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Abstract

Electronic transmission of protected health information has become pervasive in research,
clinical, and public health investigations, posing substantial risk to patient privacy. From
clinical genetic screenings to publication of data in research studies, these activities have
the potential to disclose identity, medical conditions, and hereditary data. To enable an
era of personalized medicine, many research studies are attempting to correlate individual
clinical outcomes with genomic data, leading to thousands of new investigations. Critical
to the success of many of these studies is research participation by individuals who are
willing to share their genotypic and clinical data with investigators, necessitating methods

and policies that preserve privacy with such disclosures.

We explore quantitative models that allow research participants, patients and investigators
to fully understand these complex privacy risks when disclosing medical data. This
modeling will improve the informed consent and risk assessment process, for both
demographic and medical data, each with distinct domain-specific scenarios. We first
discuss the disclosure risk for genomic data, investigating both the risk of re-identification
for SNPs and mutations, as well as the disclosure impact on family members. Next, the de-
identification and anonymization of geospatial datasets containing information about
patient home addresses will be examined, using mathematical skewing algorithms as well
as a linear programming approach. Finally, we consider the re-identification potential of
geospatial data, commonly shared in both textual form and in printed maps in journals
and public health practice. We also explore methods to quantify the anonymity afforded

when using these anonymization techniques.
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Quiquid latine dictum sit altum viditur.

Whatever is said in Latin seems profound.

Chapter I: Introduction & Background

Introduction

Modern healthcare systems rely on transmission of protected health information for
clinical, research, and public health purposes. This communication poses
substantial risk to patient privacy, with the potential to disclose identity, medical
conditions, and hereditary data. This cost in patient privacy must be carefully
weighed and considered against the societal benefit for advancing the state of
science and protecting public health. Additionally, allowing patients and
practitioners to fully understand these risks when disclosing medical data will
enable genuine informed consent in the era of personalized medicine. We also
explore de-identification strategies — the removal of data that would help identify
individuals from corresponding data set records — as well as re-identification
techniques — the process of attempting to identify a specific individual or a set of

individuals from de-identified data.

We explore disclosure risks of both demographic and medical data, each with
distinct domain-specific approaches. We begin with genomic medical data, and
investigate risk to patients and their relatives, both in the context of identifiability
and disease status. We then change focus to spatial data, such as addresses,

commonly included in demographic and clinical data sets, and investigate the
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ability to de-identify geographically encoded addresses in a manner that still

maintains their usefulness in cluster detection. We also explore methods to quantify
the anonymity afforded when using these anonymization techniques. We conclude
with a discussion of reverse-identification techniques, including vulnerabilities that

emerge when employing specific types of de-identification strategies.

While these specific approaches are tailored to different classes of clinical data,
many share methodology and implications across those fields, particularly with

respect to novel quantitative metrics for privacy and identifiability.

Genomic data have the potential to reveal a great deal about patients, ranging from
phenotypic or disease propensity information, to paternity or lineage. Given the
information content derived from familial records, we quantitatively model such
data to help with the communication of privacy risks for relevant use cases. We
hope this will encourage improved presentation of risk to patients in an
informative, readable set of views and pedigree charts. There are also a number of
legal and policy aspects to consider, including communication of otherwise
confidential, but implicit data, and the sharing of derived familial medical data

without direct consent.

Clinical data that are regularly recorded and stored in hospital data systems
includes information from each part of the medical and payment process: patient
identifiable demographics, insurance data (potentially with implicit or explicit
employer information), laboratory results, physician and practitioner notes, and
potential patient annotations. Each of these data types must be handled carefully,
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as the data contained in any piece of these may have the ability to assist in

individually linking a record to a specific patient.

Ethical, Legal, and Social Implications (ELSI) of Personalized Medicine
The human genome project was initiated to explore and extract the shared
genotypic sequence and basis for developing human characteristics and heritable
health status [1]. Knowledge of the human genome sequence has led to the
development of thousands of research studies and new fields of research, including
functional genomics, epigenetics, and proteomics, among others. These range from
those that attempt to discern the distribution of alleles throughout the world’s
populations in a variety of geographies [2, 3], to those that seek to identify the
genomic location and function of genes that cause disease or disease propensity [4-
6]. On top of these studies, there is a rich study of systems biology which integrates
both genetic and protein networks whose complex interactions are difficult to
model, but may be an effective way to study complex sets of genetic variants [7].
Most of this research ultimately seeks to help identify and cure disease in individual

patients, a truly complex task called personalized medicine.

Personalized medicine is destined to improve treatment efficacy and outcomes for
patients: if the most effective treatment possible for a specific patient can be
selected and less effective or hazardous treatments can be left out [8], an
individualized regimen has enormous potential [9-11]. Technology is evolving to
enable personalized medicine to become a reality, including the evolution of

research promoting inexpensive genotyping technology [12, 13] and companies
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[14] offering inexpensive genotyping to the public. To make this information
tractable and useful to patients, there are myriad companies offering informative
personalized medical data about those genetic variants that have been observed
[14-16] and even for full genome sequences [16]. There are also research projects
aimed at making genomic data freely available on the web for exploration and

research, including the Personal Genome Project [17, 18].

There are a number of contentious items in the personalized genetics and
personalized medicine docket, including several ethical, social and legal
ramifications that should be considered. Among those are the questions of whether
personalized genomic medicine will fundamentally translate into a form of
prophylactic medicine, where primary and secondary prevention will take the form

of genetic screening, birth control measures, and pregnancy termination [19].

Prevention in human genetics does have an unpleasant history, including eugenics
and sterilization. These items have been replaced with more sound preventive
strategies, including routine newborn screening and community screening for at-
risk carrier populations [20-22]. There is certainly a social and ethical risk of
extension in this domain as available data linking a merely displeasing or
disadvantageous characteristic to a genotype becomes available. Conversely,
enhancement measures that use genomic data (vis-a-vis gene therapies) are equally
hazardous when not treating a disease or disorder [23, 24]. Additionally, as the
study of aging and gerontology take root in the age of personalized medicine, many

ethical dilemmas will surely be raised; preventing Alzheimer’s symptoms and
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providing more youthful, healthy life while aging is certainly desirably, but where

will the bar be placed for termination of treatment [25]¢

Perhaps the most important social implication to the public is the threat associated
with sharing genetic data that might reveal personal or familial propensity to
disease. The Genetic Information Non-Discrimination Act, recently passed (GINA,
H.R. 493), will help protect individuals and their family members from financial
consequences or forcible genetic testing by employers or health insurers [26]. This
should allow the expansion of individual genetic testing and public screening
efforts, but it does not solve all of the social issues associated with genetic testing.
There are still many other places where discrimination may legally occur if a
patient has a disease genotype, including the use of genetic testing in setting life,
disability, and long-term care insurance premiums [27]. Familial genotypic
sequences can be used to assist in forensic or criminal investigations for indirect
identification of genotype, increasing the number of people who may be identified
[28, 29]. Similarly, Freedom of Information Act (FOIA) [30] requests related to
federally-funded genome wide association studies could potentially be used to
identify research participants and their family members. Clinically, choosing the
detail and type of disease propensity information that must be disclosed to patients

and their potentially affected family members is also under debate [31, 32].

The current predictive power of genetic testing for approximately 1,500
monogenetic diseases is robust [33]. However, for much more common, polygenic

disorders, the ability to predict disease propensity continues to be poorer from
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genetic testing than from family history [34]. This raises ethical and social
concerns; should the public receive broad-based genetic screening until it has
proven clinical value? Without appropriate diagnostic value, testing may provide
false alarms and false hope, and also prove costly in unnecessary clinical follow-
up. One specific example is the recent change made to clinical guidelines for
prostate cancer screening, specifying that patients above age 75 receive more harm

than benefit from such screenings [35-37].

Further, research in genetics — particularly for complex diseases — has generated a
large number of irreproducible studies, creating a large set of incidental and
dubious findings, coined the incidentalome [38-40]. There is no ‘clearinghouse’
that designates a SNP association with disease as clinically valid, and in this
‘bleeding edge’ research arena, there is a bias for journals to approve new positive
associations between genetics and disease without substantial reproducibility [41-
43]. Because of this, personalized medicine in the electronic medical record age
may be filled with a lot of ‘noise’ for patients, as findings of dubious, not
reproduced studies are rapidly disseminated to their electronic records with no

proven clinical benefit.

Personalized Medicine and Personally Controlled Health Records

With all of its potential risks, the field of personalized medicine continues to grow,
promising to have a significant impact on medical care. Legislation on the federal
docket was recently considered (S.986 Genomics and Personalized Medicine Act

of 2007) to broadly expand the funding for research targeted at research studies
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that will have future impact on individualized medical treatments. Because of this
broad growth, studies have gathered large groups of participants interested in
sharing their genomic data with researchers, including participants from the

Framingham Heart Study and the Women's Health Initiative [4, 5, 7, 44-46].

[n addition to these large-scale studies, enabling researchers to get a wide variety of
linked clinical and genomic data sets from altruistic volunteers from the public who
would share a subset of, or their entire genomes has enormous potential to advance
science. One way to potentially reach these volunteers would be through

electronic medical records, specifically patient controlled medical records (PCHRs)
[47-51]. PCHRs differ from conventional electronic medical records (EMRs) [52] in
several important ways: 1) PCHRs give patients complete control over what
components of their medical records and data are shared with which clinicians 2)
PCHRs have the ability to span many points of care, from disparate institutions, and
3) PCHRs may be patient owned (in some models), and if so, patients should be
more comfortable with private medical and genomic data storage in those records.
A recent article describes the mutual benefits such broad public participation could
have for both patients and researchers in a controlled fashion [53]. The authors
describe a Genetic Partnership Project (GPP) which would allow patients to share
(likely through a PCHR interface) their genetic data with researchers, and then also

allow patients to ‘tune in’ to updates on that research in an anonymous fashion.

Separately, there is interest in tapping the potentially enormous expanse of medical

data that may be stored in corporate medical record storage systems, including
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Google Health and Microsoft HealthVault. These systems plan to provide patients
with the ability to gather and store their healthcare data from a variety of
participating healthcare institutions [54]. Once these systems have a large set of
consumers, they may potentially be in control of the largest available set of
standardized electronic medical information. This information could similarly be
used to create and consent research cohorts and there is much to be determined
about how that process would work and whether it is ethical and would meet the

high standards that are required for medical researchers [55].

Human Variation Data Sources and Information Content

Single Nucleotide Polymorphisms (SNPs) differ between members of a species (or
between paired chromosomes in an individual). SNPs comprise up to 90% of all
human variation [56], and individual SNP genotypes and geographical population
frequencies of SNPs are becoming increasingly available in research repositories
(Figure 1 and Figure 2). SNPs have the potential to help identify how genotypic

diversity relates to phenotypic diversity, diseases, and outcomes.
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Figure 1: The proportion of SNPs by minor allele frequency, binned by 0.05 in frequency for the four
HapMap populations (CHB + JPT were combined). The solid line represents the actual distribution from
ENCODE SNPs and the dashed line describes the Minor Allele Frequency distribution expected for the
standard neutral population genetics with random mating and fixed population size. [From A haplotype

map of the human genome. Nature 437, 1299-1320]
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Figure 2: The proportion of inter-SNP distances in areas covered by the HapMap project, binned by
inter-SNP distance (kb), for all SNPs with Minor Allele Frequency < 0.05. [From A haplotype map of the

human genome. Nature 437, 1299-1320]
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SNP loci thatare in linkage disequilibrium with one another can be grouped
together to form haplotype blocks; groups of SNPs that have a population
frequency of matching greater than would ordinarily be expected based on their
distance from one another [57]. Linkage disequilibrium makes SNPs statistically
dependent, and alters the information content when a set of SNPs are shared or
published. SNP genotypes provide a variable amount of information which
depends on the population frequencies at the loci in question and on the mutual

linkage disequilibrium values between each SNP included in a data set.

The HapMap project has compiled sequencing and population frequency
information that can be used to provide the most current and informative risk
estimates for health data disclosure. The project, organized by the Harvard-MIT
Broad Institute has compiled gene frequency values for a large selection of SNPs —
loci in the genome that account for a great deal of genetic variability in populations
[3]. The HapMap project also provides linkage disequilibrium data for several
populations. Linkage disequilibrium is a covariance metric for each set of
statistically dependent SNPs in the genome; the HapMap project has measured
how likely it is that two SNP values would co-segregate together in a given
population.

Biomedical data collection includes a wide variety of structured and unstructured
values and measurements, including clinical phenotypes, DNA sequencing,

demographics, family history, gene expression profiles, copy number variants, and
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proteomics data. It is very likely that there will be a wide variety of polymorphisms

or variants that are associated with diseases.

With the breadth of genomic data types, as well as the data structures and
identifiers that represent them, we have focused our efforts on creating models and
metrics that utilize a limited set of the most informative genomic data for decision
support. Because SNPs are both clinically informative and will be used for much
future research, we have elected to focus our analysis efforts on population-specific

SNP values at sequenced loci and familial relationships.

Research data that associate SNP alleles to health status and disease propensity is
increasingly available, while comparable data for many other polymorphisms --
that are certainly relevant -- such as copy number variants, is not yet broadly
available. Future projects will need to explore new genomic data sources that are
available for populations and research cohorts and extend these techniques to

them.

Measuring Risk of Identity Linkage using Genomic Data

When patients share their data with medical researchers, they expect that their
identities and protected health information will be secured. There is a balance,
however, between the need to protect patient identities and the imperative to
publish supporting research data and to make available expensive genotyping
assays from large publicly-funded studies with any researchers who might extract

value from them.
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Researchers who have attempted to de-identify protected health data have
historically not been successful, as research subjects can often be re-identified
uniquely or within a small group of individuals [58]. The use of a variety of
publicly available de-identified data sources has aided in these re-identification
efforts; many times these data sets can be joined together to link records and enrich
the available information about each individual. Malin and Sweeney used a
publicly available hospital discharge data set and combined it with voter records
and census data to statistically link individuals within those data sources using zip
codes, age, and gender. They were able to uniquely identify patients with rare
genetic diseases including a third of all cycstic fibrosis patients, half of all patients
with Huntington’s disease, and even higher numbers of patients with more rare
genetic disorders, that were admitted to hospitals in Illinois between 1990 and

1997.

These findings demonstrate that it is possible to directly link publicly available data
sets down to clinical phenotypes and even individual-level DNA lesions. This
certainly would bring alarm to some of the patients who had not even personally
consented to the release of their healthcare data at Illinois hospitals. Given the
complexity of genomic data, it may not be possible to provide an acceptable level
of confidentiality or privacy in this form of medical research while publishing this
data [59]. And to define what ‘acceptable’ means to patients adds additional
complexity, as genomic data and the potential damage its disclosure might cause

are not well understood [60-64].
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Transfer or publication of genomic data poses unique privacy dangers. Irrevocable
and unchanging as a fingerprint, any disclosure of patient genomic data poses a
life-long risk for patients and their relatives; traditional data security mechanisms to
cancel availability and access to previously disclosed genetic data are severely
limited. Unlike fingerprints, however, which provide little direct information about
patients when not linked with names, genomic test results contain information that
encodes phenotypes, characteristics, and disease propensities. Hence, it will be
increasingly possible to directly link sequence data with phenotypic data and

inherently carry health care risk information [58].

Zhen Lin and Russ Altman [59] demonstrated that privacy decreases sharply with
disclosure of a small number of SNP genotypes. In fact, with just 35-70
independent SNP genotypes, it is possible to uniquely identify any individual.
Because DNA is so identifying, the authors contend that the ability to conduct
meaningful medical research using genomic data will necessarily reduce the
privacy afforded patients. They also characterize the sharp decline in privacy at a
range of SNPs (which depends on the minor allele frequencies of those SNPs) at
which an individual becomes uniquely identifiable, and demonstrate that this is
well below the number of SNP genotypes that would likely be shared with

researchers (Figure 3).
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Figure 3: Lin and Altman, et al describe the trade-off between privacy level and number of SNP
genotypes disclosed to researchers or clinicians. [From Genetics. Genomic research and human subject
privacy. Science 2004, 305:183. (Revised Edition)]

The study explored the probability that two randomly-selected, unrelated
individuals match on a group of M'SNPs that are statistically independent (not in
linkage disequilibrium). The probability of two individuals matching at a single
SNP is the sum of the probabilities of two homozygote major individuals matching,
two heterozygote individuals matching, and two homozygote minor individuals
matching in the population: p(AAF + p(Aay + p(aay. For a set of M’ independent
SNP matches (where we have a priori selected SNPs with population frequency of
10%), the probability of match, y; < 0.689, ((0.9°) + (2*0.1*0.9)* + (0.1°)"), the

probability of this set of matches happening by chance is:

M < 0.689M
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It does not take a large value of M'to make this probability very small. Lin and
Altman subsequently evaluated the probability that two people are the same given

a set of matched SNPs in a fixed population size via Bayes’ Theorem.

While these findings have launched valuable discussion, they have also led some
researchers to believe there is no way to share a small amount of SNP data while
precluding re-identification of patients. At present, based on this study, it appears
that the sharing of small, but clinically relevant, sets of partially dependent SNPs is
possible, with adequate threat assessment and updated population-specific SNP

frequency data.

Attempted Interventions to Protect Genomic Privacy

Research groups have attempted to mitigate the threat to privacy that the
publication of genomic data poses. The techniques include methods to blur or
change the data, reducing granularity or resolution on the data, and aggregation
techniques. All of these methods fail to improve the privacy afforded patients in

any dramatic way [65, 66]. A summary of the attempts to date follows.

Using Binning to Maintain Confidentiality of Medical Data

Binning describes the process of aggregating elements in a data set into a more
generic pool of field values with similar attributes. One study attempted to
disregard exact genomic positions for a set of SNPs to increase the number of data
sets that have the same sets of values [67]. The shortcomings of this approach were
that the information that was subsequently available to researchers was

substantially reduced; precise genomic location data are important for identifying
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the exact locus or lesion involved in a genetic disease process. Conversely, the
privacy afforded by this technique is dubious when there is one predominant
mutation that leads to sequencing in a genomic region; if a monogenetic disease
locus is nearby, it is likely that any observed mutation within that region refers to
that one specific, common, monogenetic lesion. This may also just slightly increase

the size of the data set needed to uniquely identify a patient.

Disclose Frequencies and Aggregated Data Only

A variation on the above theme is to aggregate records, thereby binning at the
patient level rather than by characteristics or fields within patient records. An
example of this would be a population genetics description such as “Half of the
patients in this study carried the homozygous major genotype AA while 40%
carried Aa and 10% had aa.” One shortcoming to this approach is that supporting
clinical or phenotypic information, at the individual patient level, may help
researchers gain insight on a genetic disease process. Additionally, clinical value

for specific patients and ability to deconstruct research diminished
Anonymity by Pool Selection

The Human Genome Project (HGP) gathered a large number of samples from
individuals who were brought through a thorough consent process. Then, the
project anonymously selected a very small subset to create a consensus hybrid of
several participant genomes to prevent the identity of participants from being

known [68].
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The HGP used participant pool selection as a privacy technique though it is of
dubious privacy value. There are regions of the genome where SNP loci that have
since been discovered (in larger pools of sequenced individuals) could help identify
participants if samples were available for forensic analysis. Additionally, an unclear
form of genome aggregation was used, which depends on the genomes that were
used, in what proportion their derivative sample chromosomes were used and
alignment technique statistics that were employed. This is not a clear form of

privacy.

Use of Generalization Lattices

A more specific variant on the concept of binning is to use generalization lattices to
de-identify data sets partially where it is either most prudent for privacy or where it
will not substantively reduce clinical value. An example of this technique was
described the use of genotypic base pair binning [69]. The most basic example
would be to have two possible levels of generalization that cover the four DNA
base pairs; A and G may be reduced to a representation of R; C and T reduced to Y
(Figure 4); and at the next level of generalization, f1, R and Y may be more

generally represented as N.
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N

A G C T

Figure 4: Protecting DNA Sequence Anonymity with Generalization Lattices. In this example, each
purine (A, G) may be consolidated into R, and each pyrimidine (C, T) may be consolidated into a new
base pair Y, both for generalization. All four base pairs can be generalized into N to reduce the
information that is disclosed when publishing genomic data.

There are also more complicated generalization lattices (Figure 5) that have been
developed in order to reduce the amount of information that is disclosed when

publishing a genotypic sequence.

A = Ademinhe C = Cyto=ine
= Guamne T = Thymin=

FE = pukine 1 = prrimadine
S = Strong hydrogen | T = ¥ealk hydrogen
H = alirno group E = Keto groun
B =not & D= not C
H=not Vo= not T

— = gap T = iBdeterninate

Figure 5: More complex generalization lattices can be used to complexify and obscure the information
content that is shared in a disclosed sequence. This example includes the four DNA base pairs as well as
purine and pyrimidine generalizers used above, reverse identifiers (not A), amino group identifiers, keto
group identifiers, among others.
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All of these techniques simply make it slightly more difficult to re-identify the
individual from a published genotype using this technique. It is possible to find a
closed form solution for the anonymity provided by these techniques, which simply
are another form of aggregation. This technique also shares the problem that
published genotypes do (by definition) lose information content. This reduces the
amount of information that is available for researchers to find a correlate or
predictor of disease and would reduce the statistical significance of findings if not

all genotypes are available at all loci.

Add Noise to a Genotypic Sequence

One technique that may be employed to reduce information in published data sets
is to randomly skew a certain (perhaps unknown) fraction of genotypic values. The
largest reduction of information content would come from blurring those loci that
are either known rare variants (either rare SNP loci or mutations) so that a specific
record is not so individually identifying. This certainly reduces the information
content, but reduces the value of a research data set dramatically — the data being
shared is intentionally being contaminated, potentially leading to false conclusions

and missed findings.

This technique is perhaps the most dangerous because it can lead to false
conclusions, and in fact is provides just as little protection to privacy. Altman, et al
demonstrated that this technique still allows for identifiably with low numbers of
independent SNPs, as described by a false negative and false positive rate of

matching samples to individuals using a variety of skewing rates below (Figure 6).
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Figure 6: Introducing noise into SNP genotypes still results in identifiability. Ten percent random noise
was added to a SNP data set, and at various numbers of SNP matches, the false negative and false
positive rates of identification are graphed.

Synthesizing anonymized ‘individuals’ using statistical data associations
Recently, Lasko et. al. described a system to create anonymized records that
contain data resembling authentic individual-level data sets. Using statistical
associations within those data sets, he creates synthetic individual records with
information and relevance for research purposes, while preserving patient privacy.
Such systems will be a challenge with genomic datasets, however, because of the
potential complexity of genetic interactions that will be explored in personalized
medicine research. It will likely be the case that full contiguous genotypic data will
be required, with associated potentially identifying clinical data to identify genomic
network effects or subtle polymorphic variants acting in combination to create a

larger effect.
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Quantitative genomic disclosure risk models for patients and relatives
The need to calculate the information content in a genomic data set is acute; this
will enable EMR and personalized medicine systems to model the degree of
privacy afforded patients when they share a subset of their genomic data.
Information theoretic tools are effective in characterizing the information content of
sets of SNP data sets [70]. We have developed a set of four disclosure risk models

that address important clinical sharing scenarios for patients and their relatives.

Risk of re-identification. One clinical and research privacy scenario is the
disclosure of a set of genomic data that contains either SNPs or mutations. In this
context, we describe a probability bound on how identifiable a set of SNP or
mutation data is, under different sets of circumstances, such as whether it includes
any phenotypic or population-specific data. This analysis should consider
population-specific frequencies of the specific SNPs as well as the localized

mutation rates and mutation types in the region of interest.

Risk of genome-gene inference. A related variation on the above theme is how
readily two distinct, but overlapping sets (for example, where one set is a subset of
the other, but the two are not disjoint sets) of genomic data can be combined with
certainty to produce a more complete data set for one individual. With two sets of
SNP data from a patient, one may identify whether the two data sets contain
enough matched, overlapping base pairs to sufficiently determine whether the data
sets came from the same individual, and with what probability. If it is possible to

infer that the data sets are from the same individual, then to mitigate this threat, one
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might remove the most identifiable SNP values from the data set using a ranked list
of the most informative loci. This issue is importance because if it is relatively easy
to aggregate two distinct data sets from a patient with only minimal overlap
between the two data sets, it allows a genomic test to be linked with other

separately published or shared data, perhaps with clinical findings.

Risk of familial inference. Genetic data notonly reveals information about those
tested, but also about their family members, posing a considerable privacy risk for
family members of those who would share their research data. On average, patients
share half of their DNA with each parent and sibling, and a decreasing amount
with other relatives. Given a patient’s population demographic data, a set of a
patient’s SNPs, and a relationship with another person, we have quantified how
likely it is that the 2" person will have the same set of values ata set of SNP loci.
Because we have additional knowledge of the specific relationship the first patient
shares with the second, we are asking a question distinct from the original question

of how likely it is that two patients should match at a set of loci.

We identify the familial information content within a set of proband SNPs:
specifically how likely it is thata parent, sibling, and child will carry a specific set
of SNP values based on proband genotypes, population-specific allele frequencies,
and the familial relationship involved. We can also establish whether two
individuals are related by evaluating a set of SNPs in both individuals, with

certainty using closed form probabilities, if we consider independent SNPs.
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Risk of genotypic-phenotypic linkage. Genotypic data predicts phenotypes in
individuals, some of which are apparent through physical characteristics, clinically-
observed values, and disease status. Using the genotypic and perhaps ethnicity
identifiers in a patient controlled health record, one may identify some phenotypes
from a specific set of patient SNP values [58]. Similarly, the reverse can be done,
using phenotypic information we may derive likely patient genotypes. It is also
possible to infer the population or ethnicity of a patient using a genomic sample
with low numbers of SNP values if supporting population SNP frequency data are

available.

Geographical Data Privacy in Public Health and Clinical Practice

The mapping of clinical and public health data is widespread in both academic
research and public health practice [71]. While the study of the influence of
geographical location on disease risk dates back to the mapping of yellow fever
and cholera in the 1800’s, research integrating maps and human health is an
emerging field based on the wide availability geographic information system (GIS)

software [72].

Ongoing disease surveillance and large research studies both rely on the ability to
detect precise clustering patterns, but the privacy implications of sharing the
necessary patient data carry risks for patients grouped in clusters with sensitive
medical conditions or other protected health information. Both disease

surveillance and research publication can utilize less-than-perfect spatial data that
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still illustrate the pattern of disease or incident clustering effectively, but afford

patients increased privacy and anonymity.

Geographical disease surveillance systems designed to monitor public health
threats have emerged that harvest data from a variety of sources, including
emergency department and inpatient hospital visits, clinical diagnoses, lab results,
over the counter drug purchases, and even orange juice and vitamin sales [73, 74].
These systems are designed to discover outbreaks of public health relevance that
may be sparsely distributed geographically, before they would be noticed by an
astute clinician or public health department. Web systems that mine a variety of
news sources (open source media, Google News, CDC and WHO health alerts,
among others) are also attempting to extract meaningful geographic information
from reports and distill it into useful information that can help contextualize disease

progression throughout regions [75-78].

GIS has broad applicability, and its use has been generally fueled by increased
computing power, user-friendly software, and large geographic databases. The
number of publications utilizing GIS for health research has grown at about 26%
per year, four times the rate of increase for human health articles in general [72].
Patient address locations are mapped to identify patterns, correlates, and predictors
of disease. These maps are often published electronically and in print [71]. A
keyword search for the term “geographic” or “map” in the figure legends of five

major medical journals from 1994-2005 identified 19 articles (including five from
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NEJM) that include maps with patient addresses plotted as individual dots or

symbols. In these papers, over 19,000 patient addresses are plotted on map figures.

The publication of disease maps with precise patient locations puts patient privacy
in jeopardy. Guidelines for the display or publication of health data are needed to
guarantee anonymity [79]. A common approach has been to map by administrative
unit rather than home address. However, aggregation of data poses constraints on
the visualization of disease patterns. Another method is spatial skewing or
randomly relocating cases within a given distance of their true location. Skewing
can allow a visualization that conveys the necessary information, while preserving
privacy [80]. Both aggregation and skewing are systematic and reliable means of
de-identification which are far safer, in terms of protecting identifiable health

information, than simply reducing map resolution.

Anonymization of spatial data for disease surveillance

Patient re-identification from purportedly de-identified data can be accomplished
with surprising ease. For example, Sweeney, et al. showed that 87% of individuals
in a publicly available database were re-identified using five digit zip code, date of
birth and gender alone [81]. There are well-described techniques for protecting the
anonymity of individuals whose information resides in databases. Using these
techniques, de-identification systems have been developed that remove personal
data from database fields (for example, converting a date of birth to a year) [82] or
from textual notes [83]. Uzuner, et. al. has also developed novel methodologies in

de-identifying text and has worked on the NLP challenge problems addressing the
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same issue [84, 85]. Clifford, et. al. has also developed a system that promises to
de-identify 94% of textual clinical notes [86]. The de-identification of databases

has also been explored using several techniques [87, 88].

A metric for the ability to re-identify a patient in a data set is k-anonymity, where k
refers to the number of people among whom a specific de-identified case cannot
be reversely identified [82]. Spatial location information, whether stored as classic
plain text address data or as geocoded longitude and latitude values, can
potentially identify an individual or a markedly reduced set of candidate
individuals. A common approach to de-identifying such data has been to use
census tract or zip code rather than home address to protect anonymity. There are
two important drawbacks to using location data that have been aggregated by
political boundaries or administrative region. First, the loss of precise location may
reduce sensitivity to detect clustering. Second, the ability to detect clustering may

be diminished when some of the points cross administrative boundaries.

Previous investigators have attempted to mask geographic data by spatially skewing
cases using, among others, affine and randomizing transformations [89, 90]. In this
thesis, we describe a spatial anonymization algorithm based on skewing precise
geocoded case locations using knowledge of local population characteristics.
Skewing these patient addresses directly decreases the ability to re-identify, and
thus increases the k-anonymity, of a case in a data set, as it will be much more
difficult to determine what the actual patient’s identity is once the address has been

altered. Masking the identity of an individual in a densely populated urban area,

Cassa, Christopher A. Page 46



Privacy and Identifiability in Clinical Research, Personalized Medicine, and Public Health Surveillance

for example, does not require as great a skew as one in a sparsely populated rural
setting. Next, we measure the effect of anonymization intensity on outbreak
detection, focusing on the sensitivity of spatial cluster detection. The goal is to
provide individuals, institutions and public health authorities a comfort level with
the sharing of skewed, and hence, anonymized data, rather than using raw, fully
identifiable data. Further we aim to provide transparent information about the

resulting diminution of spatial clustering detection.

Conclusion
Genomic medical testing and sharing mechanisms are quickly emerging and once
these are codified, they can be used in concert with clinical medical records to

achieve a wide variety of innovative health promotion and surveillance goals.

There are associated ethical and social risks that must be monitored effectively, and
privacy decision-making and security for these documents must be improved for

adoption to be practical or useful.
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Chapter II: Genomic privacy: identifiability and familial risks

The use of integrated familial data is prevalent in genetic and genealogical studies,
but has not yet reached its potential in clinical medicine, as its use poses
substantial technical and policy challenges. Personal Health Record (PHR) systems
currently lack the critical ability to incorporate such data, which is gathered at
clinical encounters in a largely ad hoc fashion, without electronic standardization.
Moreover, patients do not fully understand the benefits and potential risks involved
in sharing such data with relatives, clinicians, or researchers [60-64]. The emerging
use of PHRs presents an enormous opportunity for improvement, enabling patients

to control the collection, extraction and disclosure of valuable genomic data.

Integration of familial genomic data in medical records has several tangible benefits
for patients. First, familial data derived directly from family members’ records is
more likely to be accurate, complete, and up-to-date. Second, relatives may share
genomic sequencing data with one another, which can be used to derive
personalized disease propensity estimates [91]. The ability to derive genomic data
poses risks to privacy when sharing clinical or genomic data with researchers:
patients should understand the risks to their privacy as well as to family members’

privacy when they share their data.

We describe and quantify the risks posed by these activities to address the
challenges of curating and communicating the information content and disclosure

risks of demographic, clinical and genomic familial data.
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Ability to infer SNP genotypes from sibling genomic data

I am my sister’s keeper

This section of the thesis was published in a manuscript entitled My sister's
keeper?: genomic research and the identifiability of siblings, in BMC Medical
Genomics with Brian Schmidt, Dr. Isaac Kohane, and Dr. Kenneth Mandl, from the
Children’s Hospital Informatics Program and Harvard-MIT Division of Health

Sciences and Technology.

Abstract

Genomic sequencing of single nucleotide polymorphisms (SNPs) is increasingly
prevalent, though the amount of familial information these sequences contain has
not been quantified. We provide a framework for measuring the risk to siblings of a
patient’s SNP genotype disclosure, and demonstrate that sibling SNP genotypes can
be inferred with substantial accuracy. Extending this inference technique, we
determine thata very low number of matches at commonly varying SNPs is
sufficient to confirm sib-ship, demonstrating that published sequence data can
reliably be used to derive sibling identities. Using HapMap trio data, at SNPs where
one child is homozygotic major, with a minor allele frequency < 0.20, (N=452684,
65.1%) we achieve 91.9% inference accuracy for sibling genotypes. These findings
demonstrate that substantial discrimination and privacy risks arise from use of

inferred familial genomic data.

Background

Genomic data are increasingly integrated into clinical environments, stored in
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genealogical and medical records [92, 93] and shared with the broader research
community [94, 95] without full appreciation of the extent to which these
commodity level measurements may disclose the health risks or even identity of
family members. While siblings, on average, share half of their contiguous
chromosomal segments, well over half of a sibling’s allelic values can be inferred
using only population-specific allele frequency data and the genotypes of another
sib. The informed consent process for research and clinical genomic data
transmission must therefore include rigorous treatment of accurately quantified

disclosure risks for all who will be impacted by such activity.

It is remarkably easy to positively identify a person with fewer than 40
independent, commonly varying SNPs, using a physical sample or a copy of those
values [59]. As DNA sequences cannot be revoked or changed once they are
released, any disclosure of such data poses a life-long privacy risk. Unlike
conventional fingerprints, which provide little direct information about patients or
relatives, SNP genotypes may encode phenotypic characteristics, which can link
sequences to people [58]. Despite these privacy issues [65, 96], use of genetic
sequencing is increasing in both forensics [97], and clinical medicine. The recent
genetic fingerprinting provision in the renewal of the federal Violence Against
Women Act [98], alone, may result in one million new sequenced individuals each
year, markedly increasing the number of available links between identities and

genotypes. This genetic fingerprinting has an impact on people beyond those
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directly sequenced--genetic testing partially reveals genotypes of siblings and other

family members.

Ateach locus in a child’s genome, each parent transmits only one of his or her two
chromosomes. If we have the genotype of one child, and would like to use that
information to help infer the genotype of a sibling, we consider both the known
parental genotypes (for the alleles they have transmitted to their first sibling,) and
also consider those chromosomes they have but have not transmitted. We assume
that the unknown parental alleles are drawn from a reference population, such as
one of the HapMap populations. Now, considering the genotype of the inferred
sibling (2" child), with probability 0.25, the sibling will receive the same 2
chromosomes transmitted to the first child, in which case they will have the same
genotype. With probability 0.25, the inferred sibling will receive both previously
untransmitted chromosomes, in which case the sibling will have the same genotype
distribution as the reference population. If only one of the same chromosomes is
transmitted, then one chromosome will be the same and the other will be drawn

from the population.

Methods

To quantify the risk of SNP disclosure to relatives, we demonstrate a model for
inferring sibling genotypes using proband SNP data and population-specific allele
frequency databases, such as the HapMap [99, 100]. We also evaluate the

probability that two people, in a selected pool of individuals, are siblings given a
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match atan independent subset of SNPs, and show that this number can be made

remarkably low with appropriate SNP selection.

Enhanced ability to infer sibling genotypes

First, consider the case where one sibling’s genotype is known to be ‘AA’, and the
goal is to determine the probability that a second sibling’s genotype will also be
‘AA’at that locus. Because there is additional knowledge—the familial relationship
between the two sibs—the prior probability of the second sib carrying a specific
genotype at a selected SNP will be altered under the new constraint. A conditional
probability expression that sums over the nine possible parental genotypic
combinations (for example, maternal genotype ‘Aa’” with paternal genotype ‘AA") at

a single SNP, each denoted as i can be used:

9
p(Sib, AA|Sib, AA) = Zp(SibzAAlparental comb. i)p(parental comb.i| Sib; AA)
i=1

3 Z <p (Sib,AA N parental comb. i)

tal b.i|Sib,AA
p (parental comb. i) >p(paren al comb. | Sib, AA)

9
i=1

where Sib,AA and Sib,AA refer to Sib, and Sib, genotypes ‘AA” at a selected SNP,

respectively.

With unknown parental genotypes, we would calculate p(Sib,AA) considering all
nine possible parental genotype combinations, but knowledge that Sib, has

genotype ‘AA’ allows exclusion of any parental combinations where either parent
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has genotype ‘aa’, as that would require the transmission of at least one copy of the

‘a’ allele to Sib;, if non-paternity and new mutations are excluded.

For example, when the child is homozygous major, all possible parental genotypic
candidates that involve one or both parent genotypes of ‘aa’are excluded, as it is
not possible to have a child with genotype ‘AA’if either parent does not have at
least one copy of the ‘A’ allele. In this case, there are four possible parental

genotypic combinations:

_ Z (p(SinAA N parental comb.i)

tal comb.i|Sib; AA
p (parental comb.q) )P(pm‘ena comb.i|Sib, AA)

4
i=1

~ (p(Sin AA N AA, AA;)

AAAAR|Sib AA

(p(SibzAA N AA, Aaz)

AA, Aa.|Sib. AA
p(AA, Aa,) )p( wAag|Sib,AA)

<p(Sib2 AA N Aa, AAL)

p(AayAAg) )p(AaMAAF|Sib1AA)

p(Sib,AA N Aa,Aag) ,
Aay Aa|Sib AA

=D +(5) e+ (5) @) + (3) @)

2

q
=p?+pq+—
p™TDpq 4

q°
2
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which allows calculation directly from the SNP population frequencies. Before
knowledge of the Sib, genotype was used, p(Sib,AA) would have been the Hardy-
Weinberg frequency for major homozygotes, p’. However, with the Sib, genotype,
p(Sib,AA[Sib, AA), the additional constraint increases the probability to

P +pq+(q°/4), increasing inference accuracy by pg+(q’/4).

The remaining entries in the probability vector, p(Sib,Aa[Sib, AA), and p(Sib,aa[Sib,
AA), can then be calculated just as we have done for p(Sib,AA|[Sib, AA) above.
Again, these probabilities have been generated without any actual knowledge of
the parent genotypes. If the Sib, genotype were instead ‘Aa’ or ‘aa’, the above
technique can similarly be used (with a different combination of possible parental
genotypes) to calculate the two other probability vectors, [p(Sib,AA/Sib, Aa),
p(Sib,Aa[Sib,Aa), p(Sib,aa[Sib, Aa)l and [p(Sib,AA[Sib, aa), p(Sib,Aa[Sib, aa),

p(Sib,aa|Sib,aa)l.

HapMap SNP population frequencies, p and g, for each selected SNP, can be used
to calculate the probabilities of each parental combination, i. Once these values
have been calculated, the genotype of the first sibling eliminates possible parental
genotypic candidates (Figure 7A-C), and the remaining probabilities are

normalized.
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(a) First sib is homozygous major at SNP (b) First sib is homozygous minor at SNP

Mother Mother
AA Aa aa AA Aa aa
AA | AA AA | Aa \
< 2 < 2
< P < 2pq P v
AA | AA AA | Aa \
= AA | AA AA | Aa =
2 o 3 2 o 2 2 3
w < 2pq s < 2p’g 4p*q 2pq
= Aa | Aa Aa | aa w
] }znf 2pq’ 5 p? 2pq’ q'

(c) First sib is heterozygous at SNP (d) Experimental Framework for 30 HapMap Trios

Mother Validation
Sibling
AR Aa aa Real Real Genotypes are
Genotype: Genotype: pEAA)): E(Aa)';
HapMap HapMap plaa) at eac
3 2 2 )
z 2pq pq Father Mother SNP given
parental
genotypes.
g 3 2 2 3
s 2 2p’q ap'q 2pq
- Inferred Inferred
el Sibling usin Sibling usin
Genotype: & g 8 g
only HapMap only HapMap
o ap 3 HapMap -
® pq 2pq . Sibling Parental
Trio Child
Genotypes Genotypes

Figure 7: (a-c) Refining mechanism for homozygous major SNPs: when the first sibling is homozygous
major (a), homozygous minor (b), or heterozygous (c) at a given SNP, this constrains the possible
parental genotypes; in the first case, five of nine parental genotypic combinations can be eliminated
(crossed boxes). Using HapMap CEPH SNP population frequencies, p and g, the probability frequencies
are populated for the remaining squares, and normalized. The probability that subsequent sibs will be
homozygous major, heterzygous, or homozygous minor can then be calculated using the probabilities
that parents would contribute specific allelic values. (d) For each of 30 HapMap CEPH trios, the Sib,
genotype and the SNP population frequencies are used (without the parent genotypes) to infer p(‘AA’),
p(‘Aa’), and p(‘aa’) for subsequent siblings. Those probabilities are then validated against those that
would be expected given only the parental genotypes at each SNP.

Measuring the information content of Sibling genotype data

When calculating the probability of a specific Sib, genotype given a known Sib,
genotype, it is possible to directly measure the benefit of the proband genotype
information in improving Sib, inferences. This involves measuring the difference
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between the prior Hardy-Weinberg probability for the genotype, given only
population frequencies, and the posterior probability, as calculated by the
conditional expression above. To measure the information content provided by the
first sibling’s genotype, we propose the use of a likelihood ratio test statistic,
comparing models where two individuals are known to be siblings versus two
individuals that are known to be unrelated. There are a total of nine possible

likelihood ratios, A for each of the possible individual genotypic

Ind ,Ind , genotypes
combinations, such as Ind,; AA:

_ p(Ind, genotypel|Ind, genotype N siblings)

A =
Indy,Indz genotypes = 1, (Ind, genotype|Ind, genotype N unrelated)

p(Sib, genotype|Sib, genotype)

(p(lndzgenotype) N p(Ind, genotype N unrelated)))
p(Ind,genotype N unrelated)

B Y)_, p(Sib, genotype|parental comb.i)p(parental comb.i| Sib, genotype)

B (p(lndzgenotype) N p(Ind, genotype N unrelated)))
p(Ind,genotype Nunrelated)

9 <p(Sib2genotype N parental comb. i)

T=1 p(parental comb. 1) )p(parental comb.i| Sib; genotype)

p(Ind, genotype) - p(Ind, genotype) - (1 - %)

1
p(Ind,genotype) - (1 _N)

9 <p(Sib2genotype N parental comb. i)

71 p(parental comb. 1) )p(parental comb.i| Sib; genotype)

~

p(Ind,genotype)
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The denominator becomes p(ind, genotype), which is either p?, 2pq, or ¢. This is
intuitive; when considering two unrelated individuals, the probability that the 2
has a specific genotype can only be identified using the population frequencies for
that genotype. The numerator is the posterior probability expression derived in

Table 1, also in terms of p and q.

Table 1: Sib, inference error reduction when Sib, genotype is known. The error reduction depends only
on the allele frequencies, and at all frequencies, the error is reduced, improving the quality of genotypic
inference.

Prior Prob. Posterior Prob. Error Reduction
AA AA p’ p*+pq + g’ P’ — [p* + pq + Yaq’]]
Aa AA 2pq pq + '2q° 2pq - [pq + 21|
aa AA q Vaq |q* = [Yaq] |
AA Aa p’ 1hp” + Yapq Ip” = ["2p” + Vapql|
Aa Aa 2pq 1op® + (2/3)'pq + '2q’ | |2pq - [V2p’ + (2/3)'pq + 24|
aa Aa q Yapq + 2q |q” = [Vapq + 2q'1]
AA aa p’ Vap’ [p* — [Vap’]|
Aa aa 2pq ap’+pq |2pq — [V2p*+pql|
aa aa q Vap® +pg+q° |q” = [Vap” + pq + q]|

The log of this odds ratio can then be used as a statistic for measuring relatedness,
depending only on the SNP allele frequency and the Sib, genotype (Figure 8, Figure

9, & Figure 10).
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log(A Sib1l, Sib2Aa)

o =
(2 B BN

108(Aing1, ndzaa) VS- MAF

Ind1AA, Ind2Aa

Ind1Aa, Ind2Aa

Indlaa, Ind2Aa

Figure 8: Log likelihood ratio test statistic for sibling inferences: for each Sib, genotype, the log
likelihood ratio for each possible Sib, inference is shown versus Minor Allele Frequency (MAF). These
charts describe how informative the Sib, genotype of ‘Aa’ is, when inferring each Sib, genotype.

log(A Sib1, Sib2AA)

10g(Aing1, ind2aa) VS- MAF

——Ind1AA, Ind2AA

Ind1Aa, Ind2AA
———|ndlaa, Ind2AA

Figure 9: Log likelihood ratio test statistic for sibling inferences: for each Sib, genotype, the log
likelihood ratio for each possible Sib, inference is shown versus Minor Allele Frequency (MAF). These
charts describe how informative the Sib, genotype of ‘AA’ is, when inferring each Sib, genotype.
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108(Aing1, nd2aa) VS- MAF

— |Ind1AA, Ind2aa

Ind1Aa, Ind2aa

Indlaa, Ind2aa

log(A Sib1l, Sib2Aa)
o

Figure 10: Log likelihood ratio test statistic for sibling inferences: for each Sib, genotype, the log
likelihood ratio for each possible Sib, inference is shown versus Minor Allele Frequency (MAF). These
charts describe how informative the Sib, genotype of ‘aa’ is, when inferring each Sib, genotype.

The allele frequency, p, that maximizes this statistic can then be found numerically

foreach A4 expression, to identify which allele frequencies and

1,Ind , genotypes
conditions are most informative for genotypic inferences. These results are below in

Table 2.

Table 2: Finding the Minor Allele Frequency (MAF) that maximizes the log likelihood ratio test statistic
for each Sib, genotypic inference type. The maximizing MAF is the allele population frequency at which
the most information will be derived about the Sib, genotype from Sib, under that Sib genotypic
combination. Note: There are two equally maximizing MAF values for Log(A ), 0.01 and 0.99,

Sib1Aa,Sib2Aa
both resulting in a value of 1.407.

AA AA 0.01 3.407
Aa AA 0.01 3.699
aa AA 0.01 3.389
AA Aa 0.99 1.396
Aa Aa 0.01, 0.99 1.407
aa Aa 0.01 1.396
AA aa 0.99 3.389
Aa aa 0.99 3.699
aa aa 0.99 3.407
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Confirming sib-ship with two non-matching sets of SNP genotypes

The above inference technique can be extended to confirm sib-ship in two non-
matching samples of SNP sequence data. Given a set of matches at M independent
loci from a pool of N individuals, an expanded form of Bayes Theorem can be used
to calculate p(sibs/match at M loci) directly, where !sibs refers to two individuals
not being siblings:

p(sibs|match at M loci)

B p(match at M loci|sibs) p(sibs)
~ p(match at M locilsibs)p(sibs) + p(match at M locil|! sibs)p(!sibs)

[p(both AA|sibs) + p(both Aalsibs) + p(both aalsibs)]" (%)

[p(both AAlsibs) + p(both Aal|sibs) + p(both aalsibs)]" (%) + p (match|! sibs)M (1 — %)

p(match|!sibs) can be calculated for each SNP using the population frequency; it is
the probability that two unrelated individuals in the population would share the
same genotype, ‘AA’, ‘Aa’, or ‘aa’. The expression p(match|!sibs) is effectively the
same as p(match) as long as the sample pool, N, is large enough, as the probability
of sib-ship is very low in a large pool. For three different pool sizes,
(N=100,000;10,000,000,6,000,000,000), we have created a sib-ship probability
surface that varies with the number of matched SNPs and minor allele frequency
(MAF) of those SNPs (Figure 11a-c) and published supporting values for these

probabilities in Table 3. These estimates use the selection of M independent SNPs
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all with the same a priori known MAF. For SNPs that commonly vary in the

population, a small number of genotypic matches are required to confirm sib-ship.

[a] p(sib | match at M independent SNPs) vs.
Minor Allele Frequency (N=100,000)
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Figure 11-a: Sib-ship identifiability surfaces: these surfaces describe the probability of sib-ship as a
function of M, the number of matched independent SNPs (between two individuals) and Minor Allele
Frequency (MAF). We show this across three sample size pools--N=(a)100,000; (b)10,000,000;
(c)6,000,000,000 people. At high MAFs even very large increases in the potential sample pool size will
not prevent sib-ship confirmation with relatively few matched SNPs. For example, if loci with MAF=0.25
are selected, the number of matched SNPs to confirm sib-ship with p=0.999 is 50 with a candidate pool
of 100,000 and increases to only 80, in a group of 6 billion.
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[b] p(sib | match at M independent SNPs) vs.
Minor Allele Frequency (N=10,000,000)
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Figure 11-b: Sib-ship identifiability surfaces, continued. Population size (N) = 10,000,000.
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[c] p(sib | match at M independent SNPs) vs.
Minor Allele Frequency (N=6,000,000,000)
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Figure 11-c: Sib-ship identifiability surfaces, continued. Population size (N) = 6,000,000,000.
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Table 3: Probability of sib-ship for three pool sizes. In a sample pool of size N, provided below, the
probability that two individuals are siblings given a match at a subset of SNPs is charted as a function of
M, the number of independent SNPs that they match at, and the minor allele frequency, g, which is
known a priori (from population frequency estimates) and is the same for all M SNPs. Non-matches are
not considered here, and requires separate principle and analysis.

N=100,000
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90
0 | 0.00001 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5
0.05 1.1E-5 2.67E-5 7.11E-5 [ 0.000189 | 0.000505 | 0.001345 | 0.003578 | 0.009482 | 0.024886 | 0.063706
0.1 1.21E-5 6.64E-5 | 0.000441 | 0.002923 | 0.019099 | 0.114527 | 0.462126 | 0.850907 | 0.974301 | 0.996045
0.15 1.31E-5 | 0.000148 | 0.002194 | 0.031572 | 0.325877 0.87757 | 0.990679 | 0.999366 | 0.999957 | 0.999997
0.2 1.4E-5 | 0.000287 | 0.008152 | 0.190701 | 0.871059 | 0.994863 0.99982 | 0.999994 1 1
0.25 1.47E-5 | 0.000472 | 0.021816 | 0.512966 | 0.980292 | 0.999574 | 0.999991 1 1 1
0.3 1.52E-5 | 0.000666 | 0.042483 | 0.747176 | 0.994946 | 0.999924 | 0.999999 1 1 1
0.35 1.55E-5 | 0.000823 | 0.063574 | 0.848341 | 0.997835 | 0.999974 1 1 1 1
0.4 | 1.57E-5 | 0.000924 | 0.078846 0.88788 | 0.998637 | 0.999985 1 1 1 1
0.45 1.58E-5 | 0.000975 | 0.086919 | 0.902796 | 0.998898 | 0.999989 1 1 1 1
0.5 1.58E-5 | 0.000989 | 0.089295 | 0.906621 | 0.998961 | 0.999989 1 1 1 1
N=10,000,000
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90
0 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7
0.05 | 1.1E-7 | 2.67E-7| 7.11E-7| 1.89E-6| 5.05E-6| 1.35E-5| 3.59E-5| 9.57E-5 | 0.000255 | 0.00068
0.1 | 1.21E-7 | 6.64E-7 | 4.41E-6 | 2.93E-5 | 0.000195 | 0.001292 | 0.008518 | 0.053991 | 0.274896 | 0.715775
0.15 1.31E-7 1.48E-6 2.2E-5 | 0.000326 | 0.004811 | 0.066884 | 0.515231 | 0.940333 | 0.995739 | 0.999711
0.2 1.4E-7 2.87E-6 8.22E-5 | 0.002351 | 0.063279 | 0.659483 | 0.982308 | 0.999372 | 0.999978 | 0.999999
0.25 1.47E-7 4.72E-6 | 0.000223 | 0.010423 | 0.332172 | 0.959166 | 0.999099 | 0.999981 1 1
0.3 1.52E-7 6.66E-6 | 0.000443 | 0.028705 | 0.663129 | 0.992431 | 0.999886 | 0.999998 1 1
0.35 1.55E-7 8.24E-6 | 0.000678 | 0.052974 | 0.821712 | 0.997374 | 0.999968 1 1 1
0.4 | 1.57E-7 9.25E-6 | 0.000855 | 0.073378 | 0.879899 | 0.998527 | 0.999984 1 1 1
0.45 1.58E-7 9.76E-6 | 0.000951 | 0.084983 | 0.900612 0.99887 | 0.999988 1 1 1
0.5 1.58E-7 9.9E-6 0.00098 | 0.088497 | 0.905783 | 0.998951 | 0.999989 1 1 1
N=6,000,000,000
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90
0| 1.6E-10| 1.67E-10| 1.67E-10 | 1.67E-10 | 1.67E-10 | 1.67E-10| 1.67E-10| 1.67E-10| 1.67E-10| 1.67E-10
0.05 | 1.8E-10 | 4.44E-10| 1.18E-9| 3.16E-9| 8.42E-9| 2.24E-8| 5.98E-8 1.6E-7 | 4.25E-7 | 1.13E-6
0.1 2.0E-10 1.11E-9 7.35E-9 4.89E-8 3.25E-7 2.16E-6 1.43E-5 9.51E-5 | 0.000631 0.00418
0.15 | 2.1E-10 2.47E-9 3.66E-8 5.43E-7 8.06E-6 | 0.000119 | 0.001768 | 0.025594 | 0.280299 | 0.852397
0.2 | 2.3E-10 4.78E-9 1.37E-7 3.93E-6 | 0.000113 | 0.003217 | 0.084701 | 0.726254 | 0.987023 | 0.999542
0.25 2.4E-10 7.87E-9 3.72E-7 1.76E-5 | 0.000828 | 0.037674 | 0.648979 | 0.988676 | 0.999758 | 0.999995
0.3 2.5E-10 1.11E-8 7.39E-7 4.93E-5 0.00327 | 0.179341 | 0.935717 0.99897 | 0.999985 1
0.35 | 2.5E-10 1.37E-8 1.13E-6 9.32E-5 | 0.007623 | 0.387598 | 0.981185 | 0.999767 | 0.999997 1
0.4 | 2.6E-10 1.54E-8 1.43E-6 | 0.000132 | 0.012063 | 0.530447 | 0.990523 | 0.999897 | 0.999999 1
0.45 | 2.6E-10 1.63E-8 1.59E-6 | 0.000155 | 0.014878 | 0.595717 | 0.993092 | 0.999929 | 0.999999 1
0.5 2.6E-10 1.65E-8 1.63E-6 | 0.000162 0.01577 | 0.613392 | 0.993675 | 0.999936 | 0.999999 1
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Modeling a series of SNP inferences using a binomial distribution

A binomial distribution can be used to represent a series of sibling genotypic
inferences, such as the probability of correct inferences at 50 SNP loci, if each
inference meets specific criteria. Independent inferences can be treated as a
random variable with probability p of success, as long as independent SNPs are

selected, with the same minor allele frequency and Sib, genotype.

p(knp) = (}) p*(1—p)"*

where p(k,n,p) refers to the probability that k correct inferences were made out of n

attempted inferences when the probability of success for each inference attempt is

p-

The cumulative binomial measures the probability of reaching up to k successes in

n trials with probability p of success at each attempt:

F(k;n,p) =P(X < k) = T¥_, (7) r’(1-p)"{

If n guesses are considered (i.e. n SNPs are genotyped and used for sib inference),

1-F(k,n,p) is the probability that at least k of those will be correct.

We already know the expectation of the number of SNP genotypes that will be

correctly inferred from the above section (simply the probability of correct
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inferences at a MAF multiplied by the number of inferences). This cumulative
binomial measure helps clarify the probability of guessing a at least a specific

number of SNPs correctly.

For example, if we take a set of n = 100 SNP inferences where our ability to
correctly infer sibling SNP genotypes is p = 0.8, and we would like to know what
the probability of at least k = 75 correct guesses is (1 - F(k,n,p)), we can calculate

that it is 0.912.

Binomial Distribution

0.10

0.051

0.00 - T T T T T T oL
0 10 a0 30 40 a0 G0 g 20 0 100

Figure 12: The binomial distribution for number of correct SNP genotype inferences. In this example, we
attempt inference of 100 SNP genotypes, each with probability 0.8 of success. We would like to know
what the probability is of correctly inferring at least 75 (red) is 0.912. This can be calculated using the 1-
F(k,n,p) cumulative binomial distribution formula in the above section.

HapMap CEPH and global population SNP genotypes and allele frequency data
The demographic data used in this project are population-specific SNP allele
frequencies from the CEPH HapMap population, Utah residents with ancestry from
northern and western Europe, and the global SNP allele frequencies (from all

Cassa, Christopher A. Page 67



Privacy and Identifiability in Clinical Research, Personalized Medicine, and Public Health Surveillance

populations that participated in the HapMap) [99]. The HapMap project has
compiled allele frequency values for a large selection of SNPs — loci in the genome
that account for a great deal of genetic variability in populations. Within the CEPH
population, there are 30 familial trios, each containing one mother, father, and
child. Additionally, the individual genotypes of the 90 CEPH trio participants are
directly used in this study. One limitation of this population specific allele
frequency database is the small size of each HapMap population — the CEPH
population contains 90 participants, and as such, each trio child contributes 1/90"

of the allele frequency data that are used in the study.

Validating the sibling genotype probability vector using parental genotypic
data

To validate the results of the refining strategy on inferring the second sibling
genotype, the authentic parental genotypes are used to create the probability vector
p(AA’), p(‘Aa’), p(‘aa’) at the SNP being evaluated, for the children the pair would
be expected to have. For each of the trio pairs at each of the SNPs being tested, the

probability vector was calculated.

Error reduction calculation

The error reduction measurement identifies the extent to which inference error is
reduced. For example, when trying to infer the probability that Sib, has genotype
‘AA’ at a specific SNP, we calculate the absolute value of the difference between
our best inference and the Hardy Weinberg probability for Sib, to have genotype

‘AA’, using population-specific allele frequency data and the Sib, genotype,
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|p(Sib,AA[Sib, genotype)-p(Sib,AA)|. This value is specifically the percentage
improvement to the probability value from the new data, when inferring the
specific event that Sib, will have genotype ‘AA”and Sib, will have the specific

genotype in question.

Any change to p(Sib,AA) must also correspond with the opposite change in the sum
of p(Sib,Aa)and p(Sib,aa). To accurately represent the overall error reduction by
Sib, genotype, with any of three possible Sib, genotypes, the average of the three
values is measured. For example, where the Sib, genotype is ‘AA’, the overall
average improvement (and error reduction) is the average of |p(Sib,AA) —
p(Sib,AA[Sib,AA)|, |p(Sib,Aa) — p(Sib,AalSib,AA)|, and |p(Sib.aa) -
p(Sib,aalSib,AA)|. The percentage improvement is graphed in Figure 14 for each

possible Sib, genotype.
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[a] Inference Error Reduction
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Figure 13: The error reduction, in the form of percentage improvement in inference accuracy for
subsequent siblings, when one sibling’s (Sib,) genotype is available (for each possible Sib, genotype).

Scoring metric for calculating correct fraction of inferences

To ascertain whether the inferences are helpful for producing correct answers, a
scoring metric was used to calculate the fraction of correct SNP inferences, in our
empirical inference validation study. For each SNP inference, the scoring metric
provides a full point when the plural entry in the inference vector, (the maximum of
p(‘AA’), p(‘Aa’), and p(‘aa’), and thus the predicted sib genotype), matches the
plural entry in the parental validation vector (the empirical most likely genotype).

Given the parental genotype values, itis possible, and not infrequent, that a
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validation probability vector has two matching plural values, for example, if p(‘AA”")
= p(‘Aa’)= 0.5. When this is the case, one half point was awarded if the plural
value in the inference vector matched one of the two validation choices, to signify

that one of the two equally likely candidates was chosen.

There are some conditions that arise from use of a simple scoring metric, where it
becomes difficult to score well. For example, a heterozygous Sib, will likely result
in a 0.5 score for inferences. A score of 1 point would be possible if one parent had
a genotype of “AA” and the other had genotype ‘aa’, making the probability that the
parents would have a child with genotype ‘Aa’ equal 1. Most remaining parental
combinations would not result in the probability of child genotype ‘Aa’equal to 1,
and would likely result in only a half point. These values can be adjusted using
machine learning techniques or more robust decision making algorithms, but those

are out of the scope of this work.
Results

Validation of SNP genotype inference using HapMap trio data

We then empirically infer sibling genotypic sequences from HapMap trio child
genotypes using the above technique. At 700,000 SNP loci on chromosomes 2, 4,
and 7, in each of 30 HapMap CEPH trios, the trio sibling, Sib,, known genotypes
are combined with the CEPH and global HapMap SNP allele frequencies to
produce genotypic inferences of a hypothetical sib, Sib,, at these loci. The

inference method produces three genotypic probabilities for Sib, (or subsequent
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siblings): p(Sib,AA/Sib, genotype), p(Sib,Aa[Sib, genotype), and p(Sib,aa(Sib,

genotype) for each SNP, which we call the SNP probability vector.

The ability to correctly infer a sibling genotype from a trio child genotype can be
validated by comparing whether the best estimated genotype, using only the sibling
genotype and population frequencies, matches the best estimated genotype using
the parental genotypic data (Fig. 1D). While there are CEPH families where
multiple children are genotyped, there are not many, and to get the statistical
power necessary for our analysis, we needed to use the trios and impute sibling
values. We do this by comparing the plural, largest, value in the SNP probability
vector, with the plurality value in the SNP probability vector that would be
expected given the parental genotypes and Mendelian Inheritance. The fraction of
correct inferences for SNPs where the Sib, is homozygous major or heterozygous
versus minor allele frequency are graphed in Figure 14A and Figure 14B,
respectively. There were insufficient SNPs where the trio child was homozygous

minor, so they have been excluded from this analysis.
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[a] Fraction of Correct Sib2 Inferences [b] Fraction of Correct Sib2 Inferences
where Sib1 is Homozygous Major where Sib1 is Heterozygous
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Figure 14: Fraction of correct Sib2 inferences: the fraction of Sib2 SNPs that can be correctly identified
when Sib1 is (a)homozygous major or (b)heterozygous. Each line represents use of distinct data-—-
inclusion or exclusion of Sib1 genotypes, and use of population-specific or global allele frequency data.
Without Sib1 genotypes, homozygous major inferences would always be incorrect at Minor Allele
Frequency (MAF) 2 0.33 and heterozygous inferences would always incorrect at MAF < 0.33. At many
allele frequencies, use of Sib1 genotypes dramatically improves Sib2 inferences.

For inferences at SNPs where the trio child, Sib,, was homozygous major, with
MAF < 0.05 (N=300512,43.2%), we are able to correctly infer the genotype of
other siblings, e.g. Sib,, with 98.5% accuracy when using population-specific allele
frequency data. At SNPs with MAF < 0.20 (N=452684,65.1%) we achieve 91.9%
average accuracy. For SNPs where the first sibling is heterozygous, with MAF >
0.20 (N=125796,18.1%), it is possible to infer the correct genotype of the second
sibling with 57.7% average accuracy. Without Sib, genotypes, all inferences for
homozygous major SNPs with MAF = 0.33 and heterozygous SNPs with MAF <
0.33 would be incorrect when validated against plural parental values. At these
allele frequencies, as well as others, use of Sib, genotypes markedly improves Sib,

inferences.
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Deriving propensity to disease from sibling SNP data

Additionally, sibling SNP data can be used to quantify an individual’s disease
propensity through genotypic inference, without that individual’s actual sequence
data. For example, the likelihood ratio test statistic above may also be used to

describe relative risk, using a multiplicative model.

probability with sibling knowledge

l—‘Sib 2 genotype |Sib 1genotype

- probability without sibling knowledge

_ p(Sib, genotypelSib, genotype)
B p(Sib, genotype)

9 <p(Sib2genotype N parental comb. 1)

A p(parental comb. 1) )p(parental comb.i| Sib, genotype)

p(Sib, genotype)

For example, the relative risk of Sib,Aa, carrying one copy of the disease allele ‘a’,

is provided by information from the Sib;aa genotype:

r B p(Sib, Aa|Sib, aa)
Aa|Sibjaa — p(SlbzAa)

_ Yap® + pq
2pq

_p+(A-p)
2(1-p)

_1—"hp
S 2-2p
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In this example, at MAF=0.01, the relative risk of genotype ‘Aa’ is 25.25, given
information that Sib, carries genotype ‘aa’” at that locus. However, at MAF=0.5, the
relative risk of genotype ‘Aa’ is 0.75, given information that Sib, carries genotype
‘ad’, explaining that the risk of having the genotype ‘Aa’ is reduced at this MAF.
This may seem counterintuitive, as the risk of carrying a disease allele is actually
higher at this MAF, but Sib, carrying genotype ‘Aa’ is lower than in the control
population, while the relative risk of carrying the disease allele with genotype ‘aa’
is higher.

B p(Sib,aa|Sib,aa)

l-‘aot [Sib jaa — p(Sibzaa)

ap? + pq + q°

_Yp® + p(A-p)+(1-p)*
(1-p)?

AtMAF 0.5, T is 2.25, demonstrating that it is more likely that a disease

aa |Sib {aa

allele will be carried by Sib, in genotype ‘aa’ than in the control population given

the Sib, genotype.

The explicit probability of developing a disease is also altered. If an individual with
genotype ‘Aa’ at a specific locus has a probability p, of developing a disease by age

a, and that individual has a probability p, of having that genotype given his sibling’s
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genotype at that locus, his probability of developing that disease by age a is p, pa.
This can easily be extended to multiple independent loci, important for diseases in
which a set of common or rare variants dictates disease likelihood[6, 1T01]. As SNPs
are both clinically informative and there is a wealth of supporting allele frequency
data, they have been the focus of our analysis, however there are other genomic
data types which should be considered in a rigorous privacy and propensity
analysis, including copy number variant and mutation data.

Discussion

These findings demonstrate that substantial discrimination and privacy concerns
arise from use of inferred familial genomic data. While the Genetic Information
Nondiscrimination Act of 2008 (GINA, H.R. 493), recently passed into law, would
mitigate the threat of direct discriminatory action by employers or insurers [26],
there will continue to be other uses of genomic data that pose privacy risks,
including the use of genetic testing in setting life, disability, and long-term care
insurance premiums [27, 102, 103]. Familial genotypic sequences can be used to
assist in forensic or criminal investigations for indirect identification of genotype,
increasing the number of people who may be identified [28, 29]. Similarly,
Freedom of Information Act (FOIA) [30] requests related to federally-funded
genome wide association studies could potentially be used to identify research
participants and their family members. Clinically, choosing the detail and type of
disease propensity information that must be disclosed to patients and their

potentially affected family members is also under debate [31, 32, 104].
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Quantifying the information content of disclosed genomic data will add clarity to
the informed consent process when a patient shares genotypic data for research
use. For research investigations, it is conceivable thata subject would want to limit
the impact of her genomic disclosure on her family members, or be asked to have a
discussion with specific family members before proceeding. Providing subjects
with different levels of genomic anonymity based on their sequence data, along
with an estimate of the probability of re-identification and familial impact for each
of those anonymity levels, will allow patients to trade off altruistically motivated
sharing [105] with privacy consideration, especially when they volunteer to share

all the variants in their genome [17].

While the inference accuracy rates are very high, particularly for inferences where
Sib, has a homozygous major genotype, we would like to caution that some of
these findings are not always highly informative. For example, if the MAF is 0.01,
where 99% of the alleles in the population are the major allele, the prior
probability for a homozygous major allele is 0.99%0.99 = 0.98. If Sib, has a
homozygous major allele, the posterior probability of observing a homozygous
major allele in another sibling is ("4 + 4*0.99*0.99 + 2*0.99) = 0.99. In this case,
the difference between prior and posterior probabilities is only 0.01, and
knowledge of the Sib, genotype provides very little information, as most accuracy

comes from the allele frequency in the population.

However, homozygous minor alleles are much more informative. With a MAF of

0.2, if Sib, has a homozygous minor genotype, the probability of Sib, having the
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same genotype, given only the reference population is 0.04. Given that Sib, has a
homozygous minor genotype, Sib, will have a homozygous minor allele with
probability of (V4 + ¥4*0.2*0.2 + '2*0.2) = 0.36, which is quite different from the

prior probability of 0.04.

One limitation of this study is that the population-based estimates for MAF rely on
the HapMap study population sizes, which, at present, are small, though these
types of sources will continue to expand. For example, the CEPH population
contains 90 participants, so each trio child contributes 1/90" of the allele frequency
data used in the study. This approach also depends on the independence of the loci
considered, and would need to be adapted for SNPs that are in linkage
disequilibrium. Extending this study to include linked SNP loci is possible, using
the haplotype block information for HapMap populations that is available. To
ensure that SNPs are independent, linkage data from the HapMap population can
be used to confirm independence, and SNPs that are far from one another may be
selected. Additionally, this approach does not consider the possibility of genotypic
errors, which may be common on some platforms. An adjustment using a binomial

probability distribution could be used to account for possible errors.

Conclusions

Technologies for sequencing large numbers of SNPs are rapidly dropping in cost,
which will help realize the promise of personalized medicine, but pose substantial
personal and familial privacy risks. While electronic storage and transmission of

genetic tests is not yet a common component of medical record data, these tests
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will soon be stored in electronic medical records and personally controlled health
records [50]. This mandates the need for improved informed consent models and
access control mechanisms for genomic data. The increasingly common practice of
electronically publishing research-related SNP data requires a delicate balance
between the enormous potential benefits of shared genomic data through NCBI and
other resources, and the privacy rights of both sequenced individuals and their

family members.
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Ability to infer SNP genotypes from parental or child data

Similarly, improvements to genomic inferences are possible for paternal
relationships: knowledge of a parent’s genotype can improve the accuracy of
estimates of a child’s genotype. For example, consider the case where a child’s
mother is known to have genotype ‘AA” ata variant locus. In this case, we can alter
the probability that the child will have genotype ‘AA’, ‘Aa’ or ‘aa’ at that locus,
given knowledge of the maternal genotype. For example, the probability that a
child has genotype ‘AA’ given that the mother has genotype ‘AA” at a specific locus

can be directly calculated:

p(Child AAN Mother AA)

p(Child AA|Mother AA) =

p(Mother AA)
3
_ Z (p((Child AA N Mother AA)|paternal genotype i)p(paternal genotype i))
. . p(Mother AA)
L=

_ (P((AAC n AAM)IAAF)P(AAF)> 4 <P((AAC n AAM)lAaF)p(AaF)>
p(4A,) p(4A,)

4 (p((AAc n AAM)laaF)p(aaF)>
p(AA,)

MY+ (3) @) + @D
- ®?)

= (p?) + (pq)

= p*[+pql .
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Using only the population allele frequencies, it is possible to determine the
improvement of a SNP inference given maternal or paternal genotype at that locus.
Before knowledge of the maternal genotype was included, p(Child AA) would have
been the Hardy-Weinberg frequency for major homozygotes, p°. However, with
knowledge of the maternal genotype, p(Child AA/Mother AA), the additional

constraint increases the probability to p2+pg, increasing inference accuracy by pgq.

Now consider the opposite case, where we attempt to infer the genotype of the
mother given a known child genotype. Consider the analogue of the above
example, where we would like to determine the probability that the mother has

genotype ‘AA” ata locus given that her child has genotype ‘AA”:

p(Mother AAN Child AA)

Mother AA|Child AA) =
p(Mother AA|Child AA) p(Child AA)

_ p(Mother AAN Child AA)
- p(Mother AA)

Because p(Mother AA) = p(Child AA) with no other knowledge, we can substitute it

in the denominator, as follows:

_ p(Mother AAN Child AA)
- p(Child AA)

= p(Child AA|Mother AA)
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Thus, if non-paternity and new mutations are excluded, p(Child X|Mother Y) =

pMother X|Child Y), where X and Y are genotypes, and where X may be the same

genotype as Y.

For all of the possible combinations of known parent genotypes and possible

inferred child genotypes, the prior and posterior probabilities are enumerated in

Table 4 below.

Table 4: Error reduction on genomic inference when the genotype of one known parent is known.

Child Known Parent Prior Prob. Posterior Prob. Error Reduction
AA AA p’ p’ + pq |p> - [p* + pql|
Aa AA 2pq pq+q’ 12pq - [pg + o°]|
Aa AA q° 0 lo?|
AA Aa p’ Yip +4pq Ip” — [4p°+%pal |
Aa Aa 2pq %p’+pa+a’ | |2pq - [P +pa+%q’]|
Aa Aa q Y%pa+a’ |a*-[%pa+q’]|
AA 2 p’ 0 |p?|
Aa aa 2pq p’ + pq |2pq - [p? + pal|
Aa aa q° pq + g’ lo*-[pq + ¢°]]

Likelihood ratio test statistic for paternity and information content

The likelihood ratio test statistic explored above for siblings can be employed for

inferences that use other familial data for inferences. This technique describes both

how informative the genotypic inference technique is in each case, and ateach

MAF, and can also be used as a statistic for likelihood of paterity. The likelihood

ratio again compares two models —one where the known parent genotype is

considered and on