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Normal subgroups of SL2 

In this note matrices and vectors have coordinates in a given field F . The special linear group SL2(F ) is  
denoted by SL2 and the space F 2 of column vectors by V . Our object is to prove 

Theorem. Let F be a field, with |F | > 5. The only proper normal subgroup of SL2 is the group {±I}. 
Hence the quotient group PSL2 = SL2/{±I} is a simple group. 

It is not hard to analyze the cases that F has order ≤ 5 which are not covered by the theorem. The conclusion 
of the theorem is false when F has order 2 or 3. It is true if F has order 4 or 5, though the proof we are 
giving doesn’t handle those cases. 

1If F is a finite field and has order q, the order of SL2 is q3 − q. So the order of PSL2 is 2 (q3 − q) unless 
−I = I, which happens when q is a power of 2. If −I = I, then  PSL2 = SL2, and  the  order  of  PSL2 is 
q3 − q. For example, PSL2(F4) and  PSL2(F5) both have order 60. In fact, these two groups are isomorphic, 
and they are also isomorphic to the alternating group A5. 

The orders of the smallest nonabelian simple groups are 

60, 168, 360, 504, 660, 1092, 2448. 

A simple group with one of these orders is isomorphic to PSL2(F ) for  some  field  F . The order of F can be 
4 or 5 for the simple group of order 60, and it is 7, 9, 8, 11, 13 and 17, respectively in the remaining cases. 
The next smallest simple group is the alternating group A7, which has order 2520. 

There is a general reason that helps to explain why a group may have few normal subgroups: If a normal 
subgroup N contains an element A, then it contains the entire conjugacy class {BAB−1} of A. It  is  also  
closed under products and inverses. So if the conjugacy class is large, then N will be a large subgroup. The 
commutator ABA−1B−1 is an example of an element that can be obtained from A by these operations, and 
it is important to note that while A is in the subgroup, B can be arbitrary. 

To prove the theorem, we must show that if a normal subgroup N of SL2 contains an element A �= ±I, then  
it is the whole group. Starting with A, we must be able to construct an arbitrary element P ∈ SL2 by a 
sequence of operations, each of which is conjugation, multiplication, or inversion. 

We do this in two steps: The first step (Lemmas 1 and 4) constructs a matrix P ∈ N which has an eigenvalue 
λ that is in the field F , and is not ±1. Then because N is normal, it contains the conjugacy class of P . The  
second step (Lemma 5) shows that this conjugacy class generates SL2. 

We’ll use the notation 
� � � � 

(1) E = 
1 x 
0 1  

, E′ = 
1 0  
x 1 

, 

a b  λ 0 
A = , Λ =  

λ−1 . 
c d  0 

The hypothesis on the order of F appears in the first lemma. 

Lemma 1. A field of order > 5 contains an element r such that r2 is not 0, 1, or  −1. 

Proof. Let r ∈ F . If  r2 = 0  then  r = 0.  If  r2 = 1,  then  r = ±1. Finally, if r2 = −1, then r is a root of 
the polynomial x2 + 1, and this polynomial has at most two roots in F . Altogether, there are at most five 
elements which we must avoid when choosing r. � 
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Lemma 2. Let (v1, v2) be a basis of V , let  [B] denote the matrix whose columns are v1 and v2 and let λ be 
a nonzero element of F . There is a unique matrix B ∈ SL2, namely  B = [B]Λ[B]−1, such that Bv1 = λv1 

and Bv2 = λ−1v2. � 

Lemma 3. The only matrices A ∈ SL2 for which all nonzero vectors are eigenvectors are I and −I. 

Proof. If e1 and e2 are eigenvectors of a matrix A, say  Aei = λiei, then  A is the diagonal matrix with 
diagonal entries λi. The only case in which v = e1 + e2 is also an eigenvector is that λ1 = λ2, and  then  
A = λ1I. In  that  case  λ1 = ±1 because det(A) = 1.  � 

Lemma 4. Let A be a matrix in SL2 which is not ±I, and  let  r be an element of F . There is a matrix 
−2B ∈ SL2 such that the commutator C = ABA−1B−1 has eigenvalues λ = r2 and λ−1 = r . 

Proof. We choose a vector v1 in V which is not an eigenvector of A, and  we  set  v2 = Av1. Then  v1 and v2 
−1are independent, so they form a basis of V . Let  B denote the matrix such that Bv1 = rv1 and Bv2 = r v2. 

Then 
2Cv2 = ABA−1B−1 v2 = ABA−1 rv2 = ABrv1 = Ar2 v1 = r v2. 

This shows that λ = r2 is an eigenvalue of C. Because C ∈ SL2, the other eigenvalue is λ−1 . � 

Lemma 5. Let λ be an element of F which is not ±1 or 0. The matrices having eigenvalues λ and λ−1 

generate SL2 and they form a single conjugacy class in SL2. 

Proof. The matrices with eigenvalues λ and λ−1 are in SL2. Let  H denote the subgroup of SL2 they 
generate. For any x ∈ F , the terms on the left side of the equation 

λ−1 0 λ λx  1 x = 
λ−10 λ 0 0 1  

are in H , and so the right side E is in H too. Similar reasoning shows that the matrices of the form E′ are 
in H . Lemma 6 (which was a homework problem) shows that H = SL2. 

It remains to show that the matrices in question form a single conjugacy class. Suppose that B has eigenvalues 
λ and λ−1 . The assumption that λ � = ±1. So a pair of eigenvectors v1 = λ−1 enters here. It implies that λ �
and v2 with these eigenvalues forms a basis B, and  B = [B]Λ[B]−1 . We can adjust v1 by  a  scalar factor to  
make det[B] =  1.  Then [B] and  Λ  are  in  SL2. This shows that B is in the conjugacy class of Λ. � 

Lemma 6. The matrices of the types (1), with x in F , generate SL2. 

Proof. (This was a homework problem.) These matrices are in SL2. Let  H be the subgroup they generate. 
To prove that H = SL2, we show that every matrix A ∈ SL2 can be reduced to the identity using the row 
operations defined by these matrices, which are to add a multiple of one row to another. This will show that 
there are elementary matrices E1, ..., Ek of type (1) such that Ek · · ·E2E1A = I. Then  A = E−1 · · ·E−1 .1 k 

The first step is to make sure that the entry c of A isn’t zero. If c = 0,  then  a �= 0,  and  we  add  (row 1) to 
(row 2). Next, having a matrix where c �= 0, we can change a to 1 by adding the appropriate multiple of 
(row 2) to (row 1). Having done this, our third step clears out the c entry by adding a multiple of (row 1) 
to (row 2). The result is a matrix of the form 

1 b′ 
A′ = 0 d′ . 

Since A is in SL2, so  is  A′ . Therefore d′ = 1, and one more row operation reduces A′ to the identity. � 


