
Chapter 3 

Compression 

In Chapter 1 we examined the fundamental unit of information, the bit, and its various abstract represen-
tations: the mathematical bit, the classical bit, and the quantum bit.

A single bit is useful if exactly two answers to a question are possible. Examples include the result of a
coin toss (heads or tails), the gender of a person (male or female), the verdict of a jury (guilty or not guilty),
and the truth of an assertion (true or false). Most situations in life are more complicated. In Chapter 2
we considered some of the issues surrounding the representation of complex objects by arrays of bits. The
mapping between the objects to be represented (the symbols) and the array of bits used for this purpose is
known as a code.

In our never-ending quest for improvement, we are led to representations of single bits that are stronger,
smaller, faster, and cheaper. Following this route leads to fundamental limitations imposed by quantum
mechanics. We are also led to codes that are similarly stronger and smaller. In this chapter we will consider
techniques of compression that can be used for generation of particularly efficient representations.

In Chapter 2 we looked at this general sort of a system, in which objects are encoded into bit strings, these
are transported (in space and/or time) to a decoder, which then recreates the original objects. Typically
the same code is used for a succession of objects one after another.

Input

C
od

er� �

C
ha

nn
el

� Output �
(Symbols) (Arrays of Bits) (Arrays of Bits) D

ec
od

er

(Symbols)

Figure 3.1: Generalized communication system

The role of data compression is to convert the string of bits representing a succession of symbols into a
shorter string for more economical transmission, storage, or processing. The result is this system, with both
a compressor and an expander. Ideally, the expander would exactly reverse the action of the compressor so
that the coder and decoder could be unchanged.

Author: Paul Penfield, Jr. 
Version 1.0.2, February 7, 2003. Copyright © 2003 Massachusetts Institute of Technology c

26



27

Input
So

ur
ce

E
nc

od
er

�
(Symbols)

Output� � � � �
(Arrays (Arrays (Arrays (Arrays (Symbols)
of Bits) of Bits) of Bits) of Bits)

Figure 3.2: More elaborate communication system
C

om
pr

es
so

r

This approach might seem surprising. Is there any reason to believe that the same information could be
contained in a smaller number of bits? There are two types of compression, relying on different approaches:

• Lossless or reversible compression, which can only be done if the original code was inefficient, for
example by not taking into account the fact that some symbols are more frequently used than others,
or by having unused bit patterns.

C
ha

nn
el

• Lossy or irreversible compression, in which the original symbol, or its coded representation, cannot
be reconstructed exactly, but instead the expander produces an approximation that is ”good enough”

[This version of Chapter 3 is a draft that is not yet complete. Two detail sections have been written so far
There is more to come.]

E
xp

an
de

r

So
ur

ce
D

ec
od

er

.



303.2 Detail: LZW Compression

3.2 Detail: LZW Compression

There are several compression algorithms that use a “dictionary,” or code book, known to the coder and
the decoder, which is generated during the coding and decoding processes. Many of these build on work
reported in 1967 by Abraham Lempel and Jacob Ziv, and are known as “Lempel-Ziz” encoders. In essense,
these coders replace repeated occurrences of a string by references to an earlier occurrence. The dictionary
is merely the collection of these earlier occurrences.

One widely used LZ algorithm is the LZW algorithm described by Terry A. Welch.1 This algorithm was
originally designed to minimize the number of bits sent to and from disks, but it has been used in many
contexts, including GIF compression programs for images.

The LZW compression algorithm is “reversible,” meaning that it does not lose any information – the
decoder is able to reconstruct the original message exactly.

LZW Algorithm, Example 1

Encode and decode the text message

itty bitty bit bin

(this peculiar phrase was designed to have repeated strings so that the dictionary forms rapidly).
The initial set of dictionary entries is 8-bit character code with values 0-255, with ASCII as the first 128

characters, including specifically the following which appear in the string

32 space
98 b

105 i
110 n
116 t
121 y

Table 3.1: LZW Example 1 Dictionary

Dictionary entry 256 is reserved for the “clear dictionary” command, and 257 is reserved for “end of
transmission.”

During encoding and decoding, new dictionary entries are created using all phrases present in the text
that are not yet in the dictionary.

Encoding algorithm: Accumulate characters until the string does not match any dictionary entry. Then
define this new string as a new entry, but send the entry corresponding to the string without the last
character, which you use as the first character of the next string to match.

When this procedure is applied to the string in question, the first character is “i” and the string consisting
of just that character is already in the dictionary. So the next character is added, and the accumulated string
is “it” which is not in the dictionary. At this point the string which was in the dictionary, “i”, is sent and
the string “it” is added to the dictionary, at the next available entry, which is 258. The accumulated string
is reset to be just the last character, which was not sent, so it is “t”. The next character is added so the
accumulated string is “tt” which is not in the dictionary. The process repeats.

For a while at the beginning the additional dictionary entries are all two-character strings, and there is a
string transmitted for every new character encountered. However, the first time one of those two-character
strings is repeated, it gets sent (using fewer bits than would be required for two characters) and a new
three-character dictionary entry is defined. In this example it happens with the string “itt” (this message
was designed to make this happen earlier than would be expected with normal text). Later in this example,
one three-character string gets transmitted, and a four-character dictionary entry defined.

1Welch, T.A. ‘A Technique for High Performance Data Compression,” IEEE Computer, vol. 17, no. 6, pp. 8-19, 1984.



313.2 Detail: LZW Compression

Decoding algorithm: Output character strings whose code is transmitted. For each code transmission,
define a new dictionary entry as the previous string plus the first character of the string just received. Note
that the coder and decoder create the dictionary on the fly; the dictionary therefore does not have to be
explicitly transmitted, and the coder deals with the text in a single pass.

Encoding � Transmission � Decoding
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

New New
Input dictionary 9-bit characters dictionary Output

entry transmitted entry
︷ ︸︸ ︷ ︷ ︸︸ ︷ �

��
︷ ︸︸ ︷ ︷ ︸︸ ︷

105 i – – 256 (start) – – –
116 t 258 it 105 i – – i
116 t 259 tt 116 t 258 it t
121 y 260 ty 116 t 259 tt t
32 space 261 y-space 121 y 260 ty y
98 b 262 space-b 32 space 261 y-space space

105 i 263 bi 98 b 262 space-b b
116 t – – – – – – –
116 t 264 itt 258 it 263 bi it
121 y – – – – – – –
32 space 265 ty-space 260 ty 264 itt ty
98 b – – – – – –

105 i 266 space-bi 262 space-b 265 ty-space space-b
116 t – – – – – –
32 space 267 it-space 258 it 266 space-bi it
98 b – – – – – –

105 i – – – – – –
110 n 268 space-bin 266 space-bi 267 it-space space-bi

– – – – 110 n 268 space-bin n
– – – – 257 (stop) – – –

��8-bit characters Table 3.2: LZW Example 1 Transmission Summaryinput

Does this work, i.e., is the number of bits needed for transmission reduced? We sent 18 8-bit characters
(144 bits) in 14 9-bit transmissions (126 bits), a savings of 12.5%, even for this very short example. For
more normal text there is not much reduction for strings under 500 bytes. In practice, however, larger text
files often compress by a factor of 2, and drawings by even more.

LZW Algorithm, Example 2

Encode and decode the text message

itty bitty nitty grrritty bit bin

(again, this peculiar phrase was designed to have repeated strings so that the dictionary forms rapidly; it
also has a three-long sequence rrr which illustrates one of the aspects of this algorithm).

The initial set of dictionary entries include the characters in Table 3.3, which are found in the string.
Using the same algorithms as before, we obtain the following transaction:
In this example, 33 8-bit characters (264 bits) were sent in 22 9-bit transmissions (198 bits), a saving of

25% in bits. There was one four-character dictionary entry transmitted.



323.2 Detail: LZW Compression

New
dictionary

entry

32 space
98 b 

103 g 
105 i 
256 clear dictionary 

110 n
114 r
116 t
121 y
257 end of transmission

Table 3.3: LZW Example 2 Dictionary

�Encoding � Transmission Decoding
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

New
Input dictionary Output

entry
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

105 i – –
116 t 258 it
116 t 259 tt
121 y 260 ty
32 space 261 y-space
98 b 262 space-b

105 i 263 bi
116 t – –
116 t 264 itt
121 y – –
32 space 265 ty-space

110 n 266 space-n
105 i 267 ni
116 t – –
116 t – –
121 y 268 itty
32 space – –

103 g 269 y-space-g
114 r 270 gr
114 r 271 rr
114 r – –
105 i 272 rri
116 t – –
116 t – –
121 y – –
32 space 273 itty-space
98 b – –

105 i 274 space-bi
116 t – –
32 space 275 it-space
98 b – –

105 i – –
110 n 276 space-bin

– – – – 
– – – – 

256 (start) – – –
105 i – – i
116 t 258 it t
116 t 259 tt t
121 y 260 ty y
32 space 261 y-space space
98 b 262 space-b b
– – – – –

258 263 bi it
– – – – –

260 ty 264 itt ty
32 space 265 ty-space space

110 n 266 space-n n
– – – – –
– – – – –

264 itt 267 ni itt
– – – – –

261 y-space 268 itty y-space
103 g 269 y-space-g g
114 r 270 gr r

– – – – –
271 rr 271 rr rr

– – – – –
– – – – –
– – – – –

268 itty 272 rri itty
– – – – –

262 space-b 273 itty-space space-b
– – – – –

258 it 274 space-bi it
– – – – –
– – – – –

274 space-bi 275 it-space space-bi
110 n 276 space-bin n
257 (stop) – – –

Table 3.4: LZW Example 2 Transmission Summary


