
Chapter 11


Physical Systems


Until now we have ignored most aspects of physical systems by dealing only with abstract ideas such as 
information. Although we assumed that each bit stored or transmitted was manifested in some physical 
object, we focused on the abstract bits, and ignored any limitations caused by the laws of physics. This is 
the fundamental mantra of the information age. 

It has not always been that way, and it will not be that way in the future. In past centuries, the physical 
manifestation of information was of great importance because of its great cost. To preserve or communicate 
information, books had to be written or even words cut into stone. For example, think of the process of 
creating a medieval manuscript during the middle ages. Pages were laboriously copied and illustrated. The 
results may be viewed today with great admiration for their artistry and cultural importance, in part because 
they were so expensive to create – society could only afford to deal with the most important information, 
and the cost of superb art work was not high compared with the other costs of production. 

Advances over the years have improved the efficiency of information storage and transmission – think 
of the printing press, telegraph, telephone, radio, television, digital signal processing, semiconductors, fiber 
optics. These have enabled complicated systems such as computers, data networks, and even economic 
systems for the creation and distribution of entertainment. As the cost of processing data drops, it is 
relevant to consider the case where the cost is negligible compared to the cost of creating, maintaining, 
and making use of information. It is in this domain that the abstract ideas of information theory, bits, 
coding, and indeed all of computer science are dominant. All aspects of modern society are coping with 
the increasing amount of information that is available. Even the ideas of intellectual property, copyrights, 
patents, and trade secrets are being redefined in light of the changing economics of information processing. 
This is the information age. 

This model of information separated from its physical embodiment is, of course, an approximation of 
reality. Eventually, as we make microelectronic systems more and more complicated, using smaller and 
smaller components, we will need to face the fundamental limits imposed not so much by our ability to 
fabricate small structures, but by the basic laws of physics. The basic law which governs all physical systems 
is quantum mechanics. 

Quantum mechanics is often believed to be of importance only for small structures, say the size of an 
atom. Although it is unavoidable at that length scale, it also governs everyday objects. When dealing with 
information processing in physical systems, it is pertinent to consider both very small systems with a small 
number of bits of information, and large systems with large amounts of information. 

The key ideas we have used thus far that need to be re­interpreted in the regime where quantum mechanics 
is important include 

• The digital abstraction made practical by devices that can restore data with small perturbations 
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• Use of probability to express our knowledge in the face of uncertainty 

• The Principle of Maximum Entropy as a technique to estimate probabilities without bias 

11.1 Nature of Quantum Mechanics 

Quantum mechanics is weird. There seems to be no way to make it appear otherwise. Many of its predictions 
are not consistent with expectations that arise from everyday experience. 

Quantum mechanics is mysterious, even to very good physicists. The underlying philosophy and inter­
pretation of its equations and techniques are controversial. 

Quantum mechanics is difficult to use. Relatively advanced mathematical skills are needed. The basic 
equation, although linear, is a partial differential equation that cannot be solved analytically except in a 
very few simple situations. Usually numerical solutions are necessary. 

Quantum mechanics, like other physical theories, requires skill and judgement both in modelling and in 
mathematics. It is not generally taught in any depth before the graduate or advanced undergraduate level. 

Quantum mechanics comes in different forms. It has many alternate formulations. Generally these are 
equivalent in the sense that they predict the same results of experiments, but are not equally easy to learn 
or to use for particular purposes. 

In light of these attributes, why is quantum mechanics important? Because it works. It is the ONLY 
fundamental physical theory that works over such a wide range of situations. Its predictions have been 
verified experimentally time after time. It applies to everyday size objects, and to astronomical objects 
(although it is usually not necessary for them). It applies to atomic­size objects, to electromagnetic waves, 
and to sub­atomic objects. There is a version that is compatible with the theory of special relativity. About 
the only physical phenomenon not handled well at this time is gravity; quantum mechanics has not yet been 
extended to be compatible with the theory of general relativity. 

In these notes we cannot cover quantum mechanics in much depth. For the purpose of examining 
information processing in physical systems, we only need to understand a few of the general features such 
systems must have. In particular, we need a model of physical systems in which there are many possible states, 
each with its own probability of being the one the system is actually in (i.e., the state “occupied”). These 
states all have physical properties associated with them, and energy is one of these. Quantum mechanics 
justifies this model. 

We will use this model in two situations. The first (below) is one with many states, where the objective is 
to understand how the information associated with the occupancy of these states affects the flow of energy. 
The second (in a later chapter of these notes) is one with a very small number of states, where information 
is represented using the occupancy of these states, and the objective is to understand both the limits and 
opportunities afforded by quantum mechanics. 

The next two sections, entitled “Introduction to Quantum Mechanics” and “Stationary States,” may be 
skipped by readers who are prepared to accept the state model without justification. They may proceed 
directly to the section “Multi­State Model.” Other readers may glean from these two sections some indication 
of how quantum considerations lead to that model, and in the process may find some aspects of quantum 
mechanics less mysterious. 

11.2 Introduction to Quantum Mechanics 

Perhaps the first question to ask about a physical object is, “where is it?” In everyday experience, it is 
possible to answer that question with great precision, limited only by the quality of measurement apparatus. 
In the realm of very small objects, there are some fundamental limitations and quantum mechanics must be 
used to address that question. 

At its heart, quantum mechanics deals with energy. Because of the equivalence of mass and energy 
(remember Einstein’s famous formula E = mc2 where c is the speed of light, 2.998 × 108 meters per second) 
quantum mechanics also deals with particles with mass. And because of the relationship between energy of 
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a photon and its frequency (E = hf where h is the Planck constant, 6.626 × 10−34 Joule­seconds) quantum 
mechanics deals with photons. 

According to quantum mechanics, the question “where is it” cannot be answered with certainty. How 
do we deal with uncertainty? By assigning probabilities. It is a little more complicated because of the 
continuous nature of space, and because space is considered to be infinite in extent, but the idea is the same 
as for probabilities of a finite set of events. The probability density is nonnegative, and integrates over all 
space to 1 (this is like the sum of the probabilities of all events that are mutually exclusive and exhaustive 
adding up to 1). 

Thus in quantum mechanics, an object is represented as a “probability blob” which evolves over time. 
How does it evolve? The underlying equation is not written in terms of the probability density, but rather 
in terms of another function of space and time from which the probability density can be found. 

Consider the square root of the probability density, as a function of space and time. Then, for added 
generality, let the square root be either positive or negative – when you square it to get the probability 
density, either one will do. Next, for even more generality, allow this square root to have an arbitrary phase 
in the complex plane, so that it has both a real and an imaginary part. We will no longer call this the square 
root, but instead the “wave function” ψ(r, t) which is a function of space r and time t. The probability 
density is then the magnitude of the wave function squared 

ψ(r, t) |2= ψ∗(r, t)ψ(r, t) (11.1)| 

where the asterisk ∗ denotes the complex conjugate. 
In dealing with probabilities earlier, we never expressed them in terms of any more primitive concept. 

Why do we need to now? Because the fundamental equation of quantum mechanics deals with ψ(r, t). Why 
is this? Don’t ask. It’s just one of many bizarre features of quantum mechanics. 

The fundamental equation of quantum mechanics is the Schrödinger equation, published in 1926 by the 
Austrian physicist Erwin Schrödinger (1887 ­ 1961). 1 

h2 
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∂ψ(r, t)

= − 
2
¯
m
�2ψ2(r, t) + V (r)ψ(r, t) (11.2)

∂t 

where i is the (imaginary) square root of ­1, m is the mass of this object, V (r) is the potential energy 
function, whose spatial gradient is the negative of the force on the object, and ¯ 2πh = h = 1.054 × 10−34 

Joule­seconds. Note that this equation contains partial derivatives in both space and time. The derivative 
with respect to time is first order, and the spatial derivatives are second order. The Laplacian �2 is defined 
as 

∂2f ∂2f ∂2f 
+ + (11.3)�2f = 

∂x2 ∂y2 ∂z2 

where x, y, and z are the three spacial dimensions. 
This equation is frequently interpreted by multiplying it by ψ∗(r, t) and integrating over space. Then the 

left­hand side is identified as the total energy, and the right­hand side as the sum of the kinetic and potential 
energies (assuming the wave function is normalized so that the space integral of | ψ(r, t) 2 is 1, a property |
required for the interpretation in terms of a probability density). 

This equation is deceptively simple. It is a linear equation in ψ(r, t) in the sense that if both 1 and 2 are 
solutions then so is any linear combination of them 

ψtotal = α1ψ1 + α2ψ2 (11.4) 

where α1 and α2 are complex constants (if the linear combination is to lead to a valid probability distribution 
then the values of α1 and α2 must be such that the integral over all space of | |2 is 1). However, except 
for the simplest cases of V (r) the equation cannot be solved in closed form. 

ψtotal 

1See a biography of Schrödinger at http://www­groups.dcs.st­andrews.ac.uk/∼history/Mathematicians/Schrodinger.html 

http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Schrodinger.html
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Strictly speaking, this equation is really only correct if the object being described is the entire universe, in 
which case the equation is useless because it is so complicated. However, it is often used as an approximation 
in the case where the universe is considered in two pieces – a small one (the object) whose wave function is 
being calculated, and the rest of the universe (the “environment”) whose influence on the object is assumed 
to be represented by the V (r) term. Note that the object may be a single photon, a single electron, or two 
or more particles, i.e., it need not correspond to the normal concept of a single particle. 

An object might interact with its environment. Naturally, if the object changes its environment (as would 
happen if a measurement were made of some property of the object) then the environment in turn would 
change the object. One of the interesting results of quantum mechanics is the fact that after a measurement of 
some property, an object will generally have a different wave function, and as a consequence some properties 
of the object as it had previously been may not be able to be determined. 

11.3 Stationary States 

Even though, for a given V (r) term, the Schrödinger equation may be impossible to solve in closed form, 
much can be said about the nature of the solutions without knowing them in detail. Consider those solutions 
that are of a particular form, a product of a function of space times another function of time. It can be 
easily shown from the Schrödinger equation that the most general form this class of wave function can have 
is 

hψ(r, t) = φ(r)e−iEt/¯ (11.5) 

for some real constant E (real because otherwise (r, t) would be grow without bound for very large or very 
small time), where φ(r) obeys the equation (not involving time) 

h2¯
Eφ(r) = − 

2m
�2φ(r) + V (r)φ(r) (11.6) 

Nonzero solutions for φ(r) cannot be obtained for arbitrary values of E. There may be some ranges in 
which any value of E is OK and other ranges in which only specific discrete values of E lead to nonzero 
wave functions. Generally speaking, those solutions corresponding to discrete values of E become small far 
away (i.e., they “vanish at infinity”) and are therefore localized in space, although they might have their 
“probability blob” split over more than one location. 

These solutions are called “stationary states” because the magnitude of the wave function (and therefore 
the probability density) does not change in time; it is only a function of space. 

For these stationary states, E has an interesting interpretation. If we multiply this equation by φ∗(r) 
and integrate over space, we see that (just as in the previous section) E is the sum of two terms from the 
right­hand side, namely the kinetic and potential energies of the object. Thus E is the total energy associated 
with that solution. 

Of course most solutions to the Schrödinger equation with this potential V (r) do not have this form. But 
remember that any linear combination of solutions to the Schrödinger equation is also a solution. We can 
use these stationary states as building blocks to generate more general solutions. 

We are most interested in stationary states that are localized in space, so that the allowed values of E 
are discrete, although there could be many of them (perhaps even a countable infinite number). If we let j 
be an index over the stationary states, then it is possible to define the resulting wave functions ψj (r, t) so 
that they are both “normalized” in the sense that the space integral of the magnitude of each squared is 1 
and “orthogonal” in the sense that the product of any one with the complex conjugate of another is zero 
when integrated over all space. We can then denote the values of E, which we have interpreted as the energy 
associated with that state, by ej . 



� 

� 

� 

� 

� 

97 11.4 Multi­State Model 

Then the general solutions to the Schrödinger equation are written as a linear combination of stationary 
states 

aj φj (r)e−iej t/h̄ψ(r, t) = (11.7) 
j 

where aj are the expansion coefficients, which may be complex. If the wave function ψ(r, t) is normalized 
then it is easily shown that 

21 = | aj | (11.8) 
j 

and that the energy associated with the function can be written in terms of the ej as 

2 ej | aj | (11.9) 
j 

From these relationships we observe that | aj |2 behaves like a probability distribution over the events 
consisting of the various states being occupied, and that this distribution can be used to calculate the average 
energy associated with the object. 

The conclusion of our brief excursion into quantum mechanics is to justify the multi­state model given in 
the next section. Those readers who were willing to accept this model without any explanation have skipped 
over the past two sections and are now rejoining us. 

11.4 Multi­State Model 

Our model of a physical object, justified by the brief discussion of quantum mechanics in the previous two 
sections, is as follows. The object has a wave function ψ which, in principle, characterizes its behavior 
over time. This wave function may be difficult or impossible to calculate, and it can change, perhaps in 
unpredictable ways, when the object interacts with its environment. 

The object has a finite (or perhaps countable infinite) number of “stationary states” that are easier to 
calculate (although for complicated objects finding them may still be impossible). Each of the stationary 
states has its own wave function ψj where j is an index over the stationary states. If the actual wave function 
is one of these stationary states (i.e., if this state is “occupied”) then the object stays in that state indefinitely 
(or until it interacts with its environment). Each stationary state has its own energy ej and possibly its own 
values of other physical quantities of interest. 

The object’s wave function can be expressed as a linear combination of the stationary states, in the form 

ψ = aj ψj (11.10) 
j 

where the aj are complex numbers called expansion coefficients. If the object occupies one of the stationary 
state then all aj are 0 except one of them. Without loss of generality the expansion coefficients can be 
defined so that the sum of their magnitudes squared is one: 

21 = | aj | (11.11) 
j 

Measurement an object’s property, such as its energy, involves an interaction with the object’s environ­
ment, and a change in the environment (if for no other reason than to record the answer). It is a consequence 
of quantum mechanics that if the object is in one of its stationary states and its energy is measured, the result 
of the measurement is simply the energy of that state, and the state does not change (i.e., the expansion 
coefficients, all of which are 0 except one, are not changed by the measurement). On the other hand, if the 
object is not in one of the stationary states, then the result of the measurement is the energy of one of the 
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stationary states, and the object immediately assumes that stationary state. Thus after each measurement 
the object ends up in a stationary state. Which state? The probability that state j is the one selected is 
| aj |2 . Thus the expected value of the energy measured by an experiment is 

2 ej | aj | (11.12) 
j 

where ej is the energy associated with the stationary state j. Measurement in quantum mechanics is thus 
not like measurement of everyday objects, where it is assumed that the energy or other physical properties 
can be measured with arbitrary accuracy, and that such measurements need not perturb the object. The 
nature of quantum measurement is one more of those aspects of quantum mechanics that must be accepted 
even though it may not conform to intuition developed in everyday life. 

11.5 Energy Systems 

An object intended to perform storage, transmission, or conversion of energy must have possible states. Such 
an object typically might consist of a large number (say Avogadro’s number NA = 6.02 × 1023) of similar 
or identical particles and therefore a huge number of stationary states. The Schrödinger equation cannot 
be solved in such circumstances. Interactions with the environment would occur often in order to transfer 
energy to and from the environment. It is impossible to know whether the system is in a stationary state, 
and even if it is known, unpredictable interactions with the environment make such knowledge irrelevant 
rapidly. 

The most that can be done with such systems is to deal with the probabilities pj of occupancy of the 
various stationary states 

pj =| aj 
2 (11.13)|

The expected value of the energy E would then be 

E = ej pj (11.14) 
j 

This model is set up in a way that is perfectly suited for the use of the Principle of Maximum Entropy to 
estimate the occupation probability distribution pj . This topic will be pursued in the next chapter of these 
notes. 

11.6 Information Systems 

An object intended to perform information storage, transmission, or processing should avoid the errors that 
are inherent in unpredictable interactions with the environment. The simplest such object that could process 
information would need two states. One bit of information could be associated with the knowledge of which 
state is occupied. More complex objects, with more than two states, could represent more than one bit of 
information. 

Quantum information systems, including computers and communication systems, will be the topic of a 
later chapter of these notes. 
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