
Chapter 13


Temperature


In previous chapters of these notes we introduced the Principle of Maximum Entropy as a technique for 
estimating probability distributions consistent with constraints. 

In Chapter 9 we discussed the simple case which can be done analytically, in which there are three 
probabilities, one constraint in the form of an average value, and the fact that the probabilities add up to 
one. There are, then, two equations and three unknowns, and it is straightforward to express the entropy in 
terms of one of the unknowns, eliminating the others, and find the maximum. This approach also works if 
there are four probabilities and two average­value constraints, in which case there is again one fewer equation 
than unknown. 

In Chapter 10 we discussed a more general case in which there are many probabilities but only one 
average constraint, so that the entropy cannot be expressed in terms of a single probability. The method 
of Lagrange multipliers was used, and provided the summations can be done, a general method of solutions 
was presented. 

In Chapter 12 we looked at the implications of the Principle of Maximum Entropy for physical systems 
that adhere to the multi­state model motivated by quantum mechanics, as outlined in Chapter 11. 

We found that the Lagrange multiplier plays a central role. Its value indicates whether states with high 
or low energy are occupied (or have a higher probability of being occupied). From it all the other quantities, 
including the expected value of energy and the entropy, can be calculated. 

In this chapter, we will interpret β further, and will define its reciprocal as (to within a scale factor) 
the temperature of the material. Then we will see that there are constraints on the efficiency of energy 
conversion that can be expressed naturally in terms of temperature. 

13.1 Heat Engine 

A heat engine is a machine that extracts heat from the environment and produces work, typically in mechani­
cal or electrical form. As we will see, for a heat engine to function there need to be two different environments 
available. The formulas below place restrictions on the efficiency of energy conversion, in terms of the different 
values of Lagrange multipliers β of the two environments. We will derive these restrictions. 

First, however, it is useful to start to deal with the reciprocal of β rather than β itself. Recall that β is 
an intensive property: if two systems with different values of β are brought into contact, they will end up 
with a common value of β, somewhere between the original two values, and the overall entropy will rise. The 
same is true of 1/β, and indeed of any constant times 1/β. (Actually this statement is not true if one of the 
two values of is positive and the other is negative; in this case the resulting value of β is intermediate but 
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Figure 13.1: Dipole moment example. 
(Each dipole can be either up or down.) 

the resulting value of 1/β is not.) Note that 1/β can, by using the formulas in Chapter 12, be interpreted 
as a small change in energy divided by the change in entropy that causes it, to within the scale factor kB . 

Let us define the “absolute temperature” as 

1 
T = (13.1)

kB β 

where kB = 1.381 × 10−23 Joules per Kelvin is Boltzmann’s constant. The probability distribution that 
comes from the use of the Principle of Maximum Entropy is, when written in terms of T , 

e−βEipi = e−α (13.2) 

e−Ei /kB T= e−α (13.3) 

The interpretation of β in terms of temperature is consistent with the everyday properties of temperature, 
namely that two bodies at the same temperature do not exchange heat, and if two bodies at different 
temperatures come into contact one heats up and the other cools down so that their temperatures approach 
each other. In ordinary experience absolute temperature is positive, and the corresponding value of β is also. 
Because temperature is a more familiar concept than Lagrange multipliers, from now on we will express our 
results in terms of temperature. 

The absolute temperature T is expressed in units of Kelvin. The Celsius scale, which is commonly used 
by the general public in most countries of the world, differs from the Kelvin scale by an additive constant, 
and the Fahrenheit scale, which is in common use in America, differs by both an additive constant and a 
multiplicative factor. 

For general interest, Table 13.1 shows various temperatures of interest on the three scales, along with β. 

1◦K ◦C ◦F kB T = β (J) β (J−1) 
Absolute Zero 

Outer Space (approx) 
Liquid Helium bp 

Liquid Nitrogen bp 

Water mp 

Room Temperature (approx) 
Water bp 

0 ­273.15 ­459.67 0 ∞
2.7 ­270 ­455 3.73 × 10−23 2.68 × 1022 

4.22 ­268.93 ­452.07 5.83 × 10−23 1.72 × 1022 

77.34 ­195.81 ­320.46 1.07 × 10−21 9.36 × 1020 

273.15 0.00 32.00 3.73 × 10−21 2.65 × 1020 

290 17 62 4.00 × 10−21 2.50 × 1020 

373.15 100.00 212.00 5.15 × 10−21 1.94 × 1020 

Table 13.1: Various Temperatures of interest 
bp = boiling point, mp = melting point 

The magnetic­dipole system we are considering is shown in Figure 13.1, where the two environments 
are at different temperatures, and the interaction of each with the system can be controlled by having the 
barriers either present or not (shown in the Figure as present). 

Let us rewrite the formulas from Chapter12 with the use of β replaced by temperature. Thus 
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1 = pi (13.4) 
i 

E = piEi (13.5) 
i � 1 

S = kB pi ln (13.6) 
pii 

e−Ei /kB T pi = e−α (13.7) 

e−Ei /kB Tα = ln 
i 

S E 
= 

kB 
− 

kB T 
(13.8) 

The differential formulas from Chapter 12 for the case of the dipole model where each state has an energy 
proportional to H become 

0 = dpi (13.9) 
i � E 

dE = Ei(H) dpi + dH (13.10)
H 

i 

E 
T dS = dE − dH (13.11)

H � � �� � � � � 
E 1 1 

dα = dT − dH (13.12)
kB T T H � � �� � � � � 

Ei(H) − E 1 
dT − 

1 
dpi = pi dH (13.13)

kB T T H � �� � �� � � � � � �
1 1 1 

dE = 
� 

pi(Ei(H) − E)2 dT − dH + 
E 

dH (13.14)
kB T T H H 

i� �� � �� � � � �� 1 1 1 
T dS = pi(Ei(H) − E)2 dT − dH (13.15)

kB T T H 
i 

and the change in energy can be attributed to the effects of work dw and heat dq 

E 
dw = dH (13.16)

H 

dq = Ei(H) dpi (13.17) 
i 

= T dS (13.18) 

13.2 Energy­Conversion Cycle 

Consider the cycle shown on the diagram below. Without loss of generality we can treat the case where H 
is positive. Assume that the left environment has a temperature T1 which is positive but less (i.e., a higher 
value of β) than the temperature T2 for the right environment (the two temperatures must be different for 
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the device to work). A simple way to envision the cycle is to consider the plane formed by axes corresponding 
to S and T of the system. The cycle we are interested in forms a rectangle, with corners marked a, b, c, and 
d, and sides corresponding to the values S1, S2, T1, and T2: 

Figure 13.2: Temperature Cycle 

Since the temperatures are assumed to be positive, the lower energy levels have a higher probability of 
being occupied. Therefore, the way we have defined the energies here, the energy E is negative. Thus as 
the field gets stronger, the energy gets more negative, which means that energy actually gets delivered from 
the system to the magnetic apparatus. Think of the magnetic field as increasing because a large permanent 
magnet is physically moved toward the system. The magnetic dipoles in the system exert a force of attraction 
on that magnet so as to draw it toward the system, and this force on the magnet as it is moved could be 
used to stretch a spring or raise a weight against gravity, thereby storing this energy. Energy that moves 
into the system (or out of the system) of a form like this, that can come from (or be added to) an external 
source of energy is work (or negative work). 

First consider the bottom leg of this cycle, during which the temperature of the system is increased from 
T1 to T2 without change in entropy. This is an adiabatic step. By one of the equations above, increasing 
T is accomplished by increasing H, while not permitting the system to interact with either of its two 
environments. The energy of the system goes down (to a more negative value) during this leg, so energy is 
being given to the external apparatus that produces the magnetic field, so the work done on the system is 
negative. 

Next, consider the right­hand leg of this cycle, during which the entropy is increased from S1 to S2 at 
constant temperature T2. This step, at constant temperature, is called isothermal. According to one of 
the formulas above, this is accomplished by decreasing H, while the system is in contact with the right 
environment, which is assumed to be at temperature T2. During this leg the change in energy E arises from 
heat, flowing in from the high­temperature environment, and work from the external magnetic apparatus. 
The heat is T2(S2 − S1) and the work is positive since the decreasing H during this leg drives the energy 
toward 0. 

The next two legs are similar to the first two except the work and heat are opposite in direction, i.e., 
the heat is negative because energy flows from the system to the low­temperature environment. During 
the top leg the system is isolated from both environments, so the action is adiabatic. During the left­hand 
isothermalleg the system interacts with the low­temperature environment. 

After going around this cycle, the system is back where it started in terms of its energy, magnetic field, 
and entropy. The two environments are slightly changed but we assume that they are each so much larger 
than the system in terms of the number of dipoles present that they have not changed much. The net 
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change is a slight loss of entropy for the high­temperature environment and a gain of an equal amount of 
entropy for the low­temperature environment. Because these are at different temperatures, the energy that 
is transferred when the heat flow happens is different – it is proportional to the temperature and therefore 
more energy leaves the high­temperature environment than goes into the low­temperature environment. The 
difference is a net negative work which shows up as energy at the magnetic apparatus. Thus heat from two 
environments is converted to work. The amount converted is nonzero only if the two environments are at 
different temperatures. 

Table 13.2 summarizes the heat engine cycle. 

Leg Start End Type dS dT H E Heat in Work in 

bottom a b adiabatic 0 positive increases decreases 0 negative 

right b c isothermal positive 0 decreases increases positive positive 

top c d adiabatic 0 negative decreases increases 0 positive 

left d a isothermal negative 0 increases decreases negative negative 

Total a a complete cycle 0 0 0 0 positive negative 

Table 13.2: Energy cycle 

For each cycle the energy lost by the high­temperature environment is T2(S2 − S1) and the energy 
gained by the low­temperature environment is T1(S2 − S1) and so the net energy converted is the difference 
(T2 − T1)(S2 − S1). It would be desirable for a heat engine to convert as much of the heat lost by the 
high­temperature environment as possible to work. The machine here has efficiency 

work out T2 − T1 = (13.19)
high­temperature heat in T2 

This ratio is known as the Carnot efficiency, named after the French physicist Sadi Nicolas Léonard 
Carnot (1796 ­ 1832).1 He was the first to recognize that heat engines could not have perfect efficiency, and 
that the efficiency limit (which was subsequently named after him) applies to all types of reversible heat 
engines. 

The operations described above are reversible, i.e., the entire cycle can be run backwards, with the result 
that heat is pumped from the low­temperature environment to the one at high temperature. This action 
does not occur naturally, and indeed a similar analysis shows that work must be delivered by the magnetic 
apparatus to the magnetic dipoles for this to happen, so that more heat gets put into the high­temperature 
environment than is lost by the low­temperature environment. Heat engines run in this reverse fashion act 
as refrigerators or heat pumps. 

1For a biography check out http://www­groups.dcs.st­andrews.ac.uk/∼history/Mathematicians/Carnot Sadi.html 

http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Carnot_Sadi.html
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