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Problem Set 2 Solutions 

Solution to Problem 1: Is it OverCompressed or is it Modern Art? 

The following MATLAB code solves parts a to e: 

% Perform initialization as indicated in the problem set.

load imdemos flower;

flower=double(flower);

colormap(’gray’);


% Since many figures will be produced by this script, we use meaningful labels.

set(gcf,’NumberTitle’,’off’,’Name’,’Flower’); imshow(flower,[0 255]);


% Implement the comrpession scheme detailed in the problem set.

encoded=blkproc(flower,[8 8],’dct2’);

encoded(abs(encoded)<10)=0;

decoded=round(blkproc(encoded,[8 8],’idct2’));


% Provide the error value to check against the expected value from the set.

sprintf(’With cutoff=10, the mean squared error is %.4f’, ... mean2((flower  decoded).∧2))


The mean squared error you should have obtained is 10.6891. The next piece of code produces the graph 
of file size versus mean squared error. 

% Initialize the vectors that will store the data for the graph.

x=[];

y=[];


% We need only encode the image once. After that, since we will be steadily

% increasing the threshold, we need to reconvert again more because we will be

% simply zeroingout more elements with each iteration through the for loop

% (there is no reason to recover all the original elements and start from scratch

% each time through the loop; we can progressively drop more and more data).

encoded=blkproc(flower,[8 8],’dct2’);


% Now we begin to collect data for the graph. 
for cutoff=0:4:100,

encoded(abs(encoded)<cutoff)=0;

decoded=round(blkproc(encoded,[8 8],’idct2’));


% We will simply append to the vectors each time through this loop.

x=[x,nnz(encoded)];
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y=[y,mean2((flower  decoded).∧2)]; 

% The next three lines can be commented out if they are not desired. They 
% will produce a new window, label it, and print a representation of the 
% newly decoded image for each cutoff threshold. This is for comparison 
% with the original image to answer the question in the set that asks at 
% which point the difference between the original image and the compressed 
% image becomes perceptible to the human eye. 
figure; 
set(gcf,’NumberTitle’,’off’,’Name’,sprintf(’cutoff=%d’,cutoff)); 
imshow(decoded,[0 255]); 

end


% Now, plot the graph with a smooth curve and boxes around all the actual data points.

figure;

set(gcf,’NumberTitle’,’off’,’Name’,’Graph for Problem 1’);

plot(x,y,’s’)

title(’Comparison of File Size and Image Error’);

xlabel(’Nonzero matrix values (number of bytes to store)’);

ylabel(’Mean squared error’);


You should have gotten something remotely resembling the graph in Figure 1. As you can see, there 
is a point where the MSE increases exponentially giving a quantitative value to the degradation of the 
reconstructed picture. Medical applications such as in Xrays tend to discourage the use of JPEG or similar 
lossy compression algorithms for saving images due to chances of distortion leading to an incorrect diagnosis. 

The largest byte size for which I could detect the difference between the original image and the recon
structed image by eye was 1,785 bytes, which corresponds to a cutoff of 24 and a mean square error of 
42.2132. This is rather remarkable because the image started out over 16kb long, which means that less that 
an eighth of the data recorded is actually necessary to create the visual effect we experience when looking 
at the picture. Beyond that, the quality is not horrible, either, but we can begin to detect bands forming 
due to the fact that the pixels were processed as distinct 8 × 8 blocks. By the end of the experiment, where 
the cutoff is 100, the picture is not good, yet there is still enough data that it is recognizable as a flower and 
shows a resemblance to the original image. 

Solution to Problem 2: Compression is Fun and Easy 

Solution to Problem 2, part a. 

Table 1 represents the LZW analysis of the phrase “peter piper picked a peck of pickled peppers.” The 
resulting data stream is: 

80 70 65 74 65 72 20 70 69 82 86 88 63 6B 65 64 20 61 87 65 8D 20 6F 66 87 8C 6B 6C 8F 93 70 
8A 73 81 

This is 34 bytes long, whereas the original message was 46 bytes long (including the start and stop control 
characters), which amounts to 26.1% compression. If we count bits, the original message could have been 
sent in 7 bits per character (total 322 bits) whereas the LZW code requires 8 bits per character (total 272 
bits) so the compression is 15.5%. Of course, this is a short example but contrived to make the dictionary 
grow quickly. For a sizeable selection of average English text, LZW typically yields 50% compression. 
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Figure 1: Comparison of File Size and Image Error 

Solution to Problem 2, part b. 

This strategy has several advantages: we will stay within 7bit data, hence more compression and faster 
encoder/decoder; moreover, the dictionary can be searched quickly. There is a major drawback, though. 
The dictionary can only have 16 entries beyond the ASCII characters. Except for very short and repetitive 
sequences of characters, the dictionary will overflow. Another drawback is that the text cannot include any 
of the ASCII characters being used for the dictionary; among the characters excluded are three that are 
often used (DC1, DC3, and ESC). On the other hand, the characters HEX 80  FF would now be available 
since the dictionary no longer is there, and this includes many common accented letters of Western European 
languages. A practical implementation of the coder and decoder would not be either easier or harder by 
very much, but new programs would have to be written because this proposed arrangement is not standard, 
and new software always brings with it a cost and risk of bugs. 
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Transmission 
New New 

Input dictionary dictionary Output 
entry entry � �� � � �� � � �� � � �� � � �� � 

02 STX – – 
70 p – – 
65 e 82 pe 
74 t 83 et 
65 e 84 te 
72 r 85 er 
20 space 86 rspace 
70 p 87 spacep 
69 i 88 pi 
70 p 89 ip 
65 e – – 
72 r 8A per 
20 space – – 
70 p 8B rspacep 
69 i – – 
63 c 8C pic 
6B k 8D ck 
65 e 8E ke 
64 d 8F ed 
20 space 90 dspace 
61 a 91 spacea 
20 space 92 aspace 
70 p – – 
65 e 93 spacepe 
63 c 94 ec 
6B k – – 
20 space 95 ckspace 
6F o 96 spaceo 
66 f 97 of 
20 space 98 fspace 
70 p – – 
69 i 99 spacepi 
63 c – – 
6B k 9A ic 
6C l 9B ckl 
65 e 9C le 
64 d – – 
20 space 9D edspace 
70 p – – 
65 e – – 
70 p 9E spacepep 
70 p 9F pp 
65 e – – 
72 r – – 
73 s A0 pers 
03 ETX – – 
– – – – 

80 (start) – – STX 
– – – – – 

70 p – – p 
65 e 80 pe e 
74 t 81 et t 
65 e 82 te e 
72 r 83 er r 
20 space 84 rspace space 
70 p 85 spacep p 
69 i 86 pi i 
– – 87 ip – 

82 pe – – pe 
– – 88 per – 

86 rspace – – rspace 
– – 89 rspacep – 

88 pi – – pi 
63 c 8A pic c 
6B k 8B ck k 
65 e 8C ke e 
64 d 8D ed d 
20 space 8E dspace space 
61 a 8F spacea a 
– – 90 aspace – 

87 spacep – – spacep 
65 e 91 spacepe e 
– – 92 ec – 

8D ck – – ck 
20 space 93 ckspace space 
6F o 94 spaceo o 
66 f 95 of f 
– – 96 fspace – 

87 spacep – – spacep 
– – 97 spacepi – 

8C pic – – pic 
6B k 98 ic k 
6C l 99 ckl l 

– – 9A le – 
8F ed – – ed 
– – 9B edspace – 
– – – – – 

93 spacepe – – spacepe 
70 p 9C spacepep pp 
– – 9D pp – 
– – – – – 

8A per – – per 
73 s 9E pers s 
81 (stop) – – ETX 

Table 1: Solution to Problem 2, part a 


