UIA: A Global Connectivity Architecture
for Mobile Personal Devices
by
Bryan Alexander Ford

B.Sc. Computer Science
University of Utah, 1998

M.Sc. Computer Science and Engineering
Massachusetts Institute of Technology, 2002

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008

(© 2008 Massachusetts Institute of Technology. All righteresd.

Department of Electrical Engineering and Computer Science
August 29, 2008

Certifled DY
M. Frans Kaashoek

Professor of Computer Science and Engineering
Thesis Supervisor

ACCEPIE DY . .
Terry P. Orlando
Chair, Department Committee on Graduate Students

UIA: A Global Connectivity Architecture
for Mobile Personal Devices

by
Bryan Alexander Ford

Submitted to the Department of Electrical Engineering anch@uter Science
on August 29, 2008, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract

The Internet’s architecture, designed in the days of |as@dionary computers tended by technically
savvy and accountable administrators, fails to meet theademof the emerging ubiquitous com-
puting era. Nontechnical users now routinely own multigdespnal devices, many of them mobile,
and need to share information securely among them usingaiiee, delay-sensitive applications.

Unmanaged Internet Architectui@JlA) is a novel, incrementally deployable network archi-
tecture for modern personal devices, which reconsideeethrchitectural cornerstones: naming,
routing, and transport. UIA augments the Internet’s glotaahe system with personal name sys-
tem enabling users to build personal administrative groupgiyeand intuitively, to establish secure
bindings between his devices and with other users’ devarasto name his devices and his friends
much like using a cell phone’s address book. To connect palsievices reliably, even while mo-
bile, behind NATSs or firewalls, or connected via isolated ad hetworks, UIA gives each device
a persistent, location-independedéntity, and builds aroverlay routing servicatop IP to resolve
and route among these identities. Finally, to support tedaeractive applications built using
concurrent transactions and delay-sensitive media sggdiA introduces a newtructured stream
transport abstraction, which solves the efficiency andaesipeness problems of TCP streams and
the functionality limitations of UDP datagrams.

Preliminary protocol designs and implementations demmatestJIA's features and benefits. A
personal naming prototype supports easy and portable gnamagement, allowing use of personal
names alongside global names in unmodified Internet apiglitsa A prototype overlay router
leverages the naming layer’s social network to provideiefficad hoc connectivity in restricted but
important common-case scenarios. Simulations of morergenauting protocols—one inspired
by distributed hash tables, one based on recent compaatgdabeory—explore promising gener-
alizations to UIA's overlay routing. A library-based protpe of UIA's structured stream transport
enables incremental deployment in either OS infrastrecturapplications, and demonstrates the
responsiveness benefits of the new transport abstractiodyviamic prioritization of interactive
web downloads. Finally, an exposition and experimentaluaeon of NAT traversal techniques
provides insight into routing optimizations useful in UlAdielsewhere.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

Acknowledgments

The design and implementation of UIA was a collaborativerefihwolving essential contributions
from many people.

My MIT colleagues Jacob Strauss, Chris Lesniewski-Laad, 3@an Rhea were responsible
for substantial portions of UIA's design and implementatias detailed below. | can't possibly
thank my advisor Frans Kaashoek enough for his constantagoé and invaluable intellectual
insight, and for giving me just enough rope to satisfy my arbs to explore a huge, many-faceted
problem space without (quite) managing to hang myself. d alant to thank the other members
of my thesis committee, Robert Morris and Hari Balakrishrfan additional guidance and many
stimulating technical discussions.

The UIA project greatly benefitted from a close collabonatrath MyNet [128], a sister project
at Nokia Research Center Cambridge (NRCC). | particulaishvio thank the MyNet team for
believing in UIA enough to take our early, barely-functibonade and dare to try building something
real with it.

The design of UIA's personal naming system, described inp@he2, emerged from extensive
brainstorming among the whole UIA team, and much of its fgygte implementation is by Jacob
Strauss. | would also like to thank Martin Abadi and Tom Rufger at Microsoft Research, and
the MyNet Team at NRCC, for extremely helpful feedback omyednafts of our OSDI paper on the
naming system [85].

The UIA routing schemes presented in Chapter 3 are simitarlgborative products. Much of
the Social Routing design and implementation was by Seaa.Rhlee Compact Routing simula-
tion framework was written mostly by Chris Lesniewski-Laand its evaluation largely by Chris
Lesniewski-Laas and Jacob Strauss.

Chapter 4 on Structured Stream Transport (SST) benefiteatlgrfrom the feedback of Craig
Partridge and the anonymous reviewers of my SIGCOMM papfr [8

Chapter 5 on NAT traversal was joint work with Pyda Srisurasti Dan Kegel. Pyda Srisuresh
particularly deserves my gratitude for continuing to push work towards standardization in the
IETF BEHAVE working group [16, 102, 229], long after my attiem had drifted to other research
topics. | wish to thank Dave Andersen for his crucial supporgathering the results presented
in Section 7.6. | also wish to thank Henrik Nordstrom, ClaistHuitema, Justin Uberti, Mema
Roussopoulos, and the anonymous reviewers of the USENIXrd8p]. Finally, 1 wish to thank
the many volunteers who took the time to run NAT Check on thygsitems and submit the results.

I would like to thank my wife, Anna Lachowska, and my pareiitepert and Karen Ford, for
their unending support and encouragement during these.y¢avish to thank the entire PDOS
group for creating a lively, supportive, and intellectyaditimulating environment. And special
thanks to my undergraduate research advisor, Jay Lepm@astafting me on my current path, and
for continuing to help and encourage me long after I'd bec@omebody Else’s Problem—Jay,
you'll always have my best wishes and deepest gratitude.

5

Funding Attribution

This research was sponsored by the T-Party Project, a jeggarch program between MIT and
Quanta Computer Inc., Taiwan, and by the National Sciencadration under Cooperative Agree-
ment ANI-0225660 (Project IRIS) and FIND project 0627065€UInformation Architecture).

Prior Publication

Portions of this thesis were previously described in thiefghg publications:

Bryan Ford,Scalable Internet Routing on Topology-Independent Nodetities MIT Labo-
ratory for Computer Science Technical Report MIT-LCS-TE690ctober 2003 [80].

Bryan Ford,Unmanaged Internet Protocol: Taming the Edge Network Manaant Cri-
sis 2nd Workshop on Hot Topics in Networks (HotNets-11), Caidge, MA, November
2003 [81].

Bryan Ford Peer-to-Peer Communication Across Network Address Tasms] USENIX An-
nual Technical Conference, Anaheim, CA, April 2005 [83].

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Seaa, Rnans Kaashoek, and Robert
Morris, User-Relative Names for Globally Connected Personal Esyvisth International
Workshop on Peer-to-Peer Systems (IPTPS '06), Santa BarGav, February 2006 [86].

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Seaa, Rinens Kaashoek, and Robert
Morris, Persistent Personal Names for Globally Connected Mobilgides 7th USENIX
Symposium on Operating Systems Design and Implementa@3D('06), Seattle, WA,
November 2006 [85].

Bryan Ford Structured Streams: a New Transport Abstractia@M SIGCOMM '07, Kyoto,
Japan, August 2007 [84].

Contents

1

Introduction 17
1.1 AnEmphasis on Decentralization, 18
1.2 Naming e e e e e 19
121 GlobalNames. 20
122 PersonalNames. 1 2
1.2.3 UIA Personal Names and Personal Groups e e e, 22
1.2.4 Centralized Designs for Personal Groups and PerSamaing 24
1.3 RoUting e e e 42
1.3.1 Eroding Any-to-Any Connectivity 25
1.3.2 Host Mobility and IP Address Instability 26
1.3.3 UIARouting e 26
1.3.4 Centralized Alternatives to Overlay Routing 29
1.4 Transport e e e 30
1.4.1 The Demands of Modern Interactive Applications 30
1.4.2 Structured StreamsinUIA e 31
15 NATTraversal 32
1.6 Prototyping UIA e 34
1.6.1 System-level Naming and Routing Prototype 34
1.6.2 Routing Simulation Frameworks, 35
1.6.3 Library-based Structured Stream Transport Progotyp 35
1.7 Contributions 36
1.7 Naming e e e e e e 36
1.7.2 Routing e 37
1.7.3 Transport e e e e 37
1.8 Limitations 38
1.9 ThesisOrganization e 38
Naming 41
2.1 Motivation and Purpose of UIANaming 41
2.1.1 Global Names and Their Limitations 41

2.1.2 An Alternative Model: “Virtual USB Cables” 42
2.1.3 UIA Personal Names and Personal Groups 42
2.1.4 Cryptographically Secure Naming 43
2.1.5 Social Networking via PersonalNames 44
216 GoalsofUIANaming
2.2 UIA Naming from the User’s Perspective 45
2.2.1 Introducing Devices 45
2.2.2 Device Names and Personal Groups 46
2.2.3 User Names and Social Networking 48
2.2.4 Transitive Mergingand GosSip s e 48
225 ResolvingConflicts. 48
2.26 Shared Groups o i i i e e
227 GroupOwnership. e 9
2.2.8 Security and Ownership Revocation b1
2.2.9 OwnershipDisputes e 51
2.3 Personal Naming SystemDesign e 52
2.3.1 Basic Architecture 52
2.3.2 DevicelogStructure 54
2.3.3 Namespace Operations i i i it 56
2.3.4 Group State Evaluation 0. 59
2.3.5 Naming State Gossip and Replication 62
2.3.6 Remote Name Resolution 63
3 Routing 65
3.1 Motivation and Goals of UIARouting «.u.... 65
3.2 SocialRouting 66
3.2.1 Overlay Construction and Maintenance 67
3.2.2 Token-limited Flooding. 68
3.2.3 Source-Routed Forwardingo . 69
3.3 ldentity HashRouting 69
3.3.1 Routing ProtocolDesign 71
3.3.2 PacketForwarding 79
3.4 CompactRouting e 84
3.4.1 Introduction to CompactRouting 85
3.4.2 Routing ProtocolDesign 86
3.4.3 Landmark Selection 88
3.4.4 Routing Tree Construction ua. 90
3.45 Global Addresses 92
3.46 RouteSelection 93

44

49

4 Transport

4.1 Motivationand Goals e e e

4.1.1
4.1.2
4.1.3

The Mismatch of Traditional Transports with Modernpiigations
A Transport Abstraction for Personal Device Applmas
Design and Implementation Features

4.2 Structured Streams e e e e e e e

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

Data Transfer Semantics
Creating and Accepting Substreams

Inter-Stream Semantics L

Datagrams as Ephemeral Substreams

Other Application-Visible Features

4.3 Using Structured Streams e

4.3.1
4.3.2
4.3.3
4.3.4

Application Protocol Modularity,
Transactional Protocols

Out-of-Band Signaling

4.4 ProtocolDesign e e e

4.4.1
4.4.2
4.4.3
4.4.4

Packets, Channels, and Streams

Channel Protocol
Stream Protocol
The Negotiation Protocol

5 NAT Traversal
5.1 Background and NAT Traversal Concepts« 0w ...

511
51.2
5.1.3

5.2 UDP Hole Punching

521
5.2.2
523
524
5.2.5
5.2.6

Terminology e
Relaying e
Connection Reversal

The Rendezvous Server i
Establishing Peer-to-Peer Sessions
Peers Behinda Common NAT
Peers behind differentnATs
Peers Behind Multiple Levelsof NAT
UDPIdleTimeouts i

53 TCPHolePunching

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

Socketsand TCP PortReuse
Opening Peer-to-Peer TCP Streams
Behavior Observed by the Application
Simultaneous TCPOpen
Sequential Hole Punching

5.4 Properties of P2P-Friendly NATS o imw .

5.4.1 Consistent Endpoint Translation 137
5.4.2 Handling Unsolicited TCP Connections 138
5.4.3 Leaving PayloadsAlone 138
5.4.4 HairpinTranslation 138
UIA Implementation 141
6.1 Personal Naming Implementation 141
6.1.1 Prototype Status e 141
6.1.2 Supportfor SmallerDevices u.n. 142
6.1.3 Using UIA Names in Legacy Applications 143
6.2 Overlay Routing Implementationc...... 143
6.2.1 SocialRouting 431
6.2.2 ldentity HashRouting 145
6.2.3 CompactRouting 451
6.3 Structured Stream Transport Implementation. 145
Evaluation 147
7.1 Experience Using UIA Personal Names oo ... 147
7.1.1 Interaction with Global Names and Legacy Applicagion. 147
7.2 Social Routing Evaluation, 148
7.2.1 Experience with SocialRouting 148
7.2.2 ExperimentalSetup 149
7.2.3 Location SuccessRate 149
7.24 Messages Sento 0 15
7.3 ldentity Hash Routing Evaluation. 151
7.3.1 Performance Metricso 152
7.3.2 TestNetwork Topology 152
7.3.3 Source Routing versus Recursive Tunneling 153
7.3.4 Rooted versus Unrooted Networks 154
7.3.5 Discussionand FutureWork o oo 155
7.4 Compact Routing Evaluation aa... 156
7.4.1 Simulation Framework and Method 156
7.4.2 Stretch 157
7.4.3 RouteCongestion. 158
7.4.4 Reliability. e 159
7.5 Structured Stream Transport Evaluation 160
7.5.1 Experience with Applications 160
7.5.2 Performance Validation. e 161
7.5.3 Scalability over Transaction Size 161

10

7.5.4 Web Traffic Workload 631

7.5.5 Dynamic Prioritization e 164
7.5.6 WireEfficiency e 651
7.5.7 ImplementationSize e e 166
7.6 NAT Traversal Evaluation, 166
76.1 TestMethod 166
76.2 TestResults e 681
7.6.3 Testing Limitations 169
7.6.4 Corroborationof Results 170
T.7 SUMMANY . . . o e e e e e e e e e e e e e e e e 017
Related Work 171
8.1 Network Architectures e 171
8.2 Naming e e 317
8.3 RoOULING 741
8.3.1 SocialRouting 04
8.3.2 Identity HashRouting 175
8.3.3 CompactRouting e 761
8.4 Transport e e e 177
85 NATTraversal e e e e 178
Conclusion 181
9.1 Decentralization e e e 181
9.2 Naming e 218
9.3 RoUuting e e e e e 821
9.4 Transport e e e 183
9.5 NATTraversal e e e e 184
9.6 Possible Barriersto Adoption e 184
9.6.1 Technical Barriers e 184
9.6.2 EconomicBarriers 185
9.6.3 PoliticalBarriers e 186
9.7 Future Work e 187
9.71 Naming e e e e e 187
9.7.2 Routing 189
9.7.3 Transport e 019
9.7.4 OtherFeatures e 911

11

12

List of Figures

1-2
1-3

1-5
1-6

2-1
2-2
2-3
2-4
2-5

2-7

3-1
3-2

3-4
35
3-6
3-7
3-8

3-9
3-10

4-1
4-2

4-4
4-5

Architectural diagram of UIA and how it fits into the Intet architecture 18
The Internet’s traditional global naming hierarchy 20
An example UIA personal group containing four deviceshewith a personal name 23
Global connectivity challenges for the UIA overlay riogtlayer 27
Example structured stream hierarchyinSST 32
Implicit NAT traversal via “hole punching” 33
Bob and Alice introduce their devices 45
Example personal device scenario w e 47
Groupsandownership e 50
Basiclogrecordformat e 54
Specificlogrecordtypes e 55
Membership and ownership evaluation pseudocode 60
Example group successorship scenarios cuc....... 61
Forwarding viavirtual links 72
Pseudocode to build a physical or virtuallink 73
Neighbor tables, buckets, and node IDspace 74
Pseudocode to build apathtoanynode 75
Pseudocode to merge anode intoanetwork 77
Source routing versus recursive tunneling Lo 80
Forwarding by Recursive Tunneling ca..... 81
Path optimization opportunities on different topo&sgiwhenA builds a virtual link
tOFVIaD. e 83
Landmarks in Thorup/Zwick (T scheme 87
Routing tree selection e 88
SST protocol architecture e 106
SST communication abstractions 107
SSTpacketlayout e e 109
Packet acknowledgmentexample ae. .. 112
Stream data transfer packets L e e 115

4-6 Stream control packets e

5-1 Public and private IP addressdomains e
5-2 NAT Traversalby Relaying
5-3 NAT Traversal by ConnectionReversal
5-4 UDP hole punching, peers behindacommon NAT
5-5 UDP hole punching, peers behind different NATs
5-6 UDP hole punching, peers behind multiple levels of NAT
5-7 Sockets versus ports for TCP holepunching

6-1 Structure of UIA prototype implementation

7-1 Locationrequestsuccessrate e e e
7-2 Mean messages sent per locationrequestl
7-3 Network path stretch for source routing versus recarsimneling
7-4 Network path stretch for rooted versus unrooted netsvork
7-5 Maximum stretch relative to shortest-pathroutes
7-6 Average stretch relative to shortest-pathroutes
7-7 Network congestion relative to shortest-pathroutes
7-8 Resiliency to network failures o oo oo

7-9 Transactional use of UDP, TCP, and SST ov&l%« range of transaction sizes. . .

7-10 Web workload comparing single-transaction SST stsegainst four HTTP flavors
over TCP.

7-11 Dynamic request prioritization o oo

7-12 NAT check test method for UDP u.u..

14

142

150
151
154
155
157
158
159
160
162

List of Tables

7.1
7.2
7.3
7.4
7.5

Synthetic topologies used for simulation 157
Skitter and DIMES simulations, with and without optiatibns. 159
Transport layer header overheadcu..... 165
Transport code size (semicoloncount)o 166
User reports of NAT support for UDP and TCP hole punching 168

15

16

Chapter 1

Introduction

The original Internet architecture was designed to conlaegé mainframe computers, which were
tended by trustworthy experts and whose primary commupitatpplications were text-oriented
messaging, remote terminal login, and bulk data transfee Ifternet has fundamentally changed
since then, particularly since its commercialization: anly in scale but in many qualitative re-
spects. Today anyone can own their own computer and cortrtedhie Internet, so the majority of
Internet devices are now owned and managed by end users witmah technical knowledge and
limited accountability for their actions. Many devices atable and move frequently with their
users, such as laptops, personal digital assistants (PRAd)smart cell phones. The application
profile has changed as well: modern users are just as likelgedhe Internet for streaming voice or
video communication, or transaction-oriented web brogysinremote file system access, as for tra-
ditional text-oriented messaging and bulk file transfer.delm users expect their personal devices
to “just work,” providing reliable and responsive perfomea across diverse applications, without
their having to understand protocol details such as IP addeeand DNS records, and without nec-
essarily having a clear understanding of how to protect gedwes from now-rampant viruses and
other malware. But the protocols underlying the Internetiginal mainframe-oriented design are
not up to this task.

This thesis takes a step toward addressing these problemstHigking basic elements of the
Internet architecture around the needs of modern usershamdubiquitous personal devices, to
createUnmanaged Internet Architectuf@I1A), a novel global connectivity architecture designed
to support these personal devices more effectively. “Uragad” refers to the primary goal of
making devices and protocols “just work” reliably and rasgieely in a wide variety of contexts
and for a wide variety of applications, without requiringnfiguration or technical knowledge on
behalf of the user. UIA is intended to augment the traditidnternet architecture, not replace
it, thereby providing a practical and incrementally deplolg approach to addressing some of the
current architecture’s shortcomings.

While many elements of the Internet’s architecture ultehaneed to be reconsidered around
the requirements of personal devices, UIA focuses on thegerrfunctional areas: naming, routing,
and transport. UIA introduces new networking abstracti@amg protocols into each of these major

17

System Management

Personal Group
Manager

Application

\

\

\

Naming Transport
Personal Naming | Global Naming Structured Stream | Stream |Datagram
(UIA) (DNS) (SST) (TCP) (UDP)
Routing
NAT
Location-Independent Overlay Routing Traversal

Location-Dependent Routing (IPv4, IPv6)

Link Layer

Key:

Major Architectural
Function Block

Figure 1-1: Architectural diagram of UIA and how it fits intoet Internet architecture

function blocks, as illustrated in Figure 1-1. After firstrimducing the common theme of decen-
tralization upon which many elements of UIA's design restdysequent sections briefly introduce
UIA's new architectural components in each of these fumeticareas. Later thesis chapters will

explore these functional areas in detalil.

1.1 An Emphasis on Decentralization

A primary objective of UIA and a common theme throughout ésidn is the goal of building fally
decentralizedarchitecture, in which personal devices do not inhererdleho rely on the existence
or accessibility of centralized services in order to comivate and function properly. This focus

on decentralization has three primary motivations.

e Management Autonomy: First, a centralized connectivity architecture forcesitber to reg-
ister with or subscribe to some service (e.g., allocate aadomame and static IP address),
talk to an expert who can set things up for him, or perhaps degioy such a service himself
(e.g., set up a Mobile IP [185] home server), before his adsvigill be able to communicate
with each other properly. UIA's philosophy is that usersidtianot be forcedy the architec-
ture to wade through bureaucratic “red tape” of one kind or anatieéore their own devices
will be able to communicate with each other in natural pegpder fashion. A decentralized
architecture can still allow the user to associate with aa#teruse of centralized services—

18

Component Introduced by UIA
Component in Existing Internet

indeed, for many high-level services such as airline regems, a centralized architecture
is indeed most natural—but a decentralized connectivithigecture makes such registration
optional and not assumed, enabling the user to communicaia@his personal devices even
without having made some or any of them known to central sesvi

Availability: Second, global Internet connectivity is not always avéddimm every location
we may need to use our personal devices, or equally fast xpémsive even when it is avail-
able. UIA's philosophy is that two users sitting next to eadiner on a bus or plane without
Internet access should still be able to communicate and tegither via their devices over
an ad hoc wireless LAN, without their connectivity or namimgime breaking or substan-
tially changing just because they temporarily lack acces®ntral Internet services. Even if
“always-available” wireless Internet services eventuatlach every corner of the planet, an
ability to communicate and operate within a local area ietelently of central services may
still be important whenever global communication is sufiiidly slower or more expensive
than local-area communication. Further, during times @fi€or natural disaster, a whole
geographic region might be temporarily disconnected froerest of the Internet, and it is at
such times that personal device users within such a regeaxmastin need of their devices to
continue to function and communicate, to whatever extettdsretically possible under the
circumstances.

Privacy: Third, a communication system that relies on centralizedices unavoidably
“leaks” information to the operators of those services,clitdan create security and privacy
concerns for both individual and corporate users. Evenla fldcentralized system cannot
necessarily prevent such information leakage entirahgesglobal communication traffic still
has to flow through untrusted intermediaries such as netpwakiders and ISPs, and even
encrypted traffic may be susceptible to traffic analysis. Iy flecentralized design neverthe-
less minimizes the amount of information that needs to bédicitlyp exposed to third parties
merely in order for the communication system to function.

Some parts of UIA's design could be made substantially ssmipy giving up this emphasis on

decentralization and making personal devices rely on akfauthoritative” servers; these potential
simplifications will be pointed out at the appropriate pkce

1.2 Naming

In order to connect to remote devices, services, and userstiog Internet, users first need to be
able tonamethose remote entities in order to identify the desired comination target(s). There
are many possible approaches to naming, many involvingeaffsl between different goals such
as ease of use, name conciseness, portability, and implatioencomplexity. A crucial issue in
any naming system is how names and namespacananaged different approaches to naming
often imply different paradigms for name management. Thertet's traditional naming paradigm

19

Root Naming .
Authority IANA
Top-Level com org edu
Domains VeriSign PIR Educause
.mit.edu .utah.edu
MIT Univ. of Utah

¥ N\

.csail.mit.edu
MIT CSAIL

xi.csail.mit.edu
(my work PC)

Figure 1-2: The Internet’s traditional global naming hretey

is built aroundglobal nameshbut UIA enhances the Internet to support a new and complemen
naming paradigm callegersonal names

1.2.1 Global Names

The Internet’s existing domain name system (DNS) [258] wkew globally unique names based
on a hierarchy of name registration services. The Interrssighed Numbers Authority (IANA)
delegates eadtop-level domairsuch ascom and.edu to a specific organization, each of which
manages the allocation of sub-domains sucimasaki.com or mit.edu according to various
administrative policies. These authorities in turn delegagistration authority for sub-domains to
the organizations that own them, and so on. Figure 1-2 iifitess this traditional global naming
hierarchy.

To name a particular device in this scheme, so that the dednebe accessed remotely from
anywhere on the Internet, the device’s owner mragtsterthe device: i.e., find a unique, not-yet-
allocated name in some domain within this administrativerdrchy, and follow appropriate regis-
tration procedures defined by the owner of that domain. Famgie, to make my work PC globally
reachable via the namad.csail.mit.edu , | had to register the nama with my work or-

20

ganization, CSAIL, which manages the domaisail.mit.edu , and derives its authority to
manage that domain from MIT (the authority fonit.edu), which in turn derives from the top-
level registrar for theedu domain and ultimately from IANA. This naming architecturepglies
that names arglobally unigue meaning that they can in theory be used from any device on the
Internet and will always refer aesolveto the same target, but it also means that these names must
be administratively registereth order to enforce this global unigueness: i.e., CSAlLgistration
process is responsible for ensuring that only one devicebeamamedki.csail.mit.edu at
once. Ultimately, what this means to ordinary Internet sigethat when naming their devices with
DNS, they can use only names that aot already takerfand in these post-Internet-land-rush days
most of the “good” ones are already taken), and users muainofatften purchase) the use of those
names from some registration authority in the DNS hierarchy

Global unigueness of nhames is a valuable property for cetigies of names to have: par-
ticularly names corresponding to global brands or othaetemsarks such aamazon.com . As
companies have realized since early in the “.com boom, rgaaiunique, memorable “online brand
name” such aamazon.com , which people can type into any web browser to reach the cop'ma
web site, is crucial to E-commerce and to “online presenagjeneral. And companies are willing
to pay far more than the nominal registration fees to obtairerhium” names corresponding to
recognizable words or phrases [238].

1.2.2 Personal Names

But when a user wishes to connect remotely not to a globaherdrand, but rather to one of his
own personal devices—or to that of a friend—global unigeerie less important than simplicity
and convenience. For example, a casual tourist may wishltadghotos from his WiFi-enabled
digital camera directly to his home PC or to a family membB¥A, and a business traveller may
need remote access from her laptop to files on her work PC olleagae’s. In this situation, it
is common for the devicaitiating the communication to be owned by or otherwise administra-
tively associated with the user, which means that the timtladevice’s own identity can provide
context for naming the remote device to be accessed. Formaaih Alice has only one work
PC, and she wishes to access it frbler own accounbn her own laptop or home PGt would
be more convenient for her to be able to use a shorter, sinmglere likework-pc instead of
work-pc.alice.csail.mit.edu . Even thoughwork-pc is probably not globally unique
(there are many people in the world who have work PCs that ithay wish to nameavork-pc),
that may be fine iAlice has only one device namabrk-pc and the device initiating the connec-
tion knows that it is Alice who is requesting the connectidfe refer to such a non-globally-unique
name as @ersonal namesince its interpretation context grsonalto the user.

A useful analogy is the address book on a modern cell phoniehvelfiows the phone’s owner
to use short, convenient names liReb andMominstead of cryptic, globally unique phone num-
bers to call people the phone’s owner dials regularly. Iddee might consider such an address
book to be goersonal naming systenThe personal haming system that traditional address books

21

provide are not adequate for personal Internet devicesevenw Users increasingly have many
more Internet-connected devices than they have celluaments or phone numbers, and separately
managing address books on each of those devices quicklyrescoumbersome and impractical.
Current address book synchronization software typicdthee operates between only a specific pair
of personal devices—e.g., betweene smart phone andnelaptop or desktop PC, leaving other
personal devices’ address books unsynchronized—or iatgebetween one or more personal de-
vices and a central server deployed by a device manufaciusarvice provider, in which case this
synchronization and personal naming is unavailable wreméevices are disconnected from the
Internet or from their designated cellular network. To nteetdemands of modern Internet users,
personal devices must not only support convenient pers@raks, but must be able to keep them
synchronized automatically across an arbitrary numbeedgnal devices, and those names must
be usable even in partial connectivity situations: e.g.envBob and Alice are travelling together
in a bus or plane and need to share information between theicat while they have no Internet
access or cellular coverage.

A basic assumption underlying the idea of personal namesaisthe devices through which
the user typically works or accesses the network—i.e. téhminalsresponsible for interpreting
these personal names—are either owned by or somehow effilidth the user, and thus have some
personal user contexh which to interpret these personal names. This assumf#itnin the case
of public-access terminals, such as those found in an aiopdnternet café: since a public terminal
has no prior affiliation with the user, it typically has no text in which to resolve personal names,
so only global names are directly usable at such terminAlsisér could still use a public terminal
to log into a remote machine or account via a global name, eord there use personal names
to reach his other devices or services.) Given the trendeisfopal Internet devices becoming
increasing cheap and readily available [152, 204], theuitnigs availability of WiFi hotspots [1]
and mobile broadband [41] for use with consumer-owned dsyiand the well-known security
risks inherent in the use of public-access terminals [298],dt appears safe to assume that private
devices rather than public terminals will remain the priynaeans by which most users access the
network, satisfying the main requirement for personal reatode useful.

1.2.3 UIA Personal Names and Personal Groups

The Unmanaged Internet Architecture is not designed t@aoepDNS, the Internet’s existing global
naming system, but rather to augment it with a personal ngsystem that can work alongside
DNS. With UIA, the user can still use global names l&mazon.com , but can also use personal
names likdaptop orpda.alice (meaning “Alice’s PDA").
A key technical challenge in create such a personal namerayistdefining the context @cope

in which these personal names are to be resolved: this daitexld be larger than a single device,
so that the user does not have to administer one address twoesdh device he owns or operates,
but it should be small enough that the user does not have toyvatwout his hames conflicting
with those assigned by other users. That is, the personahgatontext needs to correspond to

22

Bob's Personal Group

“Laptop”
“Camera”
“Home-PC”
“Work-PC”

“Home-PC”
“Work-PC”

Figure 1-3: An example UIA personal group containing fowides, each with a personal name

the user’s personadministrative domainthe complete set of personal devices (or accounts on
shared devices or services) that the user manages. Foutipisse, UIA introduces the concept of
personal groupswhich delineate a symmetric group of devices or accountghich to scope the
user’s naming activities. Figure 1-3 illustrates a persgnaup containing four devices, which may
be scattered across the Internet, each having its own @@nsame that may be used from any other
device in the group.

It is crucial for personal groups to be both secure and easgttap and manage. Since we
expect users may wish to share sensitive personal infasmatinong their devices via UIA personal
names, it is important that attackers not be able to “spoafser’s device, causing the user to log
in to or leak information to the wrong device. Similarly, atagker must not be able to add devices
to a user’s personal group or modify the name bindings in tbagwithout the user’s permission,
and if the user retires, sells, or loses a personal devieajgar must be able to revoke that device’s
membership in the group so that its new owner does not obtaiate information about or access
to the user’s personal group. But the user needs an easy wsst tgo and manage his personal
group while satisfying all of these security requirements.

For this purpose UIA builds on the idea dévice introductiorj65, 233]. Users build their per-
sonal groups byntroducingthem, typically “in person” over a local-area network; thedduction
process includes a simple random phrase comparison pnectid allows the devices to exchange
cryptographic keys securely while ensuring that the deviieeolved in the procedure are in fact the
ones the user(s) believe to be involved. One the user haxlided more than one device into a
group, UIA uses optimistic replication [106, 134, 245] teekethe user’'s personal namespace syn-
chronized among all the devices in the group. UIA personaligs can name not only devices but
other personal groups: thus, if Bob’s personal group hasmeemdice referring to Alice’s per-
sonal group, and Alice’s personal group includes a deviceatipda , then Bob can refer to Alice’s
PDA aspda.alice

Group membership revocation presents a particular cliggdlenUIA, because there may not be

23

a clear central point of control, such as a “master devicedroonline service, which can always
uniquely determine the set of members of a group at a paati@dint in time. If one or more of
Alice’s personal devices are stolen, for example, then gleglsto revoke the lost devices’ mem-
bership in her group so that the thief will not be able to uses¢hdevices to authenticate as her
or remotely access her personal information, and so thasBwaimealice will henceforth refer
only to Alice’s remaining devices and not to the stolen ori&st whatever revocation mechanism
Alice may invoke on her remaining devices, the thief coulsbahvoke that mechanism on the
stolen devices (assuming the thief breaks whatever logat/laccount security those devices may
provide), in order to try to steal the identity of Alice’s gno and make Bob’s namadice refer

to the thief’s stolen devices instead of Alice’s remainimg®. Although a variety of approaches to
this revocation and identity management problem are plasshe prototype UIA design explores a
highly decentralized approach in which all personal des/ibea group are considered “equals” and
irreconcilable “revocation dispute” must in the worst casaesolved by manual re-introduction.

1.2.4 Centralized Designs for Personal Groups and PersonBllaming

UIA's personal group management mechanism could be sul@basimplified by de-emphasizing
the goal of full decentralization and making devices relimma central service of some kind. Per-
sonal devices could for example connect to a user’s accaulRfioebook [76] or another Web-based
social networking service, and rely on that service to defireeuser’s identity and his namespace
of personal devices and other users. The client-side sadtieasuch a mechanism would probably
be substantially simpler than UIA's because it could alwayg on the central Facebook servers to
maintain the “authoritative” state about the user’s idgraind personal names in one central loca-
tion. The issues of conflicting namespace changes and timoaisputes would disappear since
there would be only one “master” state repository.

As pointed out already in Section 1.1, however, such a degard require the user to register
with Facebook before his devices can communicate with edtoér @t all, it would render the
personal naming system inoperative whenever the centcaldféak service is inaccessible, and it
would create security and privacy concerns by forcing usedisclose complete information about
their personal administrative domains to Facebook andrangtse with (legitimate or otherwise)
access to Facebook’s servers. And replacing the risk otegian disputes in UIA's decentralized
design, the centralized design would create the dangeeafgbr's Facebook account being hacked
and the user’s entire personal administrative domain beffegtively stolen all at once, leaving
the user powerless to recover or even safely disable higitiemtil he can successfully navigate
Facebook’s customer support system and somehow “provefghigul ownership of the account.

1.3 Routing

The Internet’s original routing architecture was desigasalind the assumption that each Internet
host would be given a uniqu® addresswithin a single global address space [92, 121, 201], and

24

that every host would be able to communicate with every ota@umber of evolutionary pressures
have since compromised these assumptions, however.

1.3.1 Eroding Any-to-Any Connectivity

Since all Internet hosts are no longer run by trustworthyafdeast accountable) system adminis-
trators, and security systems built into end hosts are &etlypiinadequate, users and organizations
have pervasively deployed firewalls [49,89,109,172] tdgubprivate networks from unwanted traf-
fic originating from external sources. While specific firevpallicies vary widely, the most common
default policy which typically applies to all traffic in the absence of dpglion-specific rules, is to
deny “unsolicited” incoming connections originating frahe external side of the firewall, while al-
lowing outgoing connections originating from within theévate network. While this default policy
has the benefit of protecting the internal network from a wialéety of remote packet-level attacks
while allowing typical client/server applications to opgx normally—at least when the client is on
the private network and the server is on the public netwotkpravents users from remotely access-
ing even their own devices (e.g., a work PC) located behit aLfirewall, without making special
administrative provisions.

Worse, the gradual depletion of the 32-bit address spadevdf[[121], coupled with the admin-
istrative challenges and costs of allocating and manadiragbnets within the global address space,
have led to pervasive deployment of network address tramsIéNATS) [70, 113, 228, 230], which
create private IP address spaces [111,198] for corpordterne networks, within which hosts may
be assigned IP addresses independently of the Interndfisidt hierarchical of IP address alloca-
tion scheme [92,199, 201]. NATs typically multiplex manyvate IP addresses onto one or a small
number of public IP addresses, using the IP addresses anfUD®Rport numbers of individual
sessions to determine how to translate the addressesfin flafving in both directions across the
NAT. Whereas the “deny unsolicited incoming connectiongé ifor firewalls is an administrative
choice (albeit a particularly common one), for NATs thiserig technically essentialit is a side-
effect of the fact that the NAT simply does not know to whaemtl host it should route incoming
packets unlesslasindingfor the flow was previously established by earlier packetsifig from the
appropriate internal host to the external network.

IP version 6 [62] may eventually eliminate one motivation AT deployment—namely IP
address space depletion—nbut it does not eliminate othentives such as the administrative con-
venience of managing private IP address spaces indepgndéuopstream Internet providers, and
in the near term it even creates the additional incentive@figding convenient interoperability be-
tween IPv4 and IPv6 address domains [107, 251]. And firewdllsemain commonplace in the
IPv6 world even if NATs eventually are not.

25

1.3.2 Host Mobility and IP Address Instability

Independently of firewalls and NATS, the fact that an increagpercentage of Internet-attached
hosts are smallmobile devices such as laptops and PDAs creates another commliqait ad-
dressed by the Internet’s original design: Internet raupnotocols depend on the structure of IP
addresses [201] for efficient routing [92], which means tRatddresses must be assigned according
to the topological network location at which the device imettied at a given time. Unfortunately
this means that whenever the device moves, its addresseatiaiig DNS record associates a host
name with a particular IP address, that host name will nodomgrk if the host moves to a different
network attachment point and changes its address.

Further, IP address autoconfiguration mechanisms such manily Host Configuration Proto-
col (DHCP) [5,68], intended to simplify the administratiohlP address spaces, make IP addresses
even less stable, in that a host may change IP addresses/hgreirtue of being turned off or
disconnected from the network for some time period everhif#in't physically moved. Since trans-
port and application protocols typically rely on IP addessto define end-to-end communication
endpoints, not only does IP address instability complicktéice naming, but already-established
transport connections and application sessions gendadllyhenever a host's IP address changes
for any reason.

Various partial solutions to these problems have been dpgdl Dynamic DNS [258] enables
a host to change its name record whenever it changes IP addrdmit existing transport sessions
still break at this point, and the host generally remaingaahnable whenever it is behind a firewall
or NAT. Mobile IP [185] gives each mobile host a static “hontl@"address that can tunnel traffic to
the host’s actual, dynamic location: this solution candrag firewalls and NATs, and can preserve
transport sessions across location changes. Mobile IBaph has several downsides, however:
setting up the host’s “home” IP address and the tunnelingcéetion requires considerable manual
setup, permanently stable IP addresses to act as these™lawmatons are increasingly scarce and
costly, the tunneling indirection adds communicationrdateto all traffic and increases load on the
host's home network whenever the device is roaming, anddkei$iunreachable from anywhere if
its home network or tunneling server become unavailablez Hbst Identity Protocol (HIP) [165]
and shim6 [220] address mobility by introducing a layer lewthe network and transport layers
that translates between the network layer's hierarclyicgtiuctured, location-dependelatcators
and flat, location-independehbst identitiesbut neither HIP or shim6 have defined general mech-
anisms to resolve and route on these location-independentities.

1.3.3 UIA Routing

The Unmanaged Internet Architecture providesoamrlay routing layerthat operates on top of

the Internet's existing routing layer to provide robust ipieepeer connectivity between personal
devices even when those devices are mobile and/or behimghfiscor NATSs, as illustrated in Fig-

ure 1-4. UIA's routing layer generalizes HIP’s notion of débon-independeniost identitiesinto

26

| «—— Mobile Hosts

Wireless WAN

F1rewal
__ Gatewa
i\@ ----------------- !y
" AdHoc

Wireless LAN Wired
Internet

>
Ii

TZE“ , JI (8 <« Private IPv4
, Networks

«H

Ad Hoc Wireless LAN

temporarily disconnected)

Figure 1-4: Global connectivity challenges for the UIA dagrrouting layer

a notion of location-independeendpoint identitiegEIDs) that can refer not only to hosts but to
individual users or user accounts on a particular host, sb eser of a shared host can have a sep-
arate EID with independent application endpoint and sermi@mespaces. The UIA routing layer
furthermore includes a self-organizing distributed pcotallowing cooperating hosts to search for
and connect with arbitrary EIDs on demand, even when thett&ip is on a mobile and/or NATted
host.

There are many possible approaches to designing a specifinggrotocol to serve as UIAs
overlay routing layer, and the best approach is not yet dieee the design space is large and in-
volves a wide variety of pragmatic constraints and tradedfi/e therefore explore three different
approaches to UIA routing: a simple but easily deployedinguprotocol optimized for the “com-
mon case” of communication within a social network; and twaregeneral routing schemes, based
on distributed hash tables and compact routing theoryemisely.

Social Routing

UIA's social routing protocol leverages the user’s social network, as definechéyUiA naming
layer, to optimize for the common case in which the user conioatles most frequently with
friends and colleagues. Each UIA host tracks and regulangrounicates with some number of
other hosts in order to maintain the overlay routing strgtand prioritizes tracked hosts based on

27

social proximity orfriendship distanceso that peer-to-peer connections to primary communigatio
partners will succeed as quickly and reliably as possibkevekaging the user’s social network in

this way also takes advantage of the implicit trust and itieerstructure provided by the social net-

work: users are more likely to want to permit their hosts tweas rendezvous points or forwarding

intermediaries for their trusted friends than for randorarggers.

In the basic, currently deployed version of the UIA routimgtpcol, a host finds a given target
EID by token-limited flooding The search initiator first allocates some numbetoéensto the
search, which constrains the total amount of network badithwin terms of number of messages)
that can be consumed by the search, and divides these tokeasang the immediate friends
(social neighbors) it can contact. The initiator forwardsearch request to each of these friends
with an indicator of the appropriate token count; each oféhfiends responds directly if has
information about the current location of the target Ellhestvise it further subdivides the tokens
it received amongs friends and re-broadcasts the request to those friendsaad. The original
initiator uses a small token count for the first iteration o search, but increases the token count
for subsequent search attempts if earlier attempts failisThuccessful searches for EIDs close to
the initiator in the social graph tend to complete very glyicnd inexpensively, while searches for
EIDs farther away are more expensive but still have a chahceropleting.

Identity Hash Routing

A second overlay routing scheme for Ulfdentity hash routingbuilds on distributed hash table
(DHT) concepts [147,149,157,196,211,236,273]. Each mséds its pseudorandom EID to deter-
mine its logical position within a distributed structuradaregisters itself with other nodes having
high identifier affinitywith its own EID (i.e., some number of bits of common identifieefix), so
that searches for a given EID can be guaranteed to succeecdomegt, fully-functioningn-node
network after contacting at moét(log n) identifier lookup stages.

While classic DHTs only provide a scalabi@mkupservice and assume the underlying network
provides full any-to-any connectivity, UIA's scalable tmg protocol makes the more pragmatic
assumption that some pairs of nodes can communicate gingatllP routing and others cannot,
or require NAT traversal techniques [30, 83, 100, 101] imva an intermediary rendezvous node
in order to do so. To handle such asymmetries in connectidtp's scalable routing protocol
allows DHT routing table entries to contain not just “difepbinters (i.e., IP addresses) but also
indirect pointers representing either “flat” source routewidual links that build hierarchically on
combinations of other routing table entries.

Compact Routing

The third overlay routing scheme explored here is based aanteéheoretical results in the area of
compact routing2, 15, 56, 247]: schemes that use routing tables provatidiirsmar in the number

of nodes, while provably maintaining a bound stretch or the inefficiency of chosen paths with
respect to a nhon-compact shortest-path scheme. Compdig@achemes present a promising

28

basis for UIA routing because of their formal scalabilitydastretch properties, and because they
work between arbitrary nodes on arbitrary topologies. Unfmately, these formal schemes have
so far been developed only as centralizddorithmsto compute a set of routing tables from a
network graph description; converting these algorithns practical distributegbrotocolsremains

to be done. Also, compactness and stretch—the propertiggnoary focus in the compact routing
literature—are only two of the many properties of a routinbgesne that are important in a practical
system; other properties, such as congestion caused bgutes selection mechanism, robustness
to failure, and the messaging cost of maintaining routifidets, have been largely ignored so far.

We therefore explore techniques and challenges for cangeone particular compact routing
scheme—Thorup and Zwick’s variablelevel scheme [247]—into an overlay routing protocol for
UIA. One major issue with this Thorup/Zwick scheme is a terayeto “focus” global traffic through
a few central, randomly chosen “landmark” nodes, which a&ate congestion bottlenecks: we
explore ways to modify the routing scheme to mitigate thigléoeck effect while preserving the
scheme’s formal compactness and stretch bounds. To betersiand the scheme’s viability for
use in large-scale UIA overlay networks, we also examinastheme’s behavior in terms of stretch,
congestion, and robustness to failure, on a variety of gitedl network topologies up to 192,000
nodes in size.

1.3.4 Centralized Alternatives to Overlay Routing

As with the naming layer, reliance on centralized servieggasents a seductively simple but po-
tentially problematic alternative design for overlay lingt Personal devices could simply connect
to a cluster of well-known rendezvous and forwarding sermyerated by the device or software
vendor, keeping a communication session open with at leastsach server to receive notifica-
tions of incoming connection attempts even when the degibelind a restrictive NAT or firewall,
and forward traffic through the central server wheneverctljpeer-to-peer connection attempts fail.
Indeed, such a centralized routing/rendezvous servigeder-to-peer communication between per-
sonal devices is the basis of Apple’s MobileMe [13] and Msoft's Live Mesh [161] services.

While the reliance of centralized services such as thesddwndeed simplify the client-side
part of UIAs routing layer, doing so would bring the usualeadant issues pointed out in Sec-
tion 1.1. First, the user would have to register with the @drdervice before his devices could
communicate at all. Second, devices would be unable to conuaie with each other when dis-
connected from the Internet, or while part of a temporarigcdnnected fragment of the Internet
such as a disaster zone. Third, since all the user’s perdemales would have to maintain constant
connectivity with the central service in order to maintalob@l reachability, the central service
would always have to “know” the user’s location (or at leastiwork attachment point) at any given
moment, which may be a significant privacy concern for higsuise

29

1.4 Transport

Once devices have been given usable names and a mechanisifakla to find and establish con-
tact with named hosts, applications still need a convemigtto exchange both control information
and application data between those hosts, in some fashfmo@ate to the specific application.
In the early days of the Internet, the most common applinatiwere remote text-oriented terminal
access via protocols like Telnet [188], Rlogin [129], anémwually the Secure Shell [266—-269];
text-oriented messaging systems such as E-mail [58,186203] and USENET [77,115,177]; and
bulk data transfer protocols such as FTP [114,189]. For wfdbiese applications, the reliable byte
stream abstraction provided by TCP [6, 244] generally pilayeite suitable, and for applications
like DNS name resolution [163] that needed a lighter-wetggnisport, UDP [187] was available as
an alternative.

1.4.1 The Demands of Modern Interactive Applications

The evolution of modern personal Internet devices has glasany new demands on applica-
tion protocols, however, with which existing Internet tspnrt protocols have not adequately kept
up. In particular, modern applications are frequently mautre delay-sensitive than traditional
text-oriented or bulk transfer applications. In multimedtreaming applications [216, 217], unex-
pected delay translates to user-visible glitches, qudigradation, or temporary interruptions in
audio/video service. Interactive applications such as lrelwsing and remote file system access
rely on transaction-oriented protocols such as HTTP [78] MRS [219], in which the delay of a
transaction’s completion is often easily perceptible ® tiser as an annoying “freeze” in the sys-
tem'’s normal operation. Wireless broadband technologiefareasingly used for Internet connec-
tivity and not just voice communication [41], but the higkelacy and/or lossiness of these networks
exacerbate the challenges faced by modern delay-sergpleations [7,17,21,23,181,265]. Fur-
thermore, modern interactive applications frequentlydneeperform many independent transac-
tions concurrently, such as downloading the many indiMighigtures and other embedded objects
on a web page; the common practice of multiplexing these rtrangactions onto one TCP stream,
as done in HTTP [78], IMAP [58], or iSCSI [214], for exampleuses a delay in processing one
transaction to block all the other transactions queued hnbet in the stream [51, 215, 264], un-
necessarily turning a minor freeze in one transaction immeh more obvious and annoying freeze
affecting many transactions or the whole application.

TCP has seen numerous extensions over the years to impsgeerformance in various ways,
such as large windows and timestamps [123], rapid conmecdnewal for transactions [36], se-
lective acknowledgment [155], and duplicate acknowledgniig3, 79], but these partial solutions
do not solve the fundamental limitation of TCP’s byte-stnegbstraction: that it unnecessarily im-
poses a total order on all communication even when indivithaasactions or “application-layer
frames” [51] are naturally order-independent.

Other transports, such as UDP [187], RDP [179,257], SCT®|[2BDP-Lite [143], and DCCP [137],

30

forsake the convenience, generality, and conceptual mitypbf TCP’s stream abstraction for a
transport abstraction based on limited-sitegagrams All of these transports force the application
into building atop a different and more restrictive abdiag in which the application is respon-
sible for breaking up all its logical transactions or apglion-layer frames into reasonably small
(datagram-size) units, and (in the case of UDP-Lite and DXdGPhandling any necessary reli-
ability provisions. While SCTP can handle multiple coneutr “streams,” these are streams of
datagramgather than streams of bytes, and SCTP uses datagrams tasrits anits for reordering
and traffic scheduling purposes: thus, if an applicationgmaits a datagram that is too large, the
transmission of that datagram will “block” the entire SCTéhoection until its entire content is
completely transmitted and acknowledged, before datagifamm other (perhaps higher-priority)
streams may be sent on the connection.

1.4.2 Structured Streams in UIA

UIA takes a different approach to supporting the moderniegtibns prevalent on today’s personal
devices. Instead of forsaking or drastically changing Bd®/te stream abstraction, UlA&ruc-
tured stream transpor(SST) merely attempts to make classic byte streams eadil\efiiciently
usable at finer (but completely application-defined) granityl Thus, SST enables transaction-
oriented interactive applications like HTTP, IMAP, and NféSreate a brand-new byte stream for
every transactionSimilarly, a media streaming application using SST can@kach media frame
in a separatephemeral streamSince SST preserves TCP’s byte stream semantics, eachsef th
streams provides strict data orderiwithin a transaction or frame, while allowing transactions or
frames to be of any size ranging from a few bytes to long-mpriulk transfers of megabytes or
gigabytes of data. Since each transaction or frame is inaat&pstream, however, different trans-
actions or frames are ordered and delivered fully indepathdef each other: thus, a temporary
delay in one transaction (caused for example by a servergsiocessing delay or a packet loss in
the network) need not prevent other ongoing transactiam frompleting promptly.

To make it easy for applications to create and manage the p@miransaction or per-frame
streams they will require in order to take advantage of thisiral transaction/frame independence,
SST augments the traditional stream API with a “fork” opiemat which allows the application to
create a new stream from an existing stream at any time. A trears created this way is consid-
ered a “child” of the existing stream, and child streams deewlise be forked, giving SST streams
a hereditary structure-hence the name “structured streams.” A child stream is stoadly inde-
pendent from its parent, in that its data transmission igdered with respect to data in its parent
stream, and child streams can even outlive their parerdrage Nevertheless, SST maintains this
hereditary relationship during the process of initiatingesv stream, so that the host accepting the
new stream has a suitable context (namely the parent stieamjich to interpret the meaning and
purpose of the new child stream. Structured streams makergjeiout-of-band” communication
very simple, for example: if two hosts are in the process arigferring data related to one trans-
action, such as a long HTTP download, they can fork the stmmmvhich that long transaction is

31

Web Browser: Top-level Stream

Web Page Download: HTML

Lanama |

| lmama

| Lanmma

Image

Multimedia Plug-in: Control Stream

Video Codec Stream

IIEIIEE

Video Frames (Ephemeral Streams)

Audio Codec Stream

JDEDNENENE

Audio Frames (Ephemeral Streams)

Figure 1-5: Example structured stream hierarchy in SST

occurring in order to communicate out-of-band messagesimglto that transaction, such as status
updates, priority changes, or graceful cancellations.urfeid.-5 illustrates an example structured
stream hierarchy that an application such as a web browsght rtieate.

The SST protocol is itself broken into two layersclaannel layerthat provides transport ser-
vices that are shareable among many application strearis,asusequencing, acknowledgments,
congestion control, authentication, and encryption; astream layerthat implements the struc-
tured stream abstraction itself atop the channel layerdcas. The channel layer's sequencing and
acknowledgment services enable the the stream layer ttecad destroy streams with very little
per-stream state or on-the-wire overhead, avoiding TCR&B handshake delay on stream cre-
ation and its four-minute TIME-WAIT state retention periafer stream close, for example. SST's
stream protocol also subsumes the functionality of datagvdented transports such as UDP [187],
RDP [179,180], and DCCP [137,138] by providing applicasitime ability to send smadiphemeral
streamsefficiently with optional “fire-and-forget” (unreliable)etivery semantics.

1.5 NAT Traversal

Personal mobile devices are often be located behind cdgorahome NATs and firewalls, and
although the UIA overlay routing layer inherently suppartsnmunication between such devices

32

Rendezvous Server

Public Internet

Client B

Figure 1-6: Implicit NAT traversal via “hole punching”

by forwarding traffic through some intermediate node on thblip network, this UlA-level for-
warding has costs in terms of both network delay and load esetintermediate nodes. The costs
of UlA-level forwarding can sometimes be avoided throdRT traversaltechniques, in which an
intermediate node helps to establish a direct IP-layer patveen two nodes that may both be lo-
cated behind NATs. Since NAT traversal is useful both as dimigation within the UIA overlay
routing layer, and to standalone non-UlA-based Internptiegitions, we explore the design space,
behavior, and reliability of NAT traversal independentiyagoarticular routing protocol.

NAT traversal can be implemented using eitkgplicit or implicit communication with NATs
and firewalls on the path. Protocols supporting explicit NAdversal, such as UPnP [255] and
NAT-PMP [48], provide the greatest flexibility and contrblt are supported only on some NATs
and generally do not address increasingly-common scenami@lving multiple levels of NAT.
We therefore focus on implicit NAT traversal techniquesparticular a technique known &®le
punching With hole punching, illustrated in Figure 1-6, two “cliérdevices both behind NATs
or firewalls can collaborate using a pubtiendezvous servarn the Internet to open (“punch”) a
pair of forwarding sessions (“holes”) by sending outgoiraffic through their respective NATs, to
form an efficient peer-to-peer data path that thereaftarires no further traffic forwarding or other
assistance from the rendezvous server.

Hole punching for UDP-based applications has been infdynkalown and in use for a while,
but hole punching for TCP connections is more challenging lass well-understood, and scant
prior analysis or experimental research has been done ogetherality and robustness of hole

33

punching in the context of either transport. This thesierafits to address this knowledge gap by
laying out hole punching techniques that are robust andesitias long as NATs in the path satisfy
certain common and generally reasonable requirements¢@grang and identifying solutions for
the problem of NAT traversal over multiple levels of NAT, ahy experimentally evaluating the
applicability of these techniques to the NATs commonly fdtim the wild” on the Internet.

1.6 Prototyping UIA

Like any general systems architecture, there are manyhgessays to implement UIA, different
approaches necessarily offering different tradeoffs. @aréicularly important practical tradeoff for
our purposes is driven by the goal of incremental deploymiemtv can we make UIA useful with
as few changes to existing system and application compsr@npossible, and should we prefer
changes to the operating system or to applications?

UIA could be implemented as part of the operating systemgkample, which might facili-
tate deployment by making it immediately usable by existingmodified applications running on
that operating system. Such a UIA implementation may bettigtlat particular operating system,
however, limiting its portability to other operating systg, and the requirement of installing priv-
ileged operating system extensions can be a pragmatiaelatéo use by more casual (or merely
unprivileged) users. Alternatively, UIA might be implented as part of specific applications that
wish to use UIA's communication facilities, in which case tdIA implementation need not re-
quire special privileges or any explicit installation semparate from that of the application itself,
making it easily deployable by casual users. Such an impitatien may unfortunately become
application-specific and functionally isolated from siani{or even identical) instances of UIA in
use by other applications running on the same system, howeve

Since there is no clear “best” implementation strategy, xpoge a combination of strategies in
several working prototypes that demonstrate various aisrad UIA both together and separately,
and provide an experimental base on which to develop thetectire further. We use a system-
level approach to implementing the personal naming andakoaiiting protocols, allowing both
new and legacy applications to benefit from UIA's personahing and overlay routing facilities.
We use simulation frameworks to explore identity hash raudnd compact routing. Finally, since
the transport layer is more closely tied to the applicatfmntthe naming and routing layers are, we
use an application link library approach to prototype Ulgtaictured stream transport.

1.6.1 System-level Naming and Routing Prototype

The main UIA prototype is designed to be installed on exjstiperating systems as a new set
of system-level services implementing the UIA architeetim a modular fashion. This modular
prototype includes a basic social routing layer written #+J239], a personal naming layer written
in Python [191], a graphical user interface (GUI) written@r+ using the Qt toolkit [250] for
managing personal groups and personal names, and systemrma provide compatibility with

34

unmodified legacy applications. All components of the prgie are designed to run in user space
for relatively easy portability to multiple platforms: tipeototype currently runs in Linux, Mac OS
X, and FreeBSD. The primary advantage of this system-legsigah is that it allows unmodified
legacy applications to use UIA, resolve UIA personal naraed,communicate within and between
personal groups. The main disadvantage of this systenhdgyeoach is that deployment requires
a somewhat invasive installation of a set of privileged daesn

1.6.2 Routing Simulation Frameworks

To provide a basis for developing and analyzing more geramillay routing protocols for UIA,
we develop a set of simulation frameworks in C++ and Pythorortler to provide insight on the
behavior of a routing scheme when scaled to networks cantalarge numbers of interconnected
UIA nodes, these simulation frameworks are designed tomtgpnulation of a very large number
of nodes on one physical machine: the C++ framework has heearr simulated topologies up to
192,000 nodes, for example. The downside of this streachlamproach to routing simulation is
detail and hence, possibly, fidelity: our simulators do motiate all aspects of the routing protocols
or of realistic network environments, leaving uncertaabyput the extent to which these simulations
may be relied upon to predict real-world behavior. More aatai(but perhaps necessarily smaller-
scale) simulations and real-world deployments of the meregal routing schemes developed here
remain for future work.

1.6.3 Library-based Structured Stream Transport Prototype

The working prototype of UIAs structured stream transp@$ET) is not yet integrated into the
system-level UIA system, but instead operates as a Qt-béwady intended to be linked directly

into applications. This library implementation can be édkinto (and distributed with) applications
for existing unmodified operating systems, making it imraggly and incrementally deployable on
a per-application basis. The library provides an API simitatraditional sockets APIs, but uses
names that do not conflict with the system’s, and does notinee@ny special (e.g., administrator-
level) privileges in order to operate.

Although the SST prototype is not yet integrated into thdqigpe of UIA's naming and routing
layers, they can still be used together, since an SST-bagsidation will appear to the underlying
OS as a UDP application, and an OS with the UIA naming andnmguirototype installed will be
able to forward that “UDP” traffic transparently to the applion within the user’s UIA personal
group and social network using UIA personal names. Thiseémgntation is far from ideal, how-
ever, since the naming and routing prototype’s current 685 over TCP for authentication and
communication security defeats many of the responsivead¢antages that SST could otherwise
provide by forcing a total order on all UIA traffic between &egi pair of hosts. Integrating SST
properly into the main UIA prototype, so that the UIA routitayer uses SST instead of SSL/TCP
for its transparent tunneling and forwarding functionsnains for future work.

35

1.7 Contributions

UIA's primary architectural contribution is eross-layer redesign of basic network abstractions
and protocols around the requirements of modern personal déces Since personal devices
have become mainstream commaodities in the emerging worldhigflitous computing, nontechni-
cal users now frequently own several devices, and theseafeneed to work together to “manage
themselves,” operating efficiently under a wide variety efwork conditions and application re-
guirements without constant help from administrative arities or technical experts. Although
many networking abstractions throughout the entire Irtepnotocol suite will ultimately need to
be reconsidered around these new usability requiremeitstaldes a few steps in this direction by
identifying and developing new naming, routing, and tramspbstractions that are more suited to
modern personal devices than the traditional, “managesirattions the Internet evolved with.

UIA demonstrates that rethinking network abstraction®sarchitectural boundaries in this
way makes it possible to address problems that are impedsitsdolve by tweaking a single layer
alone. UIAs personal names depend on the personal groupaetisn to provide a scope within
which to interpret these names, and depend on the overldingolayer to provide devices with
location-independent identities that can be securelyesntiibated to a named device regardless of
how or where on the network the device is attached. UlAgithisted personal group management
system in turn depends on the overlay routing layer to erdaléees to keep their personal groups
synchronized regardless of how or where they are connetiddls transport layer similarly de-
pends on the overlay routing layer to support peer-to-peemaunication directly between mobile
devices on public or private networks. UlA's overlay rogtilayer in turn can make use of social
network information provided by the personal name and petisgroup management system in
order to increase its efficiency, security, and reliahilapd can leverage advanced NAT traversal
techniques to minimize unnecessary forwarding of traffiodlyh the overlay.

Within each of the main functional areas it addresses, UlKkewadditional technical contribu-
tions as summarized below.

1.7.1 Naming

UlA's primary naming contributions are its personal name parsonal group abstractions:

e Personal groupsprovide users with a simple, intuitive model for administgra collection
of devices they own and operate, based on pairwise deviaadirdtion and automatic syn-
chronization of group management state across devices.

e Personal namegprovide a more concise and convenient alternative to tesdit global DNS
names for purposes of naming devices or other users fronirvihle scope of a user's own
administrative domain.

In addition to the basic networking abstractions above, bildkes the following technical con-
tributions in its design for a prototype protocol suite iemlenting personal groups and personal

36

names:

e UIA introduces aralways-available namespace consistency modethich ensures that a
user’s personal namespace is always accessible and mtdialany device regardless of
the device’s connectivity, but that namespace changeyalprapagate automatically among
devices whenever connectivity permits.

e UIA introduces adecentralized device ownership and revocation algorithmallowing a
user to remove a device from his group, either gracefullyoocdfully, providing assurance
that lost or stolen devices cannot be misused to gain unmtadaccess to the user’s personal

group.

1.7.2 Routing

UIA's primary routing contribution is development and analysis of several approaches to scal-
able overlay routing among devices with self-configuring,dcation-independent identities In
particular, UIA introduces:

e A routing scheme that leverages the user’s social networko provide secure, robust con-
nectivity among devices in a user’s personal group and koeighborhood with minimal
protocol complexity or maintenance overhead.

e A routing scheme that leverages distributed hash table (DHT concepts to build a more
general routing and traffic forwarding mechanism directitap of UIA's flat endpoint iden-
tifier (EID) space.

e Arouting scheme that builds on compact routing theory which provides provable bounds
on routing table size and stretch, but also addresses dmmyefault tolerance, and other
practical issues ignored in the theoretical groundwork.

In support of this exploration of specific overlay routinghemes, UIA introduceshe first
detailed exposition and experimental analysis of practidaNAT traversal techniques. The ex-
position analyzes the previously unaddressed problemmraeérsal of multiple levels of NAT, and
identifies a crucial behavioral property for NATs, dubbeadrpin translation , which enables au-
tomatic and transparent multi-level NAT traversal. UlAigperimental analysis of NAT traversal
techniques includes data covering a wide variety of NATdaleql in the field, examining NAT
behavioral properties required for both single-level andtirbevel NAT traversal via both UDP and
TCP.

1.7.3 Transport

UIA's primary contribution to the Internet’s transport &yis thestructured stream abstraction,
a novel extension to TCP’s traditional byte-stream abstmadhat enables modern interactive ap-
plications to create and manage many concurrent strearitg basforking” new streams from

37

existing ones. To demonstrate that this transport abgiracan be implemented efficiently, UIA
introducesstructured stream transport (SST), a prototype transport protocol based on structured
streams. The SST protocol design makes two additional temlhcontributions:

e SST introduces division of the transport layer into two sublayers, where the “bottom
half” or channel layerimplements network-oriented services such as sequenatkmowl-
edgments, congestion control, and security, and the “t¢fj ba stream layerimplements
application-oriented services such as logical byte steeamal receiver-directed flow control.

e SST’s stream sublayer introduceslatagram optimization that provides either reliable or
unreliable transmission of datagrams as “ephemeral sg@amoviding the efficiency bene-
fits of datagram transports without the attendant datagizedimitations or other restrictions.

1.8 Limitations

While UIA explores some promising approaches to rethinkhmglnternet architecture around the
requirements of personal devices, in terms of a “grand isoltto the Internet’s current difficulties
with personal devices, UIA is still incomplete in many wayseeessarily so due to the breadth of
the topic and the design space. UIA's naming system explomesparticular design for personal
groups and personal names, using a particular introductienhanism for building groups and
a particular revocation mechanism for pruning them, bus ieasy to envision other alternative
naming designs that might be more user friendly or effedtivdome usage scenarios (and perhaps
less so in others). The three routing schemes exploredsihbsis cover some breadth in in design
space but do not yet yield a single obvious “winner"—the dgptl social routing scheme is simple
and efficient in most cases but cannot support all types oficaions effectively, whereas the
other two schemes have only been evaluated under simukatidihave known practical issues that
might deter full implementation and large-scape deployimé&hA's structured stream transport is
similarly promising for what it does, but there are many wagslesign could be evolved further,
such as by supporting multihoming as SCTP [235] already.déieslly, there may be are a variety
of potential technical, economic, and political barrierstte widespread adoption of an architecture
like UIA. Chapter 9 will describe these limitations and putal barriers to adoption in more detail.

1.9 Thesis Organization

In terms of overall organization, this thesis first develapd explores each of the main functional
areas in the network stack that UIA addresses—naming,nguénd transport—fairly indepen-
dently of each other in Chapters 2—4, then after a brief digarinto NAT traversal techniques in
support of UIA's routing functionality, each of the remaigichapters addresses all of the functional
areas together to take a broader perspective in evalusiirgrthitecture. A quick summary of each
chapter follows:

38

Chapter 2 introduces UIAs personal group management and namingdgarg and de-
scribes protocols and algorithms to implement that namindeh

Chapter 3 addresses the challenge of overlay routing among UlAstiogdéndependent
endpoint identifiers, exploring three specific schemesiasoguting (Section 3.2), identity
hash routing (Section 3.3), and compact routing (Sectidh 3.

Chapter 4 describes UIA’s structured stream transport abstractowl, presents a protocol
design representing one approach to implementing thisp@h abstraction efficiently.

Chapter 5 describes NAT traversal background, hole punching tecesdgor UDP (Sec-
tion 5.2) and TCP (Section 5.3), and delineates the reqeintgsnNATs and firewalls must
satisfy in order to support these techniques (Section 5.4).

Chapter 6 describes the current prototype implementations of Ul&sspnal naming (Sec-
tion 6.1), averlay routing (Section 6.2), and structureda transport (Section 6.3).

Chapter 7 evaluates UIA experimentally based on both real-world usksamulation, and
informally through pragmatic experience with its persamaining model.

Chapter 8 describes in detail the relationship of UIA to other priorriuo

Chapter 9 finally concludes the thesis, discussing limitations angbptial barriers to adop-
tion, and avenues for future work.

39

40

Chapter 2

Naming

As network-enabled mobile devices such as laptops, smartgs) media players, personal digital
assistants, gaming consoles, and digital cameras becadoétabs in the lives of ordinary people,
the proliferation of these devices makes it increasinglparnant for users to have a convenient
way to nameand connect them over the Internet, while preserving usarsurity and privacy.
This chapter details UIA's naming layer, which provides anivay infrastructure enabling users
to connect and communicate conveniently among mobile patstevices. We first explore the
motivation and goals of UIA's naming system in Section 2lient examine UIA naming from the
(nontechnical) user’s perspective in Section 2.2, andljirddlve into the technical details of the
naming system in Section 2.3.

2.1 Motivation and Purpose of UIA Naming

The Internet's current naming infrastructure has evolwebd well-suited talient/servercommu-
nication—e.g., a user connecting to an online service likedle or Amazon.com. Networked per-
sonal devices also requipeer-to-peercommunication, however, in order to be maximally useful.
While on a trip, for example, a user in a cyber cafe may wistofyyghotos from his WiFi-enabled
camerato his PC at home for storage and backup. Two users eima park or other off-Internet
location may wish to connect their WiFi devices to exchangetgs or other information, and later
re-establish a connection between the same devices ovirténeet after returning to their homes.
A Voice-over-IP user would like his WiMax phone to be easiachable by his friends wherever
he and they are located, but not to be reachable by unknoemaeketers.

2.1.1 Global Names and Their Limitations

Convenient global communication over the Internet, howeserently requires the target device to
have aglobal namein the Internet's Domain Name System (DNS) [162, 163]. Useaust register

with central naming authorities to obtain these global ranaad since DNS names are global in
scope, users can only obtain hames that are not already bgkeomeone else. Ever since the

41

Internet’s commercialization andcom boom,” short, convenient, memorable global names have
become ever more difficult and more expensive to obtain.

Furthermore, for a DNS name to work, the nhamed host must hatabde IP address [121],
and the user must understand how to obtain and assign thdtiBss, or at least know it, in order
to enter it into the DNS record for the named host. Protocoth sas Dynamic DNS [258], Mo-
bile IP [185], and Virtual Private Networks [96] can provid@&ys of naming hosts with no stable
IP address, but the additional configuration effort andnaxzt expertise they require makes them
deployable in practice only by organizations with dedidatetwork administration staff. User
interface refinements alone cannot overcome this deployroadblock, because the protocols de-
pend on centralized resources—global domain names arei gtablic “home” IP addresses—that
are not part of most consumer-oriented Internet servickgggs. Ordinary users require a solution
that “just works.”

2.1.2 An Alternative Model: “Virtual USB Cables”

In contrast with the operation of the global name systemreti®e one implicit “naming system”
we can take inspiration from that is both straightforward #ivially secure: plugging two devices
together via a USB cable. The cable itself physically intisavhich devices should participate in
the transfer (th@amingaspect), and the isolated physical medium guaranteesdhaher devices
can eavesdrop or interfere with the communication §heurityaspect). As personal devices begin
to support wireless networking and Internet connectivitg, would like to extend the simplicity
and security of a USB cable to device connectivity on a glagale. We would like to develop
a naming model in which Alice can connect her WiFi-enableati®b her home PC via a “virtual
USB cable,” so that she can browse photos or play music stbexd from a WiFi-enabled coffee
shop or friend’s house. Setting up this “virtual cable” slomot require technical knowledge or
special configuration on Alice’s part, it should not requilce to obtain any form of scarce global
resources from any central organization, and it shouldicoatworking even when the devices it
connects are behind firewalls or NATSs.

Extending the “virtual USB cable” model to inter-user conmiwation, if Alice meets Bob in a
coffee shop, she should easily be able to share with himrimdtion or services located on any of
her personal devices simply by “plugging” their two devitagether. Bob should be able to connect
to Alice’s devices even after he leaves the coffee shopl, sltichooses to sever their relationship—
i.e., the virtual USB cable should be able to “stretch” iidig across arbitrary distances. No one
else should be able to impersonate Bob, however, in ordezitoegcess to Alice’s shared resources.

2.1.3 UIA Personal Names and Personal Groups

The Unmanaged Internet Architecture uses the above “Vitd&8 cable” analogy to build a peer-
to-peer connectivity architecture that gives nontechnisars a simple and intuitive way to connect
their mobile personal devices, via convenipersonal namesrganized intgpersonal groups A

42

personal grougrepresents an administrative cluster of devices all owmeaxbotrolled by the same
user—but all devices need not be in the same location. A paflstame is a name for a device,
user, or other object thatiscally scopedo a particular personal group: thus, a personal name only
needs to be unique within the context of a given personalmfadministrative domain), and not
within a global namespace like DNS that is potentially stidrg everyone in the world.

The way a user defines and builds a personal group in UIA is argbration of the “virtual
cable” analogy. Byintroducing devices to each other “in person,” on a local-area network fo
example [65, 233]—a process analogous to “plugging in” dechbtween the two devices—a user
canmergeUIA devices to form a personal group. Unlike the ephemeraigsgused in rendezvous
schemes such as Apple Bonjour [11], UIA devices once inteduvork together to offer secure
remote access to any device in the group from any other, ésemie or all the devices move to other
network attachment points. The devices forming the grogseqmt the user with a shared personal
namespace, which they optimistically replicate [106, 23] to ensure constant availability on
each device whether on or off the Internet. The devices possinespace changes as connectivity
permits [63], and can propagate updates via mobile devaeid by the user [178].

Since UIA interprets personal names relative to personalig, users can assign concise,
meaningful names likgpod instead of long globally uniqgue names ligd.alicesm5186.
myisp.com . In this way UIA conforms to the intuitive model with whichers already manage
their cell phones’ address books. Users normally createopat names by introducing devices lo-
cally on a common WiFi network, for example, but they can atdamoduce devices remotely by
“bootstrapping” from DNS or another global hame systemt ieast one device to be introduced
has a global name. Since UIA names persist and remain sgdoehd to their targets as devices
migrate, once Alice introduces her iPod to her home PC, et @an continue accessing her PC by
the same name from anywhere she finds Internet access.

Personal names are intended to supplement and not replaloal @INS names: users can re-
fer to personal names likghone alongside global names likesenix.org in the same appli-
cations. Global names are the right naming abstraction pgoesent global “brand names” like
amazon.com , for which the basic idea is that the owner of the global nahwukl be able to ad-
vertise it on billboards, on TV, etc., and expect people talde to remember the global name and
type it into any web browser in the world to reach the namedhless or organization. So personal
names and global names serve different and complementkay. rim the long term the Internet
needs both.

2.1.4 Cryptographically Secure Naming

Once created, UIA personal names remain persistently btmtitkir targets as devices move, via
self-certifying cryptographic identities [158, 165, 26t are fully self-configuring and hidden
from the user. Besides ensuring that a given personal naweaysilsecurely refers to the same
device, these cryptographic identities permit applicetiand services running on the user’s personal
devices to authenticate other users wishing to accessdshdoemation. For example, Alice can

43

instruct a desktop application to allow remote access thbere PC from any device in her personal
group, but not from other devices, effectively placing atwal firewall” around her personal group
that corresponds to hadministrative domaimather than to any physical network topology.

In contrast with SDSI [205] and PKI-based secure naming118], UIA does not use public
keys to represent a user’s identity or require the user tovkatmout and manage his keys directly
across the multiple personal devices he may own. Each Ulfcdénstead maintains its own per-
device keys automatically,

2.1.5 Social Networking via Personal Names

Different users can introduce their devices to hame othersuand link their respective personal
groups. Bob can refer to his friend Alice Atice , and if Alice calls her VoIP phonphone then
Bob can call Alice’s phone using the nampkone.Alice . In this way, UIA adapts peer-to-peer
social networking ideas previously explored for other pses [60, 146, 154, 186, 190] to form a
user-friendly peer-to-peer naming infrastructure. Ulplieates a user’s personal namespace across
all devices in the group to ensure constant availability achedevice regardless of connectivity,
implementing a relaxed consistency model reminiscent gbBd245], but without dependencies
on centralized resources such as Bayou's primary commieserUsers can also create and collect
names into ad hoshared groupso reflect common interests or informal organizations.

The UIA naming system makes the following primary contribag, expanding on previously
proposed ideas [86]. First, UIA introduces a simple anditint1 model for connecting mobile
devices intgpersonal groupsproviding ad hoc user identities, personal names, andas&emote
access, without requiring the user to manage keys or catdfcexplicitly. Second, UIA presents
a novel gossip and replication protocol to manage the naraimygroup state required by this
user model, adapting optimistic replication principlegviously developed for file systems and
databases.

2.1.6 Goals of UIA Naming

The purpose of UIA naming is to provide users with a converaeid intuitive way to communicate
among their own and their friends’ personal devices. To émd, we can briefly summarize the
primary goals of UIA's naming system as follows:

e Names must baser-relative so as not to require global uniqueness. If Alice owns only on
laptop and has only one friend named Bob, she should be alskfedoto them simply as
laptop andBob, despite the millions of other laptops and people named Babd world.

e Names must havetrong bindingsto the identities of the objects named, independent of
their current physical location or network attachment poilvhen Alice refers to her name
laptop , the name should always resolvetter laptop or fail to resolve; no other device
should be able to impersonate it.

44

Bob's Laptop Alice's PC
066 Introduce Devices = =

ntroduce Devices —

8 Introduce Alice as a new contact

— = 3 i Introduce Bob as a new contact
. Merge devices into my personal cluster

'_ Merge devices into my personal cluster

My name for this contact: Alice‘ My name for this contact: |BQD |

This device's introduction key is: G *ﬁ This device's introduction key is:
meals - abut - yuck B . biota - exec - got
22

Please select the otherdevice's introduction key: Please select the other device's introduction key:

) spits - tusk - pays () beady - stays - bout
) biota - exec - got (@ meals - abut - yuck
) jawed - rayon - purer () plugs - desks - keeps
(") None of the above

(Proceed) l‘_‘Can(el) Proceed H Cancel

") None of the above

Figure 2-1: Bob and Alice introduce their devices

e Assigning names must besample and intuitivgorocess. If Alice meets Bob at a conference
and their laptops share a common WiFi network, assigningreeria Bob should be as simple
as looking him up in a local network browser and clicking foduce”.

e A user should only have to managae namespacdf Alice already owns several devices,
she should only have to name a newly purchased device ortshanld not have to re-enter
or manually copy the new name onto each of her existing dgvice

e A user’s personal namespace should be constavidilable remaining accessible on any
of the user’s devices even while that device is disconneftted the others and/or from the
Internet.

e Users should be able suthenticateeach other andelectively sharinformation and device
services by referring to each others’ personal namesp#icAice gives Bob permission to
access some files on her desktop PC, he should have accesmtwitha name as simple as
PC.Alice

e Finally, UIA personal names shoulbexist cleanlywith DNS, allowing users to refer to
personal names likiaptop alongside global names likemazon.com seamlessly within
the same application.

2.2 UIA Naming from the User’s Perspective

This section describes UIA's operating principles from pleespective of a non-technical user; later
sections detail how the system provides this user experienc

2.2.1 Introducing Devices

A UIA device ideally ships from its manufacturer pre-configdh with a name for itself such as
laptop or phone, which the user can keep or change as desired. The devices ladditional

45

names as its usentroducesit to other devices owned by the same user or different ugdrs.in-
troduction process assigns persistent names by which tieedsan securely refer to other devices.
UIA’s introduction process builds on previously exploreléas for secure associations, such as the
Resurrecting Duckling security model [233] and SPKI/SO8&taduction [65], but UIA is unique

in providing the ability to build symmetric, self-managijrdistributed personal groups solely out of
pairwise introductions.

In a typical introduction, the owner(s) of two devices brthg devices together physically and
connect them to a common local-area network. Each user tivekds a local-area rendezvous
tool similar to Bonjour’s [11] on his device, finds the othesvite on the network, and selects
“Introduce.” Each device displays amtroduction keyconsisting of three words chosen randomly
from a dictionary, as shown in Figure 2-1. Each user thensptble other device’s introduction
key from a list of three random keys. If one of the devices haatantionally connected to the
wrong endpoint, such as an impersonator on the same netthark the matching key is unlikely
to appear on the list, so the user picks “None of the aboveth@dntroduction procedure aborts.
Unlike other analogous procedures [65], UIA uses shortt-fumndly “one-time” keys that only
need to withstand online and not offline attacks, and itsiplafchoice design prevents users from
just clicking “OK” without actually comparing the keys.

Users can follow the same procedure to introduce UIA devieamtely across the Internet, as
long as one device has a global DNS name or IP address anddisehave a trustworthy channel
through which to exchange introduction keys: e.g., a phamversation or an authenticated chat
session. We also envision alternative introduction meishasmadapted to specific rendezvous chan-
nels such as E-mail, web sites, SMS messages, or shortvarajess links; the details of particular
introduction mechanisms are not crucial to the UIA architee

A user can introduce UIA devices eitherrmergehis own devices into aersonal groupshar-
ing a common namespace, or to create natimda from his own group to other users’ personal
groups. The following sections describe these two formatbduction, and other important group
management actions, with the help of an example scenaugiriited in Figure 2-2.

2.2.2 Device Names and Personal Groups

At Time 1 in the scenario, Bob purchases a new laptop andnetgrhone, which come pre-
configured with the default naméeptop andphone, respectively. At Time 2, Bob uses UIAs
local rendezvous tool on each device to find the other devidéshome WiFi network and selects
“Introduce devices” on each. Bob chooses the “Merge deVispson in the introduction dialogs
(see Figure 2-1) to merge the devices into a personal group.

The devices in Bob’s group gossip both existing names ansesuient changes to the group’s
namespace as physical network connectivity permits. Eacitel attempts to preserve connectivity
to other named devices as they leave the network and reappediner locations, without user
intervention whenever possible. Bob now sees his two pats@megphone andlaptop on both
devices, and can use these names for local and remote a¥¢eddng on his laptop at home, he

46

Time Bob Alice
1 Bob purchases laptop & IP phone | Alice purchases iPod &

q ﬂ ﬁdesktop PC El
-

“laptop” “iPod” “pC’
- iPod - PC

e:-default.‘device names
2 Bob merges laptop, phone at home | Alice merges iPod, PC

Bob's personal group

QI e

Bob's namespace

Alice's personal group

Alice's namespace

3 Bob purchases cell phone, meets Alice
Bob & Alice link cell phone & iPod

cell %
phone's
Bob's personal group group \
"G,) “phone"_}
“Alice”
(“iPod Alice T,
(“PC.Alice”)
4 Bob merges cell, home phone
label
conflict
between
cell &
r) home
laptop”/
“phone” —) k" phone
“Alice” ——_| . (‘laptop.Bob”)
(‘iPod.Alice”) — — | (‘phone.Bob") =X
(“PC.Alice”) —

5 Bob renames cell phone to resolve
name conflict

Alice's personal

=] group
i

Bob's personal group
= -1

“laptop™?)) iPod” — %

“phone” [=ToR—

e —] “Bob”

“Alice” — B (“laptop.Bob”)
(“iPod.Alice”) — (“phone.Bob”)
(“PC.Alice”) ™| (“cell.Bob")

Bob & Alice start
photo sharing club

Bob's personal groupl

o)

Alice's personal

W
L

4
“laptop””_/
“phone” —_~
‘Alice”

()
| “PhotoClub”
(“Bob.PhotoClub”)
(“Alice.PhotoClub”)

| “Bob”
() (“cell. Bob")
“PhotoClub” ()
(“Bob.PhotoClub") “Alice” — |
(“Alice.PhotoClub’) (“iPod.Alice”)
()

7 Bob loses cell phone, removes it
from personal group
x—& x
“cell”
(no access)

Alice's personal
group

R |

> ¥

iBob?)

()

fook “PhotoClub”
(“Bob.PhotoClub")

“Alice";/}/> (“Alice.PhotoClub’)

(“iPod.Alice”)

()

()
“PhotoClub”
(“Bob.PhotoClub")

(“Alice.PhotoClub’)

Figure 2-2: Example personal device scenario

47

uses his personal nampbone to reach the phone via his home WiFi LAN. When Bob subsequentl
takes his laptop on a trip, he can remotely access his homeedham his laptop over the Internet

(e.g., to check his voice messages), still using the ramoae . UIA uses cryptography to guarantee
that an adversary cannot impersonate the device Bob mlatiae , and cannot eavesdrop on his
communication.

2.2.3 User Names and Social Networking

With the second form of introduction, users link their pelogroups together and assigeer
namesto each other, but retain exclusive control over their retspe personal groups. In the ex-
ample scenario, Bob purchases a new WiFi-enabled cell phofiene 3 and meets Alice at a cafe
before he has merged his cell phone with his other devices. fiads Alice’s iPod using his cell
phone’s local rendezvous tool and selects “Introduce asvecnatact” (see Figure 2-1), and Alice
does likewise. Bob’s phone suggests Alice’s self-chosem nameAlice , but Bob can override
this default (e.g., té\lice-Smith or Alice-from-OSDI) if he already knows another Alice.

Bob and Alice can now refer to each others’ devices by combimievice names with user
names in DNS-like dotted notation. If Alice runs a web sermerher home PC, namdeC in
Alice’s personal hamespace, then Bob can connect to Algar'ger by typing?C.Alice into his
laptop’s web browser, exactly as he would use a global DNSerlidkmusenix.org

If Alice’s personal web server is UIA-aware, she can use lagneBob in the server’'s access
control lists so that only Bob’s personal devices may brovestain private areas. UIA authenticates
clients so that no one else can impersonate Bob’s devicegnagcess to these areas.

2.2.4 Transitive Merging and Gossip

Bob now returns home and merges his cell phone with his horoaghas shown at Time 4 in
Figure 2-2. Bob’s home phone in turn gossips the cell phogedsp membership to Bob's laptop,
so the laptop and cell phone can name each other without hitndhéo merge them explicitly.
Alice’s devices similarly gossip her new link namBdb and learn about Bob's three devices, after
which she can, for example, refer to Bob’s laptopaasop.Bob

Users can access or edit their personal groups from any iofdéé@ces while other devices are
unreachable. If Bob and Alice are on a bus together and dismted from the Internet, Alice can
still reach Bob’s laptop from her iPod via her nataptop.Bob |, even if they have left all their
other devices at home. Bob and Alice can continue adding séoneontacts they meet on the bus,
and their other devices learn the new names via gossip ldten they re-connect.

2.2.5 Resolving Conflicts

Unfortunately, both of Bob’s phones happened to have idahtiefault names gihone , resulting
in their names conflicting in his newly merged namespace. hbffies Bob of the conflict, and
he can continue using the non-conflicting nalaetop , but must resolve the conflict before the

48

namephone will work again. Bob resolves the conflict on his cell phon&iate 5, by renaming it
cell while leaving the home phone with the napteone . Bob’s other devices learn the resolved
name bindings via gossip, as do Alice’s devices, so Alice seas Bob’s phones atione.Bob
andcell.Bob

If Bob makes conflicting namespace changes on two of his dewidile they are partitioned
from each other, UIA detects the conflict once the devicesmeect. Bob can continue using other
non-conflicting names in the same group while conflicts eristl he can resolve such conflicts at
leisure on any of his devices.

2.2.6 Shared Groups

In addition to personal groups, users can crediared groupgo help organize and share their
personal names. Bob and Alice discover at Time 6 that theyesdmainterest in photography, and
decide to start a photo club for themselves and other frishdgng this interest. To enable members
of the club to find each other easily and share photos amongpthesonal devices, Bob uses his
laptop to create a shared group nan®toClub in his personal namespace. On creation, the
shared group’s only member is Bob himself. To add Alice togiteaip, Bob drags the nanddice
from his personal group int®hotoClub , copying his nhame binding for Alice into the shared
group and making her the second member. Bob can similarlyotulet friends toPhotoClub
and these names automatically appear in Alice’s view of tbaas the devices gossip the changes.
Although Alice can now refer to the new groupPRisotoClub.Bob , she might like this group
to appear directly in her own personal group instead of ngrtirelative to Bob. Alice drags the
PhotoClub name from Bob’s personal group into her own, giving hersetbpy of the nhame
leading to the same shared group. She can now refer to groobere using the same names that
Bob uses, such aharlie.PhotoClub

2.2.7 Group Ownership

One or more members of a UIA group may be designateshaers or members allowed to modify
the group. As Figure 2-3 illustrates, Bob’s devitastop , phone, andcell are owners of his
personal group by default, allowing Bob to edit his persaraup using any of his devices. The
namesAlice andPhotoClub are not owners, so Alice and memberdRtfotoClub can only
browse and resolve names in Bob’s namespace.

Groups can own other groups. When Bob creates his sitdretbClub group, UIA automat-
ically includes a namBob in the new group that gives Bob’s personal group ownershthehew
group. After adding Alice to the group, Bob can give her caaevghip by clicking the owner flag
by her name in the group listing, enabling her to add or renmtlrer members herself. Ownership
is transitive: Bob can modiffPhotoClub using his laptop because Bob’s laptop is an owner of
Bob’s personal group and Bob’s personal group is an ownehotoClub .

49

006 UIA Control: Bob's laptop

{-FMpm{ Local Area Network = Peer Status J'*-

personal group NIETTTENET Type i
laptop
phone laptop Device
cell)
v Alice phone Device
iPod ~ cell Device 4
PC
Bob Alice Croup
¥ PhotoClub
Alice PhotoClub Group
Bob
Charlie

(Info) (Hew Ernup} I:Rgname) l: Delete)

2

Figure 2-3: Groups and ownership

50

2.2.8 Security and Ownership Revocation

Returning to the scenario in Figure 2-2, Bob loses his catinghat Time 7, and he is not sure
whether it was stolen or just temporarily misplaced. If talkjghone was stolen and has no local user
authentication such as a password or fingerprint readethibemight obtain not only Bob’s data
on the cell phone itself, but also remote access to servigbe@zed to his personal group via UIA
names. UIA devices capable of accessing sensitive infaamaemotely should therefore provide
strong local user authentication, and should encrypt patsdata (including UIA state) stored on
the device, as Apple’s FileVault does for example [12]. Thtads of local user authentication and
encryption are orthogonal to UIA, however.

To minimize potential damage if a thief does break into Balssr account on his cell phone,
Bob can revoke the cell phone’s ownership of his personalrdf the cell phone re-appears and
Bob realizes that he just misplaced it, then he can “undot¢kiecation and return the phone to its
normal status. If the cell phone remains missing, howevek éhsures that no one can remotely
access personal information or services on Bob’s othecdsviia the lost phone once the revocation
announcement has propagated to those devices. Simitalgell phone loses its access to the files
Alice shared with Bob as soon as Alice’s PC, on which the fibssde, learns of the revocation from
any of Bob’s remaining devices.

2.2.9 Ownership Disputes

Revocation cuts both ways: a thief might try to “hijack” Bstgersonal group, using the stolen cell
phone to revoke the ownership of Bob’s other devices befale filds that the phone is missing.
In UIA's current ownership scheme in which all owners havédnd equal authority over a group,

Bob’s devices cannot distinguish the “real” Bob from an isfoo once a stolen device'’s local

access control is broken. UIA therefore allows any devicgigputeanother device’s revocation of

its ownership.

In the example scenario, when Bob next uses his laptop, Uldrrims him that his laptop’s
ownership of his personal group has been revoked by thelwetigy which Bob realizes was stolen.
In response, Bob issues a revocation of the cell phone’s @hipefrom his laptop. The two mutual
revocations effectively split Bob’s original personal gpointo two new, independent groups: one
containing only the cell phone, the other containing Bok®aining devices. All existing UIA
names referring to Bob’s old personal group, and any aceghsrizations based on those names,
become unusable and must be manually updated to point tppinegiate new group. Alice’s name
Bob for example is now marked “disputed” in Alice’s namespacg] Alice’s PC rejects attempts
by any of Bob’s devices to access the files she shared with Bdiereusing that UIA name. To
update her name for Bob and safely renew his access, Aliceecantroduce her devices directly
to Bob’s the next time they meet, or obtain a fresh link to Baleéw personal group from a trusted
mutual friend who already has one.

Group ownership disputes need not be permanent. Supposestpbe who co-own a shared

51

group get into an argument, and split the group by issuinguadutevocations. If the original co-

owners later settle their differences, they can undo thaiflicting revocations or simply merge
their respective “splinter” groups back together via UlAsrmal merge mechanism. Links to the
original group become unusable during the dispute, buttiom@gain normally after the dispute is
resolved.

2.3 Personal Naming System Design

This section describes the design of the UIA personal namsystem, beginning with the system’s
basic architecture, followed by the details of how UIA dedananage and synchronize the name-
space state comprising their users’ personal and shareggro

2.3.1 Basic Architecture

The design of the UIA personal haming system is based on thtedal elements: a mechanism
for identifyingpersonal devices uniguely, securely, and persistentlypegss foresolvingnames
within personal groups; and a storage management and gassipanism for optimisticallyepli-
cating namespace state across devices. This section briefly irtesdthese three architectural
components, for which subsequent sections provide fudétils.

Personal Endpoint Identities

UIA devices identify each other using cryptographicallyqueendpoint identifierer EIDs. Whereas
DNS maps a name to an IP address, UIA maps a personal devieeuani as Bob'taptop to

an EID. Unlike IP addresses, EIDs at@bleand do not change when devices re-connect or move.
UIA's routing layer, described in Chapter 3, tracks mobitests by their EIDs as they change IP
addresses, and can forward traffic by EID when IP-level conication fails due to NAT or other
Internet routing discontinuities. Thus, EIDs represemt ‘thoint of rendezvous” between UlA's
naming and routing systems.

A UIA device creates each EID it needs automatically by gativeg a fresh public/private key
pair and then computing a cryptographic hash of the publjc ke in SFS [158], EIDs are crypto-
graphically unique, self-configuring, and self-certifyjrbut not human-readable. As in HIP [164],
UlA-aware network transports and applications use EIDdangof IP addresses to identify com-
munication endpoints. (UIA can also disguise EIDs as “dtiPaaddresses for compatibility with
unmodified legacy applications, as described later in Sedil.)

An EID corresponds to a particular user's presence on acpéati device. A user who owns
or has access to several devices has a separate EID for eat#wick accessed by only one user
needs only one EID, but a device shared among multiple uszisome form of login mechanism
creates a separate EID for each user account. Unlike cmggibiz host identifiers in SFS and HIP,
therefore, EIDs are not only stable pérsonal

52

Personal EIDs allow multiple users of a shared UIA host tandependent network services on
the device. Since each user’s services bind to the user's&Hher than to a host-wide IP address,
UlA-aware network applications can run exclusively in tlomtext of the user and rely on UIA to
provide user-granularity authentication and access cbnthen Bob connects his laptop to the
HTTP port at the EID to whicPC.Alice resolves, he knows he is connectingiace’s personal
web server and not that of another user with an account orathe 8C. Alice’s web server similarly
knows that the connection is coming from Bob and not from smmeeelse using his laptop, because
her namdaptop.Bob resolves to an EID specific to Bob'’s account on his laptop.

Resolving Names in Personal Groups

Each UIA device acts as an ad hoc hame server to support nakigmand synchronize namespace
state across devices. UIA names follow the same formattitesras DNS names, consisting of a
series oflabels separated by dots, and devices resolve UIA names one labdiime from right
to left. To resolve the namBC.Alice , for example, Bob’s laptop first resolves the rightmost
componentAlice to find Alice’s personal group, and from there resolves ttemisd component
PCto find the EID for Alice’s PC as named in Alice’s personal grou

Whereas DNS resolution traverses a strictly hierarchieal of “zones” starting from a centrally-
managed global root zone, each UIA device has a unique roog$olving UIA names, and users
can link UIA groups to form arbitrary graphs. After Bob medtice at Time 3 in Figure 2-2,
for example, Bob’s “root” group for UIA name resolution, cesponding to his personal group,
appears to Alice as a “sub-group” namBdb. Conversely, Alice’s “root” group appears to Bob
as a “sub-group” nameflice . Since Bob’s and Alice’s naming relationship forms a cycle i
the graph of UIA groups, Bob could for example refer to his getione via the redundant name
phone.Bob.Alice

UIA groups may at times contalabel conflicts or bindings of a single name to multiple distinct
targets. When Bob at Time 4 merges his new cell phone withefault namephone into his
personal group, which already contains another device dghene , the twophone bindings
result in a label conflict. Label conflicts also arise if an ewship dispute splits thiargetthat a
group name refers to, as described in Section 2.2.9. Namtuties fails if it encounters a label
conflict, preventing the user from following ambiguous Bridefore resolving the conflict. A conflict
on one label does not affect the usability of other labelfiindame group, however.

State Management

UIA uses optimistic replication [106, 134, 245] to maintainser’s personal UIA namespace across
multiple devices, guarding namespace state against dmsseor failure and keeping the name-
space available on all devices during periods of discoimear network partitions. Each device
stores in an append-only log all persistent naming statésarser’'s personal group and any other
groups of interest to the user, and uses an epidemic prof68plto distribute updates of each

53

Record Format

Series ID
Sequence Number

Secure hash

Type-specific data i
Signature - . Record ID (RID) |

Figure 2-4: Basic log record format

group’s state among the devices interested in that groupicB® use rumor mongering to prop-
agate newly-written or newly-learned records aggresgitlelough the network, and they perform
periodic anti-entropy exchanges to ensure that updatedbereach all interested devices as net-
work connectivity permits.

2.3.2 Device Log Structure

Each UIA device keeps an append-only log holding all persisUIA naming-related state. The
records comprising the log collectively hold all of the pstent state for the user’s personal group
and any other UIA groups of interest to the user. A devicelstipically holds both records gen-
erated by the device itself and gossiped replicas of retesenords generated by other devices.
Devices sharing a namespace propagate updates via gagsyma any relevant new records from
other devices’ logs to their own as they appear and as neteankectivity permits. Storing all
persistent namespace state in log form facilitates auiorsgimchronization of namespace changes
across devices, and also provides the ability to undo astatieame deletions or malicious changes
from a compromised device.

UIA organizes the records comprising a device’s log is¢nies each series representing the
sequence of changes a particular device writes to a patignbup. The state defining a group
consists of one or more series, one for each device that hiisewto the group. All devices partic-
ipating in a group gossip and replicate all records in eache@froup’s series, preserving the order
of records in a given series, but do not enforce any orderdmtwecords in different series. Since
UIA separates the naming state for each group by seriesgategian limit gossip to the records
relating to groups they're interested in, instead of saagtheir neighbors’ entire device logs.

As shown in Figure 2-4, each log record contains a series Heégaence number, data specific
to the record type, and a signature. The series ID (SID) whjgidentifies the series to which the
record belongs. The sequence number orders records wilgiries. The device that owns a series
signs each record in that series with its private key, sodtfzgr devices can authenticate copies
of records they receive indirectly. A cryptographic hashhaf record yields &ecord 10 which
uniquely identifies the record for various purposes desdribter.

UIA currently defines four record types, listed in Figure arisl summarized briefly below:

54

Create record Link record

Series ID Series ID
- Sequence Number Sequence Number
Owner device EID Label
Nonce Target EID or SID
Signature Owner Flag
Signature
Secure hash

—» New Series ID (SID) |

Merge record Cancel record
Series ID Series ID
Sequence Number Sequence Number
Target Series ID Target Record ID
Signature Signature

Figure 2-5: Specific log record types

e Create: A createrecord initiates a new series owned by the device writingrduerd, as
identified in the record’s owner field. The owner EID fixes thiblpc/private key pair other
devices use to authenticate records in the new series. ThedréD of the create record
becomes the new series ID; a random nonce ensures the nesvc®yptographic unigueness.
The create record itself is not part of the new series: its semes ID field is usually empty
to indicate that it is not part of any series, but it can be ampty for revocation purposes as
described later.

e Link: A link record binds a human-readable label sucAlace to an endpoint ID or series
ID denoting the link’s target. Links to devices, such as Batemedaptop andphone,
contain the EID of the target device. Links to groups, suci\likse and PhotoClub ,
contain the SID of some series in the target group. A link i@t¢@s an owner flag indicating
whether the link grants ownership to the link’s target, wlhg the target to write changes to
the group containing the link record. We refer to a link withawner flag set aslank-owner
record

e Merge: A mergerecord joins two series to form a single UIA group. The unidrlblink
and cancel records in all merged series determines the sanwds that appear in the group,
thereby forming a common distributed namespace. A mergestafect only if the device
that wrote the merge record also owns the target group, beiktis a corresponding merge

55

record in the target group pointing back to the first group.

e Cancel: A cancelrecord nullifies the effect of a specific previous record,cép by the
target’s record ID. With certain restrictions describetble link records can be canceled to
delete or rename group members. Create, merge, and cacoalgeannot be canceled.

2.3.3 Namespace Operations

This section describes how UIA devices implement the ingrdruser-visible namespace control
operations, in terms of the specific records the devicegwritheir logs at the events in the example
scenario from Figure 2-2. The following section will therpiin how devices evaluate the contents
of their logs to determine the effective state of each grdwmg point in time.

Device Initialization: When Bob and Alice install or first start UIA on a device at Tithethe
device first writes a create record to its log, forming a nerieseto represent the user’s personal
“root” group on that device. The device then writes a linkarecto the new series, giving itself a
suitable default name such Eptop . The device sets the owner flag in this link record to make
itself the sole initial owner of the group.

Merging Device Groups: When Bob introduces and merges his devices at Time 2 to form a
personal group, each device writes to its own root seriesrgawecord pointing to the other device’s
root series. These cross-referencing merge records rasauiherge relationshipetween the two
devices, which begin to gossip the records comprising betles so that each device eventually
holds a complete copy of each. This merging process doesha@lly create any new link records,
but causes each device to obtain copies of the other dewgistng link records (the laptop’s link
record for its default namkaptop and the phone’s record for its narphone) and incorporate
those names into its own root group.

Aside from merging devices’ root series via introductionisar can use a single device to merge
two arbitrary groups, provided the same device already Wagship of both groups. If Bob creates
two shared sub-groups and later decides they should be nethbor example, he can merge them
on any of his devices. The device writes cross-referencieggenrecords to the relevant series,
exactly as in the introduction scenario.

If a user accidentally merges the wrong groups, the devaientiote a merge record can “undo”
the merge via a cancel record writtenttie same seriesOnce either merge record is canceled
this way, the groups return to their pre-merge state, neigitheir original identities as defined
by the disjoint sets of original series IDs. The restricttbhat a merge can only be undone on the
same device results from the membership and ownershipatiaiualgorithm described later in
Section 2.3.4, but appears a reasonable constraint forpungoses. Cross-device “un-merge” can
be approximated via revocation, as described later, botegion cannot restore the distinctness of
the original group identities: two links referring to theaweparate groups before the merge refer
to the same group after the revocation.

56

Meeting Other Users: When Bob and Alice introduce their devices to each other meT3, the
devices exchange the series IDs of their respective roigssemnd each device writes a link record
to its own root series referring to the other device’s rooiese Bob's new link record nameilice
gives Alice a name in his personal group, and Alice’s new lia&ord namedob likewise gives
Bob a name in her group. The devices do not set the owner flagsse new link records, giving
Alice and Bob only read-only access to each others’ namespac

Transitive Merge: Individual merge relationships in UIA are always pairwibefween exactly
two series, but merge relationships combine transitivelgigtermine effective group membership.
When Bob introduces his cell phone to his home phone at Tintleedtwo devices form a merge
relationship between their respective root series. SiraiEsghome phone and laptop already have
a merge relationship, Bob’s laptop and cell phone tramditilearn about each other via gossiped
records they receive from the home phone, and the union ofett@rds in the three root series
determine the contents of the resulting group. Since thgedegroup has two link records named
phone with different target EIDs, the devices flag a label conflictphhone and refuse to resolve
this name.

Renaming Labels and Resolving Conflicts: When Bob renames his cell phone ¢ell at
Time 5 to resolve the conflict, his device writes to its roates a cancel record containing the
record ID of the link record defining the cell phone’s presmame, then writes a new link named
cell that is otherwise identical to the original link. Since orfi¢he two conflicting link records is
now canceled, the label conflict disappears, and the nalmase andcell become usable on all
of Bob’s devices once they receive the new records via goBgip can resolve the conflict on any
of his devices, because any group owner can cancel a lintewtity another device.

The user can also delete a hame from a group outright, in wdzish the device writes a cancel
record without a new link. The ownership granted by a linkaewrecord, however, can only be
nullified by the revocation process described later in $a@i3.4.

Because UIA implements renames non-atomically with a daecerd coupled with a new link
record, if Bob renameAlice to Alicel on his laptop and renamddice to Alice2 on his
phone while the two devices are temporarily partitionedremonnection he will have two names
Alicel andAlice2 with no conflict detected. This corner-case behavior, whdghaps slightly
surprising, seems acceptable since it “loses” no inforonadind at worst requires Bob to delete one
of the resulting redundant names. At the cost of added cofitgle non-idempotent “Rename”
record type could be added to enable UIA to detect conflictelgames of a single original link
record.

Creating Groups: Bob uses his laptop at Time 6 to create his shabdtoClub group. To
create the group, the laptop first writes a create recordriergée a fresh series ID. The laptop then
writes two link records: first, a link namdghotoClub in its root series pointing to the new series,

57

and second, a link namd®bb in the new series pointing back to the root series. The lapétpthe
owner flag in only the latter link record, giving Bob’s persbgroup ownership of the new group,
withoutgiving PhotoGroup ownership of Bob’s personal group.

Suppose that Bob now uses a different device, his cell phonexXample, to add Alice to
PhotoClub . Bob’s cell phone is already an indirect owneRbfotoClub , because the cell phone
is an owner of Bob’s personal group and Bob’s personal greupgs®hotoClub . The cell phone
does not yet have a series®motoClub , however, to which it can write records: initially only the
laptop, which created the new group, has a series in the gamgponly it can sign records into that
series. The cell phone therefore creates its 8lntoClub series, by writing a create record to
form a new series owned by itself, and then writing a mergerreto this new series pointing to the
laptop’sPhotoClub series. Although no corresponding merge record in the epRhotoClub
series points back to the cell phone’s new series (in fadaihtep may be offline and unable to sign
such a record), the cell phone’s merge record takes effadgterally” by virtue of the cell phone’s
indirect ownership oPhotoClub . The cell phone then writes a copy of Bob’s link to Alice into
its newPhotoClub series, and other devices learn of the new series and the am& as they
gossip records faPhotoClub

Revoking Ownership: When Bob learns at Time 7 that his cell phone is missing, he bge
laptop to revoke the cell phone’s ownership of his persor@lg, either by deleting the narcell
from his personal group or by clearing its owner flag. To impdat this revocation, however, Bob'’s
laptop cannot merely write a cancel record pointing to thk tecord forcell : the cell phone
would still own a series in Bob'’s personal group and thusametsidden” control over the group.

To revoke the cell phone’s ownership, therefore, Bob'sdppireates a new personal group for
Bob and copies the original group’s name content into it. fEate the new group, the laptop writes
a create record whose series ID field is not empty as usuainbigad contains the SID of the
laptop’s original root series. The laptop then writes ligcards to the new series corresponding
to all the active links in the old series, omitting links or evship flags to be revoked. The create
record written into the old root series indicates to all iegted devices that the new series forms a
group that is intended to replace or act asiacessoto the original group.

As long as only one such “create successor” record existsolisBold personal group, all
devices treat links to any series in the old group as if thekeld to the successor group instead.
Upon receiving via gossip the records describing Bob’s nevug, for example, Alice’s devices
subsequently resolve her naieb to the new group, and use it to calculate which devices should
be given access to resources she has authorized Bob to asffestively revoking the cell phone’s
access.

If the cell phone writes a conflicting “create successor’ordcto its series in Bob’s original
group, however, then the original group becordisputed and other devices refuse to resolve links
to any series in the original group as soon as they learn aheutlispute. Alice’'s devices thus
refuse to resolve her nanfBb and deny access to any resources she authorized using that na

58

Once Alice updates her broken link to refer to the correctsssor group, either by re-introducing
with Bob or by copying a fresh link from a mutual friend, hewibe writes a new link referring
to a series in Bob’s new group, the old group becomes irrateaad Bob can again access Alice’s
resources via the devices in his new personal group.

If link or cancel records exist on Bob’s other devices that laptop has not yet received at
the time of revocation, the laptop cannot copy these chaagerds into the new group and they
becomeorphaned Bob’s devices continue to monitor and gossip records irottigroup after the
revocation, however, to detect both orphans and ownershuis. If a device with ownership
of the new group detects an orphaned record written by itsedinother device with ownership of
the new group (not a revokee), it automatically “forwards2 thange by writing a corresponding
record to the new group.

Key Compromise and Retirement: Besides handling the issue of retired, lost, or stolen dsyic
UIA's revocation mechanism may also be useful if a devicalslig/private key pair is compromised
and the user wishes to re-key the device, or if the publicédmgptography or hash algorithms the
device’s EID is built from become obsolete. In such a situgtithe device can simply generate
a new, fresh public/private key pair and EID for itself, methis new EID into the existing group
with the same device name as that associated with the olddakiDthen perform a “self-revocation”
of the device’s old EID using the normal revocation mechartis ensure that only the new EID and
not the old one is considered a member of the user’s persomah g

In the case of gradual cryptographic key or algorithm retegat (as opposed to a key compro-
mise requiring immediate revocation), it may be useful tovaboth the device’s old and new EIDs
to be active at once during some transition period. Allowéngingle device name to be assigned

more than one EID at once without this situation being imetgrl as a conflict would require a
minor extension to UIA's current group management mecianis

2.3.4 Group State Evaluation

This section describes the algorithms UIA devices use terteghe the current state of a given
group from the set of log records they have on hand. Devicaluate group state in three stages:
(1) membership and ownership, (2) group successorship(3amame content.

Membership and Ownership

In the first stage, a UIA device collects the series IDs refétio by all records in its log, and
clusters them into sets based on merge relationships to fdArgroups. At the same time, the
device computes the set of device EIDs to be considered evaieach group, either directly or
transitively. Group membership and ownership must be coedpat the same time because they
are mutually dependent: group membership expansion vigar@m introduce additional owners,
and owner set expansion can place additional merge recad#s gonsideration.

59

global M: membership table: SIB+ SID set
global O: ownership table: SID set EID set
function evaLmembershipownership():
for each known seriesid:
M{sid] «— {sid}
O[{sid}] < EID of device that owns seriesd
do:
for each link-owner record in each serigd:
if link target is a deviceeid:
O[M |sid]] «— O[M|sid]] U teid
else if target is a serigsid:
O[M [sid]] — O[M|[sid]] U O[M|tsid]]
for each merge record in each serigg:
tsid < target series ID of merge record
O[M [sid]] < O[M[sid]] U O[M [tsid]]
if owner EID of seriessid € O[M [tsid]]:
O[M[sid] U M[tsid]] < O[M|sid]] U O[M [tsid]]
for each series |Dnsid € M|sid] U M|tsid]:
Mmsid] «— M|sid] U M [tsid]
until M andO stop changing

Figure 2-6: Membership and ownership evaluation pseudocod

Figure 2-6 shows pseudocode for membership and ownershipation. The algorithm uses a
membership tablé/ mapping each known series ID to a set of series IDs sharingupgand an
ownership table) mapping each group (represented by a set of series IDs) taa®&ner device
EIDs. The algorithm first initializes the entry i for each series to a singleton set containing only
that series, and initializes the owner set entryifor each such singleton group to the EID of the
device that owns that series. The algorithm then repeatadiges groups and expands ownership
sets until it reaches a fixed point. The algorithm termin&esause member and owner sets only
grow, and each device knows of a finite number of series IDgjatem time.

The algorithm considers onlyve merge and link-owner records. A record is live if it is not
targeted by any cancel recdrdthe same series'he same-series restriction prevents cancel records
from decreasing the set3 and M across iterations and violating the algorithm’s monotityic
assumptions, hence the restrictions mentioned earlienda af merge and link-owner records.

In each iteration, the algorithm first follows link-ownecoeds, expanding the ownership set of
the group containing a link-owner record according to tihgebdevice EID or the current ownership
set of the target group, as applicable. Across iteratidnis,step handles transitive propagation of
ownership across multiple groups, such as Bob’s laptopisesship ofPhotoClub via the laptop’s
ownership of Bob’s personal group.

Second, for each merge record, the algorithm expands thership set of the group containing
the merge record to include the ownership set of the targetpgrthen checks whether the device
that wrote the merge record d@thorizedby virtue of having ownership of the target group. The

60

(1) A (2) A (3 A ((p4a£hological) ((pgzho/ogical)
AN

NV \"

D E D

A disputed A D
A disputed B D B D A disputed A C
B D C E C D B disputed B C

Figure 2-7: Example group successorship scenarios

authorization check prevents a device from merging a seriesn arbitrary group without permis-

sion. In the symmetric case where two merge records refesdb ethers’ series IDs, each merge
is authorized by the fact that the other merge grants owieddlits own series to its target. Once
a merge is authorized, the algorithm combines the SID setseofespective groups to form one
group containing all the merged SIDs, and similarly combite respective owner sets.

Group Successorship

In the second stage, a device computessiiecessorshigtatus of each group resulting from the
first stage, in order to handle revocations and ownershjputis. The device first forms a directed
graph reflecting immediate successor relationships: aecreeord in seriegl yielding a new series
B makes the group containing a successor to the group containidg Next, the device takes the
transitive closure of this graph to form a transitive susoeship relation: ifB succeedsA andC'
succeedd3, thenC' transitively succeedd.

The device now assigns to every gradpne of three states as follows.dfhas no successors,
it is a headgroup: no revocations have been performed in the group, iakd to series IDs in
the group resolve normally. On the other hand, if there iscarsg groupG’ that is a transitive
successor t6: and is also a transitive successor to all other transiticeessors t@-, thenG’ is the
undisputed successtw G. In this case, links to series IDs in grotpresolve to groug’ instead.
Finally, if G has successors but no undisputed successor, then grasigisputed and links to
series IDs inG do not resolve at all.

Figure 2-7 illustrates several group successorship sicsnand the corresponding results of
this algorithm. In scenario (1), two conflicting revocatidmave placed group A under dispute; A's
successor B also has a successor due a second revocationtiBBsinot under dispute. Scenario
(2) is like (1) except a revocation has also been performeudap C, forming a new head group E.
Scenario (3) shows the result after the warring owners isé)e their differences and merge their
head groups D and E, resolving the original dispute overgauscenario (4) shows a pathological

61

situation that should never arise under normal use but doeildbtained artificially by merging A
with D and B with C in (1); in this case the two groups in the eylsbth become disputed. Scenario
(5) shows the pathological dispute resolved by a revocatigroup A. (Alternatively, the cyclic
groups could simply be merged together.)

Name Content

In the third and final stage, for each head group to be usedafmerresolution, a device computes
the group’s namespace state as follows. Given the set aflalidcords in every series in the group,
the device removes all link records targeted by a canceltddnany series of the group to form the
set ofactivelinks. Any device that owns a group can cancel a link writtgrahother device, but a
cancel cannot revoke ownership.

The set ofactive labelsin a group, shown in a namespace browser for example, is th&f se
labels appearing in any active link record in the group. Taubable all active links for a given
label must have the same permissions, and must target thee dewite EID or SIDs in the same
group. Otherwise the labelis conflict as Bob’s home and cell phone are at Time 4 in the example.
If Bob creates identical links on different devices indegemtly, such as by separately introducing
both his cell phone and his laptop to Alice to yield duplicAlece links, this action does not
create a label conflict when Bob merges his home and cell ptagether because the redundant
links have the same target and permissions.

2.3.5 Naming State Gossip and Replication

The UIA devices participating in a given personal group gossd proactively replicate new
records pertaining to the group among their respective. Idg&JIA device by default considers
itself a “participant” in a group if it owns a series in thabgp—i.e., if it has ownership permission
and has written any records to the group.

UIA's epidemic protocol uses a classic two-phase “pushi/@igorithm [63]. In the “push”
phase, when a device creates a new log record or obtains iaysklvunknown one from another
device, it repeatedly pushes the new record to a randomdgerhpeer until it contacts a peer that
already has the record. Thismor mongeringtechnique works well when few devices have the
record, propagating the “rumor” aggressively until it isloager “hot.” In the “pull” phase, each
device periodically contacts a randomly-chosen peer taiolainy records it is missing. Theanti-
entropyexchanges work best when most devices already have a rexongllementing the rumor
mongering phase and ensuring that every device reliabbirball available records.

To initiate a gossip transaction, each device periodicsdliects a peer and initiates a query to
that device. The initiator sends a vecto(8fD, timestampjuples indicating the newest records the
initiator holds for each series, and the responder replitsamy log records in those series that the
initiator does not yet have. The responder may also inclddéianal records relevant to the group,
such as records from another series newly merged into thggro

62

When a device writes new records to a given series, it mayoambtify other interested devices
that are reachable at that moment with the new records;wibernew records propagate lazily. In
the current design, a device picks a random peer and gosiip# ance per minute.

Devices gossip the records comprising a particular semi@sder, guaranteeing that the set of
records each holds for a given series is complete up to sontieysar time in the series owner’s
timeline. UIA imposes no gossip ordering constraints amdiffgrent series, however, so changes
Bob made on his home phone and on his laptop might arrive atdiliphone out of the original
order in which Bob made them. Since UIA must operate durirtgvomk partitions and periods of
disconnection, the potential for such misordering is uidaiule.

2.3.6 Remote Name Resolution

As outlined earlier in Section 2.3.1, a device resolves aimamponent UIA name by starting
with its own device-specific root group, and resolving theela comprising the name in right-to-
left order as in DNS. When the name resolution process oaetses groups in which the resolving
device participates directly, and thus for which the dekeeps replicas of all the records relevant
to the group in its own log, the group state calculations desd above provide all the information
necessary to resolve the name locally.

Resolving a name may however require traversing groups tohwthe resolving device only
has read access, and whose records the resolving devicaatqasactively replicate. If Bob refers
to the namd>C.Alice on his laptop, for example, Bob's laptop may have to contaetaf Alice’s
devices to obtain the link record required to resolve thell&¢C with respect to Alice’s personal
group. UlA'sremote resolutiomprotocol serves this purpose, and it operates similarlyatitional
DNS.

UIA's remote resolution protocol does not use DNS's timeoased cache consistency model,
however, since we do not assume that users managing UIA ginanglerstand cache consistency
and know how to configure appropriate timeouts for their geoWwIA instead uses a simple lease-
based protocol. When a device attempting to resolve a UlAenéthre “requestor”) contacts a
remote device (the “responder”) to resolve a particulaellathe responder can return along with
the lookup result deaseon the lookup result, or a promise to notify the requestoagtively if
the result subsequently changes within a particular time@¢98]. The requestor may then safely
cache the result for any subsequent lookups it makes dummgaise period, but flushes the result
from the cache if it receives a change notification from tlspoader in the meantime.

63

64

Chapter 3

Routing

Regardless of whether names are global as in traditional BINS8cally scoped as in UIAs per-
sonal hame system, devices must have a way to use those raloeaté fesolvg and connect to
(route tg their targets in order to make them useful for communicati®his chapter first intro-
duces the motivation and goals for the UIA routing layer ict®m® 3.1, then explores three specific
approaches to routing in the remaining sections.

3.1 Motivation and Goals of UIA Routing

The Internet traditionally assumes that DNS names resolV@ addresses, and that the IP routing
mechanism alone provides the means for devices to comnanigth each other via these names
and IP addresses. This assumption means in practice thatgfe¢ of a DNS host name must have a
static, public IP address, and static IP addresses arefmtaisingly rare and expensive on today’s
commoditized Internet, and are management-intensivesigraand use even once obtained.

By default, today’s mobile personal devices usually haveadyic |IP addresses assigned by the
Dynamic Host Configuration Protocol (DHCP) [68], and theeeices are often located behind fire-
walls or network address translators [113], where theugbei IP addresses are not reachable or even
globally unique outside of their private networks. Forwagdprotocols like Mobile IP [185] can
give a mobile device the illusion of having a static IP addreslependent of its actual attachment
point, but this solution does not eliminate the necessigttandant cost and difficulty of obtaining
the static “home” IP address for the mobile host, and in@gdise cost and latency of all commu-
nication when the mobile host is away from its home locatginge all traffic must be forwarded
through the home address.

In UIA, whenever physically possible, we would like persiodavices to provideully auto-
matic connectivitypetween each other whenever the user requires—espeaidiebn devices that
have social affinityby virtue of being in the same user’s personal group or nearlifpe user’s
social network. When the user refers to a personal name, bblld automatically find a way
to communicate without requiring the user to understandebup IP addresses or other protocol
technicalities. Communication should function smoothlgivariety of scenarios such as across the

65

Internet, between Internet-connected private LANs, antliwiad hoc networks disconnected from
the Internet (e.g., among passengers in a train).

To provide this automatic connectivity, UIA devices cogierin anoverlay routing protocoto
provide robust location-independent connectivity in theefof changing IP addresses, Internet rout-
ing failures, network address translators, or isolatiamficentral network infrastructure. The rest
of this chapter explores three specific approaches to dagigimis overlay routing protocokocial
routing in Section 3.2jdentity hash routingn Section 3.3, andompact routingn Section 3.4. The
first approach is simple, works well in scenarios we expebetcommon, and is implemented and
working in the deployed UIA prototype. The other two appluscare more general and ambitious,
but have as yet been validated only under simulation andragjlire further development before
widespread deployment. All three approaches have streragil limitations; it is not yet clear
which—or what combination of ideas from each—wiill evenlygleld the best long-term solution.

3.2 Social Routing

Because of UIA's goal of providing names tharsistentlyrefer to a particular device regardless
of how they move or where they are attached to the Internétsldindpoint identifiers (EIDs), to
which UIA personal names resolve (see Section 2.3.1, caamobtdo not contain any embedded
information about the currefdcation of the device, because that information would have to change
whenever the device moves. This design contrasts with theutahical CIDR [201] structure of
IP addresses on the Internet, in which varying-length pesfof an IP address indicate the node’s
attachment point at different administrative levels, sashedge network, service provider, and
network provider. The CIDR structure makes Internet rausimple and efficient, but is also the
source of many of the difficulties UIA is trying to fix. Thereé the UIA overlay routing layer
must address the more difficult problem of routing otegrology-independentr flat identifiers,
also known amame-independent routirig the theory literature [2, 15].

Since efficient, scalable routing with location-indepamtd®de identities is inherently challeng-
ing in its most general form [93], we would like to find an appriate set of simplifying assumptions
that will yield a robust, efficient solution for the scenariwe primarily care about. The primary
purpose of UIA's personal name system, as described in €hapts to provide connectivity with
devices that aradministratively relatedby virtue of having been merged into the same personal
group, or that areocially related by virtue of being located in the personal groups of users wh
are “friends” or otherwise have personal naming relatigpsbetween their devices, and thus are
likely to wish to communicate.

Given this primary purpose, the first overlay routing apphoave explore—social routing—
leverages the “social network” provided by the naming laiyereduce the scope of the routing
problem, from routing betweearbitrary devices, to routing “between friends.” The total number
of interconnected devices may ultimately be very large thetnumber of devices ia particular
user’'spersonal group and the personal groups of his immediatedsishould generally be much

66

smaller, which immediately reduces the scalability chrgks to a more reasonable degree. Also,
since a user’s own devices and those of his friends are likelbe both more trustworthy and more
willing to spend resources forwarding the user’s packets@ded, the naming layer’s social network
provides arust frameworkthat the routing layer can take advantage of.

The social routing protocol we develop here is optimizedcfornecting to devices in the user’s
immediatesocial neighborhoodprimarily the user’s own devices and those of friends namdile
user’s personal group, and occasionally “friends of friehtut rarely more indirect contacts. In
practice we expect users to create (or copy from other usarsgs in their own personal groups for
others with whom they wish to interact regularly, justifyiour assumed usage model.

In brief, a UIA device builds and maintains an overlay netaoetween itself and other devices
nearby in its social neighborhood. To locate a remote dewjcés EID, a device floods kcation
request through the overlay to discover the EIDs, IP addsesmd ports of devices forming a path
through the overlay to the target. The originating devi@nthonnects directly to the target’s dis-
covered IP address and port, or if the target is not direethginable (e.g., because of an intervening
NAT), forwardstraffic to it by source-routing data via existing connecsiém the discovered path.

3.2.1 Overlay Construction and Maintenance

Each UIA device maintains an open TCP connection with up tordigurable number of overlay
peers A device chooses its peers from the larger set of devicets isocial network based on a
number of criteria. Ideally, a device’s peers should be emilblic Internet, so that a device behind
a NAT can receive messages from devices outside via itseaptering connections. A device
should choose other devices when none on the public Intereeteachable, however, so that the
overlay remains useful in ad hoc environments. Furtherptbeedevices of friends should be close
to each other in the overlay, so that location or forwardiathp between them are short.

To meet these goals, a device first prefers as peers deviaesrstable and secondarily
prefers those that are closest to ifilendship distanceA device is considerestableif it does not
have a private IP address [198] and has met a threshold |eeekdability in the recent past. A
peer'sfriendship distancés roughly the number of labels in the local device’s shanmesne for that
peer. The rest of this section explains how a device dissxstable peers and calculates friendship
distances.

Each device maintains@otential peer sethat contains potential peers’ EIDs and the times, IP
addresses, and ports at which the device has connectedsmikers in the past. Initially, a device
populates this set with the devices to which the user hastljinatroduced the device. To discover
new potential peers, a device periodically exchanges tenpial peer set with those of other devices
within a configurable maximum friendship distance. A dewdels to the set only those devices to
which it is able to establish a TCP connection when it discoteem.

A device classifies a potential peerstableif it meets an availability threshold (e.g., 90%) at
the same public IP address and port in the recent past (@egadt week). To monitor availability,
a device periodically chooses a random potential peer @athpts a connection to its last known

67

location. A device need not have a static IP address to bsifidgb as stable: a device with a
dynamic non-private IP address that changes infrequenutbh as a home PC left on and connected
via a DSL or cable modem, will also typically be classified @bke.

A device computes thigiendship distancef each of its potential peers by assigning a distance
of 1 to its direct peers those the naming layer identifies as devices in the usersopal group
and in groups to which the user has linked (the user’s imnediiiends). The device then assigns
distances to indirect peers transitively, giving the dingeer of a direct peer a distance of 2, for
example.

To improve robustness, a device manufacturer can seed thatiab peer sets of its products
with a set ofdefault peerswhich devices treat as having an infinite friendship distartwo newly-
purchased mobile devices, after being introduced and exgjitha potential peer sets, thus have at
least one stable peer in common at the outset to help theranmeect after a move. Once the
mobile devices discover other stable peers at smallerdsigip distances, however, they prefer the
new devices over the default peers, mitigating the manufacs cost in providing this robustness-
enhancing service.

3.2.2 Token-limited Flooding

To communicate with a remote device, a device first attemptiset TCP connection to the IP
address and port at which it last connected to the targetif af this connection fails or the
originator has no address information for the target devidoods a location request through the
overlay to locate the target by its EID.

UIA uses atoken countin place of the traditional hop count [42], to limit the seopf location
request floods. The token count bounds the total numbelevicesto which a request may be
forwarded, rather than the number of times each request mag-broadcast. This distinction is
important for two reasons. First, although devices seelotmect with a fixed humber of peers,
the number of devices that choose a given device dependsdartfet’s stability and popularity,
so the overlay’s degree is highly non-uniform. Hop counhissta poor predictor of the number of
devices a request will reach. Second, the overlay netwdrlgldy redundant: two friends’ devices
are likely to share many common peers, for example, so segrah devices within some distance
of a request’s source is often unnecessary.

Location requests contain the EIDs, IP addresses, and pbdsvices they have traversed;
devices forward responses back through the overlay alangaime path.

A device with an open TCP connection to a request’s targetddiately responds with the
target’s IP address and port. Otherwise, it subtracts dkentéor itself, divides the other tokens
among its peers not already in the path, distributing anyaieder randomly, and forwards the
request to those peers that receive a non-zero count. Theed®tains the request’s target EID
and return path for a short period, waiting for the forwardeguests to complete, and replying to
the original request wheany of the forwarded ones succeed or wrahof them have failed. A
request also fails if the source has not received a suct¢essfonse within a timeout. If a device

68

receives a duplicate request for the same EID as an outstaretjuest (e.g., along a different path),
it forwards the new request anyway according to its tokemtayiving peers for which there were
not enough tokens in previous instances another chancedweghe request.

As we find in Section 7.2, most location requests succeedmittie near vicinity of the source
in the overlay network. To limit the cost of the search, a dehus initially sends each request with
a limited number of tokens and retries after each failurdnaitmultiplicatively increased number,
up to some maximum.

3.2.3 Source-Routed Forwarding

To communicate with the target device after receiving aesssitl location response, the originator
tries to open a direct connection to each device in the resppath, starting with the target itself
and proceeding backwards along the path until a connectiocegds. In the best case, the first
connection attempt in this sequence—the one directly tdafget device—succeeds, and no for-
warding is necessary; in this case the UIA overlay routingtanerely functions as a “resolver,”
mapping location-independent EIDs to location-depentler@ddresses. If the first, direct connec-
tion attempt fails, however, the originator source-routesssages to the target along the tail of the
path starting with the device to which it successfully catad directly.

Consider for example two devicesand b behind different NATs, both of which peer with
a common stable device Whena performs a location request féis EID, it discovers the path
a — s — b. Devicea then tries to open a direct connectiorbtdutb’s NAT blocks that connection,
soa forwards traffic tob throughs instead. Device itself initiates no location requests, but merely
forwards traffic along the path specified by

3.3 Identity Hash Routing

The social routing protocol described in the last sectidnieaes scalability by assuming that users
mostly wish to communicate with their friends, an assunptiat is likely to hold in many scenar-
ios but not all. If the user wishes to run applications on tbp/id\ that depend on large-scale self-
organizing protocols, such as swarm downloading [55], qrokocols frequently require commu-
nication between arbitrary nodes that are administratiaeld socially unrelated. Thus, we would
like to develop a more general overlay routing protocol foAlthat efficiently provides scalable
routing betweeranyindirectly connected pair of UIA nodes, not just betweearfds.

This section introduces Identity Hash Routing (IHR), a mgitscheme inspired by Distributed
Hash Table (DHT) algorithms [147,157,196,211,236,273]L TS normally provide onlyesolution
service—the ability to look up a value in a self-organizingtiibuted structure given its key or
content hash—and assume that the network in which they amaiipg is fully-connected: i.e., that
every node can communicate directly with every other nodéetnand. But many nodes on today’s
Internet cannot be reached directly except via forwardinlgAT traversal through other nodes, and
the rules determining which nodes can and can't directlghreghich others are complex, subtle,

69

and dynamic results of the interplay between interdomathirstnadomain routing, firewall policies,
NATs, and many other factors. In a traditional DHT, when margmber are persistently reachable
by some DHT members but not others, this condition causesspréad “disagreement” in the DHT
about which nodes are alive and which aren’t, which can prtegenvergence and make lookups
unreliable [90].

With UIA routing, in contrast, we want each node to be ablend faind connect to any other
even if many pairs of nodes are connected only indireectguiring explicit forwarding through
intermediate nodes (or NAT traversal) to facilitate thamoounication. Nevertheless, we find in
this section that it should be feasible to adapt DHT lookymathms into scalable overlay routing
schemes. Unlike traditional DHTs, IHR does not assume thderdying protocols provide con-
nectivity between any two nodes. When the underlying nekvaits to provide direct connectivity
for any reason, such as intermittent glitches, network egkltranslators, or incompatible address-
based routing technologies, we want IHR to route arouncetbesontinuities by forwarding traffic
through other IHR nodes.

Key Properties of IHR

The crucial scalability property IHR provides is that it eiintly allows each UIA node to find a
route toany of a large numbelV of total nodes in the connected network, while directly isigr
information about (and routes to) only abautliog N) other nodes. Like the DHT algorithms
it builds on, IHR achieves this scalability by distributinguting information throughout the net-
work in a self-organizing structure: in particular, IHR ssestructure adapted from the Kademlia
DHT [157].

The cost of distributing routing information throughouethetwork for scalability is that indi-
vidual IHR nodes rarely have enough information to deteetive shortest or “best” possible route
to another node. In effect, IHR does not implement a disteithtiall-pairs shortest paths” algorithm
like conventional protocols for flat namespaces do [127]fal, it is known to be impossible to
achieve shortest-path routing withiV') state per node [93]. Instead, IHR attempts the more moder-
ate goal ofefficientlyfinding somepath whenever one exists, and usually finding “reasonalulyt’sh
paths. This goal is appropriate for the UIA routing layerdugse its purpose is to provid®mme
usable communication path in the unfortunate situationesnal? cannot find any (e.g., due to the
devices being in different IP address domains).

In general we cannot expect IHR to be as efficient as routiotppols that take advantage of the
locality and aggregation properties of structured adeéx®skiR is not intended to replace address-
based routing protocols, but to complement them. By usirdyess-based protocols such as IP
to move data efficiently across the many “short” hops conmgyishe core Internet infrastructure
and other large managed networks, IHR only needs to routeataibss across a few “long” hops,
resolving the discontinuities between address domaingéadding managed core networks to ad
hoc edge networks. For this reason, it is less importantH& tio find the best possible route all the
time, and more important for the algorithm to be scalablbust, and fully self-managing.

70

We explore two specific IHR forwarding mechanisms based erséime routing protocol. One
mechanism guarantees that nodes can operééliy V) space per node on any network topology.
The other forwarding mechanism allows IHR to find somewh#ebeoutes and still use3(log N)
space on typical networks, but may requipéN') space on worst-case network topologies. With
either forwarding mechanism, simulation results presemdéer in Chapter 7 indicate that IHR
consistently finds paths that are on average withinthe length of the best possible path. IHR
occasionally chooses paths that are much longer than thedssble path, but these bad paths are
rare.

3.3.1 Routing Protocol Design

This section describes the distributed lookup and routingcgire that enables IHR nodes to locate
and communicate with each other by their topology-indepahdlentities.

Neighbors and Links

Each node in a IHR network maintainsnaighbor table in which the node records information
about all the other IHR nodes with which it is actively comroating at a given point in time,
or with which it has recently communicated. The nodes listethe neighbor table of a node
A are termedA’s neighbors A neighbor ofA is not necessarily “near” td in either geographic,
topological, or node identifier space; the presence of abeigrelationship merely reflects ongoing
or recent pairwise communication.

Some neighbor relationships are mandated by the desigr dfifR protocol itself as described
below, while other neighbor relationships are initiatedtty actions of upper-level protocols. For
example, a request by an upper-level protocol on ndde send a packet to some other nale
effectively initiates a new IHR neighbor relationship beem A and B. These neighbor relation-
ships may turn out to be either ephemeral or long-term. A IldRe’s neighbor table is analogous
to the table an IPv4 or IPv6 host must maintain in order to kesgk of the current path maximum
transmission unit (MTU) and other vital information abother endpoints currently or recently of
interest to upper-level protocols.

As a part of each entry in a node’s neighbor table, the nodtf implementation maintains
whatever information it needs to send packets to that pdaticneighbor. This information de-
scribes dink between the node and its neighbor. A link between two netlead B may be either
physical or virtual. Aphysical linkis a link for which connectivity is provided directly by the-u
derlying protocol (IP). For example, # and B are both well-connected nodes on the Internet that
can successfully communicate via their public IP addresbes AB is a physical link from the
perspective of the IHR layer, even though this communicagath may in reality involve many
hops at the IP layer and even more hops at the link layer. Ifyaipal link is available betweeA
and B, then A and B are termeghysical neighborsand each node stores the other’s IP address or
other address information for underlying protocols in thprapriate entry of its neighbor table.

71

Physical Links

Virtual Links

Figure 3-1: Forwarding via virtual links

A virtual link, in contrast, is a link between two nodes that can only comaat® by forwarding
packets through one or more intermediaries at the IHR lew. describe such nodes waistual
neighbors The mechanism for IHR-layer packet forwarding and the eatst of the neighbor table
entries for a node’s virtual neighbors will be describeddath Section 3.3.2. For now, however, we
will simply assume that the following general principle #®l Given any two existing physical or
virtual links AB and BC' with endpointB in common, nodesgt andC' can construct a new virtual
link AC between them by establishing a IHR-level forwarding patbugh B. That is, IHR nodes
can construct new virtual links recursively from existintgypical and virtual links.

In Figure 3-1, for example, virtual link AC builds on phydidmks AB and BC, and virtual
link AD in turn builds on virtual linkAC' and physical linkC'D. Once these virtual links are set up,
node A has noded3, C, andD in its neighbor table, the last two beingtual neighbors Node D
only has nodeg¢’ and A as its neighborsD does not necessarily need to know abBun order to
use virtual linkAC.

Constructing Virtual Links

IHR nodes construct new virtual links with a single basic hatdsm, represented by thaild _link
procedure shown in Figure 3-2. A nodecan only build a virtual link to some other nodg if n
already has some “waypoint” noae, in its neighbor table, and,, already has:; in its neighbor
table respectively. Node can then use thieuild _link procedure to construct a link fromto n;.

In the build _link procedurep first attempts to initiate a direct connectionitpvia the under-
lying routing protocol, using any network- or link-layerdrdss(es) for; thatn may have learned
from n,,. For example, ifn; is a node with several network interfaces each in differelutress
domains, them; might publish both the IP addresses and the IEEE MAC addsessall of its
network interfaces, so that other IHR nodes in any of theseailts can initiate direct connections
with n; even if they don’t know exactly which domain they are in. Ifigast one of these direct
connection attempts succeeds, thenow hasn; as a physical neighbor, and a virtual link is not
necessary.

If all direct connection attempts fail (or do not succeedcilyi enough), however, them con-
structs a virtual link to; usingn,, as a forwarding waypoint. In this way, theild-link procedure

72

// build a link from noden to target node;,
/[using noden,, as a waypoint if necessary
n.build link (n,,, n:) {

assert ¢ andn,, are neighbors)
assert ., andn, are neighbors)

try to contactn; by its IP address, MAC address, etc.
if direct contact attempt succeefls

build physical link fromn to n;
} else{

build virtual link fromn to n; via n,,

}

assert{ andn; are neighbors)

Figure 3-2: Pseudocode to build a physical or virtual link

takes advantage of underlying connectivity for efficiencyewever possible, but succeeds even
when only indirect connectivity is available.

IHR Network Structure

While virtual links provide a basic forwarding mechanistAR nodes must have an algorithm to
determinewhich virtual links to create in order to form a communication ph#iween any two
nodes. For this purpose, all IHR connected nodes in a netaelfkorganize into a distributed
structure that allows any node to locate and build a comnatinic path to any other by resolving
the target node’s identifier one bit at a time from left to tighhe IHR network structuring algorithm
is closely related to peer-to-peer distributed hash tdbeT]) algorithms such as Pastry [211] and
Kademlia [157]. Unlike DHTSs, however, IHR uses this selfiamizing structure not only to look up
information such as the IP or MAC address(es) of a node frentiR identifier, but also as a basis
for constructinglHR-level forwarding paths between nodes for which undegyprotocols provide
no direct connectivity.

For simplicity of exposition we will assume that each nods baly one identifier, each node’s
identifier is unique, and all identifiers are generated bystrael-bit hash function. UIA's endpoint
identifiers (EIDs) already meet these requirements. Wetregidit IHR node identifiers as opaqlie
bit binary bit strings. Théongest common pref{x CP) of two nodes:; andn,, writtenlcp(ni, n2),
is the longest bit string prefix common to their respectiv® Ildentifiers. Theproximity of two
nodesproz(ny, ns) is the length ofep(ng, ny): the number of contiguous bits their identifiers have
in common starting from the left. For example, nodes 1011 B0l have an LCP of 10 and a
proximity of two, while nodes 1011 and 0011 have an empty LE® lzence a proximity of zero.
Nodes that are “closer” in identifier space have a higheripritx. Since node identifiers are unique,

73

MyNodeID 1 O 1 1 O O 1 O~

. Bucket@ N
01001101 11101111 10000101 10101101 10110110

My Neighbors 00011011{11011000 10011101

00011011 11011100

Full
Node ID ()
1
Space

Figure 3-3: Neighbor tables, buckets, and node ID space

0 < prox(ni,n2) < lif ny # ng, andproz(n,n) = .

Each noden divides its neighbor table intbbuckets, as illustrated in Figure 3-3, and places
each of its neighbors; into bucketb; = proxz(n,n;) corresponding to that neighbor’s proximity
to n. This distance metric, also known as the XOR metric [157F thee important symmetry
property that if nodens falls into bucketh of noden,’s neighbor table, then, falls into bucket of
n9’s neighbor table. This symmetry facilitates the estaltisht of pairwise relationships between
nodes, and allows both nodes in such a relationship to bdrafitrequests flowing between them
in either direction.

In order for a IHR network to be fully functional, the netwarlust satisfy the followingonnec-
tivity invariant. Each node: perpetually maintains an active connection with at leastrmgighbor
in every buckeb, as long a reachable node exists anywhere in the networkdioéd fit into bucket
b. In practice each node attempts to maintain at I&asitive neighbors in each bucket at all times,
for some redundancy factér

Building Communication Paths

If the connectivity invariant is maintained throughout eRiHetwork, then any node can commu-

nicate with any target node; by the following procedure, outlined in pseudocode in FégB«4.
Noden first looks in buckeb, = prox(n,n;) of its own neighbor table. If this bucket is empty,

thenn; does not exist or is not reachable, and the search fails. elbtitket contains:; itself,

74

// build a communication path from node
/[to target noden;
n.build _path(n;) {
1=1
by = prox(n,ny)
n1 = n.neighbortabldb; |
while (n; # ny) {
bit1 = prox(n;,ny)
assertb; 11 > b;)

ni+1 = n; — find_neighborin_bucket(b; 1)
if find _neighborin_bucket request failed
returnfailure: noden,; does not exist or is not reachable.

}

n.build_link (n;, n;4+1)
assert ;1 is nown's neighbor)

i=i+1
}

returnsuccesswe now have a working link ta;.

}

Figure 3-4: Pseudocode to build a path to any node

then the target node is already an active neighbor and tlmelssacceeds. Otherwise,picks any
neighborn, from bucketb,. Sincen;’'s andn;’s proximity ton are bothby, the firstb; bits of ny
andn; match those ofi’s identifier, while their immediately following bits are thoopposite that
of n. The proximity ofn, to n; is therefore at leagt; + 1.

Noden now sends a messagerig requestingr’s nearest neighbor ta;. Noden; looks in
bucketb, = p(n1,n,) in its neighbor table, and returns information about at least ook sode,
na, if any are found. The information returned includes the lidéntifier of the nodes found along
with any known IP addresses, IEEE MAC addresses, or otheerlyily protocol addresses for
those nodes. Node then uses theuild _link procedure in Figure 3-2 to establish a connection to
ns, via a direct physical link if possible, or a virtual link thughn, otherwise.

Now n, is also an active neighbor af, falling into the same bucket aefs neighbor table as,
but closer in proximity to:;. The original node: continues the search iteratively fram, resolving
at least one bit per step and building additional recursiveial links as needed, until it finds the
desired node or the search fails. If the search eventuatiyemds, then will have n; as an active
(physical or virtual) neighbor and communication can peate

In practice, nodes can improve the robustness and respomsiy of théuild _path procedure
by selecting a set of up tk neighbor nodes at each iteration and making _neighbor requests
to all of them in parallel, in much the same way that Kademéeaflelizes its DHT lookups. Par-
allelizing the construction of IHR communication paths tzes added benefit that the originating

75

node is likely to end up having discovered several alterpatbs to the same node. The originating
node can evaluate these alternative paths using somelsuitiieria and choose the best of them
for subsequent communication, and keep information allmubthers stored away for use if the
primary path fails. The two endpoint nodes can even balamaie traffic load across these paths if
they can find reason to believe that the paths are sufficiamiigpendent for load-balancing to be
effective in improving overall performance.

The Merge Procedure

The abovebuild _path procedure is much like the lookup procedure used in the K&dddpHT,
modified to support construction of indirect forwarding Embetween nodes that cannot commu-
nicate directly via underlying protocols. For network cpastion and maintenance, however, IHR
requires a much more robust algorithm than those used inideland other DHTs. DHTs gener-
ally assume not only that underlying protocols provide &mi/-to-any connectivity between nodes,
but also that nodes join or leave the network at a limited aaie relatively independently of each
other. In the discontinuous network topologies on which liditended to run, however, a single
broken link can split the network at arbitrary points, cagghe nodes in either partition to perceive
that all the nodes in the other partition have disappearethasself the network split persists for
some time, the nodes on either side will re-form into two safganetworks, which must somehow
be merged again once the networks are re-connected.

IHR assumes that underlying protocols provide some mearnghish topologically near IHR
nodes can discover each other and establish physical rgighlationships. For example, IHR
nodes might use Ethernet broadcasts IPv4 subnet broadea#v6 neighbor discovery to detect
nearby neighbors automatically. The current UIA prototgepends on Bonjour [11] to provide
this local-area discovery function.

Nodes might also contain “hard-coded” IP addresses of sosfikwown IHR nodes on the In-
ternet, so that nodes with working Internet connectionsqrackly merge into the public Internet-
wide IHR network. Finally, the user might in some cases expliprovide the address information
necessary to establish contact with other relevant IHR sio#henever a new physical link is es-
tablished by any of the above means, the node on each endlwfkiperforms themerge procedure
outlined in Figure 3-5, to merge itself into the network tegsle from the other node.

The merge process works as follows. Suppose that ndakes noden; as a neighbor, falling
in bucketb; = p(n,n1) in its neighbor table. Ib; > 0, thenn andn; have one or more initial
identifier bits in common, and any neighborsrmafin bucketsd throughb; — 1 are also suitable for
the corresponding buckets itis neighbor table. Node therefore requests information from
about about at least one of’s neighbors in each of these buckets, and builds a physicaftoal
(via nq) link to that node. Assuming’s neighbor table satisfied the connectivity invariams
neighbor table now does as well for bucketiroughb; — 1.

Noden now asksn; for any neighbor fromn;’s bucketb; other thann itself, as ifn was
searching for its own identifier im;’s network. If such a node is found, then its proximity

76

/I merge noder into the portion of a network
I/l reachable from neighbar;

n.merge(n) {
1=1
by = prox(n,n)
while (b; < 1) {

forj =0thru(b; — 1) {
if n.neighbortabl€;] not already full{
n; = n; — find_neighborin_bucket(;)
if find_neighborin_bucket request succeedéd
n.build_link (n;, n;)
}
}
}

ni+1 = n; — find_neighborin_bucket(b;)
if find __neighborin_bucket request failed
break

bi+1 = prox(n,nit1)
assertb;11 > b;)

n.build_link (n;, n;4+1)
t=1+1

Figure 3-5: Pseudocode to merge a node into a network

by = p(n,n9) must be at leadi; + 1. Noden builds a link tons via nq, fills any empty buckets
0 < b; < by from ny’s neighbor table as above, and then continues the proaas:frfor neighbors
with proximity greater tham,. Eventuallyn reaches some nodg with proximity b;, whose bucket
b; contains no neighbors other thanitself. This means that there are no other nodesils
network with greater proximity ta thanp;, and son has satisfied the connectivity invariant in its
own neighbor table, at least with respect to the portion efrtetwork reachable from,.

Merge Notifications

After a noden merges into another nodg’'s network via themerge procedure above, however,
there may be other nodesiin’s network besides the ones thatontacted directly that also need
to learn aboutr beforetheir neighbor tables will satisfy the connectivity invariant fine new,
larger network. In additiony may not be just a “lone” node joining;’s network, but may instead
be a member of a larger existing network (reachable fréameighbor table) that previously split
from or evolved independently from;’s network. In this case, many nodesfs network may
need to learn about nodesn’s network, and vice versa, before the connectivity invatriaill be

77

re-established globally.

To cause other nodes to update their neighbor tables ajpgiedpy IHR uses a simple notifica-
tion mechanism. Whenever a nodanakes contact for any reason with a new physical or virtual
neighborn,,, and buckeb,, = prox(n,n,) of n’'s neighbor tablevas not fullbefore the addition of
n,, n sends a message to all of its existing neighbors notifyiegitbf the new node,,. In response
to this notification message, eachid$ existing neighbors:; contactsn,, via n;.build_link(n, n,,),
and then likewise merges into,’s network vian;.mergén,,). If this process helps; to fill any
of its previously underfull neighbor table buckets, thensubsequently sends notificationsite
neighbors, and so on. The chain reaction stops when all ddiffeeted nodes cease finding new
nodes that fit into underfull buckets in their neighbor table

To understand this process, consider two initially sepaltdR networks: a “red” network con-
sisting ofi nodesr; ... r;, and a “green” network consisting gfnodesy; ... g;. We say that any
given noden satisfies theed connectivity invariantf each bucket im’s neighbor table contains
at least one red node if any red node exists that could fit b kucket. Similarly, we say that a
noden satisfies theyreen connectivity invarianf each ofn’s buckets contains at least one green
node if any green node exists that could fit into that bucket.adsume that all green nodes initially
satisfy the green connectivity invariant, but no green soskisfy the red connectivity invariant
because there are initially no connections between thenrddyeeen networks. Similarly, all red
nodes satisfy the red connectivity invariant but no red saisfy the green connectivity invariant.

Now suppose that a physical link is somehow establisheddetwodes; andg;, connecting
the two networks. In response, performs anerge(g;), filling any underfull buckets in its neighbor
table that can be filled from green nodes reachable ffprandg; likewise performs anerge(ry)
to fill its buckets from nodes in the red network. Nadeeffectively locates and builds links with its
nearest (highest-proximity) neighbors in the green netwamdg; likewise locates and builds links
with its nearest neighbors in the red network. As a resulerdahe merge process satisfies the
green connectivity invariant ang satisfies the red connectivity invariant. Singeandg; already
satisfied the red and green invariants, respectively, adihg@eshew neighbors to a node’s neighbor
table cannot “un-satisfy” a previously satisfied conndistiinvariant, bothr; and g; now satisfy
the global connectivity invariant covering both red and green nodes.

Assuming node identifiers are reasonably uniformly disted, with high probability one or
both of r; andg; will find one or more new nodes in the opposite network thanfib ipreviously
underfull buckets. Before the merge, bucket prox(ri, g1) in bothr; andg; may already have
been full, which is likely ifr; andg; are far apart in identifier space. There may evemdnodes
in the green network that fall into underfull bucketsrin but this event is unlikely unless the green
network is much smaller than the red network. Similarlyréh@may be no nodes in the red network
that fall into underfull buckets i, but only if the red network is much smaller than the green
network. If the two networks are similar in size, theothr; andg; will almost certainly find new
neighbors that fit into underfull buckets.

At any rate, the discovery of new neighbors falling in thesderfull buckets causes and/org;

78

to send merge notifications to their existing neighbors enre/d and green networks, respectively,
supplying a link to the opposite node as a “hint” from whiclart nodes in each network can
start their merge processes. Each node in either netwariksthatified in this way initiates its own
merge process to fill its neighbor table from nodes in the other petwin the process triggering the
merge process in its other neighbors, eventually leavingoales satisfying the global connectivity
invariant.

In practice it is important to ensure that the inevitablerjiusf merge notifications does not
swamp the whole network, especially when two relativelgéanetworks merge. Standard protocol
engineering solutions apply to this problem, however, agctate-limiting the acceptance or spread
of notifications, propagating merge notifications periatlicin batches, and keeping a cache in
each node of recently-seen merge notifications to avoidpaifig the same merge many times in
response to equivalent merge notifications received frdfardint neighbors.

3.3.2 Packet Forwarding

The previous section described how IHR nodes form a selroring structure in which any node
can build a communication path to any other node by recuyss@nstructing virtual links on top
of other links, but did not specify exactly how virtual linkgerate. In this section we explore
the construction and maintenance of virtual links in mor&itleWe will explore in particular two
alternative methods for implementing virtual links: oneséd on source routing, the other based
on recursive tunneling. Source routing potentially enalnledes to find more efficient routes and
keeps the basic forwarding mechanism as simple as possitile,the recursive tunneling approach
minimizes the amount of state each node must maintain ireigghbor table.

Source Routing

With source routing, each entry in a node’s neighbor talderdpresents a virtual neighbor contains
a completesource routelo the target node. The source route lists the IHR identifiées sequence
of nodes, starting with the origin node and ending with tmgdtinode, such that each adjacent pair
in the sequence has (or recently had) a worlphgsicallink between them. Of course, since these
links need only be “physical” from the perspective of the IlRer, each link in a IHR source route
may represent many hops at the IP routing or link layers.

Consider for example Figure 3-6, in which the five nodes3, C, D, E/ are connected by a
chain of physical links. Noded andC have established a virtual linkC' by building a two-hop
source route via their mutual neighbBr, and node<’ and £ have similarly established a virtual
link CE via D. Suppose nodel subsequently learns abo#t from C' and desires to create a
virtual link AFE via C'. Node A contactsC' requestingC’s source route td, and then appendsS’s
source route fo€' F (A, B, C) to A’s existing source route fodC' (C, D, F), yielding the complete
physical routed, B,C, D, E.

To send a packet t&, nodeA includes in the packet’s IHR header the complete source rfout
the virtual link AE stored in its neighbor table entry fé. Each IHR node along the path examines

79

ATl meeeemmeaaaa---1iT E
Source Routing Tunneling
A's Neighbor Table: A's Neighbor Table:
B | Phys | 123.45.67.89 B | Phys | 123.45.67.89
C | Virt A->B-C C | Virt A=B=C

E | Virt | A»B->C-D-E E | Virt A=C=E

“=” Refers to “=>” Refers to
physical links only physical or virtual links

Figure 3-6: Source routing versus recursive tunneling

the header to find the packet’s current position along ith,matd bumps this position indicator to
the next position before forwarding the packet to the nex Iitbde in the path. Forwarding by
source routing in IHR is thus essentially equivalent to seuputing in IP [121].

In theory each node may have to store up to k& entries in its neighbor table, whetes the
node identifier size and hence the number of buckets in tlghber table, and is the redundancy
factor within each bucket. In practice only the thg, N buckets will be non-empty, wher&
is the total number of nodes in the network. With source réote@arding, neighbor table entries
may have to hold source routes for paths upMo- 1 hops in length, in the worst-case network
topology of N nodes connected together in one long chain. In this case reztd may require
O(N log N) storage. In practical networks these source routes wilbafge be much shorter, so
this large worst-case storage requirement may not be agirobl

Recursive Tunneling

In contrast with source routing, where each entry in a nodeighbor table for a virtual neighbor
contains a complete, explicit route that depends only osighYlinks, recursive tunneling preserves
the abstraction properties of neighbor relationships bywéhg the forwarding path describing a
virtual link to refer to both physical and (other) virtuahkis. As a result, each neighbor table entry
representing a virtual link only needs to hold two IHR idéats: the identifier of the target node,
and the identifier of the “waypoint” through which the virtdenk was constructed. Recursive
tunneling therefore guarantees that each node requireesttiniog N) storage, since neighbor
table entries have constant size.
In the example in Figure 3-6, nod¢ has constructed virtual linklC via B, and nodeC' has

constructed virtual linklC E via D, and as befored learns aboufr from C and wants to construct

80

A—» B —>»C—»D——>»F

A->B B->C C-D D-E
A=B=C A=B=C C=D=E C=D=E
A=C=E A=C=E A=C=E A=C=E

Packet Packet Packet Packet
Data Data Data Data

Figure 3-7: Forwarding by Recursive Tunneling

avirtual link AFE via C. With recursive tunnelingd does not need to duplicate its rodteor askC
for information about its route t& in order to construct its new virtual link t&. Instead,A merely
depends on the knowledge that it already knows how to gét, tand thatC' knows how to get to
E, and constructs a neighbor table entry fodescribing the “high-level” two-hop forwarding path
AC E.

Recursive tunneling has several beneficial propertiest,Kince each neighbor table entry for
a virtual neighbor needs to store only two IHR identifierg $ize of each neighbor table entry can
be limited to a constant, and the size of a node’s entire beigtable depends only on the size
of IHR identifiers (and hence the number of buckets), and thraber of entries in each bucket.
Second, if “low-level routes” in the network change, allgher-level routes” that are built on them
will immediately use the correct, updated information withinformation propagation delays. For
example, if nodeD above goes down making the pathD, E unavailable, bu€ finds an alternate
route toF, then the virtual linkAE will automatically use this new route without even having to
be aware that something @'s neighbor table changed.

The actual packet forwarding mechanism for recursive tlimgpds of course slightly more
involved than for source routing. As illustrated in Figur& 3o send a packet t&, nodeA wraps
the packet data in three successive headers. First, itiquiepe IHR tunneling header describing
the “second-level” virtual path from to E via C'. Only nodesC' and E will examine this header.
Second,A prepends a second IHR tunneling header describing the-tféist” virtual path from
Ato C via B. Finally, A prepends the appropriate lower-layer protocol’'s headeh as an IP or
Ethernet header, necessary to transmit the packet via trsicaphlink from A to B.

When the packet reaches noBte B strips off the lower-layer protocol header, and looks in the
first-level (outer) IHR tunneling header to find the IHR id&at of the next hop.B then looks up
this identifier in its neighbor table, prepends the appedpr{new) lower-layer protocol header, and
transmits the packet 10

When the packet reaches nadeC strips offboththe lower-layer protocol header and the first-
level IHR tunneling header (sinad@ was the destination according to that header), and examines
the second-level tunneling header to find the final destinafi. C' now looks upFE in its neighbor

81

table and, finding thak is a first-level virtual neighbor(' prepends a new first-level tunneling
header describing the route frato £ via D. Finally, C prepends the lower-layer protocol header
for the physical link fromC' to D and forwards the message fta D subsequently forwards the
message tdv, which finally strips off the lower-layer protocol headerddnoth of the tunneling
headers before interpreting the packet data.

Path Optimization

When an upper-layer protocol on one node attempts to costaue other node via IHR, the
build _path procedure described in Section 3.3.1 searches the netwodtwse for the requested
node identifier, and in the process may build one or more alitinks using thebuild _link pro-
cedure of Section 3.3.1. The search process through whede thirtual links are constructed is
essentially driven by the distance relationships in IHRhtder space, which have nothing to do
with distance relationships in the underlying physicaldiogy.

Each IHR node has complete flexibility, however, in the waghiboses thé nodes to fill a
particular bucket in its neighbor table whenever there apeenthank nodes in the network that
could fit into that bucket. If the network contaié nodes with uniformly distributed identifiers,
then we expect nodes to have some flexibility in their choit@eighbors throughout the first
logs N — logs k buckets. Further, we naturally expect nodes to select test*l&: nodes they
find for each such bucket: either the closest in terms of ghysopology (IHR hop count), or the
best according to some other pragmatic measure involviegdsg, bandwidth, and/or reliability for
example.

In general, therefore, we expect the first few iterationdhebiuild _path process to stay within
the node’s immediate topological vicinity, with subsequbaps covering larger topological dis-
tances as the remaining distance in identifier space is gsoiyely narrowed. While the first few
build _path hops will depend only on physical or inexpensive “low-ofdértual links, the last few
hops might each depend on an expensive “high-order” vitinlal eventually resulting in a commu-
nication path that criscrosses throughout the network iglayrnon-optimal fashion. It is therefore
important that we find a way to optimize the routes produceadguhis process.

The most basic path optimization is inherent in bwgld _link procedure. If a nodel locates
target nodeB via the build _path process, butd subsequently finds that it can contagtdirectly
using underlying protocols such as IP using address infliomat discovers during the process,
thenbuild _link will “short-circuit” the path fromA to B with a physical link requiring no IHR-
level forwarding.

A second important path optimization is for nodes to chegkotovious redundancies in the
routes produced as higher-order virtual links are builtrflower-order virtual links. Source routing
makes this type of path optimization easier, since each hadenformation about the complete
physical route to each neighbor in its neighbor table, butwileexplore a more limited form
of path optimization as well that works with recursive tulimg Other path more sophisticated
forms of path optimization are certainly possible and @ddé&, such as optimizations relying on a

82

¢ D . D . D
"o :, | \“‘ /',"l |\““‘ "'o s“‘
S0 SICh
," l'- | ‘-‘ :' :. / \ l: ‘-‘ ," “,
i _B._: + B E_: i B—E_
(a) (b) (c)

Figure 3-8: Path optimization opportunities on differespidlogies, whem builds a virtual link to
FviaD.

deeper analysis of the relationships between known neighloo based on additional information
exchanged between neighbors beyond the minimal informagquired to maintain the network
and build virtual links. We leave more advanced path optitinins for future work, however, and
focus for now on the effects of simple optimizations thay @h strictly local information.

Source Route Optimization

In IHR forwarding by source routing, we optimize source ssuivhen combining two shorter paths
into a longer one simply by checking for nodes that appearoih Ishorter paths. For example,
in Figure 3-8(a), suppose nodk has established a virtual link D via B with path A, B,C, D,
by building on virtual link BD with path B, C, D. A virtual link also exists betwee® and F'.
A now learns abouf’ through D and attempts to create a virtual linkF’ via D. Without path
optimization, the resulting path will ba, B, C, D, C, B, F'. The path can be trivially shortened to
the optimalA, B, F', however, simply by noting thd® appears twice and eliminating the redundant
hops between them.

The same optimization shortens the path frdno F' in Figure 3-8(b) fromA, B,C, D,C, E, F
to the optimalA, B, C, E, F'. This path optimization does not help in the case of FiguB{c3;
however, sinced does not necessarily know thBtand E are direct neighbors.

Recursive Tunnel Optimization

Path optimization is not as easy in forwarding by recursivels, because the information needed
to perform the optimization is more spread out through thevolk. For example, in Figure 3-8(a),
node A knows that the first hop along virtual linkD is the physical linkAB, but A does not
necessarily know what type of linB D is and may not even know that nodeexists.

In general, for any virtual link fromm to nq via no, noden also contains in its neighbor table
a virtual or physical link representing the first hop fremo n,. If the lower-order link fromn to
ny is a virtual link via some nodes, thenn also contains in its neighbor table a physical or virtual

83

link from n to n3, and so on. We call this chain of intermediate nodes alongéltie fromn to n;
thatn inherently knows about’s first hop chainfor n;. For example A’s first hop chain forD in
Figure 3-8(a) is4, B, D, whereadD’s first hop chain ford is D, C, B, A.

To implement path optimization for recursive tunnels, weees thebuild _link procedure of
Section 3.3.1 so that when a nodattempts to build a new virtual link te; via waypoint nodex,,,
n contacts its existing neighber,, requesting,,’s first hop chain fom,. Noden then compares
the information returned against its own first hop chainsgr, and short-circuits any redundant
path elements.

For example, in Figure 3-8(a), nodkis building a virtual link toF" via D, so A requestsD’s
first hop chain toF', which isD,C, B, F. A compares this chain with its first hop chain b,
which is A, B, D, discovering redundant node and shortening the path tb, B, F.

This form of path optimization does not help in Figure 3-8{wever, where the redundant
path component betweer and D is hidden fromA because” is not in A’s first hop chain. Sim-
ilarly, this optimization does not handle Figure 3-8(c) foe same reason that the source routing
optimization above fails.

3.4 Compact Routing

Scaling pressures resulting from the Internet's growthehereated a strong interest @@mpact
routing, which promisegrovablyshort routes and small forwarding tables [2, 15,56, 140,2417].
Compact routing would in theory be very useful in the conteixtUIA, because it would ensure
that (as with Identity Hash Routing) a large humber of nodey participate in a self-organizing
routing structure while requiring each node to maintairy@émall (sublinear in the network size)
amount of state, and (unlike Identity Hash Routing) theirmuglgorithm would also guarantee a
small (typically constant 00 (log N)) bound onstretchor inefficiency of paths chosen. Existing
compact routing schemes have so far failed to bridge the gap theory to practice, however,
in part because they were formally developed and describext@ralizedalgorithmsthat take a
monolithic network map (assumed to be static), and compst af routing tables for all nodes at
once. Practical routing protocols such as UIA requirespimti@st, must perform their computations
in a decentralized and incremental fashion, and must best@gainst dynamic topology changes
and failures.

This section explores one possible design for a practicalpext routing protocol for UIA,
based on the theoretical work of Thorup and Zwick (TZ) [24This decentralized protocol com-
putes routing tables wit®(log V) entries and bounds path stretch®ylog N). When more space
and bandwidth are available, routes shorten smoothly atwhatically. Previous compact routing
work did not consider congestion caused by the choice oemuive find that the TZ protocol is
unfortunately subject to hot spots, and modify our protdodmprove congestion on a variety of
simulated topologies.

84

3.4.1 Introduction to Compact Routing

Scaling pressures caused by the Internet's ongoing explosisize and diversity have fueled an
increasing interest in new approaches to Internet rou8ig47,80,140,237]. Recent theoretical ad-
vances ircompact routingalgorithms [2, 15, 56, 247] suggest the possibility of mualrerscalable
routing techniques with formally provable performancepanties, but these techniques have yet
to cross the chasm from formal, centralized “algorithm” tagtical, distributed “protocol.” Some
practical issues that still must be solved before any ofgladgorithms will become usable include:
(a) creating protocols to compute compact routing tablesementally using locally available in-
formation, (b) analyzing the performance of the resultiogtes on diverse network topologies, (c)
ensuring that routing table maintenance does not cause tmh ontrol traffic overhead [141],
(d) providing the administrative controls over routing ippldemanded by network operators, (e)
providing resiliency against topology changes and tempdailures, and (f) designing a realistic,
evolutionary deployment strategy. We do not solve all o§éhproblems here, but merely attempt to
take a step forward in understanding and addressing thadripavaluate the suitability of compact
routing as a method of providing overlay routing in UIA.

This section explores one approach to developing a practicapact routing protocol, based on
Thorup/Zwick’s variable k-level) compact routing scheme [247], which we refer to a& . TZZk
uses a selection dhndmarksdistributed throughout the graph as the roots of multipleriapping
routing trees; two nodes wishing to communicate chooselibst" routing tree of which they are
both members and route within that tree. kiTarranges these landmarks in a configurable number
(k) of levels routing trees built around the more numerous low-levedlfaarks have smaller mem-
bership, ensuring globally that every node participatesnily a few trees. With one levek(= 1),
TZE behaves similarly to classic distance-vector routing,ifigcdbptimal routes using)(n)-size
routing tables. Two levelsk(= 2) yields worst-case stretch of 3 and routing tables of §iz¢/n).
With log n levels, TZ hasO(log n) worst-case stretch and routing tables of sigog n). We
choose TZ as a starting point because its variable-level design midklkesoretically much more
flexible and scalable than fixed, two-level compact routioesnes [56], whose requirements of
O(V/N) state per node may be reasonable for large networks of lagees (e.g., core routers)
or small networks of small devices (e.g., personal devicearoad hoc network of limited size),
but are probably not reasonable for an Internet-size né&taamtaining of billions of small personal
devices participating in one overlay routing cloud.

Analysis of compact routing algorithms in prior work hasueed primarily on routing table
size and stretch, but other factors such as path congesésitience to failures, route computa-
tion/convergence delays, and control message costs aa#fyempiportant in practice. The primary
contributions of the present work are to build a simple disted routing protocol based on £2n
order to evaluate the scheme’s usefulness for UIA overlagimg, and to perform a large-scale
simulation-based analysis of the protocol on a variety @afpbrtypes, including both synthetic
graphs constructed from different theoretical models aadistic graphs of up to 190,000 nodes
derived from actual Internet topology. We will note diffaoes between our protocol and FAs

85

they become relevant.

We find later in Chapter 7 that TZcreates substantial congestion of global routing paths nea
high-level landmarks, and we introduce a means to contelstverity of this congestion via an
adjustable tradeoff against per-node routing table sizmng€stion probably cannot be eliminated
entirely, however, leading to the practical observatioat fandmarks may need to be chosen not
randomly as in “pure” TZ but deliberately to be nodes adequately provisioned toleaht con-
gestion. This need for careful landmark selection may tafately limit TZx's potential usefulness
for UIA overlay routing, since we prefer UIA nodes to be fulelf-managing,” but it may be pos-
sible to limit the negative effects of this congestion in #iteations most normal users care about,
for example by combining the techniques explored here waithesof the techniques explored in the
previous sections on Social Routing and Identity Hash Rguti

Our compact routing protocol also refines Ay enabling nodes to use multiple independent
routing trees for resilience against temporary networkifags. We have not yet developed or ana-
lyzed the protocol in a fully dynamic setting in the conteklomg-term topology changes, however.

3.4.2 Routing Protocol Design

We assume that the network is represented by a weightedgeotetli graph whose edge weights rep-
resent some suitable distance or cost metric for each lond-trip delay for example. We assume
that all network nodes are routers (which is typically theecan UIA), and we leave consideration
of link capacity issues for later.

The key idea of TZ and our protocol is to replace the single routing tree of thegrifock/Kamoun
model [135] with many overlapping routing trees of varyirges. All nodes share membership in
a few large routing trees, which they use to route betwedartisodes, but many smaller rout-
ing trees provide efficient local routes. This shift from goeting tree to many enables k4o
achieve low stretch on arbitrary networks, including orhhjgconnected graphs where the Klein-
rock/Kamoun model fails [141]. Figure 3-9 illustrates #ameuting trees in an example network—
those centered at nodes A, B, and C—and the distinct butapygrg “clouds” of nodes participat-
ing in those trees.

There are four main processes comprising our protdemidmark selectionrouting tree con-
struction global addressingandroute selection The first three processes compute the tables that
nodes require to route messages; this computation couldrigile be done either centrally or in
distributed fashion, and either offline or online, althodighUIA overlay routing we naturally want
to support distributed online computation. The final routtestion process occurs dynamically
when a given pair of nodes wish to communicate.

In the landmark selectiomprocess, each node receives—or assigns itself—an intaggmark
level The total number of landmark levelbs, is a configurable parameter, and the specific choices
of landmarks and levels may be either automatically or athtnatively controlled; for UIA routing
we of course prefer automatic control. The basic goal is farhehigher level + 1 to contain
approximately a constant, evenly distributed fractionhaf landmarks from level In Figure 3-9,

86

' Level 2 routers — A'a routing tree (level 2)

. Level 1 routers B's routing tree (level 1)
O Level 0 routers C's routing tree (level 1)

Figure 3-9: Landmarks in Thorup/Zwick (kX scheme

all nodes are landmarks, and dots of different sizes ingliddferent landmark levels.

Routing tree constructiors largely automatic but can also be tuned administrativieheces-
sary. In this process, every node in the network searchegodifrom itself for nearby landmarks,
and joins a shortest-path routing trees rooted at a subgbbsé landmarks. To maintain 2
worst-case stretch guarantee2df — 1, each nodeu joins the routing tree of every landmark at
each level that is closer ta: thanu’s closest level + 1 landmark. With a suitable distribution
of landmarks, each node is required to join only a few routiegs at each level, keeping routing
tables compact. Nodes may join the routing trees of additjonore distant landmarks beyond this
minimum requirement as their storage permits, howeverraoripg both stretch and congestion.
In a dynamic network, nodes may join the routing trees of reavdinarks that appear within their
“range” for that landmark level, and may leave the routirgg$ of landmarks that fail or go outside
of the node’s range for that level.

Figure 3-9 shows three overlapping routing trees: two alléyand a level 2 tree covering the

87

a o's routing tree table

level|closest |others
0 9 bo C0
1 d, e,
2 fz 9,

~level 1 horizon

‘ Level 2 routers

. Level 1 routers
O Level 0 routers

— Closest routing center per level

—— Other centers in routing table

Figure 3-10: Routing tree selection

whole network. Figure 3-10 illustrates how a particular @madllects nearby landmarks, using its
closest levet + 1 landmark as a “horizon” at which to stop collecting levédndmarks.

Finally, each node forms global addresdor itself consisting of the identities of its closest
r landmarks at each level, and a locator on each of those lakdhrauting trees, where is a
redundancy factor for robustness against failures. A nodéshing to send a message to another
nodev searche®’s global address for the best landmark also knowmn #nd routes the message
over that landmark’s routing tree. The two nodes may optiprarther improve their route for
ongoing communication by exchanging information abouitamthl landmarks that may be present
in their routing tables but not “published” in their globaldresses.

The following sections describe each phase in detail.

3.4.3 Landmark Selection

There are many possible ways to choose landmarks. The sparcifierty we wish this assignment
to satisfy is that if any network node performs a best-firsrae outward from itself and places all
the landmarks it encounters in order of distance from itseghould encounter a small number of
landmarks at each levébefore encountering the first landmark at leivel 1. This is the property
that determines the compactness of a given node’s routinlg. ta

88

Randomized Landmark Selection

The original TZ algorithm makegverynode a landmark, and assigns landmark levels by a random
process. Every node begins as a lévieindmark. Ifk total landmark levels are desired in a network
of n nodes, then TE selects the landmarks for levéH- 1 by including each level landmark
independently with probabilityx~'/%. With this distribution of landmarks, every network node
encounters about!/* landmarks at any levelas it searches outward from itself before finding the
first level: + 1 landmark.

If & = 2, for example, then TE randomly chooses abowtn of the n total nodes to be level
1 landmarks, leaving all remaining nodes as level 0 landmatkk = log, n for some constant
b > 0, then the total number of landmarks decreases by a factbrabkach level. In this latter
case, randomized landmark selection is easy to performutlyadecentralized fashion: each node
chooses a random identifier expressed in basend its landmark level is simply the number of
leading zero digits in its identifier.

Explicit Landmark Selection

Although TZk’s randomized landmark selection process provides a simplens of guaranteeing
compact routing tables, in a practical large-scale netwawknelandmarks may have to be chosen
deliberately for reasons of bandwidth and reliability. As will see later in Section 7.4.3, global
traffic routes tend to converge on and around high-levelteartis in a T4 network. This route con-
vergence may cause network overload unless these landararkieliberately chosen (designejl

to be nodes that are adequately provisioned to handle theinoarred by this route convergence.
In addition, a failure at or near a high-level landmark i®hkto affect a disproportionately large
portion of the network, so the highest-level landmarks &hbe chosen to be highly reliable nodes.

For these reasons, unlike £Zour protocol assumes that some or all landmarks may be ghose
administratively. Although for UIA overlay routing purpes we would prefer il participating
devices were fully self-managing, it may be reasonablegaras that a small percentage of devices
may be administratively assigned to the highest landmamiide e.g., high-capacity UIA routing
“hubs” deployed by companies wishing to ensure that the bid&ed personal devices they sell
perform well.

If a network operator is not sufficiently careful about laratinselection, however, some net-
work nodes may end up with larger routing tables than othHrthere are many level but not
enough leveR landmarks in a given area of the network, for example, thetesdn that area may
have overly full routing tables at levél because they must search outward through many level 1
landmarks before encountering the closest level 2 landn&ukh situations are easy both to detect
and to rectify, however. A node whose level 1 routing tableagrtoo large might trigger an alarm,
for example. In response to this alarm, a network operataldceimply pick a level 1 landmark
from the middle of the node’s routing table and promote iteteel 2, thereby “chopping off” the
node’s level 1 routing table at that point. Once too many taguks in the area have been promoted

89

to level 2, the network operator may have to promote some adethio level 3, and so on. Our
protocol thus allows routing table compactness to be edseitber automatically, through %%
random selection process, or administratively as the n&texolves, simply by “oiling the wheel
that begins to squeek.”

Landmark Pruning

The original TZ algorithm makesverynode a landmark, each serving as the root of a distinct
shortest-path routing tree. In our protocol, however, wsuag that the set of landmarks may be
a subset of all nodes; a non-landmark node participates enothting trees of nearby landmarks
but does not have a routing tree of its own. Although omittengdmarks may in general increase
stretch, it is easy to prove that certain landmarks may betednor prunedwithout affecting the
routes chosen by the protocol.

Consider for example any pair of adjacent nodeand v such that when the edge between
them is removed, the graph component containinigrms a tree. All nodes in this “edge tree”
including v may be pruned from the set of landmarks, leavings their nearest landmark. Since
the pruned nodes can only reach the rest of the network throuthe shortest-path routing trees
their landmarks would form beyondwould use exactly the same routesvésrouting tree itself,
and there is only one loop-free way to route within the edge iiself.

Similar pruning optimizations may be possible even withiap cycles, but this simple edge
tree optimization may be particularly useful for Intertike topologies, which tend to be highly
connected at the core but treelike at the fringes [148]. dddén the large Skitter [38] graph we
used as one of our test topologies, about 26% of the nodescatetl in edge trees and thus need
not be landmarks.

3.4.4 Routing Tree Construction

Once the landmarks are selected and assigned levels, docgrcomputes a routing tree rooted
at each landmark permitting any two nodes residing on theesame to communicate. There are
essentially three parts to this problem: determining tihactiire and extent of each routing tree,
assigningaddressesr locatorsto each node on a tree, and using those addresses to routge®sss
over the tree. Only the first part of the problem is highly $fi@d¢o our protocol or TZ; for
assigning locators and routing on a particular tree mani+kvelwn techniques may be used.

Forming Routing Trees

The size and shape of the routing tree around each landmalétésmined implicitly by the set
of nearby nodes that “choose” that landmark for their rautables, which in turn depends on the
topology of this neighborhood. As explained above, eveldenojoins at least the routing trees of
all level i landmarks closer than any levie}- 1 landmark, and may join the trees of additional more
distant landmarks if desired to optimize stretch or corigasit the expense of routing table size.

90

Since there are no landmarks at lexdb serve as a “horizon” for levél — 1 landmarksgvery
node in the network participates in the routing trees roateghch of the level — 1 landmarks; these
form the network’sglobal routing trees The membership of the smaller routing tree surrounding a
lower-level landmark is termed the landmarkslusterby Thorup and Zwick, and is suggestive of
though not the same as a cell in a Voronoi diagram.

Each landmark’s routing tree should bstertest-path treethat is, the path taken along the tree
from any member node to the landmark serving as the tree’s root should be a shortest path from
u to [. This shortest path property is crucial to theklagorithm’s formal stretch guarantee.

Distributed Routing Tree Construction

In principle, routing tree computation may be performedtiadly on a complete graph of the net-
work and the resulting routing tables shipped to the nodesige, or the nodes themselves could
compute their own routing tables via a distributed protoddte original TZ algorithm was pre-
sented in terms of a centralized computation, but to pernoitendetailed analysis we developed
and simulated a simple distributed message-based prdbaseld on the algorithm. Although our
current message-based protocol is rudimentary, it demadastthat computation of FZrouting
tables has deep similarities to classic distance-vecutting, so many techniques used in existing
distance-vector protocols may be reapplicable to comparting.

In our protocol, each node learns about nearby landmarkaitdks its routing tables incre-
mentally by gossiping with its neighbors. Each node’s routiable stores the set of landmarks the
node has discovered so far for each level, and for each sndmkxrk, the length of the shortest
known path to that landmark and the identity of the “next hafilng that path. In this respect
our protocol works much like a classic Bellman-Ford distamector protocol, except that in our
protocol each node sets a “distance horizon” on the set afnanks it learns at a given leveél
based on the closest known levet 1 landmark it has learned (if any). Whenever a node learns
from a neighbor about a new landmark at some lévebr a better route to an already-known level
1 landmark—that is closer than the closest currently-knoswell; + 1 landmark, the node updates
its routing table and then broadcasts the route to all ofdéighbors. If the node learns a route to
a level: + 1 landmark that is closer than one or more known routes to lewelower landmarks,
then the protocol can either throw away the “excess” lowgel routes to keep each node’s routing
table to the minimum size, or retain a limited number of extnates in order to reduce stretch and
congestion, as described later.

Addressing and Routing on Individual Trees

The simple distributed protocol above effectively formdharsest-path tree around each landmark
containing the appropriate set of member nodes as per theeatents of the TZ algorithm. How-
ever, the simple distance-vector protocol only providesitifiormation necessary to route packets
inward on each tree toward the landmark; we require the ability twer®oth inward and outward

91

on the tree, from any node on the tree to any other node. Fopthipose a variety of well-studied
routing schemes are suitable; we only point out a few pdditjurelevant ones.

The simplest solution is to extend the distance-vectorgoatabove so that nodes gossip and
store complete source routes to their nearest landmarteathsf just the “next hop.” A node’s
“address” on a landmarks routing tree is simply’s source route té. If « wishes to reach another
nodewv over!’s tree,u simply reverses’s source route t@, appends the result i@s own source
route to! yielding a source route from to v throughi, and trims any cycle from the resulting
path. The danger of this approach is that source routes ntayeelong0(n) on arbitrary graphs,
although this should not be a major problem on Internet-fikale-free graphs, which have low
diameter.

As an alternative to source routing, interval routing [2&8h route over trees using addresses
that are always of siz&(log n) regardless of network topology. Classic interval routiaguires
each node to have storage proportional to its degree, butuphand Zwick propose a scheme
that combines interval and source routing so as to use tieeesses of sizé(log? n) and constant
storage per node regardless of topology [247]. Most réaligtwork nodes use storage proportional
to their degree anyway, however, just to keep track of thieistaf each link for example, so classic
interval routing techniques may be adequate from a prac@rapactness perspective.

The primary practical disadvantage of interval routinghit it requires ongoing maintenance of
the address space and perhaps occasional renumberingregtioek topology evolves. A straight-
forward way to address this challenge is for each landmadkvide time intoepochsand compute
a new set of routing tree addresses for each epoch, taggihgrea-address with the epoch counter
so that more than one epoch’s addresses may be used at oncedmasdin the landmark’s routing
tree may transition gracefully from one epoch to the nexis Bpproach is reminiscent of the Des-
tination Sequenced Distance Vector (DSDV) routing altyonif184] for mobile ad hoc networks,
although the epochs used for compact routing may need tortgedasince our protocol must as-
sign addresses and build a routing structure usable foingptdutward” from landmarks to nodes
participating in its tree, and not just “inward” toward daations as in DSDV.

3.4.5 Global Addresses

Once the above routing trees are constructed and all nodeddeated their nearest landmarks at
each level, each node choosegl@bal addresdor itself. In our protocol, the global address of any
nodeu contains the identities of thelandmarks closest to (i.e., the first- landmarks at each level
of u's routing table)u's distance from each of those landmarks, afstree-address on the routing
trees of each of those landmarks. Using source routes aadd¥esses, for example, each node’s
global address consists of its closesandmarks at each level and its distances and source rautes t
those landmarks.

Our protocol'sredundancy factor > 1 is an adjustable parameter that controls a tradeoff be-
tween global address size and robustness against faihgege will explore in detail later. A value
of » = 1 corresponds to the original KZalgorithm, which guarantees all nodes global reachability

92

and bounded worst-case stretch, but only in the absencealafefa If tree-addresses are of size
O(log n), as with interval routing or source routing on a scale-fresph, then each node’s global
address is of siz@(rk log n).

The fact that a node’s global address has a structure thahdsemn network topology creates
two challenges, however. First, this means thak Twovides name-dependent rather than name-
independent routing, so to use itin an architecture like Wid relies on nodes having flat, location-
independent endpoint identities (EIDs), nodes still remjaiway taresolvean EID into a global ad-
dress that is directly usable for routing. Fortunatelys tthistributed lookup/resolution is precisely
what DHTs were designed to accomplish, so a standard DH®¢bf147,157,196,211,236,273]
built on top of TZ but below UIA's naming layer provides an obvious approachddressing this
challenge. Other potentially useful, “locality-awarethmiques for resolving location-independent
names have been developed for ad hoc networking [43] andeirfatmal literature on name-
independent compact routing [2, 15].

Second, since network topology changes may result in clsatgy¢he node’s set of closest
landmarks, as well as to the node’s position and tree-agdneshose landmarks’ routing trees, the
node’s global address must change over time and the Ellidceas resolution mechanism must
adapt to those global address changes, ideally while ni@iimgacontinuous connectivity during
these changes whenever possible. DHT protocols genetgdlyost dynamic changes to key/value
pairs they index and store, so in theory these dynamic updatenot a problem, but in practice
there may be efficiency issues if many nodes’ global addsesisange too rapidly. We leave most
of these EID resolution and dynamic adaptation challengefufure work.

3.4.6 Route Selection

There are two situations to consider when two nodesidv wish to communicate: one in which

u must “unilaterally” choose a route towith no information other tham’s routing table and’s
global address, and one in whightandv are already in contact but wish to choose the best route for
ongoing traffic. We consider each of these cases in turn.

Unilateral Route Selection:

If a nodeu wishes to communicate with an arbitrary target nodiethe networku must first obtain

v's global address—by looking it up in a directory such as DN8 ®HT as suggested above, for
example. Given the targets global address, then compares’s published list of landmarks with
those inu’s own routing table, picks the “best” landmaiknown to both nodes, extractss tree-
address om's routing tree fromv’s global address, and uses that tree-address to send agaé¢ssa
v overl’s routing tree. In the original TZ algorithm, in which each node’s global address contains
only the single closest landmark at each level (correspant » = 1 in our protocol),u simply
picks the lowest-level landmark and tree-address fotsnglobal address. Whempicks a route ta
“unilaterally” this way without cooperation from, TZk guarantees a worst-case stretcldof- 3,

93

somewhat higher than the theoretical optimun2/of- 1 [247]. To obtain2k — 1 worst-case stretch
TZE requires dhandshakingphase, described below.

In our protocol, howevery’s global address contains entries per level, and the best route
betweenu andwv could be via the routing tree of some landmark (slightlyjHar fromv thanv’s
closest landmark at that level but (much) closertoSince our protocol includes’s distance to
each of its landmarks in's global address; can estimate the total distance over a given landmark’s
routing tree by adding/’s distance to the landmark ands distance to the same landmark. This
result is a conservative estimate, since a message willatwally reach the landmark if the source
and target nodes are within the same “branch” of the tree.

Cooperative Route Selection:

Onceu andv are in communication ovesomeroute, they may be able to find a better route through
handshaking. The original TZalgorithm requires such a handshaking step in order to aehie
optimal stretch bound dfk — 1. Onceu first contact over its unilaterally-chosen pathuses the
same unilateral route selection procedure to find a routk teag; in doing so,v may find a better
(lower-level) landmark known to both andv. v then responds te with an indication of the best
landmark, and both nodes use the chosen landmark for sudrgecpmmunication. TZs optimal
worst-case stretch depends on the two nodes routing onwhestdevel landmark that either node
can discover unilaterally, hence the handshaking req@ntm

An interesting and potentially useful property of A&nd our protocol is that its worst-case
stretch bound for the path betwearmparticular pair of nodesu andv, becomes smaller if. and
v are close together. In particular, if two nodesndv agree through handshaking to use a level
tree, the worst-case stretch for their subsequent commuimicis2; + 1.1 Thus, routing between
nearby nodes on a level 0 tree is always optimal (stretclolijing on a level 1 tree has a worst-case
stretch of 3 regardless of the total number of leviels the network, and so on.

In our generalization to TEZwith the redundancy parameteru can unilaterally estimate the
cost of the (at least) available redundant paths tcas described above, butandv may find still
better paths by dynamically exchanging additional routadgle information not included in their
respective global addresses. For a precise selection beftgpath, the two nodes could simply try
several paths and dynamically select the best (e.g., thavitheéhe shortest delay), or ideally even
use multiple paths simultaneously if supported by uppgedgrotocols [122].

In the limit, if we setr = oo in our protocol, then each node publishes in its global axtd of
the landmarks it knows at each level—i.e., its full routiagle. Ifk = log n and each tree-address
is O(log n) size, then each node’s global address is of 6igen'/*1og 1), or O(log® n) in the case
of k = log n. This additionallog n factor in global address size not only purchases redundancy
against failures, but also guarantees the asymptoticaliynal 2k — 1 worst-case stretctvithout
handshaking, since already has all the informatiommight provide in TZ’s handshaking step.

Thorup and Zwick do not point out this property explicitlytiumay be read easily from their proofs.

94

If » findsv's global address in a directory or DH#,need not necessarily retriewés entire
global addressy could instead send the directory service a Bloom filter [3#hmarizing the
identities of the landmarks im's routing table, and the directory service merely retuhusé entries
from v’s global address for landmarksmay know about.

95

96

Chapter 4

Transport

Once personal devices are conveniently nameable via thepdisonal naming system, and can
efficiently locate and connect with each other via UIA's dagrouting system, devices still need to
be able tautilize their connection effectively in order to support the wideiety of applications that
current and future users expect to run on their personateésvin contrast with the terminal- and
batch-oriented applications that the Internet was orlirgesigned around, modern applications
are often highly interactive, allow multiple communicatiactivities to occur at once in parallel,
and can be very sensitive to network transmission or reimgleielays.

This chapter rounds out UIA by introducit8jructured Stream Transpdi$ST), a new transport
protocol developed specifically to support the highly iatéive and concurrent applications that are
becoming common on modern personal devices. We first extiierenotivation and goals for the
new transport in Section 4.1. Section 4.2 then introducesstituctured streamabstraction that
the new transport is built on, and Section 4.3 explores hasvrtbw transport abstraction may be
leveraged in a variety of different applications. FinaBgction 4.4 details the design of the new
transport protocol.

4.1 Motivation and Goals

Current Internet transports offer applications a choidesben two abstractions: reliable byte streams
as in TCP [244] or SCTP [234], or best-effort datagrams asiPl187] or DCCP [137]. Streams
are convenient for large or long-running activities thatsinpreserve data content and order, such
as terminal sessions or file transfers, but datagrams mficeeefly support numerous small trans-
actions that need to proceed independently as quickly aslpessuch as DNS requests or frames
of a media stream.

The classic stream and datagram abstractions are conlbgingple and worked reasonably
well for the types of applications that dominated the eanltginet. Long-lived TCP streams are
well-suited to character-stream-oriented terminal pol® like Telnet [188], Rlogin [129], and
Secure Shell [266—269]; batch text messaging systems sudfrmail [58, 136, 170, 203] and
USENET [77,115,177]; and bulk data transfer protocols kTP [114,189]. Small, ephemeral

97

UDP datagrams are suitable for simple transactional potdéogith small requests and replies, such
as DNS queries [258] and NFS block 1/0 [219].

4.1.1 The Mismatch of Traditional Transports with Modern Ap plications

Modern Internet applications, especially interactive limagtions designed for today’s mobile per-
sonal devices, are placing increasing strain on the toaditi stream and datagram abstractions,
however. Modern interactive applications such as web keosy$or example, often usenaixtureof
small and large transactions: such an application facesvavektradeoffs, because it could benefit
from the efficiency of UDP for small transactions but need$T&€handle the occasional large ones.
Using one TCP stream per transaction as in HTTP/1.0 [29] snpker use of network resources
and is unfair to other applications when a client uses mamguwaent streams; serializing trans-
actions onto persistent streams increases transactiemciaf173]; and implementing pipelining
correctly in web servers has proven challenging enouglsthain years after the standardization of
HTTP/1.1 [78], popular browsers still leave pipeliningatited for compatibility [142, 167].

Similarly, multimedia streaming applications are becanimcreasingly important on modern
personal devices. RTP [258] over UDP may be adequate for-faededvoice communication in
which all media frames are small, but modern high-definjtiariable-bit-rate video encoding
schemes can produce occasional very large frames. Thegeftames are especially likely to
be dropped, because UDP drops an entire datagramyibf its composite fragments are lost in
transit due to congestion or transmission errors, and ¢aetransmit lost fragments. At the same
time, these large frames are often semantically the mdstalronesnotto drop, since they typically
represent “key” frames with respect to which other nearbynfes are represented via differential en-
coding. Multimedia streaming applications can and somegindo use TCP instead of UDP because
of its reliable delivery, but this approach does not worklvifethe multimedia stream is delay-
sensitive (e.g., a real-time audio/video conferencingastr), because one dropped packet in a TCP
stream delays delivery d@ll data behind it in the stream until the dropped packet is ssfaky
retransmitted.

Modern applications for personal devices face furtherdoffid because neither streams nor
datagrams offer a means to associate related transpahaest. Applications such as FTP [189]
and SIP [208] associate transport instances manually ksimmp$P addresses and port numbers
in messages, causing protocol fragility and problems teiwg NATs [113]. Other applications
multiplex many activities onto one TCP stream, as with SSikh#éling [266], but performance
suffers from TCP’s total ordering of the multiplexed streamhere one lost packet blocks delivery
of all data queued behind it in the stream.

4.1.2 A Transport Abstraction for Personal Device Applicatons

To address the above problems, the UIA architecture intesil new transport protocol called
Structured Stream Transporr SST, which is specifically designed around the needs afemmo

98

interactive applications running on today’s personal clesi

SST addresses the problems of transaction size and instanoeiation by augmenting tradi-
tional streams with an explicit hereditary structure.stfuctured streanprovides not only reliable
data delivery as in TCP, but also permits the creation oftemidil lightweight child streams or
substreams When an application spawns a child from an existing stre@8i[conveys this par-
ent/child relationship to the remote application, engythrat only the intended recipient can accept
the new stream and preserving its structural context. Eielra delivers data reliably and in order
within that stream, with its own receiver-directed flow qohtand optional record marking, while
other streams may proceed independently with no headvefdlocking. SST shares sequencing,
congestion control, and security state among all strearivgele® a pair of hosts, minimizing per-
stream state overhead and allowing the application to useayg concurrent streams as convenient
to match its logical structure. The application may als@trend destroy streams rapidly to match
the natural longevity of its transactions, because SSTimditas TCP’s 3-way handshake delay on
all streams after the first, and also eliminates the 4-miflkéE-WAIT period on close that can
cause TCP state overload [75]. The application can trandatiégrams on an SST stream with
best-effort delivery, but SST treats these datagramephemeral substreantkat are semantically
indistinguishable to the receiving application from oatiynsubstreams, allowing SST to fall back to
stream-oriented delivery for “datagrams” too large to $rait as such without unacceptable prob-
ability of loss. Finally, the application can prioritize EStreams relative to each other, giving
preference to interactive or multimedia streams over backgl activities, and applications can use
substreams for out-of-band signaling to change prioritiéd-stream, e.g., expediting the loading
of images in the currently visible area of a web page.

Although SST is primarily intended for use in new or evolviagplications, analyzing the
requirements of well-established protocols can servelustihte the general utility of structured
streams. Applications like FTP and SIP that modularizertbperation across several transport
instances, for example, can use a top-level SST stream farat@ignaling and open private sub-
streams for data or media transfers, instead of separatsptvet connections. Allowing SST to
manage and associate the application’s transport instamedkes the application protocol sim-
pler, more robust, and friendlier to other applications dneSST's shared congestion control.
Transaction-oriented protocols like HTTP can adopt a singple-transaction-per-stream model as
in HTTP/1.0 [29], relying on SST to multiplex many transaos efficiently onto one persistent
connection, and avoiding both the serialization-inducaéricies of persistent streams [173] and
the application-level complexity and fragility of pipeiiy [167]. Applications based on RPC [227]
can use SST either as a datagram-oriented transport thairmesrithe efficiency and statelessness of
UDP for small messages with support for messages of anpiiae, as a transaction-oriented trans-
port using lightweight streams to associate requests w#hanses, or as a stream-oriented transport
that eliminates the need for RPC'’s record marking layer.r&tiar-oriented streaming applications
such as Telnet [188] and Rlogin [129] can use structuredustsein place of TCP’s legacy Urgent
mechanism to handle asynchronous attention signals sucfRk-C, improving their promptness

99

by eliminating TCP’s need to deliver all data already in thygepne reliably before it can begin
delivering the actual urgent data.

4.1.3 Design and Implementation Features

In addition to the new structured stream abstraction, séwther novel aspects of SST’s design
may suggest useful transport design principles:

e SST builds its structured streams on top of an intermedibémnelprotocol: a connection-
oriented sequenced datagram service reminiscent of DC&R Fut semantically closer to
IPsec’s packet sequencing [132,133]. The channel prdsocmnotonic sequence numbers
and replay protection logic, in particular, enable SSTghtweight streams to avoid 3-way
handshakes or TIME-WAIT periods.

e The SST channel protocol selectively acknowledges packatacknowledgment ranges
which provide more information than TCP’s SACK [155] and BEX [79] extensions, fa-
cilitate forward acknowledgment [156] and reordering tatee [32], and offer redundancy
against lost acknowledgments, without the complexity @rbead of variable-length SACK
headers.

e SST separates tmaultiplexingandrendezvougunctions that port numbers serve in traditional
transports, using small, tempordogal stream identifier$or multiplexing and more friendly
serviceandprotocol namegor rendezvous during connection initiation.

e SST carattacha stream to multiple underlying datagram channels sucadgsir at once, to
insulate application streams from temporary failures,dérass changes, and channel lifetime
limits.

e SST jumpstarts a child stream’s flow control statedmyrowing from its parent’s receive
window, allowing the initiator to start sending data on ttddt stream without waiting for
the receiver’s initial window update.

e SST demonstrates how layering and functional reuse ensitestantially more functionality
than TCP withno additional per-packet overheand comparable scenarios.

A user-space prototype implementation of SST, running ah aed simulated networks, at-
tests to SST’s practicality and utility. The prototype &sgis within 10% of the bandwidth of
mature native TCP implementations on “consumer-grade” BISLWiFi connections, and its con-
gestion control is TCP-fair to withie=2%. Under a simulated web browsing workload, using one
HTTP/1.0-style transaction per stream with SST achievepérformance of HTTP/1.1 pipelining,
with lower application complexity, and more flexibility asmonstrated by a simulation of dynamic
Web download prioritization in response to user actionsthédlgh the SST prototype is not yet
integrated with the deployed UIA prototype, it should sewal both as a secure point-to-point

100

connection and authentication protocol for the UIA routiager to use in place of SSL over TCP,
and as a new end-to-end transport for UIA naming layer conmeation and for new UlA-aware
applications at higher levels.

The primary contributions of SST are: (a) the structureesstr abstraction, (b) a novel protocol
design that implements this abstraction by splitting tla@$port into separastreamandchannel
layers, and (c) a user-space prototype for easy experitimmtnd deployment.

4.2 Structured Streams

This section describes the structured stream abstractioneaved by an application using SST,
leaving technical details of the SST protocol itself to Katd.4.

4.2.1 Data Transfer Semantics

Like a TCP stream [244], an SST stream is a reliable, bytented conversation between applica-
tions. Apart from the ability to create substreams, SSTastieare semantically almost identical
to TCP streams, so porting application protocols from TCBS4d is straightforward. Each partic-
ipant sends and receives segments of bytes, and the tragsoantees reliable in-order delivery
of those segments in the absence of connection failure, aytfragment, combine, and buffer seg-
ments. Each endpoint may close its end of the stream indep#pdso a client may for example
close its end to signal the completion of a request befordtigahe server’s reply on the same
stream.

SST data transfer semantics differs from TCP’s in only twepeets. First, SST dispenses
with TCP’s Urgent feature, but this feature may be emulatgdgusubstreams as described later in
Section 4.3.4. Second, senders may set explicit recordamaidn SST stream, which SST reliably
delivers to the receiver, simplifying many applicationsl anaking their buffer management more
efficient at little cost in the transport layer.

4.2.2 Creating and Accepting Substreams

An application can use an SST stream not only to transferhlgtalso to “fork off” child streams
or substreams The terms “substream” and “child stream” refer only to kigery relationships
between streams: once created, there is no semantic diffeteetween a “top-level” stream and
a substream. SST extends the traditional sockets API wittethew operations for creating sub-
streams:

e create_substream (stream) — new_stream:
creates a new child stream from an existing stream.

e listen_substream (stream):
indicates willingness to accept substreams on a stream.

101

e accept_substream (stream) — new_stream:
accepts a substream initiated by the other endpoint.

An application calldisten_substream to indicate willingness to accept new streams as
children of an existing stream, much as the application dask a traditional listen socket to re-
ceive incoming top-level streams. The peer applicatiorherekisting stream’s other endpoint may
then initiate a substream by calliosgeate_substream on the existing stream. SST notifies the
listening application of the incoming substream, and tteffier accepts it viaccept_substream
Once created and accepted, child streams are independamd afay outlive their parents.

4.2.3 Inter-Stream Semantics

Since SST conveys parent/child relationships on substiaation, the application can use con-
textual state negotiated in a parent stream to determinencomcation behavior on child streams.
A videoconferencing application may for example initiateadl in a “root” stream, then initiate one
child substream for video and a second for audio, negot@ecparameters for each media stream
on its respective SST substream, and finally transmit meaiads themselves on “grandchild” sub-
streams. SST's inter-stream structure enables applicatmmodularize and associate their related
communication activities, without having to multiplex alttivities onto one stream or manually
track logical associations between separate transpdenioss. SST endeavors to make streams
“lightweight enough” for the application to use a new strameach logical transaction regardless
of size, enabling the application to “frame” its protocotalanits according to its needs [51].

SST ensures reliability and data ordering within a streatmbtibetween streams, so the loss
and retransmission of a data segment on one stream doedanotdmmunication on other streams.
If a client issues many requests to a server at once on sepireams, for example, the server may
accept several requests concurrently and respond to thanyiorder, completing “easy” requests
quickly without blocking them behind long-running requestibmitted earlier. Each stream pro-
vides independent flow control, so the receiving applicativay accept data at different rates on
different streams, or accept data continuously on onerstielaile temporarily blocking the sender
on another. SST’s flow control applies to new child stream@elsas to stream data, allowing a
server to prevent its clients from overloading it with toonp@&oncurrent requests.

4.2.4 Datagrams as Ephemeral Substreams

TCP delivers data reliably if the participants wait for alloessary retransmissions and acknowl-
edgments, as the TCP standard dictates [244], but most ECRssbffer an option to limit the time

a host buffers unacknowledged data after stream close $J.INGERin BSD). By imposing a
fixed deadline, this option can have the side-effect of dmgdrom TCP’s usual reliable semantics
and turning it into a “best-effort” delivery service. Supgoan application opens a stream, sends
some data, then closes the stream with a short linger timeitlubut ever receiving on the stream.
The sending TCP transmits the data and closing FIN, but doelsald unacknowledged segments

102

beyond the linger timeout. The receiver obtains the datasagdhceful close indication if every
segment including the FIN arrives intact, or if retransioiss complete before the linger timeout;
otherwise the receiver sees a connection reset. If therliimgeout expires within one round-trip
time of the first data transmission, then no retransmissamagossible, making this usage of TCP
semantically equivalent to a best-effort, “fire and forggatagram delivery service—if less efficient.

SST has a&end_datagram operation providing best-effort delivery, but SST tredis bp-
eration as equivalent to creating a child stream, senditg ofa it, and closing the child with a
short linger timeout to avoid buffering the sent data. SS&teive_datagram operation is
similarly a shorthand for accepting a substream, readimg, dad closing the substream. Since an
SST “datagram” is semantically just aphemeral substrearthe receiver can accept the substream
with accept_substream instead ofreceive_datagram , and can then read the substream'’s
content as it would with a normal substream. The receives gatonnection reset if it ever tries
to send on this ephemeral substream. The receiving agplictitus cannot tell whether the sender
invokedsend_datagram or the equivalent sequence of operations.

SST can use an optimization described later to deliver &ifsitt datagrams efficiently and state-
lessly as in datagram transports such as UDP or DCCP. Betaiseceiving application cannot
tell whether this optimization was used, however, the sen@ST is freenot to use it when net-
work conditions may not be suitable. If for example a datagta be sent is large enough that at
least one fragment is likely to be lost, given the currens Icge computed from congestion con-
trol statistics, SST forgoes the datagram delivery optatidn and sends the datagram instead on a
“real” substream, transparently to the application. SSIE #plves the “large datagram” problem of
traditional best-effort services, where datagram lossrgtiickly become unacceptable as datagram
size increases.

4.2.5 Other Application-Visible Features

SST may be deployed either at system level as a “native toatisgdongside TCP and UDP, or at
application level atop UDP. The latter usage allows apptica to ship with a library implemen-
tation of SST without requiring special privileges or exdiems to existing operating systems, and
they can use it as they would SSL/TLS [64] or DTLS [202]. Dgpig SST atop UDP also allows
it to traverse existing NATSs that only natively support TGfl&JDP.

Since communication security is now essential for mostiegibns on today’s Internet, but
IP-layer security [133] is still not widely deployed othdrah for VPNs, SST provides optional
transport-layer security built on standard practices. 'S$Sdcurity is mostly transparent to appli-
cations, except for configuration of security parametetssature identification of communication
peers.

Since a large percentage of hosts on the Internet today arected behind NATSs or firewalls,
many applications require traversal of these barriereaally applications with peer-to-peer com-
munication patterns such as Voice-over-IP. For this reaSST supports hole-punching [82] to
traverse BEHAVE-compliant NATs [16], and provides an op#bhost registration protocol to as-

103

sist applications in establishing peer-to-peer conniggthetween communication partners behind
NATS.

4.3 Using Structured Streams

To examine the practical benefits of structured streams,siction briefly explores requirements
and challenges faced by several classic application potstotVe use these protocols for illustrative
purposes only, without implying that specific applicatiam®uld necessarily be migrated to SST.

4.3.1 Application Protocol Modularity

FTP [189] modularizes its operation across multiple transipstances: one TCP stream for control
signaling and a separate stream for each file transfernkttézlephony similarly uses a TCP stream
for call setup via SIP [208], and separate UDP streams foriardalivery via RTP and RTCP [216].
With SST, such applications can use a top-level stream fotraband simply open substreams
for data communication. Since SST conveys the parent/chlitionship on substream creation,
the application protocols need not communicate IP addsess@ort numbers explicitly to asso-
ciate the related transport instances, simplifying thdieaion and avoiding difficulties traversing
NATSs [113].

The disconnect between these streams at the transport &yerthe resulting need for SIP
messages to carry IP addresses and UDP port numbers, caesagase NAT traversal problems
than in FTP, resulting in complex extensions [207] as wek@®mpeting proposals for ground-up
redesign using application-level multiplexing [226]. WiBST, a telephony application could run
SIP in a top-level stream, open substreams for RTP and RT@Rgdal call, and send individual
media datagrams as ephemeral substreams of those resmedistreams, using SST to multiplex
the streams while preserving their association.

4.3.2 Transactional Protocols

The need to support transaction-oriented applicationsiefily has long been recognized [31, 35,
46]. In the absence of a general transport satisfying thisaghel, HTTP/1.0 [29] used a separate
TCP connection for each request, each requiring a 3-waydhakeé and TIME-WAIT period af-
ter close, leading to unacceptable overhead as the Web betddhed with small images. Since
TCP congestion control distributes available bandwidthgbeam, opening many concurrent TCP
connections is also unfair to other users [18]. HTTP/1.] fl®ws reuse of a TCP connection for
successive requests, reducing the total number of coonsctivith the disadvantage of serializing
requests and often making pages take longer to load [173helory requests may be pipelined to
improve latency, but seven years after the publication oT FVLL.1, today’s common browsers still
avoid pipelining by default because many servers implententorrectly [142, 167]. Pipelining
also fixes response order to request order, blocking theséiem satisfying simple static con-

104

tent requests promptly until it finishes processing dynacoistent requests submitted earlier for
example.

HTTP could benefit from UDP’s efficiency—patrticularly fotinany conditional GET requests
browsers use to test the freshness of cached objects, wdsps@nses are usually small—but HTTP
cannot use UDP because responseaybe arbitrarily large, and the client has no way of knowing
this when it submits the request. SIP supports operationldb®, but gets into trouble for precisely
this reason [103].

With SST, applications can use one stream per transactidim,nwnimal startup latency on all
streams after the first, and without serialization of ind&f@ant requests or long-term state retention
after close. Alternatively, applications can use SST ass&difort datagram transport, sending re-
guests and replies in separate ephemeral streams, achiéiR’s statelessness for small messages
without UDP’s message size limits. In either case, SST esdairness relative to TCP applications
that use only one stream, since all of an application’s S&Rasts between the same pair of hosts
share a single congestion control context.

4.3.3 RPC

ONC RPC [227] can run over either TCP or UDP, but the choicevben the two transports presents
application designers with an awkward tradeoff. Many aggions would like to use UDP for its
efficient handling of small requests, lack of unnecessanglggtion or head-of-line blocking, and
minimal server state requirements. Because of the “largagdam” problem discussed in Sec-
tion 4.2.4, however, an RPC application can only use UDPdftidrantees that every possible re-
guest and reply message fits in a “reasonable” size for datagriented delivery—typically around
8KB by current conventions.

By running RPC in “datagram mode” over SST, the applicatian obtain the same efficient
delivery for small requests via the optimization descrilie&ection 4.4.3, while still being able
to rely on the transport to convey occasional larger reguesiably. Alternatively, RPC could run
over SST using one transaction per stream as discussed fdyaddd TP, using SST to associate
requests with replies and ensuring reliable delivery ohaksages, at minimal performance cost
since substreams impose no round-trip startup delays @ligation. If serialization is actually
desired, running RPC in “stream mode” over one SST streamiredies the need for RPC's record
marking layer since SST provides reliable record marking.

4.3.4 Out-of-Band Signaling

Many application protocols require some form of out-of-tbaignaling, and traditionally must use
ad hoc methods to implement it due to the lack of transpodriaypport. Internet telephony sets
up two separate UDP media sessions, for example: an RTRrsforadata and a parallel RTCP
stream for related out-of-band signaling [216]. With SST,application need not set up out-of-
band control channels in advance: the application canegeaew substream at any time in which

105

Application Protocol
A

y Streams
Stream Protocol Structured
J) Stream
y Channels Transport
Channel Protocol [« » Negotiation Protocol (SST)

J] A
Sessions

Y /
Underlying Protocol (e.g., UDP, IP, link layer)

Figure 4-1:. SST protocol architecture

to convey an out-of-band message relating to the paremstreithout interfering with the normal
operation of the parent. Section 7.5 explores one expetahase of out-of-band signaling in SST.

TCP’s Urgent feature is a limited out-of-band signaling heetsm, used primarily in terminal
protocols such as Telnet [188] and Rlogin [129] to clear t@munication pipeline when the user
invokes an “attention” signal such as CTRL-C. Although S®$€&ginot support the Urgent feature,
an SST application can emulate it by opening an ephemeratrealn and transmitting an explicit
urgent pointer, expressed as a byte offset in the pareminstfer example.

In the specific case of terminal applications, while TCPatdl delivers all data up to the Ur-
gent pointer, terminal applications typically just digté#nis intervening data—a semantic mismatch
resulting in unnecessary network transmission and delagtead of just emulating the Urgent fa-
cility, a terminal application designed for SST could agkibetter responsiveness by using its main
stream only for control and opening two substreams for cheralata, one for each direction. To
clear its character transmit pipeline, a host resets iteacier send substream and opens a new one,
prepending a generation counter to each new stream so #ieaecan distinguish the most recent.
SST immediately stops sending obsolete data in the oldrstegal promptly begins delivering the
new stream, as desired for the terminal application’s séingar{Adapting a particular existing pro-
tocol such as Telnet or Rlogin this way would involve additibsubtleties such as avoiding the
loss of control signals embedded in the character stredmexample is intended only to suggest a
general approach and not a precise recipe.)

4.4 Protocol Design

SST consists of three related protocols, organized as showigure 4-1. Thechannel protocol
is a connection-oriented best-effort delivery servicd fitavides packet sequencing, integrity and
privacy protection, selective acknowledgment, and caigesontrol. Thenegotiation protocoets
up the channel protocol’s state, negotiating shared ggdays and optional features. Finally, the

106

Time -

Top-level Application Stream

L Substream 2 L Substream 3
Streams L
Substream 1 - 3.1 3.2
L b b b
1.1 1.2 I

multiplex streams onto channel 1 ch_annel 1 nears end of life;
v migrate streams to channel 2

Channel 1

Channels
multiplex streams onto channel 2

Y
Channel 2

packess [][1] 10000

Figure 4-2: SST communication abstractions

stream protocobuilds on the channel and negotiation protocols to impldrttenreliable structured
stream abstraction SST presents to the application. Faesmasons this paper focuses on the
channel and stream protocols, which are of primary impeogaior implementing the structured
stream abstraction.

441 Packets, Channels, and Streams

Figure 4-2 illustrates three key communication abstrastithat form the interfaces between SST's
layers—packets, channels, and streams—and how instahtieese communication abstractions
relate to each other over time.

At the lowest level, SST assumes that the underlying pro{ecg., IP or UDP) provides only an
unreliable, connectionless, unicast packet deliveryiserin which packets are independent of each
other and have ephemeral lifetimes. Each packet carries soimber of bytes, up to the network
path’s current maximum transfer unit (MTU), which may charag any time. All communication
within a channel or stream ultimately reduces to a serieaokgts at this level.

On top of this connectionless service SST's channel prétaglals a connection-oriented packet
delivery service. Semantically, the channel protocol'sthimportant functions are to associate each
transmitted packet with a particular connection instancehanne] and to assign monotonically
increasingpacket sequence numbdrs all packets transmitted within a particular channel. The
channel protocol also attaches acknowledgment informatiopackets to determine when pack-
ets have arrived successfully, and uses this acknowledgmiemmation internally to implement

107

congestion control at channel granularity. Finally, tharuhel protocol protects each packet with
a message authenticator and an optional encryption wrappepvide end-to-end security for all
packets transmitted over the channel.

The stream protocol builds on this intermediate channdiratison to provide TCP-like reli-
able byte streams to the application. The stream protoaudlea segmentation and reassembly,
retransmission of lost segments, receiver-directed flomtroh and substream creation and man-
agement. At any point in time, the stream protocol normallyitiplexes all streams between the
same pair of hosts onto a single channel. All streams mek#a onto one channel therefore share
that underlying channel’s packet sequence number spagd¢harthannel’s congestion control, ac-
knowledgment, and security state. Each stream has itshgtensequence numbspace, however,
which the stream protocol uses to preserve the order of dgraents within a stream in much the
same way that TCP does.

The stream protocol leverages the channel protocol’s > of packets with channel in-
stances, and the channel protocol’'s monotonic packet sequmimbers, to manage per-stream state
efficiently. The channel protocol’s services in particidaable the stream protocol to avoid TCP’s
3-way handshake on stream startup, and TCP’s TIME-WAITesafter close, enabling lightweight
stream creation and shutdown. The fact that a channel'sesequnumber space does not wrap
facilitates efficient stream creation and termination, thig property also implies that the stream
protocol mustmigrate long-lived streams from one channel to another to give stseanlimited
lifetimes as in TCP.

Figure 4-3 shows the layout of a typical SST packet, not ulicly any lower-layer headers
for the underlying packet delivery service. SST can be kgyealirectly atop most any best-effort
packet delivery service, such as directly atop IP, atop Uidedmpatibility with NATs and firewalls
on today’s Internet, or atop UIAs overlay routing layer §s€hapter 3). The channel header is
always eight bytes in the current version of SST, and inddigdds for channel identification, packet
sequencing, and acknowledgment. The stream header isltypiour or eight bytes depending on
packet type, and contains fields for stream identificatiengive window control, and sequencing
bytes within a stream. Following the application paylods thannel protocol’s trailing message
authenticator is typically four bytes for lightweight T@Pade security, and 12 or more bytes for
cryptographic security.

The next section details SST’s channel protocol, and Sedtih.3 describes the stream protocol.
Finally, Section 4.4.4 briefly outlines the negotiationtpaml.

4.4.2 Channel Protocol

The channel protocol’s purpose is to provide transportisesvthat are independent of how the ap-
plication “frames” its communication into protocol dataitsrj51], or streams in SST. The commu-
nication state required to provide these services is thaseable across many application streams.
The channel protocol’s services consist of associatintstrétted packets with connection state in-
stances ochannelsassigning monotonic sequence numbers to packets withiarmel, providing

108

31 24 23 16 15 8 7 0

Channel Channel ID Transmit Sequence Number (TSN)
Header
(8 bytes) = AckCt Acknowledgment Sequence Number (ASN)
Stream Local Stream Identifier (LSID) ‘ Type ‘ Flags ‘ — ‘ Window
Header Additional Stream Header Fields (depends on Type)
— iti i
(4-8 bytes) P yp Encrypted
. (optionally)
Stream Application Data
AR AVAVAVAVAVAVAVAAZAAZAAAAA
ariable) | ANANNNANNANANNANANNNAN
Message Authentication Check (MAC)

Figure 4-3: SST packet layout

integrity and optional privacy protection for each paclestiknowledging packets and passing this
acknowledgment information to upper layers, and providioggestion control.

SST borrows its connection state, sequencing, and packetityernodel from IPsec [133] in-
stead of TCP. SST channels are inspired by IPsec securitgiaiens, and SST packet sequence
numbers work like those IPsec uses for replay protectiomenAH and ESP [132]. While IPsec
“hides” its sequencing semantics from upper layers in ther@st of operating invisibly to existing
transports, one of SST’s design insights is that this sesingrmodel provides a useful building
block for new, richer transport services.

The following sections detail the channel protocol’s idfgcdation, sequencing, security, ac-
knowledgment, and congestion control services. While awkgt submitted to the channel pro-
tocol currently translates to one packet in the underlyingtqzol (e.g., IP or UDP), the channel
protocol could be extended to provide services such as chunélling [234] or quality-of-service
enhancement [240].

Channel Identification

SST's negotiation protocol sets up a channel’s initialestahen an application first connects to a
target host: each run of the negotiation protocol yieldsva ciegannel. As part of channel negotia-
tion, each host assignschannel IDfor each direction of flow. Each transmitted packet incluithes
receiver’s channel ID, enabling the receiver to find the eissed channel instance state; channel
IDs thus play the role of IPsec’s security parameters in@X); A channel’'s ID may be reassigned
immediately once the channel’s lifetime ends: the pack#temticator described below rejects old
or replayed packets from prior channel instances. As SSiEsmrel protocol is designed for use by
the stream protocol, which needs at most a few active chamteince, the channel ID field may be
relatively small (currently 8 bits). Channel zero is reseh¥or the negotiation protocol.

109

Packet Sequencing and Replay Protection

TCP uses its byte sequence numbers for three different pespao distinguish and order data
segments within a connection instance, to distinguish se¢grbelonging to entirely different con-
nection instances [241,248], and to protect against pdoigry [26]. SST uses its packet sequence
numbers for only the first purpose, leaving the other two fions to an explicit packet authentica-
tor.

Each channel has a 64-bit packet sequence number spaceliatiezction of flow, from which
the channel protocol assigns sequence numbers conségcutiveach packet transmitted. As in
IPsec or DCCP [137], every packet sent gets a new sequendeenuimcluding acknowledgments
and retransmissions. The sequence number space does ppswifia host send®®* packets on
one channel, it negotiates and switches to a new channelawigsh space. A channel’s lifetime
may also be limited in other ways, such as by key expiratioa change in a host's IP address. If
a host foresees the imminent expiration of a channel, it egintnegotiating a new one while still
using the old one for a seamless handover.

Like IPsec’s 64-bit sequence number extension [132], S$eaticates packets using full se-
guence numbers but transmits only the low bits explicitlyeach packet. While the size of the
sequence number space limits a channel’s total lifetineesite of the sequence number field in the
packet header limits thg@indowof packets a host may transmit within one round-trip. SStitsant
24-bit sequence number field requires the sender to stayHassabou2?? packets ahead of the
receiver to ensure that the receiver extrapolates sequemabers correctly. To achieve maximum
performance on fast links with long delay, SST may need aioogtheader extension like DCCP’s
long header format [137], or a timestamp extension as in PAZS].

Also like IPsec, the channel protocol checks the sequenosbau of each received packet
against a bit mask of sequence numbers recently receiveddiaoards without further process-
ing both duplicates and packets too old to be covered by thedk. The width of this bit mask
therefore limits how far out of order within a channel’s sence space a packet may be delivered to
upper-layer protocols; we call this value the channaiis-ordering limittMOL). While IPsec hides
its replay protection behavior from higher-level prota;dbST exposes this behavior, simplifying
the stream layer’s state management as described latectioisé.4.3.

As one way to protect upper layers from out-of-order pachetsitical synchronization points,
the sequencing layer can provitiarriers analogous to the memory barriers used in weakly con-
sistent processor architectures [223]. When an upper layggrests a barrier, the sequencing layer
adjusts its replay protection state to reject any packetghbsequently arrives with a sequence
number lower than the highest it has seen so far. Barriersasg for the sequencing layer to im-
plement, and they enable the stream layer to avoid TIME-W#tHe retention. Setting barriers
too frequently can reduce communication efficiency by lingithe channel layer’s ability to accept
packets received out of order, however, so this facilityubthde used sparingly by upper layers.

110

Authentication and Encryption

SST's packet security follows the design of IPsec’s ESP]jli82luding its use of “Encrypt-then-
MAC” composition as per accepted practice [25]. The negjotigprotocol determines on channel
setup the cryptographic algorithms and shared secretstaseibtect the channel. A channel’s
keys and security parameters remain fixed throughout é@trie: a host re-keys a connection by
negotiating a new channel and migrating existing appbcattreams to the new channel. Since
SST uses a 64-bit packet sequence number at most once peethhese sequence numbers can
feed counter-based encryption modes [69], which are epailgllelized and require no plaintext
expansion. SST’s packet security therefore need not adgpanpacket overhead other than the
MAC.

If strong security is not needed, the application can desahtryption and request a lightweight
32-bit authenticator in place of a cryptographic MAC. Thghtiveight authenticator protects the
channel against stale or replayed packets sent in priomgh@mstances, and against attackers who
can inject forged packets but cannot monitor the commuipnicatream, providing security compa-
rable to other unsecured Internet transports like TCP. $&lpates this authenticator by calculating
an ordinary 32-bit checksum over the packet and a pseudieheantaining the full 64-bit sequence
number, then adding two values to the resulting checksust; fire same 4-microsecond timer that
TCP uses to choose its initial sequence numbers [59, 248]sacond, a hash of the connection
identifiers and a random internal secret, as in Bellovin'shoé of “keying” TCP ISNs [26]. SST's
keyed checksum offers slightly better protection than BMeyed sequence numbers, because an
SST attacker must blindly guess exactly the correct cheslsey, not just any sequence number
within some validity window.

Acknowledgments and Congestion Control

The channel protocol attaches acknowledgment informatiosach transmitted packet, and uses
this information to implement congestion control. Eacingraitted packet acknowledges a contigu-
ousrange of received sequence numbers, indicated in the packet hedddk Sequence Number
(ASN) and Ack Count (AckCt) fields. A host sends an acknowhadgt for every one or two upper-
level data segments received as in TCP [6], but sets the Afidtas large as possible reflecting
the most recent contiguous run of packets received. Sueeessknowledgments therefore usually
cover overlapping sequence number ranges, minimizingffbetge of a lost acknowledgment. Fig-
ure 4-4 for example illustrates the behavior of a host thehewledges every packet, upon receiving
sequence numbers 1 through 7 in order except for a lost padttesequence number 4.

Sending an acknowledgment range in each packet gives SEtiadits of selective acknowl-
edgment without the overhead or complexity of variablegtearSACK headers [155]. Because SST
assigns each packet a fresh sequence number, includiagsetissions of previously-transmitted
data, its acknowledgments provide more information thamé&vCP with D-SACK [79]: the sender
can tell exactly which copy of a retransmitted segment adrand detect false retransmits before the

111

Packet Acknowledgment Sent in Return Packet
Time Received (acknowledged sequence number range)

(packet 4 dropped)

Sequence NumberSpace

Figure 4-4. Packet acknowledgment example

receiver has seen duplication. SST can thus implement ieprents to TCP congestion control [6]

such as forward acknowledgment [156], reordering tolexdB2], and delay-sensitive schemes like
TFRC [108]. As SST implements congestion control at chagreshularity, applications may use

many concurrent streams without behaving “antisociallydth redundant TCP connections [78].
SST can negotiate at channel setup any protocol extensieresgary to implement congestion
control schemes requiring cooperation with the receiver.

4.4.3 Stream Protocol

The stream layer multiplexes streams onto channels byidiyidpplication data intsegmentsc-
cording to the current maximum transfer unit (MTU) of theweitk path, and transmitting each
segment as a separate packet on the current channel. Theéngatream layer accepts these po-
tentially out-of-order segments and delivers them in otdehe application. The sender uses the
channel layer's packet-oriented acknowledgments to ohéter when a segment has been success-
fully received, so the stream layer requires no byte-ogiérstcknowledgments as in TCP.

SST's stream layer can migrate an active stream from oneneham another transparently to
the application, giving streams potentially unlimitecetimes independent of the limited lifetimes
of the underlying channels. The stream layer can attaclearatto a new channel before detaching
it from the old one, allowing the application to continuengsthe stream without interruption while
transparently migrating the stream to the new channel. 3§ dot treat channel failure due to
loss of connectivity as a “hard failure” like a TCP timeoutt the application’s option, SST can
retain stream state indefinitely until connectivity ressraad the negotiation protocol creates a new

112

channel. At this point SST migrates the application’s stre¢o the new channel and the application
resumes where it left off. Stream migration also supportsterend host mobility [224, 225]: if a
host's IP address changes, SST channels bound to that additebut if either endpoint can find
the other’'s new address (e.g., one host is non-mobile or Ogsamic DNS name), SST can create
a fresh channel between the new address pair and trandparegrate the application’s streams to
the new channel. Of course, if one endpoint host reboots, ithestream state is normally lost and
the application must create new streams.

Because the stream protocol relies on the channel protocdb$s detection and congestion
control, and these mechanisms operate within a partichinreel or network path, the latency dif-
ferences and resulting packet reordering across multadlesgshould not confuse these mechanisms
as they do for TCP.

Stream ldentification and Attachment

When the stream layer creates a new stream on behalf of aitatppi, it assigns the stream a
Unique Stream Identifieor USID. A stream’s USID is at least 128 bits, remains fixedtigh the
stream’s lifetime, and identifies the stream as it migratesifone channel to another. The stream
layer must therattachthe stream to a particular channel before it can transmiicgiipn data. In
the process of attaching the stream to a channel, the stegamassigns a shorter, temporary 16-bit
Local Stream Identifie(LSID) to identify the stream efficiently within the scopetbft particular
channel. The stream layer uses this LSID in place of thersteefull USID in data segments it
transmits on this channel. The stream keeps its USID butagetsv LSID each time SST attaches
it to a different channel. The application is not normallyaagvof either USIDs or LSIDs.

While each stream has only one USID, LSIDs are specific not tmba channel but to each
direction of flow within that channel. Each endpoint has its1d_SID space for each channel, in
which it assigns LSIDs to streams independently of its pEach host tracks both its own and its
peer’'s LSID space, using its own LSID space to identify thieagh for a data segment it transmits
to its peer, and using its peer's LSID space to identify thessh for a data segment it receives. For
bidirectional use, a stream must have two LSIDs, one asdiggesach host for each direction of
flow. A stream may in fact have more than one LSID at once fohdlmev direction, in order to
permit seamless two in each direction and all potentialhdifierent channels, allowing seamless
stream migration from one channel to another.

Root and Top-Level Application Streams

When the stream protocaol initiates negotiation of a new nkhrit creates and implicitly attaches a
root streamto the channel. SST uses this root stream only for interigalading: the application is
unaware of its existence. When an application opens a &egll application stream vieonnect
SST first opens a channel to the desired host if none alreaidiseihen creates a child of the
channel’s invisible root stream for the application’s uS&T can reuse the same channel and root
stream to create many top-level streams to the same targetdwwiding 3-way handshakes for

113

successive top-level streams in the same way that it doesiimtreams the application creates via
create_substream

TCP uses its port numbers for two purposes: to distinguisbngntransport instances between
the same pair of hosts, and to name applicatemdezvous pointgia well-known port numbers.
SST splits these two functions, using LSIDs exclusivelystbeam multiplexing, and using explicit
service negotiatioror rendezvous. When the stream layer creates a new topdeeam, before
handing this stream to the application, it first sends a ngessa the new stream to the responding
host’s stream layer, indicating the rendezvous point tit@img application wishes to connect to.
The responding stream layer intercepts this message aliesramicating whether an application
is listening at the given rendezvous point. On success, stotlam layers then hand this top-level
stream to the respective applications. An SST rendezvoirg ocurrently a pair of strings: a
service namée.g., ‘www) and aprotocol namge.g., ‘http).

Creating Streams

To create a new child of a stream already attached to a chahaeitream layer sends an Init packet,
shown in Figure 4-5. The initiator specifies the LSID it agsig the new stream and the LSID of
the existing parent, both in the initiator's LSID space. Tlaeket may also carry application data
for the new stream, as described below.

Although Init packets carry no USIDs, the hosts magteeon a USID for the new stream so
they can attach the stream to other channels. Each host gsaesention for assigning LSIDs that
allows an Init packet’s receiver to extrapolate a USID frdm hew stream’s 16-bit LSID. Each
host assigns LSIDs in its LSID space for a channel using thell® bits of a 64-bit counter, and
its peer tracks this counter and extrapolates the full 644due from a received LSID the same
way the channel layer extrapolates packet sequence numbeeshosts use these 64-bit counters,
plus a pseudorandom nonce unique to the channel and flowidireto agree on the new stream'’s
USID implicitly. The initiator may skip counter values cesponding to LSIDs still in use by other
streams, provided it doesn't get too far ahead of its peet@&lcounter synchronization.

Upon receiving an Init packet with an unknown LSID, the ragf®r records the new LSID,
then sends a Reply packet to assign its own “return-pathDLiSIthe new stream for data transfer
in the opposite direction. The Reply packet has the samedioasan Init packet, except it contains
the initiator’s just-assigned LSID for the new stream incplaf the parent stream’s LSID (see
Figure 4-5). The responder assigns LSIDs using its 64-hinter as above to maintain counter
synchronization, but does not use the counter to derive ®diice each stream requires only one
uUsID.

Data Transfer and Acknowledgment

Both Init and Reply packets may contain application data strehm control flags. The initiator
uses Init packets to start sending data on the new streamdiately without waiting for the re-
ceiver's acknowledgment, eliminating TCP’s 3-way hanéstdelay on new streams once a channel

114

Packet Type Layout Notes
31 24 23 16 15 8 7 0
Init Local Stream Identifier (LSID) | Type HM‘P‘C‘ — ‘ Window Flags:
M Mark Record
Parent Stream Identifier (PSID) | Byte Sequence Number (BSN) P Push Data
Application Payload C Close Stream
Reply Local Stream Identifier (LSID) | Type ‘ ‘M‘P‘C‘ — ‘ Window Flags:
M Mark Record
Reply Stream ldentifier (RSID) | Byte Sequence Number (BSN) P Push Data
Application Payload C Close Stream
Data Local Stream Identifier (LSID) ‘ Type HM‘P‘C‘ — ‘Window Flags:
M Mark Record
Byte Sequence Number (BSN) P Push Data
Application Payload C Close Stream
Datagram Local Stream Identifier (LSID) ‘ Type ‘— ‘F‘L‘ — ‘ Window Flags:
— F First Fragment
Application Payload L Last Fragment
Ack Local Stream Identifier (LSID) ‘ Type ‘ — ‘ — ‘ Window |

Figure 4-5: Stream data transfer packets

has been opened to the desired host. The responder mayrlirsitat sending response data im-
mediately via Reply packets. The Init and Reply packetsaiord 16-bit Byte Sequence Number
(BSN) field indicating the data segment’s logical offsettie hew stream, so a host can send up to
216 1+ MTU bytes of data this way before it must start using using orglibata packets, which

it can do only after receiving an acknowledgment indicatihgt the peer is aware of the newly
assigned LSID.

Data packets have the same structure as Init and Reply gaekeiept that they have a 32-bit
BSN and no PSID or RSID (see Figure 4-5). The stream layer thie8SN to reassemble data
segments in the correct order at the receiver, using wrapdrarithmetic as in TCP, making the
longevity of a stream effectively unlimited.

A host buffers each data segment it sends until it receivexnowledgment for that segment,
periodically retransmitting unacknowledged segmentscé&the channel layer’s acknowledgments
refer to packet sequence numbers and not byte sequence msyniteesender records the packet
sequence numbers the channel protocol assigns each daetergeduring recent transmission at-
tempts, in order to lookup and free the segment when a camelamy acknowledgment arrives.
Since the channel layer’'s packet sequence numbers arecimdienqt of the stream layer's LSIDs, a
packet in one stream may effectively acknowledge segmemthéer streams. The stream layer uses
a separate Ack packet type to send acknowledgments thadtdaampiggybacked onto data flowing
in the opposite direction.

Since the channel layer’'s acknowledgments are definitiveeréceiver must only acknowledge

115

a data segment once it has fully processed and locally leaffére segment. If the receiver cannot
process a segment due to a temporary resource shortagg, drapathe segment without acknowl-

edgment, but using flow control to avoid the need to drop seisnis preferred since dropped

segments trigger the sender’s congestion control andtdffe@ntire channel.

If a data segment already transmitted must be retransmitibtda smaller MTU, the sender
“re-fragments” the segment into smaller segments for metrassion, adjusting the BSN fields in
the new segments accordingly. A host may also repackageitaor IReply packet’s data into an
ordinary Data packet for retransmission, if an acknowleeliginfior some other Init or Reply packet
arrives in the meantime.

Init, Reply, and Data packets contain several flags indigasipecial stream events. The Push
(P) and Close (C) flags work like TCP’s PSH and FIN flags, wietka Mark (M) flag is new:

e Push (P)indicates that the stream’s data up through this segmenicioe pushed to the
receiving application without waiting for more segmentsaiave, exactly as in TCP.

e Mark (M) indicates the end of a message or record, directing thensttager to deliver
the segment as soon as possible, apderto combine it with subsequent data segments
for delivery to the application, even if subsequent datalrisagly available due to out-of-
order delivery for example. The stream layer indicatesrdi®rd boundary to the receiving
application, so that the application does not have to entsemhin markers in the stream.

e Close (C)indicates the last segment in the stream in one directionerAiending its final
Close segment, the sender may continue receiving data &Hnthie stream terminates after
each participant closes its end or one issues a Reset. 154di@ below describes how SST
garbage collects stream state after close.

Datagram Delivery

When the application submits a datagram to be sent as anffephesubstream” with best-effort
semantics as described in Section 4.2.4, the stream lagekshhat the datagram is small enough
to ensure a reasonable chance of successful delivery, autifinsmits it using a sequence of
Datagram packets shown in Figure 4-5. The first packet indfjgence has the First (F) flag set, the
last packet has the Last (L) flag set, and the packets haveaathge sequence numbers, allowing
the receiver to determine when a received datagram is coenfich packet's LSID refers to the
parent stream; the sender never assigns an LSID or mairdainstate for the ephemeral child
substream.

If the sending stream layer judges the ephemeral substredma too large for delivery as a
datagram, it sends the substream instead in standardleelagdtion using Init and Data packets,
retransmitting individual segments as necessary, an@<lthe substream when finished. The re-
ceiving application obtains no indication of the actualid®ly method by which the ephemeral
substream arrived.

116

Packet Type Layout Flags

31 24 23 16 15 8 7 0
Attach Local Stream Identifier (LSID) | Type | [s| | window | S Attachment
Slot Number
Unique Stream ldentifier (USID)
Detach | Local Stream Identifier (LSID) ‘ Type ‘ ‘ ‘ Windowl
Reset | Local Stream Identifier (LSID) ‘ Type ‘ ‘O‘ ‘Windowl O Orientation
(LSID space)

Figure 4-6: Stream control packets

Flow Control

While congestion control operates at channel granule&8®i provides flow control for each stream
individually, allowing the receiving application to actegata at different rates on each stream.
Every packet the stream layer sends contains a receive wingddate, indicated in the header’s 5-
bit Window field. This field uses an exponential encoding: laea indicates a window o#t least

2™ — 1 bytes. When the window is large, the sender does not neeto ks size precisely since it
will take a while to fill anyway, but the receiver's updatestme more precise as its buffers fill and
the window shrinks. To avoid a variant of silly window syndre [53], the sender never fragments
data segments just to make a partial segment fit into theveeggndow: instead it waits until the
window can accommodate a full-size segment, or a short sgigronataining a Push marker.

TCP uses its cumulative acknowledgment position as a “bfaget which to calculate the win-
dow horizon, but SST has no cumulative acknowledgments fwhich to calculate such a horizon.
SST's window credit instead represents the total numbena€knowledged bytes the sender may
have in flight. The receiver deducts from its advertised wimthe size of each segment it receives
and acknowledges, and cancels this deduction once it deliie segment to the application. The
sender similarly deducts each segment it sends from itsamirctedit and cancels this deduction
when the segment is acknowledged, even if the segment wawedcand acknowledged out of
order. The sender tracks the packet sequence numbers awvimtlates and always uses only the
most recently-sent update.

For flow control, SST treats an Init packet's data as belapgirntheparentstream—the stream
specified in the packet’s PSID field—although the data is s¢icedly part of the new child stream.
In effect, when a host sends data on a new stream withoutngdidr an initial window size from
the responder, the sender “borrows” from the parent’s veogindow to send this initial data. This
borrowing maintains proper flow control and avoids receinéfds overrun while allowing stream
creation with no round-trip delay.

117

Detaching and Migrating Streams

The stream layer sends an Attach packet, shown in Figurdalaitach an existing stream to a new
channel. The Attach packet contains the LSID assigned bgehder and the permanent USID of
the stream to be attached. The sender can attach a streanmited humber of channels at once
(currently two), and indicates via attachment slot numbeavhich of these potential attachments it
is using. The receiver looks up the stream by the specifiedl&sociates the specified attachment
slot in that stream with the specified LSID in the channel onctvithe Attach packet arrived, and
acknowledges the packet via the channel layer.

A host may detach a stream from a channel, freeing the steeB8ID in that channel for
use by other streams, by sending a Detach packet (Figure 8%¥)detaching idle streams the
application has not used for some time and treating its L9z as a cache, SST can manage an
arbitrary number of streams. Host APl issues may imposedion the number of open streams,
such as Unix’s file descriptor limit—but in the current uspace SST prototype, which does not
use file descriptors for streams, the number of open streatimited only by available memory.
Section 4.4.3 later describes how SST avoids confusingegisickferring to different uses of the
same LSID.

Forceful Reset

As in TCP, either host may unilaterally terminate an SSTastrén both directions and discard any
buffered data. A host resets a stream by sending a Resettjeakare 4-6) containing an LSID in
either the sender’s or receiver’s LSID space, and an O (@tien) flag indicating in which space
the LSID is to be interpreted. When a host uses a Reset packatinate a stream it believes to
be active, it uses its own LSID referring to the stream, asgmeds the Reset packet as necessary
until it obtains an acknowledgment.

A host also sends a Reset in response to a packet it recefeesng to an unknown LSID or
USID. This situation may occur if the host has closed and agelrollected its state for a stream
but one of its acknowledgments to its peer's data segmeritstisn transit, causing its peer to
retransmit those segments. The stateless Reset respaiisadn to the peer that it can garbage
collect its stream state as well. Stateless Reset respahsags refer to the peer’'s LSID space,
since by definition the host itself does not have an LSID assigo the unknown stream.

Garbage Collecting and Reusing LSIDs

An SST application that uses one stream per transaction reayecand destroy streams rapidly: in
the worst case, a host can create a stream, assign it an Lk'&H3ntit up to an MTU of data, and
close its end of the stream, all with one Init packet. Thea@ader may similarly acknowledge the
Init packet, send up to one MTU of response data, and clos&ibem, with one Reply packet. SST
may therefore reuse 16-bit LSIDs for many successive sgadthin a channel’s lifetime, leading to
the risk of confusing packets referring to different usethefsame LSID. This is the same problem

118

that at a lower level motivates TCP’s ISN selection [241,]248] the channel protocol's keyed
authenticators (Section 4.4.2). SST's stream protoceleler, benefits from the channel protocol’'s
monotonic packet sequence numbering and its mis-ordarimigdescribed in Section 4.4.2.

To avoid confusing old and new uses of an LSID, after detarhin LSID the stream layer
imposes a “quiet period” before creating or attaching amo#tream with the same LSID. This
quiet period corresponds to TCP’s TIME-WAIT, but SST couthiss duration of this quiet period
in packet sequence numbers instead of wall-clock timeinglgn the channel layer's mis-ordering
limit (MOL). With a 32 packet MOL, for example, after detachnt a host waits for both its and
its peer’s sequence numbers to advance 32 packets beyoiit &vpen both hosts know about the
detachment. The channel’s replay logic drops packets thigeao late that they might confuse
new stream attachments using this LSID. Because the MOLtigo&élly small) constant, and one
packet can attach and/or detach only one stream, the nurb&1Ds that may be stuck in this
quiet period is similarly small, regardless of packet rafdwe mis-ordering limit thus avoids the
need for time-bounded TIME-WAITs and eliminate the risk w@afts overload under heavy use [75].

The channel protocol's barrier mechanism, describedegari Section 4.4.2, provides an al-
ternative method of handling LSID reuse that can eliminage“tuiet period” completely. If the
stream layer on a host sets a barrier once it has closed astredetached its LSID and received
acknowledgment of that close or detach from the other hbetchannel layer guarantees to the
stream layer that no old packets sent before this point thgihtrnefer to the obsolete LSID will
subsequently be delivered even, if they arrive out of ordlus, setting an explicit barrier has the
effect of temporarily setting the MOL to zero and allowingpit'grow” gradually back to its normal
value as further (in-order) packets arrive. While barrarable stream state to be garbage collected
even more quickly than with a quiet time defined by the MOLythave the potential disadvan-
tage of unnecessarily preventing the delivery of other ptckhat might happen to arrive out of
order, including packets associated with completely @ateel streams. For this reason, imposing a
MOL-based quiet period should probably be considered tefeped approach.

4.4.4 The Negotiation Protocol

The negoatiation protocol is responsible for setting up néannels with either weak or strong
security. Negotiation with weak security sets up the unigtellle checksum key described in Sec-
tion 4.4.2. The initiator may piggyback application dataootie first negotiation protocol packet,
allowing channel setup with no effective round-trip ovextiebut the responder may ignore this
initial data and return a cookie challenge if it is loaded nder DoS attack.

The strong security mode uses Just Fast Keying [4] to estaBhared cryptographic secrets
and verify host identities using a simple, fixed four-messéwo round-trip) exchange. The last
two messages may carry piggybacked application data, faffantive minimum channel setup
overhead of one round trip, identical to TCP’s.

SST is designed to work with UIA ad hoc naming [85] and UIP imy{80] to support seam-
less communication among both fixed and mobile personatdsviUlA, UIP, and SST use cryp-

119

tographic host identifiers analogous to those of HIP [165p&mtify endpoints securely, so when
a host’s IP address changes, SST merely reruns the negotatitocol to establish a channel be-
tween the new addresses, and migrates existing streanes tewhchannel.

120

Chapter 5

NAT Traversal

One of the primary goals of UIA is to support convenient pi@epeer communication among per-
sonal mobile devices. Unfortunately, now-ubiquitoungldleboxe®n the Internet such as firewalls
and Network Address Translators (NAT) [70, 252] cause \tiwn difficulties for peer-to-peer
(P2P) communication, since the peers involved may not hauébbcly reachable or even globally
unique IP address [113, 228, 230]. While the UIA routing t&yability to forward traffic through
publicly reachable intermediate nodes provides a gemengdese method of traversing middle-
boxes, this explicit forwarding can increase end-to-emehniey and unnecessarily burden these in-
termediate nodes. In some cases indirect overlay forwgnoiths may be “optimized” into direct
IP-level paths between peers located behind middleboi@$|AT traversaltechniques.

Several NAT traversal techniques are known, but their desuation is slim, and data about
their robustness or relative merits is slimmer. This chaptesents the first thorough development
and analysis of a simple but robust and practical NAT traldgeshnique, known asole punching
While Dan Kegel publicly documented the basics of UDP holeghing in 1999 [130], the present
work examines previously unaddressed scenarios such a@sdfeasingly common situation of
hosts behind multiple levels of NAT: e.g., behind both a hd¥Ag router and a large ISP-deployed
NAT. We also explore a clean, symmetric approach to TCP hoteclning, which works over a
substantial percentage of deployed NATs without relyingdeficate, timing-sensitive techniques
such as NAT port number prediction or address spoofing, & OAT traversal proposals for TCP
do [30, 72,101]. To evaluate the effectiveness of the pregd®le punching techniques, Chapter 7
will later present the first published empirical study on ¢ohenpatibility of a wide variety of NATs
deployed “in the wild” with TCP and UDP hole punching techrag.

Section 5.1 first introduces NAT traversal background, teofogy, and basic concepts, and
Section 5.2 summarizes hole punching techniques for UDRhndre already moderately well-
understood. Section 5.3 then explores how hole punchingeamliably used to set up peer-to-
peer TCP streams as well. Finally, Section 5.4 summarizdglebox properties these techniques
depend on. Later in Chapter 7 we will evaluate the religbibi this technique on a wide variety
of deployed NATSs, finding that about 82% of the NATs testedpsuphole punching for UDP, and
about 64% support hole punching for TCP streams. As NAT viemidecome increasingly conscious

121

(global IP addresses)

M 55

Main Internet
(global IP address realm)

ISP-deployed NAT Home NAT

ISP-private network

Home NAT

Home NAT

g 2 O

\
=
N\ T
Network)
(private IP addresses)
= 2

Figure 5-1: Public and private IP address domains

i O

—

of the needs of important P2P applications such as Voice Bvend online gaming protocols,
support for hole punching is likely to increase in the futumeaking this optimization ever more
important for UIA and other networking architectures supipg peer-to-peer communication.

5.1 Background and NAT Traversal Concepts

The combined pressures of tremendous growth and massiuétgezhallenges have forced the
Internet to evolve in ways that make life difficult for manypdipations. The Internet’s original
uniform address architecture, in which every node has aafjiobinique IP address and can com-
municate directly with every other node, has been repladéd avnhewde factolnternet address
architecture, consisting of a global address realm and rpamgte address realms interconnected
by Network Address Translators (NAT). In this new addreshigecture, illustrated in Figure 5-1,
only nodes in the “main,” global address realm can be easityacted from anywhere in the net-
work, because only they have unique, globally routable Iregbes. Nodes on private networks
can connect to other nodes on the same private network, agccdn usually open TCP or UDP

122

connections to “well-known” nodes in the global addresgmea\ATs on the path allocate tem-
porary public endpoints for outgoing connections, anddliete the addresses and port numbers in
packets comprising those sessions, while generally bigchll incoming traffic unless otherwise
specifically configured.

The Internet’'s nevde factoaddress architecture is suitable for client/server conigation in
the typical case when the client is on a private network aadénver is in the global address realm.
The architecture makes it difficult for two nodes differentprivate networks to contact each other
directly, however, which is often important to the “peetg®er” communication protocols used
in applications such as teleconferencing, online gaming, sharing information among personal
devices as UIA is intended to support. We clearly need a wayd&e such protocols function
smoothly in the presence of NAT.

One of the most effective methods of establishing peere&r-gommunication between hosts
on different private networks is known as “hole punchingtisitechnique is widely used already in
UDP-based applications, but essentially the same teclmitgo works for TCP. Contrary to what its
name may suggest, hole punching does not compromise thetgeaxfa private network. Instead,
hole punching enables applications to functiithin the the default security policy of most NATSs,
effectively signaling to NATs on the path that peer-to-pe@mmunication sessions are “solicited”
and thus should be accepted. This chapter documents hobdbipgrfor both UDP and TCP, and
details the crucial aspects of both application and NAT bieinahat make hole punching work.

Unfortunately, no traversal technique works with all exigtNATs, because NAT behavior is
not standardized. Chapter 7 presents some experimentdtsresaluating hole punching support
in current NATs. Our data is derived from results submittgdubers throughout the Internet by
running our “NAT Check” tool over a wide variety of NATs by @ifent vendors. While the data
points were gathered from a “self-selecting” user comnyuaitd may not be representative of
the true distribution of NAT implementations deployed oa thternet, the results are nevertheless
generally encouraging.

While evaluating basic hole punching, we also point outatarns that can make hole punching
work on a wider variety of existing NATs at the cost of greatemplexity. Our primary focus,
however, is on developing tremplesthole punching technique that works cleanly and robustly in
the presence of “well-behaved” NATs in any reasonable nétwapology. We deliberately avoid
excessively clever tricks that may increase compatibilitth some existing “broken” NATs in the
short term, but which only work some of the time and may cawsktianal unpredictability and
network brittleness in the long term.

Although the larger address space of IPv6 [62] may evertuatluce the need for NAT, in the
short term IPv6 isncreasingthe demand for NAT, because NAT itself provides the easiest w
to achieve interoperability between IPv4 and IPv6 addressaihs [251]. Further, the anonymity
and inaccessibility of hosts on private networks has wigelsceived security and privacy benefits.
Firewalls are unlikely to go away even when there are enoBgidtresses: IPv6 firewalls will still
commonly block unsolicited incoming traffic by default, nradk hole punching useful even to IPv6

123

applications.

5.1.1 Terminology

We adopt the NAT terminology and taxonomy defined in RFC 268R%)], as well as additional
terms defined more recently in RFC 3489 [209] and RFC 4787 M@]urge readers to refer to the
above RFCs for detailed information about terminology, thetmost basic terms and concepts are
summarized below.

e Session: Of particular importance is the notion of session. séssion endpoinfor TCP
or UDP is an (IP address, port number) pair, and a particgasions uniquely identified
by its two session endpoints. From the perspective of onbeohbsts involved, a session is
effectively identified by the 4-tuple (local IP, local patmote IP, remote port). Thdirection
of a session is normally the flow direction of the packet thitates the session: the initial
SYN packet for TCP, or the first user datagram for UDP.

e Traditional NAT: Of the various flavors of NAT [230], the most common typéraitional
or outboundNAT [228], which provides an asymmetric bridge between aagte network
and a public network. Outbound NAT by default allows onlylmutnd sessions to traverse
the NAT: incoming packets are dropped unless the NAT idestifhem as being part of an
existing session initiated from within the private networloutbound NAT conflicts with
peer-to-peer protocols because when both peers desiriogntonunicate are “behind” (on
the private network side of) two different NATs, whichevexep tries to initiate a session, the
other peer’s NAT rejects it. NAT traversal entails makind®P&ssions look like “outbound”
sessions tdoth NATSs.

e Basic NAT versus NAPT: Outbound NAT has two sub-varietie®asic NAT which only
translates IP addresses, awetwork Address/Port TranslatigiNAPT), which translates en-
tire session endpoints. NAPT, the more general varietyalssbecome the most common
because it enables the hosts on a private network to shaneéhaf asinglepublic IP address.
Throughout this chapter we assume NAPT, though the priegiphd techniques we discuss
apply equally well (if sometimes trivially) to Basic NAT.

e Loopback/Hairpin Translation: When a host in the private domain of a NAT device at-
tempts to connect with another host behind the same NAT dexsing the public address of
the host, the NAT device performs the equivalent of a "Twied” translation on the packet as
follows. The originating host’s private endpoint is traatel into its assigned public endpoint,
and the target host's public endpoint is translated intpiitgate endpoint, before the packet
is forwarded to the target host. We refer the above traosigierformed by a NAT device as
"Loopback translation”. This is also referred sometime&-grpin translation”.

124

Server S
(18.181.0.31)

Session A-S Session B-S
18.181.0.31:1234—— —18.181.0.31:1234
155.99.25.11:62000 138.76.29.7:31000

Main Internet

i

NAT NAT
(155.99.25.11) (138.76.29.7)

Session A-S

18.181.0.31:12347 L rivate
10.0.0.1:4321, Network

Session B-S

Private
\18.181.0.31:1234
Network | 191134321

g =i
Client A Client B

(10.0.0.1) (10.1.1.3)

Figure 5-2: NAT Traversal by Relaying

5.1.2 Relaying

The most reliable but least efficient method of P2P commutioicacross NAT is simply to make
the communication look to the network like standard cliggver communication, through relaying.
Suppose two client hostd and B have each initiated TCP or UDP connections to a well-known
serverS, at S’s global IP address 18.181.0.31 and port number 1234. Awrslio Figure 5-2,
the clients reside on separate private networks, and thgiective NATs prevent either client from
directly initiating a connection to the other. Instead eéatpting a direct connection, the two clients
simply use the serve$ to relay messages between them. For example, to send a r¢ssdignt

B, client A sends the message to sengnlong its already-established client/server connection,
and servelS forwards the message on to cligdtusing its existing client/server connection with

Relaying always works as long as both clients can connedtegcsérver. Its disadvantages
are that it consumes the server’s processing power and rietvemdwidth for every data packet
forwarded this way, and communication latency between #weripg clients is likely increased
even if the server is well-connected. Nevertheless, sihesetis no more efficient technique that
works reliably on all existing NATSs, relaying is a usefullfabck strategy if maximum robustness is
desired. The TURN protocol [210] defines a method of impletmgrrelaying in a relatively secure
fashion.

UIA's overlay routing layer effectively provides a genézaell relaying service, which can cre-
ate indirect paths between UIA nodes even when such a pathtrausrse several intermediate

125

Server S
(18.181.0.31)

(1) Reverse
\ Connection
NAT Request
(155.99.25.1 \

=
(3) Reverse Client B
Connection (138.76.29.7)

Client A
(10.0.0.1)

Figure 5-3: NAT Traversal by Connection Reversal

nodes or must be relayed for purposes other than NAT trav@sa, to cross between completely
different network technologies, such as IP and Bluetodtin}he UIA worldview, the NAT traver-
sal solutions developed in the following sections represeptimizations that permit the dynamic
creation of “shortcuts” that bypass these intermediatgyrbbps at the IP level, once the P2P con-
nection is established with the help of the intermediarnc8iUIA treats NAT traversal only as an
optimization, it is acceptable that NAT traversal does notknon 100% of existing NATs we will
see in Chapter 7: when hole punching does not work, UIA camyswall back on less efficient,
explicit relaying.

5.1.3 Connection Reversal

Some P2P applications use a straightforward but limitedrtieeie, known agsonnection reversal
to enable communication when both hosts have connectioaswiell-known rendezvous server
S and only one of the peers is behind a NAT, as shown in Figure 534 wants to initiate a
connection toB, then a direct connection attempt works automaticallyabeeB is not behind
a NAT and A’s NAT interprets the connection as an outgoing sessionB Mvants to initiate a
connection ta4, however, any direct connection attempt4ds blocked byA’s NAT. B can instead
relay a connection request t through a well-known serve$, asking A to attempt a “reverse”
connection back t@. Despite the obvious limitations of this technique, thetdndea of using a
well-known rendezvous server as an intermediary to helpiselirect peer-to-peer connections is

126

fundamental to the more general hole punching techniguesritded next.

5.2 UDP Hole Punching

UDP hole punching enables two clients to set up a direct fgepeer UDP session with the help of
a well-known rendezvous server, even if the clients are bettind NATs. This technique was men-
tioned in section 5.1 of RFC 3027 [113], documented moredtigily elsewhere on the Web [130],
and used in recent experimental Internet protocols [117), 2@arious proprietary protocols, such
as those for on-line gaming, also use UDP hole punching.

5.2.1 The Rendezvous Server

Hole punching assumes that the two clieMsand B, already have active UDP sessions with a
rendezvous serve$. When a client registers witl§, the server recordsvo endpoints for that
client: the (IP address, UDP port) pair that the clibatievestself to be using to talk wittf, and
the (IP address, UDP port) pair that the servbserveghe client to be using to talk with it. We
refer to the first pair as the clientfwivate endpoint and the second as the clieptglic endpoint.
The server might obtain the client’s private endpoint frdma tlient itself in a field in the body of
the client’s registration message, and obtain the clignitdic endpoint from the source IP address
and source UDP port fields in the IP and UDP headers of thattratibn message. If the client is
notbehind a NAT, then its private and public endpoints shouldlbatical.

A few poorly behaved NATs are known to scan the body of UDPgtatas for 4-byte fields
that look like IP addresses, and translate them as they wbeltP address fields in the IP header.
To be robust against such behavior, applications may wisibfoscate IP addresses in messages
bodies slightly, for example by transmitting the one’s ctenpent of the IP address instead of the
IP address itself. Of course, if the application is encrnygiis messages, then this behavior is not
likely to be a problem.

5.2.2 Establishing Peer-to-Peer Sessions

Suppose clienl wants to establish a UDP session directly with cliBntHole punching proceeds
as follows:

1. Ainitially does not know how to reacB, so A asksS for help establishing a UDP session
with B.

2. Sreplies toA with a message containing’s public andprivate endpoints. At the same time,
S uses its UDP session witB to sendB a connection request message contaimdrggpublic
and private endpoints. Once these messages are recdiwad B know each other’s public
and private endpoints.

127

Server S Server § Server S
(18.181.031) (2) Forward B's (18.181.0.31) (2) Forward A's (18.181.0.31)
Endpoints to A Endpoints to B

Session A-S
18.181.0.31:1234
155.99.25.11:62000

NAT
(155.99.25.11)

Session B-S
18.181.0.31:1234
155.99.25.11:62005

155.99.25.11:62000
10.0.0.1:4321

155.99.25.11:62005
10.1.1.3:4321

Session A-S
18.181.0.31:1234
55.99.25.11:62000

NAT
(155.99.25.11)

Session B-S
18.181.0.31:1234
155.99.25.11:62005

Session A-S—~_ . —Session B-§ Session A-S—~_. —Session B-§
18.181.0.31:1234 18.181.0.31:1234 \ 18.181.0.31:1234 18.181.0.31:1234
10.0.0.1:4321 10.1.13:4321 (1) Request | | (3) Send to B at Send to A at 10.0.0.1:4321 10.1.1.3:4321
' / Connection | | (@) 155.99.25.11:62005 (a) 155.99.25.11:62000 = _/
M toB \ \(®)10.1.1.3:4321 (b) 10.0.0.1:4321 //\/—/\
A RN
)
oy -—) on
g = O=——L*H = Session A5 =
Client A Client B Client A Client B Client A 0L Client B
(10.0.0.1) (10.1.1.3) (10.0.0.1) (10.1.1.3) (10.0.0.1) o (10.1.1.3)
Before Hole Punching The Hole Punching Process After Hole Punching

Figure 5-4: UDP hole punching, peers behind a common NAT

3. When A receivesB’s public and private endpoints fromfi, A starts sending UDP packets
to both of these endpoints, and subsequently “locks in” whichevetpeint first elicits a
valid response fronB. Similarly, whenB receivesA’s public and private endpoints in the
forwarded connection requesB starts sending UDP packets tb at each ofA’s known
endpoints, locking in the first endpoint that works. The ored timing of these messages
are not critical as long as they are asynchronous.

We now consider how UDP hole punching handles each of thregfgpnetwork scenarios. In
the first situation, representing the “easy” case, the tvemtd actually reside behind the same NAT,
on one private network. In the second, most common caselidmtscreside behind different NATSs.
In the third scenario, the clients each reside behivmlevels of NAT: a common “first-level” NAT
deployed by an ISP for example, and distinct “second-led#Ts such as consumer NAT routers
for home networks.

It is in general difficult or impossible for the applicatioisélf to determine the exact physical
layout of the network, and thus which of these scenarioshi@mtany other possible ones) actu-
ally applies at a given time. Protocols such as STUN [209] mawide some information about
the NATs present on a communication path, but this inforomathay not always be complete or
reliable, especially when multiple levels of NAT are invetk Nevertheless, hole punching works
automatically in all of these scenariwngthoutthe application having to know the specific network
organization, as long as the NATs involved behave in a redserfashion. (“Reasonable” behavior
for NATs will be described later in Section 5.4.)

5.2.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clieptsifably unknowingly) happen to reside
behind the same NAT, and are therefore located in the sama&t@iliP address realm, as shown in
Figure 5-4. Client4 has established a UDP session with segto which the common NAT has

128

Server § Server § Server §
(18.181.031) (2) Forward B's (18.181.0.31) (2) Forward A's (18.181.0.31)

o Endpoints to A Endpoints to B o —
I = 138.76.29.7:31000 155.99.25.11:62000 I =S

Session A-S Session B-S 10.0.0.1:4321 Session A-§ Session B-S
18.181.0.31:1234—> T~I8.181.031:1234 18.181.0.31:1234—> T~I8.181.031:1234
155.99.25.11:62000 138.76.29.7:31000 155.99.25.11:62000 138.76.29.7:31000
¢ S V™I
e —— ——
\ —— 155.99.25.11:62000 \
138.76.20.7:31000
NAT NAT
(155.99.25.11) (138.76.29.7)
G o= . VAR
i) (3) Send to B at Send to A at Session A-S| | Session A-B Session A-B| | Session B-S
LELMEI IS ISTOS 12 (2) 138.76.29.7:31000 (a) 155.99.25.11:62000 18.181.0.31:1234 138.76.29.7:31000 155.99.25.11:62000 18.181.031:1234
10.0.0.1:4321 10.1.1.3:4321 (b) 10.1.1.3:4321 (b) 10.0.0.1:4321 10.0.0.1:4321 10.0.0.1:4321 LBELS4321 10.1.1.3:4321
(1) Request, V2 N,
Connection “)m (b)‘“‘
B LN AU
g = " 0 = o =i
Client A Client B Client A Client B Client A Client B
(10.0.0.1) (10.1.1.3) (10.0.0.1) (10.1.1.3) (10.0.0.1) (10.1.1.3)
Before Hole Punching The Hole Punching Process After Hole Punching

Figure 5-5: UDP hole punching, peers behind different NATs

assigned its own public port number 62000. Clignhas similarly established a session withto
which the NAT has assigned public port number 62005.

Suppose that client uses the hole punching technique outlined above to edtablisDP
session withB, using servers as an introducer. Clie sendsS a message requesting a connection
to B. S responds tod with B’s public and private endpoints, and also forwartls public and
private endpoints td. Both clients then attempt to send UDP datagrams to each diteetly at
each of these endpoints. The messages directed to the pubjioints may or may not reach their
destination, depending on whether or not the NAT suppoitginaranslation as described below in
Section 5.2.5. The messages directed at the private endploineach their destinations, however,
and since this direct route through the private networkkislyi to be faster than an indirect route
through the NAT anyway, the clients are most likely to sethetprivate endpoints for subsequent
regular communication.

By assuming that NATs support hairpin translation, the igpfibn might dispense with the
complexity of trying private as well as public endpointsttat cost of making local communication
behind a common NAT unnecessarily pass through the NAT. Ageasults in Section 7.6 show,
however, hairpin translation is still much less common agnexisting NATs than are other “P2P-
friendly” NAT behaviors. For now, therefore, applicatiomay benefit substantially by using both
public and private endpoints.

5.2.4 Peers behind different nATs

Suppose clientgl and B have private IP addresses behind different NATs, as showigimre 5-5.
A and B have each initiated UDP communication sessions from tbeallport 4321 to port 1234
on serverS. In handling these outbound sessions, NAhas assigned port 62000 at its own public
IP address, 155.99.25.11, for the useddf session withS, and NAT B has assigned port 31000 at
its IP address, 138.76.29.7, Bs session withs.

In A’s registration message 19, A reports its private endpoint t§ as 10.0.0.1:4321, where

129

10.0.0.1isA’s IP address on its own private networkrecordsA’s reported private endpoint, along
with A’s public endpoint as observed B\itself. A’s public endpoint in this case is 155.99.25.11:62000,
the temporary endpoint assigned to the session by the NATiléBly, when clientB registers,S
recordsB’s private endpoint as 10.1.1.3:4321 aB& public endpoint as 138.76.29.7:31000.

Now client A follows the hole punching procedure described above tdksitiea UDP commu-
nication session directly witl. First, A sends a request messageStasking for help connecting
with B. In responseS sendsB’s public and private endpoints td, and sendsd’s public and
private endpoints t@. A and B each start trying to send UDP datagrams directly to eachesith
endpoints.

SinceA andB are on different private networks and their respectivegteNdP addresses are not
globally routable, the messages sent to these endpointeadh either the wrong host or no host at
all. Because many NATs also act as DHCP servers, handin@aatdresses in a fairly deterministic
way from a private address pool usually determined by the M&Tdor by default, it is quite likely
in practice thatd’s messages directed &'s private endpoint will reaclsome(incorrect) host on
A’s private network that happens to have the same private tlPead asB does. Applications
must therefore authenticate all messages in some way todiltesuch stray traffic robustly. The
messages might include application-specific names oragyaphic tokens, for example, or at least
a random nonce pre-arranged througjh

Now considerA’s first message sent t8’s public endpoint, as shown in Figure 5-5. As this
outbound message passes through NAT, this NAT notices that this is the first UDP packet in
a new outgoing session. The new session’s source endpdirtt.@11:4321) is the same as that
of the existing session betweeh and S, but its destination endpoint is different. If NAX is
well-behaved, it preserves the identity dfs private endpoint, consistently translatiad out-
bound sessions from private source endpoint 10.0.0.1:482he corresponding public source
endpoint 155.99.25.11:620004’s first outgoing message tB’s public endpoint thus, in effect,
“punches a hole” ind’s NAT for a new UDP session identified by the endpoints (10104321,
138.76.29.7:31000) oA's private network, and by the endpoints (155.99.25.11062238.76.29.7:31000)
on the main Internet.

If A’s message tdB’s public endpoint reaches’s NAT before B’s first message tod has
crossedB’s own NAT, thenB’s NAT may interpretA’s inbound message as unsolicited incoming
traffic and drop it. B’s first message tal’s public address, however, similarly opens a holdsia
NAT, for a new UDP session identified by the endpoints (10314821, 155.99.25.11:62000) on
B'’s private network, and by the endpoints (138.76.29.7:81065.99.25.11:62000) on the Internet.
Once the first messages frathand B have crossed their respective NATSs, holes are open in each
direction and UDP communication can proceed normally. Qheeclients have verified that the
public endpoints work, they can stop sending messages ttdraative private endpoints.

130

Server § Server S Server §

(18.181.0.31) (2) Forward B's (18.181.0.31) (2) Forward A's (18.181.0.31)
Endpoints to A Endpoints to B

155.99.25.11:62005 155.99.25.11:62000 mrEs
10.0.0.1:4321

10.1.1.3:4321
Session A-S Session B-S

Session A-S Session B-S
18.181.0.31:1234 18.181.0.31:1234 18.181.0.31:1234 18.181.0.31:1234
55.99.25.11:62000 155.99.25.11:62005

55.99.25.11:62000 155.99.25.11:62005

NAT C NAT C
(155.99.25.11) (155.99.25.11)
Session A-S Session B-§ Session A-S /7. 1 T Session B-S
18.181.0.31:123: \IS!XH)}I 1234 18.181.0.31:1234 Session A-B klxlxlﬂ}kl?_%

10.0.1.1:45000 10.0.1.2:55000

NAT A NAT B
(10.0.1.1) (10.0.1.2)
~

10.0.1.1:45000_ 155.99.25.11:62005 10.0.1.2:55000
1001145000 ——~"
Session A-B
155.99.25.11:62000
10.0.1.2:55000

NAT A NAT B
(10.0.1.2) (10.0.1.1) (10.0.1.2)

Vs
Session A-§ Session B-§ (3) Send to B at Sendiolat SessionA-S| | Session A-B SessionA-B| | Session B-S
18.181.031:1234 18.181.031:1234 () 155.99.25.11:62005 () 155.99.25.11:62000 ey 155.99.25.11:62005 155.99.25.11:62000 RIS
10.0.0.1:4321 10.1.1.3:4321 (b) 10.1.1.3:4321 (b) 10.0.0.1:4321 1().Ud.1:43i| 10.0.0.1:4321 10.1.1.3:4321 101 I,]:-’i}lln
o O Request LA o/ » e
onnection b)
m) j=. e =X X = =
Client A Client B Client A Client B Client A Client B
1000.1) 10.1.1.3) (10.00.1) 10.1.1.3) 100.0.1) (10.1.13)
Before Hole Punching The Hole Punching Process After Hole Punching

Figure 5-6: UDP hole punching, peers behind multiple leeé NAT

5.2.5 Peers Behind Multiple Levels of NAT

In some topologies involving multiple NAT devices, two clie cannot establish an “optimal” P2P
route between them without specific knowledge of the toppl@pnsider a final scenario, depicted
in Figure 5-6. Suppose NAUT is a large industrial NAT deployed by an internet servicevjater
(ISP) to multiplex many customers onto a few public IP adskkesand NATsA and B are small
consumer NAT routers deployed independently by two of tHe'dSustomers to multiplex their
private home networks onto their respective ISP-providedddresses. Only servSrand NAT
C have globally routable IP addresses; the “public” IP adslresised by NATA and NAT B are
actually private to the ISP’s address realm, while clidist and B’s addresses in turn are private
to the addressing realms of NAL and NAT B, respectively. Each client initiates an outgoing
connection to servef as before, causing NAT4 and B each to create a single public/private
translation, and causing NAT to establish a public/private translation for each session

Now supposed and B attempt to establish a direct peer-to-peer UDP connect&hole punch-
ing. The optimal routing strategy would be for cliehito send messages to clieBis “semi-public”
endpoint at NATB, 10.0.1.2:55000 in the ISP’s addressing realm, and fontcl¥to send messages
to A’s “semi-public” endpoint at NATB, namely 10.0.1.1:45000. Unfortunately,and B have no
way to learn these addresses, because séhaily sees the truly global public endpoints of the
clients, 155.99.25.11:62000 and 155.99.25.11:6200%0tisply. Even ifA and B had some way
to learn these addresses, there is still no guarantee #hatbuld be usable, because the address
assignments in the ISP’s private address realm might confiib unrelated address assignments in
the clients’ private realms. (NAR’s IP address in NATC"s realm might just as easily have been
10.1.1.3, for example, the same as cli&d private address in NAB's realm.)

The clients therefore have no choice but to use their globhlip addresses as seen Byfor

131

their P2P communication, and rely on NAT providing hairpin or loopbacktranslation. When

A sends a UDP datagram ®'s global endpoint, 155.99.25.11:62005, NA{Tfirst translates the
datagram’s source endpoint from 10.0.0.1:4321 to 10.@30D0. The datagram now reaches NAT
C, which recognizes that the datagram’s destination adisese of NATC’s own translategbublic
endpoints. If NATC is well-behaved, it then translatbsththe source and destination addresses in
the datagram and “loops” the datagram back onto the privatieark, now with a source endpoint
of 155.99.25.11:62000 and a destination endpoint of 12®&3000. NATB finally translates the
datagram’s destination address as the datagram eptepsivate network, and the datagram reaches
B. The path back tal works similarly. Many NATs do not yet support hairpin traatsn, but it is
becoming more common as NAT vendors become aware of this.issu

5.2.6 UDP Idle Timeouts

Since the UDP transport protocol provides NATs with no t#ia application-independent way to
determine the lifetime of a session crossing the NAT, most dgimply associate an idle timer with
UDP translations, closing the hole if no traffic has usediitsmme time period. There is unfortu-
nately no standard value for this timer: some NATs have tiugeas short as 20 seconds. If the
application needs to keep an idle UDP session active aftebleshing the session via hole punch-
ing, the application must send periodic keep-alive padketmisure that the relevant translation state
in the NATs does not disappeat.

Unfortunately, many NATs associate UDP idle timers withvidlial UDP sessions defined by a
particular pair of endpoints, so sending keep-alives orsession will not keep other sessions active
even if all the sessions originate from the same private @ntlpinstead of sending keep-alives on
many different P2P sessions, applications can avoid eixedssep-alive traffic by detecting when
a UDP session no longer works, and re-running the origin panching procedure again “on
demand.”

5.3 TCP Hole Punching

Establishing peer-to-peer TCP connections between hesiisd NATSs is slightly more complex
than for UDP, but TCP hole punching is remarkably similahat protocol level. Since it is not as
well-understood, it is currently supported by fewer exigNATs. When the NATs involvedo sup-
port it, however, TCP hole punching is just as fast and ridials UDP hole punching. Peer-to-peer
TCP communication across well-behaved NATs may in fagnbeerobust than UDP communica-
tion, because unlike UDP, the TCP protocol’s state machivesdgNATs on the path a standard way
to determine the precise lifetime of a particular TCP se&ssio

132

5.3.1 Sockets and TCP Port Reuse

The main practical challenge to applications wishing toleanpent TCP hole punching is not a
protocol issue but an application programming interfacljAssue. Because the standard Berkeley
sockets APl was designed around the client/server paradiggiAPI allows a TCP stream socket to
be used to initiate an outgoing connection gannect() , or to listen for incoming connections
via listen() andaccept() , but not both Further, TCP sockets usually have a one-to-one
correspondence to TCP port numbers on the local host: &fteiplication binds one socket to a
particular local TCP port, attempts to bind a second socktitd same TCP port fail.

For TCP hole punching to work, however, we need to use a siogld TCP port to listen
for incoming TCP connections and to initiate multiple outgp TCP connections concurrently.
Fortunately, all major operating systems support a spdde@d socket option, commonly named
SO_REUSEADDRvhich allows the application to bind multiple sockets te tame local end-
point as long as this option is set on all of the sockets irelvBSD systems have introduced a
SO_REUSEPORGdption that controls port reuse separately from addresserean such systems
both of these options must be set.

5.3.2 Opening Peer-to-Peer TCP Streams

Suppose that clientt wishes to set up a TCP connection with cligsit We assume as usual that
both A and B already have active TCP connections with a well-known revoles serveS. The
server records each registered client’s public and priematipoints, just as for UDP. At the protocol
level, TCP hole punching works almost exactly as for UDP:

1. ClientA uses its active TCP session withto asksS for help connecting td3.

2. S replies toA with B’s public and private TCP endpoints, and at the same timessgizd
public and private endpoints 8.

3. Fromthe same local TCP porthat A and B used to register witlt, A and B each asyn-
chronously make outgoing connection attempts to the athperblic and private endpoints as
reported byS, while simultaneously listening for incoming connecticars their respective
local TCP ports.

4. A andB wait for outgoing connection attempts to succeed, andfoinflmming connections
to appear. If one of the outgoing connection attempts fails @ a network error such as
“connection reset” or “host unreachable,” the host simghtries that connection attempt
after a short delay (e.g., one second), up to an applicalédimd maximum timeout period.

5. When a TCP connection is made, the hosts authenticateotiaehto verify that they con-
nected to the intended host. If authentication fails, thent$ close that connection and con-
tinue waiting for others to succeed. The clients use thedirstessfully authenticated TCP
stream resulting from this process.

133

Connections to S

Peer-to-Peer
Connections
Local Local
TCP Port TCP Port
Listen Socket — — Listen Socket
Connectionto S — Connection to S
Connection to | | Connection to
B's Public Endpoint A's Public Endpoint
Connection to L L Connection to
B's Private Endpoint A's Private Endpoint
Client A Client B

Figure 5-7: Sockets versus ports for TCP hole punching

Unlike with UDP, where each client only needs one socket taraanicate with bothS and
any number of peers simultaneously, with TCP each clienlicgiipn must manage several sock-
ets bound to a single local TCP port on that client node, asvsho Figure 5-7. Each client
needs a stream socket representing its connectiéh adisten socket on which to accept incoming
connections from peers, and at least two additional stremrkess with which to initiate outgoing
connections to the other peer’s public and private TCP entipo

Consider the common-case scenario in which the cligdngnd B are behind different NATS,
as shown in Figure 5-5, and assume that the port numbers simothie figure are now for TCP
rather than UDP ports. The outgoing connection atterdpend B make to each other’s private
endpoints either fail or connect to the wrong host. As withRJiDis important that TCP applications
authenticate their peer-to-peer sessions, due of theéndad of mistakenly connecting to a random
host on the local network that happens to have the same @iiRaaddress as the desired host on a

134

remote private network.

The clients’ outgoing connection attempts to each otharlslic endpoints, however, cause the
respective NATs to open up new “holes” enabling direct TCRcmnication betweed andB. If
the NATs are well-behaved, then a new peer-to-peer TCRstaegomatically forms between them.
If A’s first SYN packet taB reachesB’s NAT before B’s first SYN packet tod reachesB’s NAT,
for example, therB’s NAT may interpretA’s SYN as an unsolicited incoming connection attempt
and drop it.B’s first SYN packet tad should subsequently get through, however, becatls&lAT
sees this SYN as being part of the outbound sessidghttwat A’s first SYN had already initiated.

5.3.3 Behavior Observed by the Application

What the client applications observe to happen with theiksts during TCP hole punching depends
on the timing and the TCP implementations involved. SuppleaeA’s first outbound SYN packet
to B’'s public endpoint is dropped by NAB, but B’s first subsequent SYN packet #s public
endpoint gets through td beforeA’s TCP retransmits its SYN. Depending on the operating syste
involved, one of two things may happen:

e A's TCP implementation notices that the session endpointhédncoming SYN match those
of an outbound sessiaA was attempting to initiated’s TCP stack therefore associates this
new session with the socket that the local applicatiomdomas using taconnect() to B's
public endpoint. The application’s asynchronaennect() call succeeds, and nothing
happens with the application’s listen socket.

Since the received SYN packet did not include an ACKAG previous outbound SYNA's
TCP replies toB’s public endpoint with a SYN-ACK packet, the SYN part beingnaly
a replay ofA'’s original outbound SYN, using the same sequence numbece Bis TCP
receivesA’'s SYN-ACK, it responds with its own ACK ford's SYN, and the TCP session
enters the connected state on both ends.

e Alternatively, A’s TCP implementation might instead notice thiahas an active listen socket
on that port waiting for incoming connection attempts. 8iBés SYN looks like an incoming
connection attempt4’s TCP creates aewstream socket with which to associate the new TCP
session, and hands this new socket to the application viaghkcation’s nextaccept()
call on its listen socketA’'s TCP then responds tB with a SYN-ACK as above, and TCP
connection setup proceeds as usual for client/serves-styinections.

SinceA’s prior outboundconnect() attempt toB used a combination of source and des-
tination endpoints that is now in use by another socket, hathe one just returned to the
application viaaccept() , A's asynchronousonnect() attempt must fail at some point,
typically with an “address in use” error. The applicatiorvertheless has the working peer-
to-peer stream socket it needs to communicate Witko it ignores this failure.

135

The first behavior above appears to be usual for BSD-basemhtopge systems, whereas the
second behavior appears more common under Linux and Windows

5.3.4 Simultaneous TCP Open

Suppose that the timing of the various connection attemyrisgl the hole punching process works
out so that the initial outgoing SYN packets frdrath clients traverse their respective local NATs,
opening new outbound TCP sessions in each NAT, before megqdhé remote NAT. In this “lucky”
case, the NATs do not reject either of the initial SYN packersd the SYNs cross on the wire
between the two NATs. In this case, the clients observe antdwv®wn as ssimultaneous TCP
open each peer's TCP receives a “raw” SYN while waiting for a SASK. Each peer's TCP
responds with a SYN-ACK, whose SYN part essentially “replathe peer’'s previous outgoing
SYN, and whose ACK part acknowledges the SYN received frazother peer.

What the respective applications observe in this case alggnends on the behavior of the TCP
implementations involved, as described in the previous@edf bothclients implement the second
behavior above, it may be thall of the asynchronousonnect() calls made by the application
ultimately fail, but the application running on each clieevertheless receives a new, working peer-
to-peer TCP stream socket vé&cept() —as if this TCP stream had magically “created itself”
on the wire and was merely passively accepted at the endpdiationg as the application does not
care whether it ultimately receives its peer-to-peer TCékeats viaconnect() or accept()
the process results in a working stream on any TCP implerientthat properly implements the
standard TCP state machine specified in RFC 793 [244].

Each of the alternative network organization scenariosudised in Section 5.2 for UDP works
in exactly the same way for TCP. For example, TCP hole pugchiorks in multi-level NAT sce-
narios such as the one in Figure 5-6 as long as the NATs indave well-behaved.

5.3.5 Sequential Hole Punching

In a variant of the above TCP hole punching procedure imphteakby the NatTrav library [72],
the clients attempt connections to each other sequentatiyer than in parallel. For example: (1)
Ainforms B via S of its desire to communicatgjithoutsimultaneously listening on its local port;
(2) B makes aconnect() attempt toA, which opens a hole iB’s NAT but then fails due to a
timeout or RST fromA’s NAT or a RST fromA itself; (3) B closes its connection t§ and does
alisten() on its local port; (4)S in turn closes its connection with, signaling A to attempt a
connect() directly toB.

This sequential procedure may be particularly useful ond&ivs hosts prior to XP Service
Pack 2, which did not correctly implement simultaneous T@erp or on sockets APIs that do not
support theSO_REUSEADDRNctionality. The sequential procedure is more timingatadent,
however, and may be slower in the common case and less rabustisual situations. In step (2),
for example,B must allow its “doomed-to-failtonnect() attempt enough time to ensure that at

136

least one SYN packet traverses all NATs on its side of the ortwioo little delay risks a lost SYN
derailing the process, whereas too much delay increasdsettidime required for hole punching.
The sequential hole punching procedure also effectivebnéames” both clients’ connections to
the serverS, requiring the clients to open fresh connectionsStor each new P2P connection to
be forged. The parallel hole punching procedure, in cofttggically completes as soon as both
clients make their outgoingonnect() attempts, and allows each client to retain and re-use a
single connection t&¢ indefinitely.

5.4 Properties of P2P-Friendly NATs

This section describes the key behavioral properties NAlstimave in order for the hole punching
techniques described above to work properly. Not all cirMAT implementations satisfy these
properties, but many do, and NATs are gradually becomingert®2P-friendly” as NAT vendors
recognize the demand for peer-to-peer protocols such as woier IP and on-line gaming.

This section is not meant to be a complete or definitive spatifin for how NATs “should”
behave; we provide it merely for information about the mashmonly observed behaviors that
enable or break P2P hole punching. The IETF started the BEEM@rking group to define offi-
cial “best current practices” for NAT behavior [119]. As diig writing, the BEHAVE group has
standardized NAT behavior recommendations for UDP [16]I&whulticast [263], and is finalizing
similar recommendations for TCP [102], which include thegiderations outlined in this section
and others. NAT vendors should of course follow the IETF viriglkgroup directly as official be-
havioral standards are formulated.

5.4.1 Consistent Endpoint Translation

The hole punching techniques described here only work aatioally if the NAT consistently maps
a given TCP or UDP source endpoint on the private networksimgle corresponding public end-
point controlled by the NAT. A NAT that behaves in this way éarred to as @one NATin RFC
3489 [209] and elsewhere, because the NAT “focuses” all@essoriginating from a single private
endpoint through the same public endpoint on the NAT.

Consider again the scenario in Figure 5-5, for example. Wiient A initially contacted the
well-known serverS, NAT A chose to use port 62000 at its own public IP address, 155299.2
as a temporary public endpoint to representitig private endpoint 10.0.0.1:4321. Whehlater
attempts to establish a peer-to-peer session Bitly sending a message from the same local private
endpoint toB’s public endpoint,A depends on NATA preserving the identity of this private end-
point, and re-using the existing public endpoint of 15529911:62000, because that is the public
endpoint forA to which B will be sending its corresponding messages.

A NAT that is only designed to support client/server proteasill not necessarily preserve the
identities of private endpoints in this way. Such a NAT sgyenmetric NATh RFC 3489 terminology.
For example, after the NAT assigns the public endpoint 1%3%11:62000 to clientl’s session

137

with serverS, the NAT might assign a different public endpoint, such &.998.25.11:62001, to the
P2P session that tries to initiate withB. In this case, the hole punching process fails to provide
connectivity, because the subsequent incoming messagesreach NAT A at the wrong port
number.

Many symmetric NATs allocate port numbers for successigsieas in a fairly predictable way.
Exploiting this fact, variants of hole punching algorithf3§, 101] can be made to work “much of
the time” even over symmetric NATs by first probing the NAT&hawvior using a protocol such as
STUN [209], and using the resulting information to “preditte public port number the NAT will
assign to a new session. Such prediction techniques ammghising a moving target, however,
and many things can go wrong along the way. The predictedmuonbber might already be in use
causing the NAT to jump to another port number, for examptearmther client behind the same
NAT might initiate an unrelated session at the wrong timessmallocate the predicted port number.
While port number prediction can be a useful trick for achigvmaximum compatibility with
badly-behaved existing NATS, it does not represent a rdouagf-term solution. Since symmetric
NAT provides no greater security than a cone NAT with pesiestraffic filtering, symmetric NAT
is becoming less common as NAT vendors adapt their algositionsupport P2P protocols.

5.4.2 Handling Unsolicited TCP Connections

When a NAT receives a SYN packet on its public side for whatappto be an unsolicited incoming
connection attempt, it is important that the NAT just silgridrop the SYN packet. Some NATs
instead actively reject such incoming connections by senbiack a TCP RST packet or even an
ICMP error report, which interferes with the TCP hole pumchprocess. Such behavior is not
necessarily fatal, as long as the applications re-try aotgoonnection attempts as specified in step
4 of the process described in Section 5.3.2, but the regufimsient errors can make hole punching
take longer.

5.4.3 Leaving Payloads Alone

A few existing NATs are known to scan “blindly” through patlmyloads for 4-byte values that
look like IP addresses, and translate them as they wouldPthedress in the packet header, without
knowing anything about the application protocol in use.sTad behavior fortunately appears to
be uncommon, and applications can easily protect thenmsalyainst it by obfuscating IP addresses
they send in messages, for example by sending the bitwispleamant of the desired IP address.

5.4.4 Hairpin Translation

Some multi-level NAT situations require hairpin trangatisupport in order for either TCP or UDP
hole punching to work, as described in Section 5.2.5. Thaat® shown in Figure 5-6, for ex-
ample, depends on NAT' providing hairpin translation. Support for hairpin traatgbn is unfortu-

nately rare in current NATSs, but fortunately so are the nekveazenarios that require it. Multi-level

138

NAT is becoming more common as IPv4 address space deplatiimuoes, however, so support for
hairpin translation is important in future NAT implemerndars.

139

140

Chapter 6

UIA Implementation

This chapter describes UIAs current implementation stafl of the UIA components described
in prior chapters have been prototyped, although thesetypes are not yet feature-complete or
fully integrated into a single easily installable and usabistem. UIA represents an ambitious new
networking architecture, and fully implementing and refqit into a robust system ready for pro-
duction use will take substantial additional work. Sectoh describes the current implementation
of the personal name system described in Chapter 2, SecfodeScribes the prototypes of the
three approaches to UIA routing explored in Chapter 3, arali®@e6.3 describes the Structured
Stream Transport (SST) prototype.

6.1 Personal Naming Implementation

A UIA prototype implementing the personal naming (Chapfead social routing (Section 3.2)
protocols currently runs on Linux and Mac OS X, and is pdytipbrted to FreeBSD. As illustrated
in Figure 6-1, the prototype consists of two user-level damsnimplementing UIA's naming and
routing layers, respectively, and a graphical applicafmmbrowsing and controlling devices and
groups. The control application and other UlA-aware agplins on the device interface directly
to the naming and routing daemons via Sun RPC. Through theséeices, UIA-aware applications
can resolve UIA names to EIDs, explore and modify groups dralb®f the user, send packets to
EIDs, receive packets on the device’s EID, and discoverspaethe local-area network.

6.1.1 Prototype Status

The UIA prototype’s name daemon is written in Python and anpnts most of the design de-
scribed in Section 2.3, providing group creation, mergimgmed links between groups, naming
state gossip, state evaluation, multi-component naméduteésn and ownership revocation. The
prototype hame daemon does not yet implement certain aspktte name system design, how-
ever, such as multiple personal EIDs per device (SectiorlR.8ndo of merge operations (Sec-
tion 2.3.3), copying orphaned change records across réwosgSection 2.3.3), and the caching

141

UIA Control/ UIA-Aware Legacy
Group Browser Application Application
UIA Client UIA Client Sockets DNS
API Library | | API Library API Resolver
RPC| UIA Name < DNS
Daemon Proxy
UIA tun
> Router - g Wrapper
| A
Y

. TCP/IP Protocol Stack |
|

Y Y
'Network Drivers| |tun Driver -«

Operating System Kernel

Figure 6-1: Structure of UIA prototype implementation

remote name resolution protocol (Section 2.3.6). The pyptorouting daemon will be described
later in Section 6.2.

The UIA control application allows the user to browse the Winespace and create and mod-
ify groups, as illustrated earlier in Figure 2-3, and sufg®w the device introduction process as
illustrated in Figure 2-1. The control application is stithpolished and does not yet fully support
shared groups or revocation, however.

The source code for the UIA prototype is available on the Web a

http://pdos.csail.mit.edu/uia/

6.1.2 Support for Smaller Devices

The UIA prototype has been ported to the Nokia 770 Internbléfaa Linux-based Internet ap-
pliance with an ARM processor. The naming and routing layenge the full functionality of the
regular Linux/Mac version of UIA, but the port of the GUI caritapplication is not yet complete.
In general, the routing and naming modules should portyeasilong smaller devices, while the
GUI component requires more modifications because of the mpecialized and restrictive user
interface frameworks available on each class of mobilecdeVWIA does not rely on extensive data

142

entry or other forms of user interaction that are fundambndifficult to achieve on small devices,
however.

6.1.3 Using UIA Names in Legacy Applications

The UIA prototype supports legacy applications throudhra wrapper and DNS proxy. Then
wrapper disguises EIDs as device-local IP addresses asdhesdernel’'sun device to forward
applications’ TCP and UDP packets for these special IP addseover UIAs routing layer. The
DNS proxy similarly intercepts name lookups made by locaglliaptions and resolves UIA names
to device-local IP addresses for the corresponding EIDsh&Ve run Apache, Firefox, OpenSSH,
and Apple’'s Personal File Sharing over UIA using this legaatgrface without modification or
recompilation.

UIA's legacy application support layer makes the user'speal group appear to applications
like a global virtual private network, by intercepting netk-local broadcast packets that applica-
tions send to UIA's special IP addresses and forwarding theearely to each of the user’s personal
devices. Because of this feature, many broadcast-basedl-doea” service discovery protocols
such as Bonjour [11] automatically work across all the devim the user’s personal group, even
when some of the devices are in fact remote. We have used 'Agbejour-based Personal File
Sharing, for example, to locate and share files remotely dmtvdevices in a UIA personal group
as if they were present on the same LAN.

6.2 Overlay Routing Implementation

Of the three approaches to UIA overlay routing explored iafitar 3, only the first (Social Routing)
is fully implemented and deployed in an immediately usabtenf the other two currently have only
minimal prototypes suitable for simulation and analysigopges. We briefly examine each of these
implementations in turn.

6.2.1 Social Routing

The social routing protocol described in Section 3.2 is enpénted and in regular use in the UIA
prototype. The social routing overlay protocol is impleteehin C++ as a standalone UIA routing
daemon, which interacts with other UIA components via RBRGllastrated in Figure 6-1.

Local Discovery

The social routing daemon uses Apple’'s Bonjour [11] to disc@nd connect with other devices
that happen to be located on the same local area network. ENlisek use this local-area discov-
ery mechanism for two purposes. First, the UIA naming layapethds on local-area discovery to
implement its secure local introduction process, desdribeSection 2.2.1. Second, once devices

143

are already introduced at the UIA naming layer, the routaygf takes advantage of local-area dis-
covery to find and re-connect with devices that may have movetianged IP addresses since last
contact, but are now located on the same local-area netvanke the local-area discovery mech-
anism works even if the devices in that LAN are not actuallprexted to the Internet, through
this local-area discovery mechanism the routing protoaal successfully connect and route to (or
through devices in small “ad hoc” edge networks not connected tdrttegnet, such as the ad hoc
network a small group of people might create at a busines$lonon a bus or plane.

Locating and Routing to Remote Devices

To connect with devices that are not directly reachable eit tast known IP address or via the
local-area discovery mechanism, the social routing daemsen the flooding mechanism described
earlier in attempt to find the desired EID within the socialwak formed by the UIA devices that
arecurrently reachable. The prototype currently uses SSL][@vér TCP connections to implement
cryptographic EID authentication and provide secure comoation between UIA devices.

Rougting Legacy Application Traffic over UIA

As mentioned earlier, the UIA prototype supports legacyliegpons through dun wrapper and
DNS proxy. Thetun wrapper disguises EIDs as device-local IP addresses asdthesdernel’s
tun device to forward applications’ TCP and UDP packets for ehgigecial IP addresses over
UIA's routing layer. In this way, applications can bind a kercto the local device’s EID or connect
to a remote device by EID.

The current overlay routing layer represents EIDs as “fdRelersion 6 (IPv6) addresses [62],
because the 128-bit size of IPv6 addresses makes it simgéntrate these fake addresses uniquely
(with high probability), simply but truncating the cryptaghic EID and prepending a prefix denot-
ing these addresses asique local addressg411]. No IPv6 infrastructure is required for the UIA
routing daemon to work, however, and all messages forwaoded network links are tunneled
through IPv4 sockets. In any case, the current prototymssofi IPv6 is purely for convenience; it
could just as well represent EIDs as fake IPv4 addressegidprg full compatibility with applica-
tions that only support IPv4, at a small cost in the compjegftmanaging the space of fake IPv4
addresses within each host’'s address space.

UIA's legacy application support layer effectively makbe tiser’s personal group appear to ap-
plications like a global virtual private network, by intepting network-local broadcast packets that
applications send to UIA's special IP addresses and foriwgrithem securely to each of the user’s
personal devices. Because of this feature, many broaleast “local-area” service discovery pro-
tocols such as Bonjour automatically work across all théa#evin the user’s personal group, even
when some of the devices are in fact remote. We have used 'Agbejour-based Personal File
Sharing, for example, to locate and share files remotely dmtvdevices in a UIA personal group
as if they were present on the same LAN.

144

6.2.2 Identity Hash Routing

The Identity Hash Routing algorithm described in Sectighi8.implemented for simulation and
experimental evaluation purposes in about 2300 lines of @tluding a custom simulation testbed.
The prototype implements most of the IHR algorithm as dbscrincluding the merge procedure,
and supports both source routing and virtual link forwagdifhe prototype does not yet simulate a
dynamically evolving network topology in general, but dsepport simulation of “net split” events
of various magnitudes for purposes of testing the mergeepioe.

6.2.3 Compact Routing

The TZk-based compact routing algorithm described in Sections3ishplemented for simulation
and experimental evaluation purposes in two versions: dlyaBgthon version consisting of about
2000 lines of Python [191] and 630 lines of C to optimize parfance-critical calculations, and a
4500-line all-C++ version. The two implementations are tiyasquivalent. The prototypes imple-
ment randomized landmark selection and distributed rguti@e construction based on simulated
messages, but they do not yet implement address assignonéntiefrval routing or attempt to sim-
ulate dynamically changing networks.

6.3 Structured Stream Transport Implementation

A prototype implementation of the Structured Stream Trarts{8ST) protocol described in Chap-
ter 4 is implemented and usable in both simulation and reslenetwork environments, although
not yet complete or integrated with the main UIA prototypdeTSST prototype takes the form of
a user-space library written in C++, which runs on Linux, BSIac OS X, and Windows. The
library builds on the Qt portability framework [250], rehg on the Core and Network components
of Qt (but not the large graphical user interface component)

The prototype implements the SST protocol atop UDP, so gseguires no special privileges
or OS extensions, and the library can be statically linked or distributed with applications to
minimize deployment burden on users. Although runninggpant protocols atop UDP is not the
traditionally accepted and sanctioned approach, thisoggbrhas a number of advantages in addi-
tion to application-level deployment, such as compatipivith existing NATs and firewalls [87].
The prototype implements most of the SST protocol desigiiding classic TCP congestion con-
trol [6], but a few features such as flow control and MTU disrgvare still incomplete.

The prototype also allows the application to assign psidetels to streams, for explicit control
of data transmission within the scope of a congestion ctbetrahannel. For controlled testing
and simulation, the library allows client applications tmmultiple instances of SST simultane-
ously in one process, and to virtualize SST's use of the fidstiing and networking facilities.
The prototype currently totals about 13,000 source line€,400 semicolons, and is available at
http://pdos.csail.mit.edu/uia/sst/

145

The source code for the SST prototype is available on the Web a

http://pdos.csail.mit.edu/uia/sst/

146

Chapter 7

Evaluation

This chapter evaluates the various components and algwittomprising UIA in terms of real-
world experience using the currently-deployed parts of #&perimental tests, and simulation
studies.

7.1 Experience Using UIA Personal Names

The primary goal of UIA's naming system is convenience arability by non-technical users, a
goal that can only be evaluated effectively once UIA has kgrioyed longer and more widely
in the field. We currently run the UIA prototype on a number eEktop and laptop machines
in our lab, however, and regularly run existing applicasi@uch as SSH over UIA to reach our
mobile devices via their short personal device names, angengonal experience so far confirms
the convenience and simplicity of the basic UIA personal ingrmodel.

Many practical challenges remain before UIA personal ngneain be widely deployed, how-
ever. Our decision to implement UIA initially using uselasp daemons facilitated UIA's porta-
bility to multiple operating systems, but its level of intajon with any one system is limited: a
production-quality implementation of UIA naming will prably have to be somewhat more OS-
specific in order to integrate cleanly and smoothly. For egammost mature operating systems
provide a clean, OS-sanctioned mechanism to hook into thtersys name resolution mechanism,
whose use would eliminate our prototype’s need to redik@MS lookups to a local DNS proxy
and avoid the associated potential confusion if the usemalbnedits the system’s DNS resolver
configuration. The OS-sanctioned mechanisms to hook inteerr@solution tend to change com-
pletely from one OS to another, however, so we avoided usiagn tfor portability reasons.

7.1.1 Interaction with Global Names and Legacy Applicatiois

One minor pragmatic difficulty we encountered in using UlAgmmal names in legacy applications
is that certain applications, particularly web browseke Firefox, assume that any valid DNS host
namemustcontain at least one period (f; otherwise the application interprets the name as some

147

other word such as a search term to be submitted to a Web seagate. This “at least one dot”
assumption is valid in the traditional DNS world in which tbere only a few top-level domains
(TLDs), none of which represent host names, but becomedidrivathe context of UIA, where
single-component host names are commonplace and rephesgatwithin the user's own personal
group. Fortunately, until such applications can be modiftecemove this assumption or be made
specifically aware of UIA host names, there is an easy wotkatosimply append a period to the
end of the name when typing it: e.ghdmepc. ’ instead of just homepc’. The recent decision
of ICANN to open up the allocation of new top-level domain$§,[418] may eventually force the
reevaluation of this traditional assumption even in theazglobal DNS names.

One danger inherent in UIAs current behavior of resolviraygonal names as if they were
global names is the potential confusion that might be caiiskd user creates a personal name that
conflicts with a DNS top-level domain. If the user names onbeafpersonal devicesont, for
example, she will no longer be able to refer to any global DE®® ending in.com '. This danger
could be ameliorated by detecting and warning the user ifasteenpts to create a personal name
that conflicts with a known TLD, and could be avoided entir@lygome cost in the conciseness and
convenience of personal names by placing all personal nanmdes some particular “virtual” TLD
such as.pers . This latter approach would also conveniently avoid thelgem mentioned above
of applications that assume every DNS name contains atdeastot.

7.2 Social Routing Evaluation

This section uses real-world experience and simulatiorsvéduate the Social Routing protocol
implemented in the currently deployed UIA prototype, inartb verify that the proposed design is
capable of providing the desired connectivity on realiggtworks.

7.2.1 Experience with Social Routing

We currently run the UIA prototype on a number of desktop amddp machines in our lab, and
regularly run existing applications such as SSH over UlAdach our mobile devices via their
short personal device names. The overlay routing protagtinaatically accounts for IP address
changes and traverses NATs as necessary; SSH connectemsvbpn we take a laptop home need
not be restarted. Although these uses are already possiblternate protocols such as Mobile
IP, the complexity of configuring these alternatives hasegaly deterred even those of us with
the necessary technical knowledge from deploying them. &¥éthat UIA's zero-configuration
personal naming and connectivity provides a crucial migglement in making mobile devices
usable.

One of the key requirements for the social routing protooalvork reliably is for every user
to have at least one stable, publicly reachable node sormevitidnis own or one of his friends’
personal groups. While we found this requirement easy tefgatince most machines at MIT
and many other universities have their own public IP addréms requirement could prove more

148

of a problem for users whose only “stable” desktop machimesczated behind home and/or cor-
porate firewalls and NATs. Although we implemented tefault peermechanism described in
Section 3.2.1 to address this difficulty, UIA has not yet seefficient deployment among such
users to evaluate this issue thoroughly.

7.2.2 Experimental Setup

We use as our simulated network a crawl of the social netwgrkite Orkut gathered by Li and
Dabek [146]. This graph is merely suggestive; until UIA isrmavidely deployed, it will not be
clear how accurately the Orkut graph characterizes Ullslyi usage model. The graph has 2,363
users, which we take to represent devices, as if each usexdomme device. Friend relationships
are bidirectional, and the number of friends per user isliigkewed: the median is only 7, but the
most popular user has over 1,000.

Our simulator takes as inputpercent stablgparameter and randomly chooses that percent of
the devices to bstableand publicly accessible. All other devices the simulatansiders to be
mobileand inaccessible except through some stable device, akiifdba NAT. We assume that all
devices agree as to which devices are stable.

Each device chooses 16 peers and allows at most 64 devickedeecit, to limit each device’s
overlay maintenance cost in a real network. Devices choeeespn order of friendship distance.
A device can only choose a given target as a peer if the tamget dot already have 64 peers, or if
the new device is closer than one of the target’s existingspée which case the target discards a
random peer at higher friendship distance. Since we do ridtage traces with which to simulate
the network’s evolution, the simulated devices choosespigerandom order, iterating until the
network reaches a fixed point.

The simulator then performs token-limited location redsies the resulting overlay between
10,000 random pairs at friendship distances 1, 2, and 3. Eadlup starts with 16 tokens, and
doubles after each failure, up to a maximum of 256 tokens.sithalator records the percentage of
requests that succeed after a given number of rounds andtéh@timber of messages sent.

7.2.3 Location Success Rate

An important performance metric for the location algoritlienthe number of tokens needed to
locate a target device successfully. Using more tokengases the chance of success (assuming
that the overlay is in fact connected), but also increasesdist of concluding that an unreachable
device is offline. Figure 7-1 shows the success rate measuthd simulation for locating devices
at friendship distance 1. Using 256 tokens, the locatiooritlyn achieves greater than a 99.5%
success rate for 10% or more stable devices. Using 64 tokeradorithm achieves 97.5% success
for 10% or more stable devices. The vast majority of reque8t% of requests at 10% or more
stable devices—succeed within the first inexpensive rotiid dokens.

At the far left of the graph where few stable devices are atsdl the success rate drops off

149

E 1 - f‘ ------------------- - == :_j_:_:,?"'—'
w e EEEEEE T e .

w lllllllllllllllllllllllllllllllllll ,

3! h “““ .

8 O 8 B “F"“‘ ‘¢' -
= . i B
%) £)

|3)

= 0.6 Fi . |
(e [/‘

| B

U 0‘4 -E L d " -
5 [L 256 Tokens

g5 | s 26 Tokens

g 02 ! 32 Tokens - ---- 4
§ '¢" 16 TOkenS

o 0 Lol . . .0 Tokens e e
’ 20 40 60 80 100

Percent Stable Nodes

Figure 7-1: Location request success rate

because each stable device can only support 64 peers, apdatkenot enough stable devices for
each mobile device to choose a full 16 peers, or in some cagesis the percentage of stable
devices increases, a linearly increasing number of logaquests are to stable devices that can be
contacted directly without flooding, thus requiring no toke

We also measured the success rates for locating devicemmadghip distances of 2 and 3,
though we omit these graphs for space reasons. The resuttisfance 2 are almost as good as for
distance 1, presumably because two devices at friendskipndie 2 are likely to peer with some
common stable device at distance 1 from each of them. Suratesdrops considerably at distance
3, however, achieving only 50% success with 256 tokens inarls of 40% or more stable devices,

for example.

7.2.4 Messages Sent

The lower line in Figure 7-2 shows the total number of messammt during successful token-
limited lookup requests for devices at friendship distahcA request’s message count is ultimately
bounded by its token count, but is often much less becausessfcl lookups usually do not require
all available tokens.

At the left edge of the graph, there are not enough stablecée\for every mobile device to
have a peer, so few requests succeed. Those that do succeedcdeaply, however, because all
of the connected mobile devices have clustered around the faw stable devices. The message
count peaks near the point where the number of stable devimsnes barely sufficient to serve all

150

200 : . —
| Ideal hop count-limited - - -~ -
180 » 256 Tokens 1

160 | 1% ;
140 |
120 |
100 ! "]
80 | ;
60]
40 P . .
20 .

Mean Messages Sent Per Connection

0 20 40 60 80 100
Percent Stable Nodes

Figure 7-2: Mean messages sent per location request

of the mobile devices, so the requests usually succeed butfier contacting many devices. As
the number of stable devices increases further, more resqjo@splete without flooding at all, since
stable targets are reachable directly at their last knowadResses.

To contrast UIA's token-limited scheme with flooding lindteéy hop count [42], the upper line
in the figure shows the total number of messages sent for ssfatéop count-controlled location
requests in which the originating device knows via an or#ttdeexact hop count required for the
search to succeed in one round. As the graph shows, the balssd scheme requires far fewer
messages than even this “ideal” hop count-limited scherhe.iffefficiency of the hop count scheme
results from the skewed popularity distribution and redumay of the friendship graph, as discussed
in Section 3.2.2.

7.3 Identity Hash Routing Evaluation

Although Identity Hash Routing (IHR) is not yet fully impleated as a usable distributed protocol
or integrated into the UIA prototype, in this section we usaudation results to evaluate the po-
tential utility of IHR’s routing and forwarding algorithmfer a future version of UIA. Until a full
implementation has been deployed and a substantial tnitiaas of users has developed, simula-
tions provide the only realistic option for tuning the prodband predicting how it will behave on
the large networks it is intended to support.

151

7.3.1 Performance Metrics

In order to asses the basic viability of the IHR routing poolo we focus here on measuring the
efficiency of the network paths the protocol finds throughdmm network topologies. Many other
important factors that will affect the performance of rearld IHR networks remain for future
study. In particular, while simulations confirm that thetpiaml recovers from random node failures
and network partitions, we do not yet have a full characéion of the dynamic behavior of a IHR
network under continuous change.

In order to measure the efficiency of routing paths choserH® hodes, we define thitlR
path lengthbetween two nodes,; andns, to be the total number of physical hops in the path that
ny1 CONStructs tan, using thebuild _path procedure in Figure 3-4. We define thetchbetween
ny1 andns to be the ratio of the IHR path length to the length of the bessible path through the
underlying topology.

We measure the stretch for a given pair of nodes by ulinilgl _path to construct a path from
one node to the other, measuring the total number of phyisigag in the path, and then eliminating
all the virtual links thabuild _path constructed so that the measurement of one path does ncit affe
the measurement of subsequent paths. On networks of 108 nodiess we measure all possible
paths between any two nodes; on larger networks we take desaiiiD,000 randomly chosen node
pairs.

7.3.2 Test Network Topology

Selecting appropriate network topologies for simulatioh$HR is difficult, because we have no
way to predict the topologies of the networks on which a prottike IHR will actually be deployed.
Using topological maps of the existing IPv4 Internet woultit make sense: the existing well-
connected Internet is precisely the portion of today’s glaletwork infrastructure across which
IHR will not have to find paths, because IP already does that well enonghHRR simply treats
these paths as direct physical links. For the function IH&Rsigned provide, finding paths between
nodes on the Internet and nodes on the many private and acchagorks attached to it, no reliable
topological data is available precisely because most aktlagljoining networks are private.

Nevertheless, we can construct artificial topologies tparaximate the most important char-
acteristics we believe this global network infrastructtodhave. First, we expect the topology on
which IHR is deployed to consist of many clusters, in whicbheaode in a given cluster can reliably
address and connect with any other node in the same clusterplies in one cluster have limited
connectivity to nodes in other clusters. Second, becauskeofliversity of existing networking
technologies and deployment scenarios, we expect the sthese clusters to follow a power law
distribution, with larger clusters having better conngttito neighboring clusters. Finally, we ex-
pect all of these clusters to be within at most a few hops fraimgle huge, central cluster, namely
the public IP-based Internet.

To construct an artificial topology having these charasties, we start with a single distin-

152

guished cluster we will call theoot cluster initially containing a single node. We then randomly
“grow” the network one node at a time as follows. For each nedenwe choose the number of
attachment points the node will have based on a geometraonarvariable with amultihoming
probability parametemp,,. Approximatelyp,, N of the network'sN nodes will have at least two
attachment pointg;?, N have at least three attachment points, and so on.

We choose each attachment point for a new node via a randokifneal the root cluster using
a downstream probabilitparametep,; and anew cluster probabilityparametemp,,. At each step,
with probability p; we move the attachment point downstream, and with prolabili- p; we
terminate the process. To move the attachment point dogarmatrwe choose a node at random
from the current cluster, then we either create a new cluptarate” to that node with probability
Pn, OF else we with probability — p,, we pick at random any cluster that node is attached to (which
could be the cluster we just came from). Once the random \eatkihates, we add the new node to
the cluster at which the walk ended.

We call the resulting random network topologyaoted topology, since it consists of many
small clusters centered around the single large root clusp@roximating the well-connected IP-
based Internet surrounded by many smaller private networks

We choose somewhat arbitrarily the following “baselinetgraeters for the experiments. We
use network topologies of varying sizes constructed withudtinoming probabilityp,, = 1/10,
a downstream probability; = 3/4, and new link probabilityp,, = 1/2. On these topologies we
build IHR networks with a redundancy facter= 3, by adding nodes to the network one at a time in
random order. We will vary these parameters to explore thmact on the efficiency of the routing
protocol.

7.3.3 Source Routing versus Recursive Tunneling

Figure 7-3 shows the average and maximum path stretch aukérertical axis) between any two

nodes on networks of a given size (horizontal axis), for smthrce routing and recursive tunnel-
ing. The error bars indicate standard deviation of the nredsstretch. In the random 10,000-node
rooted topology, the root cluster contains 3233 nodes (32Memetwork), the average distance be-
tween any two nodes is 2.5 hops, and the maximum distanceebetany two nodes (total network

diameter) is 8 hops.

With both source routing and recursive tunneling, we seetti@IHR routing protocol con-
sistently finds paths that are on average no more than twitngsas the best possible path. The
average-case efficiency of recursive tunneling is sligiMbyse than for source routing, due to the
more limited amount of information nodes have to optimizéhpahey find through the network.
The routing protocol occasionally chooses bad paths—ujxtstretch for source routing and up
to 16 x for recursive tunneling—but the low standard deviatioriéates that these bad paths occur
rarely.

153

- — - - -
Maximum stretch - recursive tunneling
Maximum stretch - source routing -------
Average stretch - recursive tunneling --------
Average stretch - source routing - -

16

Average stretch

A SE
I YooK 1
i S |
s |
1 s S—
1 1 1 1
10 100 1000 10000

Network size (number of nodes)

Figure 7-3: Network path stretch for source routing verggesirsive tunneling

7.3.4 Rooted versus Unrooted Networks

We would next like to determine how much the IHR routing pooidobenefits from the tree-like
structure of rooted network topologies. Is the IHR routimgtpcol only viable when some underly-
ing protocol such as IP is doing most of the work of routinghivitthe large central cluster, or could
IHR routing also be used to internetwork a number of smak-layer networks joined in ad-hoc
fashion?

To explore this question, we modify the random network doegbrocedure of Section 7.3.2 so
that the random walk to find each new attachment point for argatarts at a cluster chosen uni-
formly at random from all existing clusters, rather than atedl-known root cluster. The resulting
unrootedtopologies have a much more uniform and unpolarized digigh in their cluster sizes
and in the connections between clusters. In the random @08e unrooted topology, for exam-
ple, the largest cluster contains only 11 nodes, the aveat@ggnce between any two nodes is 7.7
hops, and the network diameter is 19 hops. We expect effimeting on such a diffuse network to
be more difficult than on a rooted network.

Figure 7-4 compares the path efficiency of IHR source roatet forwarding on rooted and
unrooted networks of varying sizes. We find that unrootedvoits indeed yield greater stretch,
but not by a wide margin. This result suggests that IHR rguignnot highly dependent on rooted
topologies and may be useable as well on more diffuse tofEsog

154

r — r r r
Maximum stretch - unrooted network
Maximum stretch - rooted network -------
Average stretch - unrooted network --------
Average stretch - rooted network -

16

Average stretch

10 100 1000 10000
Network size (number of nodes)

Figure 7-4: Network path stretch for rooted versus unroogtgvorks

7.3.5 Discussion and Future Work

The above development and evaluation of IHR suggests thdiakic approach of adapting DHT
lookup algorithms into overlay routing schemes may indeedibble. Since IHR has so far only
been analyzed under simulation and is not integrated itaéployed UIA prototype, however, it
is likely that many practical issues will still need to be esk$ed in order to make it into a robust
distributed protocol.

One potential issue with the scheme as described above datiger of temporary routing
loops developing between nodes due to dynamic changes imetisork topology. For example,
with forwarding based on recursive tunneling, if nadehas a virtual link throughB to C, then
B’s physical link toC fails, B might seeA’s advertised (virtual) link ta” and try to use it to build
a virtual link to C' through B. These mutually recursive virtual links will eventuallyng out and
be garbage collected, but the resulting loop could caussiderable network inefficiency and slow
routing table convergence in the meantime. These issuamaudifferent from the looping issues
of classic Bellman-Ford routing, however, and the manytgmis to this problem that have been
explored in the context of traditional routing protocols &kely to be applicable to IHR as well.

A second, somewhat more serious challenge with IHR is therggof the distributed routing
structure against the variety of disruption or denial-efvice attacks that malicious nodes might
mount. These threats have already received considerdbltdian in the context of traditional DHT
lookup schemes [40,67,222,232], and many of the proposeddies may apply to IHR as well, but
fully understanding the similarities and differences bedw DHT lookup and DHT-inspired overlay
routing for security purposes will require further anatysDne approach that may be particularly

155

useful in the context of UIA is to build on the social trustrfrawork provided by UIA'S naming
layer, as the Sprout DHT does [153].

IHR lacks a formal bound on stretch—i.e., on the inefficieatthe paths it finds. Furthermore,
the typical stretch measured in the above simulations magdsonable in practice, when multi-hop
UIA routing is only needed as a “backup solution” when IP mogitprovides no path at all, but is
not what we might hope for. In the next section, therefore ew@ore the use of routing schemes
that can guarantee bounded stretch on any topologies—hasigve will see there are downsides
to these schemes as well.

7.4 Compact Routing Evaluation

As with IHR, the TZ-based compact routing protocol has not yet been develapedifully op-
erational protocol ready for use on real-world networks,this section uses simulations to analyze
a variety of general properties of the protocol that arelyike be important to its practical utility.
We first examine stretch, then congestion of network rowted,finally robustness against failures
in the network. Although these are far from the only progsrimportant for practical deployment,
these first-step results appear promising and help confienpribtocol’s scalability and understand
the remaining challenges to be addressed.

7.4.1 Simulation Framework and Method

The simulated message-based compact routing protocalsboil a custom, lightweight simulation
framework in C++, because we found existing simulation fraunrks insufficiently scalable to
handle the large graph sizes we wished to test (over 190,086snin one case). The current
simulation environment and routing protocol representscisd generation to an earlier Python-
based simulator, which yielded comparable results on smgithphs but did not scale sufficiently
to handle the largest ones.

Due to the unavailability of realistic network topology dséts or generators that included use-
ful edge weights—e.g., measured round-trip delays betwedwork nodes—we did not try to
model time realistically in our protocol. Instead, all siated nodes perform protocol processing
in lock step: they receive messages from neighbors, prabess, and send new messages to their
neighbors in one time step, and once sent, messages artiharadestinations one time step later.

The simulated protocol selects landmarks randomly so &sltece the expected number of land-
marks by a factor of two at each level, yielding abbug, » landmark levels for an-node topology.
Given this landmark selection, the protocol computes catnpauting trees in the way described
earlier in Section 3.4.4, where at each time step each nosk&pgoall new routing table informa-
tion with its neighbors. The routing tables of all nodes tgtedually converge toward shortest-path
routes to their landmarks in similar fashion to classic Balh-Ford routing protocols—with the key
difference of course that each node does not end up withngtible pointers tall other nodes
but merely a selection of nearby landmarks at each level. cOuent protocol does not solve the

156

Name | Description

mesh random 2D mesh on a Euclidean plane

scale-free | scale-free graph generated by preferential attachment
regular random regular graph

Table 7.1: Synthetic topologies used for simulation

mesh —— mesh ——
regular regular

7 \//\ scale-free ===~ 7 scale-free ===~
6

relative stretch
relative stretch

512 1024 2048 4096 8192 16384 512 1024 2048 4096 8192 16384

network size network size

(a) Pure T (b) With 25 extra table entries

Figure 7-5: Maximum stretch relative to shortest-path esut

well-known “counting to infinity” problem of Bellman-Fordrptocols, but many existing solutions
to this problem such as destination sequencing [184] (ohisydase “landmark sequencing”) are
applicable.

For comparison, we evaluate the compact protocol's pedooa on several different types
of synthetic networks of varying size, as well as topolodiesn Skitter [38] and DIMES [246]
derived from actual Internet measurements. The types dfistio topologies we used are shown in
Table 7.1. The “mesh” generator places nodes randomly on@ie and connects all nodes closer
than a certain radius. This is an approximate model for es®hd-hoc networks. The “scale-free”
generator starts with a loosely-connected network, andextis nodes with probability proportional
to their degree. The Internet’s core exhibits some scale-like properties. The “regular” generator

creates a randoni-regular graph. It exercises the behavior of the protocohighly disordered
networks.

7.4.2 Stretch

After running the compact routing protocol to produce nogtirees, the simulation chooses 10
random routing targets per node, measures the length ofatins phosen by the routing protocol,
and compares it against the shortest path length compuaddijkistra’s single-source shortest path
algorithm to compute path stretch. (It was not practicaMalgate all pairs on the larger networks
because of th€)(n?) time required.) Figure 7-5 shows the maximum measuredchti@tserved
on all sampled paths, and Figure 7-6 shows average strekehfigure presents measurements for
two versions of the protocol in each case: the “Puré™Tersion conforms to the original TZ
algorithm, and the “With 25 extra table entries” versionmits each node to grow its routing table
by as many as 25 entries beyond the minimum number requiredufe TZc—a fairly arbitrary
“slop factor” that we use to get an idea of the sensitivity haf touting algorithm to routing table

157

mesh —— mesh ——

regular regular
scale-free --«-- scale-free --«--

25 25

relative stretch
relative stretch

512 1024 2048 4096 8192 16384 512 1024 2048 4096 8192 16384
network size network size

(@) Pure TZ (b) With 25 extra table entries

Figure 7-6: Average stretch relative to shortest-pathasut

size. These extra entries are distributed evenly over allatels of the routing table, which gives
the optimal benefit to the maximum stretch bound. The numbévels in these simulations is
alwayslog, n, which gives small TZ routing tables and (log n) max stretch.

Krioukov et al. [140] formally analyzed the average-cagetsh of another compact routing
algorithm presented by Thorup and Zwick in the same paperZas[Z47], which we call TZ2
because it uses a fixed two-level landmark hierarchy. Thiey tompared the stretch of TZ2 and
several other 2-level, stretch 3 algorithms via simulatifiv1]. Although TZ2 selects landmarks
and constructs routing tables somewhat differently fronk,TtHe resulting behavior is conceptually
similar for purposes of computing stretch: namely, a mes$amn a node: to a nodev follows a
shortest path directly from to v if the two nodes are close together, and otherwise takesrtesho
path fromwu towardv's closest landmark followed by a shortest path froitoward v—which is
equivalent to routing on a shortest-path tree rootdd &lherefore, although no formal average-case
stretch analysis of TiZ has been done yet, there is reason to believe that a simidysis might
yield similar results. Krioukov's specific stretch resudt® not directly comparable to ours despite
this conceptual similarity, however, because the TZ2 #lgorthey evaluated uses a fixed 2-level
with \/n size routing tables, whereas the simulations done here vaeadble number of landmark
levels (approximatelyog, n) with O(log n) size routing tables.

7.4.3 Route Congestion

Because TZ routes all “long-distance” traffic over a few large treesteabat the top-level land-
marks, a high percentage of this long-distance traffic gaggeugh or near these top-level land-
marks, causing high path congestion in the links around th&m evaluate the congestion bot-
tleneck, the simulation computes the routes chosen by thmact routing protocol between all
random pairs, and counts the number of routes that pasgtihtba most congested edge in the net-
work. Figure 7-7 shows the maximum congestion measuredéorduting protocol divided by the
congestion measured for shortest-path distance-veatitingy for both the original TZ algorithm
and the protocol with extra routing table entries.

We observe that extra table entries improve congestioriaderably, although congestion around

158

mesh —— mesh ——
1000 regular 1000 regular
scale-free --«-- scale-free --«--

100

3
3

relative congestion
relative congestion

10

|~] L »
| B

512 1024 2048 4096 8192 16384 512 1024 2048 4096 8192 16384
network size network size

(@) Pure TZ (b) With 25 extra table entries

Figure 7-7: Network congestion relative to shortest-patitas

nodes| Stretch| Rel. Cong.
Skitter (TZ) 7,536 1.67 45.8
... (25 entries) 7,536| 1.32 3.42
Skitter-RTR (TZ) | 192,245| 1.53 26.9
... (25 entries) 192,245| 1.33 4.87
DIMES (T2) 16,847| 2.08 29.2
... (25 entries) 16,847| 1.19 0.79

Table 7.2: Skitter and DIMES simulations, with and withoptimizations.

high-level landmarks still unavoidably occurs. Some Iefetongestion is probably acceptable in
a deployment of compact routing on real networks, becauslenstworks are typically designed

to aggregate many low-capacity edge links and “bundle” thger a high-capacity core [148]. As

long as the high-level landmarks used by the routing prdtame® deliberately chosen to be nodes
within that high-capacity core, this congestion arounchHayel landmarks may in effect turn out

to be exactly what the network operator is seeking. If cotigesioes turn out to be a problem, the
protocol provide a means for operators to trade off congedtr routing table size, the same as for
stretch.

Measurements on AS adjacency graphs from skitter [38] andHS [246] are shown in Ta-
ble 7.2, along with one skitter router-adjacency graph.s€hdatasets have a small number of highly
connected nodes, which tends to result in high congestianthe hubs. The pure TZapproach
has high congestion relative to shortest-paths; the madfietocol does considerably better with
only 25 extra table entries.

7.4.4 Reliability

Since recomputation of all compact routing trees in respongny topology change may be expen-
sive [141], we would like to avoid this cost when possible arsead take advantage of the natural
redundancy provided by the protocol’'s many separate rgutees in order to “route around” tem-
porary failures. In this way, no recomputation of routinges is necessary as a result of such
temporary failures; instead any end hosts trying to comnataithrough a broken link simply try a

159

08 - \ /

0.6

unrouteable pairs

of

o4l |

o2t |

L L L L
0 0.2 04 0.6 08 1
Fraction of failed links

Figure 7-8: Resiliency to network failures

different routing tree instead.

To determine the effectiveness of the protocol at providoigustness in this way, we examine
the failure rate of routing attempts when some percentagetwfork edges are randomly disabled,
breaking any tree routing paths using those edges. Fordsiighe protocol is configured for full
redundancyf = o0): i.e., each node’s global address contains all the nodés nouting table.
Figure 7-8 shows the routing failure rate over the randoneddiure rate on the Skitter topology,
with several settings for the number of extra landmarks eaute collects at each level. From
this graph we observe that the protocol provide substamsiience at least against small numbers
of randomly-distributed failures, especially when a cdasible set of landmarks are available in
which to seek a usable routing tree.

Of course, failures on real networks are often not randorgiriduted; evaluating our protocol
under more sophisticated failure models remains for futvoek.

7.5 Structured Stream Transport Evaluation

This section reports on preliminary experience implermgnéind using SST in real and simulated
environments. We examine how SST scales across transaiies in comparison with TCP and
UDP, how Web-style transactions on SST compare with nosigtent, persistent, and pipelined
HTTP over TCP, and how applications can dynamically piiggiSST streams to improve interac-
tive responsiveness.

7.5.1 Experience with Applications

The SST prototype is in regular use by Netsteria, an expeat@hpeer-to-peer application support-
ing text-based chat, voice-over-IP calling and confemgcand swarming file transfers. As the
application is primarily a vehicle for exploring networkiideas such as SST, it focuses little atten-
tion on backward compatibility or interoperability withisting application protocols on existing
transports.

160

Netsteria’s combination of different types of network eaitiéés operating concurrently serves
well to exercise SST's capabilities and drive its developineThe file transfer mechanism, for
example, divides files into variable-length blocks and wsagparate SST stream for each block
request/reply transaction, making use of SST’s scalghiliter transaction sizes. The voice chat
mechanism uses SST’s ephemeral substreams to transmitnsetdé frames efficiently with best-
effort delivery to minimize latency.

7.5.2 Performance Validation

To test SST's basic performance against the “gold stand=r@CP, we first run microbenchmarks
of raw bandwidth and TCP-friendliness on three transpahs:SST prototype, the host operating
system’s native TCP, and a user-space TCP implementatmwis developed alongside the SST
library for comparison purposes. Though the native TCPsvaree mature, the user-space TCP
can run on either a real or simulated network like the SSHRliprSince SST always uses selective
acknowledgments, the user-space TCP implements TCP’s S&@¥sion to ensure a fair com-
parison, as do the native TCP stacks on the hosts used forgtesfince TCP does not provide
cryptographic security, the benchmarks run SST in its coaipa checksum-based authentication
mode.

Downloading a 10MB file from a PC running SUSE Linux 10.0 to acBaok Pro running Mac
0OS 10.4.8 over a real 1.5Mbps DSL connection, and taking ¢isé¢ &f three runs to factor out out
possible delays caused by unrelated system daemon gcB8@fywas measured to be 1.0% slower
than native TCP, and user-space TCP was 2.1% slower—aadtifferbarely out of the noise, but
attributable to the overhead of implementing transportsida the kernel atop UDP. Running the
same benchmark over an 802.11g wireless LAN providing ak8Mbps maximum throughput,
SST was 7.1% slower than native TCP, and user-space TCP @f#ssBower. These results sug-
gest that even the unoptimized SST prototype performs adelguon “consumer-grade” networks,
although a more optimized implementation would be desiretligh-speed networks. Comparing
SST against the user-space TCP on simulated networks wiflasiparameters, the two transports
exhibited identical performance to within 0.2%.

The second benchmark runs two downloads at once—one ugnwative TCP, the other using
either SST or the user-space TCP—to verify “TCP-friendlghgestion control behavior. The
user-space transports were found to be fair, and just bstyaggressive than native TCP: SST
takes a 48.8% bandwidth share against native TCP’s 51.2%,shad the user-space TCP takes
48.1% against native TCP’s 51.9%. This result is unsumigiiven that both user-space transports
implement the classic TCP congestion control schemes.

7.5.3 Scalability over Transaction Size

We now compare SST against TCP and UDP when used for Webtstylsactions in which the
request is small but the response varies in size. Since wetwisxamine how SST’s performance

161

10s JUDP ———~"

FTCP + - % = 4 =
6S _SST :

(3070 s T N PR S S — g 7 e
400ms : : ~ : ;

200ms

Request + Response Time

looms é . : 3 o : o

60ms
40ms fresnnsn e { B : —

32B 128B 512B 2K 8K 32K 128K 512K 2M
Size of Object Transferred

Figure 7-9: Transactional use of UDP, TCP, and SST of & range of transaction sizes.

scales when the application uses transport instances thntsitransaction structure, this test uses
one SST or TCP stream per transaction as in HTTP/1.0, le&VifigP/1.1 persistent streams to the
next section. The UDP test operates as in DNS or RPC, with esaphest datagram soliciting a
single response datagram.

Figure 7-9 shows client-observed transaction latency argéog plot for responses ranging
from 32 bytes to two megabytes, measured on the real 1.5Mhsddnnection described above,
which has about 50ms minimum latency. For small transastimere network latency dominates,
TCP takes twice as long as UDP due to its 3-way handshake. #@afes functioning beyond
around 8KB due to middleboxes on the test connection, anéi§ton 4 limits datagrams to 64KB
in any case. In this test the network connection was qui¢somhno UDP datagrams were lost,
but in a second test whose results are not shown, on a comméa#ided with two concurrent long-
running TCP downloads, the effective UDP datagram loss ofien exceeded 50% even at the
widely-used 8KB datagram size.

As the graph shows, SST can create new streams for smalhttaors with the same low
latency as UDP, while scaling to support long-running tfarss The SST test runs its transactions
over a “warm” communication channel already set up by theotigfipn protocol, representing
the common case in which a client makes multiple requesthesame server. Even without a
warm channel, SST can piggyback the first application recaled response data segments onto
the negotiation protocol packets if cryptographic segustnot required and the responder is not
heavily loaded, retaining a total latency of one round t@therwise, SST adds one round trip delay

162

TCP: HTTP/1.0 serial

TCP: HTTP/1.0 parallel

TCP: HTTP/1.1 persistent
2s 1 o TCP: HTTP/1.1 pipelined
x___SST: HTTP/1.0 parallel

4s

¥ 0

1s
600ms = -

400ms & j o
5 > & o
) Xﬁ vo cped oo | o
200ms = / %
cap R &

100ms 2% e

60ms - mmmem

*

o

Request + Response Time (lower is better)

128B 1K 8K 64K 128B 1K 8K 64K 128B 1K 8K 64K 128B 1K 8K 64K 128B 1K 8K 64K

1 request per page 2 requests per page 3-4 requests per page 5-8 requests per page 9+ requests per page

Figure 7-10: Web workload comparing single-transactio Steeams against four HTTP flavors
over TCP.

for channel setup.

7.5.4 Web Traffic Workload

HTTP/1.1 addressed the inefficiency of short-lived TCPastre through persistent connections,
which are now in common use, and pipelining, which is not. c8i8ST attempts to offer the
benefits of persistent streams with the simplicity of the-tteasaction-per-stream model, we now
compare SST against the behavior of several flavors of HTEP ©CP, under a simulated web
workload. While HTTP is a useful protocol for comparisonases because it is well-understood
and supports several connection schemes, the issues weekpre are not specific to HTTP but
apply to any application protocol based on a request/ressporodel.

For this test we simulate a series of web page loads, eachcpagisting of a “primary” HTTP
request for the HTML, followed by a batch of “secondary” regis for embedded objects such as
images. As the simulation’s workload we use a fragment ott@eBerkeley Home IP web client
traces available from the Internet Traffic Archive [120]. Wt the trace by client IP address so
that each user’s activities are contiguous, then we usetbhelprder and sizes of requests to drive
the simulation, ignoring time stamps. Since the traces dambicate which requests belong to
one web page, the simulation approximates this informabiplassifying requests by extension
into “primary” (e.g., “html ’or no extension) and “secondary” (e.quif ', ‘.jpg ', ‘.class),
and then associating each contiguous run of secondary sesquéth the immediately preceding
primary request. The simulation pessimistically assurhasthe browser cannot begin requesting
secondary objects until it has downloaded the primary d¢lgempletely, but at this point it can in
theory request all of the secondary objects in parallel.s Hsisumption may slightly decrease the
amount of potential parallelism available to any of the dmading schemes tested: since SST is
designed to take maximum advantage of available parafielemy experimental error caused by
this assumption is merely likely to make SST's benefit appess in the simulations than it would
be in reality.

163

Figure 7-10 shows a scatter plot of the total duration of emeh page load against the total
size of all downloads for that page, on the simulated 1.5Mimi®/ork used in Section 7.5.2. The
plot is divided into five groups by the total number of HTTPuests per web page. The leftmost
group, for pages with no secondary requests, has a bestezabséime half that of other groups,
because in the latter groups secondary requests do noustdrthe primary request completes.
The points labeled “HTTP/1.0 serial” reflect the behavioeafly web browsers that load pages by
opening TCP connections for each request sequentially,Tf4T.0 parallel” represents browsers
that open up to eight single-transaction TCP streams irllpar&dTTP/1.1 persistent” represents
modern browsers that use up to two concurrent persistentstii@Bms as per RFC 2616 [78], and
“HTTP/1.1 pipelined” uses two concurrent streams with ufolar pipelined requests each. The
SST case uses one transaction per stream, as in HTTP/1ipmges no limit on the number of
parallel streams. As the graph indicates, HTTP/1.0 over &3ileves performance comparable to
pipelined HTTP/1.1 streams over TCP, both of which are maskef than other methods, including
the current common case of persistent but non-pipelined Stfeams.

7.5.5 Dynamic Prioritization

In a final experiment, we consider a hypothetical SST-emablkb browser in which a user views a
“photo album” page containing several large images. Tiaud browsers load the images on a page
from top to bottom, so if the user immediately scrolls witttie page after opening it, or clicks on a
link to a text anchor somewhere in the middle of the page, sl mait until the browser loads the
(probably invisible) images above the visible area befbeedesired images begin to appear. Our
SST-enabled browser instead expedites the loading of thgd(s) within the currently visible scroll
area—perhaps in particular the image immediately undensk€s mouse pointer. In this scenario,
the image to be expedited might change at any time as the assisshe window or moves the
mouse.

With persistent or pipelined TCP connections, the browaenot change the order of requests
already in the pipeline, but with SST the browser and webesaran cooperate to achieve the desired
result. The client specifies an initial priority for each weqt it submits, and changes the priority of
arequest already in progress by spawning a temporary sabstirom the request’s original stream
and sending a short “change priority” message on this sedostr On receipt, the server attaches this
new priority level to the appropriate SST stream on its eadsing its stream layer to transmit data
for high-priority streams before others. This prioritipat feature required no changes to the SST
protocol as described in Section 4.4, and only a minor ARdresibn to the SST implementation for
the server's use. The server could theoretically also wseltant’s priority information to control
other processing resources on behalf of the client, sucheasetative priorities of disk reads or
threads performing CGI computations.

Figure 7-11 shows the behavior observed by the client in lsirscenario on the usual sim-
ulated 1.5Mbps network. At time zero the client requests v&MB files at normal priority, and
the server divides return bandwidth evenly between them fivAtseconds the client submits a

164

- gggﬁ:g: ; _____ high-priority request complete
2 1.5MB | Request 3 B a—
& L
é priority change reques S
= .
E IMB high-priority request i
>
3 -
s S22y S]
o
F

0 ki 3 1 i 1 1

0 5 10 15 20 25 30

Figure 7-11: Dynamic request prioritization

Stream Delivery | Datagram Delivery
SST TCP SCTRHR SST UDP DCCP
Data Packet 20 20 28 16 8 12

Ack Packet | 20 20 28 16 — 16
Sack Packet 20 32+ 28+ |16 — 20+
Data+ Ack | 20 20 44 16 — 16
Data+ Sack 20 32+ 44+ |16 — 20+

Table 7.3: Transport layer header overhead

third request labeled high-priority, causing the servecammit all bandwidth to the new request,
temporarily blocking the old ones. At ten seconds the cl&rimits two priority change requests,
changing Request 1 to high-priority and Request 3 to norarad, the client observes the prior-
ity changes take effect one round-trip later. When Requédistally completes, the remaining two
requests again divide available bandwidth evenly untly t@mplete as well.

7.5.6 Wire Efficiency

Minimizing the per-packet overhead of transport layer leesdls important to many applications,
especially voice applications that frequently send fraomg a few bytes in size. Table 7.3 com-
pares SST’s header overhead in bytes against the minimdideae imposed by several other trans-
ports. The numbers for SST include the 32-bit lightweightasum that SST uses in its non-
cryptographic security mode, but do not include a UDP endafien header since SST could be
run directly atop IP like the other transports. The DCCP nerslare for DCCP’s short header
format, which uses 24-bit sequence numbers instead oft4&-thie cost of weakening the protocol
against packet forgery attacks. SST also transmits 24eitence numbers in packets, but does not
rely on them to protect against forgery, instead relying b keyed checksums that depend on
full 64-bit internal sequence numbers. SST effectivelytes most of the functionality of SCTP
and DCCP, along with structured stream support not availablany existing transport, with no
more wire overhead than basic TCP.

165

|SST TCP SCTP DCCP RDP UDP
Prototype 4400 540

Linux 2.6.20 5400 8000 2900 630
FreeBSD 5. 4400 510
4.3BSD 990 900 170

Table 7.4: Transport code size (semicolon count)

7.5.7 Implementation Size

For a rough comparison of implementation complexity, Tahke shows the code size of several
transports measured in number of semicolons. The top lioeslthe user-space C++ implemen-
tations of SST and TCP used in the above experiments; the lles show existing transports

written in C. The user-space TCP is “bare-bones” and impigsnenly the TCP features needed for
the above experiments. The SST prototype will no doubt gew matures, but it already includes
cryptographic security functionality that none of the ottransports do. In comparisolibssli

from OpenSSL 0.9.8e is about 13,000 semicolons (41,008)line

7.6 NAT Traversal Evaluation

To evaluate the robustness of the TCP and UDP hole punchihgitpues described in Chapter 5 on
a variety of existing NATs, we implemented and distributedst program called NAT Check [171],
and solicited data from Internet users about their NATS.

NAT Check’s primary purpose is to test NATs for the two bebgai properties most crucial to
reliable UDP and TCP hole punching: namely, consistenttigepreserving endpoint translation
(Section 5.4.1), and silently dropping unsolicited incoghiTCP SYNSs instead of rejecting them
with RSTs or ICMP errors (Section 5.4.2). In addition, NAT&Ch separately tests whether the
NAT supports hairpin translation (Section 5.4.4), and Wwhethe NAT filters unsolicited incoming
traffic at all. This last property does not affect hole punghibut provides a useful indication the
NAT's firewall policy.

NAT Check makes no attempt to test every relevant facet of Néffavior individually: a wide
variety of subtle behavioral differences are known, somgti€h are difficult to test reliably [124].
Instead, NAT Check merely attempts to answer the questimw ‘tommonly can the proposed hole
punching techniques be expected to work on deployed NAT&eutypical network conditions?”

7.6.1 Test Method

NAT Check consists of a client program to be run on a machirendethe NAT to be tested,
and three well-known servers at different global IP addres3 he client cooperates with the three
servers to check the NAT behavior relevant to both TCP and bl punching. The client program
is small and relatively portable, currently running on Wi, Linux, BSD, and Mac OS X. The
machines hosting the well-known servers all run FreeBSD.

166

Server 1 Server 2 Server 3
[== mI=s P [M==

X
\W/VEA

1@
i1

Main Secondary
UDP Port UDP Port

Client

Figure 7-12: NAT check test method for UDP

UDP Test: To test the NAT's behavior for UDP, the client opens a socket lainds it to a local
UDP port, then successively sends “ping”-like request®tuoess 1 and 2, as shown in Figure 7-12.
These servers each respond to the client’'s pings with a tbptyincludes the client’'s public UDP
endpoint: the client’s own IP address and UDP port numbetbasreed by the server. If the two
servers report the same public endpoint for the client, NAEB€&k assumes that the NAT properly
preserves the identity of the client’s private endpointiségng the primary precondition for reliable
UDP hole punching.

When server 2 receives a UDP request from the client, besigédgng directly to the client it
also forwards the request to server 3, which in turn repliethé client from its own IP address.
If the NAT’s firewall properly filters “unsolicited” incomig traffic on a per-session basis, then the
client never sees these replies from server 3, even thoayhatte directed at the same public port
as the replies from servers 1 and 2.

To test the NAT for hairpin translation support, the clieimgly opens a second UDP socket at
a different local port and uses it to send messages tpubéc endpoint representing the client's
first UDP socket, as reported by server 2. If these messagek tiee client’s first private endpoint,
then the NAT supports hairpin translation.

TCP Test: The TCP test follows a similar pattern as for UDP. The clies¢aia single local
TCP port to initiate outbound sessions to servers 1 and 2¢claecks whether the public endpoints
reported by servers 1 and 2 are the same, the first precanflitioeliable TCP hole punching.

The NAT’s response to unsolicited incoming connectionmaftis also impacts the speed and
reliability of TCP hole punching, however, so NAT Check alests this behavior. When server 2
receives the client's request, instead of immediatelyyiaglto the client, it forwards a request to
server 3 and waits for server 3 to respond with a “go-aheagtiagi When server 3 receives this
forwarded request, it attempts to initiate an inbound cotioe to the client’s public TCP endpoint.

167

UDP TCP
Hole Hole
Punching Hairpin Punching Hairpin

NAT Hardware

Linksys 45/46 (98%)| 5/42 (12%)| 33/38 (87%) 3/38 (8%)

Netgear 31/37 (84%)| 3/35 (9%) 19/30 (63%)| 0/30 (0%)

D-Link 16/21 (76%)| 11/21 (52%) 9/19 (47%)| 2/19 (11%)

Draytek 2117 (12%)| 3/12 (25%) 207 (29%) 0/7 (0%)

Belkin 14/14 (100%)| 1/14 (7%) 11/11 (100%) 0/11 (0%)

Cisco 12/12 (100%) 3/9 (33%) 6/7 (86%) 27 (29%)

SMC 12/12 (100%)| 3/10 (30%) 8/9 (89%) 219 (22%)

ZyXEL 719 (78%) 1/8 (13%) 0/7 (0%) 0/7 (0%)

3Com 717 (100%) 1/7 (14%) 5/6 (83%) 0/6 (0%)
OS-based NAT

Windows 31/33 (94%)| 11/32 (34%)| 16/31 (52%)| 28/31 (90%)

Linux 26/32 (81%)| 3/25 (12%)| 16/24 (67%)| 2/24 (8%)

FreeBSD 7/19 (78%) 3/6 (50%) 213 (67%) 1/1 (100%)
All Vendors 310/380 (82%)| 80/335 (24%)| 184/286 (64%) 37/286 (13%)

Table 7.5: User reports of NAT support for UDP and TCP holecbimy

Server 3 waits up to five seconds for this connection to sutoetil, and if the connection attempt
is still “in progress” after five seconds, server 3 respondsetrver 2 with the “go-ahead” signal and
continues waiting for up to 20 seconds. Once the client fimalteives server 2’s reply (which server
2 delayed waiting for server 3's “go-ahead” signal), themliattempts an outbound connection to
server 3, effectively causing a simultaneous TCP open \githes 3.

What happens during this test depends on the NAT’s behasitollws. If the NAT properly
just drops server 3's “unsolicited” incoming SYN packetsent nothing happens on the client’s
listen socket during the five second period before servepleseto the client. When the client
finally initiates its own connection to server 3, opening kettbrough the NAT, the attempt succeeds
immediately. If on the other hand the NAT dasst drop server 3's unsolicited incoming SYNs but
allows them through (which is fine for hole punching but naabfor security), then the client
receives an incoming TCP connection on its listen sockeirbakceiving server 2's reply. Finally,
if the NAT actively rejects server 3's unsolicited incomi8y Ns by sending back TCP RST packets,
then server 3 gives up and the client’'s subsequent attengpintoect to server 3 fails.

To test hairpin translation for TCP, the client simply usesgeondary local TCP port to attempt
a connection to the public endpoint corresponding to itshary TCP port, in the same way as for
UDP.

7.6.2 Test Results

The NAT Check data we gathered consists of 380 reported aatdsprovering a variety of NAT
router hardware from 68 vendors, as well as the NAT functignauilt into different versions

168

of eight popular operating systems. Only 335 of the totahdatints include results for UDP
hairpin translation, and only 286 data points include tsdok TCP, because we implemented these
features in later versions of NAT Check after we had alreddsted gathering results. The data is
summarized by NAT vendor in Table 7.5; the table only indinlly lists vendors for which at least
five data points were available. The variations in the tesilte for a given vendor can be accounted
for by a variety of factors, such as different NAT devices mduct lines sold by the same vendor,
different software or firmware versions of the same NAT impdatation, different configurations,
and probably occasional NAT Check testing or reportingrerro

Out of the 380 reported data points for UDP, in 310 cases (8B&dNAT consistently translated
the client’s private endpoint, indicating basic compdéitipiwith UDP hole punching. Support for
hairpin translation is much less common, however: of the®88 points that include UDP hairpin
translation results, only 80 (24%) show hairpin transtasapport.

Out of the 286 data points for TCP, 184 (64%) show compatbilith TCP hole punching: the
NAT consistently translates the client’s private TCP endp@nd does not send back RST packets
in response to unsolicited incoming connection attempésrih translation support is again much
less common: only 37 (13%) of the reports showed hairpin sagpr TCP.

Since these reports were generated by a “self-selectinginamity of volunteers, they do not
constitute a random sample and thus do not necessarilysesirine true distribution of the NATs in
common use. The results are nevertheless encouragingpaaepthat the majority of commonly-
deployed NATSs already support UDP and TCP hole punchingaat ia single-level NAT scenarios.

7.6.3 Testing Limitations

There are a few limitations in NAT Check’s current testingtpcol that may cause misleading
results in some cases. First, we only learned recently tHatvaNAT implementations blindly
translate IP addresses they find in unknown applicationgaald, and the NAT Check protocol
currently does not protect itself from this behavior by dofating the IP addresses it transmits.

Second, NAT Check’s current hairpin translation checkiraymield unnecessarily pessimistic
results because it does not use the full, two-way hole puchiocedure for this test. NAT Check
currently assumes that a NAT supporting hairpin trangtatioes not filter “incoming” hairpin con-
nections arriving from the private network in the way it wailter incoming connections arriving
at the public side of the NAT, because such filtering is unssmey for security. We later realized,
however, that a NAT might simplistically treany traffic directed at the NAT's public ports as
“untrusted” regardless of its origin. We do not yet know whiaehavior is more common.

Finally, NAT implementations exist that consistently skate the client's private endpoint as
long asonly oneclient behind the NAT is using a particular private port nembbut switch to
symmetric NAT or even worse behaviors if two or more clientthwdifferent IP addresses on the
private network try to communicate through the NAT from tlsng private port number. NAT
Check could only detect this behavior by requiring the usauh it on two or more client hosts
behind the NAT at the same time. Doing so would make NAT Cheakhhmmore difficult to use,

169

however, and impossible for users who only have one usaltéin@behind the NAT. Nevertheless,
we plan to implement this testing functionality as an opfioa future version of NAT Check.

7.6.4 Corroboration of Results

Despite testing difficulties such as those above, our resuét generally corroborated by those of a
large ISP, who recently found that of the top three consurddr iduter vendors, representing 86%
of the NATs observed on their network, all three vendorsantty produce NATs compatible with
UDP hole punching [254]. Additional independent resultsrdly obtained using the UDP-oriented
STUN protocol [124], and STUNT, a TCP-enabled extension192], also appear consistent with
our results. These latter studies provide more informatimeach NAT by testing a wider variety of
behaviors individually, instead of just testing for basatehpunching compatibility as NAT Check
does. Since these more extensive tests require multipjgecating clients behind the NAT and thus
are more difficult to run, however, these results are so failate on a more limited variety of
NATS.

7.7 Summary

In this chapter, we first informally evaluated the currenthplemented and deployed naming and
routing prototype from a high-level usability perspectitieen delved into each of the alternative
approaches to routing in Sections 7.2—7.4, focusing oropadnce metrics such as success rate,
routing table size, and route stretch. Section 7.5 thenuatedl UIA's structured stream trans-
port from the perspective of responsiveness—a partigularportant usability metric for personal
devices running highly interactive communication appiaras. Finally, Section 7.6 presented an
experimental study on the effectiveness of hole punching &l for optimize the UIA routing
layer or other peer-to-peer communication mechanisms.

A common conclusion that may be safely drawn from all of thesgtions is that the possible
design space in each functional area is vast and much molkewibbe needed to achieve the full
promise of “ubiquitous computing” using mobile personalides, but the evaluation in this chapter
suggests that the ideas proposed in this thesis represeninésing stepping stone for the promise
of “ubiquitous computing.”

170

Chapter 8

Related Work

UIA builds on a large body of related work in the areas of najregstems, location-independent
identifiers, gossip and optimistic replication protocaad social networks. This chapter explores
the relationship of UIA and its components to prior work. Thest important contributions of UIA
with respect to all of this prior work are the new abstraditmat UIA introduces for personal device
connectivity, although Section 1.7 also lists other cdmitions in all the functional areas that don't
necessarily involve new network abstractions:

e Personal groupsbuilt from pairwise introductions and managed without refee to central
authorities or services.

e Personal namessupporting global connectivity between users and theisgraal devices,
without requiring global uniqueness.

e Structured streamsfor efficient, responsive communication between persoswices, de-
signed for delay-sensitive interactive applications thahage many communication activities
in parallel.

We first examine related work at the network architecturellehen work related to individual
UIA components.

8.1 Network Architectures

UIA's basic usability goal of making personal device cortivéty “just work,” without users having
to configure protocols or register with central servicespissistent with the classic ubiquitous com-
puting idea of trying to make computers “disappear” from tiser's consciousness [262]. UIAs
technical design builds on and is heavily inspired by therimt's existing architecture [54], in-
cluding its foundation on best-effort packet-switchedvidl and a separation of naming, routing,
transport, and application concerns. In addition, UIA dadageveral existing architectural exten-
sions to the classic Internet that have been proposed hadibreot yet widely adopted.

171

IP addresses are traditionally overloaded to serve the gilboth node identification and rout-
ing, causing both confusion and technical difficulties wimenles need to move while retaining
their logical identities [50, 160, 212, 221]. UIA incorptea the idea of splitting the “locator” and
“identifier” roles of Internet addresses, as developedtieioarchitectures such as Nimrod [39,193],
HIP [165], FARA [52], IXTA [97], andi3 [237]. As in HIP, UIA borrows from SFS [158] the idea
of making node identifiers self-certifying by generatingrth from the hash of a public key. In
contrast with prior architectures, however, UIA suppousjost identification ohostsbut also the
convenient identification and managemenpefsonal group®f administratively related hosts, so
that users can identify and name each other via persistaatidn-independent logical group iden-
tities whose specific device membership may change over tit#s design also refines previous
notions of host identity by introducing cryptographic Elbat securely identify not just a host but
a particularuseron that host. Different users of a shared UIA host can rungaddent personal
network services without conflicting or requiring host-@icbnfiguration, and network services can
leverage UIA names and EIDs to authenticate clients at usauggarity.

UIA is also influenced by the architectural principle of apation level framing [51]. One of
the primary goals of UIA's structured stream transport iptovide transport objects that directly
mirror the structure of the “application data units” with ief the application is concerned.

The Mobile People Architecture (MPA) [151] proposes addimiew “Person Layer” above the
Application Layer in the current Internet architecture,iebhprovides each individual user with a
unique identifier and a Personal Proxy that acts as a certiratl @f contact for the user regardless
of which personal device(s) he is using at the moment. Thesu8ersonal Proxy can for example
forward incoming calls to the mobile personal device the isseurrently carrying, to a fixed device
at the user’s current location, or to the user’s voicemdhéf user cannot be located. The Universal
Inbox [192] provides similar services, but implements tharthe Internet core rather than at the
edges. MPA and Universal Inbox are complementary to UIA &t thhey address user location
tracking, call redirection, and media conversion, whiciUgaves to higher layers: it should be
natural to build services analogous to MPAs “Person Layar'the Universal Inbox atop UIAs
naming and routing facilities. UIA on the other hand addeeshe problem of making it easy for
technically unsophisticated users to build and managepgrofipersonal devices, a problem neither
MPA nor Universal Inbox addresses. UIA also supports comaation within disconnected edge
networks, which fails in MPA and Universal Inbox becauseuber becomes unreachable by anyone
whenever the user’s Personal Proxy or other central intdianeservices are unreachable.

UIA is a continuation of work begun with Unmanaged Internedtecol [80, 81]. UIA extends
the earlier work with its personal naming system, new oyadaiting algorithms, and the structured
stream transport.

172

8.2 Naming

UIAs personal naming model is inspired in part by SDSI/SIPKI, 205]. Like SDSI, UIA allows
users to define locally-scoped personal names bound toognggthic targets and groups to form
decentralized, composable namespaces. While SDSI atesopiablic keys with users (principals)
and expects users to know about and manage their own pulglc kewever, UIA simplifies key
management by making each device responsible for creatichgnanaging its own device-specific
key invisibly to the user. UIA devices formseridentities out of cooperating groups of personal
devices, which the user builds through simple device intetidn and merge. SDSI's model for
designated certificate servers does not adapt well to disaded mobile devices, however. UIA
handles lost or stolen devices without re-keying and thsisgpthe user’s identity.

UIA's introduction process builds on previously exploreas for secure associations, such
as the Resurrecting Duckling security model [233] and S8E8I introduction [65], but UIA is
unique in providing the ability to build symmetric, self-rmeaging, distributed personal groups solely
out of pairwise introductions.

Existing Internet protocols can provide some of UIA's nagnfeatures, but they require con-
figuration effort and technical expertise that deters eghisticated users. Dynamic DNS [258]
can name devices with dynamic IP addresses, but requirdgyeation on both the name server
and the named device, and devices still become inaccesditgla behind NAT. DNS Security [14]
cryptographically authenticates DNS names, but its adstmation cost has hindered deployment
even by the Internet’s root naming authorities, let alonetdmnary users.

Uniform Communication Identifiers [74] provide a commonritier for phone, E-mail, and
other forms of communication, along with a central addresxkishareable among communication
devices. HINTS [150] uses name-history trails to map oliealeer names to current ones. These
systems still rely on globally unique names with centralipegistration and management, however.

Bonjour [11] allows devices to choose their own names onldagea networks, but these hames
are insecure and ephemeral: any device can claim any naché@&sarame becomes invalid as soon
as it moves to a different network. UIA uses Bonjour librarie discover new devices on the
local network, but UIA names persist and remain bound to tiginal target device despite later
migration.

DHT-based naming systems such as DDNS [53][237], and CoDoNS [194] provide new
mechanisms for resolving global names. TRIAD [47] providestent delivery and NAT traversal
by routing on global DNS names. In place of global names, Wd@uses on global connectivity via
personalnames, which users can choose without the restriction dfagloniqueness. In addition,
UlA's optimistic replication of naming state keeps the is@amespace available on his devices
even while disconnected from the Internet and its globalenaetvices or DHTSs.

Ficus [104, 106], Coda [134], and Ivy [169] develop optingiseplication algorithms for file
systems, and Bayou [245] does so for databases. Rumor [h@3P&5rid [61] explore optimistic
data replication on mobile devices, Roma [242] uses onelmdbvice to offer central management
of data on other devices, and Footloose [178] uses mobilea®the user carries to propagate

173

updates among other devices. UIA builds on all of this workddress distributed naming and ad
hoc group management, confronting the additional chaflesfgnaintaining consistency when not
only thedata contenbut theset of participantsnay change independently on different devices.

The design of UIAs personal name system may have applibabiéyond the domain of per-
sonal devices to other peer-to-peer systems. For examyeenss such as SFR [24, 260] and
13 [237] also identify network endpoints using cryptograjgllic secure, but otherwise meaningless,
bit strings. UIA's name system can be used to provide hureadable names to such endpoints in
a secure and user-friendly manner.

UIA's support for naming and connecting to other users vis@eal group names effectively
creates an explicit social network, comparable to thosentaiaied by popular web sites such as
friendster [91], orkut [176], and facebook [76], except inampletely decentralized fashion with
no central database. UIA's social network could be usefhiigher-level services and applications
for various purposes, such as sybil-resistant DHT keyé/édokup [60] and other sybil-resistant
services [270, 271], and social data sharing, search, amegst systems such as Turtle [186],
SPROUT [154], F2F [146], and Tribler [190].

8.3 Routing

Existing Internet protocols can provide some of UIA's cortivity features, but they require con-
figuration effort and technical expertise that deters ewghisticated users. Mobile IP [185] gives
a mobile device the illusion of a fixed IP address, but regusetting up a dedicated forwarding
server at a static, public IP address. Virtual Private Netw@VPNs) [96] provide secure remote
access to corporate networks, but their infrastructureatministration requirements make them
unsuitable for deployment by average consumers for thesopal networks.

A resilient overlay networks (RON) [9] serves a function #&min spirit to the UIA routing
layer, increasing the reliability of an IP network by detegtconnectivity failures in the underlying
network and forwarding traffic around them. RON makes nangtteat scalability beyond a few
dozen nodes, however, and assumes that all participatidgsritave unique IP addresses.

Several protocols have been developed to provide conitgdtivough firewalls and NATSs, such
as SOCKS [144], STUN [209], and UPnP [255]. These specigigae protocols are tied to the
characteristics and network topologies of commonly degdloNATs and firewalls, however, and
do not solve the more general problem of routing betweeemifft address domains connected in
arbitrary fashion.

The following sections examine related work specific to thectfic routing methods explored
in UIA.

8.3.1 Social Routing

In classic distance-vector routing algorithms [127] susHRaP [110], as well as variants such as
MS [159], ExBF [44], WRP [168], and DSDV [184], each routentiauously maintains routing in-

174

formation about every other addressable node or subnekhstate algorithms such as OSPF [166]
and FSR [182], routers maintain complete network connigégtimaps, achieving faster routing ta-
ble convergence and avoiding the looping problems of bastante-vector algorithms. With all of
these protocols, however, each router requires at (263t) storage for a network of siz&, and
must regularly exchange connectivity information of sizeV) with each of its neighbors. Since
UIA is intended to run on personal mobile devices with lirdisgtorage and network bandwidth, but
which may be interconnected over the Internet in large nusbeis not practical for each UIA
device to maintain individual records for every other UlA/ide in the network: thus, UIA requires
a more scalable approach. UIAs social routing protocolieds this scalability by limiting scope
to routing among social neighbors, whereas the other twerseb use distributed routing struc-
tures to provide scalable routing among arbitrary nodedewbiuiring limited state at each node.
In effect, UIA's social routing protocol does not attempiptmvide connectivity betweearbitrary
graph nodes efficiently: instead it focuses on providingpdémand efficient connectivity between
socially or administratively relatedodes: i.e., a user’'s own personal devices, and those ofifie
and acquaintances.

Reactive or “on demand” routing algorithms designed for ad ietworks, such as DSR [125]
and AODV [183], require routers to store information onlyoabcurrently active routes, limit-
ing maintenance traffic and storage overheads on netwotkslagalized traffic patterns. Routing
gueries for distant nodes may have to be broadcast throughahthe network before the desired
route is found, however, limiting the scalability of thesetpcols on networks with global traffic
patterns. The social routing protocol uses scoped floodihgcate and create a forwarding path to
an arbitrary node on demand, similar to ad hoc protocolsti8®R and AODV, and to unstructured
peer-to-peer search mechanisms as in Gnutella [42]. UbEsabrouting algorithm performs this
flooding on a graph based on the usexxial network however, rather than on a graph based on
the underlying physical topology. In this sense UIA is agalgs to systems that leverage social
networks for other purposes, such as Turtle [186] and Trildlg0] for peer-to-peer file sharing,
SPROUT [154] and other DHTs [60] that leverage social netador secure key lookup, and
F2F [146] for friend-to-friend data storage.

8.3.2 Identity Hash Routing

Distributed hash tables (DHTSs) [19, 211, 236] provide dualdookup of arbitrary flat identifiers
in large distributed address spaces, but tolerate onlytdomasymmetry or non-transitivity in the
underlying network [90]. UIA's Identity Hash Routing schers inspired by DHTS, but it addresses
the more difficult problem of providing both resolution oftfldentifiersandcreating any necessary
forwarding paths over potentially arbitrary topologieghwasymmetric connectivity.

Like IHR, ROFL [37] borrows DHT techniques to build a scabbuting mechanism. While
ROFL's goal is to build a new routing infrastructure for tiédrnet core to replace BGP [200] and
other routing protocols based on structured CIDR [92] asklre, whereas IHR's goal is to provide
a scalable routingverlayatop the Internet’s existing routing infrastructure, ievpented primarily

175

by personal edge devices instead of core routers. Sinceréfatively easy to deploy operating
system extensions incrementally on edge devices but difficunodify Internet core routers and
routing protocols, the overlay approach is likely to be meeaisier to deploy in practice. ROFL
and IHR share the common limitation of offering no formal bdwn stretch, and no obvious way
to modify the algorithms to guarantee such a bound; thidditiwin may be more of a problem for
ROFL, since it aspires to be the “primary” routing mechanisrforward IP traffic across many link
layer hops, whereas UIAs overlay routing layer merely jueg a “backup” routing mechanism
that forwards traffic over a few IP-level hops only when dilgtlevel connectivity is unavailable.

8.3.3 Compact Routing

UIA's compact routing protocol builds on recent theordtizark, which has produced a new class
of routing algorithms ensuring both small (sub-linear)tiogl table size on every node and bounded
worst-case stretch on arbitrary graphs [2, 15, 56, 247] otinhately it is not self-evident how to
convert any of these centralized, stagiigorithmsinto practical distributedgprotocols let alone
deploy them on existing networks. UIAs kZbased protocol is intended to be one step toward
making formal compact routing algorithms practical.

Prior analysis of one compact routing algorithm indicatest the algorithm should provide
average-case stretch close to 1 on Internet-like graplty,[@den though its worst-case stretch is 3.
This analysis was done on a different algorithm by Thorup Zwitk from the one we use in this
paper, although both algorithms were presented in the saper j247]. The two algorithms are
closely related, however, and may have similar average-sstch properties.

Some formal analysis has also been done on the communica#of responding to dynamic
topology changes. The worst-case cost is known to be piiopattto network diameter, and thus
Q(n) for arbitrary graphs [3]. Korman and Peleg presented anggcheme that efficiently adapts
to changes in edge weights (but not additions or removalgjaphs with low local density [139].
Krioukov et al. noted that random scale-free graphs havelbical density [141], shedding doubt on
the practicality of large-scale compact routing due to thetiol overhead of maintaining routing
tables. This cost analysis assumes however that routidgstabe always recomputed on every
minor topology change such as a temporary link or routenffail UIA's model assumes in contrast
that routing tables only need to be recomputed occasiomalyhe network'sxominal topology
evolves under administrative control, leaving temporartages to be handled by redundancy built
into the routing algorithm and into lower-level networkitayers.

UIA builds on prior work analyzing compact routing algoriite by examining other practical
aspects of routing protocol behavior not previously com®d, such as route congestion and ro-
bustness to failures. UIA's protocol has also been validigta simulation on a wider variety of real
and synthetic network topologies, and at much larger sa¢hbas has been done previously: e.g.,
one graph used is a Skitter [38] AS-adjacency graph comigiabout 190,000 nodes and 600,000
edges.

UIA's TZ k-based protocol implementeme-dependembmpact routing, meaning that the pro-

176

tocol assigns each node a topology-sensitive locator ttier cnodes use to contact it. There
are name-independergchemes that accept arbitrary location-independent rajmkdd [2, 15] and
have similar worst-case stretch, but thawrerage-casestretch is generally higher than for name-
dependent routing, because any message must be sent to adenthat knows the location of the
target before being forwarded to the target itself [141nc8inodes on real networks usually ex-
change multiple messages in a conversation, it may be pl#ésfor purposes of minimizing stretch
to perform a single address lookup in a directory of some,ksndh as the DNS or a DHT, paying
this cost only once and then using more efficient routing filisequent messages.

TZk’s hierarchy of landmarks is reminiscent of Landmark [25}d related hierarchical ad
hoc routing protocols such as LANMAR [94], L+ [43], and Peetl{l73], all of which dynamically
arrange mobile nodes into a tree. These protocols assignrermtz a hierarchical address corre-
sponding to its current location in this tree, and implemeiacation-independent identity-based
lookup service by which the current address of any node cdourel. Each non-leaf node serves
as dandmarkfor all of its children, and is responsible for routing traffo them from nodes outside
its local subtree. An important technical difference betw@&Zk and landmark routing is that &z
nodes do not fit into a strict hierarchy but instead choosie teference landmarks based on abso-
lute proximity. In TZk, for example, a level 2 reference landmark may be differemhfthe level
2 reference landmark of the node’s level 1 reference lankinthat is, a node in TE can choose
a “grandparent” different from its “parent’s parent.” Thikoice of landmarks based on absolute
proximity without imposing a strict hierarchy is a cruciabperty upon which TZ’s formal stretch
bound depends. Similar to landmark routing, howeverk T@utes local traffic purely within the
lowest levels of the tree, providing scalability when taffiatterns are predominantly local. Since
global traffic must pass through the landmark nodes at therdpgels of the hierarchy, however,
these upper-level nodes may be overloaded in a network \dtrabtraffic patterns.

8.4 Transport

The popularity of SSL [64] and SSH tunneling [266] attesthte emand for multiplexing logical
streams onto a secure channel. MUX [95] and BEEP [206] silpifaultiplex logical streams onto
one TCP stream, layering their own flow control atop TCP’seSghprotocols exacerbate TCP’s
drawbacks, however, by totally ordering many unrelatedvities so that one lost packet blocks
everything behind it.

SST builds on many ideas borrowed from other transports. RDBP, 180] provides reliable
datagram delivery, in-sequence or as-available accorginige application’s choice at connection
setup. SCTP [234] multiplexes multiple “streams of dataggaonto one session, provides both
reliable and best-effort delivery, and supports “multiteathendpoints for rapid failover. Its streams
do not have individual flow control, however, and cannot beatgically created or destroyed, but
must be negotiatedn masseat session startup. DCCP [137] is a best-effort datagrawicgewith
congestion control, comparable to SST's channel layemithbut SST'’s packet security features.

177

RDP, SCTP, and DCCP all suffer from the “large datagram” |gmob datagrams with too many
fragments are almost certain to be lost or require manynstnissions.

SST does not provide multihoming as SCTP does, but its pldiattach streams to more than
one channel at once could be extended to support multihgromgven to load-balance a stream
across multiple channels following different network matl$ince SST’s stream protocol relies on
the channel protocol for loss detection and congestionrabithese mechanisms automatically op-
erate at channel—i.e., path—granularity. Performing “eménd” load balancing this way could
thus avoid both the harmful performance side-effects ahbgdoad balancing in lower layers [27],
and the complexity of managing multi-path congestion at@nsmission control in a stream trans-
port [122].

The need for efficient transport support for transactiderded application protocols has long
been recognized [31,35]. VMTP [46] supports lightweightdRtyle communication in a clustered
environment, but provides no congestion control and limigssages to 16KB. T/TCP [36] enhances
TCP to re-open recently-closed streams quickly, but thislseeuse has the same disadvantages as
HTTP/1.1 persistent connections without the benefits aélpipg [173].

TCP has also been extended to share congestion controlastates streams [18, 249]. The
Congestion Manager [22] enables congestion control sfpadnoss multiple transports; SST should
fit well into such an architecture if available.

Another TCP extension provides end-to-end support for hmaiility [224]. SST’s separation
into channel and stream layers, and its ability to migrateashs across channels, provides a cleaner
solution reminiscent of a session layer [225].

The rich literature on prioritization in the network layeransure quality of service [272] is rele-
vant to SST'’s use of prioritization in the transport layesthedule an application’s streams relative
to each other. Hierarchical schemes [28] may be partigulaell-matched to the structured stream
abstraction. SST's channel layer could be enhanced witintigaes developed in OverQoS [240]
to provide better QoS for aggregates of logical streams dimary Internet paths.

8.5 NAT Traversal

UDP hole punching was first explored and publicly documeritgdan Kegel [130], and is by
now well-known in peer-to-peer application communitieapbrtant aspects of UDP hole punching
have also been indirectly documented in the specificatibasweral experimental protocols, such as
STUN [209], ICE [207], and Teredo [117]. We know of no exigtipublished work that thoroughly
analyzes hole punching, however, or that points out thetmairanslation issue for multi-level NAT
(Section 5.2.5).

We also know of no prior work that develops TCP hole punchimghie symmetric fashion
described here. Even the existence of the cri#fal REUSEADDBRO REUSEPORIptions in the
Berkeley sockets API appears to be little-known among P2Hicgtion developers. NatTrav [72]
implements a similar but asymmetric TCP hole punching ptoceoutlined earlier in Section 5.3.5.

178

NUTSS [101] and NATBLASTER [30] implement more complex TC8epunching tricks that
can work around some of the bad NAT behaviors mentioned itideb.4, but they require the
rendezvous server to spoof source IP addresses, and tbegaisre the client applications to have
access to “raw” sockets, usually available only at root eniadstrator privilege levels.

Protocols such as SOCKS [144], UPnP [255], and MIDCOM [23bvaapplications to tra-
verse a NAT through explicit cooperation with the NAT. Thesetocols are not widely or con-
sistently supported by NAT vendors or applications, howesad do not appear to address the
increasingly important multi-level NAT scenarios. Exjtlicontrol of a NAT further requires the
application to locate the NAT and perhaps authenticaté#,itshich typically involves explicit user
configuration. When hole punching works, in contrast, itkgowith no user intervention.

Recent proposals such as Nimrod [39, 193], HIP [164], and &A4%2] extend the Internet's
basic architecture by decoupling a host’s identity fromatsation [50, 160,212, 221]. IPNL [88],
UIP [80, 81], and DOA [261] propose schemes for routing a&fd&Ts in such an architecture.
While such extensions are probably needed in the long teate, punching enables applications
to work over the existing network infrastructure immediateith no protocol stack upgrades, and
leaves the notion of “host identity” for applications to thefi

179

180

Chapter 9

Conclusion

This thesis has presented the Unmanaged Internet Aralniéec connectivity architecture for in-
teractive personal devices owned and managed by nontethusiers. The most important contribu-
tions of this architecture are three novel networking aasimns:personal groupsbuilt by pairwise
introduction and managed in a fully distributed fashipeysonal nameghat provide global con-
nectivity despite being locally scoped to a user’s persgnalip for convenience; anstructured
streamsenabling interactive, delay-sensitive applications taatge concurrent transactions effec-
tively and obtain maximum responsiveness from given nétwonditions. The architecture builds
on the central theme of full decentralization, and is cosgatiof three components: a naming layer
implementing personal groups and personal hames, a roiatjeg to provide connectivity among
those names, and a transport layer to support high-levdicafipn communication via the struc-
tured stream abstraction.

9.1 Decentralization

Avoiding unnecessary reliance on central services or aitigwis a basic principle applied through-
out UIAs design. This principle is motivated by three goaseserving the userautonomyto
manage his own devices without having to register with sorgardzation or get help from a tech-
nical expert; preservingonnectivityamong those devices even when they are connected only via
an isolated local-area network or a temporarilly discoterénternet fragment; and preserving the
user'sprivacy by avoiding an architectural requirement that some cestalice know the user’s
device names and where on the Internet they are locatedtihad.

While the decentralization principle applies most obvigus UIA's naming and routing com-
ponents, it also factors into the mativation for UIA's stiwred transport component, although less
directly. In a centralized client/server communicationdalp it may usually be assumed that the
server is “well-connected"—i.e., via a high-bandwidthyiatency connection—and thus if there
is a high-latency component of the path it is probably on amg end (the client’s). As peer-to-
peer communication between personal devices becomes momaan and universally supported,
however, it will be increasingly common for a peer-to-peangport session to traverseo high-

181

latency links, one for each peer, effectively doubling tb< round-trip time and increasing the
user-observable responsiveness benefits of avoiding ess&y serialization onto one TCP stream.

9.2 Naming

The UIA naming system provides a new approach for introdyaiaming, and globally connecting
mobile devices, which is complementary to the traditiodabgl name system embodied by the In-
ternet’'s Domain Name System. UIA gives users persistersiopat names for conveniently finding
and expressing who they want to talk to, what devices thel Wwisiccess, and who can access their
own devices.

Each device starts with a generic name for itself, suclap®p , and a cryptographic end-
system identifier to provide authentic and private commation. A user can merge devices to
form personal groups, which cooperate to maintain a digiith namespace by gossiping logs of
the user’s changes. A user’s group can name both the useitedend other users’ groups; users
can form links securely either by physical device introthrctor via other trusted channels. Since
UIA names are local and personal, users need not registierceittral authorities to obtain scarce
globally unique names.

9.3 Routing

UIA's overlay routing layer provides robust connectivitgtiveen personal devices, even as they
migrate among different attachment points having diffetBraddresses, must communicate from
behind firewalls and NATs, or have connectivity only to a tiedi set of nodes in an ad hoc edge
network and not to the main Internet. This thesis has exgltreee approaches to overlay routing,
each of which holds promise but also has limitatiosscial routing identity hash routing and
compact routing

e Social Routingis UIA's currently deployed overlay routing scheme, whiges ad hoc for-
warding through social neighbors’ devices to cope with aspen of connectivity environ-
ments while focusing on providing connectivity betweenrbgasocial neighbors. Scoped
flooding ensures robustness when groups of devices foratésbislands of connectivity, and
a social overlay enables devices to find a target’s curreatitfess efficiently when they have
Internet connectivity.

¢ |dentity Hash Routing (IHR) builds on scalable structuring ideas borrowed frostrihuted
hash table (DHT) technology. Whereas conventional DHTg prdvide a lookup service and
assume the underlying network is already fully connectefiR builds a combined lookup
and routing service that can both locate a node by its flat, locaitidependent Endpoint
Identifier, and at the same time create a forwarding path ¢onttde. IHR supports two
specific forwarding mechanisms: source routing and virliméks. Simulation experiments

182

suggest that IHR should scale well and provide reasonafityezft paths in the common case,
although an important weakness of the algorithm is the ajgsefany formally guaranteed
bound on stretch, or path length inefficiency compared totsbpath routing.

e Compact Routing builds on recent theoretical advances to build an overlaying proto-
col that should provide both scalability and a formal stidbound. The protocol selects a
hierarchy of landmarks and builds routing trees centerezhelh landmark; each node in the
network joins a limited number of routing trees and thus negulimited-size (e.g., logarith-
mic) routing tables. Simulation experiments suggest thigt protocol should indeed scale
well, although it has two downsides: the routing schemedgdndcreate congestion around
high-level landmarks, which we can address either by setgbtgh-capacity, well-connected
nodes as high-level landmarks or by increasing the rousiblgtsizes of individual nodes; and
the routing scheme depends on structured addresses, skua lm@chanism such as a DHT
must be layered above it to make it fully usable as an ovedatirg protocol for UIA.

One take-away message from this exploration is that therelaarly multiple ways to imple-
ment a routing service to fit into the UIA architecture, andi@of them may be clearly dominant,
so in the long term it is probably important for UIA to remaignastic as to which specific routing
scheme is used to connect clouds of personal devices.

9.4 Transport

UIA’s structured stream transport (SST) is designed to sampplication communication between
personal devices once the naming and routing layers havessfally located and connected to
a desired target device. The modern interactive applicatibat users wish to run on personal de-
vices typically involve many independent or concurrenmtsections, as well as multimedia streams,
none of which TCP can support efficiently and responsivelithdugh UDP is always an option,
it is inconvenient when transactions arguallysmall butsometimesnay be large because IP frag-
mentation only works well in practice up to a limited datagraize. SST subsumes both the TCP
stream and UDP datagram abstractions by enabling the applicto create and manage many
fine-grained streams easily and efficiently, creating a negaas for each transaction and using
“ephemeral streams” in liu of datagrams. The central charistic of the structured stream abstrac-
tion is a “fork” operation to create new child streams fromeaisting stream.

SSTis inits infancy and will require refinement, more opsied implementation, further anal-
ysis, and integration into the UIA prototype. Structura@ains nevertheless appear to be a promis-
ing enhancement to the classic reliable stream abstradtiaorder to better support the needs of
modern, highly interactive applications for personal desi SST’s multiplexing of independent
lightweight streams onto persistent channels gives agjiics the flexibility to match their use
of streams to their natural structure and transaction dmaityy avoiding the start-up delays and
serialization imposed by TCP and the datagram size liroitatof UDP.

183

9.5 NAT Traversal

One of the UIA routing layer’s functions is to provide comnizaiion between personal devices that
are behind (the same or different) NATs. Although the UlAtiog layer can address this require-
ment generically by forwarding all application traffic tiigh a well-connected intermediary, more
efficient solutions are often available to this special ¢gaghe form of NAT traversal techniques.

Hole punching is a general-purpose NAT traversal technifaedoes not require any explicit
communication with the NATs involved. As long as the NATsdlwed meet certain behavioral
requirements, hole punching works consistently and rbptist both TCP and UDP communica-
tion, and can be implemented by ordinary applications witepecial privileges or specific network
topology information. Hole punching fully preserves thagparency that is one of the most impor-
tant hallmarks and attractions of NAT, and works even withtiple levels of NAT—though certain
corner case situations require hairpin translation, a N&sfidre not yet widely implemented. Now
that many of the “P2P-friendly NAT behaviors” describedhistthesis including hairpin translation
are being standardized as part of the IETF's BEHAVE workirgug [119], we might hope that the
percentage of NATs that support hole punching effectivaliygrow in the future.

9.6 Possible Barriers to Adoption

An important pragmatic consideration for any significantgw networking architecture such as
UIA is what barriers to adoption the new architecture isllilencounter in any attempt at large-scale
deployment. While we make no attempt in this thesis to explbis complex issue exhaustively, it

is worth briefly enumerating some of the most likely deployinzhallenges. These challenges may
be organized into three categories: technical, economat palitical.

9.6.1 Technical Barriers

There are of course many technical challenges to migrakisgimg operating systems and Internet
protocols to support a new networking architecture like |48me of which have been discussed
already throughout this thesis. In particular, the fact th affects multiple architectural layers
means that various parts of the network protocol stack liglealed to be changed to effect a clean
and complete migration, and such changes in practice ndeelitccrementally deployable one de-
vice (or even one application) at a time without breakingfioperability with existing, “legacy”
systems in order to see widespread use in the real world. Uinert UIA prototype takes consid-
erable effort to address these incremental deploymeniecigas, but additional issues remain.

Operating System Modifications: The current UIA naming and routing prototype is designed
to be installed at system level and operate transparenthppdications, but deploying operating
system extensions at least require the user to have adrativietprivilege. Many users in practice
do not have administrative privileges on at least some ofithehines they use regularly, however,

184

such as their work PCs. An implementation of the UIA naming mouting layers that can be linked
into and distributed with particular applications, opemgtentirely in user space like the prototype
SST transport library already does, could help addresd#niser to adoption, but would bring with

it additional technical challenges such as making multiglla-enabled applications in one system
cooperate coherently with each other.

Heterogeneity of Devices and Operating Systems:In pursuing the goal of portability across
various operating systems, the current UIA naming and mgyprototype is not as well-integrated
into any particular operating system as it needs to be fa ebisistallation and use by nontechnical
users, but cleanly integrating UIA into each of the many papoaperating systems used in modern
personal devices—especially small mobile devices suchastphones and Internet tablets, which
run a wide variety of embedded operating systems—is likelgd a major engineering challenge
requiring the support of the vendors of those devices.

Prevalence of Firewalls and NATs: While UIAs overlay routing layer is designed to support
peer-to-peer communication between personal devicetelbtehind firewalls or NATSs, using traf-
fic forwarding or NAT traversal techniques as appropriate, touting layer still depends on the
existence osomeUIlA-enabled devices that are not behind NATs or highly fette firewalls, in
order to provide those forwarding or NAT traversal rendesveervices. If the prevalence of NATs
and firewalls continues to increase, however, there may e@nough non-NATted UIA devices
within a user's nearby social neighborhood to provide tHesgarding or NAT traversal services
to the other devices, forcing UIA (and all other networkingtatectures and applications oriented
around peer-to-peer communication) into increasingmeézon centralized servers to provide these
forwarding and NAT traversal functions. Such a developnventild not prevent the deployment
of UIA—the routing layer's “default peer” mechanism (Secti3.2.1) could make use of central
forwarding/rendezvous services provided by a device nsantufer or software vendor, for exam-
ple, or a user’'s accounts in UIA-aware online services caatdas “virtual UIA devices” providing
forwarding and rendezvous for the user’s “real” devices-igh leffective reliance on central servers
due to the scarcity of “first-class” UIA devices may underenihe fault tolerance and disconnected
operation benefits of UIA's fully decentralized design.

9.6.2 Economic Barriers

While surmounting the above technical barriers is probablssible, the amount of work it will re-
quire implies that such a project would eventually have ¢eiree support and funding from a variety
of market players, such as the manufacturers of personaeate\and the vendors of the operating
systems and applications that run on them. On the positiles lere is clearly a lot of hardware
and software vendor interest in improving the power and loitipas of the networking features
in the personal devices they sell, including peer-to-peaning and communication features, as

185

evidenced by commercial initiatives such as Apple’s Mdgeservice [13] and Microsoft’s Live
Mesh [161].

On the negative side, however (and equally evidenced bybibvesexamples), market incentives
often tend to favor “vendor-specific walled garden” apphess; in which devices manufactured by
or running software written by one vendor work well togetbhat do not easily interoperate with
those from other vendors. To be maximally useful, a persdegice connectivity architecture
like UIA will ultimately require support across a wide vasieof devices and operating systems.
Achieving such interoperability will in turn require staards development activity supported by
many device and software vendors in the industry, and tHagiless of vendors to engage in such
standards activity may in turn hinge on the existence ofangtiand vocatlemandfrom users for
standards-based, cross-device, vendor-neutral perdewviak networking.

Another possible economic roadblock to the widespreadogeptnt of a decentralized archi-
tecture like UIA is the common preference of device and saféavendors for relying on centrally
managed services located in data centers and under fuliotaftthe vendor. From the vendor’s
perspective, such services have two important advantagesiecentralized services running partly
on customers’ devices. First, the vendor always has fultrobof the data center servers running
the centralized service, and can for example roll out softwgogrades all at once without having
to worry about maintaining backward compatibility with amigrary number of prior software ver-
sions that may still be running somewhere on some customevise. Second, a centralized design
gives vendors greater access to their customers’ infoomatind activities, which they often like to
leverage for targeted advertising and other purposes. lattés advantage from vendors’ perspec-
tive of course may create secrecy and privacy issues froroustemers’ perspective, so customers
that are particularly concerned with privacy may prefer en@idecentralized connectivity architec-
ture like UIA.

9.6.3 Political Barriers

Finally, associated with the above “centralized versugdgalized” tension is the ongoing political
debate on the privacy rights of individuals versus the desfrgovernments to monitor personal
communications for law enforcement purposes. UIAs aegttiire is based on the idea that an
individual should be able to use his personal devices to canicate freely with each other, and
with the devices of his friends and associates, via secugetpegpeer communication channels that
are cryptographically authenticated and privacy protbtdeprevent eavesdropping or interference
from third parties or intermediaries within the network.

Although Western democratic systems have in theory gdgenpheld individuals’ rights to
engage in private communication of this form, until a fewngeago strong encryption technolo-
gies were export-controlled in the US [126] and even banmtitledy in France [197]. While the
laws pertaining to use of strong encryption were liberaizebstantially due to their usefulness
for e-commerce, and this liberalization did not specificdlistinguish between “peer-to-peer” and
“customer-vendor” communication, there is no fundameraakon legal regimes coutut distin-

186

guish between these different uses. It is not clear thaetisethe same level of economic power
backing the preservation of the right to private peer-terggmmunication as there is backing the
right to private customer-vendor communication: in fa& tbng series of severe anti-piracy laws
passed in the last decade in the US and elsewhere under tiadatlarge media companies, as
part of their war against online file sharing, suggests tapposite is likely to be true. Thus, al-
though the private peer-to-peer communication capadslitirovided by a connectivity architecture
like UIA are theoretically neutral to any particular (leguailillegal) use, the desires of both govern-
ments and large economic powers to monitor peer-to-peeneoritations for their own respective
purposes could ultimately represent a major politicalibato the widespread use and deployment
of an architecture like UIA in the long term.

9.7 Future Work

Although the results of this thesis suggest that the Unmedhaternet Architecture provides a
promising approach to managing and globally connectinggrexl devices, many avenues for future
work remain, some of which this section highlights.

9.7.1 Naming

The UIA naming system currently operates only at the graitylaf personal groups and devices,
but for many applications what the user cares about dirésthot devices but logicalistributed
applicationsor services[20]. If Alice makes a voice call to Bob, for example, she ntighefer
her voice application to figure out automatically which oftBodevices he is currently reachable
at, as in the Mobile People Architecture [151] or Universaddx [192], instead of her having to
name a specific device as the target of the call. In other wdéditse wants to invoke Bob’s logical
voice communicatioservicerather than a particular device, leaving the service iteefhianage its
own distributed operation across Bob's personal group.l&\thshould already be possible to build
such distributed services atop the current UIA mechanishasseparate layer, exploring the details
of how such services would operate and how they might be meahly integrated with the UIA
naming paradigm represents a compelling direction forréutasearch.

UIA's personal naming system is designed to coexist with N8 support the concurrent use
of UIAs personal names and DNS'’s global names, but UIA andSDidrrently use completely
different name resolution mechanisms: while DNS uses atédierver resolution protocol with
limited caching, UIA relies on optimistic replication of m& records. It may be, however, that a
single name management and resolution protocol suppaatamptinuumof state replication poli-
cies, between completely uncached and completely repticabuld best serve the requirements of
both global and personal naming. Developing a clean, neseigation “unified naming protocol” of
this kind that supports both personal and global namesteff#yg while permitting a smooth tran-
sition from the legacy DNS protocols, may require considieradditional effort. Such a naming
protocol might be able to support both UlA-style personahaa and DNS-style global names at

187

once, however, which would would both reduce barriers to'®¥loption, since the change isn't
“just for personal hames” anymore, and provide the respensiss benefits of UIA's gossip-based
namespace synchronization model to the resolution of gludraes as well.

UIA currently provides no read access control for its naraesp, only write access control
via group ownership. Users may wish to hide certain names) a8 links to business partners,
from view of the general public, or limit visibility of devés at work to business colleagues while
allowing family members to see devices at home. One difffcultproviding read access control
in UIA's highly decentralized environment is that devicggpear to require read access to a group
merely in order to determine who owns it for access controppses, which may effectively limit
the usefulness of read access control. In order for Alic€gdPauthenticate a change record Bob
writes on his laptop to their shardehotoClub group, for example, Alice’'s PC (and any other
device that wishes to read this group) must be able to rea Belsonal group to verify that Bob’s
laptop is indeed an indirect owner allowed to writeRiootoClub

The UIA naming daemon currently assumes that groups ard antithange infrequently, so
that it is reasonable for devices always to gossip entiragg@nd store change records forever (or
until the device is replaced or the user’s account wipedg ddcthing-based remote name resolution
protocol described in Section 2.3.6, which the currentqiypte does not yet implement, should
complement the current prototype’s gossip mechanism logvalh devices to resolve names in
large or rarely accessed groups held on other devices witleplicating the entire group. Using
caching instead of replication for some groups comes at mstan availability, of course, since it
is no longer guaranteed that the required name recordsel/hilable if all the owners of a remote
group are unreachable.

The current design also may not yet adequately addressdataajrstate buildup of name records
over long periods of time. A potentially useful modificatitmthe current design would be for a
UIA device to keep a separate log for each group or seriesgartthge collect logs of groups the
device does not own and has not accessed recently. A statkpdiet mechanism might similarly
enable devices to garbage collect old change records fapgrhey own.

UIA currently assumes that groups are owned by one personf@w geople managing the
group by consensus: any group owner can modify the grouppwittestriction. Users may wish to
configure groups so that changes require approval from phaildiistinct owners, or to make some
owners more “trusted” than others. Treating a PC locked up dlata center as more trustworthy
than a laptop or cell phone could eliminate the risk of owhigrglisputes if the mobile device is
stolen, for example. The user would have to think ahead arfdrmpe more manual configuration,
however, and the consequences might be worse if the tru§tésl fompromised.

As pointed out in Section 2.3.3, UIAs current naming andomtion model can handle the
immediate re-keying of a device due to key compromise orrétga obsolescence, but to support
smooth, gradual key or algorithm retirement it may be ustfudllow a device to have multiple
EIDs at once during some “key transition period” after idnoing a new EID but before revoking
the old one. There may be other reasons as well to allow a@évibave multiple EIDs at once:

188

so that the device can maintain a collection of keys with armdity of cryptographic algorithms or
key strengths, for example, allowing the user to pick anritlgm or key strength appropriate to
the security requirements of a particular application encwnication session. The current naming
system would interpret the presence of two device name dea@ferring to different EIDs as a
name conflict, and thus would need to be modified to supporipfIEIDs per device. One way to
support this feature would be to allow the “target” field ofevite name record to contain BiD set
instead of just one EID. Another approach would be to reyappp's personal group management
algorithm at the “intra-device” level, so that a “personalige” is no longer an atomic entity but
is itself treated as a “group of keys,” and keys can be addedwoked according to mechanisms
analogous to those UIA currently uses to add or revoke devitthe user’s personal group.

As an alternative to the digital signature algorithm withiethUIA normally signs namespace
change records, we are experimenting with incorporatinpéd [145], a security framework based
on proof-carrying authentication [10], into the UIA perabnaming model. In Alpaca, instead of
a signature, a change record contains a structpredf that the record’s meaning (e.g., “resolve
namez to EID y") has been endorsed by the group owner. Proof-carryingeatittation enables
new types of proofs to be created and deployed without charthe verifier's code. We have used
this mechanism for example to create a UIA group whose racard certified by MIT’s central
X.509 certification authority (CA), so thatice.mit securely maps to the person the MIT CA
has endorsed adice@mit.edu even though UIA contains no explicit code to check X.509 cer-
tificates. Since UIA's goal is to provide a fully decentraliznetwork architecture, proof-carrying
authentication furthers that goal by enabling decenedlidevelopment of new infrastructure fea-
tures.

9.7.2 Routing

The routing schemes explored in this thesis indicate skaktesinative approaches to implementing
the routing layer of the architecture, none of them can beidened the last word in routing for UIA,
and determining the best routing protocol design and dpigdoit into a solid, widely deployable
implementation remains for future work. It is possible ttheg best routing layer design may result
from a combination of ideas from the routing schemes exdltiere: for example, leveraging the
naming layer’s social network for security and efficientyia the current social routing scheme,
but doing so in the context of a larger scalable distributedctured such as those explored in the
Identity Hash Routing and Compact Routing schemes.

Social Routing Improvements

Apart from major new algorithmic work on UIA's routing algims, The routing layer’s search al-
gorithm could be improved incrementally in many ways, susebyausing additional hints from the
naming layer to improve its performance. To locktetop.Charlie.Bob.Alice , for exam-
ple, it might first locate some device belongindob and ask that device to locdsptop.Charlie

189

Since the goal of this approach to routing was to providengplebut workableinitial solution to
the routing problem, however, we defer the exploration ghificant algorithmic improvements
to the subsequent sections on alternative approaches tadutAg, namely identity hash routing
(Section 3.3) and compact routing (Section 3.4). Also, thwad routing protocol does not yet but
should implement the NAT traversal optimizations desatilmeChapter 5.

Forwarding Protocol Limitations

The routing layer currently uses SSL over TCP for all UIA cectivity, including for tunneling the
UDP datagrams of legacy applications. Although the pr@@eouter implementation benefitted in
the short term from the maturity and portability of SSL, thewidside of using SSL over TCP is
that it unnecessarily serializes all upper-level protdcaffic into one stream, creating head-of-line
blocking problems in which one dropped packet delays dfi¢rdogically related or not) behind it
in the SSL stream. This serialization does not cause signifigroblems for many applications such
as HTTP [78] and SSH [174], but currently prevents the UlAptype from being usable for delay-
or jitter-sensitive applications such as audio/video eogficing. The best solution would be to use
the new structured stream transport described in ChapterU4lAls secure forwarding substrate
for the overlay routing layer, and not just as a transportqo@ to support applications. Another
alternative would be to use DTLS [202], an adaptation of SSLLfDP; or to use IPsec [131-133]
abovethe overlay routing layer.

When forwarding traffic across multiple UIA devices, theting layer currently encrypts and
authenticates traffic both hop-by-hop and end-to-end, hwisiinefficient but provides strong secu-
rity. We intend to make hop-by-hop protection optional ia thture.

Legacy Application Support

UIA's legacy application interface currently cannot pidwieach user of a multi-user machine with
a fully separate TCP/UDP port space for its own EID, becaheekernel’s protocol stack offers

no way to ensure that only a particular user’s applicatiars lwind a socket to the device-local IP
address representing that user’s EID. Thus, without enihaitiee kernel’s transport protocols, only
UlA-aware applications can make full use of personal EID$xing this issue requires changes to
kernel-level code and is thus less portable.

9.7.3 Transport

Some optional extensions to the SST wire protocol presentdhis thesis may be desirable for
certain purposes, which could be negotiated at channep dethe. A payload chunking similar

to SCTP’s could allow transmitters to bundle several sntedlasn-level segments into one packet
for more efficient use of the network, in media stream truglsnenarios for example. A payload
padding option as in IPsec’'s ESP could help protect agaiaffictanalysis. Some congestion con-
trol algorithms requiring cooperation between sender aogiver may similarly be negotiated at

190

channel setup time.

The field sizes in the SST header format defined allow a hostrtd ap to abou??? packets in
one round trip time, to create abait* new streams per round trip to send ab2tft bytes of data
immediately on a new stream before receiving the respan@eknowledgment, and to send about
230 bytes of data per round trip on an established stream (the sanTCP’s maximum window
size). While these limits should be ample enough for commwpgses, extremely high-bandwidth,
high-latency networks might benefit from a negotiable es¢ehheader format with wider fields to
support larger windows.

SST's stream hierarchy provides an obvious potential affinith hierarchical scheduling al-
gorithms such as Hierarchical Fair Queuing (HFQ) [112], rbtiehical Packet Fair Queuing (H-
PFQ) [28], and Lottery Scheduling [259], suggesting a senpbwerful, and flexible method of
ensuring fairness among an application’s concurrent comication activities. The naive approach
of matching the scheduling hierarchy exactly to the heaggistream structure may be inadequate,
however, because of the an activity that was started for eason might be continued for other
reasons. In a tabbed web browser that concurrently dowslsaderal web pages, for example, a
low-priority web page might commence downloading a ceritmiage that, as the web browser only
later discovers, a high-priority web page also needs. Ifitteege download stream’s scheduling
priority is based only on its original context as a child of flow-priority web page, but the high-
priority web page needs to the image in order to completa, ahelassic priority inversion scenario
results. Thus, a mechanism may be needed to allow schedwdimgxts to be dynamically “trans-
ferred” within the hierarchy, or better yet, to allow a streto be “multihomed” and given several
parent streams for scheduling purposes.

Finally, it is easy to envision SST's stream attachmentidenent, and migration functionality
being extended to support features such as streams thatecsistpacross long-term disconnec-
tion [225] or reboots of either endpoint, or streams whosipemts can migrate from one endpoint
to another, reminiscent of distributed capabilities [8,8¥5, 243].

9.7.4 Other Features

While UIA focused on naming, routing, and transport, theee rany other functional areas that
bear reconsideration in terms of the requirements of mogersonal devices, especially under the
additional challenging demands of UIA's philosophy of fidicentralization. Some important topics
that the current UIA design currently leaves untoucheduihe!

e How to replicate and synchronize not just namespace stdtaldm application-level data
across personal devices in a fully decentralized modelUilds.

e How to support the naming not only of devices and groups oersisbut alscserviceseffec-
tively, where a logical service might be distributed acresgeral devices in an application-
specific fashion.

191

e How best to allow new applications to interact with UIA forrposes of making security
decisions, such as supporting access control policieguslA names, and the potential
security risks of doing so.

Inevitably, UIA can be said to have barely scratched theasexf

192

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

ABI Research. Wi-Fi hotspots stay hot in 2008, July 2008.

Ittai Abraham et al. Compact name-independent routiriily winimum stretch. IPACM
Symposium on Parallelism in Algorithms and Architectu@BAA) June 2004.

Yehuda Afek, Eli Gafni, and Moty Ricklin. Upper and lowkounds for routing schemes in
dynamic networks. 180th Annual Symposium on Foundations of Computer Scier@€ &
pages 370-375, October 1989.

William Aiello et al. Just Fast Keying: Key Agreement InHostile Internet ACM Transac-
tions on Information and System Security (TISSE(®):1-32, May 2004.

S. Alexander and R. Droms. DHCP options and bootp vengensions, March 1997. RFC
2132.

M. Allman, V. Paxson, and W. Stevens. TCP congestionrabnfpril 1999. RFC 2581.

Mark Allman, Chris Hayes, Hans Kruse, and Shawn OstermanCP performance over
satellite links. In5th International Conference on Telecommunication Systhtarch 1997.

Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and€&. Noe. The Eden system:
A technical review.|IEEE Transactions on Software Engineerir®E-11(1):43-59, January
1985.

David G. Andersen et al. Resilient overlay networks18th ACM Symposium on Operating
Systems Principle®ctober 2001.

Andrew W. Appel and Edward W. Felten. Proof-carryinghemtication. In6th ACM Con-
ference on Computer and Communications Secuxtvember 1999.

Apple Computer, Inc. Bonjour.
http://developer.apple.com/networking/bonjour/.

Apple Computer, Inc. FileVault.
http://lwww.apple.com/macosx/features/filevault/.

Apple Computer, Inc. MobileMehttp://www.apple.com/mobileme/

R. Arends, R. Austein, M. Larson, D. Massey, and S. R&€S Security Introduction and
Requirements, March 2005. RFC 4033.

Marta Arias et al. Compact routing with name indepermgenin 15th ACM Symposium on
Parallelism in Algorithms and Architecturedune 2003.

193

[16] F. Audet, ed. and C. Jennings. Network address traoslé@NAT) behavioral requirements
for unicast UDP, January 2007. RFC 4787.

[17] Brikam S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. FArad. Improving the performance
of TCP over wireless networks. [bi7th International Conference on Distributed Computer
Systems (ICDCSMay 1997.

[18] Hari Balakrishnan et al. TCP behavior of a busy Inteseter. Analysis and improvements.
In IEEE INFOCOM March 1998.

[19] Hari Balakrishnan et al. Looking up data in P2P syster@@mmunications of the ACM
February 2003.

[20] Hari Balakrishnan, Karthik Lakshminarayanan, SyRi@nasamy, Scott Shenker, lon Stoica,
and Michael Walfish. A layered naming architecture for therimet. INACM SIGCOMM
September 2004.

[21] Hari Balakrishnan, Venkata N. Padmanabhan, Srinive&ashan, and Randy H. Katz. A
comparison of mechanisms for improving TCP performance wireless links IEEE Trans-
actions on Networkings(6), December 1997.

[22] Hari Balakrishnan, Hariharan S. Rahul, and SrinivaSashan. An integrated congestion
management architecture for Internet hostsAGM SIGCOMM September 1999.

[23] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, amehidy H. Katz. Improving TCP/IP
performance over wireless networks. lIst International Conference on Mobile Computing
and Networking (MOBICOMNovember 1995.

[24] Hari Balakrishnan, Scott Shenker, and Michael WalfisBemantic-Free Referencing in
Linked Distributed Systems. I2nd International Workshop on Peer-to-Peer Systems
(IPTPS) February 2003.

[25] Mihir Bellare and Chanathip Namprempre. Authentidagacryption: Relations among no-
tions and analysis of the generic composition paradigetture Notes in Computer Science
1976:531-545, September 2000.

[26] S. Bellovin. Defending against sequence number astadlay 1996. RFC 1948.

[27] Jon C. R. Bennett, Craig Partridge, and Nicholas ShawctnfPacket reordering is not patho-
logical network behaviorTransactions on Networking:789—798, December 1999.

[28] Jon C. R. Bennett and Hui Zhang. Hierarchical packetdaeueing algorithms. IACM
SIGCOMM pages 143-156, August 1996.

[29] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyperteansfer protocol — HTTP/1.0, May
1996. RFC 1945.

[30] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, daddrian Perrig. NATBLASTER:
Establishing TCP connections between hosts behind NATACIK SIGCOMM Asia Work-
shop April 2005.

[31] Andrew D. Birrell and Bruce Jay Nelson. Implementingwae procedure callSransactions
on Computer System®(1):39-59, February 1984.

194

[32] E. Blanton and M. Allman. On making TCP more robust toksaeordering. Computer
Communications Review82(1), January 2002.

[33] E. Blanton and M. Allman. Using TCP duplicate selectagknowledgement (DSACKS)
and stream control transmission protocol (SCTP) duplitaesmission sequence numbers
(TSNs) to detect spurious retransmissions, February 2R64€ 3708.

[34] Burton H. Bloom. Space/time trade-offs in hash codirithwllowable errorsCommunica-
tions of the ACM13(7):422-426, 1970.

[35] R. Braden. Towards a transport service for transagi@mtessing applications, September
1985. RFC 955.

[36] R. Braden. T/TCP — TCP extensions for transactiony, 1894. RFC 1644.
[37] Matthew Caesar et al. ROFL: Routing on flat labelsABM SIGCOMM September 2006.

[38] CAIDA. Macroscopic Topology AS Adjacencies.
http://www.caida.org/tools/measurement/ skitter/as _adjacencies.xml

[39] I. Castineyra, N. Chiappa, and M. Steenstrup. The Ndmonting architecture, August 1996.
RFC 1992.

[40] Miguel Castro et al. Secure routing for structured gleepeer overlay networks. |Bth
USENIX Symposium on Operating Systems Design and ImplatinentfOSDI) December
2002.

[41] Rory Cellan-Jones. Broadband - are you mobile or fixB8Z News dot.lifeAugust 2008.

[42] Yatin Chawathe et al. Making Gnutella-like P2P systesnalable. INnACM SIGCOMM
pages 407-418, August 2003.

[43] Benjie Chen and Robert Morris. L+: Scalable landmarutiray and address lookup for
multi-hop wireless networks. Technical Report 837, Makgaetts Institute of Technology
Laboratory for Computer Science, March 2002.

[44] C.Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-LAoaves. A loop-free Bellman-Ford
routing protocol without bouncing effect. BKCM SIGCOMM pages 224-237, September
1989.

[45] Jacqui Cheng. .confusion: ICANN opens up Pandora’'s @mew TLDs.ars technicaJune
2008.

[46] David R. Cheriton. VMTP: A transport protocol for thexteeneration of communication
systems.Computer Communications Reviel$(3):406—-415, August 1986.

[47] David R. Cheriton and Mark Gritter. TRIAD: A new nextiggration Internet architecture,
July 2000.

[48] Stuart Cheshire, Marc Krochmal, and Kiren Sekar. NAT poapping protocol, June 2005.
Internet-Draft (Work in Progress).

[49] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rin. Firewalls and Internet Secu-
rity. Addison-Wesley, February 2003.

195

[50] J. Noel Chiappa. Endpoints and endpoint names: A pegb@nhancement to the internet
architecture, 1999. Internet-Draft (Work in Progress).

[51] D. D. Clark and D. L. Tennenhouse. Architectural coesadions for a new generation of
protocols. INnACM SIGCOMM pages 200-208, 1990.

[52] David Clark, Robert Braden, Aaron Falk, and VenkatagBln FARA: Reorganizing the
addressing architecture. ACM SIGCOMM FDNA Workshgo@ugust 2003.

[53] David D. Clark. Window and acknowledgement strateg¥ @P, July 1982. RFC 813.

[54] David D. Clark. The design philosophy of the DARPA Intet protocols. IPACM SIG-
COMM, August 1988.

[55] Bram Cohen. Incentives build robustness in BitTorrelmt 1st Workshop on Economics of
Peer-to-Peer Systems (p2pecaiyne 2003.

[56] Lenore J. Cowen. Compact routing with minimum stretbin 10th Symposium on Discrete
Algorithms (SODA)pages 255-260, Philadelphia, PA, 1999. Society for Im@dustind Ap-
plied Mathematics.

[57] R. Cox, A. Muthitacharoen, and R. Morris. Serving DN$hwgsChord. Inlst International
Workshop on Peer-to-Peer Systemdlgarch 2002.

[58] M. Crispin. Internet message access protocol - verdrernl, March 2003. RFC 3501.

[59] Yogen K. Dalal. More on selecting sequence numb8i§SOPS Operating Systems Review
9(3):25-36, July 1975.

[60] G.Danezis, C. Lesniewski-Laas, F. Kaashoek, and Refgah. Sybil-resistant DHT routing.
In ESORICS2005.

[61] A. Datta, M. Hauswirth, and K. Aberer. Updates in higlilyreliable, replicated peer-to-peer
systems. 1r23rd International Conference on Distributed Computingt8gns 2003.

[62] S. Deering and R. Hinden. Internet protocol, versiohP&§) specification, December 1998.
RFC 2460.

[63] Alan Demers et al. Epidemic algorithms for replicatetathase maintenance. 6th ACM
Symposium on Principles of Distributed Computipgges 1-12, 1987.

[64] T. Dierks and C. Allen. The TLS protocol version 1.0, Jary 1999. RFC 2246.

[65] Steve Dohrmann and Carl Ellison. Public-key supportfdlaborative groups. st Annual
PKI Research Workshop\pril 2002.

[66] James E. (Jed) Donnelley. Managing domains in a netwpkrating system. Ihocal
Networks and Distributed Office Systems Conferepages 345-361, May 1981.

[67] John R. Douceur. The sybil attack. 1st International Workshop on Peer-to-Peer Systems
March 2002.

[68] R. Droms. Dynamic host configuration protocol, Marc®TI9RFC 2131.

196

[69] Morris Dworkin. Recommendation for block cipher mod#dsoperation, December 2001.
NIST Special Publication 800-38A.

[70] K. Egevang and P. Francis. The ip network address aors{NAT), May 1994. RFC 1631.
[71] C. Ellison et al. SPKI Certificate Theory, 1999. RFC 2693

[72] Jeffrey L. Eppinger. TCP connections for P2P apps: Avgarfe approach to solving the NAT
problem. Technical Report CMU-ISRI-05-104, Carnegie MelUniversity, January 2005.

[73] Jakob Eriksson, Michalis Faloutsos, and Srikanth kaamurthy. Peernet: Pushing peer-
to-peer down the stack. I2nd International Workshop on Peer-to-Peer Systerebruary
2003.

[74] European Telecommunications Standards Instituteer identification solutions in converg-
ing networks, April 2001.

[75] Theodore Faber, Joe Touch, and Wei Yue. TRAE-WAIT state in TCP and its effects on
busy servers. IHFEEE INFOCOM volume 3, pages 1573-1583, March 1999.

[76] facebook.http://www.facebook.com/
[77] C. Feather. Network news transfer protocol (NNTP),dbetr 2006. RFC 3977.
[78] R. Fielding et al. Hypertext transfer protocol — HTTR/1June 1999. RFC 2616.

[79] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An exdi®n to the selective acknowl-
edgement (SACK) option for TCP, July 2000. RFC 2883.

[80] Bryan Ford. Scalable Internet routing on topologydpdndent node identities. Technical
Report MIT-LCS-TR-926, MIT Laboratory for Computer Scien®©ctober 2003.

[81] Bryan Ford. Unmanaged Internet protocol: Taming thgeadetwork management crisis. In
2nd Workshop on Hot Topics in Networks (HotNetsMpvember 2003.

[82] Bryan Ford. Peer-to-peer (P2P) communication acretsark address translators (NATS),
June 2004. Internet-Draft (Work in Progress).

[83] Bryan Ford. Peer-to-peer communication across nétwaodress translators. MSENIX
Annual Technical Conferencépril 2005.

[84] Bryan Ford. Structured streams: a new transport atigtra In ACM SIGCOMM August
2007.

[85] Bryan Ford et al. Persistent personal names for glglzahnected mobile devices. lih
USENIX Symposium on Operating Systems Design and ImpletioenfOSDI) November
2006.

[86] Bryan Ford et al. User-Relative Names for Globally Cected Personal Devices. Bth
International Workshop on Peer-to-Peer Systems (IPTP&)ruary 2006.

[87] Bryan Ford and Janardhan lyengar. Breaking up the p@hdogjam. In7th Workshop on
Hot Topics in Networks (HotNets-V]ipctober 2008.

197

[88] Paul Francis and Ramakrishna Gummadi. IPNL: A NAT-egtd Internet architecture. In
ACM SIGCOMM August 2002.

[89] N. Freed. Behavior of and requirements for internewfaks, October 2000. RFC 2979.

[90] Michael J. Freedman et al. Non-transitive connegtiahd DHTs. INUSENIX WORLDS
2005 December 2005.

[91] friendster.http://www.friendster.com/

[92] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inad@main routing (CIDR): an address
assignment and aggregation strategy, September 1993. REC 1

[93] Cyril Gavoille and Marc Gengler. Space-efficiency fouting schemes of stretch factor
three.Journal of Parallel and Distributed Computing1(5):679-687, 2001.

[94] Mario Gerla, Xiaoyan Hong, and Guangyu Pei. Landmarkirg for large ad hoc wireless
networks. INEEE GLOBECOMNovember 2000.

[95] Jim Gettys. Simple MUX protocol specification, Octoldi®&96. W3C Working Draft.

[96] B. Gleeson et al. A Framework for IP Based Virtual Pravatetworks, February 2000. RFC
2764.

[97] Li Gong. JXTA: A network programming environmernEEE Internet Computings(3):88—
95, May 2001.

[98] C. Gray and D. Cheriton. Leases: an efficient fault+ae mechanism for distributed file
cache consistency. t2th SOSP1989.

[99] Saikat Guha and Paul Francis. Simple traversal of UDBuih NATs and TCP too
(STUNT). http://nutss.gforge.cis.cornell.edu/

[100] Saikat Guha and Paul Francis. Characterization arasarement of TCP traversal through
NATs and firewalls. Irinternet Measurement Conference (IMO)xtober 2005.

[101] Saikat Guha, Yutaka Takeday, and Paul Francis. NURSSP-based approach to UDP and
TCP network connectivity. I8IGCOMM 2004 Workshopsugust 2004.

[102] S. Guha, Ed., K. Biswas, B. Ford, S. Sivakumar, and Bugrsh. Nat behavioral require-
ments for tcp, April 2007. Internet-Draft (Work in Progriss

[103] V. Gurbani and S. Lawrence. Handling large user datagorotocol (UDP) responses in the
session initiation protocol (SIP), October 2006. InterDeaft (Work in Progress).

[104] R. G. Guy, G. J. Popek, and T. W. Page, Jr. Consistemmyitims for optimisic replication.
In First International Conference on Network Protocal®93.

[105] Richard Guy et al. Rumor: Mobile data access throudimogtic peer-to-peer replication.
In ER Workshopspages 254-265, 1998.

[106] Richard G. Guy et al. Implementation of the Ficus regiied file system. IDSENIX Summer
Conferencepages 63-71, June 1990.

198

[107] J. Hagino and K. Yamamoto. An IPv6-to-IPv4 transpetay translator, June 2001. RFC
3142.

[108] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TChitig rate control (TFRC): Protocol
specification, January 2003. RFC 3448.

[109] Chris Hare and Karanjit Siyamnternet Firewalls and Network Securitilew Riders, 1996.
[110] C. Hedrick. Routing information protocol, June 198&8-C 1058.
[111] R. Hinden and B. Haberman. Unique local IPv6 unicadtr@skes, October 2005. RFC 4193.

[112] David Hogan. Hierarchical fair queuing. Technicalp@e 506, University of Sydney, May
1996.

[113] M. Holdrege and P. Srisuresh. Protocol complicatiwith the IP network address translator,
January 2001. RFC 3027.

[114] M. Horowitz and S. Lunt. FTP security extensions, @et01997. RFC 2228.

[115] M. Horton and R. Adams. Standard for interchange of NEE messages, December 1987.
RFC 1036.

[116] R.Housley, W. Polk, W. Ford, and D. Solo. Internet X@%ublic key infrastructure certificate
and certificate revocation list (CRL) profile, April 2002. RB280.

[117] C. Huitema. Teredo: Tunneling IPv6 over UDP throughTldAMarch 2004. Internet-Draft
(Work in Progress).

[118] ICANN. Biggest expansion in gTLDs approved for implkemtation, June 200&ttp://
www.icann.org/en/announcements/announcement-4-26jun 08-en.htm

[119] Internet Engineering Task Force (IETF). Behaviorieagring for hindrance avoidance (be-
have). http://www.ietf.org/html.charters/behave-charter.ht mi.

[120] The Internet traffic archivehttp://ita.ee.Ibl.gov/
[121] Internet protocol, September 1981. RFC 791.

[122] Janardhan R. lyengar, Paul D. Amer, and Randall Stew@oncurrent multipath transfer
using SCTP multihoming over independent end-to-end pafrensactions on Networking
14(5):951-964, October 2006.

[123] V. Jacobson, R. Braden, and D. Borman. TCP extensamBigh performance, May 1992.
RFC 1323.

[124] C. Jennings. NAT classification results using STUNtdDer 2004. Internet-Draft (Work in
Progress).

[125] David B. Johnson. Routing in ad hoc networks of mobdsth. INNREEE Workshop on Mobile
Computing Systems and Applicatippages 158-163, December 1994.

[126] Margret Johnston. U.s. relaxes encryption exporicgoPC World January 2000.

199

[127] L. R. Ford Jr. and D. R. FulkersoRlows in NetworksPrinceton University Press, Princeton
N.J., 1962.

[128] D. N. Kalofonos, Z. Antoniou, F. D. Reynolds, M. Vand€k, J. Strauss, and P. Wisner.
MyNet: a platform for secure P2P personal and social netwgrkervices. In6th An-
nual IEEE Conference on Pervasive Computing and Commiinita{PerCom2008March
2008.

[129] B. Kantor. BSD Rlogin, September 1991. RFC 1258.

[130] Dan Kegel. NAT and peer-to-peer networking, July 1999
http://www.alumni.caltech.edu/"dank/peer-nat.html

[131] S. Kent. IP authentication header, December 2005. &¥02.
[132] S. Kent. IP encapsulating security payload (ESP) ebdeer 2005. RFC 4303.

[133] S. Kent and K. Seo. Security architecture for the mdé¢protocol, December 2005. RFC
4301.

[134] James J. Kistler and M. Satyanarayanan. Disconnegtedhtion in the Coda file system. In
13th ACM Symposium on Operating Systems Principles (S@&§9s 213225, 1991.

[135] Leonard Kleinrock and Farouk Kamoun. Hierarchicaltiog for large networks: Perfor-
mance evaluation and optimizatioGomputer Networksl(3):155-174, 1977.

[136] J. Klensin, ed. Simple mail transfer protocol, Apl(.. RFC 2821.

[137] E. Kohler, M. Handley, and S. Floyd. Datagram congestiontrol protocol (DCCP), March
2006. RFC 4340.

[138] Eddie Kohler, Mark Handley, and Sally Floyd. DesignIDCCP: Congestion control without
reliability. In ACM SIGCOMM 2006.

[139] Amos Korman and David Peleg. Dynamic routing schenmesgéneral graphs. 183rd
International Colloquium on Automata, Languages and Paogming (ICALP)July 2006.

[140] Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Compamuting on internet-like graphs.
In IEEE INFOCOM 2004.

[141] Dmitri Krioukov, kc claffy, Kevin Fall, and Arthur Brdy. On compact routing for the Inter-
net. SIGCOMM Computer Communications Revi8&(3):41-52, 2007.

[142] Venkat Kudallur et al. IE7 networking improvementscontent caching and decompression.
IEBlog, October 2005.

[143] L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, Ednd G. Fairhurst, Ed. The
lightweight user datagram protocol (UDP-Lite), July 2084C 3828.

[144] M. Leech et al. SOCKS protocol, March 1996. RFC 1928.

[145] Christopher Lesniewski-Laas, Bryan Ford, JacobussaM. Frans Kaashoek, and Robert
Morris. Alpaca: extensible authorization for distributservices. INACM Computer and
Communications SecuritDctober 2007.

200

[146] Jinyang Liand Frank Dabek. F2F: Reliable storage enapetworks. Ibth IPTPS February
2006.

[147] Jinyang Li, Jeremy Stribling, Robert Morris, and Mahks Kaashoek. Bandwidth-efcient
management of dht routing tables. 2Znd Symposium on Networked Systems Design and
Implementation (NSDI '05May 2005.

[148] Lun Li, David Alderson, Walter Willinger, and John Dley A first-principles approach to
understanding the Internets router-level topologyAGM SIGCOMM August 2004.

[149] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Skerand Steven Lim. A survey
and comparison of peer-to-peer overlay network scheti#s= Communications Surveys &
Tutorials, 7(2):72-93, 2005.

[150] Petros Maniatis and Mary Baker. A historic name-tsaitvice. In5th Workshop on Mobile
Computing Systems and Applicatip@ctober 2003.

[151] Petros Maniatis et al. The mobile people architectiiebile Computing and Communica-
tions Review3(3):36—42, July 1999.

[152] Duncan Martell. Atom sales help Intel expand beyondrR&ket. NewsFactor Network
August 2008.

[153] Sergio Marti, Prasanna Ganesan, and Hector Garcia®&IdHT routing using social links.
In 3rd International Workshop on Peer-to-Peer Systems (IBTP&hruary 2004.

[154] Sergio Marti, Prasanna Ganesan, and Hector Garcimdlo SPROUT: P2P routing with
social networks. IriLst International Workshop on Peer-to-Peer Computing amdabases
(P2P&DB), March 2004.

[155] M. Mathis, J. Mahdav, S. Floyd, and A. Romanow. TCP&ale acknowledgment options,
October 1996. RFC 2018.

[156] M. Mathis and J. Mahdavi. Forward acknowledgemenfiriReg TCP congestion control. In
ACM SIGCOMM August 1996.

[157] Petar Maymounkov and David Mazieres. Kademlia: Argeepeer information system
based on the XOR metric. Ibst International Workshop on Peer-to-Peer Systems (IR, TPS
March 2002.

[158] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. WiichSeparating key management
from file system security. 117th Symposium on Operating System Principl@scember
1999.

[159] P. M. Merlin and A. Segall. A failsafe distributed rind protocol. IEEE Transactions on
CommunicationsCOM-27(9):1280-1287, September 1979.

[160] D. Meyer, Ed., L. Zhang, Ed., and K. Fall, Ed. Repornfrthe iab workshop on routing and
addressing, September 2007. RFC 4984.

[161] Microsoft Corporation. Live Mesh tech previehttps://www.mesh.com/

[162] P. Mockapetris. Domain names: concepts and fad|ifMovember 1987. RFC 1034.

201

[163] P. Mockapetris. Domain names: implementation anaifipation, November 1987. RFC
1035.

[164] R.Moskowitz and P. Nikander. Host identity protocattatecture, April 2003. Internet-Draft
(Work in Progress).

[165] R. Moskowitz and P. Nikander. Host identity protocHIIR) architecture, May 2006. RFC
4423.

[166] J. Moy. OSPF version 2, July 1991. RFC 1247.

[167] Mozilla.org. Firefox tips & tricks: Pipelining.
http://www.mozilla.org/support/firefox/tips#athipelining.

[168] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficieating protocol for wireless net-
works. Mobile Networks and Application4(2):183-197, 1996.

[169] A.Muthitacharoen, R. Morris, T. Gil, and B. Chen. \Myread/write peer-to-peer file system.
In 5th USENIX Symposium on Operating Systems Design and lapiation 2002.

[170] J. Myers and M. Rose. Post office protocol - version 3y1896. RFC 1939.
[171] NAT check.http://midcom-p2p.sourceforge.net/
[172] D. Newman. Benchmarking terminology for firewall parhance, August 1999. RFC 2647.

[173] H. F. Nielsen et al. Network performance effects of HPTT.1, CSS1, and PNG, June 1997.
W3C NOTE-pipelining-970624.

[174] The OpenSSH projechttp://www.openssh.org

[175] The OpenSSL projechttp://www.openssl.org/

[176] orkut. http://www.orkut.com/

[177] J. Palme. Common internet message headers, Febr@@ry RFC 2076.

[178] J.M. Paluska et al. Footloose: A case for physical marconsistency and selective conflict
resolution. In5th Workshop on Mobile Computing Systems and Applicat2o@3.

[179] C. Partridge and R. Hinden. Version 2 of the reliableagaotocol (RDP), April 1990. RFC
1151.

[180] Craig Partridge. Implementing the reliable data gecot (RDP). INnUSENIX Summer Con-
ference June 1987.

[181] Craig Partridge and Timothy J. Shepard. TCP/IP parérce over satellite linkslIEEE
Network 11(5):44-49, September 1997.

[182] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen. Fishegsbuting: A routing scheme for
ad hoc wireless networks. IREEE International Conference on Communications (ICC)
pages 70-74, June 2000.

[183] Charles E. Perkins and Elizabeth M. Belding-Royer. Wat on-demand distance vector
routing. In2nd IEEE Workshop on Mobile Computing Systems and Applitgipages 90—
100, February 1999.

202

[184] Charles E. Perkins and Pravin Bhagwat. Highly dynad@stination-sequenced distance-
vector routing (DSDV) for mobile computers. ACM SIGCOMM’'94 Conference on Com-
munications Architectures, Protocols and Applicatiopages 234—244, 1994.

[185] C. Perkins, Editor. IP mobility support for IPv4, Auglr002. RFC 3344.

[186] B. Popescu, B. Crispo, and A. Tanenbaum. Safe andtprilata sharing with Turtle: Friends
Team-Up and Beat the System. 18th Cambridge Workshop on Security Protoc@804.

[187] J. Postel. User datagram protocol, August 1980. RREC 76
[188] J. Postel and J. Reynolds. Telnet protocol specifinatilay 1983. RFC 854.
[189] J. Postel and J. Reynolds. File transfer protocol (f-ORtober 1985. RFC 959.

[190] J.A. Pouwelse et al. Tribler: A social-based peepéer system. 1Bth International Work-
shop on Peer-to-Peer Systems (IPT,H=bruary 2006.

[191] The Python programming language. http://www.pytoogy.

[192] Bhaskaran Raman, Randy H. Katz, and Anthony D. Josdphiversal Inbox: Providing
extensible personal mobility and service mobility in aregrated communication network.
In 3rd IEEE Workshop on Mobile Computing Systems and AppdicgtDecember 2000.

[193] R. Ramanathan. Mobility support for Nimrod: Challesgnd solution approaches, February
1997. RFC 2103.

[194] Venugopalan Ramasubramanian and Emin Gun Sirer.d€kign and implementation of a
next generation name service for the InternetAGM SIGCOMM August 2004.

[195] Richard F. Rashid and George G. Robertson. Accent: PAngonication oriented network
operating system kernel. Bth ACM Symposium on Operating Systems Principles (SOSP)
December 1981.

[196] Sylvia Ratnasamy, Paul Francis, Mark Handley, Ridh&arp, and Scott Shenker. A scalable
content-addressable network. ACM SIGCOMM August 2001.

[197] Jim Reavis. Trends in government encryption polichéstworkWorldFusionAugust 1999.
[198] Y. Rekhter et al. Address allocation for private imets, February 1996. RFC 1918.

[199] Y. Rekhter and T. Li. Implications of various addre#is@ation policies for internet routing,
October 1996. RFC 2008.

[200] Y. Rekhter, T. Li, and S. Hares (editors). A border gate protocol 4 (BGP-4), January
2006. RFC 4271.

[201] Y. Rekhter and T. Li (editors). An architecture for I&daess allocation with CIDR, Septem-
ber 1993. RFC 1518.

[202] E. Rescorla and N. Modadugu. Datagram transport Isgeuarity, April 2006. RFC 4347.
[203] P. Resnick, ed. Internet message format, April 200BCR822.

[204] Matt Richtel. Smaller PCs cause worry for industryly 2008.

203

[205] R.L. Rivest and B. Lampson. SDSI: A simple distribusegturity infrastructure, April 1996.
http://theory.lcs.mit.edu/"cis/sdsi.html.

[206] M. Rose. The blocks extensible exchange protocol,ddexch 2001. RFC 3080.

[207] J. Rosenberg. Interactive connectivity establishim(@CE), October 2007. Internet-Draft
(Work in Progress).

[208] J. Rosenberg et al. SIP: session initiation protodwhe 2002. RFC 3261.

[209] J. Rosenberg et al. STUN - simple traversal of User @rata Protocol (UDP) through
network address translators (NATs), March 2003. RFC 3489.

[210] J. Rosenberg, C. Huitema, and R. Mahy. Traversal usilay NAT (TURN), October 2003.
Internet-Draft (Work in Progress).

[211] A. Rowstron and P. Druschel. Pastry: Scalable, dhsted object location and routing for
large-scale peer-to-peer systems.lriternational Conference on Distributed Systems Plat-
forms (Middleware)2001.

[212] J. Saltzer. On the naming and binding of network dasitims, August 1993. RFC 1498.

[213] Nicola Santoro and Ramez Khatib. Labelling and impliouting in networks. Computer
Journal 28(1):5-8, 1985.

[214] J. Satran, K. Meth, C. Sapuntzakis, M. ChadalapakéFaZeidner. Internet small computer
systems interface (iSCSI), April 2004. RFC 3720.

[215] Michael Scharf and Sebastian Kiesel. Head-of-lireeking in TCP and SCTP: Analysis and
measurements. IEEE GLOBECOMNovember 2006.

[216] H. Schulzrinne et al. RTP: A transport protocol forlrgae applications, July 2003. RFC
3550.

[217] H. Schulzrinne, A. Rao, and R. Lanphier. Real timeastring protocol (RTSP), April 1998.
RFC 2326.

[218] SecuritylnfoWatch.com. Top computer security rifishealthcare. March 2008.

[219] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, €amle, M. Eisler, and D. Noveck.
Network file system (NFS) version 4 protocol, April 2003. RB&30.

[220] Site multihoming by IPv6 intermediation (shim6). ttwww.ietf.org/html.charters/shim6-
charter.html.

[221] John F. Shoch. Inter-network naming, addressing,ranting. InI[EEE COMPCON Fall
pages 72-79, 1978.

[222] Emil Sit and Robert Morris. Security considerations fpeer-to-peer distributed hash tables.
In 1st International Workshop on Peer-to-Peer Systems (IR, & ch 2002.

[223] Richard L. Sites. Alpha AXP architecturBigital Technical Journgl4(4), 1992.

[224] Alex C. Snoeren and Hari Balakrishnan. An end-to-eppreach to host mobility. I6th
ACM/IEEE International Conference on Mobile Computing &tetworking August 2000.

204

[225] Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaakh Reconsidering Internet mobil-
ity. In 8th Workshop on Hot Topics in Operating Systeiay 2001.

[226] M. Spencer et al. 1AX2: Inter-Asterisk eXchange versR, October 2006. Internet-Draft
(Work in Progress).

[227] R. Srinivasan. RPC: remote procedure call protocetsjcation version 2, August 1995.
RFC 1831.

[228] P. Srisuresh and K. Egevang. Traditional IP networttrasls translator (Traditional NAT),
January 2001. RFC 3022.

[229] P. Srisuresh, B. Ford, and D. Kegel. State of peerergP2P) communication across net-
work address translators (NATs), March 2008. RFC 5128.

[230] P. Srisuresh and M. Holdrege. IP network address latorgNAT) terminology and consid-
erations, August 1999. RFC 2663.

[231] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, Aandayhan. Middlebox communication
architecture and framework, August 2002. RFC 3303.

[232] Mudhakar Srivatsa and Ling Liu. Vulnerabilities anecarity threats in structured peer-
to-peer systems: A quantitative analysis. 20th Annual Computer Security Applications
Conference (ACSACDecember 2004.

[233] Frank Stajano and Ross Anderson. The resurrectinglidgc Security issues for ad-hoc
wireless networks. Iiith International Workshop on Security Protogoigril 1999.

[234] R. Stewart et al. Stream control transmission prdid@otober 2000. RFC 2960.
[235] R. Stewart, ed. Stream control transmission protdseptember 2007. RFC 4960.

[236] lon Stoica et al. Chord: A scalable peer-to-peer Igogervice for Internet applications. In
ACM SIGCOMM August 2001.

[237] lon Stoica et al. Internet indirection infrastruguin ACM SIGCOMM August 2002.

[238] Brad Stone. What's in a domain name? serious mdn&stnational Herald TribungJanuary
2008.

[239] Bjarne Stroustrup.The C++ Programming LanguageAddison-Wesley, 3rd edition, June
1997.

[240] Lakshminarayanan Subramanian et al. OverQoS: Anayéased architecture for enhanc-
ing Internet QoS. Irlst USENIX/ACM Symposium on Networked Systems Design and Im
plementation (NSDI '04)March 2004.

[241] Carl A. Sunshine and Yogen K. Dalal. Connection managd in transport protocol€om-
puter Networks2(6):454—-473, December 1978.

[242] E. Swierk, E. Kiciman, V. Laviano, and M. Baker. The Ropersonal metadata service. In
3rd IEEE Workshop on Mobile Computing Systems and ApptiegtDecember 2000.

205

[243] Andrew S. Tanenbaum, Sape J. Mullender, and RobberRenesse. Using sparse capa-
bilities in a distributed operating system. @th International Conference on Distributed
Computing Systems (ICDCG3)Jay 1986.

[244] Transmission control protocol, September 1981. RB& 7

[245] Douglas B. Terry et al. Managing update conflicts in @aya weakly connected replicated
storage system. I1h5th ACM Symposium on Operating System Princjdl695.

[246] The DIMES projecthttp://www.netdimes.org/

[247] Mikkel Thorup and Uri Zwick. Compact routing schemés.ACM Symposium on Parallel
Algorithms and Architectures (SPAAJ)ages 1-10, New York, NY, USA, 2001. ACM Press.

[248] Raymond S. Tomlinson. Selecting sequence numti&IiSOPS Operating Systems Review
9(3):11-23, July 1975.

[249] J. Touch. TCP control block interdependence, AprdA.9RFC 2140.
[250] Trolltech. Qt cross-platform application framewotktp://trolltech.com/products/qt/.

[251] G. Tsirtsis and P. Srisuresh. Network address trénsla protocol translation (NAT-PT),
February 2000. RFC 2766.

[252] Paul F. Tsuchiya and Tony Eng. Extending the IP intetiim@ugh address reus€omputer
Communications RevieW®3(1):16—-33, January 1993.

[253] Paul Francis Tsuchiya. The Landmark hierarchy: A névdnchy for routing in very large
networks. INACM SIGCOMM pages 35—-42, August 1988.

[254] Justin Uberti. E-mail on IETF MIDCOM mailing list, Fallary 2004. Message-ID:
<402CEB11.1060906 @aol.com>

[255] UPnP Forum. Internet gateway device (IGD) standautitevice control protocol, November
2001. http://mwww.upnp.org/.

[256] Robert Vamosi. Security watch : Don't get burned bys#s and hackers. September 2006.
[257] David Velten, Robert Hinden, and Jack Sax. Reliabta gaotocol, July 1984. RFC 908.

[258] P. Vixie, Editor, S. Thomson, Y. Rekhter, and J. Bourldlynamic updates in the domain
name system, April 1997. RFC 2136.

[259] Carl A. Waldspurger and William E. Weihl. Lottery schaing: Flexible proportional-share
resource management. 1st USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI)November 1994.

[260] Michael Walfish, Hari Balakrishnan, and Scott Shenk&ntangling the web from DNS.
In 1st USENIX/ACM Symposium on Networked Systems Design atehientation (NSDI
'04), March 2004.

[261] Michael Walfish, Jeremy Stribling, Maxwell Krohn, H&alakrishnan, Robert Morris, and
Scott Shenker. Middleboxes no longer considered harmfuUSENIX Symposium on Op-
erating Systems Design and Implementatidacember 2004.

206

[262] Mark Weiser. The computer for the 21st centuobile Computing and Communications
Review 3(3), July 1999.

[263] D.Wing and T. Eckert. IP multicast requirements foletwork address translator (NAT) and
a network address port translator (NAPT), February 2008 BE35.

[264] Ye Xia and David Tse. Analysis on packet resequencingdliable network protocols. In
IEEE INFOCOM April 2003.

[265] Raj Yavatkar and Namrata Bhagawat. Improving endsid-performance of TCP over mobile
internetworks. InWorkshop on Mobile Computing Systems and Applicatirecember
1994,

[266] T. Ylonen and C. Lonvick, Ed. The secure shell protomahitecture, January 2006. RFC
4251.

[267] T. Ylonen and C. Lonvick, Ed. The secure shell (SSHhaatication protocol, January 2006.
RFC 4252.

[268] T. Ylonen and C. Lonvick, Ed. The secure shell (SSH)rmmmtion protocol, January 2006.
RFC 4254.

[269] T. Ylonen and C. Lonvick, Ed. The secure shell (sshgpert layer protocol, January 2006.
RFC 4253.

[270] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, akeéng Xiao. SybilLimit: A near-
optimal social network defense against sybil attacksIEBE Symposium on Security and
Privacy, May 2008.

[271] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, a#draham Flaxman. SybilGuard:
Defending against sybil attacks via social networksAGM SIGCOMM September 2006.

[272] Hui Zhang and Srinivasan Keshav. Comparison of ratsed service disciplines. KWCM
SIGCOMM pages 113-121, 1991.

[273] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. RiAedhony D. Joseph, and John D.
Kubiatowicz. Tapestry: A resilient global-scale overlay $ervice deploymentEEE Jour-
nal on Selected Areas in Communicatip®2(1):41-53, January 2004.

207

