two nodes, and in the rest of the section we
show how to extend this lower bound to arbitrary chains. We give the termination bound in §7
and conclude in §8.

2 Preliminary Definitions

The open disk centered at p with radius r is the set of points at distance less than r from p:
diskr(p) := {q : ‖p− q‖ < r}. The circle centered at p with radius r is the set of points at distance
r from p: circler(p) := {q : ‖p − q‖ = r}. The closed disk centered at p with radius r is the set
of points at distance at most r from p: diskr(p) := circler(p) ∪ diskr(p) = {q : ‖p − q‖ ≤ r}. We
abbreviate disk(p, q) := disk‖p−q‖(p), circle(p, q) := circle‖p−q‖(p), disk(p, q) := disk‖p−q‖(p). The
unit disk of point p is disk1(p).

The lens of two points p and q is the intersection of their unit disks: lens(p, q) := disk1(p) ∩
disk1(q). The cone of two points p and q is defined as the locus of all the rays with origin in p that
pass through lens(p, q) (the apex is p and the base is lens(p, q)): cone(p, q) := {r : ∃s ∈ lens(p, q).r ∈
ray(p, s)}, where ray(p, q) := {p+ γ(q − p) : γ ≥ 0}.

A configuration C = 〈I, F 〉 is an undirected graph where an agent i ∈ I has a source coordinate
si ∈ R2, a target coordinate ti ∈ R2 at distance di = ‖si− ti‖, and every pair of neighboring agents
(i, j) ∈ F are source-connected (i.e., ‖si − sj‖ ≤ r) where r is the communication radius. We say
a configuration C is a chain (resp. cycle) if the graph is a simple path (resp. cycle).
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3 Distributed Connectivity Service

In this section we present a distributed algorithm for refining an arbitrary motion plan into a plan
that moves towards the intended goal and preserves global connectivity. No assumptions are made
about trajectories generated by the motion planner, the connectivity service only needs to know the
current and target positions and produces a straight line trajectory at each round; the composed
trajectory observed over a series of rounds need not be linear. The trajectories output by the
service are such that connectivity is preserved even if an adversary is allowed to stop or control the
speed of each agent independently.

The algorithm is parametrized by a filtering function that determines a sufficient subset of
neighbors such that maintaining 1-hop connectivity between those neighbors preserves global con-
nectivity. The algorithm is oblivious because it is stateless and only needs access to the current
plan, hence it is resilient to changes in the plan over time.

3.1 The Filtering Function

Assuming the communication graph is connected, we are interested in a Filter subroutine that
determines which edges can be removed while preserving connectivity. Let s be the position of an
agent with a set N of 1-hop neighbors, we require a function Filter(N, s) that returns a subset of
neighbors N ′ ⊆ N such that preserving connectivity with the agents in the subset N ′ is sufficient
to guarantee connectivity.

We say i and j are symmetric neighbors if Filter determines i should preserve j (sj ∈ N ′i) and
vice versa (si ∈ N ′j). A Filter function is valid if preserving connectivity of all symmetric edges is
sufficient to preserve global connectivity. Observe that Filter need not be symmetric in the sense
that it may deem it necessary for i to preserve j as a neighbor, but not the other way around.

The identity function Filter(N, s) := N is trivially valid because connectivity is preserved if
no edges are removed. However we ideally want a Filter function that in some way ”minimizes”
the number of edges kept. A natural choice is to compute the minimum spanning tree (MST ) of
the graph, and return for every agent the set of neighbors which are its one hop neighbors in the
MST . Although in some sense this would be the ideal filtering function, it cannot be computed
locally and thus it is not suited for the connectivity service.

Nevertheless, there are well known local algorithms that compute sparse connected spanning
subgraphs, amongst them is the Gabriel graph (GG) [5], the relative neighbor graph (RNG) [13],
and the local minimum spanning tree (LMST ) [8]. All these structures are connected and can be
computed using local algorithms. Since we are looking to remove as many neighbors as possible
and MST ⊆ LMST ⊆ RNG ⊆ GG, from the above LMST is best suited.

Remark The connected subgraph represented by symmetric filtered neighbors depends on the
positions of the agents, which can vary from one round to the next. Hence the use of a filtering
function enables preserving connectivity without preserving a fixed set of edges (topology) through-
out the execution; in fact, it is possible that no edge present in the original graph appears in the
final graph.

3.2 The Algorithm

We present a three-phase service (fig. 1) that consists of a collection phase, a proposal phase, and an
adjustment phase. In the collection phase, each agent queries the motion planner and the location
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1: Collection phase:
2: si ← query positioning device()
3: ti ← query motion planner()
4: broadcast si to all neighbors
5: Ni ← {sj | for each sj received}

6: Proposal Phase:
7: N ′

i ← Filter (Ni, si)
8: Ri ←

⋂
sj∈N ′

i

disk1(sj)

9: pi ← argminp∈Ri
‖p− ti‖

10: broadcast pi to all neighbors
11: Pi ← {pj | for each pj received}

12: Adjustment Phase:
13: if ∀sj ∈ N ′

i .‖pj − pi‖ ≤ r then
14: return trajectory from si to pi

15: else return trajectory from si to si + 1
2 (pi − si)

Figure 1: ConnServ algorithm run by agent i.

service to obtain its current and target positions (si and ti respectively). Each agent broadcasts its
position and records the position of neighboring agents discovered within its communication radius.

In the proposal phase, the service queries the Filter function to determine which neighboring
agents are sufficient to preserve connectivity. Using the neighbors returned by Filter the agent
optimistically chooses a target pi. The target is optimistic in the sense that if none of its neighboring
agents move, then moving from source si to the target pi would not disconnect the network. The
proposed target pi is broadcast and the proposals of other agents are collected.

Finally in the adjustment phase, each agent checks whether neighbors kept by the Filter
function will be reachable after each agent moves to their proposed target. If every neighbor will
be reachable, then the agent moves from the current position to its proposed target, otherwise it
moves halfway to its proposed target, which ensures connectivity is preserved (proved in the next
section).

4 Preserving Connectivity

In this section we prove the algorithm preserves network connectivity with any valid Filter func-
tion. Observe that since Ri is the intersection of a set of disks that contain si, it follows that Ri
is convex and contains si. By construction pi ∈ Ri and thus by convexity the linear trajectory
between si and pi is contained in Ri, so the graph would remain connected if agent i were to move
from si to pi and every other agent would remain in place. The following theorems prove a stronger
property, namely that the trajectories output guarantee symmetric agents will remain connected,
even if they slow down or stop abruptly at any point of their trajectory.

Lemma 4.1 (Adjustment). The adjusted proposals of symmetric neighbors are connected.

Proof. The adjusted proposals of symmetric agents i and j are p′i = si + 1
2(pi − si) and p′j =

sj + 1
2(pj − sj). By construction ‖si − pj‖ ≤ r and ‖sj − pi‖ ≤ r, so the adjusted proposals are
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connected:

‖p′i − p′j‖ = ‖si − sj +
1
2

(pi − pj + sj − si)‖ = ‖1
2

(si − sj + pi − pj)‖ ≤
1
2

(‖si − pj‖+ ‖sj − pi‖) ≤ r

Safety Theorem. If Filter is valid, the service preserves connectivity of the graph.

Proof. Assuming Filter is valid, it suffices to prove that symmetric neighbors remain connected
after one round of the algorithm. Fix symmetric neighbors i and j. If ‖pi − pj‖ > r, both adjust
their proposals and they remain connected by the Adjustment lemma. If ‖pi− pj‖ ≤ r and neither
adjust, they trivially remain connected. If ‖pi−pj‖ ≤ r but (without loss of generality) i adjusts but
j doesn’t adjust, then si, pi ∈ disk1(pj), and by convexity p′i ∈ disk1(pj), whence ‖p′i − pj‖ ≤ r.

Even if two agents are connected and propose connected targets, they might disconnect while
following their trajectory to the target. Moreover, agents could stop or slow down unexpectedly
(perhaps due to an obstacle) while executing the trajectories. We prove the linear trajectories
prescribed by the algorithm for symmetric neighbors are robust in that any number of agents can
stop or slow down during the execution and connectivity is preserved.
Robustness Theorem. The linear trajectories followed by symmetric neighbors are robust.

Proof. Fix symmetric neighbors i and j. Since each trajectory to the proposal is linear, we need to
prove that all intermediate points on the trajectories remain connected. Fix points qi := si+γi(pi−
si) and qj := sj+γj(pj−sj) (γi, γj ∈ [0, 1]) on the trajectory from each source to its proposal. Since
the neighbors are symmetric, si, ti ∈ disk1(sj)∩ disk1(tj) and by convexity qi ∈ disk1(sj)∩ disk1(tj).
Similarly sj , tj ∈ disk1(qi) and by convexity qj ∈ disk1(qi), whence ‖qi − qj‖ ≤ r.

5 Ensuring Progress for Graphs

For the algorithm to be useful, in addition to preserving connectivity (proved in §4) it should also
guarantee that the agents make progress and eventually reach their intended destination. However,
before proving any progress guarantee we first identify several subtle conditions without which no
local algorithm can both preserve connectivity and guarantee progress.

Cycles Consider a configuration where nodes are in a cycle, two neighboring nodes want to move
apart and break the cycle and every other node wants to remain in place. Clearly no local algorithm
can make progress because, without global information, nodes cannot distinguish between being
in a cycle or a chain, and in the latter case any movement would violate connectivity. As long as
the longest cycle of the graph is bounded by a known constant, say k, using local LMST filtering
over bk/2c-hops will break all cycles. A way to deal with graphs with arbitrary long cycles without
completely sacrificing locality would be to use the algorithm proposed in this paper and switch to a
global filtering function to break all cycles when nodes detect no progress has been made for some
number of rounds. For proving progress, in the rest of the paper we assume there are no cycles in
the filtered graph.

Target-connectedness If the proposed targets are disconnected, clearly progress cannot be
achieved without violating connectivity, hence it’s necessary to assume that the target graph is
connected. For simplicity, in the rest of the paper we assume that the current graph is a subgraph
of the target graph, this avoids reasoning about filtering when proving progress and one can check
that as a side effect the adjustment phase is never required.
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5.1 Dependency graphs

Fix some node in an execution of the ConnServ algorithm, on how many other nodes does its
trajectory depend? Let region(S) :=

⋂
s∈S disk1(s) and let proposal(S, t) := argminp∈region(S) ‖p−t‖,

then a node with filtered neighbor set N ′ and target t depends on k neighbors (has dependency
k) if there exists a subset S ⊆ N ′ of size |S| = k such that proposal(S, t) = proposal(N ′, t) but
proposal(S′, t) 6= proposal(N ′, t) for any subset S′ ⊆ N ′ of smaller size |S′| < k.

The dependency of a node can be bounded by the size of its filtered neighborhood. If the
filtering function is LMST then the number of neighbors is at most 6 or 5 depending on whether
the distances to neighbors are unique (i.e., breaking ties using unique identifiers). The following
lemma gives a tighter upper bound on the dependency of a neighbor which is independent of the
filtering function.

Lemma 5.1. Every agent depends on at most two neighbors.

Proof. Fix agent i with filtered neighbors N ′ and target t, let R = region(N ′). If t ∈ R then
proposal(N ′, t) = proposal(∅, t) = t and agent i depends on no neighbors. If t /∈ R then proposal(N ′, t)
returns a point p in the boundary of region R. Since R is the intersection of a finite set of disks
it follows that p is either in the boundary of a single disk, in which case i depends on a single
neighbor, or the intersection of two disks, in which case i depends on at most two neighbors.

Given the above, for any configuration C = 〈I, F 〉 we can consider its dependency graph D =
〈I, E〉 where there exists a directed edge (u, v) ∈ E iff node u depends on node v. Hence D is a
directed subgraph of C with maximum out-degree 2. Moreover since graphs with cycles cannot,
in general, be handled by any local connectivity service, then for the purpose of proving progress
we assume C has no undirected cycles. This implies that the only directed cycles in D are simple
cycles of length 2, we refer to such dependency graphs as nice graphs.

A prechain H is a sequence of vertices 〈vi〉i∈1..n such that there is a simple cycle between
vi, vi+1 (i ∈ 1..n− 1), observe that a vertex v is a singleton prechain. Below we prove that any nice
dependency graph D contains a nonempty prechain H with no out-edges.

Theorem 5.2. Every finite nice graph G = 〈V,E〉 contains a nonempty prechain H ⊆ V with no
out-edges.

Proof. Fix a graph G = 〈V,E〉 and consider the graph G′ that results from iteratively contracting
the vertices u, v ∈ V if (u, v) ∈ E and (v, u) ∈ E. Clearly G′ is also a finite nice graph and any
vertex v′ in G′ is a prechain of G, however G′ does not contain any directed cycles.

We follow a directed path in G′ starting at an arbitrary vertex u′, since the graph is finite and
contains no cycles, we must eventually reach some vertex v′ with no outgoing edges, such a vertex
is a prechain and has no outgoing edges, which implies the lemma.

Therefore by theorem 5.2 any lower bound on progress for chains also holds for general configu-
rations. In particular the lower bound of Ω(min(d, r)) for chains proved in the next section applies
for general graphs as well.

6 Ensuring Progress for Chains

In this section we restrict our attention to chain configurations and show that, if agents execute
the connectivity service’s refined plan, the total progress of the configuration is at least min(d, r),
where d is the minimum distance between any agent and its target and r is the communication
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radius. We introduce some terminology to classify chains according to their geometric attributes,
then we prove the progress bound for a very restricted class of chains. Finally, we establish the
result for all chains by showing that the progress of an arbitrary chain is bounded below by the
progress of a restricted chain.

Terminology Each agent has a local coordinate system where the source is the origin (si = 〈0, 0〉)
and the target is directly above it (ti = 〈0, di〉). The left side of agent i is defined as Li := {〈x, y〉 :
x ≤ 0} and the right side as Ri := {〈x, y〉 : x > 0} where points are relative to the local coordinate
system. An agent in a chain is balanced if it has one neighbor on its left side, and the other on its
right side; a configuration is balanced if every agent is balanced.

A configuration is d-uniform if every agent is at distance d from its target (di = d for every
agent i). Given a pair of agents i and j, they are source-separated if ‖si − sj‖ = 1; they are
target-separated if ‖si − sj‖ = 1; and they are target-parallel if the rays ray(si, ti) and ray(sj , tj)
are parallel. An agent i with neighbors j and k is straight if si, sj , and sk are collinear; a chain
configuration is straight if all agents are straight.

Given an agent with source s, target t and a (possibly empty) subset of neighbors S ⊆ N ,
its proposed target w.r.t. S is defined as t∗ = proposal(S, t). The progress of the agent would be
δ(s, t;S) := ‖s − t‖ − ‖t∗ − t‖, which we abbreviate as δi for agent i when the si, ti and Si are
clear from context. Observe that since region(S ∪ S′) ⊆ region(S), δ(s, t;S ∪ S′) ≤ δ(s, t;S). The
progress of a configuration C is the sum of the progress of the individual agents: prog(C) :=

∑
i δi.

Proof Overview We first characterize the progress of agents in a balanced and source-separated
chain and show the progress bound specifically for chains that are d-uniform, source- and target-
separated, balanced, and straight (§6.2). Then we show how to remove each the requirements of
a chain being straight, balanced, source- and target-separated, and d-uniform (§6.3). Ultimately,
this means that an arbitrary target-connected chain configuration C = 〈I, F 〉 can be transformed
into a d-uniform, source- and target-separated, balanced, straight chain configuration C ′ such that
prog(C) ≥ prog(C ′) ≥ min(d, r), where d is the minimum distance between each source and its
target in the original configuration C (d := mini∈I ‖si− ti‖) and the communication radius is r. At
each removal step we show that imposing a particular constraint on a more relaxed configuration
does not increase progress, so that the lower bound for the final (most constrained) configuration is
also a lower bound for the original (unconstrained) configuration. The bound shows that straight
chains (the most constrained configurations) are the worst-case configurations since their progress
is a lower bound for all chains. We show the lower bound is tight for d-uniform configurations by
exhibiting a chain with progress exactly min(d, r) (§6.3).

6.1 Progress Function for Balanced and Separated Chains

We explicitly characterize the progress of an agent in a balanced, source-separated chain. In such
a configuration, if an agent has source s with target t, the source-target distance is d := ‖s − t‖
and the position of its neighbors s−1, s+1 (if any) can be uniquely determined by the angles of the
left (λ := ∠t, s, s−1) and right neighbor (ρ := ∠t, s, s+1). Since an agent’s progress is determined
by it’s neighbors, its progress can be defined as a function δ∠(d, λ, ρ).

If the agent doesn’t depend on either neighbor, it can immediately move to its target and its
progress is d. If it (partially) depends on a single (left or right) neighbor at angle θ, then progress
is δsingle(d, θ) := d + 1 −

√
1 + d2 − 2d cos θ. If it (partially) depends on both neighbors at angles

ρ and λ, then progress is δboth(d, λ, ρ) := d −
√

2 + d2 − 2d cos ρ+ 2 cos(ρ+ λ)− 2d cosλ. If it is
completely immobilized by one or both of its neighbors, its progress is 0. Therefore the progress
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of an agent can be fully described by the following piecewise function, parametrized by the source-
target distance d and the angle to its neighbors ρ and λ. Observe that agent i’s progress function
is monotonically decreasing in ρ and λ.

δ∠(d, λ, ρ) =



d depends on neither: ρ ≤ cos−1 d
2 and λ ≤ cos−1 d

2

δsingle(d, ρ) depends on right: ρ > cos−1 d
2 and sin(ρ+ λ) ≥ d sinλ

δsingle(d, λ) depends on left: λ > cos−1 d
2 and sin(ρ+ λ) ≥ d sin ρ

δboth(d, λ, ρ) depends on both: ρ+ λ < π and sin(ρ+ λ) < d sin ρ, d sinλ
0 immobilized by either or both: ρ+ λ ≥ π

6.2 Progress for Restricted Chains

We prove a lower bound on progress of min(d, r) for d-uniform, source- and target-separated,
balanced, straight chains with communication radius r. Let Ck(d, θ) represent a d-uniform, source-
and target-separated, straight chain of k nodes, where ∠ti, si, si+1 = θ for i ∈ 1..n − 1. We first
establish the progress bound for chains of two nodes and then extend it to more than two nodes.
Progress Theorem for Restricted 2-Chains. For any θ ∈ [0, π], the chain C2(d, θ) makes
progress at least min(d, r) (prog(C2(d, θ)) ≥ min(d, r)).

Proof. Suppose θ ≤ arccos d2 , then if d ≤ r agent 1 makes progress d, if d > r then agent 1 makes
progress at least r. Similarly if θ ≥ π − arccos d2 and d ≤ r agent 2 makes progress d, if d > r then
agent 2 makes progress at least r. Otherwise θ ∈ (arccos d2 , π− arccos d2) and the progress function
from §6.1 yields

δsingle(d, θ) + δsingle(d, π − θ) = 2 + 2d−
√

1 + d2 − 2d cos θ −
√

1 + d2 + 2d cos θ

The partial derivative is ∂θ(δ1 + δ2) = d sin θ(1/
√

1 + d2 + 2d cos θ − 1/
√

1 + d2 − 2d cos θ), whose
only root in (0, π) is θ = π

2 , which is a local minimum. By using the first order Taylor approximation
as an upper bound of

√
1 + d2 and since d2 < d:

prog(C2(d, θ)) ≥ prog(C2(d,
π

2
)) ≥ 2δsingle(d,

π

2
) ≥ 2 + 2d− 2

√
1 + d2 ≥ 2 + 2d− 2− d2 ≥ d

Progress Theorem for Restricted n-Chains. Configurations Cn(d, θ) (n > 2) and C2(d, θ)
have the same progress (prog(Cn(d, θ)) = prog(C2(d, θ))).

Proof. Since Cn is straight and separated, internal nodes make no progress (δi = 0 for i ∈ 2..n−1).
The first node in Cn (and C2) has a single neighbor at angle θ, so δn1 = δ21 . Similarly the last
node in Cn (and C2) has a single neighbor at angle π − θ, so δnn = δ22 . Therefore prog(Cn(d, θ)) =
prog(C2(d, θ)).

6.3 Progress for Arbitrary Chains

We prove that the progress of an arbitrary chain is bounded below by the progress of a restricted
chain, hence the progress bound proved in the previous section for restricted chains extends to all
chains. Furthermore, we show the bound is tight for d-uniform configurations by exhibiting a class
of chains for which progress is exactly min(d, r).
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Figure 2: Transformation overview from arbitrary to restricted chains.

To extend the progress result from restricted to arbitrary chains, we exhibit a sequence of
transformations (cf. fig. 2) that show how to transform an arbitrary chain to be d-uniform, source-
separated, target-separated, balanced, and finally also straight. Each transformation doesn’t in-
crease progress and preserves the configuration’s properties.

To warm up, observe that if an agent i and its immediate neighbors are subjected to the same
rigid transformation (rotations and translations), then its progress δi is unchanged. Therefore if all
agents i ≤ k are subjected to the same rigid transformation and all agents i > k remain fixed, every
progress value δi (i 6= k, k+ 1) will be unaffected and the only progress values that may change are
δk, δk+1.

Proposition 6.1 (Reflected distance). Suppose p, q are on the same side of a line L and let q′ be
the reflection of q in L. Then ‖q′ − p‖ ≥ ‖q − p‖.

Proof. Consider the coordinate system with L as the y axis. Then p = 〈px, py〉, q = p + ∆ for
some ∆ = 〈∆x,∆y〉, and q′ = 〈−px −∆x, py + ∆y〉. Therefore ‖q′ − p‖ =

√
4p2
x + ‖∆‖2 ≥ ‖∆‖ =

‖q − p‖.

Proposition 6.2 (Unrestricted movement). Suppose source s with target t has neighbors S =
{si}i∈1..n, sn+1, s

′
n+1 and doesn’t depend on neighbor sn+1. Then δ(si, ti;S ∪ {s′n+1}) ≤ δ(si, ti;S ∪

{sn+1}).

Proof. Since s doesn’t depend on sn+1, δ(si, ti;S ∪ {s′n+1}) ≤ δ(si, ti;S) = δ(si, ti;S ∪ {sn+1}).

Proposition 6.3 (Restricted movement). Suppose source s with target t has neighbors S =
{si}i∈1..n, sn+1, s

′
n+1 and only depends on agent sn+1. If ‖s′n+1 − t‖ ≥ ‖sn+1 − t‖, then δ(s, t;S ∪

{s′n+1}) ≤ δ(s, t;S ∪ {sn+1}).

Proof. Since s only depends on sn+1, its proposal is the point t∗ ∈ disk1(sn+1) closest to t. Since
‖s′n+1 − t‖ ≥ ‖sn+1 − t‖, the point t′∗ ∈ disk1(s′n+1) closest to t has distance ‖t′∗ − t‖ ≥ ‖t∗ − t‖,
so δ(s, t;S ∪ {s′n+1}) ≤ δ(s, t;S ∪ {sn+1}).

6.3.1 Truncating

For an agent with source s and target t consider a truncated target tT = s + γ(t − s) where γ ∈
[0, 1]. We prove prove that truncating preserves target-connectedness and doesn’t increase progress.
Therefore a configuration can be assumed to be uniform by truncating to ensure the source-target
distance is min(d, r) where d is the minimum source-target distance (d := mini∈I ‖si − ti‖).
Truncation Theorem. Suppose a source s with target t and neighbors S. Let tT = s + γ(t − s)
with γ ∈ [0, 1] be its truncated target, then δ(s, t;S) ≥ δ(s, tT ;S).

Proof. Let a be the proposal of source s and target t, and let aT be the proposal of source s using
the truncated target tT . By the definition of proposal, a is the point in region(S) that minimizes
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Figure 3: Separating si−1 and si by the independence lemma.

the distance to t, so ‖a− t‖ ≤ ‖aT − t‖. By the triangle inequality ‖aT − t‖ ≤ ‖aT − tT ‖+ ‖tT − t‖
and ‖t− tT ‖ = (1− γ)‖t− s‖,

δ(s, t;S) = ‖s− t‖ − ‖a− t‖ ≥ ‖s− t‖ − ‖aT − t‖ ≥ ‖s− t‖ − ‖aT − tT ‖ − ‖tT − t‖
= γ‖s− t‖+ (1− γ)‖s− t‖ − ‖aT − tT ‖ − (1− γ)‖s− t‖
= ‖γ(s− t)‖ − ‖aT − tT ‖ = ‖s− (s+ (γ(t− s)))‖ − ‖aT − tT ‖ = δ(s, tT ;S)

Target-connectedness Theorem. Let neighboring agents i and j be truncated to targets tTi and
tTj with the same source-target distance d ∈ [0,min(‖si− ti‖, ‖sj− tj‖)]. If the non-truncated agents
are target-connected (‖ti − tj‖ ≤ 1), then the truncated agents are also connected (‖tTi − tTj ‖ ≤ 1).

Proof. Let γi = d
‖si−ti‖ and γj = d

‖sj−tj‖ , then the truncated targets are tTi = si + γi(ti − si) and

tTj = sj + γi(tj − sj). Observe that since d ∈ [0,min(‖si− ti‖, ‖sj − tj‖)], γi, γj ≤ 1. We can choose
γ′ ∈ {γi, γj} so that γ′ ≤ 1 and,

‖tTi − tTj ‖ = ‖si − sj + γi(ti − si) + γj(tj − sj)‖ ≤ ‖si − sj + γ′(ti − si) + γ′(tj − sj)‖
= ‖(1− γ′)(si − sj) + γ′(ti − tj)‖ ≤ (1− γ′)‖si − sj‖+ γ′‖ti − tj‖ ≤ (1− γ′) + γ′ = γ′ ≤ 1

6.3.2 Separating

Here we further remove the requirement for chains to be source- and target-separated. We show that
neighboring agents can be source-separated without increasing progress, as long as the separated
source (i.e., si−1) doesn’t get closer to the other agent’s target (i.e., ti). Furthermore, d-uniform
neighbors can be source- and target-separated while satisfying the former proviso. Therefore a
d-uniform configuration can be source- and target-separated without increasing progress.

Consider agent i in a chain configuration, with neighboring agents i − 1 and i + 1. We will
describe a transformation that separates the sources and targets of the three agents, and decreases
the progress of all of them. As a first step, we first prove there exists a transformation that separates
each pair (agent i and i − 1, and agent i and i + 1) independently, decreases the progress of that
pair, while leaving the progress of the other pair unchanged.

10



Lemma 6.4 (Independence). Suppose source si has target ti and neighbors si−1, s
′
i−1 ∈ Li and

si+1 ∈ Ri such that ‖s′i−1 − si‖ = 1 and ‖s′i−1 − ti‖ ≥ ‖si−1 − ti‖. Let δi := δ(si, ti; {si−1, si+1})
and δ′i := δ(si, ti; {s′i−1, si+1}). Then δ′i ≤ δi.

Proof. If ti ∈ cone(si+1, si−1) then progress decreases by proposition 6.2. If ti ∈ cone(si−1, si+1) \
cone(si+1, si−1) progress decreases by proposition 6.3. Otherwise ti /∈ cone(si+1, si−1)∪cone(si−1, si+1)
and agent i depends on both neighbors, so s’s proposal t∗ is the upper corner of lens(si−1, si+1) (cf.
fig. 4). In what follows we show that progress of does not increase via the rotations in fig. 3. At a
high level, progress doesn’t increase by moving si−1 to s+i−1 by rotating counterclockwise around ti
until reaching disk1(si), and then moving s+i−1 to s′i−1 by rotating clockwise around disk1(si).

Let s∗i−1 (resp. s+i−1) be the corner of lens(t∗, si) (resp. lens(ti, si)) at the intersection of disk1(si)
and disk1(t∗) (resp. disk1(ti)) closest to si−1 and farthest from si+1, which can be expressed as
s∗i−1 = 1∠θ∗ (resp. s+i−1 = 1∠θ+) for some θ∗ ∈ [π2 ,

3π
2 ] (resp. θ+ ∈ [π2 ,

3π
2 ]) in i’s polar coordinate

system (cf. fig. 5). Define s′(θ) := 1∠θ and δ′(θ) := δ(si, ti; {s′(θ), si+1}), and observe that
s∗i−1 = s′(θ∗).

(s′i−1 = s′(θ′) for some θ′ ∈ [θ∗, 3π
2 ]) Let A+ be the line segment between si−1 and s+i−1 and let

B+ be the plane bisector perpendicular to A+, and observe that B+ passes through ti. Let A∗ be
the line segment between si−1 and s∗i−1 and let B∗ be the plane bisector perpendicular to A∗, and
observe that B∗ passes through t∗ (cf. fig. 6). Since ti /∈ cone(si+1, si−1) ∪ cone(si−1, si+1) 3 t∗,
∂xB

+ > ∂xB
∗, so ∂xA

+ < ∂xA
∗ and θ+ ∈ [θ∗, 3π

2 ]. Since s′i−1 ∈ Li, ‖s′i−1 − si‖ = 1, and
‖s′i+1 − t‖ ≥ ‖si+1 − t‖, there exists θ′ ∈ [θ+, 3π

2 ] ⊆ [θ∗, 3π
2 ] such that s′i+1 = 1∠θ′ in i’s coordinate

system (cf. fig. 7).
It suffices to show that δi = δ′(θ∗) and δ′(θ) is monotonically decreasing on the interval θ ∈

[θ∗, π], whence δ′i = δ′(θ′) ≤ δ′(θ∗) = δi because θ′ ≥ θ∗.
(δi = δ′(θ∗)) Since t∗ ∈ circle1(si−1) ∩ circle1(si+1) ⊆ circle1(si+1) and s∗i−1 ∈ circle1(t∗) ∩

circle1(si) ⊆ circle1(t∗), t∗ ∈ circle1(s∗i−1) and t∗ ∈ circle1(s∗i−1) ∩ circle1(si+1). By the choice of s∗i−1

farthest from from si+1, t∗ is the closest point in lens(s∗i−1, si+1) to t and s∗i−1’s proposal, whence
δi = δ′(θ∗).

(δ′(θ) is monotonically decreasing in θ) Let t′(θ) be the corner of the lens(s′(θ), si+1) closest to ti
and let d′(θ) be the point inside disk1(s′(θ)) closest to ti. By definition, ‖t′(θ)− ti‖ and ‖d′(θ)− ti‖
are monotonically increasing for θ ∈ [θ∗, 3π

2 ]. Observe that t∗ = t′(θ∗) and there exists θ= ∈ [θ∗, 3π
2 ]

such that t′(θ=) = d′(θ=). Therefore

δ′(θ) =

{
1− t′(θ) if θ ∈ [θ∗, θ=]
1− d′(θ) if θ ∈ ]θ=, 3π

2 ]

and by the monotonicity of t′ and d′ it follows that δ′(θ) ≤ δ′(θ∗) in the interval θ ∈ [θ∗, 3π
2 ].

If we want to source-separate agents i and i + 1 without increasing the total progress, the
Independence lemma says we can do so without worrying about the positions of i − 1 or i + 2, as
long as the separation does not bring one agent’s source closer to the other agent’s target. Formally,
if the initial configuration is 〈si, ti〉, 〈si+1, ti+1〉 and a transformation (e.g., separation) moves 〈si, ti〉
to 〈s′i, t′i〉, we need to ensure i’s source doesn’t get closer to i+ 1’s target (‖s′i− ti+1‖ ≥ ‖si− ti+1‖)
and vice versa (‖t′i − si+1‖ ≥ ‖ti − si+1‖), these two conditions are henceforth abbreviated as
〈s′i, t′i〉 �〈si+1ti+1〉 〈si, ti〉.
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Figure 4: Independence: Initial source s′i and final source s′i−1.

Figure 5: Independence: Initial source s′i and intermediate source s∗i−1.
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Figure 6: Independence: Intermediate sources s∗i−1 and s+i−1.

Figure 7: Independence: Intermediate source s+i−1 and final source s′i−1.
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The following lemma proves that under some restrictions on the placements of the sources and
targets, there exists a rigid transformation that source- and target-separates a pair of agents while
ensuring that the source of the first agent is not closer to the target of the second, and vice versa.

Lemma 6.5. Let q∗ := p+ (q0− p0),m0 := 1
2(q0− p0),m := 1

2(q− p),m∗ := 1
2(q∗− p) and suppose

‖p0− q0‖ = ‖p− q‖ = ‖p− q∗‖ = d ≤ d′, p ∈ diskd′(p0), q ∈ diskd′(q0), and ‖m0−m∗‖ ≥ ‖m0−m‖.
Then there exist p′ ∈ circled′(p0), q′ ∈ circled′(q0) such that ‖p′ − q′‖ = d and 〈p′, q′〉 �〈p0,q0〉 〈p, q〉.

Proof. Let A be the line passing through p and m0. If q, q∗ are on opposite sides of A, then let q]

be the reflection of q in A, otherwise let q] := q. By proposition 6.1, 〈p], q]〉 �〈p0,q0〉 〈p, q〉. Define
the midpoint m] := 1

2(q] − p) and observe ‖m0 −m]‖ = ‖m0 −m‖ ≤ ‖m0 −m∗‖. In particular
q∗ results from the rotation of q] about p away from p0, so 〈p∗, q∗〉 �〈p0,q0〉 〈p], q]〉. Let 〈p′, q′〉 be
the translation of 〈p∗, q∗〉 along the line from m0 to m∗ until ‖p′ − p0‖ = d′ = ‖p′ − p0‖. Then
p′ ∈ circled′(p0), q′ ∈ circled′(q0), ‖p′ − q′‖ = ‖p∗ − q∗‖ = d, and 〈p′, q′〉 �〈p0,q0〉 〈p∗, q∗〉 �〈p0,q0〉
〈p], q]〉 �〈p0,q0〉 〈p, q〉.

Proposition 6.6. Suppose p = 〈x, y〉, q+ = 〈d, 0〉, q− = 〈−d, 0〉, then ‖p−q+‖ ≥ ‖p‖ or ‖p−q−‖ ≥
‖p‖.

Proof. Either |x+d| or |x−d| is greater than |x|, so either ‖p−q+‖ =
√

(x+ d)2 + y2 ≥
√
x2 + y2 =

‖p‖ or ‖p− q−‖ =
√

(x− d)2 + y2 ≥
√
x2 + y2 = ‖p‖.

Lemma 6.7 (Local separation). Suppose i− 1, i are neighbors in a d-uniform configuration, then
there is a rigid transformation of 〈si−1, ti−1〉 into 〈s′i−1, t

′
i−1〉 that separates neighboring sources and

targets (‖s′i−1− si‖ = 1 = ‖t′i−1− ti‖) and doesn’t decrease the distance between neighboring source
and target (〈s′i−1, t

′
i−1〉 �〈si,ti〉 〈si−1, ti−1〉).

Proof. Define the intermediate agents 〈s+, t+〉 := 〈si−1, si−1 + (ti − si)〉 and 〈s−, t−〉 := 〈ti−1 +
(si − ti), ti−1〉 that result from rotating agent i − 1 about si−1 and ti−1 until parallel with agent
i. Let mi := 1

2(ti − si),mi−1 := 1
2(ti−1 − si−1),m+ := 1

2(t+ − s+),m− := 1
2(t− − s−) be the

respective midpoints of the agents. By proposition 6.6, there is m∗ ∈ {m+,m−} farther from mi

than mi−1 and by lemma 6.5 there is a rigid transformation of 〈s∗, t∗〉 to a 〈s′i−1, t
′
i−1〉 satisfying

the conditions.

Separation Theorem. A d-uniform configuration C can be transformed into a d-uniform, source-
and target-separated configuration C ′ such that prog(C ′) ≤ prog(C).

Proof. By the Local Separation lemma, each pair of agents i, i+ 1 can be separated to be source-
and target-separated. This satisfies the conditions of the Independence lemma for both agents, so
the transformation doesn’t increase the progress of each agent (δ′i ≤ δi and δ′i+1 ≤ δi+1) or the total
progress (prog(C ′) ≤ prog(C)). The Independence lemma can be applied to the endpoints (if i = 1
or i + 1 = n) by adding a dummy (left or right) neighbor with the same source and target (i − 1
identical to i or i+ 2 identical to i+ 1).

Remark Observe that in the resulting configuration the source-target vectors are parallel (ti−si =
ti+1 − si+1) and the configuration is source- and target-separated (‖si − si+1‖ = dr = ‖ti − ti+1‖),
so there exists a unique θi ∈ [0, π] such that θi := ∠si, si+1, ti+1 and this uniquely determines agent
i + 1 (si+1 = dr∠π

2 − θi and ti+1 = si+1 + ti) in i’s coordinate system. In particular, a d-uniform
configuration resulting from the previous lemma has ‖ti − si‖ = d and dr = 1, so it is uniquely
determined by the n− 1 angles {θi ∈ [0, π]}i∈1..n−1.
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Figure 8: Balancing agent i by reflecting agent i+ 1.

6.3.3 Balancing

Now we show that agents can be balanced without increasing progress, hence the assumption that
chains are balanced can be made without loss of generality. Observe that the transformation
described preserves the properties of being d-uniform and source- and target-separated.
Balancing Theorem. Consider a configuration C where agent i has neighbors i− 1 and i+ 1 on
the same side. Let C ′ be the configuration obtained by reflecting every sj and tj for j > i (or j < i)
around agent i’s y-axis. Then prog(C ′) ≤ prog(C).

Proof. Without loss of generality the neighbors i−1 and i+1 are on agent i’s left side (si−1, si+1 ∈
Li) and C ′ is obtained by reflecting sj , tj for j > i around i’s y-axis (cf. Fig. 8). This transformation
only affects the relative position of agent i’s neighbors, so it suffices to show δ′i ≤ δi. Let t∗ (resp.
t′∗) be i’s proposal in C (resp. C ′).

If t′∗ /∈ circle1(s′i+1), then t′∗ = t∗ ∈ disk1(si+1) ∩ disk1(s′i+1) and δ′i = δi.

If t′∗ ∈ circle1(s′i+1), then we consider whether t′∗ is on the left or right of i. If t′∗ ∈ circle1(s′i+1)∩Ri,
then both t∗, t′∗ ∈ disk1(si−1) and t′∗ is the reflection of t∗ in i’s y-axis, so δ′i = δi. Otherwise
if t′∗ ∈ circle1(s′i+1)∩Li, then t∗ is the closest point in disk1(si−1)∩ disk1(si+1)∩Li to ti and
t′∗ is the closest point in disk1(si−1)∩ disk1(s′i+1)∩Li to ti. Since disk1(s′i+1) is the reflection
of disk1(si+1) in i’s y-axis, disk1(si−1)∩disk1(s′i+1)∩Li ⊆ disk1(si−1)∩disk1(si+1)∩Li whence
δ′i ≤ δi.

6.3.4 Straightening

Figure 9 shows how a chain Ck whose first k agents are collinear can be further straightened by
aligning the first k + 1 agents to obtain chain Ck+1. The formal result of this section is this
transformation can be iteratively used to straighten a d-uniform, source- and target-separated,
balanced configuration without increasing progress.

Lemma 6.8 (Single Straightening). For k ∈ 1..n−2, let configuration Ck be described by {θki }i∈1..n−1

where the first k angles are identical (θki = θkk for i ≤ k), and configuration Ck+1 be described by
{θk+1
i }i∈1..n−1 where the first k + 1 angles are identical to the k + 1 angle of Ck (θk+1

i := θkk+1 for
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Figure 9: Chain Ck and Ck+1.

i ≤ k + 1) and the remaining angles are identical to the corresponding angles from Ck (θk+1
i := θki

for i > k + 1). Then prog(Ck+1) ≤ prog(Ck).

Proof. For i ∈ 2..k observe agent i in chain Ck is straight since θki−1 = θki , hence δki = 0. Similarly
for i ∈ 2..k+1 agent i in chain Ck+1 is straight since θk+1

i−1 = θk+1
i , hence δk+1

i = 0. For i ∈ k+2..n−1
observe that θki−1 = θki−1 and θki = θk+1

i hence it follows that δki = δk+1
i and δkn−1 = δk+1

n−1. Therefore
only for i ∈ {1, k + 1} we have δki 6= δk+1

i , so to prove prog(Ck+1) ≤ prog(Ck) it suffices to show
δk+1
1 + δk+1

k+1 ≤ δ
k
1 + δkk+1, but since δk+1

k+1 = 0 this reduces to proving δk+1
1 ≤ δk1 + δkk+1.

Straight (θkk = θkk+1). Then Ck+1 = Ck so prog(Ck+1) ≤ prog(Ck).

Convex (θkk < θkk+1). In this case si is on the upper corner of lens(si−1, si+1), which is also its
proposal, so δi(θi−1, θi) = 0. Observe θk+1

1 = θkk+1 > θkk = θk1 , and δ1 is monotonically
decreasing in θ1 it follows that δk+1

1 ≤ δk1 , and hence prog(Ck+1) ≤ prog(Ck).

Concave (θkk > θkk+1). In this case si is on the bottom corner of lens(si−1, si+1) and its proposal
is elsewhere on the lens, so δi(θi−1, θi) > 0. We split into cases according to how agent k + 1
depends on its neighbors in chain Ck.

Subcase agent k+1 doesn’t depend on k+2. Then agent 1 and k+1 execute as if they were
on a d-uniform, straight and separated subchain of length k + 1, and such chains have
progress at least d by the Progress lemmas for straight n- and 2-chains (§6.2). Therefore
δk1 + δkk ≥ d and prog(Ck+1) ≤ prog(Ck).

Subcase agent k+ 1 only depends on k+ 2. Since θk+1
1 = θkk+1 and agent k+ 1 only depends

on k + 2, δk+1
1 = δkk+1 ≤ δk1 + δkk+1.

Subcase agent k + 1 depends on k and k + 2. This implies that θk + θk+1 ≤ π, using the
progress definition of §6.1 we have δkk+1 := δ∠(d, π − θk, θk+1), δk1 := δ∠(d, θk, 0) and
δk+1
1 := δ∠(d, θk+1, 0).

Recall that δ∠(d, θ, φ) is monotonically decreasing w.r.t. θ and φ, hence θk < θk+1 implies
δk1 − δ

k+1
1 ≥ 0 and thus δk+1

1 ≤ δk1 + δkk+1 would hold. Therefore assume θk ≥ θk+1, this
together with θk + θk+1 ≤ π implies that θk+1 ≤ π

2 and θk ≥ π
2 .

Finally observe that analytically evaluating the minimum of δ∠(d, π−θk, θk+1)+δ∠(d, θk, 0)−
δ∠(d, θk+1, 0) in that interval yields two minima. One at θk = θk+1 = π

2 and another at
θk = π, and at both the function is 0, hence prog(Ck+1) ≤ prog(Ck).
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Straightening Theorem. Fix a configuration C is described by {θi}i∈1..n−1 and a straight con-
figuration C ′ described by {θ′i}i∈1..n−1 where every angle is θn−1 (θ′i := θn−1 for i ∈ 1..n). Then
prog(C ′) ≤ prog(C).

Proof. For j ∈ 1..n − 1, let configuration Cj be described by {θji }i∈1..n−1 where θji := θj (i < j)
and θji := θi (i ≥ j). Observe C = C1 and C ′ = Cn−1. For j ∈ 1..n− 2, prog(Cj+1) ≤ prog(Cj) by
the Single Straightening lemma, whence prog(C ′) = prog(Cn−1) ≤ prog(C1) = prog(C).

6.3.5 Applying transformations

Using the transformations described in the previous subsections we can extend the progress lower
bound of min(d, r) for balanced, d-uniform, separated, straight chains described in §6.2, to a lower
bound of min(mini∈I di, r) for arbitrary chains.
Progress Theorem for Chains. The progress of a chain C = 〈I, F 〉 is prog(C) ≥ min(mini∈I di, r).

Proof. By the Truncation lemma we can set all the source-target distances to d = min(mini∈I di, r)
to obtain a d-uniform chain. Using the Separation, Balancing, and Straightening lemmas there
exists an angle θ ∈ [0, π] such that the straight chain Cn(d, θ) has less progress than C (prog(C) ≥
prog(Cn(d, θ)))).

Finally, by the Progress theorem for straight n-chains we have prog(Cn(d, θ)) = prog(C2(d, θ)),
and by the lemma of progress of 2-chains we have prog(C2(d, θ)) ≥ d for any θ. Hence this proves
that prog(C) ≥ prog(Cn(d, θ)) = prog(C2(d, θ)) ≥ d.

Moreover, the bound is tight for d-uniform configurations for any service (local or global) that
guarantees robust trajectories.
Optimality Theorem. There are chains that cannot make more than min(d, r) progress under
any service that produces robust trajectories.

Proof. For any n, we exhibit a chain of n agents with progress exactly min(d, r). Fix n and consider
the straight chain Cn(d, 0), the first agent has progress min(d, r) (δn1 = min(d, r)) while every other
agent has no progress (δni = 0 for i > 1), therefore prog(Cn(0, d)) = min(d, r).

If a service guaranteed some progress q > 0 to any other agent i, then if this agent advances
q units and all other agents remain still, the graph will disconnect (thus the trajectory is not
robust).

7 Termination

Consider an arbitrary chain of agents running the connectivity service. How many rounds does it
take the agents to get (arbitrarily close) to their target? Let di[k] be the source-target distance of
agent i after round k, we say an agent is ε-close to its target at round k iff di[k] ≤ ε. Given the
initial source-target distance di[0] of each agent, we will give an upper bound on k to guarantee
every agent is ε-close.

So far we proved that while the target of every agent is outside its communication radius r,
the collective distance traveled is r; moreover this is tight up to a constant factor. However, once
an agent has its target within its communication radius, we can only argue that collective progress
is proportional to the smallest source-target distance (since we truncate to the smallest distance).
Unfortunately this is not enough to give an upper bound on k.

Let Dk =
∑

i di[k] and dmin[k] = mini di[k], then Dk+1 ≤ Dk − min(dmin[k], r). However if
dmin[k] = 0 this yields Dk+1 ≤ Dk and we cannot prove termination. The following lemma allows
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us to sidestep this limitation. We call a chain almost d-uniform if all the inner nodes are d-uniform
and the outermost nodes have source-target distance 0.
Progress Theorem for Almost-Uniform Chains. An almost d-uniform chain Cn of size n ≥ 3
has progress prog(Cn) ≥ δ∠(d, π2 , arccos d2) ≥ γ0d where γ0 := 1−

√
2−
√

3 ≈ 0.48.

Proof. Observe that the Balancing and Separation theorems still apply. Moreover, by the indepen-
dence lemma and the monotonicity of the progress function we can assume the endpoints are at an
angle of arccos d2 to their neighboring source-target vector.

Hence for n = 3 we need to consider one configuration, and by the target-connectedness as-
sumption it’s clear that the inner node makes full progress and hence prog(C3) ≥ d. For n > 3 there
is a family of possible chains determined by the angles between the inner nodes, we proceed by a
complete induction on n. Observe that we can assume the progress of the internal nodes depends
on both of its neighbors, since otherwise we could argue about a smaller subchain.

Base case. Let n = 4, clearly only the two internal nodes make progress, therefore we have
prog(C4) = δboth(d, arccos d2 , α) + δboth(d, π − α, arccos d2) where α is the angle between the two
internal nodes. If α ≤ arccos d2 or π − α ≤ arccos d2 , then prog(C4) ≥ d. For arccos d2 ≤ α ≤
π − arccos d2 we define the restricted minimization problem α∗ = argminα prog(C4). There is a
unique minimum at α∗ = π

2 and hence prog(C4) ≥ 2δ∠(d, π2 , arccos d2) ≥ γ0d.
Inductive step. Consider a chain of length n > 4 with n − 2 interior nodes. Let S be the

set of angles between the first n− 3 interior nodes and let α be the angle between the last interior
nodes. The progress of the chain is prog(Cn) = p(S, α)+δ∠(d, α, arccos d2), where p(S, α) represents
the progress of the first n− 3 interior nodes. Similarly for a chain of length n+ 1 there are n− 1
interior nodes, and its progress is prog(Cn+1) = p(S, α) + δ∠(d, α, β) + δ∠(d, π − β, arccos d2).

We prove the bound by cases on α. If α ≤ π
2 , we can minimize the last two terms of prog(Cn+1)

by solving minα,β δ∠(d, α, β)+δ∠(d, π−β, arccos d2), which has a single minimum at α = β = π
2 , and

thus prog(Cn+1) = p(S, α) + δ∠(d, α, β) + δ∠(d, π− β, arccos d2) ≥ δ∠(d, π2 ,
π
2 ) + δ∠(d, π2 , arccos d2) ≥

γ0d.
If α > π

2 , by the inductive hypothesis we have prog(Cn) ≥ γ0d and it suffices to show prog(Cn+1) ≥
prog(Cn). This is equivalent to showing δ∠(d, α, β) + δ∠(d, π − β, arccos d2)− δ∠(a, α, arccos d2) ≥ 0
for α > π

2 and any β, which also holds.

The progress theorem for almost-uniform chains proves that once a subset of the agents reach
their target, the rest of the agents make almost the same progress as before. It seems reasonable
to expect that if a subset of the agents get ε-close to their target (for small enough ε) a similar
result holds. This is at the core of the termination theorem which proves an upper bound on the
number of rounds needed for nodes to be ε-close to their targets.

We say the targets of two nodes are `-connected if they are at distance ` of each other. So far
we have assumed neighboring nodes have connected targets, that is they are r-connected. To prove
the next theorem we require a stronger assumption, namely, that targets are (r− 2ε)-connected for
any ε > 0.
Termination Theorem. If targets are (r−2ε)-connected, nodes get ε-close within O(D0/r+n2/ε)
rounds.

Proof. Since targets are (r−2ε)-connected, we can assume each node stops at the first round when
they are ε-close to their target and the resulting configuration is (r − 2ε)-connected. Therefore we
can consider the source-target distance of a node to be either greater than ε when it is not ε-close,
or zero once it is ε-close.
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If initially every node i is at distance di ≥ r from its target, it takes at most D0/r rounds before
there exists some node i with di < r. If there is a node i with source-target distance di < r it follows
that Dk < rn

2

2 , we argue that from this point on we can assume a progress of at least γ0ε per round
until every node reaches its target, therefore the total number of rounds is O(D0/r + n2/ε).

Consider a chain C = 〈I, F 〉 and let the subset Sk ⊆ I represent the set of agents which are
already at their target at round k (i ∈ Sk iff di[k] = 0). If Sk = I then we are done, otherwise there
exists a subchain C ′ ⊆ C where all agents except possibly the endpoints have di[k] > ε. Hence by
the progress theorem for almost-uniform chains the progress is at least γ0ε, which concludes the
proof.

8 Conclusion

In this paper we present a local, oblivious connectivity service (§3) that encapsulates an arbitrary
motion planner and can refine any plan to preserve connectivity (the graph of agents remains
connected) and ensure progress (the agents advance towards their goal). We prove the algorithm
not only preserves connectivity, but also produces robust trajectories so if an arbitrary number of
agents stop or slow down along their trajectories the graph will remain connected (§4).

We also prove a tight lower bound of min(d, r) on progress for d-uniform configurations (§6). The
truncation lemma allows this lower bound to apply to general configurations using the minimum
distance between any agent and its goal. Thus, when each agent’s target is within a constant
multiple of the communication radius, the lower bound implies the configuration will move at a
constant speed towards the desired configuration.

As the agents get closer to their goal, this bound no longer implies constant speed convergence.
We prove a bound of O(D0/r+n2/ε) on the number of rounds until nodes are ε-close. This bound
requires assuming targets are (r−2ε)-connected, though we conjecture that it is possible to remove
this assumption. The D0/r term in the bound is necessary because when the initial source-target
distance is large enough, clearly no service can guarantee robust, connected trajectories if agents
advance faster than one communication radius per round.

It would be tempting to prove agents advance at a rate proportional to the mean (instead of the
minimum) source-target distance, which would imply a termination bound of O(D0/r + n log n

ε ).
However, it is possible to construct an example which shows that the progress is less than γ ·mean,
for any constant γ > 0. An alternative approach we intend to pursue in future work is to directly
argue about the number of rounds it takes the agents to reach their target. This may give a tighter
bound on the rate of convergence over quantifying the distance traveled by the agents in a single
round, which necessarily assumes a worst case configuration at every step.
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