
Chapter 2

Codes

In the previous chapter we examined the fundamental unit of information, the bit, and its various abstract
representations: the mathematical bit, the classical bit, and the quantum bit.

A single bit is useful if exactly two answers to a question are possible. Examples include the result of a
coin toss (heads or tails), the gender of a person (male or female), the verdict of a jury (guilty or not guilty),
and the truth of an assertion (true or false). Most situations in life are more complicated. This chapter
concerns the ways in which complex objects can be represented not by a single bit, but by arrays of bits.

It is convenient to focus on a very simple model of a system, in which the input is one of a predetermined
set of objects, or “symbols,” the identity of the particular symbol chosen is encoded in an array of bits, these
bits are transmitted through space or time, and then are decoded at a later time or in a different place to
determine which symbol was originally chosen. In later chapters we will build on this model to deal with
issues of robustness and efficiency.

C
od

er

C
ha

nn
el

D
ec

od
erInput Output� � � �

(Symbols) (Arrays of Bits) (Arrays of Bits) (Symbols)

Figure 2.1: Generalized communication system

In this chapter we will look into several aspects of the design of codes, and discuss several examples in
which these aspects were either done well or not so well. Separate notes will describe codes that illustrate
the important points:

• Letters: BCD, EBCDIC, ASCII, Unicode, Morse Code

• Integers: Binary, Gray, 2’s complement

• Numbers: Floating-Point

Author: Paul Penfield, Jr.
Version 1.0.2, January 30, 2003. Copyright © 2003 Massachusetts Institute of Technology c

7

82.1 Symbol Space Size

Proteins: Genetic Code•
• Telephones: NANP, International codes

• Hosts: Ethernet, IP Addresses, Domain names

• Images: TIFF, GIF, and JPEG

Audio: MP3•
Video: MPEG•

2.1 Symbol Space Size

Different considerations are important depending on the number of symbols that need to be encoded. The
number of symbols in a code is called the symbol space size. We will consider symbol spaces of different
sizes:

2•
• Integral power of 2

Finite•
• Infinite, Countable

• Infinite, Uncountable

If the number of symbols is 2, then the selection can be encoded in a single bit. If the number of possible
symbols is 4, 8, 16, 32, 64, or another integral power of 2, then the selection may be coded in the number
of bits equal to the logarithm, base 2, of the symbol space size. Thus 2 bits can designate the suit (clubs,
diamonds, hearts, or spaces) of a playing card, and 5 bits can encode the selection of one student in a class
of 32. A dreidel is a four-sided toy marked with Hebrew letters, and spun like a top in a children’s game,
especially at Hanukkah. The result of each spin could be encoded in 2 bits.

If the number of symbols is finite but not an integral power of 2, then the number of bits that would work
for the next higher integral power of 2 can be used to encode the selection, but there will be some unused
bit patterns. Examples include the 10 digits, the six faces of a cubic die, the 13 denominations of a playing
card, and the 26 letters of the English alphabet. In each case, there is spare capacity (6 unused patterns in
the 4-bit representation of digits, 2 unused patterns in the 3-bit representation of a die, etc.) What to do
with this spare capacity is an important design issue that will be treated in the next section.

If the number of symbols is infinite but countable (able to be put into a one-to-one relation with the
integers) then a bit string of a given length can only denote a finite number of items from this infinite set.
Thus, a 4-bit code for positive integers might designate integers from 0 through 15, but would not be able to
handle integers outside this range. If, as a result of some computation, it were necessary to represent larger
numbers, then this “overflow” condition would have to be handled in some way.

If the number of symbols is infinite and uncountable (such as the value of a physical quantity like voltage
or acoustic pressure) then some technique must be used to replace possible values by a finite number of
selected values that are approximately the same. For example, if the numbers between 0 and 1 were the
symbols and if 2 bits were available for the coded representation, one approach might be to approximate
all numbers between 0 and 0.25 by the number 0.125, all numbers between 0.25 and 0.5 by 0.375, and so
on. Whether such an approximation is adequate depends on the use to which the decoded data is put. The
approximation is not reversible, in that there is no decoder which will recover the original symbol given
just the code for the approximate value. However, if the number of bits available is large enough, then for
many purposes a decoder could provide a number that is close enough. Floating-point representation of real
numbers in computers is based on this philosophy.

92.2 Use of Spare Capacity

2.2 Use of Spare Capacity

In many situations there are some unused code patterns, because the number of symbols is not an integral
power of 2. There are several strategies possible to deal with this.

• Ignore

• Map to other values

• Reserve for future expansion

Control codes•
Common abbreviations•

These approaches will be illustrated in the following subsections with examples of common codes.

2.2.1 Binary Coded Decimal (BCD)

First, the extra bit patterns might be simply ignored. The decoder might return nothing, or might signal an
error. Second, the extra patterns might be mapped into legal values. For example, unused patterns in BCD
(Binary Coded Decimal) might all be converted to 9, under the theory that they represent 10, 11, 12, 13,
14, and 15, and the closest digit is 9. Or they might be decoded as 2, 3, 4, 5, 6, or 7, by setting the initial
bit to 0, under the theory that the first bit might have been wrong. Neither of these theories is particularly
appealing, yet in the design of any particular system using BCD code, some such action must be provided.

Digit Code
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Table 2.1: Binary Coded Decimal

2.2.2 Genetic Code

Another example of mapping unused patterns into legal values is provided by the Genetic Code, described
in-depth in Section 2.7. A protein consists of a long sequence of amino acids, of 20 different types, each with
between 10 and 27 atoms. Living organisms have millions of different proteins, and it is believed that all cell
activity involves proteins. Proteins have to be made as part of the life process, yet it would be difficult to
imagine millions of special-purpose chemical manufacturing units, one for each type of protein. Instead, a
general-purpose mechanism assembles the proteins, guided by a description (think of it as a blueprint) that
is contained in DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) molecules. Both DNA and RNA
are linear chains of small nucleotides; a DNA molecule might consist of more than a hundred million such
nucleotides. In DNA there are four types of nucleotides, each consisting of some common structure and one
of four different bases, named Adenine, Cytosine, Guanine, and Thymine. In RNA the structure is similar
except that Thymine is replaced by Uracil.

102.2 Use of Spare Capacity

The Genetic Code is a description of how a sequence of nucleotides specifies an amino acid. Given that
relationship, an entire protein can be specified by a linear sequence of nucleotides. Note that the coded
description of a protein is not by itself any smaller or simpler than the protein itself; in fact, the number
of atoms needed to specify a protein is larger than the number in the protein itself. The standardized
representation, however, allows the same assembly apparatus to fabricate many different proteins at different
times.

Since there are four different nucleotides, one of them can specify at most four different amino acids. A
sequence of two can specify 16 different amino acids. But this is not enough – there are 20 different amino
acids used in proteins, so a sequence of three is needed. Such a sequence is called a codon. There are 64
different codons, more than enough to specify 20 amino acids. The spare capacity is used to provide more
than one combination for most amino acids, thereby providing a degree of robustness. For example, the
amino acid Alanine has 4 codes including all that start with GC; thus the third nucleotide can be ignored, so
a mutation which changed it would not impair any biological functions. In fact, eight of the 20 amino acids
have this same property that the third nucleotide is a “don’t care.” (It happens that the third nucleotide
is more likely to be altered during transcription than the other two, due to an effect that has been called
“wobble.”)

An examination of the Genetic Code reveals that three codons (UAA, UAG, and UGA) do not specify
any amino acid. These three signify the end of the protein. Such a “stop code” is necessary because different
proteins are of different length. The codon AUG specifies the amino acid Methionine and also signifies the
beginning of a protein; all protein chains begin with Methionine. It is also common in man-made codes for
some bit sequences to designate data and a few to designate control information.

2.2.3 Telephone Area Codes

The third way in which spare capacity can be used is by reserving it for future expansion. When AT&T
established telephone Area Codes in 1947 (they were made available for public use in 1951), the codes
contained three digits, with three restrictions.

• The first digit could not be 0 or 1, to avoid conflicts with 0 connecting to the operator, and initially 1
being an unintended effect of a sticky rotary dial, or today a signal that the person dialing acknowledges
that the call is a toll call

• The middle digit could only be a 0 or 1 (0 for states and provinces with only one Area Code, and 1 for
states and provinces with more than one)

• The last two digits could not be the same (numbers of the form abb are more easily remembered and
therefore more valuable) thus x11 dialing sequences such as 911 (emergency), 411 (directory assistance),
and 611 (repair service) for local services were protected. This also permitted the later adoption of
500 (follow-me), 600 (Canadian wireless), 700 (interconnect services), 800 (toll-free calls), and 900
(added-value information services).

As a result only 144 Area Codes were possible. Initially 86 were used and were assigned so that numbers
more rapidly dialed on rotary dials went to districts with larger incoming traffic (e.g., 212 for Manhattan).
The remaining 58 codes were reserved for later assignment. As it happened, this reserve capacity was not
adequate, and the restriction that the middle digit be only 0 or 1 had to be relaxed. On January 15, 1995,
the first Area Code with a middle digit other than 0 or 1 was put into service, in Alabama. The present
restrictions on area codes are that the first digit cannot be 0 or 1, the middle digit cannot be 9, and the
last two digits cannot be the same. As of the beginning of 2000, 108 new Area Codes had been started,
this great demand due in part to expanded use of the telephone networks for other services such as fax and
cell phones, in part to political pressure from jurisdictions such as the Caribbean islands that wanted their
own area codes, and in part by the large number of new telephone companies offering service and therefore
needing at least one entire exchange in every rate billing district. It is expected that, at the current rate, the
North American Numbering Plan (NANP) will run out of area codes within 20 years, and there are various
proposals for how to deal with that.

112.3 Strategic Issues is the Design of Codes

2.2.4 IP Addresses

Another example of the need to reserve capacity for future use is afforded by IP (Internet Protocol) addresses,
which is described in detail in Section 2.8. These are (in version 4) of the form x.x.x.x where each x is
a number between 0 and 255, inclusive. Thus each Internet address can be coded in a total of 32 bits. IP
addresses are assigned by the Internet Assigned Numbers Authority, http://www.iana.org/, (IANA).

The explosion of interest in the Internet has created a large demand for IP addresses, and the organizations
that participated in the development of the Internet, who had been assigned large blocks of numbers, began
to feel as though they were hoarding a valuable resource. Among these organizations are AT&T, BBN,
IBM, Xerox, HP, DEC, Apple, MIT, Ford, Stanford, BNR, Prudential, duPont, Merck, the U.S. Postal
Service, and several U.S. DoD agencies (see Section 2.8). The U.S. electric power industry, in the form of
EPRI (formerly the Electric Power Research Institute), requested a large number of Internet addresses, for
every billable household or office suite, for eventual use by remote meter reading equipment. The Internet
Engineering Task Force, http://www.ietf.org/, (IETF) came to realize that Internet addresses were needed
on a much more pervasive and finer scale than had been originally envisioned – for example, there will be
a need for addresses for appliances such as refrigerators, ovens, telephones, and furnaces when these are
Internet-enabled, and there will be several needed within every automobile and truck, perhaps one for each
microprocessor and sensor on the vehicle. The result has been the development of version 6, IPv6, in which
each address is still of the form x.x.x.x, but each x is now a 32-bit number between 0 and 4,294,967,295
inclusive. Thus new Internet addresses will require 128 bits. Existing addresses will not have to change,
but all the network equipment will have to change to accommodate the larger address space. As of January
2001, the conversion to IPv6 is just starting. The new allocations include large blocks which are reserved
for future expansion, and it is said (humorously) that there are blocks of addresses set aside for use by the
other planets. The size of the address space is large enough to accommodate a unique hardware identifier
for each personal computer, and some privacy advocates have pointed out that IPv6 may make anonymous
Web surfing impossible.

2.2.5 ASCII

A fourth use for spare capacity in codes is to use some of it for denoting formatting or control operations.
Many codes incorporate code patterns that are not data but control codes. For example, the Genetic Code
includes three patterns of the 64 as stop codes to terminate the production of the protein.

The most commonly used code for text characters, ASCII (American Standard Code for Information
Interchange, described in detail in Section 2.5) reserves 33 of its 128 codes explicitly for control, and only 95
for characters. These 95 include the 26 upper-case and 26 lower-case letters of the English alphabet, the 10
digits, space, and 32 punctuation marks.

2.3 Strategic Issues is the Design of Codes

Many codes are designed by humans. Sometimes codes are amazingly robust, simple, easy to work with, and
extendable. Sometimes they are fragile, arcane, complex, and defy even the simplest generalization. Often a
simple, practical code is developed for representing a small number of items, and its success draws attention
and people start to use it outside its original context, to represent a larger class of objects, for purposes not
originally envisioned. When codes are used by different organizations and built into cooperating hardware
or software systems, they achieve a degree of permanence and are often standardized.

Codes that are successfully generalized often carry with them unintended biases from their original
context. Sometimes the results are merely amusing, but in other cases such biases make the codes difficult
to work with.

An example of a reasonably benign bias is the fact that ASCII has two characters that were originally
intended to be ignored. ASCII started as the 7-bit pattern of holes on paper tape, used to record information
from teletype machines. The tape originally had no holes (except a series of small holes, always present,

122.4 Fixed-Length and Variable-Length Codes

to align and feed the tape), and was fed through a punch. The tape could be punched either from a
received transmission, or by a human typing on a keyboard. The leader (the first part of the tape) was
unpunched, and therefore represented, in effect, a series of the character 0000000 of undetermined length (0
is represented as no hole). Of course when the tape was read the leader should be ignored, so by convention
the character 0000000 was called NUL and was ignored. Later, when ASCII was used in computers, different
systems treated NULs differently. Unix treats NUL as the end of a word in some circumstances, and this use
interferes with applications in which the ASCII code is given a numerical interpretation. The other ASCII
code which was originally intended to be ignored is DEL, 1111111. This convention was helpful to typists
who could “erase” an error by backing up the tape and punching out every hole. In modern contexts DEL
is often treated as a destructive backspace, but some text editors in the past have used DEL as a forward
delete character, and sometimes it is simply ignored.

Another much more serious bias carried by ASCII is the use of two characters, CR (carriage return) and
LF (line feed), to move to a new printing line. The physical mechanism in teletype machines had separate
hardware to move the paper (on a continuous roll) up, and reposition the printing element to the left margin.
The engineers who designed the code that evolved into ASCII surely felt they were doing a good thing by
permitting these operations to be called for separately. They could not have imagined the grief they have
given to later generations of engineers as ASCII was adapted to situations with different hardware and no
need to move the point of printing as called for by CR and LF separately. Different computing systems have
chosen different interpretations (Unix uses LF for a new line and ignores CR, Macintoshes use CR and ignore
LF, and DOS/Windows requires both) and this incompatibility is a continuing, serious source of frustration
and errors.

Telephone area codes in North America offer another example of how initial assumptions caused later
difficulty, and this is surprising in light of the generally high quality of North American telephone standards,
and the fact that the industry was tightly coordinated. It was necessary to allow the middle digit to be
any digit, not just 0 or 1. Much telephone equipment in use had been designed around the assumption that
the middle digit could only be 0 or 1, especially PBX (Private Branch eXchanges) designed by independent
suppliers. Not all the equipment was upgraded in time, with the result that some customers were unable to
place outgoing calls to the new area codes for a brief period. The upgrades required both revised software
and, in some cases, new hardware.

2.4 Fixed-Length and Variable-Length Codes

A decision that must be made very early in the design of a code is whether to represent all symbols with
codes of the same number of bits (fixed length) or to let some symbols use shorter codes than others (variable
length). There are advantages to both schemes.

Fixed-length codes are usually easier to deal with because both the coder and decoder know in advance
how many bits are involved, and it is only a matter of setting or reading the values. With variable-length
codes, the decoder must use the values of the bits to determine when the symbol is known and therefore
when to start interpreting the next bit as the beginning of the next coded symbol.

Fixed-length codes can be supported by parallel transmission and interpretation, in which the bits are
communicated from the coder to the decoder simultaneously, using multiple wires to carry the voltages, for
example. This approach should be contrasted with serial transport of the coded information, in which a
single wire sends a stream of bits and the decoder must decide how the bits are to be used to decode the
different symbols. If a decoder gets mixed up, or looks at a stream of bits after it has started, it might not
know when one symbol stops and the next one starts. This is referred to as a “framing error.” To eliminate
framing errors, stop bits are often sent between symbols; typically ASCII sent over serial lines has 1 or 2
stop bits, normally given the value 0. Thus if a decoder is out of step, it will eventually find a 1 in what
it assumed should be a stop bit, and it can try to resynchronize. Although in theory framing errors could
persist for long periods, in practice use of stop bits works well.

132.4 Fixed-Length and Variable-Length Codes

2.4.1 Morse Code

Variable-length codes are useful if some symbols occur more frequently than others. The idea is to assign
short sequences to common symbols, and long sequences to uncommon symbols, thereby achieving shorter
coded messages on average. For example, not all letters in the English alphabet are equally common; the
letters X, J, Q, and Z are quite rarely used. Here is a table of the frequency of the letters in written English
(the number of times each letter is, on average, found per 1000 letters):

132 E 61 S
104 T 53 H
82 A 38 D
80 O 34 L
71 N 29 F
68 R 27 C
63 I 25 M

24 U
20 G, P, Y
19 W
14 B
9 V
4 K
1 X, J, Q, Z

Table 2.2: Frequency of use for letters in written English

Variable-length codes intended for English text can achieve greater efficiency by choosing a short bit
pattern for the letters such as E, T, A, O, and N, and letting the less commonly used letters have longer
patterns. Of course the specific patterns used must be chosen “prefix-free” in the sense that a short code
cannot be the same as the first part of any longer code – otherwise the decoder would not be able to tell
them apart. In practice the benefit gained has not, in the case of text, been sufficient to justify the greater
complexity, and text is normally coded in a fixed-length code such as ASCII. However, one exception is
Morse Code.

Morse Code was designed for use on telegraphs, and it later saw use in radio communications before
AM radios could carry voice. Until 1999 it was a required mode of communication for ocean vessels, even
though it was rarely used (the theory apparently was that some older craft might not have converted to
more modern communications gear). Ability to send and receive Morse Code is still a requirement for U.S.
citizens who want a radio amateur license.

Morse Code is named after Samuel F. B. Morse, the inventor of the telegraph, who is credited with its
modern form. It consists of a sequence of short and long pulses or tones (dots and dashes) separated by
short periods of silence. A person generates Morse Code by making and breaking an electrical connection on
a “key,” and the person on the other end of the line listens to the sequence of dots and dashes and converts
them to letters, spaces, and punctuation.

Since Morse Code is designed to be heard, not seen, the chart of the English letters in Table 2.3 is only
marginally useful. You cannot learn Morse Code from looking at the dots and dashes on paper; you have to
hear them. If you want to listen to it on text of your choice, try

• http://wasp-wwii.org/wasp/sound/morse1.html
which has a generator written in Java that runs in your Web browser, or

• http://www.soton.ac.uk/%7Escp93ch/refer/morseform.html
which can give you an audio file to play

If the duration of a dot is taken to be one unit then that of a dash is three units. The space between the
dots and dashes within one character is one unit, that between characters is three units, and that between
words seven units. Space is not considered a character, as it is in ASCII.

A comparison of these two charts shows that Morse did a fairly good job of assigning short sequences
to the more common letters. It is reported that he did this not by consulting books and newspapers and
counting letters, but by visiting a print shop. The printing presses at the time used movable type, with
separate letters assembled by the printer into lines. Each letter was available in multiple copies for each font
and size, in the form of pieces of lead. Morse simply counted the pieces of type available for each letter of

142.4 Fixed-Length and Variable-Length Codes

A K 0 Period·−
L

−·− U ··− −−−−−
Hyphen −····−

·−·−·−
B V−···

M
·−··

W
···− 1 ·−−−−

C 2−·−·
N

−− ·−−
3

··−−− Comma −−··−−
D Colon−··

O
−· X −··−

4
···−− −−−···

E Y· −−−
Z

−·−−
5

····− Question Mark ··−−··
F P Apostrophe ·−−−−···−·

Q
·−−· −−··

6
·····

G −···· Parenthesis −·−−·−
H

−−·
R

−−·−
7 −−··· Quotation mark···· ·−·
8 −−−·· Fraction bar

·−··−·
I S·· ··· −··−·

9 Delete prior word ········J ·−−− T − −−−−·
End of Transmission ·−·−·

Table 2.3: Morse Code

the alphabet, assuming that the printers knew their business and stocked their cases with the right quantity
of each letter. The wooden type cases were arranged with two rows, the capital letters in the upper one
and small letters in the lower one. Printers referred to those from the upper row of the case as “uppercase”
letters.

152.5 Detail: ASCII

2.5 Detail: ASCII

ASCII, which stands for “The American Code for Information Interchange,” was introduced by the American
National Standards Institute (ANSI) in 1963. It is the most commonly used character code. In an 8-bit
context, the leading bit is set to 0; thus ASCII can be thought of as the “bottom half” of an 8-bit character
code. The code is as follows:

Control Characters Digits Uppercase Lowercase

CHR HEX DEC CHR

@ 60 96 ‘
A 61 97 a
B 62 98 b
C 63 99 c
D 64 100 d
E 65 101 e
F 66 102 f
G 67 103 g
H 68 104 h
I 69 105 i
J 6A 106 j
K 6B 107 k
L 6C 108 l
M 6D 109 m
N 6E 110 n
O 6F 111 o
P 70 112 p
Q 71 113 q
R 72 114 r
S 73 115 s
T 74 116 t
U 75 117 u
V 76 118 v
W 77 119 w
X 78 120 x
Y 79 121 y
Z 7A 122 z
[7B 123 {
\ 7C 124 —
] 7D 125 }
^ 7E 126 ~

7F 127 DEL

HEX DEC CHR Ctrl

00 0 NUL ^@
01 1 SOH ^A
02 2 STX ^B
03 3 ETX ^C
04 4 EOT ^D
05 5 ENQ ^E
06 6 ACK ^F
07 7 BEL ^G
08 8 BS ^H
09 9 HT ^I
0A 10 LF ^J
0B 11 VT ^K
0C 12 FF ^L
0D 13 CR ^M
0E 14 SO ^N
0F 15 SI ^O
10 16 DLE ^P
11 17 DC1 ^Q
12 18 DC2 ^R
13 19 DC3 ^S
14 20 DC4 ^T
15 21 NAK ^U
16 22 SYN ^V
17 23 ETB ^W
18 24 CAN ^X
19 25 EM ^Y
1A 26 SUB ^Z
1B 27 ESC ^[
1C 28 FS ^\
1D 29 GS ^]
1E 30 RS ^^
1F 31 US ^_

HEX DEC CHR HEX DEC

20 32 SP 40 64
21 33 ! 41 65
22 34 ” 42 66
23 35 # 43 67
24 36 $ 44 68
25 37 % 45 69
26 38 & 46 70
27 39 ’ 47 71
28 40 (48 72
29 41) 49 73
2A 42 * 4A 74
2B 43 + 4B 75
2C 44 , 4C 76
2D 45 - 4D 77
2E 46 . 4E 78
2F 47 / 4F 79
30 48 0 50 80
31 49 1 51 81
32 50 2 52 82
33 51 3 53 83
34 52 4 54 84
35 53 5 55 85
36 54 6 56 86
37 55 7 57 87
38 56 8 58 88
39 57 9 59 89
3A 58 : 5A 90
3B 59 ; 5B 91
3C 60 ¡ 5C 92
3D 61 = 5D 93
3E 62 > 5E 94
3F 63 ? 5F 95

Table 2.4: ASCII Character Set

The control characters are used to signal special conditions, as covered in Table 2.5.
The 128 characters represented by codes between HEX 80 and HEX FF (sometimes called “high ASCII”)

are defined differently in different contexts. On many operating systems they include the accented West-
ern European letters and various additional punctuation marks. On IBM PCs they include line-drawing
characters. Macs use a different encoding.

Fortunately, people now appreciate the need for interoperability of computer platforms, so more universal
standards are coming into favor. The most common code in use for Web pages is ISO-8859-1 (ISO-Latin)
which uses the 96 codes between HEX A0 and HEX FF for various accented letters and punctuation of

162.5 Detail: ASCII

HEX DEC CHR Ctrl Meaning

00 0 NUL ^@ NULl blank leader on paper tape; generally ignored
01 1 SOH ^A Start Of Heading
02 2 STX ^B Start of TeXt
03 3 ETX ^C End of TeXt; matches STX
04 4 EOT ^D End Of Transmission
05 5 ENQ ^E ENQuiry
06 6 ACK ^F ACKnowledge; affirmative response to ENQ
07 7 BEL ^G BELl; audible signal, a bell on early machines
08 8 BS ^H BackSpace; nondestructive, ignored at left margin
09 9 HT ^I Horizontal Tab
0A 10 LF ^J Line Feed; paper up or print head down; new line on Unix
0B 11 VT ^K Vertical Tab
0C 12 FF ^L Form Feed; start new page
0D 13 CR ^M Carriage Return; print head to left margin; new line on Macs
0E 14 SO ^N Shift Out; start use of alternate character set
0F 15 SI ^O Shift In; resume use of default character set
10 16 DLE ^P Data Link Escape; changes meaning of next character
11 17 DC1 ^Q Device Control 1; if flow control used, XON, OK to send
12 18 DC2 ^R Device Control 2
13 19 DC3 ^S Device Control 3; if flow control used, XOFF, stop sending
14 20 DC4 ^T Device Control 4
15 21 NAK ^U Negative AcKnowledge; response to ENQ
16 22 SYN ^V SYNchronous idle
17 23 ETB ^W End of Transmission Block
18 24 CAN ^X CANcel; disregard previous block
19 25 EM ^Y End of Medium
1A 26 SUB ^Z SUBstitute
1B 27 ESC ^[ESCape; changes meaning of next character
1C 28 FS ^\ File Separator; coarsest scale
1D 29 GS ^] Group Separator; coarse scale
1E 30 RS ^^ Record Separator; fine scale
1F 31 US ^_ Unit Separator; finest scale
20 32 SP SPace; not always considered a control character
7F 127 DEL DELete; orginally ignored; often destructive backspace

Table 2.5: ASCII control characters

172.5 Detail: ASCII

Western European languages, and a few other symbols. The 32 characters between HEX 80 and HEX 9F
are reserved as control characters in ISO-8859-1.

Nature abhors a vacuum: Most people don’t want 32 more control characters (indeed, of the 33 control
characters in 7-bit ASCII, only a dozen or so are regularly used in text). Consequently there has been no
end of ideas for using HEX 80 to HEX 9F. The most widely used convention is Microsoft’s Code Page 1252
(Latin I) which is the same as ISO-8859-1 (ISO-Latin) except that 27 of the 32 control codes are assigned
to printed characters. The most interesting of these characters is HEX 80, the Euro. Not all platforms and
operating systems recognize CP-1252, so documents, and in particular Web pages, require special attention.

Beyond 8 Bits

To represent Asian languages, many more characters are needed. There is currently active development of
appropriate standards, and it is generally felt that the total number of characters is less that 65,536. This
is fortunate because that many different characters could be represented in 16 bits, or 2 bytes. In order to
stay within this number, the written versions of some of the Chinese dialects must share symbols that look
alike.

The strongest candidate for a 2-byte standard character code today is known as Unicode.

References

There are many Web pages that give the ASCII chart, with extensions to all the world’s languages. Among
the more useful:

• Jim Price, with PC and Windows 8-bit charts, and several further links
http://www.jimprice.com/jim-asc.htm

• Mac OS Characters, including 8-bit Mac chart
http://developer.apple.com/techpubs/mac/Text/Text-30.html

• A Brief History of Character Codes, with a good discussion of extension to Asian languages
http://tronweb.super-nova.co.jp/characcodehist.html

• Unicode home page
http://www.unicode.org/

• CP-1252 standard, definitive
http://www.microsoft.com/globaldev/reference/sbcs/1252.htm

• CP-1252 compared to:

– Unicode
ftp://ftp.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT

– Unicode/HTML
http://www.hclrss.demon.co.uk/demos/ansi.html

– ISO-8859-1/MacOS
http://www.jwz.org/doc/charsets.html

182.6 Detail: Integer Codes

2.6 Detail: Integer Codes

There are many ways to represent integers as bit patterns. All suffer from an inability to represent arbitrarily
large integers in a fixed number of bits. A computation which produces an out-of-range result is said to
overflow.

The most commonly used representations are binary code for unsigned integers (e.g., memory addresses),
2’s complement for signed integers (e.g., ordinary arithmetic), and binary gray code for instruments measur-
ing changeable quantities.

The following table gives five examples of 4 bit integer codes. The MSB (most significant bit) is on the
left and the LSB (least significant bit) on the right.

Unsigned Integers Signed Integers
︷ ︸︸ ︷ ︷ ︸︸ ︷

Binary Code Binary Gray Code 2’s Complement Sign/Magnitude 1’s Complement
Range � [0, 15] [0, 15] [-8, 7] [-7,7] [-7,7]

-8 1 0 0 0
-7 1 0 0 1 1 1 1 1 1 0 0 0
-6 1 0 1 0 1 1 1 0 1 0 0 1
-5 1 0 1 1 1 1 0 1 1 0 1 0
-4 1 1 0 0 1 1 0 0 1 0 1 1
-3 1 1 0 1 1 0 1 1 1 1 0 0
-2 1 1 1 0 1 0 1 0 1 1 0 1
-1 1 1 1 1 1 0 0 1 1 1 1 0
0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
5 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1
6 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0
7 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

Table 2.6: Four bit integer codes

Binary Code

This code is for nonnegative integers. For code of length n, the 2n patterns represent integers 0 through
2n − 1. The LSB (least significant bit) is 0 for even and 1 for odd integers.

192.6 Detail: Integer Codes

Binary Gray Code

This code is for nonnegative integers. For code of length n, the 2n patterns represent integers 0 through
2n−1. The two bit patterns of adjacent integers differ in exactly one bit. This property makes the code useful
for sensors where the integer being encoded might change while a measurement is in progress. The following
anonymous tribute appeared in Martin Gardner’s column “Mathematical Games” in Scientific American,
August, 1972, but actually was known much earlier.

The Binary Gray Code is fun,
for with it STRANGE THINGS can be done. . .

Fifteen, as you know,
is one oh oh oh,

while ten is one one one one.

2’s Complement

This code is for integers, both positive and negative. For a code of length n, the 2n patterns represent
integers −2n−1 through 2n−1 −1. The LSB (least significant bit) is 0 for even and 1 for odd integers. Where
they overlap, this code is the same as binary code. This code is widely used.

Sign/Magnitude

This code is for integers, both positive and negative. For code of length n, the 2n patterns represent integers
−(2n−1 − 1) through 2n−1 − 1. The MSB (most significant bit) is 0 for positive and 1 for negative integers;
the other bits carry the magnitude. Where they overlap, this code is the same as binary code. While
conceptually simple, this code is awkward in practice. Its separate representations for +0 and -0 are not
generally useful.

1’s Complement

This code is for integers, both positive and negative. For code of length n, the 2n patterns represent
integers −(2n−1 − 1) through 2n−1 − 1. The MSB is 0 for positive integers; negative integers are formed by
complementing each bit of the corresponding positive integer. Where they overlap, this code is the same as
binary code. This code is awkward and rarely used today. Its separate representations for +0 and -0 are not
generally useful.

202.7 Detail: The Genetic Code∗

2.7 Detail: The Genetic Code∗

The basic building block of your body is a cell. Two or more groups of cells form tissues, such as bone
or muscle; tissues organize to form organs, such as the heart or brain; organs form organ systems, such as
the circulatory system or nervous system; the organ systems together form you, the organism. Cells can be
classified as either eukaryote or prokaryote cells – with or without a nucleus, respectively. The cells that
make up your body and those of all animals, plants, and fungi are eukaryotic. Prokaryotes are bacteria and
cyanobacteria.

The nucleus forms a separate compartment from the rest of the cell body; this compartment serves
as the central storage center for all the hereditary information of the eukaryote cells. All of the genetic
information that forms the book of life is stored on individual chromosomes found within the nucleus. In
healthy humans there are 23 pairs of chromosomes (46 total). Each one of the chromosomes contains one
threadlike deoxyribonucleic acid (DNA) molecule. Genes are the functional regions along these DNA strands,
and are the fundamental physical units that carry hereditary information from one generation to the next.
In the prokaryotes the chromosomes are free floating in the cell body since there is no nucleus.

Figure 2.2: Location of DNA inside of a Cell

The DNA molecules are composed of two interconnected chains of nucleotides that form one DNA strand.
Each nucleotide is composed of a sugar, phosphate, and one of four bases. The bases are adenine, guanine, cy-
tosine, and thymine. For convenience each nucleotide is referenced by its base; instead of saying deoxyguano-
sine monophosphate we would simply say guanine (or G) when referring to the individual nucleotide. Thus
we could write CCACCA to indicate a chain of interconnected cytosine-cytosine-adenine-cytosine-cytosine-
adenine nucleotides.

The individual nucleotide chains are interconnected through the pairing of their nucleotide bases into a
single double helix structure. The rules for pairing are that cytosine always pairs with guanine and thymine
always pairs with adenine. These DNA chains are replicated during somatic cell division (that is, division
of all cells except those destined to be sex cells) and the complete genetic information is passed on to the
resulting cells.

Genes are part of the chromosomes and coded for on the DNA strands. Individual functional sections
of the threadlike DNA are called genes. The information encoded in genes directs the maintenance and
development of the cell and organism. This information travels a path from the input to the output: DNA
(genes) ⇒ mRNA ⇒ ribosome/tRNA ⇒ Protein. In essence the protein is the final output that is generated
from the genes, such that the genes are blueprints for the individual proteins. The proteins themselves

∗This section is based on notes written by Tim Wagner

Section 2.7 is courtesy of Tim Wagner. Used with permission.

212.7 Detail: The Genetic Code∗

Figure 2.3: A schematic of DNA showing its helical structure

can be structural components of your body (such as muscle fibers) or functional components (enzymes that
help regulate thousands of biochemical processes in your body). Proteins are built from polypeptide chains,
which are just strings of amino acids (a single polypeptide chain constitutes a protein, but often functional
proteins are composed of multiple polytpeptide chains).

The genetic message is communicated from the cell nucleus’s DNA to ribosomes outside the nucleus via
messenger RNA (ribosomes are cell components that help in the eventual construction of the final protein).
Transcription is the process in which messenger RNA is generated from the DNA. The messenger RNA is a
copy of a section of a single nucleotide chain. It is a single strand, exactly like DNA except for differences
in the nucleotide sugar and that the base thymine is replaced by uracil. Messenger RNA forms by the same
base pairing rule as DNA except T is replaced by U (C to G, U to A).

This messenger RNA is translated in the cell body, with the help of ribosomes and tRNA, into a string
of amino acids (a protein). The ribosome holds the messenger RNA in place and the transfer RNA places
the appropriate amino acid into the forming protein, illustrated schematically in the diagram below.

The messenger RNA is translated into a protein by first docking with a ribosome. An initiator tRNA
binds to the ribosome at a point corresponding to a start codon on the mRNA strand – in humans this
corresponds to the AUG codon. This tRNA molecule carries the appropriate amino acid called for by the
codon and matches up at with the mRNA chain at another location along its nucleotide chain called an
anticodon. The bonds form via the same base pairing rule for mRNA and DNA (there are some pairing
exceptions that will be ignored for simplicity). Then a second tRNA molecule will dock on the ribosome of
the neighboring location indicated by the next codon. It will also be carrying the corresponding amino acid
that the codon calls for. Once both tRNA molecules are docked on the ribosome the amino acids that they
are carrying bond together. The initial tRNA molecule will detach leaving behind its amino acid on a now
growing chain of amino acids. Then the ribosome will shift over one location on the mRNA strand to make
room for another tRNA molecule to dock with another amino acid. This process will continue until a stop
codon is read on the mRNA; in humans the termination factors are UAG, UAA, and UGA. When the stop
codon is read the chain of amino acids (protein) will be released from the ribosome structure.

What are amino acids? They are organic compounds with a central carbon atom, to which is attached
by covalent bonds

222.7 Detail: The Genetic Code∗

Figure 2.4: RNA to Protein transcription
Adapted by Tim Wagner

• a single hydrogen atom H

• an amino group NH2

• a carboxyl group COOH

• a side chain, different for each amino acid

The side chains range in complexity from a single hydrogen atom (for the amino acid glycine), to struc-
tures incorporating as many as 18 atoms (arginine). Thus each amino acid contains between 10 and 27
atoms. Exactly twenty different amino acids (sometimes called the “common amino acids”) are used in the
production of proteins as described above. Ten of these are considered “essential” because they are not
manufactured in the human body and therefore must be acquired through eating (arginine is essential for
infants and growing children). Nine amino acids are hydrophilic (water-soluble) and eight are hydrophobic
(the other three are called “special”). Of the hydrophilic amino acids, two have net negative charge in their
side chains and are therefore acidic, three have a net positive charge and are therefore basic; and four have
uncharged side chains. Usually the side chains consist entirely of hydrogen, nitrogen, carbon, and oxygen
atoms, although two (cysteine and methionine) have sulfur as well.

There are twenty different common amino acids that need to be coded for and only four different bases.
How is this done? As single entities the nucleotides (A,C,T, or G) could only code for four amino acids,
obviously not enough. As pairs they could code for 16 (42) amino acids, again not enough. With triplets we
could code for 64 (43) possible amino acids – this is the way it is actually done in the body, and the string
of three nucleotides together is called a codon. Why is this done? How has evolution developed such an
inefficient code with so much redundancy? There are multiple codons for a single amino acid for two main
biological reasons: multiple tRNA species exist with different anticodons to bring certain amino acids to the
ribosome, and errors/sloppy pairing can occur during translation (this is called wobble).

Codons, strings of three nucleotides, thus code for amino acids. In the tables below are the genetic code,
from the messenger RNA codon to amino acid, and various properties of the amino acids1 In the tables
below * stands for (U, C, A, or G); thus CU* could be either CUU, CUC, CUA, or CUG.

1shown are the one-letter abbreviation for each, its molecular weight, and some of its properties, taken from H. Lodish, D.
Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell, “Molecular Cell Biology,” third edition, W. H. Freeman and
Company, New York, NY; 1995.

232.7 Detail: The Genetic Code∗

Second Nucleotide Base of mRNA Codon

F
ir

st
N

uc
le

ot
id

e
B

as
e

of
m

R
N

A
C

od
on

U C A G

U

UUU = Phe
UUC = Phe
UUA = Leu
UUG = Leu

UC* = Ser

UAU = Tyr
UAC = Tyr
UAA = stop
UAG = stop

UGU = Cys
UGC = Cys
UGA = stop
UGG = Trp

CAU = His
C CU* = Leu CC* = Pro CAC = His

CAA = Gln
CG* = Arg

CAG = Gln

A
AUU = Ile
AUC = Ile
AUA = Ile

AUG = Met (start)

AC* = Thr

AAU = Asn
AAC = Asn
AAA = Lys
AAG = Lys

AGU = Ser
AGC = Ser
AGA = Arg
AGG = Arg

G GU* = Val GC* = Ala

GAU = Asp
GAC = Asp
GAA = Glu

GG* = Gly

GAG = Glu

Table 2.7: Condensed chart of Amino Acids

242.7 Detail: The Genetic Code∗

Symbols Amino Acid M Wt Properties Codon(s)

Ala A Alanine 89.09 Non-essential Hydrophobic GC*

Arg R Arginine 174.20 Essential Hydrophilic, basic CG* AGA AGG

Asn N Asparagine 132.12 Non-essential Hydrophilic, uncharged AAU AAC

Asp D Aspartic Acid 133.10 Non-essential Hydrophilic, acidic GAU GAC

Cys C Cysteine 121.15 Non-essential Special UGU UGC

Gln Q Glutamine 146.15 Non-essential Hydrophilic, uncharged CAA CAG

Glu E Glutamic Acid 147.13 Non-essential Hydrophilic, acidic GAA GAG

Gly G Glycine 75.07 Non-essential Special GG*

His H Histidine 155.16 Essential Hydrophilic, basic CAU CAC

Ile I Isoleucine 131.17 Essential Hydrophobic AUU AUC AUA

Leu L Leucine 131.17 Essential Hydrophobic UUA UUG CU*

Lys K Lysine 146.19 Essential Hydrophilic, basic AAA AAG

Met M Methionine 149.21 Essential Hydrophobic AUG

Phe F Phenylalanine 165.19 Essential Hydrophobic UUU UUC

Pro P Proline 115.13 Non-essential Special CC*

Ser S Serine 105.09 Non-essential Hydrophilic, uncharged UC* AGU AGC

Thr T Threonine 119.12 Essential Hydrophilic, uncharged AC*

Trp W Tryptophan 204.23 Essential Hydrophobic UGG

Tyr Y Tyrosine 181.19 Non-essential Hydrophobic UAU UAC

Val V Valine 117.15 Essential Hydrophobic GU*

start Methionine AUG

stop UAA UAG UGA

Table 2.8: The Amino Acids and some properties

252.8 Detail: IP Addresses

2.8 Detail: IP Addresses

This table an excerpt from IPv4, http://www.iana.org/assignments/ipv4-address-space (version 4, which is
in the process of being phased out in favor of version 6). IP addresses are assigned by the Internet Assigned
Numbers Authority, http://www.iana.org/, (IANA).

Based at the University of Southern California’s Information Sciences Institute, http://www.isi.edu/,
IANA is in charge of all “unique parameters” on the Internet, including IP (Internet Protocol) addresses.
Each domain name is associated with a unique IP address, a numerical name consisiting of four blocks of up
to three digits each, e.g. 204.146.46.8, which systems use to direct information through the network.

Internet Protocol Address Space

The allocation of Internet Protocol version 4 (IPv4) address space to various registries is listed here. Origi-
nally, all the IPv4 address spaces was managed directly by the IANA. Later, parts of the address space were
allocated to various other registries to manage for particular purposes or regional areas of the world. RFC
1466 documents most of these allocations.

Address Block Registry - Purpose Date

000/8
001/8
002/8
003/8
004/8
005/8
006/8
007/8
008/8
009/8
010/8
011/8
012/8
013/8
014/8
015/8
016/8
017/8

IANA - Reserved
IANA - Reserved
IANA - Reserved
General Electric Company
Bolt Beranek and Newman Inc.
IANA - Reserved
Army Information Systems Center
IANA - Reserved
Bolt Beranek and Newman Inc.
IBM
IANA - Private Use
DoD Intel Information Systems
AT & T Bell Laboratories
Xerox Corporation
IANA - Public Data Network
Hewlett-Packard Company
Digital Equipment Corporation
Apple Computer Inc.

Sep 81
Sep 81
Sep 81
May 94
Dec 92
Jul 95
Feb 94
Apr 95
Dec 92
Aug 92
Jun 95
May 93
Jun 95
Sep 91
Jun 91
Jul 94
Nov 94
Jul 92

018/8 MIT Jan 94
019/8
020/8
021/8
022/8
023/8
024/8
025/8

Ford Motor Company May 95
Computer Sciences Corporation Oct 94
DDN-RVN Jul 91
Defense Information Systems Agency May 93
IANA - Reserved Jul 95
IANA - Cable Block Jul 95
Royal Signals and Radar Establishment Jan 95

..
.

Table 2.9: IP Address Assignments - partial list

