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Problem Set 3 Solutions 

Solution to Problem 1: My Dog Ate My Codebook 

Solution to Problem 1, part a. 

There are many possible codebooks, and a few of them are enumerated in Table 3–4. 

Codebook 1 
0 0 1 0 0 
0 1 1 1 1 
1 0 0 1 0 
1 1 0 0 1 

Codebook 2 
0 0 1 1 1 
0 1 1 0 0 
1 0 0 1 0 
1 0 0 0 1 

Codebook 3 
0 0 1 0 1 
0 1 1 1 0 
1 0 0 1 0 
1 1 0 0 1 

Codebook 4 
0 0 1 0 1 
0 1 1 1 0 
1 0 0 1 1 
1 0 0 0 0 

Codebook 5 
0 0 1 1 0 
0 1 1 0 1 
1 0 0 1 1 
1 1 0 0 0 

Codebook 6 
0 0 1 0 0 
0 1 1 1 1 
1 0 0 1 1 
1 0 0 0 0 

Table 3–4: Possible Codebook Implementations 

Solution to Problem 1, part b. 

There are 32 (25) possible bit strings. However, only four of those are allowed at any one time, one for each 
input. 

Solution to Problem 1, part c. 

For each code if one bit is in error, that produces up to five different codes. Since we have four legal codes, 
this gives us twenty codes that we detect as errors and can correct to their correct codes. 

Solution to Problem 1, part d. 

The number of uncorrectable codes is the total number of codes minus the legal codes minus the correctable 
codes, or 32 minus 4 minus 20, or eight. 
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Solution to Problem 2: A Different Hamming Code 

Solution to Problem 2, part a. 

>> G = [1 0 0 0 1 0 1; 0 1 0 0 1 1 0; 0 0 1 0 1 1 1; 0 0 0 1 0 1 1];

>> H = [ 1 1 1 0 1 0 0; 0 1 1 1 0 1 0; 1 0 1 1 0 0 1];


>> PATTERN = [0 0 0 0; 0 0 0 1; 0 0 1 0; 0 0 1 1; 0 1 0 0; 0 1 0 1; 0 1 1 0; 0 1 1 1; 
1 0 0 0; 1 0 0 1; 1 0 1 0; 1 0 1 1; 1 1 0 0; 1 1 0 1; 1 1 1 0; 1 1 1 1]; 

Solution to Problem 2, part b. 

>> CODEBOOK = mod(PATTERN*G, 2)

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 1 1 1

0 0 1 1 1 0 0

0 1 0 0 1 1 0

0 1 0 1 1 0 1

0 1 1 0 0 0 1

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 0 1 1 1 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 0 1 1

1 1 0 1 0 0 0

1 1 1 0 1 0 0

1 1 1 1 1 1 1


Solution to Problem 2, part c. 

This code can detect and correct one error per codeword, or detect (only) two errors per codeword (the 
decoder can be designed to do either the former or the latter but not both). This is a property of all block 
codes with minimum Hamming distance of three. 

Solution to Problem 2, part d. 

Since no errors are introduced, the three CHECK variables should be all zero. 

1.	 >> INPUT1 = [0 1 0 0];

>> CODE1 = mod(INPUT1*G, 2)

CODE1 =

0 1 0 0 1 1 0


>> % No error introduced

>> CHECK1 = mod(CODE1*H’, 2)

CHECK1 =

0 0 0
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>> OUTPUT1 = CODE1(1:4)

OUTPUT1 =

0 1 0 0


2.	 >> INPUT2 = [1 1 0 0];

>> CODE2 = mod(INPUT2*G, 2)

CODE2 =

1 1 0 0 0 1 1


>> % No error introduced

>> CHECK2 = mod(CODE2*H’, 2)

CHECK2 =

0 0 0


>> OUTPUT2 = CODE2(1:4)

OUTPUT2 =

1 1 0 0


3.	 >> INPUT3 = [1 0 0 1];

>> CODE3 = mod(INPUT3*G, 2)

CODE3 =

1 0 0 1 1 1 0


>> % No error introduced

>> CHECK3 = mod(CODE3*H’, 2)

CHECK3 =

0 0 0


>> OUTPUT3 = CODE3(1:4)

OUTPUT3 =

1 0 0 1


Solution to Problem 2, part e. 

Same input values but now errors are introduced. 

1.	 >> % Error in position 3 in CODE1 
>> CODE4 = CODE1 
CODE4 = 
0 1 0 0 1 1 0 
>> CODE4(3) = ~CODE4(3) 

CODE4 =

0 1 1 0 1 1 0


>> CHECK4 = mod(CODE4*H’, 2) 

CHECK4 =

1 1 1
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>> >> CODE4(3) = ~CODE4(3) 

CODE4 =

0 1 0 0 1 1 0


>> OUTPUT4 = CODE4(1:4)


OUTPUT4 =

0 1 0 0 

2.	 >> % Error in position 4 in CODE2 
>> CODE5 = CODE2 
CODE5 = 
1 1 0 0 0 1 1 

>> CODE5(4) = ~CODE5(4) 

CODE5 =

1 1 0 1 0 1 1


>> CHECK5 = mod(CODE5*H’, 2) 

CHECK5 =

0 1 1


>> % Repair damage by flipping bit 
>> CODE5(4) = ~CODE5(4) 

CODE5 =

1 1 0 0 0 1 1


>> OUTPUT5 = CODE5(1:4) 

OUTPUT5 =

1 1 0 0


3.	 >> CODE3 
>> % Error in position 5 (a parity bit) 
CODE6 = 
1 0 0 1 1 1 0 

>> CODE6(5) = ~CODE6(5) 

CODE6 =

1 0 0 1 0 1 0


>> CHECK6 = mod(CODE6*H’, 2) 

CHECK6 =

1 0 0
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>> % Correction is optional since data bits are all OK >> CODE6(5) = ~CODE6(5) 

CODE6 =

1 0 0 1 0 0 1


>> OUTPUT6 = CODE6(1:4) 

OUTPUT6 =

1 0 0 1


Solution to Problem 2, part f. 

This code cannot correct or even detect double errors. Instead, it interprets the symptoms as a single error 
and changes some bit that is probably OK. (If the only tool you have is a hammer, everything tends to look 
like a nail.) 

>> INPUT7 = [0 1 0 0];

>> CODE7 = mod(INPUT7*G, 2)

CODE7 =

0 1 0 0 1 1 0


>> % Two errors, in positions 3 and 7

>> CODE7(3) = ~CODE7(3);

>> CODE7(7) = ~CODE7(7);

>> CODE7

CODE7 =

0 1 1 0 1 1 1


>> CHECK7 = mod(CODE7*H’, 2)

CHECK7 =

1 1 0


>> % Incorrectly concludes there is an error in the second bit

>> CODE7(2) = ~CODE7(2)

CODE7 =

0 0 1 0 1 1 1


>> OUTPUT7 = CODE7(1:4)

OUTPUT7 =

0 0 1 0


Solution to Problem 3: Ben’s Best Bet 

Solution to Problem 3, part a. 

Ben’s efficiency is indeed higher. His code rate is 8/16 = 0.5. Your code rate is 8/18 = 0.44. 
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Error Bit Failed Checks 
D0 PC0, P0 
D1 PC1, P0 
D2 PC0, PR1 
D3 PC1, PR1 

PR1 PR1, P0 
PC0 PC0 
PC1 PC1 

P0 P0 

Table 3–5: Failed checks on a single error in one block 

Parity Bit Parity Checks 
PR1 D2 ⊕ D3 
PC0 D0 ⊕ D2 
PC1 D1 ⊕ D3 

P0 PR1 ⊕ D0 ⊕ D1 

Table 3–6: Definition of Parity Checks 

Solution to Problem 3, part b. 

Ben’s design can correct all single errors. To see this, consider Table 3–5, which enumerates the possible 
places a single error can occur. (Note that it is sufficient to consider only a single block.) In this table, we 
assume that we calculate a ’dummy’ row parity bit from the D0 and D1, and use this dummy row parity bit 
to check the total parity bit. We can see here that we can distinguish all errors from each other. This can 
also be deduced by looking at a definition of the parity bits as shown in Table 3–6. 

Solution to Problem 3, part c. 

Yes, Ben’s code can correct some double errors  consider for instance single errors in each block. This is a 
double error and can be corrected. 

Solution to Problem 3, part d. 

Ben’s design does not detect all double errors and identify them as such. Consider the case where PC0 and 
P0 receive errors. From the parity checks that the decoder can perform, this case cannot be distinguished 
from a single error occurring in D0. In this case Ben’s design not only fails to detect a double error, but it 
makes matters even worse by introducing a new error. 


