Normal subgroups of $S L_{2}$

In this note matrices and vectors have coordinates in a given field F. The special linear group $S L_{2}(F)$ is denoted by $S L_{2}$ and the space F^{2} of column vectors by V. Our object is to prove
Theorem. Let F be a field, with $|F|>5$. The only proper normal subgroup of $S L_{2}$ is the group $\{ \pm I\}$. Hence the quotient group $P S L_{2}=S L_{2} /\{ \pm I\}$ is a simple group.
It is not hard to analyze the cases that F has order ≤ 5 which are not covered by the theorem. The conclusion of the theorem is false when F has order 2 or 3 . It is true if F has order 4 or 5 , though the proof we are giving doesn't handle those cases.
If F is a finite field and has order q, the order of $S L_{2}$ is $q^{3}-q$. So the order of $P S L_{2}$ is $\frac{1}{2}\left(q^{3}-q\right)$ unless $-I=I$, which happens when q is a power of 2 . If $-I=I$, then $P S L_{2}=S L_{2}$, and the order of $P S L_{2}$ is $q^{3}-q$. For example, $P S L_{2}\left(\mathbb{F}_{4}\right)$ and $P S L_{2}\left(\mathbb{F}_{5}\right)$ both have order 60 . In fact, these two groups are isomorphic, and they are also isomorphic to the alternating group A_{5}.

The orders of the smallest nonabelian simple groups are

$$
60,168,360,504,660,1092,2448
$$

A simple group with one of these orders is isomorphic to $P S L_{2}(F)$ for some field F. The order of F can be 4 or 5 for the simple group of order 60 , and it is $7,9,8,11,13$ and 17 , respectively in the remaining cases. The next smallest simple group is the alternating group A_{7}, which has order 2520 .
There is a general reason that helps to explain why a group may have few normal subgroups: If a normal subgroup N contains an element A, then it contains the entire conjugacy class $\left\{B A B^{-1}\right\}$ of A. It is also closed under products and inverses. So if the conjugacy class is large, then N will be a large subgroup. The commutator $A B A^{-1} B^{-1}$ is an example of an element that can be obtained from A by these operations, and it is important to note that while A is in the subgroup, B can be arbitrary.

To prove the theorem, we must show that if a normal subgroup N of $S L_{2}$ contains an element $A \neq \pm I$, then it is the whole group. Starting with A, we must be able to construct an arbitrary element $P \in S L_{2}$ by a sequence of operations, each of which is conjugation, multiplication, or inversion.
We do this in two steps: The first step (Lemmas 1 and 4) constructs a matrix $P \in N$ which has an eigenvalue λ that is in the field F, and is not ± 1. Then because N is normal, it contains the conjugacy class of P. The second step (Lemma 5) shows that this conjugacy class generates $S L_{2}$.

We'll use the notation

$$
\begin{align*}
& E=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), \quad E^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \tag{1}\\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \Lambda=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) .
\end{align*}
$$

The hypothesis on the order of F appears in the first lemma.
Lemma 1. A field of order >5 contains an element r such that r^{2} is not 0,1 , or -1 .
Proof. Let $r \in F$. If $r^{2}=0$ then $r=0$. If $r^{2}=1$, then $r= \pm 1$. Finally, if $r^{2}=-1$, then r is a root of the polynomial $x^{2}+1$, and this polynomial has at most two roots in F. Altogether, there are at most five elements which we must avoid when choosing r.

Lemma 2. Let $\left(v_{1}, v_{2}\right)$ be a basis of V, let $[\mathbf{B}]$ denote the matrix whose columns are v_{1} and v_{2} and let λ be a nonzero element of F. There is a unique matrix $B \in S L_{2}$, namely $B=[\mathbf{B}] \Lambda[\mathbf{B}]^{-1}$, such that $B v_{1}=\lambda v_{1}$ and $B v_{2}=\lambda^{-1} v_{2}$.
Lemma 3. The only matrices $A \in S L_{2}$ for which all nonzero vectors are eigenvectors are I and $-I$.
Proof. If e_{1} and e_{2} are eigenvectors of a matrix A, say $A e_{i}=\lambda_{i} e_{i}$, then A is the diagonal matrix with diagonal entries λ_{i}. The only case in which $v=e_{1}+e_{2}$ is also an eigenvector is that $\lambda_{1}=\lambda_{2}$, and then $A=\lambda_{1} I$. In that case $\lambda_{1}= \pm 1$ because $\operatorname{det}(A)=1$.

Lemma 4. Let A be a matrix in $S L_{2}$ which is not $\pm I$, and let r be an element of F. There is a matrix $B \in S L_{2}$ such that the commutator $C=A B A^{-1} B^{-1}$ has eigenvalues $\lambda=r^{2}$ and $\lambda^{-1}=r^{-2}$.

Proof. We choose a vector v_{1} in V which is not an eigenvector of A, and we set $v_{2}=A v_{1}$. Then v_{1} and v_{2} are independent, so they form a basis of V. Let B denote the matrix such that $B v_{1}=r v_{1}$ and $B v_{2}=r^{-1} v_{2}$. Then

$$
C v_{2}=A B A^{-1} B^{-1} v_{2}=A B A^{-1} r v_{2}=A B r v_{1}=A r^{2} v_{1}=r^{2} v_{2}
$$

This shows that $\lambda=r^{2}$ is an eigenvalue of C. Because $C \in S L_{2}$, the other eigenvalue is λ^{-1}.
Lemma 5. Let λ be an element of F which is not ± 1 or 0 . The matrices having eigenvalues λ and λ^{-1} generate $S L_{2}$ and they form a single conjugacy class in $S L_{2}$.
Proof. The matrices with eigenvalues λ and λ^{-1} are in $S L_{2}$. Let H denote the subgroup of $S L_{2}$ they generate. For any $x \in F$, the terms on the left side of the equation

$$
\left(\begin{array}{ll}
\lambda^{-1} & 0 \\
0 & \lambda
\end{array}\right)\left(\begin{array}{ll}
\lambda & \lambda x \\
0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

are in H, and so the right side E is in H too. Similar reasoning shows that the matrices of the form E^{\prime} are in H. Lemma 6 (which was a homework problem) shows that $H=S L_{2}$.
It remains to show that the matrices in question form a single conjugacy class. Suppose that B has eigenvalues λ and λ^{-1}. The assumption that $\lambda \neq \lambda^{-1}$ enters here. It implies that $\lambda \neq \pm 1$. So a pair of eigenvectors v_{1} and v_{2} with these eigenvalues forms a basis \mathbf{B}, and $B=[\mathbf{B}] \Lambda[\mathbf{B}]^{-1}$. We can adjust v_{1} by a scalar factor to make $\operatorname{det}[\mathbf{B}]=1$. Then $[\mathbf{B}]$ and Λ are in $S L_{2}$. This shows that B is in the conjugacy class of Λ.

Lemma 6. The matrices of the types (1), with x in F, generate $S L_{2}$.
Proof. (This was a homework problem.) These matrices are in $S L_{2}$. Let H be the subgroup they generate. To prove that $H=S L_{2}$, we show that every matrix $A \in S L_{2}$ can be reduced to the identity using the row operations defined by these matrices, which are to add a multiple of one row to another. This will show that there are elementary matrices E_{1}, \ldots, E_{k} of type (1) such that $E_{k} \cdots E_{2} E_{1} A=I$. Then $A=E_{1}^{-1} \cdots E_{k}^{-1}$.
The first step is to make sure that the entry c of A isn't zero. If $c=0$, then $a \neq 0$, and we add (row 1) to (row 2). Next, having a matrix where $c \neq 0$, we can change a to 1 by adding the appropriate multiple of (row 2) to (row 1). Having done this, our third step clears out the c entry by adding a multiple of (row 1) to (row 2). The result is a matrix of the form

$$
A^{\prime}=\left(\begin{array}{cc}
1 & b^{\prime} \\
0 & d^{\prime}
\end{array}\right)
$$

Since A is in $S L_{2}$, so is A^{\prime}. Therefore $d^{\prime}=1$, and one more row operation reduces A^{\prime} to the identity.

