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16.323 Handout #4 
Prof. J. P. How March 23, 2006 

Due: April 13, 2006 

16.323 Homework Assignment #4 

1. Find the curve x�(t) that minimizes the functional J (x) = 
� tf 

√
1 + ẋ2 dt with x(0) = 5 0 

and the end points lie on the circle x2(t) + (t − 5)2 − 4 = 0. Draw a plot of the solution 
and provide a geometric interpretation of the result. 

2. The derivation on pages 6–1	 – 6–2 was done for the case of free or fixed x(tf ). Re­
peat the derivation for the more general boundary condition m(x(tf ), tf ) = 0 that we 
originally considered on 5–17. 

(a) State the necessary and boundary conditions for this case (equivalent to what is 
on page 6–2) 

(b) Use this result to derive an optimal controller for the double integrator system 
(see 6–4) starting at y(0) = 10, ẏ(0) = 0 with the objective of minimizing 

tf1 1 
J = αt2 

f + bu2(t)dt b > 0 
2 2 0 

subject to the terminal constraints that ẏ(tf ) = 0 and 
2y (tf ) + (tf − 5)2 − 4 = 0 

Note: if the controller is too difficult to compute, just clearly what conditions 
need to be solved. 

3. Complete the proof on page 6–18 for the Kalman Frequency domain equality ­ removing 
all of the “hand­waving” done in class. 

4. Show that if in the Hamiltonian	H, a and g are independent of time t, then H is a 
constant, and that if tf is free, this constant is zero. 

5. Read the posted article by Betts “Survey of numerical methods for.	 trajectory opti­
mization,” AIAA J. of Guidance,. Control and Dynamics, 21:193­207, 1998, and write 
a 1 page summary of his suggestions/conclusions. 

6. Solve the min time­fuel problem (b = 1) for the double integrator system for the four 
initial conditions x0 ∈ {0.5, 5}, ˙ 5} using um ≤ 1x0 ∈ {0.5, 

•	 For each case, use the calculated final time from the min time­fuel problem in a 
second control calculation that solves the finite­time LQR problem. 

tf 

JLQR = x T (tf )Ptf x + [x T Rxxx + ρuT u]dt 
1 
2	 0 

with Ptf = 100I2, Rxx = I2. Simulate the state response, and then tune your 
choice of ρ to ensure that |u(t) ≤ um for this LQR controller. | 
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•	 Plot the state response on the phase plot along with the fuel­time optimal result, 
and compare the paths followed and the amount of fuel used. 
Note: This problem will require that you solve the time­varying LQR problem, which 
means solving the DRE for P (t) (This was done in the codes for Lecture 4, which should 
be in the updated notes). As noted in class, this is done backwards in time from tf , 
but this can easily be switched to forwards in time by introducing τ = tf − t and then 
converting the DRE from d/dt to d/dτ . Furthermore, since P is 2x2 and symmetric, 
there are really only three equations that need to be solved. You can use Matlab ODE 
solvers if you rewrite the matrix as a vector and write a function of the form: ⎡ ⎤ 

ṗ11 ⎢ ⎥ ⎣	 ṗ12 ⎦ = f tn(P ) 
ṗ22 

7. We discussed in class that LQR is a great	 regulator in that it quickly returns the 
system states to 0 while balancing the amount of control used. However, we are also 
interested in tracking a reference command, so that y(t) = r(t) as t →∞. 

(a) Design a steady state LQR controller for the system using Rxx = I2, Ruu = 0.01 ⎡ ⎤ � � 
1 1 

ẋ = ⎣ ⎦ x + 
1 2 

1 � � 
u y = 1 0 x 

0 

A naive way to implement a reference tracker is to modify the LQR controller 
from u = −Kx to u = r −Kx: 

ẋ = (A −BK)x + Br , y = Cx 

Verify that this leads to particularly poor tracking of a step input! 

(b) An alternative strategy is to use	u = Nr − Kx, where N is a constant. What 
is a good way to choose N to ensure zero steady state error for this closed­loop 
system? What are the consequences of this change in the step response of the 
closed­loop system? 

(c) A completely different approach to ensuring zero steady­state error is to use what 
is often called an LQ­servo. The approach is to add a new state to the system 
that integrates the tracking error: ẋi = r − y = r − Cx, giving: ⎤ �� � ⎡	 � � � � � 

ẋ A 0 x B 0 
=	 ⎣ ⎦ + u + r 

ẋi −C 0 xi 0 1 

x 
y	 = C 0 

xi 

The LQR problem statement can now be modified (ignore r in the design of u) 
to place a high weighting on xi to penalize the tracking error. Use this technique 
to design a new controller (keep Rxx and Ruu the same as part(a) and tune the 
weight on xi to achieve a performance that is similar to part (b)). Compare the 
transient responses for the approaches in (b) and (c) ­ do you see any advantages 
to one approach over the other? 

2 


