
Formulation of Tradeoffs in Planning Under Uncertainty

by

Michael Paul Wellman

S.B., Massachusetts Institute of Technology (1983)
S.M., Massachusetts Institute of Technology (1985)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of

tlhe Requirements for the Degree of
Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 1988

@ Michael P. Wellman 1988

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical Engineering and Computer Science

July 29, 1988

Certified by
Peter Szolovits

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Formulation of Tradeoffs in Planning Under Uncertainty

by

Michael Paul Wellman

Submitted to the Department of Electrical Engineering and Computer Science
on July 29, 1988

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract

The tradeoffformulation task is to identify the central issues in a decision problem by
recognizing strategies that are inadmissible on qualitative grounds. SUDO-PLANNER
formulates tradeoffs for an example medical decision problem by proving decision-
theoretically that certain plan classes are dominated based on a knowledge base of
qualitative relations in the domain. The classical planning representation of goals as
predicates is inadequate for choice among plans that may achieve objectives in part
or with uncertainty. SUDO-PLANNER's dominance-proving architecture is a general
framework for planning for partially satisfiable goals. Dominance-proving planners
characterize the space of admissible plans by maintaining a specialization graph of
plan classes annotated with dominance conditions derived from a domain model.

Qualitative Probabilistic Networks (QPNs) are decision models expressing constraints
on the joint probability distribution over a set of variables. Qualitative influences
describe the direction of the relationship between two variables. Qualitative syn-
ergies describe interactions among influences. The probabilistic definitions of these
constraints justify sound and efficient inference procedures based on graphical manip-
ulations of the network. SUDO-PLANNER's dominance prover uses these procedures
to establish dominance relations among plan classes. SUDO-PLANNER constructs
decision models (QPNs) from a multilevel knowledge base describing the effects of
actions and relations among events. The planning process alternates between model
construction and dominance proving, producing a plan graph with dominance condi-
tions ruling out the inadmissible therapy strategies for its medical decision example.

Thesis Supervisor: Peter Szolovits

Title: Associate Professor of Computer Science and Engineering

Acknowledgments

The contributions of my thesis committee members to this work went far beyond

committee duties. Peter Szolovits, my career supervisor, has provided needed encour-

agement from day one. His solid thinking helped keep me on course (for the most

part). Steve Pauker opened to me the world of medical decision problems, and served

as the paragon of decision-analytic thinking. Ramesh Patil has been ever-willing to

exchange embryonic ideas about AI and medical decision making.

The Clinical Decision Making Group at MIT has been a source of friendship

as well as colleagueship. Thanks to all those who made it such a pleasurable and

productive working environment. I am specifically thankful for comments on thesis

drafts supplied by Tze-Yun Leong, Oksana Senyk, and Ira Haimowitz. The heroic

draft-reading efforts and substantive suggestions of Elisha Sacks and Jon Doyle were

especially valuable; I hereby declare them Honorary Members of my thesis committee.

Thanks also to Tom Russ for assorted ITFXhackery.

I learned a great deal from five years of Fellows at the New England Medical Cen-

ter's Division of Clinical Decision Making. Collaborations with Jim Hollenberg, Alan

Moskowits, Mark Eckman, Frank Sonnenberg, and Craig Fleming were especially

profitable.

This research has also benefited from discussions with Jack Breese, Tony Cox, Al

Drake, Ron Rivest, Ross Shachter, the Stanford Medical probabilists: Greg Cooper,

David Heckerman, Eric Horvitz, and Curt Langlotz, and others I have forgotten to

mention.

Finally, thanks to Kate for love and support, which are more important than even

editing.

Contents

1 Introduction 13
1.1 Tradeoff Formulation 13
1.2 An Example 15
1.3 Barriers to Tradeoff Formulation 17
1.4 Uncertainty and Partial Goal Satisfaction 18

1.4.1 Problem: Uncertain Effects of Actions 19
1.4.2 Problem: Goals are not Predicates 21
1.4.3 Problem: Decision Theory and Planning 22
1.4.4 SUDO Solution: A Dominance-Proving Architecture for Plan-

ning with Partially Satisfiable Goals 24
1.5 Representations for Uncertain Knowledge 26

1.5.1 Problem: Decision Models are not Knowledge Bases 27
1.5.2 Subproblem: Pre-Enumeration of Relevant Variables 28
1.5.3 SUDO Solution: Customized Model Construction 30
1.5.4 Subproblem: Non-Modularity of Probabilistic Assertions . . . 30

1.5.5 SUDO Solution: A Qualitative Representation for Uncertainty 31
1.6 Constructing Decision Models 35

1.6.1 Problem: Avoid Exhaustive Model Construction 35
1.6.2 SUDO Solution: Model Construction at Multiple Levels of Ab-

straction 36
1.7 SUDO-Planner Overview 38

1.7.1 Basic Architecture 38
1.7.2 SUDO-Planner on the Running Example 38
1.7.3 Contributions of SUDO-Planner 39

1.8 Thesis Preview 40

2 A Dominance-Proving Architecture for Planning 42
2.1 The Plan Graph 43
2.2 Constraint-Posting Planning 43
2.3 Dominance in the Plan Graph 45

2.4 Dominance-Proving Planning
2.4.1 The Dominance-Proving Architecture
2.4.2 Instantiating the Architecture

2.5 The SUDO-Planner Architecture in Brief . .
2.6 Searching the Plan Space

2.6.1 Classification
2.6.2 Dependency Mechanisms
2.6.3 Plan Graph Queries
2.6.4 Plan Space Search: Summary

2.7 The Complexity of Subsumption
2.8 Miscellaneous Topics

2.8.1 Dominance-Based Knowledge Level A
2.8.2 On Meta-Planning

2.9 Summary

3 Representations for Plans and Actions
3.1 Plans .

3.1.1 Planning and Execution
3.1.2 Cascaded Planners

3.2 Action Representation
3.2.1 Action Taxonomies
3.2.2 Action Variables
3.2.3 SUDO-Planner Actions

3.3 Events
3.4 Constraint Language

3.4.1 Action Constraints
3.4.2 Action Policy Constraints
3.4.3 Conditional Constraints

3.5 Computing Subsumption . .
3.5.1
3.5.2
3.5.3
3.5.4

Subsumption with Action Constraints
Subsumption with Policy Constraints
Subsumption with Conditionals . . .
Extensions

4 Qualitative Probabilistic Networks
4.1 Introduction

4.1.1 Motivation
4.1.2 Preview of the Chapter . . .

4.2 Qualitative Probabilistic Networks
4.2.1 Network Models

i.e...

. . ..

. .o.

nalysis

....

....

67
67
68
69
70
71
73
74
75
76
76
78
79
80
80
82
83
85

86
86
87
88
89

.

.

4.2.2 Example: The Digitalis Therapy Advisor
4.3 Qualitative Influences Defined

4.3.1 Influence Notation
4.3.2 Probabilistic Semantics for Qualitative Influences .

4.4 Indirect Relationships
4.4.1 Probabilistic Dependence in Graph Representations
4.4.2 Network Transformations
4.4.3 Variable Reductions
4.4.4 Influence Reversals

4.5 Weaker Conditions
4.5.1 Posterior Conditions
4.5.2 Decision-Making with Qualitative Influences

4.6 Back to the Digitalis Model
4.7 Qualitative Synergy

4.7.1 Synergy Notation
4.7.2 Qualitative Synergy Defined
4.7.3 Supermodularity, Y 6, and Monotone Decisions . . .
4.7.4 Propagation of Synergies in Networks
4.7.5 Landmark Values
4.7.6 Synergy in the Digitalis Example

4.8 Related W ork
4.8.1 Qualitative Probability
4.8.2 Relations on Random Variables
4.8.3 Qualitative Reasoning

4.9 Conclusion
4.9.1 Summary
4.9.2 Discussion

5 Effects of Actions
5.1 Terminological and Assertional Knowledge
5.2 The STRIPS Assumption

5.2.1 The Frame Problem
5.2.2 The STRIPS Assumption for Uncertain

5.3 Context-Dependent Effects
5.4 Specification of Effects

5.4.1 Semantics of Effect Assertions.....
5.4.2 Special Constructs

5.5 Markov Influences
5.6 Inheritance of Effects
5.7 Creating Observables

Effcts .

. t o

......

.

.

...... o

.... o..

90
92
92
93
97
97
99

100
101
104
104
106
107
108
109
109
112
114
119
120
122
122
124
125
126
126
128

130
131
133
133
134
136
137
137
138
138
140
141

6 Model Construction 143
6.1 Desiderata for Reasoning at Multiple Levels of Abstraction 143

6.1.1 Non-Reductionism 144
6.1.2 Fluidity 146
6.1.3 Multilevel Operationality 150
6.1.4 Definitional Clarity 150
6.1.5 Coherence 151

6.2 Event Variable Knowledge Base 152
6.3 Model Construction in SUDO-Planner 155

6.3.1 Elaboration 157
6.3.2 Backward Chaining 163
6.3.3 Variable Mitosis for Markov Influences 166
6.3.4 The Model Construction Procedure: Conclusion 168

6.4 Focus of Attention 170
6.4.1 Justified Focus 170
6.4.2 Focus Variables 172

6.5 Related W ork 174
6.5.1 Decision Model Construction 174
6.5.2 Abstraction 177

6.6 On Constructed Models 178
6.6.1 Models and Closed Worlds 179
6.6.2 Decision Models 179
6.6.3 Small W orlds 181
6.6.4 Constructive Decision Theory 185
6.6.5 Constructed Models: Conclusion 186

7 Dominance Proving 187
7.1 Reducing the QPN 187
7.2 Recording Dominance Results 188
7.3 The Tradeoff Barrier 192

7.3.1 Example: A Subtle Tradeoff 193
7.3.2 Beyond the Tradeoff Barrier 195

7.4 Externally Resolved Tradeoffs 196
7.4.1 A Black-Box Interface 196
7.4.2 Tradeoff Stubs 196
7.4.3 Resolver Candidates 197

7.5 Qualitative Tradeoff Resolution 198
7.5.1 Spanning Influences and Synergies 199
7.5.2 Negligibility Reasoning 200
7.5.3 Incorporating More Precise Information 200

8 The Complete Example 202
8.1 Input Specification 202
8.2 The Evolving QPN 203
8.3 Dominance Results 206
8.4 Performance 209
8.5 Discussion 209

9 Conclusion 211
9.1 Summary of Contributions 211

9.1.1 A Dominance-Proving Architecture for Planning with Partially
Satisfiable Goals 211

9.1.2 QPNs: A Formalism for Qualitative Probabilistic Influences
and Synergies 212

9.1.3 Other Contributions 213
9.2 Limitations of SUDO-Planner 214

9.2.1 Tradeoffs........................... 215
9.2.2 Tim e . 215

9.3 Further W ork 217
9.3.1 Extending the Dominance Prover 217
9.3.2 Temporal Representations 218
9.3.3 Critiquing Based on the Dominance-Proving Architecture. .. 219
9.3.4 Tradeoff Resolution 220

9.4 Outlook on SUDO Planning 221

A Notation 222

B Proofs of QPN Results 227

C SUDO-Planner Knowledge Base 238
C.1 Event Taxonomy 238
C.2 Qualitative Relation Assertions 238
C.3 Observable Creators 238

Bibliography 242

Name Index 256

List of Figures

1.1 Threshold policies 17
1.2 Categorical planning........................... 19
1.3 Planning under uncertainty. 20
1.4 SUDO planning 24
1.5 A plan graph fragment for tradeoff formulation in the AAA/CAD/CVD

exam ple 26
1.6 Fragment of a belief network for the burglar alarm problem. 29
1.7 AAA repair and CAD are positively synergistic on MI. The rectangu-

lar node repair is a decision variable and the circular nodes are event
variables beyond the planner's direct control. 33

1.8 Qualitative probabilistic network for part of the AAA example. . . . 34

1.9 Explicit consideration of MI and CAD in the model............ 37
1.10 High-level behavior of SUDO-PLANNER. 38
1.11 Initial qualitative probabilistic network for the example. 39
1.12 Exhaustive QPN for the AAA/CAD/CVD example 40

2.1 A plan specialization graph. 43
2.2 The basic dominance-proving architecture. 49
2.3 Dominance propagation upon insertion of an intermediate plan class. 55
2.4 Redundancy in plan graph search. 56
2.5 The plan space manager augmented with a classifier to consolidate the

plan graph. 58

3.1 An integrated planning and execution system. 68
3.2 Cascaded planners. 70
3.3 Stylized NIKL definitions for the actions surgery and open-lung-

biopsy. 74
3.4 A fragment of SUDO-PLANNER's action taxonomy. 75
3.5 Plan class subsumption by bipartite matching. 81

4.1 Part of the causal model for digitalis therapy. The direction on a link
from a to b indicates the effect of an increase in a on b. 91

4.2 An example of d-separation. 98
4.3 Influence reversal 104
4.4 Information lost in a double reversal of the influence from a to b.... 104
4.5 Chaining utility influences. The influence 61 = + in G is necessary and

sufficient for U+(a,red(b,G)). 107
4.6 Reduction of the digitalis model. 107
4.7 The digitalis model with synergy. A boxed sign indicates that the

inputs are qualitatively synergistic in their influence on the output. . 109
4.8 (a) The "noisy OR" model, and (b) its corresponding qualitative ab-

straction. 112
4.9 Synergistic influence on utility. Even though U?(a) and U?(b) we can

deduce that the optimal choice of a is increasing in b. 114
4.10 Propagation of synergy through qualitative influences. 115
4.11 Variable reduction with parallel synergies. 116
4.12 Backwards propagation of synergies through qualitative influences... 117
4.13 An elaboration of a digitalis model fragment. 118
4.14 A qualitative probabilistic network for the estimation problem..... . 119
4.15 Transformation of the digitalis model with synergy. 121

5.1 A pseudo taxonomy where actions are defined by their effects. 132
5.2 Action a is conditionally independent of e given S' = {s,y} but not

given any subset of its direct effects Sa = {s}. 135
5.3 The negative Markov influence of CABG on CAD 139

6.1 A rigid multilevel knowledge base. 148
6.2 A multilevel system with a fluid knowledge base. No partitioning into

levels is possible 148
6.3 Part of SUDO-PLANNER's multilevel event variable KB. 152
6.4 Fragment of the KB relating AAA size and value. Effect links are

inherited downward in the antecedent taxonomy. 154
6.5 SUDO-PLANNER's model construction cycle. The QPN evolves through

a sequence of incremental modifications. 156
6.6 (a) Initial QPN for the running example. (b) The link corresponds to

the most general effect of AAA size found in the event variable KB. . 158
6.7 Search for elaborating paths. The dotted lines indicate that variables

a, b, and c are sources of candidate elaborations. 159
6.8 An elaboration of the initial QPN. 161
6.9 Introducing a new variable to the QPN 161

6.10 QPN after backward chaining on AAA rupture. 164
6.11 Variable mitosis in the interpretation of Markov influences. 167
6.12 Synergy with a focus variable 173
6.13 SUDO-PLANNER plans in the grand world using small-world decision

models 184

7.1 (a) The QPN before reduction. (b) The completely reduced QPN. .. 189
7.2 A plan graph fragment created to record a dominance result...... 192
7.3 A subtle tradeoff 193
7.4 SUDO-PLANNER cannot derive the synergy between AAA repair and

CAD on value because of AAA repair's unresolved synergy with MI. 194
7.5 Black-box interface with an external tradeoff resolver. 197

8.1 Early evolution of the QPN 204
8.2 The QPN after backward chaining on CVD. The variable is divided in

response to the Markov influence from endarterectomy. 205
8.3 Final QPN for the AAA/CAD/CVD example (repeated from Fig-

ure 1.12). 207
8.4 The plan graph after backward chaining on CVD. 207
8.5 The final plan graph 208

C.1 SUDO-PLANNER's event taxonomy. The taxonomy also includes several
event types not used in the running example. 239

C.2 Roles used to define event variables in the running example. 239

List of Tables

1.1 Events and actions associated with each disease in the example case. 16

4.1 The 0 operator for combining influence chains and the (operator for
combining parallel influences. For example, + 0 - = -... 100

4.2 Some sample reductions. 102

C.1 Qualitative influences in the SUDO-PLANNER KB. 240
C.2 Qualitative synergies in the SUDO-PLANNER KB............. 241
C.3 Markov influences in the SUDO-PLANNER KB. 241

Chapter 1

Introduction

1.1 Tradeoff Formulation

A typical decision whether to perform surgery on a patient involves a tradeoff. The

operation might alleviate the patient's disease, but it also carries a risk of mortality

or other undesirable outcomes. Before resolving this dilemma, we might perform

a diagnostic test to assess the surgery's potential effectiveness. In contrast to the

original decision, determining how the result of the test should influence our surgical

policy presents no tradeoff. It is obvious that our willingness to operate should

increase as the test indicates surgery is more likely to be effective.

Most of the choice problems we recognize as "decisions" are tradeoff situations.

Strategies such as "operate only if the test suggests surgery will be ineffective" never

occur to us because they violate common sense.' Unfortunately, we cannot rely on

decision-making computer programs to limit themselves automatically to only the

sensible options. Given a rich enough set of actions and limited only by syntax, a

planning program is free to assemble strategies that are arbitrarily ridiculous.

The task of tradeoff formulation is to separate the "real decisions" from the trivial

1According to Minsky [92, Chapter 27], the humor of patently irrational policies such as this is

evidence of subconscious censors on nonsensical ideas.

CHAPTER 1. INTRODUCTION

choices. Plans that can be ruled out on simple, uncontroversial grounds are called

inadmissible and are unworthy of serious consideration. Tradeoffs indicate potential

controversy, therefore plans involved in a tradeoff should be considered admissible

pending further investigation.

Once the tradeoffs are identified, other decision-making mechanisms must be em-

ployed to resolve them. Even when powerful decision methods are available, however,

there are several reasons to accord tradeoff formulation special status in the planning

architecture.

Epistemology. The knowledge required to formulate tradeoffs is more abstract,

robust, and modular than that needed for tradeoff resolution or decision making in

general. The situation above is described in terms of highly general concepts like

surgical mortality and effectiveness. In contrast, to resolve the tradeoff we would

need to specify the particular disease and surgery under consideration. For tradeoff

formulation, it is possible to reason at abstract levels because the conclusions are

valid in general situations.

Decision making generally requires precise assessments of such magnitudes as the

relative desirability of living with the disease compared to death. The qualitative

assertions needed for tradeoff formulation, for example, "more severe disease is less

desirable," typically hold with much greater confidence.

Qualitative assertions hold in a wide variety of contexts-diseases are bad for

patients of all ages, sizes, and shapes. The magnitude assessments, in contrast, of-

ten depend on these and other known patient features. The context-insensitivity of

qualitative properties translates to significant modularity advantages in representing

tradeoff formulation knowledge.

Ezplanation. A program strengthens its justifications by relying on the weakest

premises. An explanation of a non-tradeoff, therefore, should avoid reference to the

stronger assertions employed for tradeoff resolution. In addition to being more con-

CHAPTER 1. INTRODUCTION

troversial, an argument in terms of an overly powerful mechanism fails to reflect the

salient issues in a decision. Ruling out the strategy "operate only if surgery will be

ineffective" on the basis of a low evaluation score overlooks the commonsense reason

for rejecting this policy.

Efficiency. In a large knowledge-based decision system, recognizing classes of in-

admissible plans at a high level before applying general decision methods may improve

performance. The advantages of precompiling the admissible plan space can be great

when a large fraction of the syntactically valid plans are nonsensical.

This thesis describes an implemented tradeoff formulator, called SUDO-PLANNER,

and the role of tradeoff formulation in a general architecture for planning. SUDO-

PLANNER (the Synergy-driven, Utilitarian, Dominance-Oriented Planner) employs

decision-theoretic principles to formulate tradeoffs in domains characterized by par-

tially satisfiable goals and actions with uncertain effects.

1.2 An Example

A patient with a known history of coronary artery disease (CAD) and cerebrovas-

cular disease (CVD) presents with a large abdominal aortic aneurysm (AAA). 2 The

aneurysm is a dilatation of the arterial wall of the aorta, of concern because it could

rupture causing death. There is a surgical procedure to repair the AAA, but this

carries the risk of operative mortality or disability. The operation is especially risky

for this patient because the CAD increases the likelihood of a heart attack (MI, for

myocardial infarction) during AAA surgery and the CVD enhances the probability of

a stroke.

Other available actions include tests and treatments to gauge and alleviate the

2This case is taken from the files of clinical decision consultations of the Division of Clinical
Decision Making at the New England Medical Center [26]. In previous work, I have used the manual
formulation of this decision problem to illustrate mechanisms for reasoning about preferences [156].

CHAPTER 1. INTRODUCTION

CAD and CVD. Table 1.1 lists the major events and actions discussed in this example.

Test

catheterization
arteriography

Assoc. Event
rupture

MI
stroke

Treatment
AAA repair

CABG
endarterectomy

Table 1.1: Events and actions associated with each disease in the example case.

The tradeoff formulation task for this case is simply to characterize the space of

reasonable therapy strategies. Although we cannot tell from the given information

whether AAA repair is recommended, we can determine that our willingness to per-

form the surgery should increase with the aneurysm's size, because larger aneurysms

are more likely to rupture. On the other hand, indications from the diagnostic tests

that the underlying diseases are worse would argue against fixing the aneurysm. From

this we can conclude, for example, that the strategy "perform AAA repair if and only

if catheterization reveals severe CAD" is inadmissible.

Some strategies include treatment of one or both of the underlying diseases before

proceeding with the AAA surgery. A coronary artery bypass graft (CABG), for

example, could be performed to treat the CAD and therefore reduce the risk of MI

during AAA repair. To alleviate the risk of stroke, the patient's CVD might be

treated with carotid endarterectomy, a procedure to clean out vessels leading to the

brain.

Our willingness to perform these treatments is positively influenced by the severity

of the underlying diseases as indicated by the test results. Therefore, there is some

threshold value (CAD 1 in Figure 1.1a) for CAD extent as measured by catheterization

beyond which CABG is recommended.3 Because CAD extent is an argument against

3To ensure that the threshold is well-defined, we assume there exists an ordered scale for CAD
extent. The discussion here and throughout the thesis also assumes that the CAD is not so extensive
as to be untreatable.

Disease
AAA
CAD
CVD

CHAPTER 1. INTRODUCTION

AAA repair, the CAD threshold policy for this procedure is reversed. As shown in

Figure 1.1b, the repair should be performed if catheterization indicates CAD less than

CAD 2, but not otherwise.

II

A

(a)

(b)

No CABG CABG

No CAD CAD
No CAD CAD1 Max CAD

AAA Repair No AAA Repair
II' 1r .

No CAD CAD2 Max CAD

Figure 1.1: Threshold policies: (a) Perform CABG if CAD is greater than CAD 1. (b)
Perform AAA repair if CAD is less than CAD2 . The accordion lines indicate that the box

widths convey no scale information.

Finally, the tradeoff formulator must take into account interactions among the

actions. The CAD threshold for an action is really a function of the other actions

performed and other observations. In this case, because CABG alleviates the CAD,

the threshold for AAA repair given CABG must be at least as high as the threshold

given No CABG. In other words, CAD 2(CABG) Ž> CAD 2(No CABG)-performing

CABG shifts the threshold to the right. Thus, if aneurysm repair is recommended

for three-vessel disease (CAD extending to three coronary vessels) without CABG, it

must also be recommended after a triple-bypass is performed.

1.3 Barriers to Tradeoff Formulation

Most research on decision formulation is oriented toward aiding human decision mak-

ers. The research on autonomous decision-making that takes formulation seriously

also tends to treat this phase as necessarily heuristic, domain-dependent, and separate

CHAPTER 1. INTRODUCTION

from the task of choosing among alternatives. The common view of the formulation

task is as generator in a generate-and-test planning architecture.

The approach described here departs from the common view by treating the for-

mulation task as a formal decision problem no different from choice within a more

refined set of options. Because of this uniformity, plans are constructed according

to the same set of principles used to compare them. Nevertheless, we can exploit

the advantages mentioned above by recognizing the decisions that do not require the

precise, context-sensitive knowledge needed for tradeoff resolution.

The next three sections discuss central problems in automating the reasoning be-

hind the tradeoff formulation behavior illustrated above. The solutions incorporated

in SUDO-PLANNER represent the primary technical contributions of this work. The

problems are not specific to formulation; they arise in the broader task of planning

under uncertainty for partially satisfiable goals. I present the problems in their full

generality, even though the "SUDO solutions" that follow do not always match them

in scope. Nevertheless, while SUDO-PLANNER only plans "up to tradeoffs," some of

the mechanisms developed to deal with these problems are applicable to the broader

planning problem as well.

1.4 Uncertainty and Partial Goal Satisfaction

Classical AI robot planners solve problems by searching for a plan of action guaranteed

to transform the initial situation into one that satisfies some goal predicate. Robots

taking this approach in the real world are likely to be defeated because the classical

paradigm has nothing to say when a guaranteed plan cannot be found, or when one

does not exist. Such situations are typical for two reasons:

1. Knowledge of the world is imperfect; in practice it is not possible to guarantee

much about the result of performing actions in a given situation.

CHAPTER 1. INTRODUCTION

2. Predicates on world states cannot express reasonable goals for real-world agents.

1.4.1 Problem: Uncertain Effects of Actions

The classical planning paradigm is categorical. Although there may be uncertainty

implicit in the incompleteness of the planner's theory, there is no provision for ex-

pressing anything about the degree to which an event is likely and its relationship to

other uncertain events.

Categorical planners have the luxury of deductive inference. While it is impos-

sible to derive everything true about the result of applying an action in a situation,

many logical consequences of pre- and post-conditions can be derived. When the

logical , operties of a plan provably entail the goal, the planner succeeds. Figure 1.2

diagrams this planning paradigm.

initial situation
axioms

plan axioms -- *

deductive
inference

engine

theorems about
- final situation

Figure 1.2: Categorical planning. Situations and actions are described by axioms. The
task is to find a plan that achieves the goal predicate G in the final situation.

Because the effects of actions in the world are uncertain-at least from any robot's

perspective-it is rarely possible to establish with certainty that a given plan will

ensure that its goal G holds in the final situation. Failing this, a robot must consider

the probability of achieving the goal with the various courses of action open to it.4

4McCarthy and Hayes, in the classic paper on classical planning [88, page 490], recognize that
"the formalism will eventually have to allow statements about the probabilities of events." More
often recalled from that discussion is their declaration that numerical probabilities are "epistemo-

CHAPTER 1. INTRODUCTION 20

It would appear that taking this notion seriously alters our basic planning picture

dramatically. The robot must keep track of the various possible situations resulting

from executing a plan and their probabilities. One way to do this, illustrated in

Figure 1.3, is to relate a given plan to the likelihood that the goal is satisfied after its

execution via a probabilistic model.

initial situation
description

plan
description

probabilistic
model

distribution over
final situation
descriptions

Figure 1.3: Planning under uncertainty. A probabilistic model relates plans to outcomes.
The task is to find the plan with the greatest probability of achieving G.

A major problem with this approach is the difficulty of representing knowledge

required to generate probabilistic predictions. While research on categorical planning

has produced modular representations that associate all knowledge with individual

actions, such encodings are more difficult to create for the uncertain case. I return to

this issue in Section 1.5.

Given a probabilistic model, the task presented by Figure 1.3 may still be com-

putationally less attractive than that of Figure 1.2. In categorical planning, search

can be terminated as soon as a plan guaranteed to achieve the aspiration level G is

found. In general, optimizing is harder than satisficing [132]. The stopping criteria

for planning under uncertainty are stricter because it is rarely possible to determine

locally that a given plan maximizes the probability of goal achievement.

logically inadequate." This latter statement, however, was an objection to the proposal that the
basic knowledge representation should attach probabilities to all sentences, an objection strongly en-
dorsed in Section 1.5.1 below. It is unfortunate that subsequent work in AI planning has proceeded
virtually as if likelihood did not matter.

CHAPTER 1. INTRODUCTION

We can avoid this problem by satisficing on the probability of goal satisfaction.

This approach retains the predicate representation of goals (here the predicate con-

tains statements about likelihood), but it is ultimately unsatisfactory for the reasons

presented below.

1.4.2 Problem: Goals are not Predicates

Even if the difficulties related to uncertainty could be overcome, serious obstacles to

planning within the classic framework would remain. Rarely will the robot limit its

cares to the probability of a particular goal predicate being satisfied in the plan result

state. Instead, the degree to which a goal is satisfied may vary, or several objectives

may be achieved in partial measure. Achieving a goal with probability less than unity

is one important kind of partial satisfiability, but there are others as well.

The inadequacy of a predicate representation is apparent as soon as we attempt to

express the goals relevant to our medical example. Broadly speaking, our objectives

are to maximize lifespan and achieve the best quality of life by minimizing disabilities

and other health problems. Predicates on world situations can only divide them into

situations in which the objectives are satisfied and situations in which they are not.

This binary classification cannot capture even the basic preference for longer lifespans.

Even when it is heuristically advantageous to plan according to aspiration levels, an

agent should also have access to some representation of its actual preferences.

While it may have appeared possible to salvage much of the basic planning

paradigm while admitting uncertainty, the deficiency of goal predicates undermines

the fundamental structure of the methodology. Some actual planners have tried to

patch this hole in the framework by including heuristic rules to handle anticipated

planning decisions. McDermott's NASL [89], for example, uses choice rules to arbitrate

among alternative task reduction paths that arise in planning. As McDermott recog-

CHAPTER 1. INTRODUCTION

nizes, such an approach is vulnerable to harmful interactions with other eventualities

in the planning environment, as is any scheme that associates actions directly with

situations. The only way to cope with unanticipated choice contexts is to consider

explicitly the predicted effects of actions and select among the alternatives according

to a more general decision criterion.

1.4.3 Problem: Decision Theory and Planning

At this point we might reconsider whether it makes sense to adopt the planning

paradigm at all. Indeed, it may seem that I have been setting up a straw man all

along; it should have been obvious from the start that traditional planning methods

are not up to the general task of planning under uncertainty with multiple objectives.

A decision criterion of the generality required is provided by Bayesian decision the-

ory [121]. Decision theory replaces the goal predicate with a utility function mapping

outcomes to real numbers (called utilities), and prescribes maximization of expected

utility for decision making. The general picture is the same as Figure 1.3, augmented

with a utility model for evaluating the final-situation descriptions.

With or without uncertainty, planning with decision theory inherits the compu-

tational problems of the optimization task mentioned above. In practice, decision-

theoretic applications (using the methodology of decision analysis [109]) have been

possible only because the set of alternatives is manually restricted to a small collection

of strategies. This is precisely the formulation task we are trying to automate.

The space of alternatives available to an AI planner is usually specified indirectly

as those generable from a given collection of primitive actions within the syntax of a

plan language. This is typically an enormous combinatorial space, with nonsensical

plans forming a large fraction of the syntactically allowed strategies. AI planning re-

search has concentrated on techniques to construct complex strategies from primitive

CHAPTER 1. INTRODUCTION

actions by searching this space.

Charniak and McDermott [13, page 523] say the following about the relationship

between decision theory and planning:

One might think that an elegant theory of this kind would have been

assimilated into robot planners, but this has so far not been the case.

The issues addressed by the two approaches are complementary. Planning

research has focused on how plans are constructed; decision theory has

focused on how they are evaluated.

Combining the two methodologies is difficult because in the ideal integration they are

mutually dependent. Conventional application of decision theory requires a restricted

plan set, but supplying one is precisely the formulation problem we are trying to

solve. Principled plan construction calls for a decision criterion with the generality

of expected utility maximization, even at the earliest formulation stages.

Previous attempts to apply decision theory to planning have avoided this appar-

ent paradox in one of two ways. The first approach employs heuristic methods to

generate a restricted plan set without reference to decision-theoretic criteria [60]. For

example, the generate-and-test architecture of ONYX [76] completely separates the

decision-theoretic evaluation module from the candidate generator. This separation

is ultimately unsatisfactory because the heuristic generator cannot justify its decisions

with respect to the agent's objectives.

The second approach adds restrictions on the form of probability and utility mod-

els to fit particular planning algorithms. For example, Feldman and Sproull [29]

present some techniques that inherently take the utility of a plan to be additive in

its steps. Prerequisites of this strength are rarely satisfied by planning problems, and

therefore cannot serve as the basis for domain-independent planning architectures.

CHAPTER 1. INTRODUCTION

1.4.4 SUDO Solution: A Dominance-Proving Architecture

for Planning with Partially Satisfiable Goals

The key to resolving the paradox above is to change the perspective of the planner

from evaluating the results of individual plans to reasoning about the admissibility,

or reasonableness, of plan classes. Rather than viewing probability and utility models

as pieces of a static absolute evaluator, the SUDO-PLANNER architecture uses decision

theory to establish the relative value of plans.

initial situation
description

action
descriptions

dominance
prover

theorems about
plan class

admissibility

Figure 1.4: SUDO planning. The task is to characterize the space of admissible plans.

As illustrated in Figure 1.4, SUDO-PLANNER applies a dominance prover to char-

acterize the space of admissible plans. The dominance prover uses knowledge about

the effects of actions and the relative desirability of outcomes to derive facts about

the preferred plan. In our AAA case, for example, among the plans that include

CABG conditional on the result of catheterization, the dominance prover determines

that the condition must call for CABG to be performed whenever the indicated CAD

is more extensive than some threshold value. Nonsensical plans that include CABG

for mild CAD but not for severe CAD (all else being equal) are therefore deemed

inadmissible.

In order to express results of this sort, we need a representation for classes of

plans. The dominance result above refers to the classes "plans with catheterization"

and "plans with CABG conditional on catheterization result," among others. SUDO-

CHAPTER 1. INTRODUCTION

PLANNER encodes these classes by the series of constraints that distinguish them

from other plan classes. A partial plan produced by a conventional constraint-posting

planner can be viewed as an abstract representation of the set of all plans generated

by its potential completions.

The class of plans with "CABG if catheterization result is above threshold" is

a subclass of those that include catheterization with no further restrictions. SUDO-

PLANNER maintains a plan graph that partially orders the plan classes by generality.

This data structure, annotated with results derived by the dominance prover, repre-

sents the space of admissible plans.

The concept of plan class dominance is founded on the basic decision-theoretic

notion of a preference relation. A preference order on prospective outcomes provides

the flexibility (notably absent from situation predicates) required to express the par-

tial satisfiability of goals. By appropriately constraining the preference order, we

can specify, for example, that longer lifetimes are preferred to shorter ones, and that

disabilities are undesirable.

To prove dominance, the planner needs to relate some feature of plans to the pref-

erence order on prospective outcomes, and hence to expected utility. Once identified,

this relation can be incorporated into the plan graph by recording the dominance con-

dition on the appropriate plan classes. Using the fact that dominance is inherited in

the plan graph (as well as other properties of the formal definition of dominance, pre-

sented in Section 2.3), the implications of this result are propagated to other related

plan classes.

In tradeoff formulation, the dominance prover's task is to detect inadmissible plan

classes by applying the planner's qualitative knowledge of the effects of actions. Ide-

ally, at the end of tradeoff formulation the plan graph includes dominance conditions

ruling out these strategies. Figure 1.5 shows a piece of the plan graph derived by

SUDO-PLANNER for the AAA/CAD/CVD example of Section 1.2.

CHAPTER 1. INTRODUCTION

All plans

AAA repair? catheterization CABG?

II+(repair, size) repair? cath cath, CABG?

R R
II- (repair, CAD) II+(CABG, CAD)

Figure 1.5: A plan graph fragment for tradeoff formulation in the AAA/CAD/CVD ex-
ample.

Because I have not yet defined the plan and constraint languages, the plan classes

in Figure 1.5 are informally described. The graph is a partial order on its classes,

with the most general on top. Thus, the class of plans where AAA repair is under

consideration ("AAA repair?") is a subclass of the universal plan class and a su-

perclass of those in which the repair policy is a monotonically increasing function of

the aneurysm size. The R annotation on the specialization link indicates that the

dominance prover has derived a restriction relation (defined in Section 2.3), which

implies that the planner can limit its attention to policies of the specialized form.

A complete discussion of the dominance-proving architecture, including formal

definitions of the various relations mentioned here, appears in Chapter 2. The par-

ticular representations for plan classes employed by SUDO-PLANNER are introduced

in Chapter 3.

1.5 Representations for Uncertain Knowledge

The dominance-proving architecture provides a framework for planning under uncer-

tainty with partially satisfiable goals. However, the performance of the dominance

prover depends critically on effective representations for the effects of actions and

CHAPTER 1. INTRODUCTION

the desirability of outcomes. We have already seen that representations from classi-

cal planning are inapplicable to reasoning about uncertain events. In this section, I

argue that traditional decision-analytic models are also insufficient for knowledge rep-

resentation, and sketch the ideas behind the qualitative probabilistic networks that

support tradeoff formulation in SUDO-PLANNER.

1.5.1 Problem: Decision Models are not Knowledge Bases

For purposes of decision making, a complete knowledge base (KB) specifies the joint

probability distribution of all relevant actions and events. A probabilistic model is a

representation from which a joint distribution (or parts thereof) can be computed in

a reasonably direct manner. Researchers in decision analysis have developed repre-

sentations called decision models, essentially probabilistic models augmented with a

specification of preferences for the joint events.

Decision models are the obvious candidate for a knowledge representation to

support planning under uncertainty. Recent advances in mechanisms for encoding

and evaluating probabilistic and decision models, particularly the belief networks

of Pearl [101, 103], have led to increasing interest in them within the AI research

community.5 From a knowledge engineering perspective, however, the idea of a deci-

sion model as a knowledge base has serious drawbacks.

The main problem is scalability. It appears feasible to build decision models

of modest size, perhaps approaching the scope of today's expert systems [2, 53].

Knowledge bases in this range constrain the problem solver to a narrow decision

context applicable only to a restricted set of selected cases. The more ambitious goal

of building planners that operate with near autonomy over a broad range of decision

SAlthough a variety of other modeling formalisms exist, belief networks and the related influence
diagram representation [61, 123] are sufficiently representative that little generality is lost by devoting
exclusive attention to them in the following arguments.

CHAPTER 1. INTRODUCTION

environments calls for significantly larger knowledge bases. For example, to avoid the

manual pre-selection of cases currently required by medical expert systems, a therapy

planner would need at least the knowledge of a general practitioner to determine

which specialized domain knowledge is relevant and applicable for a given patient.

More general autonomous reasoners require a huge body of commonsense and world

knowledge, perhaps on the order of Lenat's cYc KB [80].

There are several reasons to expect that decision models will not be viable knowl-

edge representations for robot planners expected to work over a broad range of de-

cision contexts. I discuss two of them as subproblems below and describe how these

issues have influenced the design of SUDO-PLANNER.

1.5.2 Subproblem: Pre-Enumeration of Relevant Variables

Figure 1.6 depicts a belief network fragment presented by Kim and Pearl [70] to

illustrate their representation. In the problem under consideration, an agent named

Mr. Holmes gets a phone call from his neighbor reporting that his burglar alarm

has sounded. He also hears a radio announcement of an earthquake in the vicinity,

suggesting a possible cause of the alarm. The belief network models the relationship

between the proposition that the Holmes home has been burglarized and the other

factors in this situation.

Though it may be a perfectly suitable representation for this particular problem,

it is unreasonable to expect that this model fragment would be available as a piece of

some giant belief network KB supporting Mr. Holmes's generally intelligent behavior.

Such a knowledge base commits the reasoner to a pre-enumerated set of parameters

describing the relevant actions and events, and therefore could only apply to a narrow

set of anticipated situations.

Imagine a KB designed to support general problem-solving about burglar alarms

CHAPTER 1. INTRODUCTION

Skey:

alarm
burglary
earthquake

a nneighbor call
radio broadcast

Figure 1.6: Fragment of a belief network for the burglar alarm problem.

and earthquakes. We would expect that a reasoner able to handle the problem de-

scribed above should also behave reasonably when, for instance, some other neighbor

makes the call, the situation takes place at night rather than day, Mr. Holmes is at

some other location, or an earthquake or burglary occurred the previous day. While

it is certainly possible to identify variables and relationships to encode each of these

problem features, including all conceivably useful parameters in a static network KB

would be infeasible.

Formally, the issue is analogous to the limitations of propositional as compared to

first-order logic. If one could pre-enumerate a finite set of relevant atomic formulas,

first-order quantification constructs would be superfluous. The ability to express

facts about abstract situations without reference to complete detail, however, has

proven to be essential in knowledge representation. Instantiation mechanisms to

apply knowledge in this form to particular situations are part of every automated

reasoning program.

A small increment of generality can be obtained through the use of template

models. Templating supports a rigid form of instantiation where the parameter re-

placement paths are in effect hard-wired in advance. The set of parameters provided

is restricted, and the topology of relationships is fixed.

Mr. Holmes could not be easily realized by a template. To handle the range

CHAPTER 1. INTRODUCTION

of natural problem variants mentioned above, he would be best served by a large

general body of knowledge about communication acts, news reporting, and alarm

mechanisms. The ultimate pattern of instantiation from this general knowledge to

concrete parameters for a given problem cannot be predicted.

1.5.3 SUDO Solution: Customized Model Construction

We can solve the pre-enumeration problem without dismissing decision models al-

together by dynamically constructing models in response to the problem at hand.

In this approach, the decision model is viewed as a target representation, not as a

language for the KB itself.

Aside from the basic feasibility issue, customized decision models offer important

advantages over monolithic decision-model knowledge bases. A model covering more

than a narrow body of decision contexts would be inappropriate for any particular

planning problem because the extraneous features entail an unnecessary computa-

tional burden and obscure explanations of the result. General models cannot take

advantage of simplifying features that-while present in any given decision problem-

vary from case to case.

The task of building customized models raises a wide range of issues, discussed in

Section 1.6 below.

1.5.4 Subproblem: Non-Modularity of Probabilistic Asser-

tions

The second major difficulty with decision models as KBs is the fundamental non-

modularity of probabilistic assertions [51]. Unlike logical implications, statements of

conditional probability cannot be combined without further information or assump-

tions about interactions among the conditions. Whereas in pure logical inference the

CHAPTER 1. INTRODUCTION

derivation path leading to a fact is irrelevant to further conclusions, 6 under uncer-

tainty the source of belief in a proposition may strongly affect its relation to other

statements [102].

A consequence of this observation is that probabilistic assertions are highly sensi-

tive to context. The association between a symptom and a disease generally depends

on the patient's age, sex, and a host of other features. To support reasoning about the

broad mix of patients naturally arising in practice, knowledge relating the symptom

and disease must take these features into account. In the worst case (and perhaps

the typical case), the probabilistic model requires a size exponential in the number

of patient features [60, 144].

Expert systems and decision-analytic models cope with this problem by adopting

narrow scopes. Problems are described by a relatively small number of parameters

describing the important factors in the program's specialized domain. Other fea-

tures are considered irrelevant or are implicitly taken into account as "background

knowledge." The latter approach is reasonable as long as the population of cases fed

to the program is homogeneous with respect to the background features. Builders

of probabilistic systems for medical diagnosis have found that models validated for

the population of a particular community cannot be reliably transported to medical

centers with demographic differences [135].

1.5.5 SUDO Solution: A Qualitative Representation for

Uncertainty

Another way to cope with non-modularity is to isolate some relatively context-

insensitive components of probabilistic assertions and reason with these as far as
6The inadequacy of standard logical formalisms for representing real-world planning knowledge

has led AI researchers to develop nonmonotonic logics that do not have this locality property and
therefore share the modularity problems of probabilistic representations.

CHAPTER 1. INTRODUCTION

possible before resorting to knowledge encoded in less convenient representations.

This approach is especially attractive for the task considered here because, as sug-

gested in Section 1.1, knowledge required for tradeoff formulation is considerably more

modular than that necessary for complete decision-making.

The Qualitative Probabilistic Network (QPN) formalism is designed to support

precisely the knowledge required for tradeoff formulation. QPNs are abstractions

of numeric probabilistic networks that encode only qualitative constraints on the

joint probability distribution over the variables. Although these constraints do not

determine probabilities uniquely, they support relative likelihood conclusions that are

sufficient for the dominance results SUDO-PLANNER uses to characterize plan class

admissibility.

QPNs contain two basic kinds of qualitative relationship. Qualitative influences

describe the direction of the relationship between two variables. Qualitative synergies

describe interactions among influences. The qualitative nature of these relationships

affords robustness through context-insensitivity. While the precise numeric magni-

tude of the relationship between a symptom and a disease tends to vary with other

factors, the direction of the relationship is often unaffected. For example, assessing

the implications of a cardiac stress test on the probability of CAD requires consid-

eration of the patient's age and smoking habits, among many other factors. On the

other hand, the direction of the relation between test parameters and coronary dis-

ease is context-independent: for any given age and smoking behavior, CAD tends to

decrease a patient's exercise tolerance.

An example of qualitative synergy is the interaction between AAA repair and

CAD in their effect on MI. Both variables have a positive influence on MI: CAD

increases the likelihood of a heart attack in any situation, and AAA repair increases

MI risk for any given patient. The positive qualitative synergy, depicted in Figure 1.7

as a boxed plus sign connecting the two nodes to MI, holds because these influences

CHAPTER 1. INTRODUCTION

are mutually reinforcing. That is, the increase in MI risk due to surgery for the

aneurysm is greater for patients with more severe CAD. In other words, the expected

joint effect on MI of increasing both CAD and AAA repair is greater than the sum

of the two effects taken independently.

Figure 1.7: AAA repair and CAD are positively synergistic on MI. The rectangular node
repair is a decision variable and the circular nodes are event variables beyond the planner's
direct control.

Qualitative relations of this sort provide the basis for tradeoff formulation in SUDO-

PLANNER. Because of their comparative modularity, a KB comprised of these con-

structs is more easily scaled up than one based on precise probabilistic assertions.

Extending the KB to cover other cardiac disorders, for example, would not require

modification of the CAD/stress-test relation, nor would a relocation of the reasoning

system to a demographically dissimilar environment. This phenomenon is not merely

an artifact of applying less precision; arbitrary weakenings of the assertions would of-

fer meager modularity gains. Robustness depends on the extent to which qualitative

relations capture causal structure in the domain.

Figure 1.8 illustrates a QPN for part of our AAA example. The network consists

of four variables and the relationships among them. The decision variable repair

represents the proposition that surgery to fix the aneurysm is performed. Repair has

a negative influence on rupt, because surgery decreases the probability of aneurysm

rupture. The size of the aneurysm, on the other hand, has a positive relation to rupt.

The undesirability of ruptures is captured in the network by the negative link from

low

CHAPTER 1. INTRODUCTION

rupt to the special value variable v (the hexagonal node in QPN diagrams). The

negative influence from repair to v indicates that, aside from its known beneficial

influence on ruptures, the effects of AAA surgery are undesirable.

Figure 1.8: Qualitative probabilistic network for part of the AAA example.

The network also includes two qualitative synergies. First, repair and size are

negatively synergistic on rupt. This statement means that the larger the aneurysm,

the larger the negative influence of repair on rupture probability. A symmetric per-

spective is that performing the repair lessens the positive influence of size on rupt.

Second, repair and rupt are positively synergistic on v because the negative effects of

surgery are less important when ruptures occur.

Formal probabilistic definitions of these qualitative relations, along with a de-

scription of the QPN inference mechanisms, appear in Chapter 4. Inference in QPNs

consists primarily of reduction rules for combining influences and synergies to de-

rive the relations among indirectly related variables. For this network, reducing rupt

reveals that repair and size are positively synergistic on v, which implies that the

optimal repair policy is an increasing function of size. This simple conclusion is the

dominance result derived by SUDO-PLANNER and posted on the leftmost path down

the plan graph of Figure 1.5.

CHAPTER 1. INTRODUCTION

1.6 Constructing Decision Models

Part of our solution to the unsuitability of decision models as knowledge bases calls

for dynamically constructing models from more reasonable knowledge representations.

Previous attempts to automate the model generation task (reviewed in Section 6.5),

however, have uncovered some serious obstacles to the goal.

1.6.1 Problem: Avoid Exhaustive Model Construction

Perhaps the greatest obstacle to automated model construction is the difficulty of

avoiding exhaustive inclusion in the model of every factor in the KB. Because a

model is effectively a closed world (that is, reasoners or evaluators apply a closed-

world assumption when operating on the model), failure to include a factor is only

justified when that factor is irrelevant to the task. However, it is typically difficult to

establish that a given factor is irrelevant. In medicine, for example, it seems that any

event can be related to any other by some conceivable path of associations. It would

be surprising to find a large medical KB with significant disconnected components.

Reasoning with decision models cannot commence until the model is completed, or

"closed." An exhaustivity constraint, therefore, delays the production of any results

whatsoever from the planner. Worse, the KB could easily specify an infinite number

of potentially relevant factors for inclusion in the model.

Paradoxically, this suggests that tractable models will only be generated by pro-

grams with small knowledge bases. In contrast, human decision analysts and knowl-

edge engineers are capable of producing models and expert systems for customized

tasks despite their knowledge of neighboring domains not included in their systems.

To achieve similarly selective behavior, an automatic model builder requires a win-

nowing strategy, ideally based on sound decision-theoretic principles.

CHAPTER 1. INTRODUCTION

1.6.2 SUDO Solution: Model Construction at Multiple Lev-

els of Abstraction

One powerful technique for selective model construction is abstraction. A valid ab-

straction is a license to ignore detail. Even detail that is relevant to the planning

task as a whole need not be considered for every subtask. A planner can derive use-

ful dominance results at high levels of abstraction before considering more detailed

problem features.

For example, the direct negative link from repair to v in Figure 1.8 is based on

knowledge found at the upper abstraction levels. Potentially undesirable consequences

are associated with all treatments; AAA repair inherits the qualitative influence by

virtue of its place in the action taxonomy. The more detailed description of the unde-

sirable consequences of this treatment-possible surgical mortality, MI, or stroke-is

inessential to SUDO-PLANNER's derivation of the threshold policy for aneurysm size,

discussed above.

Explicit consideration of these specific events, however, is required to solve other

pieces of this planning problem. For example, the relevance of CAD to the AAA-repair

decision becomes apparent only when we introduce the variable MI as an event along

the path from repair to v, shown in Figure 1.9.' Based on the derived implications

of CAD, SUDO-PLANNER determines whether to pursue the possibility of performing

CABG to decrease the risk of MI during AAA repair.

A planner capable of model-building at multiple levels of abstraction can tailor a

separate model for each distinct issue it faces in designing a plan. This permits the

reasoner to avoid simultaneous consideration of all the factors potentially relevant to

'The QPNs of Figures 1.8 and 1.9 are simplified for expository purposes from the networks directly
constructed by SUDO-PLANNER. They are equivalent, however, to intermediate models produced by
dominance-proving operations on the actual QPNs. The full account of SUDO-PLANNER's behavior
on this example is presented in Chapter 8.

CHAPTER 1. INTRODUCTION

Figure 1.9: Explicit consideration of MI and CAD in the model.

the planning problem.

SUDO-PLANNER traverses its multilevel KB to generate a series of QPN models

for analysis. Search is driven by the goal of deriving useful qualitative synergies.

SUDO-PLANNER does not employ any sophisticated control strategies to optimize the

path of model generation. s

As illustrated by the example, abstraction is central to SUDO-PLANNER's ability to

derive useful dominance results early in the planning process. Without this feature,

planning from decision models would be infeasible for large knowledge bases.

For a complete description of the model construction algorithm, see Chapter 6.

Although the current methods are sufficient to demonstrate some interesting multi-

levelbehavior, the model construction component of SUDO-PLANNER is not the final

word in decision model generation. Experience with this task has suggested a set of

desiderata for multilevel reasoning (presented in Section 6.1) that offer perspective

on the competence of SUDO-PLANNER, the status of other AI work on abstraction,

and promising topics for further research in this area.

SAlthough attention to this issue will undoubtedly be important as the KB grows, reliance on an
optimized model generation procedure for a problem of the size demonstrated here would indicate
extreme fragility.

CHAPTER 1. INTRODUCTION 38

1.7 SUDO-Planner Overview

1.7.1 Basic Architecture

Figure 1.10 illustrates the input/output behavior of SUDO-PLANNER. Planning prob-

lems are described in terms of changes. Assuming that current strategy is opti-

mal given current knowledge, 9 any plan modifications must be grounded in situation

changes.

model (QPN)
construction

problem
description / plan graph

dominance proving

Figure 1.10: High-level behavior of SUDO-PLANNER.

SUDO-PLANNER's reasoning process consists of a repeating cycle of model con-

struction and dominance proving. The dominance prover posts its conclusions on the

plan graph as they are derived. The undominated fringe of the plan graph represents

the space of admissible plans, which is the output of the tradeoff formulation process.

This process does not necessarily terminate at some natural point; SUDO-PLANNER

will continue to generate QPNs as long as there are potentially relevant variables in

the KB.

1.7.2 SUDO-Planner on the Running Example

For the example case, SUDO-PLANNER is told only that the variable AAA size has

changed. The initial model generated is the trivial QPN shown in Figure 1.11, which

9The application of this assumption is discussed in Section 6.4.

CHAPTER 1. INTRODUCTION

says only that aneurysm growth is bad.

size : UV

Figure 1.11: Initial qualitative probabilistic network for the example.

As it evolves the model, SUDO-PLANNER derives facts about plan class dominance,

including, for example, that the AAA repair strategy should be a threshold policy

on aneurysm size. Along the way, the program encounters some subtle tradeoffs, not

resolvable by qualitative information alone. Given resolutions for these (discussed fur-

ther in Section 7.4), SUDO-PLANNER proceeds to generate further dominance results.

The QPN for this problem eventually reaches the complexity of Figure 1.12. The final

plan graph incorporates all of the conclusions mentioned informally in Section 1.2,

including the restriction relations shown in Figure 1.5.

1.7.3 Contributions of SUDO-Planner

The contributions of this research are the "SUDO solutions" presented in Sections

1.4 through 1.6. The main technical developments are in the dominance-proving

planning architecture (Chapter 2) and the qualitative probabilistic network formalism

(Chapter 4). Less tangible products of this work include:

* Identification of the tradeoff formulation task and its role in planning.

* Design and analysis of knowledge representations for plan classes, actions, and

the effects of actions.

* Exploration of issues in the automatic construction of decision models.

CHAPTER 1. INTRODUCTION

Figure 1.12: Exhaustive QPN for the AAA/CAD/CVD example.

* Demonstration of representations and reasoning strategies that effectively ex-

ploit knowledge at multiple levels of abstraction.

1.8 Thesis Preview

This introductory chapter has provided a broad perspective on the tradeoff formula-

tion task, problems with current technology, and the solution approaches offered by

SUDO-PLANNER. The remainder of the dissertation provides the details.

Chapter 2 introduces a dominance-proving framework for planning with partially

satisfiable goals. Although illustrated primarily with examples from SUDO-PLANNER,

the dominance-proving architecture is presented more generally, allowing for applica-

tion to tasks other than tradeoff formulation. The chapter includes a generic spec-

ification for the architecture components, which is instantiated for the particular

CHAPTER 1. INTRODUCTION

SUDO-PLANNER mechanisms in subsequent chapters.

Chapter 3 describes the representations for plans, plan classes, and actions in

SUDO-PLANNER. Discussion of the design decisions involved emphasizes the impli-

cations on computational complexity within the dominance-proving architecture of

Chapter 2.

The qualitative probabilistic network formalism is motivated, rigorously defined,

and illustrated in Chapter 4. The probabilistic semantics of qualitative influences and

synergies justify efficient, powerful QPN inference procedures, as well as decision-

theoretic results derived by SUDO-PLANNER's dominance prover. Like Chapter 2,

this chapter is presented in a self-contained fashion because the results are applicable

outside the scope of SUDO-PLANNER.

Some of the most difficult knowledge representation issues arise in specifying the

effects of actions, the subject of Chapter 5. The chapter includes detailed descriptions

of constructs for asserting effects in the SUDO-PLANNER KB, as well as discussion of

the broader epistemological issues surrounding their design.

SUDO-PLANNER's techniques for automatic model construction at multiple levels

of abstraction are presented in Chapter 6. To evaluate the performance of these

methods, I consider properties of an ideal multilevel reasoning system and compare

SUDO-PLANNER to other AI work in this area.

Chapter 7 focuses on the dominance-proving component of SUDO-PLANNER. Some

subtle tradeoffs encountered in the running medical example are presented and ana-

lyzed. The example demonstrates how SUDO-PLANNER can proceed from these ap-

parent dead ends by incorporating externally supplied tradeoff resolutions.

Chapter 8 presents SUDO-PLANNER's complete analysis of the running example.

Chapter 9 concludes the dissertation with a summary, a discussion of limita-

tions, and some speculation about further developments and the outlook for SUDO-

PLANNER.

Chapter 2

A Dominance-Proving
Architecture for Planning

I have argued above (Section 1.4) that the classical planning framework is inadequate

because goal predicates are not expressive enough for choice in the face of partially

satisfiable goals. Decision theory, in contrast, offers a sufficiently general plan se-

lection criterion, but says nothing about constructing plans from descriptions of the

effects of component actions. In this chapter, I present a framework for applying the

flexible decision-theoretic criterion in a constructive context by integrating a domi-

nance prover into the planning process.

Dominance-proving planners reason about possible courses of action by establish-

ing preference properties of classes of plans. The basic dominance-proving architec-

ture represents a general approach to planning for partially satisfiable goals. The

particular knowledge representations and dominance proving techniques employed by

SUDO-PLANNER, developed in subsequent chapters, apply specifically to tradeoff for-

mulation. In this chapter, I characterize the architecture abstractly, independent of

this or any other specialized planning task. The architecture is illustrated with a brief

discussion of SUDO-PLANNER's components. The final sections of the chapter discuss

general planning issues within this framework.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

2.1 The Plan Graph

Let Q be the set of all syntactically valid plans, called the universal plan class. For

example, if A = {ai,..., an} is an alphabet of primitive actions, then 0 = A* is the

class of linear plans. The class of nonlinear plans is similar, extended by a partial

order on plan steps. A plan class is any set of plans, II C 0. We sometimes call II a

partial plan, to emphasize its representation as a collection of constraints incompletely

specifying the plan of interest.

We can view the planning process as one of reasoning about properties of partial

plans formed by adding constraints to candidate plan classes. The partial plans

generated during the planning process can be organized in a specialization graph

according to the subset relation. An example of a plan specialization graph appears

in Figure 2.1. The node in the graph marked "A*alA*" denotes the set of all plans

with at least one instance of action ax. The set of plans starting with ax forms a

subclass, as does the set of plans with an a, followed by an a2.

A*aA* A*a2A* A*a3A*

alA* A*ala2A* A*ala3 A* A*a2a3 A*

Figure 2.1: A plan specialization graph.

2.2 Constraint-Posting Planning

The plan graph representation of a search space supports a constraint-posting ap-

proach to planning. A constraint-posting planner-illustrated best by Stefik's MOL-

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

GEN [137]-refines the plan graph incrementally until some problem is solved regard-

ing the plan to be executed. With the traditional representation of goals as predi-

cates, the problem is to identify a satisfying plan. With partially satisfiable goals,

the problem is to find the best plan. But except for some special cases where conve-

nient optimization techniques are applicable, it is not possible to determine whether

a given plan is optimal by examining it in isolation. It may be more reasonable to

answer questions about the optimal plan, without necessarily constructing a complete

description. I consider the issue of reasoning objectives for a planner further in the

description of the dominance-proving architecture in Section 2.4.1.

A constraint-posting planner can be more efficient than a planner that only eval-

uates complete plans because eliminating a partial plan prunes an entire region of

the search space. However, this advantage depends on having some justification for

the constraints based on properties of the partial plan. For example, MOLGEN knows

that for a screen operation to be useful, it must select the appropriate bacteria.

Thus, when adding a screen step to a plan, MOLGEN is justified in posting a con-

straint of the form (resists antibiotic-1 bacterium-4). Constraining the antibiotic to

a particular chemical agent would be unjustifiably specific at this stage.

By adding only the constraints that have the best justifications, a planner imple-

ments a least commitment strategy. An extreme form of least commitment propagates

only provable properties of admissible plans. In practice, however, planners have to

make guesses when no provable constraints are available. The least commitment

heuristic tends to minimize both the likelihood of wrong guesses and the extent of

backtracking required to recover from such mistakes. A policy of working on plan

classes at upper tiers of the plan graph is a form of least commitment strategy because

the partial plans there are minimally constrained.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

2.3 Dominance in the Plan Graph

A dominance-proving planner is a constraint-posting planner that justifies constraints

by determining that the plan classes they define dominate other plan classes of inter-

est. To speak meaningfully of dominance among plan classes, we need to introduce

a preference relation, >-, over plans. In categorical planning, for example, one plan is

preferred to another if it achieves the goal and the other does not. To state this in

terms of the situation calculus [88], we write:

7rl - r2 n G(result(robot, ri, s,)) A -'G(result(robot, r2, Si)) (2.1)

G is the goal predicate, defined on situations resulting from the robot performing a

plan 7r in a given situation. Here si denotes the initial situation. Two plans that

both achieve or both do not achieve the goal are equally preferred, or indifferent,

denoted by ,. The expression 7r, b 7r2 means that rrl is preferred or indifferent to

7r2. Indifference is an equivalence relation, and 7rl >- 7r2 - • 7 - r 2 A 7rl L 7r2.

The preference relation characterizes the choice criterion employed by the planner.

A planner based on expected utility takes

1rl >- 7~2 * E [u(7r,)] > E [u(7r2)]. (2.2)

The discussion of dominance that follows does not depend on any particular criterion

for plan choice. We do need to assume, however, that the non-strict preference

relation, -, is a total order on plans.' Effective dominance proving may require

further regularities in the preference relation.

A class of plans dominates another if for any plan in the second class, there is some

plan in the first that is preferred or indifferent. Formally, the dominance relation is

given by the following.

1The architecture does not require that the planner be given a complete specification of the
preference relation. Indeed, for our purposes >- is merely a formal device for defining plan class
dominance.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

Definition 2.1 (D) II1 dominates 112, written D(II1, II2), iff

Vr2 E II2 3rl E 111 rI __ 7r2 (2.3)

This definition leaves open the possibility that two plan classes be mutually domi-

nating. Also, it should be emphasized that it is possible to prove dominance without

identifying the particular superior plan irl corresponding to each r2.

The strict version of dominance, D', is defined similarly, except that a particular

plan in the first class is preferred to any in the second.2

Definition 2.2 (D') II1 strictly dominates 112, D'(II,I112), iff

37r E II1 V7r 2 E112 111 > 7r2 (2.4)

Strict dominance implies dominance. In addition, the properties below follow directly

from the definitions:

D is reflexive, transitive, and complete. (2.5)

D' is anti-reflexive and transitive (and therefore anti-symmetric). (2.6)

D(IIx, I12) --D'(2II, II) (2.7)

II2 C_ I1 =l D(III, 112) (2.8)

D(III,II12) A D(II3 , II4) =i D(II 1 U 113, II2 U 14) (2.9)

D(111,113) V D(112 , 113) #• D(III U 112, 113) (2.10)

D'(IIi, II2) A D(II2, I3) = D'n(II1, 113) (2.11)
2This difference is required by the possibility of infinite plan classes with no maximal elements.

If (2.4) were exactly a strict version of (2.3), then such a class would strictly dominate itself. For the
same reason, a definition of weak dominance which merely substituted > for >- in (2.4) would not
entail the reflexive property. Assuming that every plan class has a maximal plan is unreasonable,
even if it is appropriate to require that the universal class f) does.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

These properties serve as dominance propagation rules within the plan graph.

Plan classes trivially dominate their subclasses (2.8) because adding plans to a class

can only improve its optimum. By (2.8) and the transitivity of D, dominance by

a particular class is inherited in the plan graph. Strict dominance is also inherited,

by (2.8) and (2.11). Thus, markers or links indicating dominance relations need be

stored only at the upper envelope of classes to which they apply. Application of the

union properties (2.9 and 2.10), which also hold for D', propagate dominance upwards

in the graph

A plan class is restricted by asserting that it is weakly dominated by one of its

subsets. In the MOLGEN example given above, if II is the class of plans that include

the screen operation, and 112 is the subclass defined by posting the constraint (resists

antibiotic-1 bacterium-4), then D(II2, II) asserts that 112 restricts II1. The new

dominance assertion represents progress because it lets us focus our attention on a

smaller set of plans. Deriving these restrictions is an important task of the dominance

prover.

Constraints might be posted to explore the search space even though the domi-

nance relation does not provably hold. Often, such constraints are justified by identi-

fiable assumptions that imply dominance. We can express this case by asserting the

conditional dominance relation, Ds, for S an assumption proposition.

Definition 2.3 (Conditional Dominance) Ds(1 1,112)= S -=€ D(III,112).

Normal dominance is just Dtrue. As an example of conditional dominance, sup-

pose that we are uncertain about the identity of the organism of interest: it could be

bacterium-2 or bacterium-3. For i = 2 and 3, let Si be the proposition "Bacterium-i

is the organism of interest" and II the plan class that restricts II1 to those plans

in which the resists relation holds between antibiotic-1 and bacterium-i. Then

we have Ds2 (112,II1), Ds,(113, II), and S2 V S3 . Applying Definition 2.3, we get

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

D(II2,II 1) V D(1 3 , 1I1). Property 2.10 yields the result D(II2 U 11H, II).

Of particular value are conditional dominance relations where S itself contains

dominance assertions. For example, if S1 =- D(II, 7), then Ds, (I12, II1) asserts that

if we know the optimal plan is in II, we can further confine attention to 1I2. 3 Rea-

soning of this form can be useful for deriving restriction relations. Indeed, conditional

dominance provides an interpretation for the strategies employed by Pednault [105]

and Chapman [12] to limit the search space of their planners, discussed further in

Section 2.8.1 below.

A dominance-based reasoner can be extended straightforwardly to handle condi-

tional dominance by inserting a truth-maintenance layer between conditions (which

correspond to assumptions or justifications) and their dominance implications [19, 86].

The interesting task for the dominance prover is to come up with meaningful condi-

tions that imply useful dominance relations.

2.4 Dominance-Proving Planning

2.4.1 The Dominance-Proving Architecture

The schematic architecture of Figure 2.2 illustrates the roles of the plan graph and

dominance relation in a dominance-proving planner.

The active modules of the planner operate on the plan graph and domain model

(KB) in the following ways:

* The problem solver reasons about the relations among actions and events in the

domain model.

3In categorical planning, Ds, is the same as D (that is, Ds,(111 , II) , D(H1, 11H2)) due to the
binary nature of the preference relation (2.1).

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE 49

Figure 2.2: The basic dominance-proving architecture.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

* The constraint poster generates new plan classes by adding constraints to un-

dominated classes in the plan graph.

* The dominance prover applies knowledge from the domain model to derive dom-

inance conditions (including restrictions and conditional dominance) among the

plan classes of interest.

* The dominance propagator updates the plan graph to reflect the dominance

relation D according to its properties presented in Section 2.3.

Together, the plan graph and the modules that operate on it constitute the plan space

manager.

In this architecture, planning is not a search for a single plan to execute, but

an exploration of properties of admissible plans. A planner performs useful work by

refining the plan graph, even if it never reduces the lowest-level classes to singleton

sets. Narrowing the admissible plans to a set that contains 10400 or even an uncount-

able infinity of plans may seem like little progress. But if we can determine that all

of them contain, for instance, an appendectomy, we solve a significant problem. In

general, cardinality is not an accurate measure of the refinement of a plan class. If the

plan language includes real-valued parameters, then all but the tightest constraints

still leave an uncountable set of candidate plans. The plan class "Administer a dose

of drug X within the next minute" includes individual plans where the time the drug

is given is any point in the 60-second interval.

The prevailing view of planning as the construction of a completely specified

course of action is never totally accurate. Planners devote their resources to isolated

questions, such as whether to perform an appendectomy or what to do nezt, without

specifying all other features of the plan. A plan to obtain some bananas, for example,

is complete only with respect to a have-bananas goal; in the larger context of satisfying

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

all physical and emotional needs forever, the agent never stops planning. Figuring

out how to get the bananas is a small act of refinement on THE GRAND PLAN.

The classic concept of a decision can be understood in terms of the dominance-

proving architecture as a choice among exclusive and exhaustive plan classes. De-

cisions to eat a banana or to join the Air Force are commitments to a class of

plans having a particular property, at the expense of those lacking that property.

The decision-making agent remains uncommitted to the innumerable other plan class

properties under its control.

The decision-theoretic formulation of decision-making as choice among basic plans

(called "acts" in that literature) is a gross idealization, made explicit by Savage in his

discussion of "small worlds" and "grand worlds" [121]. The plan graph representation

lets us dispense with this idealization, as far as plans are concerned.4 A dominance-

proving planner can proceed as if it were working on THE GRAND PLAN because it

needs never approach an explicit encoding of individual acts.

2.4.2 Instantiating the Architecture

The framework presented so far is an abstract model of planning for partially satis-

fiable objectives. It generalizes the case of goal predicates and applies to uncertain

situations. Rather than prove that a plan necessarily achieves a goal, as in tradi-

tional AI planning, the planner tries to prove properties of the optimal plan. These

properties define the class of admissible plans.

To instantiate the abstract model to a particular planning mechanism, one needs

to specify each of the modules of Figure 2.2 and their interfaces. In particular,

realization of a dominance-proving planner requires design of:

4That is, the plan classes refer to grand-world acts. But we cannot remove the idealization
completely; the domain models remain small worlds, after all. For further discussion of small worlds,
see Section 6.6.3.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

* A universal plan class, 0.

* A constraint language, or representation for partial plans. The set of plan

classes expressible in the constraint language is P C 2n .

* A domain modeling language, including a way to describe the effects of actions

and a representation for the preference relation, >-.

The structures described earlier-the plan graph and dominance relations-serve

mainly as theoretical machinery for analysis of this class of planners. Specifying

the languages and modules is the real work in designing a planner.

As a simple illustration, consider mathematical optimization techniques as plan-

ners from this perspective. Optimization is a special case of dominance proving where

the program tries to find a singleton dominator, often in one step. For example, if our

plan language is R" and the domain model consists of a linear objective function and a

set of linear constraints among the elements of the vector, then our dominance prover

should be a linear programming algorithm. In this case there are no partial plans.

Branch-and-bound integer programming is an example of an optimization procedure

that does make use of partial plans and explicit dominance proving.

For the example presented in Figure 2.1, the universal plan class is A*: strings

of actions in the action alphabet A. The constraint language consists of the regular

ezpressions [59] over A.5

In the development of the planning model to this point, I have not addressed the

issue of efficiency. The computational viability of a planner depends on a judicious

choice of the languages and algorithms that define it. Although it is difficult to

characterize performance at the present level of generality, we can identify a few

high-level issues critical to efficiency. First, the addition of constraints during graph

refinement cannot be arbitrary. The planner must generate constraints that relate to

SThe term A* in partial plan expressions is syntactic sugar for (al + -- + a,)*.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

the problem at hand and are meaningful to the dominance prover. Unless the prover

can establish dominance relations on the graph, refinement is irrelevant. Second,

it is important to consolidate the plan graph to avoid redundancy and further the

propagation of dominance relations. I examine this topic further in Sections 2.6

and 2.7 below.

2.5 The SUDO-Planner Architecture in Brief

The design of languages and reasoning modules for SUDO-PLANNER illustrates one

instantiation of the dominance-proving architecture. I present brief descriptions of

SUDO-PLANNER's components below; subsequent chapters specify its design in detail.

A plan is a function from observations (events the agent can test in the world)

to actions (controllable events). Any set of such functions is a plan class, but the

plan graph may contain only those classes II E P expressible in SUDO-PLANNER's

constraint language. The universal plan class is the partial plan with no constraints

(Q). A partial plan is specified by posting a series of constraints on Q. Constraints

fall in three basic categories:

* Action. Restricts the plan to include an action of the given type. For example,

we can form the plan class "plans with CABG" by posting an action constraint

of type CABG' on the universal plan class.

* Action policy. Restricts the plan's policy for the given action to have some

regular (monotonic, for example) relationship to the given observable event.

An action policy constraint of type "monotonic increasing" specifies the class

of plans where CABG is an increasing function of CAD. This plan class, ap-

6The actual type specification looks more like "CABG, presence = true," due to the particular
representation of actions in SUDO-PLANNER, described in Section 3.2. For expository reasons, in this
chapter I present only the simplified versions.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

pearing in the plan graph of Figure 1.5 under the notation II+(CABG, CAD),

corresponds to the threshold policy of Figure 1.1a. For binary actions, a mono-

tonic policy implies the existence of a threshold on the observed variable.

* Conditional action or action policy. As above, in effect only under a given

condition on observable events. To generate the class "CABG if three-vessel

disease," we would post a conditional action constraint with action CABG and

condition specifying that the observed CAD (from catheterization) is three-

vessel disease.

The plan constraint language is defined formally in Section 3.4.

The domain modeling language for SUDO-PLANNER is based on qualitative prob-

abilistic networks (QPNs). Qualitative relations serve to represent the effects of

actions, the connections among events, and preferences. Some QPN fragments for

the AAA example appear in Figures 1.7 through 1.9.

Given these representations, the next step is to specify the modules in the ar-

chitecture schematic of Figure 2.2. SUDO-PLANNER's constraint poster is a passive

module, generating plan classes opportunistically. That is, a new class is introduced

to the plan graph only when the dominance prover derives a potentially useful result

concerning that class. In contrast, a planner under heuristic control would apply an

active constraint poster to direct the search for dominance results.

SUDO-PLANNER's problem solver generates QPNs from the KB (summarized in

Section 1.6.2, discussed in depth in Chapter 6). There are two parts of the domain

model at any given time: the KB as a whole and a dynamically constructed QPN. The

problem solver uses facts from the KB to progressively modify the QPN throughout

the process of tradeoff formulation.

The dominance prover operates on QPNs rather than directly on the KB. Domi-

nance proving in SUDO-PLANNER consists of manipulating QPNs to derive qualitative

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

relations with implications for plan class dominance. The central basis for deriving

dominance in QPNs is qualitative synergy between an action and an event on the value

node. Such synergies dictate action policy constraints on plan classes, as explained

in Section 4.7.3.

For example, based on a QPN generated by the problem-solver, SUDO-PLANNER

determines that CABG and CAD are positively synergistic on value. This relationship

directly implies that the optimal CABG policy is increasing in CAD severity. Let

"cath, CABG?" denote the class of plans that include catheterization and make some

commitment about whether to perform CABG. Any plan in this class that is not a

threshold policy must be inferior to some plan in II+(CABG, CAD). The situation

satisfies the condition for plan class dominance (2.3), yielding

D(II+(CABG, CAD), "cath, CABG?").

Because II+(CABG, CAD) is a subclass of "cath, CABG?" the dominance relation is

a restriction, as posted on the plan graph of Figure 1.5.

The dominance propagator records these results on the plan graph and derives

their consequences for dominance among other plan classes. For instance, adding a

new plan class intermediate between these two would modify the restrictions recorded

on the plan graph, shown in Figure 2.3.

cath, CABG? cath, CABG?

R
R intermediate II

R

II+(CABG, CAD) II+(CABG, CAD)
Figure 2.3: Dominance propagation upon insertion of an intermediate plan class.

The overall behavior of SUDO-PLANNER is best described by a superposition of

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

the architecture schematics of Figures 1.10 and 2.2. The product of the process is the

plan graph reflecting dominance results SUDO-PLANNER derives from the sequence of

QPNs produced by its problem solver.

2.6 Searching the Plan Space

Different designs for the plan constraint language, knowledge representations, and

processing modules can lead to dominance-proving planners with disparate behav-

iors. Nevertheless, the common architectural skeleton provides a basis for a general

discussion of some computational issues for this family of planners.

One important generic issue concerns management of the search space. In the

dominance-proving architecture, the search space is represented by the plan graph,

and the dominance relation supplies the criterion for pruning the space.

Search in constraint-posting planners proceeds to refine the plan graph by adding

constraints to partial plans. The straightforward application of this procedure, how-

ever, can lead to considerable redundancy in search. For example, Figure 2.4a shows

a refinement to the left side of the plan graph of Figure 2.1. The new partial plan is

obtained by posting a constraint on alA* that the second action be an a2.

A*aiA* A*alA*

(a) axA* A*ala 2A* (b) aiA* A*ala 2A*

ala2A* axa2A*

Figure 2.4: Redundancy in plan graph search. (a) Posting a constraint on axA* yields
axa 2A*. (b) The same plan class is obtained by posting a constraint on A*ala2A*.

Suppose that after further reasoning the planner decides to prune away the new

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

plan class based on dominance or some other criterion. The same class may be re-

introduced on refinement of the next branch of the plan graph. As illustrated in

Figure 2.4b, constraining the first A* to be empty in A*ala 2A* defines a partial plan

identical to that already pruned. A planner that did not recognize such coincidences

would duplicate much of its dominance proving and other reasoning efforts.

The chronological backtracking strategy described above is inefficient because it

cannot transfer reasoning results between contexts. Dependency-directed backtrack-

ing [136] avoids considerable redundancy by determining the most general reasons for

a failure and pruning a larger region of the search space. In our example, however,

the redundancy problem emerges on separate branches of the search space. More flex-

ible dependency-directed reasoning mechanisms, such as truth maintenance systems

(TMSs) [23, 86], are required to transfer results across arbitrary contexts.

2.6.1 Classification

The redundancy of Figure 2.4b went unrecognized because the plan graph at the first

stage (Figure 2.4a) failed to reflect all specialization relations. This suggests that

we add to the plan space manager a third module operating directly on the plan

graph, as shown in Figure 2.5. When the constraint poster generates partial plans,

the classifier situates them in the plan graph by computing their greatest lower and

least upper bounds. This classification operation is identical to that performed by

terminological knowledge representation languages like KL-ONE [8, 122].

The correct classification for axa 2A* in the plan graph of Figure 2.4 places this

class under both alA* and A*ala2A *. Consolidating the plan graph in this way avoids

redundancy in plan space search. The additional specialization links enhance pruning

and provide more pathways for propagation of dominance results throughout the plan

graph.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

Figure 2.5: The plan space manager augmented with a classifier to consolidate the plan
graph.

2.6.2 Dependency Mechanisms

In the context of plan space search, classification can be viewed as a kind of depen-

dency mechanism for minimizing duplication in reasoning. Comparison of classifica-

tion to other techniques is difficult because a precise characterization of the avoidable

redundancies is often lacking in descriptions of dependency-directed problem solvers.

From the perspective of dependency maintenance, the dominance relation serves

to define so-called nogood contexts. Planners without a notion of dominance can

consider plan classes nogood only if they are inconsistent or provably cannot achieve

the goal. Other pruning criteria must be built into the control mechanism. The

availability of nogoods based on dominance can dramatically reduce the search space.

Following the terminology used by de Kleer in describing his assumption-based

truth maintenance system (ATMS) [19], each plan class is an assumption contezt

represented in terms of the constraint language. The plan specialization graph cor-

responds to the context graph of the ATMS with context subset replaced by plan

specialization. Indeed, an implementation using an ATMS would be equivalent to

the classification scheme presented here provided that we could construct a proposi-

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

tional interface [20] describing the content of partial plans. In general, however, this

may not be the most convenient representation of plan classes.' As shown in Sec-

tion 2.7, a mapping of the constraint language to sets of propositions may necessitate

an unacceptable growth in the size of partial plan descriptions.

Like the assumption-based approach, the plan graph structure facilitates the ex-

ploration of multiple consistent contexts simultaneously. But contrary to the ATMS

view, we are not necessarily interested in finding all solutions (the class of all ad-

missible plans). Rather, the planner may focus on an isolated decision defined by

a particular distinction in the plan graph. Therefore, we can restrict the domain of

assumption sets that need to be considered to those explicitly created as plan classes

by the constraint poster.

2.6.3 Plan Graph Queries

Another application of classification is to answer dominance questions about plan

classes not explicitly appearing in the plan graph. At any point in the planning

process, the plan graph represents the current view of the admissible plan space. To

find out whether a given plan class is admissible, we merely classify the class in the

plan graph and propagate dominance as usual. Queries about the classes dominating

or dominated by this new class can then be answered by local inspection of its position

in the plan graph.

2.6.4 Plan Space Search: Summary

Redundancy in searching the plan space is avoided in the dominance-proving archi-

tecture by classifying plans in the plan graph as they are generated. The plan graph

'The design of SCHEMER [166, 167]-a dependency-directed interpreter for a non-deterministic
LISP-illustrates some issues in constructing a propositional interface for arbitrary dependencies.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

thus serves a dual role as representation of the admissible plan space and as the main

structure for dependency maintenance.

The scheme presented here offers two benefits with respect to plan search effi-

ciency. First, the dominance relation provides a major new class of nogoods, which

may potentially shrink the search space. Second, classification of partial plans takes

advantage of dependencies that might be obscured by an interface with a propositional

TMS.

2.7 The Complexity of Subsumption

In terminological knowledge representation languages, the key operation for concept

classification is the computation of subsumption relations [7, 96]. The same applies to

classification of partial plans; the appropriate position of a plan class in the plan graph

is determined by its subsumption relations to other classes. One plan class subsumes

another if the latter must be a specialization purely by virtue of its description. We

saw above that classifying plans as they are generated minimizes the search space.8

Conversely, an optimal dependency mechanism (one that minimizes search) in effect

computes these subsumptions.

The centrality of subsumption to classification suggests that the complexity of this

operation has a large impact on the computational performance of this planning ar-

chitecture. Consequently, analyses of dominance-proving planners should emphasize

the complexity of subsumption in the chosen constraint language.

As an example, consider the plan graphs of Figures 2.1 and 2.4, where regular

expressions describe the partial plans. In general, computing subsumption of regular

8For true optimality we must also determine the most general plan class that is dominated. This
corresponds to extracting the minimal nogood assumption set, which is not generally feasible. Note

also that minimality is only with respect to a particular constraint language; slight changes may have

dramatic effects on the dominance prover's ability to derive nogood sets at high levels of generality.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

expressions is intractable.9 By restricting the constraint language to expressions that

use disjunctions and Kleene stars exclusively in A* terms, however, subsumption

can be performed in linear time (the problem is essentially string matching with

wildcards). All of the plan classes included in the figures above satisfy this restriction.

We can also analyze some more common partial plan representations in terms

of subsumption complexity. Nonlinear plans [118] are partially ordered sets of ac-

tions, used as a basic representation by numerous constraint-posting planners [12].

A nonlinear plan is actually a plan class, comprising all possible linearizations of the

partial order [21]. (A planner with a parallel execution capability (for example, a

multi-agent planner) could truly have nonlinear plan individuals. The constraint lan-

guage for such a planner would be more complex.) Unfortunately, partial order-and

hence nonlinear plan-subsumption is NP-complete.1o The exponential potential of

the computation lies in the combinatorial number of possible mappings between the

steps of the two plan classes. If, however, we can specify the correspondences between

steps (for example, which put-on in II1 corresponds to which in II2) then subsumption

is at worst quadratic. In practice we will not generally have complete correspondences,

but typically the possible mappings between steps will be constrained by one or more

of the following factors.

* Actions may only map to others of the same type.

* Compatibility among constraints on the arguments to actions.

* The planner may supply explicit identifications among steps when introducing

them in several partial plans at once.

'Hunt et al. [65] show that the equivalence problem for regular expressions is PSPACE-hard.
Equivalence can be trivially reduced to two (non-strict) subsumption operations.

"tThe proof, by reduction from EXACT COVER BY 3-SETS, was provided by Ronald L. Rivest,
personal communication.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

It is an empirical question whether these constraints will render subsumption feasible

in practice.

The intractability of nonlinear plan subsumption illustrates the potential difficulty

of specifying a propositional interface to generic dependency reasoning mechanisms

like the ATMS. In the ATMS, contexts are represented by sets of propositions,

and context subsumption is simply the subset operation. Determining whether one

context specializes another can therefore be accomplished in time at worst quadratic

in the size of the proposition sets. Given that nonlinear plan subsumption is NP-

complete, the size of the propositional representation for the plan classes must be

exponential in the partial order encoding, unless P = NP.

One should consider the effect on subsumption complexity of any proposed ex-

tension to the constraint language. For example, we could allow actions themselves

to be expressed at multiple levels of abstraction (as in the sequence low-dose steroid

therapy is-a steroid therapy is-a drug therapy) without significant cost in complexity,

as long as action subsumption itself is not expensive." I analyze the tradeoff be-

tween expressiveness and subsumption tractability for SUDO-PLANNER's constraint

language in Section 3.5.

2.8 Miscellaneous Topics

The following sections discuss some implications of the dominance-proving architec-

ture for two issues in knowledge-based planning.

"1Given a static action graph, action subsumption takes linear time in the worst case. If actions
are described more flexibly-perhaps as dynamically generated KL-ONB concepts-then subsumption
is more complex [7].

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

2.8.1 Dominance-Based Knowledge Level Analysis

In his description of the knowledge level, Newell proposes that programs can be charac-

terized in terms of the content as opposed to the form of their knowledge by analyzing

their behavior with respect to principles of rationality [97]. The dominance relation

can a be useful tool for such analyses, whether or not the planner resembles the

dominance-proving architecture at the symbol level. By admitting partially satisfi-

able goals, the preference order on plans provides a more comprehensive and flexible

rationality principle than one based entirely on goal predicate satisfaction. Note that

a program may still be nondeterministic at the knowledge level because we may have

an incompletely specified preference order.

Even though the categorical preference relation does not exercise its flexibility,

the dominance relation can shed some light on classical planners. In a previous

description of this work [158], I illustrated the dominance-proving architecture by

recasting TWEAK [12] in its framework. Because TWEAK encapsulates the results

of much of the state-of-the-art in nonlinear planning, an account of this planner

embodies considerable generality.

The product of this exercise was an interpretation for TWEAK's central principle-

the "modal truth criterion" [12, page 340]-in terms of dominance in the plan graph.

TWEAK searches the plan space by posting constraints on partial plans until it finds

one that achieves its goals. The search is not exhaustive, yet TWEAK is guaranteed to

terminate with a solution if one exists. The source of its power lies in the modal truth

criterion, which justifies TWEAK's selectivity in exploring the search space. Briefly,

the criterion specifies that if a plan class contains a successful plan, then search

can be further limited to the subclasses obtained by posting particular sequences of

constraints. In our dominance-proving terminology, this is an instance of a conditional

restriction as described in Section 2.3. For a formal statement of the dominance

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

condition, see the previous paper [158]. Although the details have not been worked

out, I expect that a similar interpretation could be developed for Pednault's results

for a more expressive constraint language [105].

The utility of the dominance relation as an analytical device is potentially more

significant in applications to planners that consider partially satisfiable goals. A vari-

ety of AI programs perform resource-allocation tasks, where goal satisfaction is always

a matter of degree. In general, the programs employ domain-dependent search heuris-

tics and ad hoc representations, so it is difficult to assess and compare alternative

techniques.

One well-known AI resource planner is ISIS, a program that schedules production

orders in a job shop [37, 38]. Isis constructs schedules through a heuristic constraint

relaxation process. The program is difficult to evaluate empirically because of its

large number of parameters and the lack of a performance standard for its scheduling

task. Theoretical analysis also presents a challenge because interactions among the

constraints in the program's domain are not well understood.

Recasting ISIS in terms of the dominance-proving architecture may lead to insights

about its performance. The framework of this chapter enforces a strong distinction

between the non-relaxable constraints and those that are relaxable, called "organiza-

tional goals" or "preference constraints" in ISIS terminology. The relaxable constraints

serve to define the preference relation on schedules, while the non-relaxable are part

of the domain modeling language. The partial schedules IsIs constructs during search

correspond to partial plans, as do the abstract schedule classes defined by sets of relax-

able constraints. Preferences among various relaxations induce a dominance relation

on the plan graph.

The sketchiness of this description of ISIS implies that any claims for the value

of analyses of this sort are purely speculative. Nevertheless, the dominance relation

provides a criterion for determining the soundness of ISIS's relaxation procedure, and

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

classification in the plan graph is a standard for evaluating the redundancy of the

program's search for optimal production schedules.

2.8.2 On Meta-Planning

The idea of meta-planning [24, 138, 163] is to apply the machinery of a planner to

decisions about the planning process itself. Because planning algorithms are often

complicated and opaque, a declarative encoding of the goals and operators at higher

levels should lead to more understandable and modifiable planners.

It is important to distinguish two types of higher-level decisions that meta-planners

address:

1. allocation of the planner's computational resources, and

2. choice among competing plans or plan fragments.

Most of Wilensky's "meta-themes" and "meta-goals" [163, Section 2.2] relate to the

second type of decision.

Choice among competing plans is appropriately considered a "higher-level" issue

if the object-level planner lacks the basis for making this decision. This is typically

the case for traditional planners because the predicate representation of goals offers

only a crude binary distinction. Designers of planners have historically dealt with

this inadequacy by developing elaborate conflict resolution mechanisms. Wilensky's

meta-planning enterprise was an attempt to demystify these schemes.

A flexible representation for plan choice via the preference relation, however, ob-

viates the need for meta-level decision mechanisms. The meta-theme "don't waste

resources" is more accurately expressed as a dominance condition on plans that use

more resources, other things being equal. The dominance condition offers a precise

semantics for such a statement; interpretation of the meta-theme, in contrast, is not

so clear.

CHAPTER 2. A DOMINANCE-PROVING ARCHITECTURE

The first type of high-level decision-allocation of computational resources-

remains a legitimate activity for meta-planning in the dominance-proving framework.

2.9 Summary

In this chapter I have presented and discussed a dominance-proving architecture for

planning for partially satisfiable goals. The architecture takes a constraint-posting

approach to planning, representing the search space by a plan graph that encodes

the specialization relations among the partial plans generated. Goals are defined by

a preference order over plans, which induces a dominance relation defined over plan

classes. I motivated these concepts with simple examples from MOLGEN and a more

detailed account of SUDO-PLANNER.

Redundancy in searching the plan space is minimized by classifying the partial

plans in the graph as they are generated and pruning based on dominance. Recog-

nizing the centrality of subsumption computation in classification suggests a novel

approach to analyzing the complexity implications of plan constraint languages.

The dominance-proving architecture avoids the pitfalls of goals as predicates by

adopting a more general representation for the planner's objectives. Exploiting this

flexibility in a computationally feasible manner requires careful design of the compo-

nent modules and representations that compose the dominance-proving architecture.

Chapter 3

Representations for Plans and
Actions

In this chapter I specify the representations SUDO-PLANNER employs for expressing

plan classes and actions. Section 3.1 characterizes the plan space abstractly as a

formal basis for defining the semantics of plan class constraints. The next two sec-

tions describe the action and event representations employed by SUDO-PLANNER for

both domain modeling and expressing plan classes. These specifications fulfill part of

the requirements, outlined in Section 2.4.2, for instantiating the dominance-proving

architecture in SUDO-PLANNER. The chapter concludes with an analysis of the com-

putational complexity of subsumption for SUDO-PLANNER's plan constraint language.

3.1 Plans

A plan is a specification for a course of action, directly executable by an agent.

SUDO-PLANNER does not manipulate plans directly; the dominance-proving archi-

tecture prescribes computations on plan classes only. Therefore, we can design this

type of planner without specifying an encoding for individual plans, as long as the

interpretation for plan class constraints is clear. Of course, an integrated planning

and execution system would require a complete plan language specification.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

3.1.1 Planning and Execution

Abstractly, plans are functions from observations to actions. Formally, given

O - the set of possible patterns of observation over time, and

fez, - the set of executable courses of action,

the universal plan class f consists of all functions ir : O + fle. Qeze defines the

scope of pure activity the agent is capable of performing. Plans map situations,

distinguished by their observation patterns, into activities. Intuitively, a course of

action w E ~e, specifies a set of primitive end-effector commands unconditional on

any explicitly planned observations.

Figure 3.1 illustrates the relationship between the planning and execution modules

in a complete agent. The plan to be executed, wu, = 7r(obs), specifies all planned

activity, including any sensing operations that enable the agent to observe obs.

World

Figure 3.1: An integrated planning and execution system.

Time is handled implicitly in this functional notation. All temporal information

must be encoded in the descriptions for observations and courses of action. This treat-

ment is unsatisfactory because it cannot enforce fundamental temporal constraints,

such as the prohibition on conditioning current activity on future events.' The per-

'For further discussion of SUDO-PLANNER's atemporality, see Section 9.2.2.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

missiveness of this syntax implies that ultimately we must decide the legality of plans

on semantic grounds. The class of legal plans, fo, is given informally by

to = {Jr E Q I r satisfies semantic constraints}. (3.1)

A more restricted plan language syntax, perhaps incorporating some of these tem-

poral and other legality constraints, would be provided for any particular integrated

planning and execution system. The context also dictates computability constraints

on 7r, perhaps requiring real-time performance. REX, a language designed for situ-

ated planning [114], is an example of the kind of representation suitable for the plans

passed to the executor in the framework of Figure 3.1.

3.1.2 Cascaded Planners

We can generalize this framework by decomposing the planning module into a series

of submodules, each of which is itself a planner. As shown in Figure 3.2, the output

of each module is a plan class, which serves as the root of the plan graph for the next

planner in the sequence. Each planner has its own constraint language, determining

the plan classes pi C 20 expressible in its plan graph. The Pi also constrain inter-

module communication: planner-j must output a plan class Ilj+l E Pj+1.

A variety of cascaded planning architectures can be defined by specifying conven-

tions regarding the plan constraint languages. For example, the condition Pi C Pi+l,

1 < i < n - 1 entails a successive refinement of the plan spaces for the cascaded

planners. On the other hand, if Pi 2 Pi+l for that range, successive planners pos-

sess cruder distinguishing abilities. Such an architecture might be appropriate for a

system in which high-level planners pass on partial results to lower-level control algo-

rithms. In general, however, the •i will overlap, reflecting divisions of labor according

to expertise or other resources.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

Figure 3.2: Cascaded planners. Planner-i maintains a plan graph with plan classes ex-
pressible in its constraint language, Pi. The output of the system, HE, is the plan class
passed to the executor.

The final planner in the chain, planner-n, produces a plan class IIE for the execu-

tor. The framework of Figure 3.1 implicitly assumes that the constraint language for

the executor admits only singleton plan classes.

PE = {{ir} 1.i E Qj

This restriction on PE is in no way essential to the view of planning and execution

presented here.

In the cascaded planning framework, SUDO-PLANNER plays the role of planner-1.

The constraint language described in Section 3.4 defines the expressible plan classes,

P1. I assume planner-2's constraint language to be sufficiently expressive so that P2

includes the admissible plan spaces output by SUDO-PLANNER.

3.2 Action Representation

In contrast to the abstract plan language discussion above, this section describes

concrete representations for actions as they appear in the SUDO-PLANNER knowledge

base. Actions play a part in defining two components of SUDO-PLANNER:

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

1. Constraint language. Actions are the building blocks of plans. Plan classes are

described by constraints on the actions making up their constituent plans.

2. Domain modeling language. The effects of plans are determined by the effects

of their component actions.

This section presents the basic action representation, with an emphasis on features

necessary for the constraint language. Issues in representing the effects of actions are

the subject of Chapter 5.

3.2.1 Action Taxonomies

The knowledge base of actions is implemented in NIKL [66, 150], a terminological

knowledge representation language based on KL-ONE [8]. Action types are represented

by NIKL concepts, frame-like specifications of classes of individuals. Concepts are

defined by their position in the concept lattice and restrictions on their roles, or

associated features.2 Roles are also taxonomized, according to the generality of their

domains (concepts for which the feature is relevant) and ranges (possible values of

the feature). The eztension of an action type a, denoted X(a) is the set of actions

satisfying its specification.

The NIKL taxonomy of action concepts specifies a multilevel description of actions

that plans may include. Let action be the root of the taxonomy, a superconcept of

every other action concept ai. A = X(action) is the set of all actions. One way

to specialize partial plans in the plan graph is to specialize individual action types

included in that plan class. If II includes action al = drug-therapy, the class of

plans Il1D that replace al with aD = drug-therapy(D) is a specialization of III.

The dimension of specialization in the example above corresponds to the drug

2For an alternate action representation implemented in NIKL, see Swartout and Neches [142]. In

their scheme, plans as well as actions are represented as NIKL concepts.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

role of action al. The concept drug-therapy(D) is defined by a value restriction [8]

on that role, limiting its range to D.3 Additional specializations might restrict the

drug further (perhaps D is a family of drugs) or may include other information, such

as dosage or method of administration.4 In realistic knowledge bases the axes of

specialization are quite numerous.

Action-type abstraction is used in MOLGEN [137] and other constraint-posting

planners [95]. Although MOLGEN lab operators constitute a simple two-level hierarchy

of actions, in combination with the hierarchy of lab objects in their domain they form

a rich, multiply hierarchical action structure. From this perspective the lab objects

are merely further axes for specializing the lab operators.

As Tenenberg points out [145], this specialization form of abstraction is orthogonal

to the step-components type of abstraction hierarchy used in NOAH [118]. In NOAH

actions may be decomposed into sequences of lower-level actions, effectively viewing

each action as a sub-plan. A decomposition hierarchy associates actions by a "part-

of" rather than an "is-a" relation. SUDO-PLANNER does not explicitly support this

sort of abstraction.

Another distinct kind of abstraction is the precondition hierarchy of plan spaces

Sacerdoti introduced in ABSTRIPS [117]. Abstract actions are defined implicitly by

temporarily ignoring preconditions. Note that preconditions refer to the implications

of including an action in a plan, rather than to features intrinsic to the action. Or-

dering the preconditions imposes structure on the search space rather than on the

actions themselves.

Basing the knowledge representation on a terminological reasoner like NIKL has

3I adopt the notation ai(value-restriction) for convenience whenever the role involved is obvious

in context.
4As in planning, this specialization process never ends. Actions exist in the knowledge base

only as types; the action individuals specifying an actual plan r are required only if the planner is

integrated with an execution capability as in Section 3.1.1.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

the important advantage of dynamic flexibility. New action types may be created

at planning time by adding constraints to, specifying new features of, or combining

existing action concepts. These new action types can often be automatically classi-

fied [122]; that is, NIKL can determine the location of the new type in the existing

taxonomy. This is important because

1. an action type's place in the taxonomy determines the properties it inherits

from and supplies to other types, and

2. action subsumption is employed by the constraint language subsumption algo-

rithm of Section 3.5 to classify plan classes.

Some simple examples of dynamic action creation in SUDO-PLANNER during domi-

nance proving are described in Section 7.2.

3.2.2 Action Variables

As described in Section 3.4 below, the plan constraint language uses action types to

restrict a plan class to plans including actions with certain features. It is sometimes

convenient to refer to properties of action features directly, for example, in relating

the dosage of a drug to other characteristics of events or plans. The SUDO-PLANNER

objects denoting such features are called action variables.

Action variables are represented by pairs of NIKL concepts and roles. Drug dosage,

for example, is the combination of the action drug-therapy with its role dosage.

Other variables are constructed by pairing the concept with other roles, such as

duration and method (whether the drug is given as a pill, intravenously, or in some

other form). The notation av =_ role(ai) makes the components of an action variable

type av explicit. The domain of the action variable is the value restriction on its role

component.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

Like actions, SUDO-PLANNER action variables are types, not individuals. A tax-

onomy of action variables can be defined in terms of the concept and role taxonomies.

One action variable specializes another if and only if both the action concept and role

of the first specialize the corresponding components of the second.

For each action variable instance AV, there is a function AV(w) that returns AV's

value in the course of action w E Q,,,. If w does not commit to a value for AV, the

function is undefined.

3.2.3 SUDO-Planner Actions

Figure 3.3 illustrates the form of action definitions in NIKL. The definition of surgery

declares that it is a subconcept of action (the NIKL concept for SUDO-PLANNER's

universal action class A) and that it has a role named route with the value restriction

invasive-path-into-body. The action open-lung-biopsy is defined similarly.

A surgery is an action
with one route which is an invasive-path-into-body.

An open-lung-biopsy is a biopsy
with one route which is an open-lung-path.

Figure 3.3: Stylized NIKL definitions for the actions surgery and open-lung-biopsy.

SUDO-PLANNER uses NIKL for two types of inference: classification and inheri-

tance. Given that biopsy is a subconcept of action, and that open-lung-path is a

kind of invasive-path-into-body, NIKL's classifier can determine that an open-

lung-biopsy is a kind of surgery. Facts about surgical actions-that they re-

quire anesthesia, for example-are automatically inherited by open-lung-biopsy

and other specializations of surgery.

The SUDO-PLANNER action knowledge base includes all of the actions for the

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

running AAA example. A portion of this taxonomy appears in Figure 3.4.

action (A)

treatment surgery test

vessel-repair cardiac- carotid-
catheterization arteriography

AAA-repair CABG endarterectomy

Figure 3.4: A fragment of SUDO-PLANNER's action taxonomy.

3.3 Events

The representational structures denoting events in the knowledge base are very much

like those for actions. In fact, actions in SUDO-PLANNER are a special type of event,

distinguished because they are controllable by the planner. That is, the root of the

event taxonomy, event (C), is a superconcept of action (A). The primary role of

events in the knowledge base is in the representation for the effects of actions (Chap-

ter 5). Events also serve to describe observed conditions in plan class constraints.

The event variables representation is identical to that for action variables, de-

scribed in Section 3.2.2. The extension of an event variable, X(ev), is equivalent to

the cross product of the extensions of its concept and role. The function EV(obs)

returns the value taken by an observable event variable instance EV in the obser-

vation obs. If EV is unobservable, the function is undefined. By convention, action

variables are accessible to the agent without explicit observation. That is why the

AV functions are defined in terms of 7r rather than obs even though action variables

are a special case of event variables.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

The event variable value(agent) corresponds to the special value node v in QPNs.

3.4 Constraint Language

The unconstrained plan class object denotes Q, the universal plan class. Partial

plans are constructed by adding constraints to Q or to other existing plan classes.

Representations and interpretations for the three types of SUDO-PLANNER constraints

(action constraints, action policy constraints, and conditional constraints, introduced

in Section 2.5) are presented in sequence below.

3.4.1 Action Constraints

An action constraint on a plan class asserts that an action of a specific type is in

its plans. Action types are simply the NIKL concepts appearing in SUDO-PLANNER's

action taxonomy. The constraint poster records a sequence of action constraints in

an in-list describing the action types included in the partial plan.

An in-list consisting only of a collection of types can be ambiguous, however,

due to the hierarchical nature of action types. For example, suppose the in-list is

[surgery,CABG]. Because CABG is a subconcept of surgery, any plan that in-

cludes an instance of CABG automatically satisfies both constraints. Under this

interpretation, we need some other way to express the constraint that a plan include

a CABG plus some other unidentified surgical procedure.

The solution is to associate each separate action constraint with a unique identifier.

An in-list of the form [(al, idi),..., (a,, id~)] indicates that the plan must include ac-

tions of types al,..., a, and that no single action can account for both ai and aj unless

idi = idj. If idc = id,, then there must be a single action that is both an ai and an aj.

When there is a known type ak corresponding to the conjunction of ai and aj, the two

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

in-list entries can be merged into one for ak. For example, [(surgery, 1), (CABG, 1)]

is equivalent to [(CABG, 1)], but [(surgery, 1), (CABG, 2)] cannot be simplified.

Because NIKL can express conjoined concepts, we need not consider in-lists with more

than one action type having the same identifier. 5

Some action types offer little real constraint on a plan class. For example, assert-

ing that an action of type drug-therapy is in the plan isn't saying much because

the dosage could be zero. By this standard, all plans, medical or otherwise, include

a drug-therapy. In fact, they also include surgery, which (like all SUDO-PLANNER

actions) has a boolean presence role specifying whether the action is actually per-

formed. Any action constraint whose type has the null action as an instance does not

meaningfully restrict the executable plans.

In the cascaded planning architecture of Section 3.1.2, however, such action con-

straints can make a difference. In general, a plan class produced by the planner need

not commit to a policy for every available action. An action constraint restricts that

freedom, dictating that the plan class passed to the next module make some commit-

ment about the action. For example, if drug-therapy appears on a class's in-list,

any subclass passed on to the next module must specify something further about the

value of the therapy variable. In this situation, we say that drug-therapy is "under

consideration" in the plan class.

For example, in the plan graph of Figure 1.5, the partial plan "CABG?" refers to

the class of plans where CABG is under consideration. It is formed by posting an

action constraint on 0. If our semantics did not supply any force to this constraint,

the classifier should have merged the class with fl and with any other class with such

weak action constraints.

To assert that CABG should actually be performed, we must post an action

5In fact, this property renders identifiers superfluous for plan classes defined exclusively by ac-

tion constraints. The ids are retained, however, because they are indispensable for representing
conditional constraints (Section 3.4.3).

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

constraint for the type CABG(true), the subconcept of CABG where the presence

role is value-restricted to true. An action constraint for CABG(false) asserts that

CABG is not performed in the plan.

3.4.2 Action Policy Constraints

An action policy constraint specifies an action variable, an event variable, and a

relationship that must hold between them. For the constraint to be operational,

the event variable must be observable at execution time. This condition is satisfied

automatically when the event variable is also an action variable because the agent

knows what actions it has performed.

The monotonicity conditions mentioned in previous chapters are the only action

policy constraints employed by SUDO-PLANNER. A monotonicity constraint is written

(6, av, ev), with 8 the direction of the relationship and av and ev the action and event

variables, respectively. Adding such a constraint to a plan class II yields the subclass

II', where

II' = {r E II I V0o, o2 E O, VEV E X(ev).

EV(ol) Ž EV(o2) =- VAV E X(av). AV(r(oi)) R6 AV(r(o2))}, (3.2)

with x R+ y defined to hold if either z > y or one of the arguments is undefined.

R_ is the inverse of R+, and Ro the conjunction of R+ and R_. In words, a plan 7r

satisfies the constraint if for every action variable AV of type av, the policy for AV

is monotonic (of the appropriate polarity) in every event variable of type ev.

Policy constraints where both variables refer to actions are split into two con-

straints, with av and ev taking on reversed roles. Because the event component of ev

is an action, the first inequality in condition (3.2) is replaced by

EV(ir(oi)) > EV(ir(o2)).

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

A monotonicity constraint is ill-defined unless the action for av is under consideration

in II.

For example, the action policy constraint

(+, presence(CABG), extent(cardiac-cath-result)) (3.3)

asserts that the CABG policy is an increasing function of the CAD extent as revealed

by cardiac catheterization. 6 Because presence(CABG) is a boolean variable, this

implies that the plan is a threshold policy.

3.4.3 Conditional Constraints

Conditional constraints are action or policy constraints that have effect only un-

der some observed condition. For example, we could assert that CABG should be

performed if catheterization reveals three-vessel disease (3vd) by posting such a

constraint. Although SUDO-PLANNER's dominance prover never directly derives re-

sults about plan classes defined by conditional constraints, such constraints could be

generated if the inputs were conditioned externally.

Syntactically, constraints are conditioned by including an associated event type ej.

Unconditional constraints are implicitly associated with the universal event event.

Let ei : II denote a constraint that the plan must be in II under condition ej. The

semantics of a conditional constraint can be defined in terms of the semantics for the

corresponding unconditional constraint.

Let ir[e;] : 0 e,,,e be the partial function defined by

ir[e](o) { Ir(o) if o e X(e,)
undefined otherwise,

'The variable extent(CAD-event) is not directly observable. Its value is identical to

extent(cardiac-cath-result) if and only if catheterization is a perfect test.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

and let

II[e,] =_ {f[e,] I 7 E II}.

Note that r[event] = ir and II[event] = II.

If III is the plan class we obtain by posting a constraint on II, then the class

obtained by posting a conditional version of that constraint on II is

{7r E II I ir[ei] e II[ei]}.

The SUDO-PLANNER event taxonomy induces a relationship among conditional

constraints. If ei subsumes ej, constraints conditional on ei are also in effect under

ej. As in Section 3.4.1, identifiers on the in-lists disambiguate the meaning of separate

appearances of compatible actions. For example, the plan class

e : [(surgery, idl)]; ej: [(CABG, id2)]

must have a surgery in addition to a CABG in event ej, unless id, = id2.

3.5 Computing Subsumption

This section presents the subsumption algorithm in three stages, extending the con-

straint language to include each type of constraint in turn. The version of Sec-

tion 3.5.2, accounting for action and policy constraints, is sufficient for expressing all

of the plan classes about which SUDO-PLANNER can derive dominance results.

3.5.1 Subsumption with Action Constraints

With only the first type of constraint, a partial plan consists of an in-list of action

types. Because each identifier is unique in an in-list (see Section 3.4.1), we can ignore

them in this part of the subsumption algorithm.

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

In general, one plan class subsumes another iff the constraints on the second are

at least as strong as those on the first. Because individual action constraints restrict

the role of exactly one action in the plan, we can test this subsumption condition

action-by-action. However, we cannot tell immediately which actions constrained in

the second partial plan correspond to each mentioned in the first. Instead, we must

determine whether there is any mapping between the two in-lists such that each action

type in the first is matched with a distinct action type in the second that is at least

as specific.

For example, suppose the action taxonomy consists of action types al,..., a6 such

that ai subsumes aj iff i < j. Let II1 = [al, a2, as] and II2 = [a3, a4, a6]. Figure 3.5a

illustrates these two classes, with a link between each pair such that the upper action

type subsumes the lower. From this diagram, we can tell that II1 subsumes II2

because for each action in the former it is possible to select a distinct one in the latter

connected to it.

IIj: al a2 as 113: al a4 as

12: a3 a4 a6 114: a2 a 3 a6

(a) (b)

Figure 3.5: Plan class subsumption by bipartite matching. Links indicate that the upper
action subsumes the lower. (a) I1 subsumes 112, but (b) 113 does not subsume II4.

On the other hand, Figure 3.5b demonstrates that II3 = [al, a4, a5] does not

subsume II4 = [a2,a 3,a6], because there is no such one-to-one mapping. Action a6

can be paired with at most one of a4 and as, leaving the other unaccounted for.

To compute subsumption among plan classes II1 and II2 (represented by their in-

lists), we first construct a graph of the sort illustrated in Figure 3.5. An action type in

II's in-list is linked to every type in II2's that it subsumes. Construction of this graph

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

requires O(n 2) action subsumption computations. This graph is bipartite because the

vertices are partitioned into two groups such that all edges connect vertices in different

groups. A matching on a bipartite graph is a collection of unconnected edges. Given

a bipartite graph, III subsumes II2 iff there is a matching that uses all of the actions

in II's in-list.

We can compute a maximum matching in a bipartite graph in 0(n5/2) time using

the algorithm of Hopcroft and Karp [58]. The subsumption holds iff the cardinality of

this matching equals the cardinality of II's in-list. Assuming that action subsumption

takes constant time, the algorithm for plan class subsumption is 0(n5 / 2).

3.5.2 Subsumption with Policy Constraints

In this section, we extend the partial plan language to include, in addition to the in-

list, a collection of monotonicity constraints of the form (8, av, ev). Because the policy

constraints do not interact with the action constraints, the subsumption algorithm is

separable into two parts. II1 subsumes 112 iff both

1. the in-list for III subsumes that of 12 according to the algorithm of Section 3.5.1,

and

2. for all monotonicity constraints (&i,1, avi,1 , evi,1) in the description of II, there

exists a (not necessarily distinct) (6j,2, avj,2, evj,2) associated with 112 such that:

(a) s,1 = 8j,2,

(b) avj,2 subsumes avi,1, and

(c) evj,2 subsumes evi,j.

Note the reversal of subsumption polarity for the variables in monotonicity con-

straints. For action constraints, it is weaker to assert that a more general action type

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

is included in the plan. Under the definition of monotonic policy constraints (3.2),

in contrast, generality in the variables leads to stronger constraints. For example,

asserting that presence(vessel-repair) increases in the test result variable is more

restrictive than asserting that presence(CABG) does.

Pairwise comparison of monotonicity constraints is sufficient as long as it is not

possible for one constraint to be subsumed by a group of others without being sub-

sumed by a single member of the group. This condition would be violated if such

a group subsumption were possible for action and event variables. For example, if

X(avi) C X(av2)U X(av3) but X(avi) = X(av2) and X(avi) V X(av3), pairwise

comparison of monotonicity constraints would lead to an incomplete subsumption

algorithm. Although this situation can be expressed with NIKL's covers relation [66],

that facility is not used in the SUDO-PLANNER knowledge base.

Because the mapping of monotonicity constraints need not be one-to-one, the sec-

ond stage of the algorithm requires only O(n) event variable subsumptions. Taking

these primitive subsumptions as constant, the overall plan class subsumption com-

plexity remains O(nS/2).

3.5.3 Subsumption with Conditionals

II subsumes II2 iff IIl[e1] subsumes II 2[ei] for each e, appearing in an explicit con-

ditional constraint on II1. Unfortunately, determining the effective constraints under

each condition (the II[ej]) is difficult because of interactions between monotonicity

and conditional constraints. A constraint conditional on ei may influence II[ej] even

if ei and ej have no taxonomic relation.

For example, let e2 = cardiac-cath-result(3vd). The conditional constraint

ei : CABG(true) asserts that CABG is performed if catheterization indicates three-

vessel CAD. Suppose we post this constraint in conjunction with the monotonicity

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

constraint that CABG policy be increasing in CAD extent (3.3). Because the mono-

tonicity constraint implies a threshold policy and the conditional constraint tells us

that 3vd is above the threshold, we can infer the CABG policy for values of CAD

extent more severe than 3vd. CABG(true) must also be included, for instance,

under ej = cardiac-cath-result(left-main-disease).

The following algorithm ignores this potential interaction and is therefore in-

complete. It assumes that the conditional constraints are arranged in a taxonomy

according to the conditioning events. The classifier should update this taxonomy as

the constraints are posted.

The algorithm constructs a description of the partial plan class IIZ[ei] by merg-

ing the in-lists and policy constraints associated with each event subsuming ej. It

merges in-list elements as described in Section 3.4.1 and simply conjoins the policy

constraints. For each ei relevant to III, the subsumption algorithm computes II2[ei]

by classifying ej in II2's conditional event lattice and proceeding as above. If IIx[ei]

subsumes II2[ei] for all ej, then II1 subsumes II2.

Despite the separability assumption, the algorithm is sound (all derived subsump-

tions are valid) because the constraints in II2 are individually stronger than those of

II. Therefore, any properties of plans holding by virtue of constraint interactions in

IIH must also hold in II2.

The complexity of this algorithm is dominated by subsumption computations on

the conditional partial plans; the time needed to construct them can be ignored in

asymptotic analysis. In the worst case, the events are linearly arranged so that each

constraint is inherited by all successors. The complexity of the subsumption algorithm

in this situation is 0(n7/2).

CHAPTER 3. REPRESENTATIONS FOR PLANS AND ACTIONS

3.5.4 Extensions

Further work should explore the development of a complete algorithm for plan class

subsumption with conditional constraints. In addition, there are several extensions

to the constraint language that would provide significantly greater expressive power.

The constraint language cannot express relations among actions in the plan. For

example, it would be convenient to link the roles of several actions to assert that they

share a common instrument. The language would also be enriched if it permitted

expression of some kinds of temporal relations among actions.

Unfortunately, it appears that admitting any interactions or relations among dif-

ferent actions renders the problem combinatorial. The separability of action con-

straints led to a tractable algorithm because they could be matched action-by-action.

The tractability of monotonicity constraints is due to their universality. In contrast,

the intractability of nonlinear plan subsumption (see Section 2.7) lies in the addition

of an operator for constraining a transitive relation. The relation in this case is inter-

preted as step ordering; other isomorphic interpretations lead to similar intractability.

In extending the expressive power of the constraint language, caution is required to

minimize the concomitant degradation of computational feasibility.

Chapter 4

Qualitative Probabilistic Networks

The qualitative probabilistic network formalism is part of SUDO-PLANNER's domain

modeling language for representing the relationships among actions and events. This

chapter is a self-contained description of the formalism. Chapters 5, 6, and 7 describe

in detail how qualitative probabilistic networks support tradeoff formulation in SUDO-

PLANNER.

4.1 Introduction

Many knowledge representation schemes, ranging from the various flavors of "causal

networks" [100, 113, 153] to qualitative physical models [4] to belief networks [101],

model the world as a collection of states, events, or other ontological primitives

connected by links that describe their interrelationships. The representations differ

widely in the nature of the fundamental objects and in the precision and expressive-

ness of the relationship links.

Qualitative probabilistic networks (QPNs) occupy a region in representation space

where the objects are arbitrary variables, and the relationships are qualitative con-

straints on the joint probability distribution among them. This area is important

for AI research because the relation among variables is often uncertain due to in-

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

complete knowledge or modeling, and because strictly numeric representations are

inappropriately precise for many applications. Excess precision leads to knowledge

bases applicable in only narrow domains and to knowledge engineering difficulties due

to diminished modularity [51, 161].

The qualitative relationships expressible in the QPN formalism are designed to

afford robustness yet permit a reasoner to deduce useful properties about optimal

assignments to the specially designated decision variables in the network. These

"useful properties" are facts that enable a planner to reduce the search space of

possible courses of action. The nature of these decision properties and the qualitative

relationships leading to them are developed in the body of this chapter.

4.1.1 Motivation

The primary purpose of qualitative probabilistic networks is to support dominance-

proving for tradeoff formulation in SUDO-PLANNER. In addition, the analysis of QPNs

offers potential benefits in two other areas.

Probabilistic semantics for a common knowledge base construct. Relations

similar in intent to those expressible in QPNs have been applied widely in AI knowl-

edge bases without serious attempts at formalization, probabilistic or otherwise. The

analysis below suggests how such constructs might be interpreted and in some cases

dictates how they must be interpreted to justify inferences drawn by associated rea-

soners.

Qualitative reasoning methods for domains where directions are not guar-

anteed, and functional relations are not deterministically fixed. Many ap-

plications of qualitative reasoning are not faithful to the underlying assumptions

behind a "qualitative differential equations" interpretation. Taking an explicit prob-

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

abilistic approach reveals the possible pitfalls of such violations. This issue is discussed

further in Section 4.8.3 below.

4.1.2 Preview of the Chapter

Section 4.2 formally introduces qualitative probabilistic networks, relates them to

numeric graphical probabilistic representations, and presents an example from the

domain of digitalis therapy. The digitalis example illustrates the use of qualitative

influences, one of the two qualitative relationship types appearing in qualitative prob-

abilistic networks.

The next four sections elaborate the semantics, properties, and application of

qualitative influences. A formal probabilistic definition is motivated and developed

in Section 4.3. Section 4.4 describes inference mechanisms that are sound with re-

spect to this definition, and presents an efficient algorithm for answering queries

about the qualitative influences holding among arbitrary variables in the network.

Section 4.5 considers alternative probabilistic semantics and shows that the defini-

tion of Section 4.3 is the weakest validating the inference mechanisms of Section 4.4.

Application of these techniques to the digitalis example is the subject of Section 4.6.

The second type of relationship, qualitative synergy, is defined, defended, and

analyzed in Section 4.7. The section also presents graphical algorithms for reasoning

about synergies in QPNs similar to those for qualitative influences. Analysis of the

digitalis model enhanced with synergy assertions demonstrates that useful properties

of the preferred therapy plan follow from purely qualitative assertions.

Section 4.8 contrasts the qualitative probabilistic network representation with

related work in AI, decision theory, and statistics. The relevance of these results to

previous qualitative reasoning applications is also discussed. A perspective on the

significance of this work is offered in the final section.

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

4.2 Qualitative Probabilistic Networks

4.2.1 Network Models

A network model is a graph-like structure with nodes that represent variables and

edges and hyper-edges that describe relationships among them. In a probabilistic

model, the values of variables as well as their interrelationships are uncertain, defined

by a probability distribution over the joint value space. Probabilistic network models

have attracted much recent attention in AI, for example in Pearl's work on belief

networks [101, 103] and related formalisms [14, 77, 134]. The network formalism

developed here is accurately viewed as a qualitative abstraction of influence dia-

grams [61], which are belief networks with additional constructs to support decision-

making. Some terminology, notation, and even solution concepts (by analogy) are

borrowed from Shachter's work on influence diagram evaluation [123, 124].

Formally, a qualitative probabilistic network is a pair G = (V, Q). V is the set

of variables, or vertices of the graph. Variables are associated with a set of possible

values: for example, boolean for propositional event variables, or real intervals for

continuous parameters. Unlike most numeric schemes, there is no practical require-

ment to reformulate the value spaces into discrete, finite sets. Let X(a) denote the

domain of variable a. The domain of a tuple of variables is the product space of the

individual domains, for example, X((a, b)) = X(a) x X(b). The tuple will be written

as a set when the ordering is insignificant. Subscripted symbols denote values in the

domain of a variable.

The variable set V may contain one special variable v, called the value node. The

relationship between v and the other variables in the network express preferences

among states.

It is also useful to distinguish a set D C V - {v } of decision variables. A decision-

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

making program takes variables in D to be under its control and therefore focuses on

deriving the implications on v of choosing different values for them. The remainder

of the variables in the network are random variables not under direct control of the

decision maker.

Q is a set of qualitative relationships among the variables. Qualitative relationships

express constraints on the joint probability distribution over the variables. Unlike the

numeric conditional probabilities specified in belief networks and influence diagrams,

they are not generally sufficient to determine the exact distribution. In fact, in a

purely qualitative network the absolute likelihood of any joint event is completely

unconstrained! Nevertheless, the qualitative relationships are carefully designed to

justify the deduction of a class of relative likelihood conclusions that in turn imply

useful decision-making properties. Note that nothing prevents us from building hybrid

models combining qualitative relationships with those more precise, although the

present work does not pursue that possibility.

There are two types of qualitative relationships in QPNs. Qualitative influences

describe the direction of the relationship between two variables. Qualitative synergies

describe interactions among influences. These concepts form the basis of the QPN

formalism and are developed in detail below.

4.2.2 Example: The Digitalis Therapy Advisor

The development of QPN concepts is illustrated with a simple causal model taken

from Swartout's program for digitalis therapy [141]. The model, shown in Figure 4.1,

is a fragment of the knowledge base that Swartout used to re-implement the Digitalis

Therapy Advisor [44] via an automatic programmer.

In the figure the circular nodes represent random variables. The rectangular node

is a decision variable, in this case denoting the dosage of digitalis (dig) administered

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Figure 4.1: Part of the causal model for digitalis therapy. The direction on a link from a
to b indicates the effect of an increase in a on b.

to the patient. The value node v is drawn within a hexagon and represents the utility

of the outcome to the patient.

Qualitative influences among the variables are indicated by dependence links,

annotated with a sign denoting the direction of the relationship.' Thus digitalis

negatively influences conduction (con) and positively influences automaticity (aut).

The former is the desired effect of the drug, because a decrease in conduction decreases

the heart rate (hr), which is considered beneficial for patients with tachycardia, the

population of interest here. The desirability of lower heart rates is represented by

the negative influence on the value node, asserting that lower rates increase expected

utility. The increase in automaticity is an undesired side-effect of digitalis because

this variable is positively related to the probability of ventricular fibrillation (vf), a

life-threatening cardiac state. Calcium (Ca) and potassium (K) levels also influence

the level of automaticity.

There are no links into the decision variable because the digitalis dosage is con-

sidered by the model to be under direct control.

A qualitative encoding of this model is appropriate for the knowledge base of a

general digitalis therapy program because a numeric description would require addi-

'Discussion of qualitative synergies holding in this example is deferred to Section 4.7.

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

tional context information or be inaccurate. While the exact probabilistic relation-

ships among these variables vary from patient to patient, the directions of the relations

are reliably taken as constant. Conclusions drawn from this model are therefore valid

for a broad class of patients.

The conclusions we would like our programs to derive from the digitalis model

are those taken for granted in the description above. For example, we unthinkingly

assumed that the effects of digitalis on conduction and of conduction on heart rate

would combine to imply that digitalis reduces the heart rate. Further, because lower

heart rates are desirable, digitalis is therapeutic along the upper path. Conversely,

it is toxic along its lower path to the value node. The tradeoff between therapy and

toxicity cannot be resolved by mere qualitative influences.

The immediate task of this chapter is to develop a semantics for these qualitative

influences that justifies the kinds of inferences we require while providing the max-

imum robustness. In the sections below, I provide such a semantics in terms of a

probabilistic definition for qualitative influences. In Section 4.5 we will see that this

definition is the weakest in a reasonable class that justifies the conclusions mentioned

above.

4.3 Qualitative Influences Defined

4.3.1 Influence Notation

The qualitative links in the digitalis model above can be represented formally as edges

in the graph annotated by sign. Let Ss(a, b, G) denote the assertion that a qualitative

influence of a on b in direction (that is, sign) 6 holds in graph G = (V, Q).

Definition 4.1 (Qualitative influence edges) S'(a, b, G) - (a, b, 8) e Q, for all

E {+,-,0,?).

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

By convention, SO links are left implicit in graphical displays of the network.

They would also typically be left implicit-inferable via a closed-world assumption-

in data structures representing qualitative networks. The pred function selects only

the predecessors exerting nonzero influence on a variable.

Definition 4.2 (predecessors)

1. Pred&(a, b) if (a, b,) E Q, for some {+,-, ?}.

2. predG(b) {a I Pre&d(a,b)}.

3. pred*(b) { (a I pred,(a, b)}, where Pred* is the transitive closure of the Pred&

relation.

Note that for all d E D, predG(d) = 0. The subscript G is omitted when its value is

clear from context.

4.3.2 Probabilistic Semantics for Qualitative Influences

Consider two variables, a and b. Informally, when a and b denote boolean events, a

qualitative influence is a statement of the form "a makes b more (or less) likely." This

binary case is easy to capture in a probabilistic assertion. Let A and A denote the

assertions a = true and a = false, respectively, and similarly, B and B.

Definition 4.3 (binary S+) We say "a positively influences b" (stochastically) and

write S+(a, b, G), if for all z E X(predG(b) - {a}) such that z is consistent with both

A and A, 2

Pr(BIAz) > Pr(BlAz). (4.1)
2We can safely ignore cases where the conditional probabilities are undefined because these are

impossible contexts.

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

In Definition 4.3, the contezt x ranges over all consistent assignments to the variables

other than a that influence b. (Henceforth, x in a formula will be understood as

universally quantified over the values of predecessor variables.) We need to include

the ceteris paribus condition here and in the definitions below so that qualitative

relations will be applicable in situations where x is partially or totally known. If we

had stated the S+ definition in marginal terms ("on average, a positively influences

b"), it would not be valid to apply it in specific contexts.

Because of this context dependence, S + holds in a particular network; programs

that alter the structure of the network may exhibit non-monotonicity in S+ relative

to its first two arguments [45]. In the following I omit the third argument only when

the context is unambiguous or inessential.

Conditions analogous to (4.1) and those following define negative and zero influ-

ences; I omit them for brevity. So, an assertion that (4.1) holds with equality, is the

familiar concept of conditional independence of a and b given b's direct influences. We

could rule out the independent case with strict versions of S+ and S-, but discussion

is limited to non-strict influences in this work.

S? always holds. It is included explicitly only so that we can represent So implicitly

in the lack of an influence assertion.

For binary variables, Bayes's rule implies that (4.1) is equivalent to

Pr(AIBz) > Pr(A•Bz). (4.2)

In the terminology of Bayesian revision, (4.1) is a condition on posteriors, while (4.2)

is a condition on likelihoods. Notice that S+(a, b) is simply an assertion that the

likelihood ratio is greater than or equal to unity.

Formalizing the intuitive idea that "higher values of a make higher values of b

more likely" is not quite as straightforward when a and b take on more than two val-

ues. An obvious prerequisite for such statements is some interpretation of "higher."

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Therefore, we require that each random variable appearing in an S+ or S- assertion

be associated with an order > on its values. This relation has the usual interpre-

tation for numeric variables such as "potassium concentration"; for variables like

"automaticity," a measurement scale and ordering relation must be contrived.

The more troublesome part of defining positive influences is specifying what it

means to "make higher values of b more likely." Intuitively, we want a statement that

the probability distribution for b shifts toward higher values as a increases. To make

such a statement, we need an ordering on cumulative probability density functions

(CDFs) Fb over b that captures the notion of "higher."

However, probability distributions cannot be straightforwardly ordered according

to the size of the random variable. Different rankings result from comparison of

distributions by median, mean, or mean-log, for example. We require an ordering

that is robust to changes of these measures because the random variables need be

described by merely ordinal scales [71]. An assertion that calcium concentration

positively influences automaticity should hold whether calcium is measured on an

absolute or logarithmic scale, and regardless of how we measure automaticity.

An ordering criterion with the robustness we desire is first-order stochastic domi-

nance (FSD) [162]. FSD holds for CDFs Fb and Fb iff for any given value b0 of b, the

probability of obtaining b0 or less is smaller for Fb than for Fb. That is, Fb FSD Ff iff

Vbo Fb(bo) < F (bo). (4.3)

A necessary and sufficient condition for (4.3) is that for all monotonically increasing

(that is, order-preserving) functions 4,

J S(bo)dFb(bo) _ f (bo)dF,(bo). (4.4)

That is, the mean of Fb is greater than the mean of Fb for any monotonic transform

of b. For further discussion and a proof that (4.3) is equivalent to (4.4), see [33].

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

We are now ready to define qualitative influences.

Definition 4.4 (S +) Let Fb(.laix) be the CDF for b given a = ai and context z.

Then S+(a,b) iff

Val, a2. al > a2 =# Fb(.Ialx) FSD Fb(.la2 X). (4.5)

Definition 4.4 is a generalization of Definition 4.3 under the convention that true >

false for binary events.

Like (4.1), (4.5) is a condition on posteriors. To achieve the strength of (4.5),

a definition of S+ in terms of likelihoods must imply FSD of the posteriors for any

prior distribution Fb. That is, we allow that there may be a context z inducing any

distribution on b. Milgrom [90] proves that the following condition is necessary and

sufficient for (4.5) to hold for any Fb(.Ix).

fa(allbix) fa(a2 lblZ)Vax, a2, bl, b2. al > a2 A b b () f(a.2 b2X) (4.6)

In (4.6), fa(.lbiz) is the probability density function for a given b1 and x.

This condition is known in statistics as the Monotone Likelihood Ratio Property

(MLRP) [3]. The necessity of MLRP for (4.5) is established by the special case of

dichotomous events. That (4.6) is a generalization of (4.2) is more clearly seen by

rewriting the latter as
Pr(AIBz) Pr(AIBz)> 1 > (4.7)Pr(AIBz) - - Pr(AlB(x) 7

For a demonstration of the sufficiency of MLRP, see Milgrom [90].

It is convenient to adopt special notation for influences on the value node v. The

value node is related to its predecessors by a utility function u : X(pred(v)) --* R [69].

Definition 4.5 (U +) The variable a positively influences utility, U+(a), iff

Val, a2. a, 2 a2s = u(a,, z) > u(a2 , x). (4.8)

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

The definition of U+(a) is a special case of S+(a,v) taking into account the determin-

istic relation (a degenerate probability distribution) between v and its predecessors

in the network.

4.4 Indirect Relationships

Edges in a graph of influence links constrain the direct relationship between pairs

of variables. Our next step is to design inference mechanisms to derive the indirect

relationships that follow from patterns of local influences.

First, let us define the canonical direction between two variables to be the strongest

qualitative influence derivable from those explicitly appearing in Q. The canonical

direction can be easily computed from Q by preferring an explicit 0 to the other Ss

(which are always consistent with 0 because the conditions are non-strict), preferring

+ or - to ?, and replacing the combination of + and - with 0.

Definition 4.6 (dir) Let S = {1 I (a,b,) E Q}. The canonical direction of influ-

ence of a on b, dir(a, b, G), is given by

SifS =, OES,or {+,-} C S

+ ifS= {+} or S= {+,?}
dir(a, b, G) =

- s= {-} or s={-,?}
? otherwise.

If dir(a, b) = ? then a and b are dependent in an unknown, varying, or context-

dependent direction.

4.4.1 Probabilistic Dependence in Graph Representations

Definition 4.7 (dep) The dependency graph, dep(G), of G = (V, Q) is

dep(G) = (V, E), where (a, b) E E iff dir(a, b, G) # 0

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

The dependency graph simply encodes the pattern of nonzero influences without

distinguishing the signs on the links. Pearl [104] has characterized the expressiveness

of these graphs with respect to the dependency structure of probability distributions.

Some results of this work and terminology developed there will prove useful in ana-

lyzing the properties of QPNs.

In a directed acyclic graph representation, two variables are conditionally inde-

pendent given any set of other variables that d-separates them in the graph.

Definition 4.8 (d-separation, Pearl [101]) Two variables a and b are d-separated

by a set of variables S in a directed acyclic graph iff for every undirected path from

a to b either:

1. there is a node s E S on the path with at least one of the incident edges leading

out of s, or

2. there is a node t on the path with both incident edges leading in, and neither t

nor any of its successors are in S.

The concept of d-separation is illustrated by the network of Figure 4.2.

Figure 4.2: Variables a and b are d-separated by {w,z} but by no other subset of
{w) , y, y, z}.

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

The following implication of Definition 4.8 is useful in justifying the inference rules

for QPNs presented below.

Lemma 4.9 If b V predg*(a) then a and b are d-separated in dep(G) by any S such

that predG(b) C S C pred*(b).

Proofs of this lemma and subsequent results appear in Appendix B.

Taking S = predG(b), this result is the basis for our closed-world assumption

that dir(a, b, G) = 0 if there are no explicit influences in Q. If in addition there are

no directed paths from b to a, we adopt the default influence So(a, b). In Pearl's

terminology, this assumption is valid when dep(G) is an I-map--a graph for which

all d-separations are true conditional independencies.

4.4.2 Network Transformations

We answer queries about relations among separated variables in a QPN by transform-

ing the graph into one where the variables of interest are related directly. The method

is based on Shachter's algorithm for evaluating numeric influence diagrams [123] by

repeated reductions and arc reversals. Each manipulation preserves the probabilis-

tic relationships-qualitative in our case-holding among variables in the possibly

smaller set V. Shachter [124] shows that there is a sequence of manipulations to

answer a query about the relationship among any subset of variables in the network.

The two basic network transformation operators are reduction (red) and reversal

(rev). The reduced network red(b, G) is the qualitative probabilistic network obtained

by splicing variable b out of G and adjusting qualitative influences as dictated by The-

orem 4.11 below. Network rev(a, b, G) is obtained from G by replacing (a, b, 8) E Q

with the influence (b, a, 6) and updating other influences as specified in Theorem 4.12.

The exact reduction and reversal procedures are described in Section 4.4.3 below.

Both the red and rev operations preserve essential properties of the networks. Let

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

G' = (V', Q') be the result of one of these operations. Then:

* dep(G') is acyclic.

* dep(G') is an I-map.

4.4.3 Variable Reductions

It is straightforward to demonstrate for the binary case that, in the absence of direct

links from a to b, S+(a, b, G) A S+(b, c, G) =j S+(a,c, red(b,G)). The ability to per-

form inference across influence chains is an essential property of a qualitative algebra.

From the digitalis model, for example, we would like to deduce that increasing the

dose of digitalis decreases the heart rate but increases the likelihood of ventricular fib-

rillation. Indeed, most programs with models like this would make such an inference.

Fortunately, the definition offered above for S+ implies transitivity for multi-valued

as well as binary variables.

Theorem 4.10

S61(a, 6, G) A S'2(b, c, G) A So(a, c, G) = S61 6 2(a, c, r ed(b, G)),

where i E {+, -0, ?0,} and ® denotes sign multiplication, described by Table 4.1.

+ - 0 ? $ + - 0 ?
+ + - 0 ? + + ? + ?
- - + 0 ? - ? - - ?
0 0 0 0 0 0 + - 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 4.1: The 9 operator for combining influence chains and the $ operator for combining
parallel influences. For example, + 0 - = -.

Application of Theorem 4.10 requires that no direct influences exist between a and

c. A more general specification of the result of variable reduction is the following:

100

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Theorem 4.11

S6 1(a,b , G) A S6 2(b, c, G) A S ~ (a, c, G) =ý S(6102) 63'(a, c, red(b, G)), (4.9)

where D denotes sign addition, also described in Table 4.1.

Theorem 4.10 is really a corollary of Theorem 4.11 with 83 = 0, the identity element

for e.
Using this result, we can reduce any variables from the network by computing the

new direction for each pair of immediate predecessor and successor variables. To find

the qualitative influence of a on b given a set of variables W for any a E pred*(b) and

W C pred*(b) we need only splice out all other variables in the network. Because each

application of reduction rule (4.9) reduces the number of influence edges (including

zeroes) in the network by one, the complexity of this procedure is O(IVI2).3 This

contrasts with the corresponding problem for numeric probabilistic networks, which

is NP-hard [15]. Some sample reductions are displayed in Table 4.2.

4.4.4 Influence Reversals

The procedure developed above is valid when a E pred*(b) and W C pred*(b). Some-

times, however, we may be interested in the qualitative influence of a on b when the

paths in the network run in the other direction. In such cases we need to perform one

or more reversals in the network before or after applying the methods of the previous

section.

In reversing a qualitative influence link, we must preserve the essential properties

mentioned in Section 4.4.2 above. To ensure acyclicity, we can reverse the influence

from a to b only if there are no other directed paths between them. Reversal is also

3 In the worst case, this algorithm requires fl(IV12) operations for reducing a single variable. The
overall complexity is therefore O(IV12).

101

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

original network

a b 82(c

s b
82

a Ss c

83 d 8

dir (a, c)

(St 0 2) e 83

(8[62) (83)) (4)

[81 0 (82 E (85 0 64))] E (83 0 84)

Table 4.2: Some sample reductions. The right column contains the expression for dir(a, c)
in the network obtained by removing nodes between a and c. Fragments (1) and (2) corre-
spond to the situations of Theorems 4.10 and 4.11, respectively.

(1)

(2)

(3)

(4)

102

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

precluded if a is a decision variable. To guarantee that G' = rev(a, b, G) is an I-map,

each must gain the other's predecessors:

predGs(a) = predg,(b) = predG(a) U pred(b).

The definition for S'(a, b) (4.4) explicitly refers to the predecessors of b. Therefore,

when the predecessor structure changes we need to recompute the influences that may

be affected. The following result describes the influences holding after reversal.

Theorem 4.12 Let G' = rev(a, b, G). G' inherits all the qualitative influences of G

except:

1. dir(a, b, G') is undefined.

2. dir(b, a, G') = dir(a, b, G).

3. Vw E pred, (b),

dir(w, b, G') = [dir(w, a, G) ® dir(a, b, G)] dir(w, b, G).

4. Vw E predG,(a) - {b},

dir(w, , G') = dir(w,a,G) if dir(w,b,G) = 0
r? otherwise

= dir(w, a, G) (dir(w, b, G) ?).

This transformation is illustrated in Figure 4.3.

Some information is lost in the process of reversing influences. For example,

let G" = rev(a, b, rev(a, b, G)), the network obtained by reversing an influence then

reversing it again. Application of Theorem 4.12 twice yields the result depicted in

Figure 4.4. Although the link from a to b is correct, the reversal process weakens the

other links. It may be advisable to store information about the state of influences

before reversals so that it is recoverable for subsequent reasoning with the original

relationships.

103

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

rev 82 e

Figure 4.3: Influence reversal.

rev 2
.rev

Figure 4.4: Information lost in a double reversal of the influence from a to b.

4.5 Weaker Conditions

4.5.1 Posterior Conditions

The preceding sections establish that the FSD condition for S+ (Definition 4.4) is

sufficient to support essential inferences such as the chaining of influences. In this

section I present some simple desiderata for a qualitative influence definition that

entail the necessity of FSD for these properties. I start by specifying the form such

definitions must take. To capture the intent of "higher values of a make higher values

of b more likely" in a probabilistic semantics, it seems reasonable to restrict attention

to conditions on the posterior distribution of b for increasing values of a. Therefore,

I postulate that a definition of S+(a, b) must be of the form

Val, a 2. a, > a2 F2 • Fb(.Ial) R Fb(.la2X),

104

e 63

e(6 3 ?)

(4.10)

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

where R is some relation on CDFs. This condition is exactly (4.5) with FSD replaced

by the more abstract relation.

There are two basic desiderata that severely restrict the possible Rs. First, S +

must satisfy Theorem 4.10. Without the ability to chain inferences, the qualitative

influence formalism has little computational value. Second, the condition must be a

generalization of the original specification of S + for dichotomous variables (Defini-

tion 4.3). With only two possible values this appears to be a minimal monotonicity

condition. These criteria lead to a sharp conclusion.

Theorem 4.13 Let S+(a, b) be defined by (4.10). Given the following conditions:

1. Theorem 4.10

2. For binary b, al > a2, and z,

Fb(-.a-1) R F6(.Ia 2X) * Pr(Blaiz) > Pr(Bla 2X)

the weakest R is FSD.

The force of this result is weakened somewhat by the a priori restriction of def-

initions to those having the form of (4.10). Many statistical concepts of directional

relation (based on correlation or joint expectations, for example) do not fit (4.10) yet

appear to be plausible candidates for a definition of qualitative influence. Quadrant

dependence [78] holds between a and b when4

Val, a2.a, > at2 = Fa(.Ia < a,) FSD Fb(.Ia < a2). (4.11)

Lehmann proves that quadrant dependence is necessary but not sufficient for regres-

sion dependence, which is his terminology for (4.5) without the quantification over

4This is actually the condition Lehmann proposes as a strengthening of quadrant dependence.
The basic quadrant dependence fixes al at a's maximal value.

105

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

contexts x. As quadrant dependence is weaker, yet still exhibits transitivity,5 it seems

to be an attractive alternative to regression dependence. To justify our choice of the

latter, we must consider the decision-making implications of probabilistic models.

4.5.2 Decision-Making with Qualitative Influences

The prime motivation for adopting a probabilistic semantics is so that the behavior of

our programs can be justified by Bayesian decision theory [121]. A decision of dl over

d2 (that is, such a choice of assignments to decision variables) is valid with respect

to a QPN if the network entails greater expected utility for the former. The most

useful distinctions to make in designing a qualitative representation are those that

will support inferences about properties of the valid decisions.

For example, if U+(a) and there are no indirect paths from decision variable a to

the value node, then a choice of al over a2 is valid iff al > a2, by the definition of

U+ (4.5).6 Decision-making power is enhanced if we can deduce new influences on

utility from chains of influences in the network. Our definition of qualitative influence

is necessary as well as sufficient for such inferences.

Theorem 4.14 Suppose U6'(b, G) and U0(a, G). A necessary and sufficient condi-
tion for U6 1s62(a, red(b, G)) is S61(a, b, G) as in Definition 4.4.

Figure 4.5 depicts this situation with 82 = +.

Theorem 4.14 demonstrates that while conditions weaker than S+, such as quad-

rant dependence, may be sufficient for propagating influences across chains, they are

not adequate to justify decisions across chains. For choosing among alternatives, the

SFor transitivity we need to quantify over contexts in (4.11). The proof parallels that for Theo-
rem 4.10.

'The existence of other paths from a to utility would leave open the possibility that the net
influence of a is negative. For example, we could summarize the therapeutic effect of digitalis
through conduction and heart rate as a direct positive influence. But this might be outweighed by
the indirect negative influence of digitalis via automaticity.

106

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

a b +
Figure 4.5: Chaining utility influences. The influence 61 = + in G is necessary and
sufficient for U+(a, red(b, G)).

relevant parameter is the utility function evaluated at a point; utilities conditioned on

intervals of the decision variable (as in quadrant dependence) do not have the same

decision-making import.

4.6 Back to the Digitalis Model

To summarize the discussion of qualitative influences thus far, let us return to the

digitalis example presented in Section 4.2.2. We are interested in computing the effect

of the decision variable, dig, on utility. The network of Figure 4.1 reduces to the one

depicted in Figure 4.6a, which further reduces to that of 4.6b.

dig

(a) (b)

Figure 4.6: Reduction of the digitalis model. (a) Digitalis is therapeutic in its effect on
conduction but toxic via the influence on automaticity. (b) The overall effect of digitalis
cannot be resolved with qualitative influences.

The result, not surprisingly, is ambiguous. Purely qualitative influences are too

107

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

weak to determine optimal decisions in the presence of true tradeoffs. Nevertheless,

the QPN is sufficient to determine some influences (for example, Ca on vf), and

uncovers the source of indeterminacy in others.

In the next section, a second type of qualitative relationship is introduced: quali-

tative synergy. Synergies complement influences by providing constraint on the inter-

actions among probabilistic influences. Although synergies cannot resolve the tradeoff

of Figure 4.6b, they can provide useful facts about the relation of the optimal digitalis

dosage to other variables in the model.

4.7 Qualitative Synergy

Swartout's XPLAIN knowledge base includes the "domain principle" that if a state

variable acts synergistically with the drug to induce toxicity, then smaller doses should

be given for higher observed values of the variable [141]. This fact could be derived by

a domain-independent inference procedure given a suitable definition for qualitative

synergy. Two variables synergistically influence a third if their joint influence is

greater (in the sense of FSD) than separate, statistically independent influences. In

the digitalis example, we need to assert that digitalis acts at least independently with

Ca and K deviations in increasing automaticity. For the desired result, we also need

the fact that heart rate and ventricular fibrillation are synergistic in their influence on

utility. (This synergy is due to our indifference to heart rate-indeed it is undefined-

for patients in fibrillation. The relation of this indifference to synergy is clarified in

Section 4.7.6 below.)

Figure 4.7 illustrates the QPN for digitalis enhanced by synergy assertions. Potas-

sium (K) is omitted for simplicity; its implications are analogous (with sign reversal)

to those for calcium. Qualitative synergies are indicated by a boxed sign with multi-

ple inputs and a single output. The input variables are synergistic in the designated

108

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Figure 4.7: The digitalis model with synergy. A boxed sign indicates that the inputs are
qualitatively synergistic in their influence on the output.

direction in their influence on the output variable.

4.7.1 Synergy Notation

Qualitative synergies are the second type of qualitative relationship represented in Q

for a QPN G = (V, Q). As qualitative influences are directed edges augmented by

sign, qualitative synergies are directed hyper-edges with a sign label. A qualitative

synergy assertion that the variables in T C V are synergistic in direction 6 on variable

w is written Y 6(T, w,G).

Definition 4.15 (Qualitative synergy hyper-edges) Y6(T,w,G) = (T,w,) E

Q.

4.7.2 Qualitative Synergy Defined

A formal definition of qualitative synergy must capture the informal intuition ex-

pressed above that the "joint influence is greater than separate statistically indepen-

dent influences." This will be the case when the effect of varying one variable is

enhanced by simultaneous variation of the other.

109

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

The joint influence of two variables a and b on a third, c, is expressed by the con-

ditional cumulative distribution for c, Fc(.Iab). To compare magnitude of "influence,"

we need some reference points. One way to measure a difference in influence is to take

the difference of two conditional CDFs. Two variables are synergistic if the difference

associated with raising one is greater (in the sense of FSD) for higher values of the

second.

Definition 4.16 (qualitative synergy, Y') Variables a and b are synergistic on c

in network G, written Y+({a,b},c, G) iff

Val, a2, b, b2, Co. al > a2 A bl _ b2 =:€

Fc(colaxbx) - Fc(cola 2bxx) < F,(colaxbzz)- Fc(cola2b2x). (4.12)

Replacing < in condition (4.12) by > or = defines sub-synergy or zero synergy (Y-

and YO), respectively. If the variable set T in Y 6 (T,w, G) contains more than two

elements, the condition above holds for all pairs of variables in T.

As usual, x ranges over assignments to the other predecessors of c.

The inequality (4.12) quantified over co can be viewed as stochastic dominance of

the respective distributions of CDF differences. The condition means that raising a

from a2 to ax has a greater effect for higher values of b. Note that the inequality is

symmetric in a and b.

If So(a, c), then Yo({a,w}, c) follows immediately for any variable w E pred*(c)

because of conditional independence. With conditional independence, Fe(.|lawx) =

F,(.la2ws) for all w and x, therefore both sides of equation (4.12) are zero.

Lacking an explicit synergy assertion for two or more variables that are predeces-

sors of another, the prudent closed-world assumption is Y': no constraint on their

interaction.' Although it is reasonable to assume So in the absence of knowledge to

'In the examples of this section, all synergies are specified explicitly.

110

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

the contrary, in this case, the variables are tied by a common immediate successor.

They are not d-separated by this successor, and interactions in situations with this

pattern are quite common.

Fortunately, there are several prototypical patterns of systematic interaction that

might alleviate the burden of specifying qualitative synergies. One that has attracted

some interest in the literature on numeric probabilistic networks is the "noisy OR

gate" model proposed by Pearl [103, Chapter 4].

In the noisy OR model, the binary-valued predecessors of a binary "effect" vari-

able are considered separate possible causes of the effect. Each "cause" variable is

associated with a parameter pi representing the probability of the effect given that

this variable is true and all other predecessors are false. We can compute the rest of

the conditional probabilities for y under the assumption that the "inhibiting events"

that prevent Y given each Zi are independent. For effect variable y with predecessors

zl ,..., z,, the conditional probabilities are:

Pr(Yjz 1 ... z,) = 1- IJ (1- pi). (4.13)
{iIZs}

Regardless of the magnitudes of the pis, the noisy OR model entails sub-synergy,

Y-. To see this, consider the Y- condition ((4.12) with the inequality reversed) for

the special case of binary variables. Y- ({zj, zk , y) iff:

Vz E X({zili i j Ai kIc})

Pr(YIZjZkz) - Pr(Yl|jZkZ) < Pr(YIZjZkZ) - Pr(YlZjZk,). (4.14)

Let

po = 1 (1- pi), where Z(x) = {i Zi in assignment x}.
z(Z)

Then from the noisy OR model (4.13),

Pr(YIZjZkx) - Pr(YljZk) = pApj(1 - pk), and (4.15)

Pr(YIZZkxZ) - Pr(YZj2kZx) = ppj. (4.16)

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Because 0 _ pk < 1, the expression in (4.15) is no greater than that of (4.16),

satisfying the binary Y- condition (4.14). Figure 4.8 illustrates the relation between

a numeric probabilistic network using the noisy OR model and its corresponding

QPN.

Figure 4.8: (a) The "noisy OR" model, and (b) its corresponding qualitative abstraction.

It is also easy to verify that Henrion's generalizations of the noisy OR model [52]

entail Y-. Intuitively, a noisy OR is sub-synergistic because, as with deterministic

OR gates, raising an input has less effect when other inputs are already raised. In

contrast, a model based on a probabilistic generalization of "gating conditions" (see

Rieger and Grinberg [113]) would be synergistic because an increase in one variable

enables the effect of the other. More generally, we should expect non-"?" synergy

results from canonical models because any representation that specifies an n-way

influence in terms of O(n) parameters must employ some systematic assumption

about interactions.8

4.7.3 Supermodularity, Y6, and Monotone Decisions

The Y' definition relates closely to the concept of supermodular functions [115, 146].

SDempster's rule of combination is also sub-synergistic under an analogous definition of synergy
in terms of belief functions [126]. A demonstration of this requires further assumptions regarding
how to interpret conditioning as evidence combination.

112

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Definition 4.17 (supermodularity, Ross [115]) A function g such that, for all

al > a2 and bl > b2:

g(ax, bl) + g(a 2, b2) - g(al, b2) + g(a2, bi) (4.17)

is called supermodular. If (4.17) holds with equality, then g is modular, and if the

inequality is reversed, g is submodular.

The most important property of supermodular functions, from our perspective,

is that they imply monotone decisions. Let the function ag(b) choose the value of a

that maximizes g for the given b.

a,(b) = arg max g(a, b).

It can be shown that a,(-) increases monotonically in b if g is supermodular (see

Ross [115, p. 6]).

The following result clarifies the connection between Y6 and supermodularity.

Lemma 4.18 Y+({a,b},c) (respectively Y- and YO) holds iff the function

e(a, b I) = (c)/fc(coIab)dco

is supermodular (submodular, modular) in a and b for all increasing functions 0 and

contezts z.

The function e0 is the expectation of c under the monotonic transform q. The

equivalence between submodularity for all c (Definition 4.16, the Y+ condition) and

supermodularity of expectations for all 4 is reminiscent of the correspondence between

the FSD condition (4.3) and increasing expectations for all 0 (4.4).

Once again, it is useful to define special notation for synergistic influences on the

value node.

113

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Definition 4.19 (Y6) Y (T, G) - Y(T,v, G). The direction of synergy S is +, -,

or 0 as u is supermodular, submodular, or modular under all monotonic transforms.

In the terminology of utility theory, S-modularity expresses multiattribute risk

aversion, proneness, or neutrality as 6 is -, +, or 0, respectively [27, 112]. Multiat-

tribute risk neutrality is equivalent to additive separability for u [32], as suggested by

the form of the modularity condition (4.17).

The correspondence between YJ and supermodularity is useful because of the

monotone decision property of supermodular functions. Consider the situation of

Figure 4.9. There we have Y+({a,b}) even though dir(a,v) = dir(b,v) = ?. Qual-

itative influences alone tell us nothing about which value we should choose for the

decision variable a. Positive synergy, on the other hand, implies that if b is observable,

our policy should be to choose higher values of a for greater values of the observed b.

While this still does not reveal the exact value of the optimal a, it dictates the form

that our strategy should take.

Figure 4.9: Synergistic influence on utility. Even though U?(a) and U?(b) we can deduce
that the optimal choice of a is increasing in b.

4.7.4 Propagation of Synergies in Networks

The mechanisms for deducing indirect synergies that hold in a QPN are analogous

to the network transformation techniques for qualitative influences developed in Sec-

114

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

tion 4.4. In particular, we can extend qualitative synergies through qualitative influ-

ences by variable reduction.

Theorem 4.20 Synergies can be extended along qualitative influences by reduction

according to the following:

Y 61({a, b}, c, G) A S6 2(c, d, G) A So(a, d, G) A So(b, d, G) -

Y610 62({a, b}, d, red(c, G)).

This reduction is depicted in Figure 4.10.

\G' = r ed(c, G)

Figure 4.10: Propagation of synergy through qualitative influences. Values for dir(a, d, G')
and dir(b, d, G') follow from Theorem 4.10. The new synergy y61862 is the result of Theo-
rem 4.20.

Like Theorem 4.10, Theorem 4.20 requires that there be no direct influences among

the variables newly linked in the reduced QPN. The next result provides the reduction

rule for the more general case.

Theorem 4.21

Y 6'((a, b}, c, G) A S6 (c, d, G) A Y 6'({a, c}, d, G) A Y 6 (({b, c}, d, G)

115

116CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

AS61(a,c, G) A S6"(b,c, G) A Y6"({a, b},d, G) #

y(s62)$((63s 66)0(6461~)@6' ({a, b}, d, r ed(c, G)). (4.18)

Theorem 4.21 generalizes Theorem 4.20 because So(a, d, G) A So(b, d, G) =- 83 = 84 =

87 = 0 by conditional independence.

Note that the signs of direct influences from a and b to d do not affect the synergy

propagation, though the signs of influences on c do. This more complicated situation

is illustrated in Figure 4.11 below.

8n. = (810 82) E

e

(83 0 86)

87

Figure 4.11: Variable reduction with parallel synergies.

A special case of this result demonstrates how to propagate synergies backwards

through qualitative influences. Upon reduction, a variable's predecessors assume its

role in all synergies, with modified signs reflecting the direction of the predecessor's

influence.

\' I

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Corollary 4.22

Y'3({a, c}, d, G) A Ss6 (b, c, G) A Yo({a, b}, c, G) A So(a, c, G) =•

Y' 8 s6 ({ a, b}, d, r ed(c, G))

The result follows from the assignment 61 = 8s = 87 = 0 in Theorem 4.21. Application

of Corollary 4.22 is illustrated in Figure 4.12.

G' = red(c, G)

Figure 4.12: Backwards propagation of synergies through qualitative influences.

For an example of the use of backwards propagation, consider a synergy relation

from the digitalis model. In the more detailed model of Figure 4.13, the effects of

variables dig (digitalis dosage) and Ca (measured serum calcium) would be mediated

by dig' and Ca', the actual concentrations of digitalis and calcium in the bloodstream.

Even though the synergy assertion is in terms of the physiological parameters, we can

deduce synergy on the practically relevant proxy variables by reduction according to

Corollary 4.22.

A canonical decision situation with the above form is the estimation problem

from statistics. The problem is to choose an estimate a of the true "state of nature"

117

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Figure 4.13: An elaboration of a digitalis model fragment. Variables dig and Ca represent
dosage and measurement, respectively, while the primed versions are actual concentrations.
The unprimed variables are synergistic by reduction of dig and Ca' .

0 given only an observation z that is statistically related to 0. Karlin and Rubin [67]

demonstrate that if

1. the optimal estimate is increasing in 0 (the monotone decision property of Sec-

tion 4.7.3),

2. utility decreases away from the optimum, and

3. z is related to 0 by the MLRP (the likelihood condition for S + (4.6), Sec-

tion 4.3.2),

then a and z also satisfy the monotone decision property.

By representing the estimation problem as the QPN of Figure 4.14, we see that

Corollary 4.22 is a similar result, with the monotone decision property replaced by the

stronger condition of qualitative synergy. Synergy seems justified for the estimation

problem because the relative value of a higher estimate increases with the state of

nature.

The applicability of the setup in Figure 4.14 goes well beyond estimation. Sup-

pose the state of nature 0 represents an unobservable disease severity and the decision

variable a the aggressiveness of therapy. Choosing a therapy level is similar to esti-

mating the severity of disease, as more serious conditions call for stricter treatments.

118

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

Figure 4.14: A qualitative probabilistic network for the estimation problem.

It is essential that a program be capable of inferring the qualitative implications for

therapy of any symptom z related to disease severity in a known direction.

4.7.5 Landmark Values

The monotone decision property can be used to develop a concept of landmark values

for QPNs analogous to the landmark value concept in qualitative simulation [73].

A landmark value is any distinguished point in the domain of a variable. Their

usefulness to qualitative reasoning accrues when landmark values of several variables

correspond in a meaningful way or the point has some other qualitative significance

for the application.

In QPNs, the interesting landmarks are optimal values of decision variables and

the corresponding values of observable non-decision variables. Suppose that in the

disease-severity interpretation of Figure 4.14, the variable z represents an observable

symptom with a specially designated "normal" value of z*. There is a corresponding

landmark value of the decision variable, a*, representing the optimal level of therapy

given z = z*. The value of a* may be known to the program, especially if there is

documented experience with z-normal patients, everything else being equal. Even if

its exact value is not known, or if it depends on other variables, the a* concept has

meaning as a landmark value in terms of its optimality property.

Suppose further that a patient presents with an elevated z-value of z' > z*. The

119

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

qualitative implication drawn from our model is that the corresponding optimal ther-

apy a' is increased, a' > a*, all else being equal. As correspondences in the quantity

space [34] are known in finer detail, the program can determine optimal strategies

with increasing precision.

4.7.6 Synergy in the Digitalis Example

To complete our discussion of qualitative synergy, let us return to the digitalis model

of Figure 4.7. As promised, I start by justifying the synergy relation between hr and

vf

Consider two heart rates, hrl > hr2, and the two values of the binary variable vf.

The synergy condition, YJ+({hr, vf}), is an instantiation of Definition 4.19:

u(hri, VF) - u(hr2, VF) 2 u(hri, ,T) - u(hr2, TF). (4.19)

Given VF, the heart rate is irrelevant (and ill-defined because ventricular fibrillation

is a state where the heart is not contracting regularly). Therefore, the left-hand side

of (4.19) is zero. For patients not in fibrillation, lower heart rates are preferable, by

U-(hr), at least within the range considered here. This implies that the right-hand

side of (4.19) is negative, satisfying the inequality.

By applying the results of Section 4.7.4, we can successively reduce any variables

positioned between the ones of interest. Figure 4.15 shows the result of removing all

but dig, Ca, and v. The final step, transformation from the fragment of Figure 4.15a

to that of 4.15b, requires parallel combination of synergies using Theorem 4.21.

The final result of the exercise is that while the value of administering digitalis is

ambiguous, by U?(dig), we can deduce that the optimal dosage is a decreasing function

of calcium, by Y7 ({ dig, Ca}). The more detailed model of Figure 4.13 showed us that

this result holds whether we are talking about the actual substance concentrations

120

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

(h'~

Figure 4.15: Transformation of the digitalis model with synergy: (a) collapsing the ther-
apeutic pathway and consolidating the toxic, (b) final situation after reduction of vf.

in the bloodstream or about the amounts administered and measured by imperfect

means.

Inferences of this sort play a central role in therapy planning and in the devel-

opment of consultation systems via automatic programming [94, 141]. For planning,

this type of result is a constraint on the class of admissible plans, significantly pruning

the search space [158]. This is an especially useful kind of constraint for the auto-

matic generation of a consultation system because the qualitative form of the solution

corresponds to the structure of part of the target code.

The digitalis dosage d* for patients with normal calcium-a distinguished point

in the quantity space for Ca-is a landmark value as described in Section 4.7.5. Sub-

synergy implies that the dosage for a patient with calcium above normal should be

lower than d*. This is essentially the strategy of the digitalis program produced by

Swartout's XPLAIN system [141], where a domain principle mandates that dosage

should be adjusted according to "drug sensitivities." QPNs provide a more general

and principled language for encoding domain knowledge, from which policies such as

this can be derived.

121

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

4.8 Related Work

The QPN representation and reasoning techniques presented here borrow many con-

cepts from other work in AI and decision theory. The most obvious debt is to research

in numeric probabilistic networks, especially that of Pearl [103] and Shachter [123].

This work also relates to other efforts by similarity of purpose. In the following

sections I compare it with research in qualitative probability, ordering relations on

random variables, and qualitative reasoning.

4.8.1 Qualitative Probability

The central task in designing a qualitative probability representation-indeed in the

design of a qualitative representation for anything-is choosing the important qualita-

tive distinctions to make. For example, a straightforward mapping of techniques from

qualitative physics might suggest that we carve up the [0, 1] probability scale into a

quantity space by choosing a small set of designated reference points. For example,

the set of points {.01,.05,.5,.95, .99} might be chosen as especially significant.

Such a scheme is a non-starter because it is only by coincidence that the important

qualitative thresholds for any problem will align themselves with the fixed boundaries

in the probabilistic quantity space. Furthermore, it is not clear that the types of

manipulations typically performed on probabilities will respect these boundaries in

a systematic fashion. Though I do not know of any serious proposal along these

simplistic lines, attempts to construct qualitative notions of absolute probability (see,

for example, the work of Halpern and colleagues [47, 48]) are likely to encounter

similar problems. Unlike the scales of physical parameters, the probability interval

does not appear to have values (except the endpoints) that are universally interesting

or even of special significance within a domain. And the qualification problem [130]

is inevitably important here because one can almost always think of conditions that

122

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

would bring the probability of any non-analytic event outside any given non-universal

range.

This suggests that it might be more appropriate to base qualitative probability

concepts on relative likelihoods. A relative likelihood logic permits statements that

one formula is more likely than another [28, 39]. Absolute probability is subsumed

by a scheme of this type given a set of special formulas corresponding to canonical

chance situations (such as experiments with an idealized coin) of all probabilities.

The qualitative relationships presented here can be viewed as a special case of rel-

ative likelihood where only assertions about the comparative probability of particular

conditional events are permitted. Both S6 and Y' are limited to comparisons of the

likelihood of a given event under different conditions. For the binary case, S6 induces

a quantity space on the likelihood ratio (4.7) with a distinguished value of one.

There are three primary advantages to restricting the formalism to these special

likelihood comparisons. First, the class is closed under the reduction operations

presented in Sections 4.4 and 4.7, and thereby is supportive of tractable inference

procedures. Second, the ability to deduce decision properties suggests that these

comparisons are making some of the significant qualitative distinctions. And third,

the ceteris paribus condition in the definitions reduces the impact of the qualification

problem, as does the embedding of the formalism in closed-world networks.

The enterprise of qualitative probability is not necessarily hostile to quantita-

tive probability. In Savage's axiomatization of Bayesian decision theory [121, Chap-

ter 3], the qualitative likelihood ordering logically precedes development of quantita-

tive probability measures. 9 The existence of a numeric representation for likelihood is

only a convenient fact that simplifies much of the theory and supports some direct ap-

9Strictly speaking, the qualitative theory is more general than the quantitative one, which typi-
cally requires some sort of additivity axiom. This is not, however, a motivation for the present work
(indeed, the proofs assume additivity), which stresses advantages for knowledge representation and
computation.

123

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

plications. The emphasis to date on numerical probability representations in applied

decision theory and AI is due more to technological history than to any fundamental

requirement that we focus exclusively on the precise extreme of the representation

spectrum.

4.8.2 Relations on Random Variables

Philosophers have long attempted to develop mathematical definitions of causality,

occasionally producing probabilistic interpretations. Motivated by a more limited

set of concerns, I have ignored in this treatment temporal properties, mechanisms,

and other issues salient to causality. These matters aside, Suppes [140] proposes

a probabilistic condition for binary events that is equivalent to S + (4.1) without

the context quantification. For multi-valued variables, Suppes suggests quadrant de-

pendence (4.11). A cause is considered spurious if the probabilistic relation can be

explained by a prior common cause. The concept of spuriousness can be partially

captured in QPNs by distinguishing qualitative influences inferred via arc reversals

(spurious) from those derivable solely from reductions along influence chains (gen-

uine). This is similar in spirit to the approach of Simon [131], and is equivalent to

the distinction emphasized by Pearl [102] between causal and evidential support.

As suggested previously, ordering of random variables has also attracted con-

siderable interest in statistics [3, 78, 115] and decision theory [162]. Milgrom [90]

demonstrates the application of MLRP to theoretical problems in informational eco-

nomics.

The key difference between the S+ definition proposed here and previous work

is that we obtain transitivity by requiring the condition to hold in all contexts.

Humphreys [64] proves a special case of Theorem 4.10 to the effect that binary quali-

tative influences along Markov chains (graphs where each node has a single predeces-

124

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

sor, thereby eliminating context) can be combined by sign multiplication. In contrast,

Suppes demonstrates that the causal algebra induced by his condition-defined only

at the margin-does not possess the transitive property. A causal algebra either lack-

ing sound reduction rules like those of Section 4.4.3 or restricted to simple Markov

chains would have little value for knowledge representation.

Considerably less attention has been devoted to relations of probabilistic synergy.

The supermodularity concept of Section 4.7.3 has not, to my knowledge, previously

been interpreted in a probabilistic context. However, a constraint similar in spirit to

sub-synergy was exploited by NESTOR [14, page 102], a diagnostic program based on

probabilistic inequalities. (NESTOR used qualitative influences to bound probability

intervals as well.) And we saw in Section 4.7.2 that several canonical probabilistic

models proposed for AI programs are special cases of yV.

4.8.3 Qualitative Reasoning

It might appear at first glance that the very imprecision sanctioned by qualitative

mechanisms obviates the need to consider explicitly uncertainty underlying the mod-

els. This position, however, confounds the weakness of inferences and input speci-

fications with other kinds of variability in the model. The distinction is crucial be-

cause the latter might undermine the soundness of conclusions drawn from qualitative

knowledge bases.

The interpretation of a set of qualitative physical relationships as "qualitative

differential equations" (see Kuipers [73], for example) treats each relationship as a

constraint on some "true" functional relationship that holds over time. To assert that

b = M+(a) (in Kuipers's notation) is to claim that there exists an increasing function

f such that bt = f(at) for all t. This is incompatible with a probabilistic interpre-

tation, even though f is only loosely constrained. A qualitative influence assertion

125

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

of S+(a, b), on the other hand, leaves open the possibility that the relationship is

non-deterministic (f might vary over time) and does not prohibit an increase in a

from coinciding with a decrease in b.

Application of qualitative-physics inference mechanisms in a probabilistic environ-

ment is dangerous because they tend to take as impossible what is merely unlikely.

For example, Forbus's measurement interpretation algorithm for Qualitative Process

theory [35] prunes away the qualitative behaviors that are inconsistent with obser-

vations of the system. If the dynamics of the system are really probabilistic (I do

not claim that this is the case for Forbus's application), then this step is not valid

because no behaviors are truly inconsistent. In such a situation, measurements serve

to change the likelihoods of various behaviors but never to rule them out. This dif-

ference is vital in a critical application because some highly unlikely behaviors may

nevertheless be important enough to demand attention from the reasoner.

Though we cannot prune measurement interpretations, we might be able to per-

form some pruning on the plan space using the techniques presented above. A partic-

ular measurement does not in general reveal any facts about the other model variables

with certainty, yet it may allow us to deductively conclude that some decision vari-

ables (perhaps dials in the control room) should be adjusted in particular directions.

4.9 Conclusion

4.9.1 Summary

A QPN model represents qualitative constraints on the probabilistic relationships

among a set of variables. In this chapter I have defined and analyzed two ba-

sic constraint types: qualitative influences that express direct relationships between

variables, and qualitative synergies that express interactions among influences. The

126

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

probabilistic definitions justify sound graph-based inference procedures that answer

queries about the qualitative relationship of any subset of variables in the model.

Qualitative relationships involving the special value variable v dictate structural prop-

erties of the optimal assignment to decision variables.

Despite the ubiquity of constructs similar to qualitative influences in knowledge

representation mechanisms, there has been little study of the semantics of these state-

ments. Previous work either denies the probabilistic nature of the relationships among

variables in the model or takes for granted the ability to draw inferences by chaining

influences in the network. I have defined a positive qualitative influence of a on b as

an assertion that, in all contexts, the posterior probability distribution for b given a

is stochastically increasing (in the sense of FSD) in a. A series of results provides

theoretical support for this S' definition:

* S6 justifies reduction of variables by influence chaining. Reduction of any subset

of variables can be performed in O(IV12) time.

* S6 permits some nontrivial conclusions upon influence reversal.

* S6 is the weakest posterior condition that justifies chaining of influences.

* S6 is necessary and sufficient for chaining decisions across influences.

Two variables a and b are positively synergistic on c if the posterior distribution

for c is increased more (in the sense of FSD) upon a positive change in a for higher

values of b. This Y 6 definition has several computationally and decision-theoretically

useful properties:

* Canonical models such as the "noisy OR" often entail Y6 .

* Y6 is equivalent to supermodularity on expectation with respect to all mono-

tonic transformations.

127

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

* Yu implies the monotone decision property.

* Synergies may be propagated forwards or backwards along qualitative influ-

ences.

Together, the two qualitative relationships provide a simple yet powerful model-

ing language. A planner is often able to derive important facts about the qualitative

structure of optimal strategies from only weak premises on the qualitative relation-

ships in the domain.

4.9.2 Discussion

Though powerful in some respects, the qualitative relationships are also quite limited.

As we saw in Section 4.6, qualitative influences are unable to resolve true tradeoffs

because parallel influences of different sign are indeterminate in combination (+ ($- =

?). Indeed, "unresolvable in a QPN" might be the best available formal definition of

a tradeoff situation.

Thus, a QPN knowledge base can support planning "up to tradeoffs." To proceed

beyond that point, we need more precise knowledge of the domain. I see no insur-

mountable barriers to the development of hybrid representations that augment QPNs

with stronger constraints, up to and including constraint to exact numeric values. As

mentioned above, features of such a hybrid scheme were explored by Cooper in the

NESTOR project [14]. While NESTOR's basic representation was probability intervals,

it applied constraints similar to qualitative influences and synergies to bound the

result of certain combination operations.

Finally, evaluation of QPNs as a knowledge representation must also take into

account the feasibility of constructing knowledge bases of reasonable complexity. For

reasons discussed above, QPNs should be substantially easier to generate than their

numeric counterparts. This prospect is explored further in the next two chapters,

128

CHAPTER 4. QUALITATIVE PROBABILISTIC NETWORKS

which describe SUDO-PLANNER's knowledge base and its procedure for constructing

QPNs from the KB.

129

Chapter 5

Effects of Actions

The representation of effects is a central issue in planning research and is perhaps the

factor that most distinguishes different designs. The topic requires special attention

in this work because traditional representations cannot accommodate actions with

uncertain effects. Mechanisms from previous work in planning under uncertainty

have limited applicability for SUDO-PLANNER because the descriptions of effects were

not specifically designed to support dominance-proving.

The first three sections in this chapter address basic issues that loom large in

efforts to design a representation for the effects of actions. The distinction between

terminological and assertional knowledge has implications for the role of effects in

characterizing actions in a knowledge base. The frame problem remains an obstacle

in the quest for tractable action representations that are formally sound. Finally, a

realistic action representation must provide for context-dependent effects, though AI

planners have traditionally lacked this facility.

The discussion of basic issues prepares the way for a presentation of SUDO-

PLANNER's representation. Effects in SUDO-PLANNER are based on the qualitative

relations of Chapter 4. Section 5.4 describes the knowledge base constructs for speci-

fying effects and discusses some difficulties in relating them precisely to QPN seman-

tics. Section 5.5 introduces the Markov influence, a special construct that facilitates

130

CHAPTER 5. EFFECTS OF ACTIONS

specification of simple temporal effect patterns. Inheritance of effect assertions in the

event taxonomy is the subject of Section 5.6. Finally, Section 5.7 describes SUDO-

PLANNER's mechanism for handling the information-gathering behavior of actions.

SUDO-PLANNER's procedure for generating QPNs from the knowledge base of effect

assertions is presented in Chapter 6.

5.1 Terminological and Assertional Knowledge

Philosophers and knowledge representation theorists sometimes emphasize the dis-

tinction between knowledge that is definitional for a concept and factual information

true only by happenstance. On the AI side, for example, Woods contrasts struc-

tural (definitional) and assertional (factual) features of semantic network represen-

tations [165, Section III.J]. The KRYPTON knowledge representation system [6] real-

izes this distinction by explicitly separating its terminological (definitional) reasoning

component ("T-box") from the assertional reasoner ("A-box").

SUDO-PLANNER's representation for actions (Section 3.2) is based on NIKL, the

T-box of KL-TWO [150]. Its taxonomy of action types, therefore, is based entirely

on terminological knowledge.' Conversely, SUDO-PLANNER uses the action defini-

tions exclusively to generate the taxonomic relations among action types. Mixing

assertional knowledge with the definitions of actions in a terminological system like

NIKL interferes with classification, thereby degrading the effectiveness of taxonomic

reasoning. Haimowitz et al. [46] recount other undesirable consequences of T-box

abuse.

In principle, actions could be defined in part by their effects. For example, we

could define treatment as an action that alleviates some disease, and its specializa-

'There is substantial room for philosophical controversy about whether the information in NIKL

concept specifications is truly definitional. All that matters for this discussion, however, is that the

reasoner interprets the specifications as definitions.

131

CHAPTER 5. EFFECTS OF ACTIONS

tion CAD-treatment by value-restricting the disease role to CAD. Alternatively,

actions can be defined operationally, that is, in terms of their objects, instruments,

and procedures.

Permitting both types of definition presents a difficulty for terminological reason-

ing because the effects of operationally defined actions are typically not derivable

from their specifications. For example, CABG is in fact a CAD-treatment, but

this does not follow from its operational definition. It is unclear whether CABG

should be classified as such in the taxonomy of Figure 5.1 because this would inhibit

proper classification of its operationally defined subtypes, depending on the specifi-

cation conventions and the classification algorithm.

treatment

CAD-treatment AIDS-treatment miracle-cure

CABG AIDS-cure

Figure 5.1: A pseudo taxonomy where actions are defined by their effects.

Defining actions by their effects makes it difficult to ensure that the agent can

actually execute actions prescribed by the planner. The action type AIDS-cure in

Figure 5.1, defined as a "treatment that cures AIDS," is perfectly coherent, but it

cannot be implemented because it has no known instances (at the time of this writing).

Unless the planner realizes this, it will offer vacuous recommendations whenever it

encounters AIDS patients.

To prevent this potential fallacy, all information about the effects of actions in

SUDO-PLANNER is treated as assertional knowledge. Definitions of actions must be

"ineffective," referring only to operational features, as described above. Although

nothing in SUDO-PLANNER's representation guarantees that definitions are operational

132

CHAPTER 5. EFFECTS OF ACTIONS

or that action types are instantiable and implementable, banishing effects ensures

that SUDO-PLANNER is not subject to the wishful-thinking delusion illustrated by the

AIDS-cure action.

This is not to say that any scheme using "effective" definitions will produce prac-

tically worthless plans. Given a fixed knowledge base of implementable actions de-

fined by their effects (as in the system of Swartout and Neches [142]), the planner

will produce legitimate plans. However, if we permit the planner to construct its

own action definitions dynamically from other concepts in the knowledge base (as in

SUDO-PLANNER), including effect constructs can lead to non-implementable action

types as above.

An alternative approach to the problem would be to explicitly represent and con-

sider the knowledge prerequisites associated with each action [93]. Given a descrip-

tion of the agent's knowledge, the planner could recognize its inability to implement

AIDS-cure. The "ineffective definition" principle I am advocating here is a sim-

pler, global convention that achieves the purpose of knowledge prerequisites for an

important special case.

5.2 The STRIPS Assumption

5.2.1 The Frame Problem

The classic dilemma in representing and reasoning about the effects of actions is

the frame problem [88, 130]. The frame problem has come to stand for a variety

of computational and notational complexities arising from the apparent necessity

of considering the possible change in status of every proposition for each action.

Actual planners circumvent these difficulties by restricting attention to propositions

explicitly mentioned in action specifications, a convention first applied by STRIPS [30].

133

CHAPTER 5. EFFECTS OF ACTIONS

Waldinger has named this policy the "STRIPS assumption" [152]. Characterizing such

policies in a formal logic has proven to be a difficult task for AI theorists [49].

The frame problem is just as important and difficult when actions have uncertain

effects. My solution approach in the uncertain case is similar in form to traditional

techniques, with results of comparable adequacy. Actions are presumed to affect

directly only those variables explicitly referenced in their specifications. Of course,

the uncertain nature of effects requires representations quite different from those of

categorical planners, and non-effects likewise require a probabilistic interpretation.

While add and delete lists that specify the propositions changing truth value as a

result of an action are sufficient for categorical planning,2 actions with uncertain

effects must describe changes in probabilistic relations that occur when the action is

performed.

5.2.2 The STRIPS Assumption for Uncertain Effects

Generally stated, the STRIPS assumption dictates that the effect of an action on the

world model be completely determined by the direct effects specified in its descrip-

tion. We can characterize the implications of this assumption for planning under

uncertainty in terms of dependency graph concepts (see Section 4.4.1). Let S, be the

set of event variables that action variable a directly affects. The STRIPS assumption

for planning under uncertainty is that there exists an I-map G such that for all event

variables e,

a pred,(e) =* e E S,. (5.1)

Condition (5.1) has direct implications for probabilistic independence. By virtue

of G's I-mapness and Lemma 4.9, a is conditionally independent of any e ý S, given

2That is, the truth value changes are sufficient for defining modifications to the world model.
Specifying and implementing truth value change is tricky, however, because changes in status for

the sentences mentioned imply changes in their logical consequents. Lifschitz demonstrates how to
account for this correctly within the STRIPS framework [82].

134

CHAPTER 5. EFFECTS OF ACTIONS

predG(e). Each variable d E predG(e), in turn, is either a direct effect of a or is

conditionally independent given its predecessors, predG(d). Ultimately, the effect of

a on e is completely determined by a's direct effects and e's relation to them. Note

that we still need to describe the interaction, if any, between a and e in their joint

effects. Section 5.3 discusses this issue further.

The probabilistic STRIPS assumption does not require that a be conditionally

independent of e given the direct effects Sa, or even by any subset of S,. In Figure 5.2,

for example, a and e are d-separated (Definition 4.8) by {s,y} but by no other variable

set. The predecessor y is necessary for conditional independence of a and e even

though y itself is unconditionally independent of a.

Figure 5.2: Action a is conditionally independent of e given S' = {s, y} but not given any
subset of its direct effects Sa = {s}.

If we enlarge the conditioning set to include predecessors of a's direct effects,

however, we get another valid independence condition. Let S' be the set of a's direct

effects plus the other variables that affect those effects:

S' = s U U predG(s)-a}
sES.

The graphical condition (5.1) implies that a is conditionally independent of e given

S:, as long as e ý Sa. In the graph of Figure 5.2, for example, S: = {s,y}.

In summary, we can formalize the STRIPS assumption under uncertainty in terms

of probabilistic conditional independence. In particular, given a dependency graph of

variables in the world model, any variable e not specified as an effect of action a must

not be directly connected to a. Under this condition there may be a probabilistic

135

CHAPTER 5. EFFECTS OF ACTIONS

dependency between a and e in some situations, but this can always be described in

terms of a's and e's relations to Sa.

5.3 Context-Dependent Effects

It is not possible in general to describe the effect of an action on a single event in isola-

tion. Typically, the effect will depend on the context in which the action is performed,

including the other actions in the plan and the values of other event variables in the

world model. Consideration of context requires an effect representation expressive

enough to capture interaction among actions and events in their joint effects.

Traditional planning representations do not provide for context-dependent effects,

except through the use of preconditions. Preconditions provide only a gross form of

context dependence where the action is prohibited in designated situations. Formally,

preconditions are a special case of more general specifications of effects as a function

of the action in conjunction with the background situation.

Rather than saying an action cannot be performed in situations failing to meet a

set of preconditions, we could specify that it does not have particular effects (usually

the desired ones) unless the conditions hold. Under this interpretation, the planner

can apply put-on(a, b), for instance, in any situation, but the result aon(a, b) is condi-

tional on cleartop(a) and cleartop(b). Otherwise, the effects of put-on are undefined.

By placing the conditions on effects rather than on the action, we can employ actions

that may have many contingent effects. In addition, the planner is free to introduce

such actions into the plan without guaranteeing that the preconditions are satisfied.

Pednault has recently generalized traditional planning representations to include

"secondary preconditions" for specifying context-dependent effects [106]. While "pri-

mary" preconditions can be treated as special cases of these, there may be some utility

to keeping them conceptually distinct in a practical planning system.

136

CHAPTER 5. EFFECTS OF ACTIONS

5.4 Specification of Effects

The effects of actions in SUDO-PLANNER are encoded as qualitative relations among

action and event variables. Qualitative influences describe the direct effects of an

action, and qualitative synergies describe interactions among influences, or context-

dependence (Section 5.3). Effects are specified simply by S6 (qualitative influence)

and Y 6 (qualitative synergy) assertions, with 6 E {+,-,0,?}. SO assertions are

implicit, by the probabilistic STRIPS assumption (5.1) of Section 5.2.2.

5.4.1 Semantics of Effect Assertions

An assertion of the form S6(av, ev) or Y 6(av, ev, ev 2) means that action and event

variables of types av and ev participate in the designated relation. Effects of events on

other events are similarly specified. The knowledge base construct S6 is distinguished

from the QPN predicate S6 in two ways:

1. There is no third argument. In QPNs, S' is always evaluated with respect to

some network G. S6 assertions in the knowledge base cannot refer to particular

QPNs because they are, in fact, the source of QPNs assembled during planning.

2. The variable arguments are types, not instances.

A similar distinction applies to Y'.

Despite the rigorous probabilistic definition of qualitative relations in QPNs, the

semantics of these assertions in the knowledge base are not immediately clear. The S'

definition (4.4), for example, refers explicitly to the context a composed of the "other

predecessors" of the affected variable. Without a G argument, the assertions must

be given a context-independent interpretation. And because probability distributions

over event variable types are undefined, the meaning of the qualitative relations must

derive from the process of instantiating the types to individual variables.

137

CHAPTER 5. EFFECTS OF ACTIONS

A complete declarative semantics for effects in the SUDO-PLANNER knowledge base

is a topic for further research. Some properties of these assertions can be presented

in declarative form, however, and the description of the QPN construction algorithm

in Chapter 6 provides further constraint on their interpretation. Nevertheless, the

current absence of a full semantic account complicates knowledge engineering and

hinders the formal analysis of SUDO-PLANNER's model construction techniques.

5.4.2 Special Constructs

It is possible, and often useful, to introduce special knowledge base constructs to

capture regularities in the S' and Y6 relations among instantiated event variable

types. Such constructs offer notational economy by specifying patterns of effects

with a single assertion. In addition, they can be used to direct the global course of

model development through special handlers in the model construction procedure. An

example of a special effect construct (the only one implemented in SUDO-PLANNER)

is the "Markov influence" introduced in Section 5.5. By accounting for a simple but

common pattern of effect over time, Markov influences help to redress the lack of

temporal structure in SUDO-PLANNER's event representation.

5.5 Markov Influences

A Markov influence represents an effect that depends on the prior state of the affected

variable. In other words, the value of the affected event variable after an action

depends on its value before the action as well as on the value of the action variable.

For example, CABG alleviates CAD, but the distribution of final CAD states also

depends on the initial CAD value. To represent this directly in the knowledge base,

however, we would need separate concepts for "CAD before CABG" and "CAD after

138

CHAPTER 5. EFFECTS OF ACTIONS

CABG." Such a scheme is infeasible because it requires distinct concepts for each

event variable in all potentially relevant temporal relationships to the action variable

instances.

Markov influences specify state change for a variable across time periods without

explicitly referring to the times involved. The form of a Markov influence assertion of

av on ev is K6 1,2 (av, ev), where 81 is the direction of influence and 62 is the direction

of synergy between av and the prior value of ev. For example, the Markov influence

of CABG on CAD is

K-'- (presence(CABG), extent(CAD-event)). (5.2)

The first "-" indicates that CABG stochastically decreases CAD, and the second

asserts that the effect is more negative the greater the extent of the patient's original

coronary disease. Figure 5.3 displays the QPN fragment generated by the Markov

influence in this example.

influences

influences

Figure 5.3: The negative Markov influence of CABG on CAD.

In interpreting K6 18 2A during QPN construction, SUDO-PLANNER modifies event

variables and their relationships and introduces any new structure required. (Sec-

tion 6.3.3 describes the interpretation procedure in detail.) For the CABG/CAD

influence (5.2), SUDO-PLANNER splits extent(CAD-event) into two QPN variables,

denoted CAD-1 and CAD-2 in the figure. It adds an influence of sign 81 (-) from

CABG to CAD-2, along with a qualitative synergy of sign 62 connecting CABG and

139

CHAPTER 5. EFFECTS OF ACTIONS

CAD-1 to CAD-2. SUDO-PLANNER also introduces a positive influence from CAD-1

to CAD-2, based on the general assumption that the value of the affected event after

the action, ev 2, is positively related to its prior value evl.

The K •61A(av, ev) relationship is called a Markov influence because the split event

variable enforces a Markov independence property in the network. Specifically, influ-

encers of the original variable ev are independent of ev2 given the prior state variable

evl and the new influencer av. Similarly, variables affected by ev do not depend

on the prior value evl given the posterior value ev 2 and the variables that affect ev.

This partitioning is demonstrated in Figure 5.3 by the delegation of all influencers to

CAD-1 and all influences to CAD-2.

5.6 Inheritance of Effects

As mentioned in Section 5.4.1, effect assertions in the knowledge base refer to event

variable types, while effects in QPNs relate event variable instances. The correspon-

dence between the two is determined in part by the implications of an effect assertion

on effects among taxonomically related types. That is, some of the semantical ques-

tions raised above would be answered by an account of effect inheritance.

An effect assertion of the form S6 (evi, ev 2) has the intended interpretation that

all event variables of type ev1 have a 6 influence on some event variable of type ev 2 .

Therefore, the asserted effect also holds for any subtype of evl on any supertype of

ev2. Effects associated with their antecedent type are inherited downward in the event

variable taxonomy.

Defining the effect relation to have a universally quantified antecedent and an

existentially quantified consequent preserves the important property of closure under

transitivity. This feature is essential given the chaining inference rules for QPNs

developed in Chapter 4. An effect of evl on ev, derived from paths of effects from the

140

CHAPTER 5. EFFECTS OF ACTIONS

former to the latter will have the universal/existential form if all of the component

effects are of that form.

The details of inheritance and its uses in QPN construction are deferred to Chap-

ter 6. Practical considerations in model construction as well as a set of general

desiderata for reasoning at multiple levels of abstraction (Section 6.1) justify the

interpretation for effect assertions described here.

5.7 Creating Observables

Although the emphasis in this chapter is on effects that change the world, it is also

important to consider the information value of performing actions. SUDO-PLANNER

actions generate information by creating observable event variables. An observable

event variable EV has a corresponding function EV(obs) defined for obs E O. A plan

7r cannot specify differential action on EV unless EV is observable.

An observable creation assertion of the form CO(a1 , ev) specifies that variables of

type ev are observable in plans that include ai. For example,

CO(cardiac-catheterization(true), extent(cardiac-cath-result))

asserts that performing catheterization reveals the value of the test result to the

agent. The result variable exists conceptually whether the test is performed or not,

but without the test the agent cannot see the result or use it to condition subsequent

action.

To SUDO-PLANNER's dominance prover, observability makes an event variable

eligible to appear in action policy and conditional plan class constraints. Constraints

of these types are ill-defined unless the event in question can be observed.

Observable creation places a semantic constraint on plans beyond the syntactic

specification of Section 3.1 (see the informal flo definition (3.1)). Specifically, the

141

CHAPTER 5. EFFECTS OF ACTIONS

plan must order the actions so that all observables are created before they are used

as conditions. This constraint ensures that we are not implicitly conditioning an

observation on the value of the observation itself.

Observable-creating actions are called tests. The treatment of observables here

differs somewhat from the representation of information dependencies in influence

diagrams [61]. There the observability of events does not change but tests influence

the values of the observables. One way to implement this (Ross Shachter, personal

communication) is to make the observed variable EV a deterministic function of an

underlying physiologic state s and a binary variable indicating whether the test was

performed. The result is EV = s if the test is performed, with EV a noninforma-

tive constant otherwise. In the scheme employed by SUDO-PLANNER, the test action

directly causes s to be observable. The result is formally equivalent, but maintain-

ing the distinction in the knowledge base leads to a uniform interpretation of EV.

Furthermore, the separation of information-gathering and world-affecting permits the

dominance prover to apply constraints on the value of information (for example, its

non-negativity [43]) in determining plan class admissibility.

142

Chapter 6

Model Construction

Customized construction of decision models at multiple levels of abstraction is SUDO-

PLANNER's solution to the computational problems of adhering to decision-theoretic

principles (see Sections 1.5 and 1.6). This chapter explores these issues further and

describes the implemented model construction techniques. I start by outlining a

challenging set of desiderata for multilevel reasoning in the general case. Although

it does not satisfy the desiderata completely, SUDO-PLANNER constitutes a first step

towards automatic model construction from a multilevel knowledge base.

6.1 Desiderata for Reasoning at Multiple Levels

of Abstraction

As argued in Section 1.6, the interconnectivity of concepts in realistic knowledge

bases dictates that we employ abstraction to avoid the requirement for exhaustive

consideration of the KB before model analysis. Many researchers have proposed and

developed techniques for reasoning at multiple levels of abstraction (see Section 6.5.2

for a partial review of this work). In this section, I outline a set of desiderata for

multilevel reasoning schemes in the general case. Subsequent sections describe SUDO-

143

CHAPTER 6. MODEL CONSTRUCTION

PLANNER's multilevel representation and model generation procedure and evaluate

them in terms of these desiderata.

The following list contains some key features of an ideal multilevel reasoning sys-

tem.

* Non-Reductionism. Lower levels need not be strict refinements of upper levels.

The strength of conclusions can increase in either direction.

* Fluidity. The knowledge base is not strictly layered. Relationships need not

respect levels.

* Multilevel Operationality. Substantive reasoning can occur at any level. The

higher levels are not merely for control and explanation.

* Definitional Clarity. The representation has a clear semantics and the inference

procedure, a transparent description.

* Coherence. Conclusions are consistent across abstraction levels.

Conceptually, these desiderata are orthogonal. Practically, they interact considerably,

in that satisfying some may render others more or less easy to achieve. I discuss the

desiderata and their interdependencies in the sections below. I place particular em-

phasis on non-reductionism and fluidity because these have had the largest influence

on the design of SUDO-PLANNER.

6.1.1 Non-Reductionism

The simplest theoretical approach to abstraction is to regard the lower levels as re-

finements of the upper, thereby defining upper level concepts as versions of those

below that ignore certain distinctions (see Hobbs [55], for example). Indeed, the sub-

mergence of detail is the usual meaning of the term "abstraction." Enforcing this

144

CHAPTER 6. MODEL CONSTRUCTION

criterion in practice, however, can lead to infeasible information requirements and

fails to capture some known phenomena in multilevel reasoning.

Reductionism imposes a strong constraint on the knowledge in a multilevel system:

conclusions derivable at a given level must also follow from models at deeper levels.

While this property may hold in some cases, in others the local information associated

with low-level concepts will not entail conclusions as strong as those obtained from

the higher-level model. This weakness can be caused by several factors, including:

* Difficulty in expressing the stronger relationships with the "natural" vocabulary

for the more specific concepts. For example, breaking an aggregate concept into

descriptions of its components may render global properties inaccessible.

* Lack of information for instantiating the more specific concepts to obtain conclu-

sions of comparable strength. Typically, lower-level concepts are more difficult

to instantiate because they require more detail. Even though incomplete knowl-

edge may be sufficient for the conclusions, the program may require concrete

instances for tractable, "vivid" reasoning [81].

* Absence of a theory describing the relation between properties of the specific

and general concepts.

* Absence of a theory of the specific concepts themselves.

A second argument against reductionism in multilevel modeling is that it is vio-

lated in the current state of human knowledge. In medical reasoning, for example,

physiological knowledge can often resolve conflicts arising from application of empiri-

cal associations at the higher, clinical level in the presence of multiple disorders [143].

But in some areas of medicine our knowledge of physiological mechanisms is quite

weak, perhaps supporting confident prediction of only. qualitative relationships [75].

These may lead to useful conclusions in some cases, but not necessarily conclusions

145

CHAPTER 6. MODEL CONSTRUCTION

as strong as those obtained from shallower models. (They may not even reproduce

all qualitative conclusions known at the empirical level). Proceeding downwards in

the abstraction hierarchy to biochemistry almost always makes things worse because

biochemical theory and our knowledge of the biochemistry underlying physiological

processes is not strong enough to explain higher-level effects.

This phenomenon is by no means unique to medicine. Successful macroeco-

nomic models typically cannot be grounded in microeconomic foundations. Even

in physics-the pinnacle of reductionist science-more detailed descriptions do not

always lead to stronger conclusions. For example, we typically cannot derive useful

predictions from a description of a system at the quantum level.

The foregoing argument is not a philosophical objection to reductionism in prin-

ciple. Until we carry out the reduction in actuality, however, a purely reductionist

computational mechanism will not suffice for representing and reasoning about the

body of human knowledge.

6.1.2 Fluidity

The second desideratum for multilevel reasoning is that the notion of "level" be fluid

as opposed to rigid. A rigid multilevel system is one where all reasoning respects

fixed level boundaries defined by the allowable relationships between concepts.

To clarify this, let us define more precisely the components of a multilevel represen-

tation. We call the basic elements concepts and presume that concepts are arranged in

some taxonomic structure. Two concepts are tazonomically related if one is a descen-

dant of the other in the taxonomy. Taxonomic relativity is the basis for statements

that one concept is at a higher or lower abstraction level than another. Interpretation

of the taxonomic relation may vary in different representation schemes. In NIKL (and

hence SUDO-PLANNER), the taxonomies represent specialization hierarchies, where

146

CHAPTER 6. MODEL CONSTRUCTION

concept subsumption is defined with respect to an extensional semantics.

In addition to taxonomic relationships, a multilevel knowledge representation pro-

vides a set of domain relations. Depending on the purpose of the KB, these might

express causal, functional, or any other useful type of information about the concepts.

In SUDO-PLANNER, for example, I employ qualitative probabilistic relationships to

represent the effects of actions.

A multilevel KB is rigid if we can partition the concepts into a set of fixed levels,

such that:

1. All domain relations connect concepts at the same level.

2. No concepts at the same level are taxonomically related.

3. Taxonomic relations among concepts at different levels induce a total order on

the levels.

The rigidity of a given multilevel KB can be decided by an efficient algorithm. Fig-

ure 6.1 illustrates a rigid multilevel KB. Relations among concepts respect the level

boundaries as dictated above. An example of a system with a rigid KB is Patil's

ABEL program for multilevel physiological reasoning [98].

A fluid multilevel KB (see Figure 6.2) does not enforce these restrictions. Domain

relations between two taxonomically related pairs may cross, and a concept may ap-

pear in a domain relation with two or more others that are themselves taxonomically

related. A fluid scheme may impose some discipline of its own on patterns of relations,

but the restrictions are not as sweeping as those given above. Pople's CADUCEUS [107]

is an example of a fluid multilevel KB architecture.

While we can speak of relative levels in a fluid KB, the notion of an absolute level is

ill-defined. One concept is at a higher level than another if the two are taxonomically

related, otherwise they are incomparable. Concepts a and b are at the same level

147

CHAPTER 6. MODEL CONSTRUCTION

L3

Figure 6.1: A rigid multilevel knowledge base. Thick lines indicate taxonomic relations;
thinner ones denote domain relations. We can partition the KB into levels (L1, L2, L3)
such that there are no inter-level domain relations and no intra-level taxonomic relations.

a

Figure 6.2: A multilevel system with a fluid knowledge base. No partitioning into levels
is possible.

148

CHAPTER 6. MODEL CONSTRUCTION

(L2) in the rigid KB of Figure 6.1, but there is no basis for such a statement in the

fluid case of Figure 6.2.

One advantage of a rigid design is the ease of controlling multilevel reasoning with

uniform levels. A rigid KB necessitates choice of only a single global level, in contrast

to the selection of levels required for each local region of a fluid KB.

Although it complicates the control problem, the flexibility of fluid KBs has im-

portant advantages. The appropriate depth for reasoning about individual concepts

depends on the goals and characteristics of particular problems, and there is no rea-

son to expect that the same depth is appropriate throughout the knowledge base.

For example, a reasonable medical reasoning strategy might be to explore in great

detail the concepts relating to the patient's chief complaint while examining periph-

eral concepts at a higher level. A rigid multilevel reasoner can pursue this strategy

by switching between levels for different parts of the analysis. However, the rigid

reasoner can never mix concepts from distinct levels in the same model because it

cannot express inter-level relationships directly. Therefore, it cannot consider the

chief complaint and the peripheral concepts together, unless it is willing to represent

them at the same abstraction level.

Fluidity is central to SUDO-PLANNER's ability to derive useful results before ex-

haustively examining the knowledge base. The example model of Figure 1.8 includes

specific effects of AAA-repair as well as high-level effects associated with its ancestor

concept, treatment. If the level of detail of a decision model were constrained to be

uniform, reasoning could not commence until the model was translated to some com-

mon denominator. For large KBs, this requirement can impose unacceptable delays

on model analysis.

149

CHAPTER 6. MODEL CONSTRUCTION

6.1.3 Multilevel Operationality

In some multilevel reasoning systems, all conclusions are expressed in terms of the

lowest-level concepts. Structure at higher levels is used for explanation, control of

reasoning, and perhaps other purposes, but it is not operational in the same sense as

knowledge at the lower fringe.

For true multilevel behavior, all levels should enjoy the same operational status.

The full advantages of abstraction are realized only if it is possible to avoid some

low-level concepts entirely; merely postponing attention to detail provides only lim-

ited savings. The requirement that the reasoner perform all substantive inference

at the lowest level smacks of reductionism and compromises the flexibility of fluid

representations.

There are two senses in which SUDO-PLANNER's high-level reasoning is substan-

tive. First, the plan graph can express dominance results about plan classes at high

levels of abstraction. In fact, these results are more valuable than those about lower-

level plan classes because they prune more of the search space.

Second, the benefit of fluidity cited above would not be possible if substantive

reasoning were not permitted at higher levels. Reasoning about some facets of AAA-

repair at the generality of treatment--even though more specific knowledge about

the same effects is available-leads to useful dominance results at an earlier stage of

the modeling process than would otherwise be possible.

6.1.4 Definitional Clarity

The desirability of definitional clarity in a knowledge representation is self-evident,

regardless of its number of levels. Unfortunately, a precise semantics for knowledge

representation schemes is sometimes difficult to produce, as Section 5.4.1 illustrates.

In the case of multilevel reasoners, our other desiderata further complicate the task. A

150

CHAPTER 6. MODEL CONSTRUCTION

reductionist scheme is theoretically much simpler than one that violates monotonicity

of conclusion strength with refinement, and rigidity in level boundaries eliminates a

large class of interactions that would present definitional difficulties. In my view,

the flexibility advantages of fluidity and the unreality of reductionism outweigh the

current lack of clear theoretical accounts of non-reductionist, fluid multilevel reasoning

systems.

6.1.5 Coherence

The final desideratum is that the KB be coherent. A multilevel KB is coherent if the

conclusions it sanctions at different levels are logically consistent with one another.

The conclusions derivable at different abstractions can be different-weaker, stronger,

or incomparable because they refer to distinct domains-but they should not be

contradictory.

Certain controlled forms of incoherence might be tolerable if the reasoner has

special facilities to handle inter-level conflicts. For instance, some nonmonotonic in-

ference mechanisms are designed expressly to prefer specificity, overriding the conclu-

sions it derives from high-level premises in favor of more specific results (see especially

research on inheritance systems and formalisms [120, 147]).

Inter-level coherence is usually difficult to guarantee. A purely reductionist KB

is coherent by definition, though it may not always be feasible to verify reduction-

ism. Definitional clarity makes it easier to maintain coherence, but as mentioned

above, there is a strong tension between clarity and fluidity. Tension also exists be-

tween definitional clarity and nonmonotonicity [5, 49, 148], so admitting even regular

incoherence is likely to compromise other desiderata.

CHAPTER 6. MODEL CONSTRUCTION

6.2 Event Variable Knowledge Base

The action and event taxonomies of Chapter 3 constitute the taxonomic skeleton

of SUDO-PLANNER's multilevel knowledge base. The KB is fleshed out with effect

assertions (Section 5.4) relating actions and events across taxonomic levels.

Figure 6.3 presents a view of part of the KB supporting the running example.

Effect arcs relate the simple taxonomy of primary surgical actions at the left of the

diagram to the major event variables of interest. Among these are MI and stroke

presence, a small cluster of disease severity variables, and mortality. All paths even-

tually lead to the special utility variable, value. The qualitative relation assertions

specifying Figure 6.3 and the rest of the KB are listed in Appendix C.

value
'7 Ir

endarterectomy

Figure 6.3: Part of SUDO-PLANNER's multilevel event variable KB.

As in previous figures, thick lines represent taxonomic relationships, and thinner

ones, domain relations. Domain relation links in Figure 6.3 correspond to qualitative

influence (S6) assertions in the KB. Qualitative synergy and Markov influence asser-

152

I

CHAPTER 6. MODEL CONSTRUCTION

tions are not shown. To avoid confusion between the two uses of qualitative relations,

the diagrammatical conventions for KB graphs like Figure 6.3 differ significantly from

those used in QPN figures.

Inspection of Figure 6.3 reveals that SUDO-PLANNER's KB is fluid, as we can-

not partition the nodes into levels in a manner satisfying the rigidity conditions of

Section 6.1.2. For instance, any partitioning would require that surgery and vessel

repair be on different levels because of their taxonomic relation, and on the same level

because of their mutual links to value.

Close inspection of the KB also reveals that it is incoherent (and therefore trivially

non-reductionist). For example, there is a direct positive link from vessel repair to

stroke, yet its subconcept, endarterectomy, has a negative effect on stroke through

its influence on CVD. The apparent contradiction causes no difficulty in this case,

since SUDO-PLANNER's model construction algorithm prefers the more specific path

when considering endarterectomy. Incoherence with respect to value, on the other

hand, would present a serious problem, causing SUDO-PLANNER's dominance prover

to generate inconsistencies in the plan graph. The "?" links to value from surgery

and vessel repair are in the KB specifically to avoid this potential error.

A full discussion of coherence requires an examination of how the KB is inter-

preted by SUDO-PLANNER's model construction procedure, described in Section 6.3

below. One important characteristic of the construction procedure is its treatment

of inheritance. As described in Section 5.6, the intended meaning of an effect link

from evl to ev 2 is that each variable of type evl affects some variable of type ev 2

(the universal/existential interpretation). Therefore, event variables inherit outgoing

relation links from their taxonomic ancestors.

Figure 6.4 illustrates the use of inheritance in a fragment of the SUDO-PLANNER

KB. In the linear taxonomy at the left, aneurysm size is a kind of disease severity

variable because size is an indicator of severity for the disease "aneurysm presence."

153

CHAPTER 6. MODEL CONSTRUCTION 154

The variable is further specialized by restricting the location of the aneurysm to the

abdominal aorta (AAA). The same concept specialization relates the two rupture

variables. All links in the figure appear as explicit assertions in the knowledge base.

disease severity - value

Aneurysm size Aneurysm rupture .

AAA size
•+

I UA mortality

AAA rupture

Figure 6.4: Fragment of the KB relating AAA size and value. Effect links are inherited
downward in the antecedent taxonomy.

Further effect relations are implicit in the taxonomic relationships. For example,

AAA rupture positively influences mortality, by inheritance from its parent, aneurysm

rupture. In this case, inheritance provides everything that is known about the effects

of AAA rupture.

In other cases, more specific knowledge supplements or replaces inherited informa-

tion. AAA size positively influences aneurysm rupture by virtue of being an aneurysm

size, but more specifically it influences the rupture of a particular type of aneurysm,

AAA. Given the universal/existential interpretation, the local assertion is strictly

stronger than that inherited from aneurysm size.

From the perspective of the destinations of effect links, variables inherit relations

upwards in the taxonomy. For example, the link from AAA size to aneurysm rupture

could also be inherited (at the destination end) upward from AAA rupture. The

inheritance is redundant in this case, but in general could make a difference, for

instance, if the link from aneurysm size did not exist.

CHAPTER 6. MODEL CONSTRUCTION

A final possibility is that a direct link at one level could correspond to a more

complex set of paths at another. For example, aneurysm size (and AAA size as well)

exhibits a negative influence on value by virtue of being a disease severity. At a more

specific level, aneurysm size influences value via a path through aneurysm rupture

and mortality. Although the more detailed path leads to the same conclusion in this

case, the direct relation leads to simpler and more efficient models. On the other

hand, the detail is necessary for reasoning about interactions with other variables

that share with aneurysm size segments of their influence path to value.

6.3 Model Construction in SUDO-Planner

SUDO-PLANNER's high-level behavior is a cycle of model construction and dominance

proving, as illustrated by Figure 1.10. Figure 6.5 elaborates that view, revealing that

the model construction cycle consists of the incremental evolution of a central QPN.

From the perspective of the model constructor, the KB is an event variable graph

in the general form of Figure 6.3. At each iteration, the constructor modifies the

current QPN according to relations in the KB. The dominance prover analyzes the

modified QPN, which then forms the basis for the next cycle of model construction.

The process continues until no QPN modification operators are applicable (that is, the

KB is exhausted) or it is explicitly halted by its invoker. The invoker can interrupt the

model construction cycle at any time to inspect the plan graph, which is continually

maintained by the plan space manager.

This section explains the left-hand half of Figure 6.5 involving the process of

constructing and modifying QPNs based on KB relations. Chapter 7 explains the

dominance-proving right-hand side.

To assemble a QPN from relations in an event variable KB, the model constructor

selects a subset of the variables and links from the KB graph. Selection of this subset

155

CHAPTER 6. MODEL CONSTRUCTION

Figure 6.5: SUDO-PLANNER's model construction cycle. The QPN evolves through a
sequence of incremental modifications.

is complicated by several factors, which form some of the central issues in model

construction and modification.

Choosing variables. In a large knowledge base, it is imperative that selectivity be

exercised in assembling the set of variables. For proper focus, we require some notion

of relevance. I discuss the design of justified focus mechanisms in Section 6.4.

Choosing abstractions. Given that a particular concept is of interest, the con-

structor must decide at which taxonomic level to represent it with a QPN variable.

Changing abstractions. One way to modify a QPN is to change the abstrac-

tion level of some of its components. SUDO-PLANNER's elaboration mechanism (Sec-

tion 6.3.1) attempts to update QPN relationships appropriately when changing levels.

Multiple inheritance. An event variable may have more than one source for in-

heriting effect relationships. The constructor must include mechanisms for selecting,

merging, and resolving conflicts among inherited relationships.

156

CHAPTER 6. MODEL CONSTRUCTION

Recording and merging conclusions from different models. In an iterative

process of model modification, some of the conclusions drawn from the models might

be useful in decisions about the subsequent evolutionary path. SUDO-PLANNER ex-

ploits this opportunity in a limited fashion, described in Section 6.3.2.

Because the dominance prover continually analyzes the QPN throughout its evo-

lutionary process, each modification the model constructor applies must preserve va-

lidity. This requirement places strong constraints on the modification operators and

the KB, and in fact, it is not completely met by SUDO-PLANNER's model construction

mechanisms.

The model construction procedure includes two basic operations for modifying

QPNs. SUDO-PLANNER alternates between elaboration steps that replace existing

relationships with more detailed pathways, and backward chaining steps that extend

the model to include additional related variables. The sections below present the

procedures for these steps.

6.3.1 Elaboration

Elaboration introduces detail to a QPN. The multilevel operationality of SUDO-

PLANNER's knowledge representation permits it to reason initially at high levels of

abstraction, then refine the model to consider more specific concepts. Thanks to

the KB's fluidity, refinement need not occur all at once; instead, the constructor can

refine the QPN incrementally by elaborating individual links.

The elaboration process comprises three stages:

1. Choose a QPN link to elaborate.

2. Find a set of elaborating paths in the KB.

3. Merge the new structure into the QPN.

157

CHAPTER 6. MODEL CONSTRUCTION

The starting point for the model construction process in our running example is

the QPN of Figure 6.6a.' The initial QPN relates AAA size to value via the most

general route in the KB. In this instance, the negative link derives from the KB

relation between disease severity (an ancestor of AAA size) and value, as shown in

Figure 6.6b.
disease severity . value

AAAAAA sie

(a) (b)

Figure 6.6: (a) Initial QPN for the running example. (b) The link corresponds to the
most general effect of AAA size found in the event variable KB.

The rest of this section describes the three stages of elaboration, illustrating the

process by application to this simple QPN and to more complex networks.

Stage 1: Choose Link to Elaborate

SUDO-PLANNER selects the QPN link to elaborate in a first-in/first-out order. It

places links on a FIFO queue upon their addition to the QPN. If the queue is empty,

the elaboration operator is inapplicable.

Stage 2: Find Elaborating Paths

Given a link between two QPN variables, an elaboration is a mutually compatible col-

lection of paths connecting the corresponding variables in the KB. SUDO-PLANNER

considers paths of length one or two only, thereby limiting the rapidity of model re-

finement. The individual paths may include both explicit and inherited KB relations.

'This QPN is identical to that of Figure 1.11. SUDO-PLANNER's graphical interface drew all QPN
pictures for the running example appearing in this chapter (including Figure 6.6a).

158

CHAPTER 6. MODEL CONSTRUCTION

Two paths are compatible if their relations are valid when combined in a QPN. For

example, SUDO-PLANNER regards as incompatible combinations that contain versions

of the same variable at different taxonomic levels. True semantic compatibility is not

verifiable by the model constructor.

SUDO-PLANNER tags each link in the QPN with a pointer to the event variable in

the KB from which it was derived. The link in Figure 6.6a, for example, originated

from disease severity in the KB of Figure 6.6b. To elaborate this link, SUDO-PLANNER

searches for paths from AAA size to value that derive from origins more specific than

disease severity.

As Figure 6.7 illustrates, the search for elaborating paths in the KB graph is

bounded by the origin variable (in this case, disease severity) and the KB variable

currently appearing in the QPN (AAA size). The source of an elaborating path must

be a descendant of the origin, so that it specializes the model, and an ancestor of the

QPN variable, so the relations are inherited. The path may terminate at the current

destination or at any of its descendants.

lestination

Figure 6.7: Search for elaborating paths. The dotted lines indicate that variables a, b,
and c are sources of candidate elaborations.

There may be several candidate elaborations. Suppose, for example, that in the

KB of Figure 6.7 elaborating paths emanate from nodes a, b, and c. SUDO-PLANNER

159

CHAPTER 6. MODEL CONSTRUCTION

prefers the most general elaborations because the more specific ones remain reachable

in subsequent elaboration steps. Therefore, it removes the paths from b from consid-

eration. But since a and c are not taxonomically related, SUDO-PLANNER includes

the union of their elaborating paths.

This strategy is a form of multiple inheritance. Because there is no guarantee

that the relations inherited from different paths are consistent or compatible, this

merge operation (as well as the process of merging the elaboration into the QPN,

stage three) is a source of potential error in SUDO-PLANNER's model construction

algorithm.

The path selected to elaborate the link in our initial QPN (Figure 6.6a) is the

chain

aneurysm size --- aneurysm rupture - value. (6.1)

Aneurysm size is the most general variable that is a descendant of disease severity,

an ancestor of AAA size, and has a path of length at most two to value. (The direct

link from aneurysm rupture to value is inherited from an ancestor, not shown in the

KB fragment of Figure 6.4.) The elaboration can be interpreted as an explanation of

the original link: AAA size is undesirable because it positively influences aneurysm

rupture, which is undesirable.

Stage 3: Merge New Structure

If SUDO-PLANNER finds an elaboration, it removes the original link from the current

QPN. It then proceeds to the final stage of elaboration: merging the chosen elab-

orated paths into the model. The merge task is to determine how to modify the

variables and relationships in the QPN to include the new structure.

For our initial QPN, merging is easy. A new variable, aneurysm rupture, is intro-

duced to the QPN, and the elaboration path (6.1) simply replaces the original link.

160

CHAPTER 6. MODEL CONSTRUCTION

The KB variable aneurysm size is recorded as the origin of the first link, though the

QPN variable remains AAA size. SUDO-PLANNER adds the two new links to the

FIFO queue for possible further elaboration. Figure 6.8 displays the final result of

the elaboration step.

Figure 6.8: An elaboration of the initial QPN.

In the general case, merging is more complicated. When introducing a new vari-

able, SUDO-PLANNER must connect it to all existing QPN variables-not just those

on the new paths-according to relations encoded in the KB. Performing the update

correctly is tricky because the new variable may be connected to existing ones via

complex and possibly redundant pathways.

When a new variable is introduced to the network, SUDO-PLANNER connects it

with all existing QPN variables that are directly related to it, explicitly or via in-

heritance, in the KB. For example, the variable z is linked to current variable x

upon introduction to the QPN of Figure 6.9a. Variables z and y remain unconnected

because there is no direct link between them in the KB graph.

/
/

(a) (b)

Figure 6.9: (a) Introducing z to the network. (b) The KB contains no direct relation

between z and y, but includes a path through w, not currently in the QPN.

161

CHAPTER 6. MODEL CONSTRUCTION

Suppose, however, that the KB contains a path from z to y via variable w, which

is not represented in the current QPN. The network of Figure 6.9a then leads to the

false conclusion that y is independent of z given x. We can remedy this by introducing

w to the QPN along with z, adding the appropriate links as illustrated in Figure 6.9b.

Although safer, this policy is unsatisfactory because introduction of a single variable

is liable to trigger the migration of a large fraction of the KB into the QPN.

SUDO-PLANNER preserves the incrementalism of QPN modification by ignoring

indirect connections of the sort displayed in Figure 6.9b. Typically (and necessar-

ily to avoid unsound inferences), pathways in the KB have corresponding one-step

summaries at higher taxonomic levels. In this case, we would expect z to inherit a

direct link to y from some ancestor. To be conservative, we could add these spanning

links [107] automatically, although the implemented SUDO-PLANNER includes no KB

pre-processing. The spurious links included due to such a policy are of little conse-

quence because if truly spurious they will be removed upon subsequent elaboration.2

When possible, SUDO-PLANNER combines taxonomically related variables. If the

newly introduced variable has an ancestor in the QPN, the merge procedure tests

whether the existing relations are compatible with the specialized variable. Because

outgoing links are inherited, compatibility holds exactly when the links into the ex-

isting ancestor variable hold for the new variable. If compatible, the new replaces

the old. Otherwise, SUDO-PLANNER attempts to merge the new relations with the

old variable. Here, compatibility depends only on the outgoing relations. If the

merge fails in this direction as well, SUDO-PLANNER maintains both variables in the

QPN. The two will be merged eventually if subsequent QPN modification presents

the opportunity.

For example, the elaboration search situation of Figure 6.7 yielded paths from a

to the existing variable destination, and from c to its descendant, d. SUDO-PLANNER

2 Elaboration results in simple removal if the elaborating structure is already present in the QPN.

162

CHAPTER 6. MODEL CONSTRUCTION

first tries to replace destination with d, succeeding if all incoming links to destination

hold for d as well. Failing that, it attempts the converse merge. In this case, d

is replaceable by destination because it is a new variable with no outgoing links.

Subsequent elaboration steps will trigger the reintroduction of d, in particular when

the path from a is specialized to originate from b.

Finally, qualitative synergies are also added to the QPN during the merge stage.

Whenever a node has two or more incoming links, SUDO-PLANNER checks the knowl-

edge base for an asserted or inherited synergy among the predecessor variables. Recall

that SUDO-PLANNER interprets the absence of an explicit synergy link in the QPN as

"?" by default.

6.3.2 Backward Chaining

The QPN for the running example as developed to this point (Figure 6.8) is not very

interesting from the perspective of planning. The semantics of qualitative influences

entail that small AAAs are preferable to large ones, but tell us nothing about what

we should do about them. Furthermore, no amount of elaboration applied to this

relation sheds any light on action.

The second basic QPN modification operator, backward chaining, extends the

scope of the model. In a backward chaining step, SUDO-PLANNER searches for vari-

ables in the KB that affect a particular existing QPN variable. The mechanics of

this step are straightforward: choose a variable to extend back, find its predecessors

in the KB, and merge the new structure according to the merge procedure described

above.

The first attempt at backward chaining on the running example produces no

modification because the chosen variable, AAA size, has no predecessors. SUDO-

PLANNER next applies an elaboration step, which replaces aneurysm rupture with

163

CHAPTER 6. MODEL CONSTRUCTION 164

AAA rupture. Backward chaining on AAA rupture finally yields a significant QPN

modification, shown in Figure 6.10.

Figure 6.10: QPN after backward chaining on AAA rupture.

The new QPN has the same variables as that of Figure 1.8, though it lacks the

positive synergy between AAA repair and AAA rupture on value. Given this synergy,

the dominance prover could establish that AAA repair is positively synergistic with

AAA size, and therefore that the optimal repair policy is to fix the aneurysm iff it

is larger than some threshold size. However, the synergy is unavailable to SUDO-

PLANNER at this stage in QPN development. In the current model, AAA repair's

relation to value is inherited from its ancestor surgery (see the KB graph of Figure 6.3).

The synergy is simply not valid at this high level. Further elaboration of the model

combined with QPN inference yields the desired result later in the model construction

process.

The initial stage of backward chaining is the choice of a variable to extend back.

SUDO-PLANNER selects arbitrarily among the eligible, or extensible, variables. If no

variables are extensible, the backward chaining operator is inapplicable. A variable

is considered extensible if:

1. it is not a decision variable (these have no predecessors),

2. it has not already been extended back, and

CHAPTER 6. MODEL CONSTRUCTION

3. it is one of the specially designated focus variables, it is a successor of a focus

variable, or it is + synergistic with a focus variable on value.

I describe the concept of a focus variable and justify its use in Section 6.4.2. In-

formally, focus variables are those deemed relevant based on their role in the case

description or in plans under consideration. The heuristic application of focus vari-

ables to restrict the variables eligible for backward chaining directs the course of QPN

evolution.3 Although this control is not necessary to run the main example, a focus

mechanism of some sort is crucial for tractable model construction from large KBs.

To implement the extensibility test, SUDO-PLANNER records instances of synergy

with a focus variable as it derives them in intermediate computations of the domi-

nance prover. This is the only semantic information about domain relations (and the

only type of QPN inference) that the model construction procedure exploits. More

sophisticated application of intermediate results might improve efficiency and con-

trol, but would also exacerbate the undesirable consequences of incoherence in the

multilevel KB.

The second stage of backward chaining is to retrieve the QPN variable's predeces-

sors from the KB. SUDO-PLANNER simply traces back links in the KB graph. The

back extension does not consider inherited predecessor relations because these will be

uncovered in subsequent elaboration.

The final stage is to introduce the predecessors to the QPN. The procedure to

merge structure from backward chaining is equivalent to the merge stage for elabora-

tion described in the previous section.

The backward chaining strategy adopted by the model construction procedure

imparts special significance to the directionality of influence relations in the event

variable KB. Whether we assert that a affects b or that b affects a in the KB strongly

3The application of focus variables is similar in spirit to the use of focus objects in McAllester's
ONTIC theorem prover [87].

165

CHAPTER 6. MODEL CONSTRUCTION

influences the shape of QPNs produced by SUDO-PLANNER, even though the semantics

of qualitative influences does not dictate this choice. As Section 4.4.4 demonstrates,

QPN influences can be reversed without affecting their sign, although the reversal

may change other relations in the network. SUDO-PLANNER fails to exploit this

flexibility-in fact, the implementation never attempts to reverse influences-despite

its demonstrated usefulness in traditional decision modeling [125].

6.3.3 Variable Mitosis for Markov Influences

An important type of backward chaining occurs when the predecessor exerts a Markov

influence on the current QPN variable. As Section 5.5 describes, a Markov influence

represents an effect over time, inducing a relationship between the action and the

values of its affected variable before and after execution. To represent this situation

in a QPN, we require separate variables for the "before" and "after" values. SUDO-

PLANNER modifies the QPN by dividing the affected variable in two and updating

relations as appropriate.

The variable division process, or mitosis, is illustrated in Figure 6.11. SUDO-

PLANNER encounters a Markov influence in the process of backward chaining on

CAD eztent. The QPN fragment of Figure 6.11a displays the variables connected to

CAD eztent prior to interpreting the Markov influence.

Figure 6.11b illustrates the Markov influence itself. CABG influences CAD ez-

tent, in a manner synergistic with the prior value of the variable. The mitosis pro-

cess translates this implicit distinction among the two CAD variables to an explicit

separation in the QPN. The resulting network fragment, shown in Figure 6.11c, con-

tains the variables CAD-1 and CAD-2, denoting the CAD extent before and after

CABG, respectively. The previous predecessors of CAD-CAD history and catheter-

ization result-are attached to CAD-1, and the previous successor-MI-to CAD-2.

166

CHAPTER 6. MODEL CONSTRUCTION

CAD
History

(a) CAD + MI
Extent Presence

Cath Result
Extent

(b)

(c)

Figure 6.11: Variable mitosis. (a) The situation before mitosis. (b) The Markov influence
of CABG on CAD implicitly refers to two CAD variables. (c) The final result: CAD is
split into CAD-1 and CAD-2, and relationships are appropriately distributed among the
two.

167

-- - - - - - - -

CHAPTER 6. MODEL CONSTRUCTION

The Markov influence explicitly specifies the influence of CABG on CAD-2, and its

synergy with CAD-1. Implicit in all Markov influences is the positive relationship

between the "before" and "after" variables.

The split variables are divided further if they are the object of other Markov

influences. In general, the QPN may contain an arbitrary Markov chain reflecting a

temporal sequence of values of the same event variable.

The presence of multiple QPN variables corresponding to a single KB variable

complicates the model construction process slightly. When merging structure (dur-

ing elaboration or backward chaining) involving links into such a variable, SUDO-

PLANNER selects the head of the Markov chain. Structure containing paths out of

a multiply represented variable is referred to the tail variable. These conventions

preserve the Markovian character of the QPN's dependency graph.

6.3.4 The Model Construction Procedure: Conclusion

Having completed the description of SUDO-PLANNER's model construction process, we

are now in a position to evaluate it in terms of the five basic desiderata for multilevel

reasoning presented in Section 6.1. Of the five, SUDO-PLANNER scores better on

non-reductionism, fluidity, and multilevel operationality than it does on definitional

clarity and coherence. A strict judge, however, would find the system wanting with

respect to all these criteria.

The event variable KB is clearly non-reductionist and fluid. However, in adopt-

ing a style of top-down refinement, SUDO-PLANNER's model construction procedure

does not take full advantage of the flexibility offered. Because it generally does not

record intermediate results, the dominance prover is incapable of combining partial

conclusions from separate decision models. Thus SUDO-PLANNER will miss a result

following from a set of KB relations unless it incorporates those relations together in

168

CHAPTER 6. MODEL CONSTRUCTION

a QPN.

The addition of high-level spanning links as a conservative knowledge engineering

policy compromises the goal of multilevel operationality. Because SUDO-PLANNER

removes the spurious relations only upon elaboration, it ends up deriving conclusions

at a lower level than is strictly necessary.

As mentioned above, SUDO-PLANNER's event variable KB is neither well-defined

nor guaranteed to be coherent. Further study of the semantics of KB assertions would

advance definitional clarity (see Section 5.4.1), as would a more formal characteriza-

tion of the model construction procedure. A better understanding of these issues is

a prerequisite for an analysis of KB coherence.

The practical implication of this evaluation is that knowledge engineering is diffi-

cult. In my experience developing SUDO-PLANNER, the effect of KB modifications on

the sequence of models generated was often unpredictable. Rules of thumb for debug-

ging the KB, such as adding high-level single-step summaries of complex pathways,

were discovered by trial-and-error. Only later was I able to rationalize the practice

in terms of its interaction with the model construction procedure.

Some of the shortcomings of the model construction procedure are probably

amenable to incremental solutions. For example, we could increase fluidity and coher-

ence by permitting multiple, mutually exclusive relation sets at a single abstraction

level. Such an extension requires a generalization (and a formal tightening) of the

notion of compatibility regulating the merging of structure into QPNs. Section 7.5.1

discusses the possible use of spanning relations, a special case of this idea, in a qual-

itative approach to tradeoff resolution.

This critical view of SUDO-PLANNER's model construction performance does not

reflect discouragement about the task of constructing decision models from large

multilevel KBs. SUDO-PLANNER represents a first attempt to automate this task,

which was intentionally framed in terms of highly ambitious (and somewhat conflict-

169

CHAPTER 6. MODEL CONSTRUCTION

ing) desiderata in order to uncover the performance boundaries. By identifying and

emphasizing its limitations, I aim to stimulate research on improvements to SUDO-

PLANNER's approach to knowledge representation and model synthesis.

6.4 Focus of Attention

For large KBs, controlling model construction is a significant and difficult problem.

Directing model synthesis effort toward the most relevant regions of the KB requires

some sort of focus mechanism. Unfortunately, it appears to be difficult to justify a fo-

cusing strategy based on the decision-theoretic principles underlying SUDO-PLANNER.

The sections below discuss the basic issue of justified focus and present the rational-

ized, albeit unjustified, focus mechanism implemented in SUDO-PLANNER.

6.4.1 Justified Focus

In the most straightforward implementation of the model construction procedure,

SUDO-PLANNER would start from a QPN containing only the value node and pro-

ceed to apply backward chaining and elaboration steps until it exhausted the KB

or its computational resources. This unfocused approach proves unsatisfactory for

any real problem. A planner with a moderately large medical knowledge base would

be obliged to consider the advisability of actions ranging from taking blood pressure

to prophylactic heart transplants for every patient. We need a method that focuses

attention without recklessly overlooking valid therapeutic opportunities.

Ideally, we would like to ground our focus mechanism in relevance principles that

justify selectivity in the application of knowledge. A sound procedure for focus of

attention ignores only facts that are irrelevant to the task at hand [139]. For the

planning task, knowledge is irrelevant iff it has no bearing on the optimal strategy.

170

CHAPTER 6. MODEL CONSTRUCTION

One approach to justified focus assumes that at any time the agent's plan is opti-

mal given the information available at that time. Under this assumption, the planner

need consider only strategy modifications warranted by changes in its information

state. In a medical context, the planner in effect assumes that it has been the pa-

tient's physician up to the current time, so the current plan must be what it would

have recommended given the current information. When new information arrives, it

is necessary to reevaluate only those previous conclusions that depend on changed

facts [85].

This "status quo optimality" heuristic meshes well with the planning and exe-

cution model of Section 3.1. If the planner has converged on a singleton plan class

specifying the appropriate action in every contingency, then planning is finished and

only execution remains. More realistically, the planner produces plan classes speci-

fying action for only the immediate contingencies, necessitating further planning for

the unanticipated observation patterns that make up the majority of possible futures.

When an unanticipated situation occurs, the planner needs consider only its differ-

ence from an anticipated situation in adapting its corresponding plan to meet the

new situation.

Unfortunately, the focusing power of this heuristic is often disappointingly weak.

The smallest changes in situation may dictate arbitrary alterations in strategy, re-

quiring the modification of actions seemingly unrelated to the situation change. In

medicine, for example, the advisability of a therapeutic action typically depends on

the broad concept of overall state of health. For instance, consider a patient who is

a candidate for a heart transplant. Suppose that in the current situation, the plan-

ner determines that the patient narrowly qualifies for this dangerous and expensive

procedure. Next consider a new finding that is unrelated to heart disease or to any

other cardiovascular concept but that has a slight negative influence on the patient's

life expectancy. Even though its health risk is unrelated, the new finding reduces

171

CHAPTER 6. MODEL CONSTRUCTION

the potential benefit of a heart transplant because it lessens the survival time to be

gained. Because the patient is a marginal transplant candidate and the new finding

has no effect on the cost of the procedure, the observation may be grounds for reversal

of the original decision.

These kinds of situations are ubiquitous in medicine, and I suspect they are com-

mon in other domains as well. In a comprehensive KB all events are related, if only

because they all have some connection to value. This observation suggests that the

opportunities to focus a planner based on true irrelevance are rare and therefore we

need to explore other grounds for allocating reasoning resources in the planning task.

6.4.2 Focus Variables

SUDO-PLANNER employs a simple focus mechanism based partly on the status quo

optimality heuristic discussed above. The method designates particular QPN vari-

ables as focus variables, thereby controlling the invocation of backward chaining as

described in Section 6.3.2.

Initially, the set of focus variables comprises those marked as changed in the input

problem description. This is a direct reflection of the assumption described above: if

the current strategy is optimal, only changes in the status quo are relevant to planning.

SUDO-PLANNER maintains focus by adding to the list any variable that is mentioned

in dominance conditions derived in the course of planning. These variables are worthy

of further inference because new dominance results about actions and observed events

that appear in undominated plan classes refine the plan graph.

A QPN variable is eligible for backward chaining if it is synergistic with a focus

variable on value. To understand the rationale for this criterion, consider the QPN

of Figure 6.12. There, f is the sole focus variable and c is a candidate for backward

chaining. The two variables are synergistic in direction 81 on value in this reduced

172

CHAPTER 6. MODEL CONSTRUCTION

QPN, that is, Y1'({c, f}). Let d be some predecessor of c in the event variable KB,

not in the current QPN. The backward chaining criterion dictates that c be extensible

if S 1 E {+, -}, but not if 61 E {0, ?}.

D jS2

Figure 6.12: Synergy with a focus variable. Y 1({c, f}) holds in the QPN containing
variables c, f, and v. Backward chaining on c to introduce d to the network can lead to
interesting results only if 61 E {+, -}.

If S1 E {+, -}, then both c and its predecessor d are of interest to the planner.

The synergy entails a nontrivial monotone decision relation for f and c, and for f

and d as well if 62 # ?. This result could be significant for one of two reasons:

1. Variable f has changed, therefore synergy with a decision variable dictates the

direction to alter the status quo plan.

2. Variable f appears in the description of an active plan class, therefore the

monotone decision property dictates a refinement to the plan graph.

Because f is a focus variable, one of these reasons must be in force.

Conversely, if S1 V {+, -}, we gain nothing (with respect to f) by backward

chaining on c. If 61 = 0, then c is irrelevant to f, as is d. This is a strong case of

justified focus. On the other hand, if S1 = ? then c and its predecessors generally are

relevant. However, the ambiguous sign prevents SUDO-PLANNER from determining

in what way they are relevant, and further backward chaining will never resolve the

ambiguity. Hence, the model construction procedure may as well not pursue this

173

CHAPTER 6. MODEL CONSTRUCTION

path in the KB. To SUDO-PLANNER, futility serves as a focus justification on par

with irrelevance.

To implement the extensibility criterion, SUDO-PLANNER records all known syn-

ergies with focus variables (on value) as they are derived in the course of dominance

proving. The situation Figure 6.12 depicts holds for the QPN in some state of reduc-

tion, not necessarily in any constructed QPN or in the KB directly.

6.5 Related Work

Section 6.3.4 includes an evaluation of SUDO-PLANNER's model construction proce-

dure in terms of the desiderata for multilevel reasoning presented in Section 6.1. In

this section, I take a broader perspective and contrast the SUDO-PLANNER approach

with related work on model construction and multilevel reasoning. The two topics

are reviewed separately below, since SUDO-PLANNER is the first program designed to

construct decision models from a multilevel KB.

6.5.1 Decision Model Construction

Most work on decision model structuring has been carried out with the intent of aid-

ing human decision analysts (see Humphreys and McFadden [63], Keeney [68], and

von Winterfeldt [151] for a mixed sample). There is a significant demand for such

aids, especially as the availability of inexpensive, user-friendly software packages for

personal computers makes DA technology accessible to a widening group of potential

analysts. The need is particularly critical for those analysts who have less experience

with the methodology and a lower level of familiarity with the underlying decision-

theoretic concepts. In fact, we have incorporated some of the qualitative dominance

ideas from this dissertation into BUNYAN, a program for critiquing human-generated

174

CHAPTER 6. MODEL CONSTRUCTION

decision models [160]. But despite some common concerns, the issues faced in at-

tempting to fully automate the model construction task differ significantly from the

problems of aiding human modelers. In this section I discuss the few projects that

have specifically addressed themselves to automated knowledge-based formulation of

decision models.

In Holtzman's "intelligent decision systems" [57], the domain knowledge is pri-

marily in the form of a general decision model, encoded as an influence diagram with

assessment functions for each node of the graph. Constructing a model for a par-

ticular decision is largely a matter of reducing the template model that is built into

the program. This is essentially the decision-model-as-KB approach that I rejected

in Section 1.5 for reasons of scalability.

The alternative advocated in this work calls for dynamic assembly of decision mod-

els from a knowledge base of primitive components. An early example of this kind of

behavior was exhibited by a program for Hodgkins disease, described by Rutherford

et al. [116], that dynamically constructs decision trees from a KB specifying a variety

of diagnostic tests and treatments. Its flexibility lies in the possibility of modifying

the set of available tests and treatments on a case-specific basis. Hollenberg's Decision

Tree Builder (DTB) [56] also generates decision trees using a medical knowledge base

of diseases, tests, and treatments. Unlike the Hodgkins program, DTB is intended

to handle a broad range of medical decision problems. Consequently, its represen-

tations are considerably more general, and its tree generation, correspondingly more

flexible. A disease may be parameterized by attributes, which in turn may influence

the applicability of various actions as well as the values of probabilities and utilities

in the model. Tests and treatments may indicate or modify the values of disease

attributes.4 A simple control structure directs tree construction, employing a model

4Incidentally, difficulties with this mechanism first brought my attention to the problem of dis-
tinguishing the values of event variables in different temporal relation to their affecting actions

(J. P. Hollenberg, personal communication), handled by Markov influences and variable mitosis in

175

CHAPTER 6. MODEL CONSTRUCTION

of patient states for bookkeeping purposes.

With this kind of generation approach, it is extremely difficult to escape from

exhaustive consideration of a combinatorial space of plans and events. The programs

must construct strategies that include every action identified as potentially benefi-

cial, and model every event identified as potentially relevant. The desire to avoid

this behavior was the primary motivation for developing abstraction mechanisms for

SUDO-PLANNER (see Section 1.6). Control of model construction remains important

even with a multilevel representation, as discussed in Section 6.4.

The model constructor closest in spirit to SUDO-PLANNER is Breese's ALTERID

system [9, 10]. ALTERID constructs numeric influence diagrams from a KB of logical

and probabilistic assertions in response to specific queries. Aside from the contrast

in precision between qualitative and numeric probabilistic relationships, the KB lan-

guage ALTERID uses differs from SUDO-PLANNER's in two important respects:

1. SUDO-PLANNER's KB has an explicit taxonomic dimension. Relations at dif-

ferent levels of abstraction may coexist in the ALTERID KB, but they are not

treated specially by the reasoner.

2. ALTERID bundles predecessors of a variable together and permits multiple ex-

clusive groupings. Backward chaining retrieves one of the specified predecessor

sets, rather than a collection of individually asserted predecessors as in SUDo-

PLANNER.

Because the predecessors are specified and retrieved as a group, ALTERID avoids some

of the compatibility problems faced by SUDO-PLANNER. Manipulation of these com-

pound units provides the knowledge engineer with greater control over the networks

ultimately produced, at the expense of flexibility obtained by reasoning about the

individual predecessors. ALTERID's provision for multiple exclusive predecessor sets

SUDO-PLANNER (see Section 6.3.3).

176

CHAPTER 6. MODEL CONSTRUCTION

is not expressible in SUDO-PLANNER, although some exclusivity can be represented

by separating the structures by taxonomic levels. Section 7.5.1 discusses the possibil-

ity of extending SUDO-PLANNER's event variable knowledge representation to allow

alternate relation patterns at the same level of abstraction.

Finally, in previous research I considered special mechanisms for constructing the

outcome and preference portions of a decision model [156, Chapter 8]. Although

this work is largely compatible with SUDO-PLANNER, I have not included any of it

in the implementation. In particular, the facilities for choosing representations for

health outcomes based on terminological transformations [157] should be applicable

to model construction in general.

6.5.2 Abstraction

Abstraction has been studied in a variety of AI contexts. Section 3.2.1 discussed

research in planning with abstraction and its relation to SUDO-PLANNER's knowledge

representations for plans and actions. Researchers have also developed formal theories

of abstraction per se [55], intended to support a variety of AI tasks. In this section I

briefly review (in terms of the desiderata presented in Section 6.1) some approaches

toward multilevel knowledge representation within the "causal" modeling paradigm

for diagnostic reasoning. The commonality of these systems with SUDO-PLANNER

lies in their explicit use of taxonomic and domain relations; the causal nature of

the domain relation is inessential to this discussion. This appears to be a minimal

requirement for evaluation in terms of the multilevel reasoning desiderata. Direct

comparison of these programs to SUDO-PLANNER is not possible, however, as they

were designed for significantly different tasks.

In a compiled knowledge approach [11], all of the relations encoded at high levels

could in principle be derived from deeper knowledge about low-level concepts. Com-

177

CHAPTER 6. MODEL CONSTRUCTION

pilation (typically a manual operation) improves reasoning efficiency by replacing

common, complicated inference patterns by direct associations. A truly compiled KB

is necessarily reductionist. The system as a whole is not really multilevel unless the

reasoner also has access to the deep knowledge.

In Section 6.1.2, I cited ABEL [98] and CADUCEUS [107] as examples of rigid and

fluid systems, respectively. ABEL is also reductionist; it ultimately performs all of

its causal reasoning at the lowest available level of abstraction.5 Partitioning the KB

into levels improves definitional clarity and thereby enhances the prospects for co-

herence. CADUCEUs, like SUDO-PLANNER, is non-reductionist, fluid, and operational

at all levels. Although the semantics of its KB are not perfectly clear, and the KB

itself is not guaranteed to be coherent, CADUCEUS appears not to suffer as badly

in these respects as SUDO-PLANNER. Because it reasons directly from the KB, CA-

DUCEUS imposes the closed-world assumption globally, rather than locally on models

constructed from the KB. Finally, the hybrid ABEL/CADUCEUS approach that Patil

and Senyk propose [99] appears to inherit the desirable characteristics of CADUCEUS

listed above.

6.6 On Constructed Models

In this section, I step back from the specifics of QPNs and SUDO-PLANNER's methods

for constructing them to examine some fundamental questions about synthetic deci-

sion models. In particular, I look at the nature of decision models, their relation to

normative decision theory, and the implications for the model construction enterprise.

sHowever, given incomplete information, ABEL's higher levels apply knowledge based on im-
plicit assumptions not accessible to levels below. In this situation, the program can exhibit non-
reductionist behavior.

178

CHAPTER 6. MODEL CONSTRUCTION

6.6.1 Models and Closed Worlds

One plausible operational definition for "model" is "a structure on which a closed-

world assumption is invoked." In Hewitt's terminology, decision and other models

are microtheories, the closed components of an "open system" [54]. All deduction

in open systems is applied to microtheories, which are constructed by extralogical

mechanisms.

Whether or not their designers employ the terminology of models or microtheories,

systems that interleave inference under closed-world assumptions with non-logical

processing perform what I have been calling "model construction." An example is

Forbus's Qualitative Process Engine (QPE) [36], a program that constructs qualitative

process models from a KB of process descriptions and a specification of potentially

active processes. As in QPNs, derived relations among variables in qualitative process

models depend on an assumption that the set of influences is completely known.

QPE accumulates active relations in closed-world tables before assuming the closure

required to compute the net result.

6.6.2 Decision Models

The decision-theoretic formulation of a decision problem postulates an abstract set

of available acts, corresponding to the set of all plans f, and a set of possible states

of nature 0. The axioms of expected utility [108, 121] imply the existence of a utility

function u : x 0 -+ R, such that for all irl, r 2 E 0,

l'I >_ 7'2 = EO [U(xrl, 0)] _ Ee [U(r2, 0)]. (6.2)

The expected utility property (6.2) is of fundamental theoretical importance for sev-

eral reasons, including:

* It grounds the theory of subjective probability in rational decision making.

179

CHAPTER 6. MODEL CONSTRUCTION

* The existence of numerical representations is analytically convenient for math-

ematical decision theorists.

Practitioners of applied decision theory, or decision analysis (DA) [62, 109], cite an-

other implication of (6.2):

* The theory can be directly implemented in prescriptive aids for practical deci-

sion making through the assessment of formal probabilistic models and utility

functions.

A decision model is a literal translation of the theoretical entities of (6.2) to concrete

symbolic structures. In specifying decision models, decision analysts usually separate

the probability and utility components by identifying a special outcome descriptor

c (the consequence, a function of ir and 0) sufficient for describing preferences. The

utility model is then u(c) and the probabilistic model is expressed as f,(.Iir) without

explicit reference to 0.

Although modeling schemes differ in form and expressive power, all represent a

choice situation in terms of the basic decision-theoretic concepts of alternative acts,

uncertain events, and preferences. In standard DA methodology, analysts assess these

elements by interpreting real and hypothetical choices of the decision maker in terms

of (6.2). As Tversky [149] and others have noted, this procedure presumes the theory

has some descriptive validity, a matter deserving considerable skepticism.

Stated in the abstract, the components of decision theory are completely general,

and its arguments normatively compelling.6 Despite their structural correspondence,

however, the generality and normativeness of the basic decision-theoretic formulation

IThis is not to deny that the tenets of Bayesian decision theory have been and continue to be
highly controversial-in statistics and philosophy as well as AI. I will not recount the dispute here;
nevertheless, my opinion is that the majority of the objections apply to narrow applications of the

theory rather than to the fundamentals themselves. The majority of objectors, of course, have
differing opinions. For elaboration, see the discussion below and previous writings [161].

180

CHAPTER 6. MODEL CONSTRUCTION

does not automatically transfer to particular decision models. The rational agent ax-

iomatized by decision theory is an idealization; decision models can only approximate

its preferences and beliefs.

The next section explores the nature of this idealization, using Savage's concept of

a "small world." Section 6.6.4 examines the implications of these observations for the

enterprise of building computational agents based on decision-theoretic principles.

6.6.3 Small Worlds

Decision models fall short of capturing the ideal agent for two related reasons. First, as

models, they are imperfectly related to the reality they are intended to represent [133].

Second, the decision problems they model constitute only a slice of the overall decision

situation faced by the agent. This latter issue is the problem of small worlds.

Savage points out that in the decision-theoretic formulation, the ideal rational

agent [121, page 83]

... has only one decision to make in his whole life. He must, namely,

decide how to live, and this he might in principle do once and for all.

Choice of this lifelong policy is the agent's grand-world decision problem. Decision

theorists and analysts following (and including) Savage rightfully regard grand-world

decision modeling as unrealistic, and instead focus on isolated decision situations

called small worlds. The problem of small worlds is to justify this focus-to determine

when it is legitimate to apply the machinery of decision theory to isolated slices of

the grand-world decision.

Savage attacked this problem formally by describing the correspondence between

the small and grand worlds. Because the grand world is a refinement of the small

world, states in the latter map to classes of states in the former. Thus, small-world

consequences correspond to distributions over grand-world consequences. A small

181

CHAPTER 6. MODEL CONSTRUCTION

world that obeys the axioms of expected utility is called a pseudo-microcosm. Deci-

sions based on a pseudo-microcosm are valid when the utility of small-world conse-

quences is equal to their expected utility in the grand world, and the probability of

small-world states is the same as the grand-world probability of the corresponding

class. If these correspondences hold, then the small world is called a microcosm. Sav-

age shows that pseudo-microcosms need not be microcosms, though he expresses the

opinion that "the possibility of being taken in by a pseudo-microcosm that is not a

real microcosm is remote" [121, page 90].

Details of the technical criteria for determining whether a small world is microcos-

mic are inessential to the present discussion (in fact they have not been completely

characterized).7 Examination of decision modeling experience suggests that even if

the small worlds can be formally cast as microcosms, the myopic view from the small

world is likely to result in models that fail to respect features that are expressible only

in more refined worlds. For example, failure to account for portfolio effects is one way

to get "taken in by a pseudo-microcosm." Decomposing a grand-world decision into

a series of small-world choices often leads to models that do not reflect the reduction

in risk due to diversification from the perspective of the global portfolio choice.

Whether we attribute the portfolio effect distortions to pseudo-microcosmic effects

or simply to inaccurate modeling, the source of the problem lies in the isolated nature

of small-world decision making. As Section 6.6.1 notes, reasoning with decision models

requires a closed-world assumption; closing a small world is tantamount to ignoring

features relevant only in the grand world. Thus, choosing the scope of small worlds

to avoid bias is critical to the legitimacy of decision modeling. Unfortunately, the

basis for such a choice is not well-understood by decision theorists.

SUDO-PLANNER's dominance-proving architecture is unique in embracing the con-

7For a lucid presentation and a concrete example of a non-microcosmic pseudo-microcosm, see
Shafer's reexamination of Savage's arguments, as well as the commentaries on Shafer by Lindley and
Dawid [128].

182

CHAPTER 6. MODEL CONSTRUCTION

cept of grand-world decision making. A dominance-proving planner, as described

in Section 2.4.1, is a grand-world decision maker if its plan space comprises life-

long policies rather than short-term strategies. Such a plan space is conceivable

within a constraint-posting framework because-unlike the basic decision-theoretic

formulation-acts are composite objects described as combinations of primitive acts.

Decisions are distinctions among plan classes rather than selections of particular acts.

In decision theory, acts are atomic and decisions are selections. Hence, it is not pos-

sible in decision theory to make a near-term decision without either committing to

long-term decisions or proceeding as though the near-term is the only term via a small-

world construction. A constraint-posting planner, in contrast, can make a near-term

decision without the pretense that it has solved its ultimate decision problem.

We can consider SUDO-PLANNER a grand-world planner in this sense because its

universal plan class (Section 3.1) does not limit the scope of plans. In domain model-

ing, however, SUDO-PLANNER is just as dependent on small worlds as traditional DA

systems. As Figure 6.13 illustrates, the models SUDO-PLANNER constructs to evaluate

the effects of actions are small worlds. Specifically, they represent consequences at a

level of abstraction coarser than the ultra-fine grand-world ideal. It appears to me

that this relation will inevitably be approximate, and thus that small-world decision

models are unavoidable.

The tenuous relationship between decision models and the decision-theoretic ideal

is transparent when we view our models as imperfect representations of worlds that are

small to begin with. Those recognizing the problem have drawn differing conclusions

about its implications for decision-theoretic applications, in both DA and AI. In the

next section, I examine some of these arguments and present the view behind the

design of SUDO-PLANNER and its mechanisms for constructing decision models.

183

CHAPTER 6. MODEL CONSTRUCTION

(Decision Theory) (Decision Models)

Figure 6.13: SUDO-PLANNER plans in the grand world using small-world decision models.

The QPNs it generates will generally be pseudo-microcosms, faithful to the grand world

only if they are also microcosms.

184

CHAPTER 6. MODEL CONSTRUCTION

6.6.4 Constructive Decision Theory

Shafer has argued persuasively that the value of a theory of probability judgment

depends on its constructive utility, that is, on factors that determine its usefulness

for developing mental arguments, evaluating evidence, and expressing and explaining

beliefs [127, 129]. Shafer's objections to Bayesian decision theory stem in part from

its treatment of preferences and beliefs as conceptually innate and its consequent

emphasis on elicitation rather than synthesis. Moreover, in his view [128, page 485],

"the problem of small worlds serves as a demonstration of how far [Savage's] normative

approach was from a sensible, constructive approach to decision."

My conclusion in Section 1.5 that decision models are not suitable knowledge bases

is an endorsement for the constructive point of view. Once we undertake to design

agents without explicit a priori decision models, it is clear that constructive issues

will be influential. The lack of an established set of principles for decision model

construction, a constructive decision theory, increases the difficulty of this endeavor.

Although I agree with Shafer about the goals of constructive decision theory, we

diverge sharply in approach. Where Shafer has emphasized comparison of alterna-

tive probability calculi (in particular, Bayesian probability versus Dempster-Shafer

belief functions [126]), I would focus on more comprehensive representation issues

and procedures for constructing decision models from KBs. Furthermore, there is

no need to cast this effort as a new foundation for normative behavior; the rational

agent of decision theory remains a useful idealization for anchoring our constructive

concepts [161].

Perhaps the most appealing path to a constructive decision theory is to broaden

our rationality concepts to incorporate constructive factors. This is essentially the

approach of Good, who introduces "type II" rationality as the extension of Bayesian

rationality where the cost of computation is taken into account [41]. This principle

185

CHAPTER 6. MODEL CONSTRUCTION

is difficult to apply, however, as we are usually unable to precisely characterize the

necessary computation. The full analysis requires consideration of an agent's decisions

about its own cognitive make-up, which can lead to infinite regress if we are not

careful. (See Doyle for a discussion of some issues in what he calls rational self-

government [25].)

6.6.5 Constructed Models: Conclusion

Once we take into account the dynamic process of synthesizing decision models, the

overall procedure is no longer guaranteed to be normative. Nevertheless, the relation

to Bayesian decision theory is valuable as a comparative standard. Principles of model

construction can be evaluated on this basis, to the extent that we can measure the

potential distortion of alternative construction strategies.

Little research to date has addressed constructive decision-modeling issues, es-

pecially from a computational perspective. In this chapter, I have identified some

basic problems in representing and reasoning with the knowledge SUDO-PLANNER

uses for constructing QPNs. The description of SUDO-PLANNER's mechanisms repre-

sents a first step toward solving these problems and developing a set of principles for

automated decision model synthesis.

186

Chapter 7

Dominance Proving

This chapter completes the description of SUDO-PLANNER by describing its dominance

prover (the right-hand half of Figure 6.5). This module (1) derives and (2) records

dominance conditions entailed by a given QPN. The first two sections of this chapter

describe these tasks. SUDO-PLANNER's dominance prover supports planning up to

tradeoffs, but its qualitative techniques are insufficient for resolving the tradeoffs

identified. The remainder of the chapter considers approaches toward surmounting

the tradeoff barrier in ways compatible with SUDO-PLANNER's dominance-proving

architecture and its existing qualitative methods.

7.1 Reducing the QPN

The relation of QPN variables to the value node determines their decision-theoretic

properties. The dominance prover derives these properties by transforming the orig-

inal QPN to one where these relationships are direct. The reduction operator of

Chapter 4 renders indirect relations direct by removing intermediate variables from

the QPN and updating the remaining qualitative relations according to Theorems

4.11 and 4.21. Reduction is the sole QPN inference rule applied by SUDO-PLANNER's

dominance prover.

187

CHAPTER 7. DOMINANCE PROVING

The reduction process proceeds backwards from the value node. At each iteration,

SUDO-PLANNER chooses a predecessor w of value such that pred(w) : 0. It then

constructs red(w, G) by splicing w from the graph and recomputing the qualitative

relations for each combination of predecessors and successors of w using formulas

(4.9) and (4.18).' After each reduction, the dominance prover inspects the QPN

for decision-theoretic implications and records the results as described below. The

procedure terminates when all remaining variables have value as sole successor.

For example, at one point the model construction process produces the QPN of

Figure 7.1a. The candidates for reduction are long-term morbidity and mortality.

SUDO-PLANNER chooses one of these and reduces it, adding its predecessors to the

potential reduction candidates. The program proceeds to reduce nodes one-by-one

until it reaches the configuration of Figure 7.lb.

As shown in Section 4.4.3, reducing an arbitrary subset of the variables in a QPN

can be performed with O(IVI2) applications of the rule for updating qualitative in-

fluences (4.9), where IVI is the number of variables in the network. Each influence

update may require up to O(IVI) applications of (4.18) to compute the new syn-

ergies (one for each potentially synergistic partner), bringing the overall worst-case

complexity to O(|V13).

7.2 Recording Dominance Results

Between reductions, SUDO-PLANNER inspects the QPN for relations implying dom-

inance among plan classes. There are two ways that a QPN can manifest such im-

plications, both involving qualitative relations with the value node. First, an action

variable av may be directly related to value, U6(av) for 6 E {+, -}. If av has no other

'The implementation of these reductions is non-destructive; the original QPN is required for
modification in the model construction cycle of Chapter 6.

188

DOMINANCE PROVING

(a)

(b)

Figure 7.1: (a) The QPN before reduction. (b) The completely reduced QPN.

189CHAPTER 7.

CHAPTER 7. DOMINANCE PROVING

paths to value, this implies that the optimal value of av in the plan is its maximum

or minimum value, depending on 8 (see Section 4.5.2). Second, av may be synergistic

on value with a potentially observable event variable ev, YM({av, ev}). In this case,

the optimal av policy is monotone in ev if ev is observable, by the monotone decision

property (Section 4.7.3).

Let av = r,(a2), the action variable describing role r3 of action concept a2. The first

case can be expressed as a dominance condition by constraining plans with actions

of type a2 to those with its subtype where rj is restricted to the extreme value of its

range. Let rs denote this extreme value, r+ for the maximum and r- the minimum.

For example, presence+ = true and dosage- = 0. The subtype of ai, written

ai(rý), is obtained by value restricting rj to r . SUDO-PLANNER creates this concept

in NIKL, which classifies it automatically in the action taxonomy.

To express the dominance result D(11 2, II1), SUDO-PLANNER must create the two

plan classes. The dominance prover defines II1 by posting an action constraint (see

Section 3.4.1) of type ai on the universal plan class Q. II2 is similarly defined by an

action constraint of type ai(r). The plan space manager classifies both classes in the

plan graph. The U6(rj(a2)) condition implies that any plan in II can be improved

(in a non-strict sense) by revising rj(ai) toward its extremum, therefore II2 dominates

II, by Definition 2.1. D(II2, II1) is a restriction because II2 C II1.

The second type of dominance result is the monotone policy constraint justified

by qualitative synergy. For example, in the reduced QPN of Figure 7.1b, AAA repair

is positively synergistic on value with AAA size. (The Y? synergies holding between

other pairs are implicit in the QPN graph.) Y+({AAA repair, AAA size}) implies

that the optimal AAA repair policy is increasing in AAA size, which is asserted to

be observable in the description of this particular case.

The method for recording this fact on the plan graph is analogous to the action

constraint procedure described above. Let II1 be the class of plans where AAA-

190

CHAPTER 7. DOMINANCE PROVING

repair is under consideration, defined by posting an action constraint of type AAA-

repair on fl. SUDO-PLANNER creates 112 from II1 by posting an additional monotone

policy constraint of the form 2

(+, presence(AAA-repair), size(AAA-event)).

The dominance condition D(1 2 , II1) asserts that plans where AAA-repair is under

consideration can be restricted to threshold policies on size(AAA-event).

SUDO-PLANNER must also ensure that the event variable in a monotone policy

constraint is observable in the plan class restricted by the dominance result. An

event variable is freely observable (observable without an explicit test action) if it is

an action variable or, like AAA size in the example above, it is asserted to be so in

a particular case. If the event variable ev in the Y/({av, ev}) condition is not freely

observable, SUDO-PLANNER retrieves from its KB the set of action types asserted to

render ev observable: {ai I CO(a1 , ev)} (see Section 5.7). As above, let II, be the

plan class where av's action type is under consideration. For each action ai in the

set of observable creators, SUDO-PLANNER generates the plan class II1,i by posting

an action constraint of type ai on II1. The dominance prover adds conditions of the

form D(112,i, III,i) to the plan graph, where II2,i is obtained from II,i by posting the

monotone policy constraint (8, av, ev).

For example, at a later point in the model construction cycle, the dominance prover

obtains the result Yjr ({AAA repair, cath result}). (The conclusion follows from AAA

repair's negative synergy with CAD and the positive relation between CAD and cath

result.) As shown in Figure 7.2, SUDO-PLANNER must ensure that the monotone

policy constraint is only in force when cath result is observable, that is, when cardiac

catheterization has in fact been performed.
2The notation role(ai) is used for KB event variables to distinguish them from their corresponding

QPN variables. For instance, presence(AAA-repair) corresponds to the QPN variable AAA
repair.

CHAPTER 7. DOMINANCE PROVING

HIl: [AAA-repair]

II1,1: [AAA-repair,cardiac-catheterization(true)]

R

[AAA-repair,cardiac-catheterization(true)]
(-, presence(AAA-repair), extent(cardiac-cath-result))

Figure 7.2: A plan graph fragment created to record a dominance result. The AAA repair

policy is decreasing in cath result whenever the latter is made observable by catheterization.

The dominance prover performs one additional task during inspection of reduced

QPNs. Any variables having known synergies with focus variables are marked as

such. As described in Section 6.3.2, this is one of the criteria for directing the course

of backward chaining in the model construction process.

7.3 The Tradeoff Barrier

The dominance-proving methods described above, in concert with the model con-

struction procedure of the previous chapter, comprise SUDO-PLANNER's algorithm

for planning up to tradeoffs. Although QPNs are powerful enough to justify an im-

portant class of commonsense decisions, the inherent weakness of the D operator

prevents SUDO-PLANNER from reaching conclusions when the contributing factors

conflict, the hallmark of a tradeoff situation.

Tradeoffs are dominance-proving dead ends for SUDO-PLANNER. Qualitative rela-

tions of sign "?" tend to proliferate, as a single unknown link renders ambiguous any

composite pathway that spans it (? 0 8 =? E 6 = ?, for any 6 # 0). If a decision

problem involves a tradeoff, so do any decisions for which it is a subproblem.

192

CHAPTER 7. DOMINANCE PROVING

7.3.1 Example: A Subtle Tradeoff

The seriousness of the tradeoff barrier is illustrated by a subtle tradeoff encountered

by SUDO-PLANNER in the running example. At one point in the model construction

process, the dominance prover is presented with the QPN of Figure 7.3.3 SUDO-

PLANNER's task is to derive the synergy between CAD and AAA repair on value.

Figure 7.3: A subtle tradeoff. Although AAA repair and CAD interact in their influence
on MI, SUDO-PLANNER's dominance prover cannot derive a synergy on value.

As shown in the figure, CAD and AAA repair have a direct positive synergy on MI.

This means that increasing CAD increases the risk of MI due to the AAA surgery.

While CAD increases the risk of MI in any event-a fact represented separately

by the S+(CAD, MI) link-the expected increase is greater in the case of aneurysm

surgery. Because MI is undesirable, the Y+ relation to MI is an argument for a Y-

relation on value, and therefore for avoiding AAA repair in the presence of higher

values of coronary disease. This is the justification given informally in Section 1.2 for

the conclusion that AAA repair should be a threshold policy on CAD.

This factor is highlighted by the partly reduced QPN of Figure 7.4. If we could

3The QPN depicted here is simplified for expository purposes. Figure 7.3 displays the essential
variables and qualitative relations, suppressing those that do not affect the analysis.

193

CHAPTER 7. DOMINANCE PROVING

ignore the direct influence of AAA repair on value, then Y ({AAA repair, CAD))

would hold by simple propagation of synergies through influences (Theorem 4.20).

Of course, we are not permitted to recklessly ignore this direct relation. Other effects

of AAA repair may interact with MI and are therefore relevant to repair policy given

CAD.

Figure 7.4: Partly reduced version of the QPN above. SUDO-PLANNER cannot derive
the synergy between AAA repair and CAD on value because of AAA repair's unresolved
synergy with MI.

Three basic factors contribute to the synergy relation between CAD and AAA

repair:

1. The positive interaction between the two variables on MI. As argued above,

the increase in surgical risk presented by CAD supports a conclusion of YE.

2. AAA rupture is negatively synergistic with MI on mortality. Intuitively, this

relation holds because a decrease in the rupture rate has a smaller impact on

survival when the patient's life expectancy is already reduced by MI. In fact,

all of the influences on mortality in this example are sub-synergistic, for the

same reason that the noisy OR model implies Y- (Section 4.7.2). In this case,

the negative synergy combined with CAD's positive influence on MI implies

that the benefit of AAA repair in reducing ruptures is less important as CAD

increases. Thus, this factor also supports Yj.

194

CHAPTER 7. DOMINANCE PROVING

3. On the flip side, the other influencers of mortality (such as stroke) also have less

impact when CAD and therefore MI are increased. In this respect, a greater

extent of CAD tends to decrease the mortality risk attributable to AAA repair,

thereby supporting the conclusion YJ+.

The disagreement in sign between the second and third factors above is the reason that

YJ({AAA repair, MI}) holds in the QPN of Figure 7.4 (- e + = ?). Combining this

indeterminate synergy with the other relations in the figure leads to the conclusion

YJ({AAA repair, CAD}) in the completely reduced QPN.

We cannot resolve these factors qualitatively because they represent a genuine

tradeoff. The argument that the AAA repair policy should be increasing in CAD be-

cause worse coronary disease decreases the importance of surgical risks is not spurious

in the least: there are many examples in medicine and elsewhere where "having less

to lose" is a legitimate basis for taking riskier action. Nor is this effect necessarily

subordinate to the direct interaction. If we were considering a cause of mortality that

interacted only slightly with AAA repair, this factor would hold sway.

7.3.2 Beyond the Tradeoff Barrier

This tradeoff indeed represents a dead end, preventing SUDO-PLANNER from drawing

conclusions about any events or actions affecting CAD: observed CAD history, cath

result, and CABG in this example. We know in this case that the first factor easily

outweighs the other two, but this fact is not expressible in the QPN of Figure 7.3. This

situation is particularly frustrating because given Y6({AAA repair, CAD}), SUDO-

PLANNER could go on to derive useful dominance results involving these other vari-

ables.

In the next two sections, I consider the possibility of transcending the tradeoff

barrier. Section 7.4 discusses methods for incorporating externally resolved tradeoffs

195

CHAPTER 7. DOMINANCE PROVING

into the tradeoff formulation process. A variety of approaches for generating these

tradeoff resolutions are investigated in Section 7.5.

7.4 Externally Resolved Tradeoffs

Though the process of tradeoff resolution may depend on precise, absolute knowledge,

the end result is essentially qualitative. The product of a tradeoff resolver is simply

the sign 6 (with 8 = ? signifying failure) of the originally indeterminate relation.

Given the resolution 5, SUDO-PLANNER can proceed from the dead end as if S had

been derived with its own qualitative methods.

7.4.1 A Black-Box Interface

Because a tradeoff formulator like SUDO-PLANNER can apply resolutions without

knowing their pedigree, QPN-based inference complements other dominance-proving

mechanisms. For example, if an external source determines that factor one (from Sec-

tion 7.3.1) prevails over factor three, SUDO-PLANNER can conclude that AAA repair

and CAD are negatively synergistic on value, and can go on to produce dominance

results depending on that fact.

As Figure 7.5 illustrates, SUDO-PLANNER regards an external tradeoff resolver

as a black box. When the attempt to add qualitative values results in ambiguity,

SUDO-PLANNER presents the situation to the resolver. If resolution is successful, the

resolver returns a non-"?" 6 and SUDO-PLANNER proceeds from there.

7.4.2 Tradeoff Stubs

I have implemented a simple stub tradeoff resolver to demonstrate SUDO-PLANNER's

ability to recover from dead ends. All qualitative relations in SUDO-PLANNER's KB

196

CHAPTER 7. DOMINANCE PROVING

tradeoff

SUDO situation Tradeoff

Planner Resolver

e])!t 1 S = ?

Figure 7.5: Black-box interface with an external tradeoff resolver.

are tagged with an identifier to facilitate reference to tradeoff situations. When sign

addition is indeterminate, the stub resolver consults its list of answers to see if the

present situation was anticipated. A total of five stub resolutions are required for the

running example, including the conclusion that Y7 holds in the tradeoff presented in

Section 7.3.1.

7.4.3 Resolver Candidates

Virtually any program that solves decision problems involving partially satisfiable

goals can play the role of tradeoff resolver in the diagram of Figure 7.5. The ideal

candidates are those that exploit knowledge difficult to express in SUDO-PLANNER's

representation scheme yet can report their results in its qualitative terms.

Forms of knowledge suitable for resolving medical tradeoffs range from physiolog-

ical models, like that in Long's program for heart failure [84], to representations of

clinical trial studies, as proposed by Rennels [111]. The nature of tradeoff resolution

knowledge in other domains is similarly unconstrained. Therapy predictions produced

from the heart failure program [83] take the general form of qualitative influences,

though the underlying model uses numeric relations.

The resolver's knowledge representation may itself be qualitative, though to com-

plement SUDO-PLANNER it must make different qualitative distinctions, employ sepa-

197

CHAPTER 7. DOMINANCE PROVING

rate knowledge sources, or apply more powerful inference techniques. The feasibility

of generating qualitative relations from other types of qualitative models is supported

by the existence of programs performing similar tasks. For example, Downing's qual-

itative sensitivity analysis [22], and Weld's comparative analysis [155] both derive

relations among variables from models describing absolute qualitative behavior.

7.5 Qualitative Tradeoff Resolution

The phrase "qualitative tradeoff resolution" is oxymoronic in the sense that qualita-

tive unresolvability is my proposed definition for a tradeoff. But the meaning of "qual-

itative" is always relative to a set of qualities, hence varying the quality basis leads

to different standards of what is qualitative. The implication for SUDO-PLANNER's

task is that tradeoffs from one perspective may be non-tradeoffs from another. A

tradeoff formulator should have the ability to select perspectives and reconcile the

consequences of alternate viewpoints.

The following sections are speculative discussions of extensions to SUDO-PLANNER

that could provide a more powerful tradeoff resolution capacity. They work by ma-

nipulating the notion of "qualitative" in one of the following ways:

1. Changing perspectives. Find another perspective or level of description in which

the tradeoff is qualitatively resolved.

2. Introducing new qualitative distinctions. Other qualitative concepts can provide

additional dominance-proving opportunities.

3. Modulating the degree of precision.

198

CHAPTER 7. DOMINANCE PROVING

7.5.1 Spanning Influences and Synergies

A spanning relation is a domain relation that summarizes a body of network struc-

ture by directly connecting its endpoints. In a multilevel representation, the spanning

relation coexists with the structure it summarizes at the same abstraction level. To

interpret spanning relations, a reasoner needs the ability to maintain multiple exclu-

sive views of a single relationship, perhaps using techniques similar to those employed

by ALTERID [9] or CADUCEUS [107], mentioned in Section 6.5.

Formally, a spanning influence from a to b of sign S asserts S'(a, b, G), where G

is the network where all variables on pathways between a and b have been reduced.

Spanning synergies are defined analogously. A spanning link mechanism is one that

can reason about such relationships in the same model that contains the intermediate

variables. A generalized spanning link mechanism would permit the G argument to

vary arbitrarily across simultaneously considered qualitative relations. The answer to

a query is the strongest result obtainable through transformation operators applied

to any G.

Spanning links provide a means to express in the KB information currently en-

coded in tradeoff stubs. For example, if we know that the positive influence paths

from a to b outweigh the negative ones, we can add S+(a, b) as a spanning link to

express this fact. Even if dir(a, b) = ? in the most detailed G, the spanning link can

provide the stronger answer directly.

The implementation of spanning links, particularly the necessary adaptation of

SUDO-PLANNER's model construction algorithm, presents some interesting problems.

Modifying the assertion language to encompass spanning links is itself a significant

extension, since the current representation never explicitly refers to G. It appears that

a successful treatment of spanning links will require a clarification of the semantical

issues raised in Section 5.4.1.

199

CHAPTER 7. DOMINANCE PROVING

7.5.2 Negligibility Reasoning

The "order of magnitude" techniques [17, 110, 154] recently investigated in qualitative

physics present another possibility for tradeoff resolution. In the case when one

parallel influence can be declared negligible with respect to another-for example,

the mildly unpleasant taste of an orally-administered drug relative to its curative

powers-indeterminacy can be avoided by simply ignoring the former when in conflict

with the latter.

Asserting that a factor is negligible means quite literally that it can be neglected

without loss of validity. Researchers in qualitative physics have formalized this no-

tion in terms of nonstandard analysis [18], an axiomatic framework for infinitesimal

quantities. In the planning task, the standard for negligibility is in a factor's effect on

the ultimate decision. Further work is required to formalize this standard in terms of

infinitesimal quantities, and to relate these quantities to the probabilities and utilities

that define QPN relations.

7.5.3 Incorporating More Precise Information

Another broad tradeoff resolution strategy is to introduce more precise forms of in-

formation into the dominance-proving process. Extending a model to include partial

or complete descriptions of the magnitudes of probabilities and utilities enlarges the

set of decidable comparisons.

At the heart of any tradeoff is an unresolvable inequality on expected utilities.

Though deciding this inequality based on an arbitrary set of constraints is intractable,

a considerable body of research on AI and decision theory addresses restricted versions

of this problem. For example, Sacks describes an algorithm for inequality proving

based on algebraic constraints [119]. Other work has focused on special properties of

classes of probabilities and utility functions (for a sampling, see [31, 50, 156, 162]).

200

CHAPTER 7. DOMINANCE PROVING 201

Researchers in qualitative reasoning have also begun to consider mechanisms that

employ precise knowledge to resolve ambiguities inherent in the original qualitative

representations [74, 164]. Work along these lines should also be applicable to quali-

tative probabilistic reasoning.

Chapter 8

The Complete Example

Our running example, the AAA/CAD/CVD case, has been presented piecemeal

throughout this report. In this chapter I assemble the fragments into a more co-

hesive, chronological description of SUDO-PLANNER's performance on this problem.

8.1 Input Specification

The case, introduced in Section 1.2, is simply stated: a patient with a known history

of CAD and CVD presents with a large AAA. From a medical perspective, of course,

this description is exceedingly sketchy. Nevertheless, the description is sufficient to

specify the relevant tradeoff formulation task, and any further information could not

be exploited by SUDO-PLANNER.

The encoding of the case for input to SUDO-PLANNER is also quite simple. The sta-

tus quo optimality heuristic of Section 6.4 dictates that the planner focus on changes

to the current state. In this case, the underlying assumption is that the current ther-

apy appropriately takes into account the patient's CAD and CVD, therefore planning

should focus on strategy modifications warranted by the new finding, AAA.' There-

'Relaxing this assumption merely entails consideration of a broader set of findings. In this
example, we could reexamine the current strategy by treating CAD and CVD as if they had just
been discovered, like the AAA. The result is a blunter focus.

202

CHAPTER 8. THE COMPLETE EXAMPLE

fore, the input to SUDO-PLANNER specifies that size(AAA-event) be represented in

the initial QPN, and that it be a focus variable.

The case description also specifies that the variable size(AAA-event), as well as

history(CAD-event) and history(CVD-event), is freely observable. The initial

findings of the case are eligible to appear in conditional plans without additional test

actions to reveal their values.

That is the complete SUDO-PLANNER input for the running example. Realistic

medical cases would specify many more changes and observations.

8.2 The Evolving QPN

Snapshots of the QPN in various stages of development appear throughout the pre-

vious two chapters. Figure 8.1 recapitulates the first few stages of QPN evolution,

described in Section 6.3. In the initial QPN (Figure 8.1a), AAA size negatively in-

fluences value by virtue of being a disease severity. This relationship is elaborated

in Figure 8.1b, revealing that the undesirability of the aneurysm is due to its po-

tential for rupture. Further elaboration (not shown) specializes aneurysm rupture to

AAA rupture. Backward chaining on this variable introduces AAA repair to the QPN

(Figure 8.1c), presenting the first opportunity to reason about possible action.

At this point, however, SUDO-PLANNER cannot determine anything about the

AAA repair policy because the synergy between AAA repair and AAA rupture on

value is indeterminate. A sequence of further elaboration and backward chaining

steps replaces the direct relation from AAA repair to value with a collection of paths

through such intermediate variables as stroke, MI, and mortality, which together

account for the negative effects of the vessel surgery. Most of the new structure arises

from elaboration; mortality and value are the only variables extended back in the

process. The resulting QPN is illustrated in Figure 7.1a of the previous chapter. As

203

CHAPTER 8. THE COMPLETE EXAMPLE

(a) AAA

(b) O

(C)

Figure 8.1: Early evolution of the QPN.

demonstrated by the reduction of Figure 7.1b, this model is sufficient to justify our

first dominance result: the AAA repair policy should be monotonically increasing in

AAA size.

Backward chaining on MI introduces CAD to the network, producing the QPN

partially depicted in Figure 7.3. As described in Section 7.3.1, SUDO-PLANNER cannot

resolve the synergy between AAA repair and CAD on value, due to a subtle tradeoff

involving the effects of CAD. This conflict is resolved by one of SUDO-PLANNER's

tradeoff stubs (Section 7.4.2), allowing the model construction process to continue.

A similar tradeoff involving CVD (introduced by backward chaining on stroke) also

requires a stub for resolution.

Resolving these synergies renders the two disease variables extensible. CVD is

the next variable selected for backward chaining. Because endarterectomy is related

to CVD by a Markov influence, the variable undergoes a mitosis process as described

in Section 6.3.3. The resulting QPN is illustrated in Figure 8.2.

204

CHAPTER 8. THE COMPLETE EXAMPLE

Figure 8.2: The QPN after backward chaining on CVD. The variable is divided in response
to the Markov influence from endarterectomy.

205

CHAPTER 8. THE COMPLETE EXAMPLE

By backward propagation of synergies (Corollary 4.22), SUDO-PLANNER's domi-

nance prover can establish at this point that CVD's predecessors, CVD history and

carotid arteriography result, are negatively synergistic with AAA repair on value. The

arteriography result is observable only if the test is performed; SUDO-PLANNER adds

the action variable to the QPN as shown in Figure 8.2. Figure 8.4 (next section)

illustrates the plan graph at this stage of the model-construction/dominance-proving

process.

Backward chaining on CAD leads it to undergo mitosis and introduces structure

parallel to that for CVD (see Figure 6.11). After elaboration removes a few spurious

high-level links, the KB is exhausted and the model construction cycle terminates.2

The final QPN is depicted in Figure 8.3.

8.3 Dominance Results

SUDO-PLANNER invokes the dominance prover on every QPN produced in the evo-

lutionary sequence described above. It obtains the first dominance result from the

QPN of Figure 7.1, and the next two after backward chaining on CVD to produce the

QPN of Figure 8.2. The intermediate plan graph recording these three restrictions is

shown in Figure 8.4. The restriction of II1 to II4 corresponds to the dominance result

encoded by the plan graph fragment of Figure 7.2.

As the dominance prover derives further results, it creates and classifies the nec-

essary plan classes and posts the dominance conditions on the plan graph. Figure 8.5

depicts the final plan graph, SUDO-PLANNER's terminating output for this example.

The plan graph contains dominance results corresponding to each of the intuitive

tradeoff formulation conclusions discussed in Section 1.2.

2If the KB were much larger, running the process exhaustively would be infeasible. Because
plan graph validity is invariant, however, the planner can be halted at any time for inspection of its
dominance results.

206

CHAPTER 8. THE COMPLETE EXAMPLE

Figure 8.3: Final QPN for the AAA/CAD/CVD example (repeated from Figure 1.12).

II : [AAA-repair]

114 II5

key:

R

1115
114 : (+, presence(AAA-repair), size(AAA-event))
IIs : (-, presence(AAA-repair), history(CVD-event))
II6 : [carotid-arteriography(true)]
II15: (-, presence(AAA-repair), extent(carotid-arteriography-result))

Figure 8.4: The plan graph after reducing the QPN of Figure 8.2. Plan classes are
described by the constraint distinguishing them from their parents.

207

CHAPTER 8. THE COMPLETE EXAMPLE

Il: [AAA-repair] 112 : [Endarterectomy] II13: [CABG]

114 II5 H6 117 118 119 1110 I1111 1112 1113 1114

R R R R R R R R

/A \ I \
1115 1116 1117 1118 1119 1120 1121 1122

key:
117 : (-, presence(AAA-repair), history(CAD-event))
IIs : [cardiac-catheterization(true)]
II11: (+, presence(endarterectomy), history(CVD-event))
1112: [carotid-arteriography(true)]
1113: (+, presence(CABG), history(CAD-event))

1114: [cardiac-catheterization(true)]
1116: (-, presence(AAA-repair), extent(cardiac-cath-result))
1117: (+, presence(AAA-repair), presence(endarterectomy))
1118: (+, presence(endarterectomy), presence(AAA-repair))
1119: (+, presence(AAA-repair), presence(CABG))
1120: (+, presence(CABG), presence(AAA-repair))
1121: (+, presence(endarterectomy), extent(carotid-arteriography-result))
1122: (+, presence(CABG), extent(cardiac-cath-result))

Figure 8.5: The final plan graph. Plan classes II9 and IIlo are defined by the union of their
parents' constraints. All leaf plan classes dominate (and therefore restrict) their parents.

208

CHAPTER 8. THE COMPLETE EXAMPLE

8.4 Performance

The entire process takes roughly two minutes of real time on a Symbolics 3650.3 The

code is not optimized, and no extensive metering has been performed to determine

the allocation of computation time. SUDO-PLANNER appears to spend most of its

time in redundant or superfluous dominance proving that could be avoided without

degrading performance.

8.5 Discussion

This example illustrates SUDO-PLANNER's tradeoff formulation performance on a re-

alistic, albeit small, medical decision problem. The program successfully plans up to

tradeoffs, failing to resolve only genuine qualitative conflicts. Some of these are quite

subtle; the competing factors became apparent to me only upon analysis of the QPN

reduction. Given resolutions for these, SUDO-PLANNER proceeds to derive all of the

desired results.

Two aspects of the example are disappointing. First is its fragility: small mod-

ifications to the KB can produce seemingly chaotic change in the course of QPN

evolution and sometimes lead to weakened dominance results or even invalid ones if

incompatible KB relations are brought into the model. I ascribe this defect to the

cognitive complexity of the model construction procedure and the difficulty of pre-

dicting the implications of closed-world assumptions. Second, SUDO-PLANNER fails

to take maximal advantage of abstraction, producing dominance results later in the

process than necessary. As mentioned in Section 6.3.4, this is a by-product of the con-

servative knowledge engineering policy of including indeterminate high-level relations

to prevent improper assumptions of independence.

'This figure assumes that the KB is pre-loaded and that the graphical display of QPNs is disabled.

209

CHAPTER 8. THE COMPLETE EXAMPLE

The AAA/CAD/CVD case is the only complete, working SUDO-PLANNER exam-

ple. In the process of implementing the program I have constructed several other

QPN examples, including the digitalis model of Chapter 4. The difficulty of knowl-

edge engineering mentioned above precluded development of a more comprehensive

KB supporting a variety of model construction examples. This is not simply the

traditional "knowledge acquisition bottleneck"; rather, it reflects the unpredictabil-

ity of SUDO-PLANNER's QPN generation procedure. Improving its robustness is a

prerequisite for widening the scope of SUDO-PLANNER.

Above all, the example serves as a demonstration of plausibility for the basic com-

ponents of the SUDO-PLANNER approach: dominance proving, QPNs, and decision

model construction from a multilevel KB. Weaknesses in SUDO-PLANNER exposed

by the example provide a starting point for efforts to improve tradeoff formulation

technology.

210

Chapter 9

Conclusion

I conclude the dissertation with an assessment of what this research has achieved and

some remarks about what remains to be accomplished.

9.1 Summary of Contributions

The two central elements of this work are the dominance-proving architecture of

Chapter 2 and the QPN formalism of Chapter 4. I have implemented these ideas in

SUDO-PLANNER, a program that formulates tradeoffs by constructing decision mod-

els from a multilevel KB of qualitative relations. The following sections summarize

these contributions, and enumerate some other products of this project scattered

throughout the thesis.

9.1.1 A Dominance-Proving Architecture for Planning with

Partially Satisfiable Goals

In the classical framework, planners search for a course of action guaranteed to achieve

a specified goal predicate. As I argue in Section 1.4, this formulation of the task is fun-

damentally inadequate to account for partial goal satisfiability, including the special

211

CHAPTER 9. CONCLUSION

case where the effects of actions are uncertain. Although numerous researchers have

developed planners to handle some of its aspects, no comprehensive computational

framework for the more general problem has yet emerged.

The dominance-proving architecture is an attempt to fill that void. As presented

in Chapter 2, the architecture's criterion for choice among plans is highly general; in

particular it admits a Bayesian approach to preferences and belief without imposing

ad hoc restrictions on the form of utility functions and probabilities. It goes beyond

pure decision theory, however, in addressing the assembly of plans from more primitive

descriptions of action. The architecture prescribes a division of computational labor

among three components: the plan space manager, dominance prover, and domain

problem solver. The plan graph representation of the search space supports techniques

from traditional planning, in particular hierarchical (constraint-posting) planning and

dependency maintenance.

The generality of the dominance-proving architecture precludes a final evaluation

based solely on the results of this project. SUDO-PLANNER is one instance of a

dominance-proving planner, developed specifically for the tradeoff formulation task.

Other instances, defined by alternate choices in the design of plan class representation,

domain modeling language, and dominance prover, should be expected to exhibit a

variety of planning behaviors.

9.1.2 QPNs: A Formalism for Qualitative Probabilistic In-

fluences and Synergies

Qualitative probabilistic networks are representations for constraints on probabilistic

relations among a set of variables. The formalism provides constructs for two types

of constraint:

212

CHAPTER 9. CONCLUSION

* Qualitative influences describe the direction of the relation between a pair of

variables.

* Qualitative synergies describe the direction of interaction among influences.

Both qualitative relations have rigorous probabilistic definitions that justify sound in-

ference procedures based on efficient network transformations. Because the semantics

for qualitative influences and synergies are based on relative, rather than absolute,

statements about conditional probabilities, QPNs can be used to derive properties of

the relative values of alternative plans. In particular, the relation of variables to the

special value variable determine qualitative properties of the optimal decision, which

can be exploited directly by a dominance-proving planner. I summarize the formal

properties of QPNs in Section 4.9.1.

Qualitative relations directly support tradeoff formulation. In fact, resolvability in

QPNs is perhaps the best available criterion for a formal tradeoff definition. As argued

in Section 1.1, knowledge for tradeoff formulation is more abstract, modular, and

robust than that required for general decision making. QPNs provide a mechanism

to exploit these properties as far as possible before resorting to the less convenient

forms of knowledge needed to solve the residual planning problem.

9.1.3 Other Contributions

In developing the main ideas above and building the SUDO-PLANNER implementation,

I have been led to address a variety of peripheral topics. Those figuring prominently

in the thesis include:

* Identification of the tradeoff formulation task and its role in planning (Sec-

tion 1.1).

213

CHAPTER 9. CONCLUSION

* Design and analysis of knowledge representations for plan classes, actions, and

the effects of actions (Chapters 3 and 5). Development of a subsumption algo-

rithm for the plan constraint language (Section 3.5).

* Model construction at multiple levels of abstraction (Chapter 6).

- Desiderata for multilevel reasoning (Section 6.1).

- Exploration of issues in the automatic construction of decision models

(Sections 6.4 through 6.6).

* Interpretation of the STRIPS assumption for actions with uncertain effects (Sec-

tion 5.2.2).

* A theoretical framework for decision making in Savage's "grand world" (Sec-

tion 6.6.3).

9.2 Limitations of SUDO-Planner

The design of SUDO-PLANNER reflects an emphasis on decision problems substantially

different from those typically considered in AI planning research. As such, the domain

relations expressible in its KB and the conclusions derivable by its inference procedure

are novel to the field. Conversely, SUDO-PLANNER's mechanisms fail to cope with

many issues that traditional systems handle routinely. Most of these omissions are

not critical; straightforward extensions to SUDO-PLANNER would attain the desired

capabilities. Others, however, do not have clear remedies.

In the sections below, I discuss two glaring limitations of SUDO-PLANNER's com-

petence. Several additional shortcomings of this work have been reported in foregoing

chapters:

* The limited expressive power of the plan constraint language (Section 3.5.4).

214

CHAPTER 9. CONCLUSION

* An unsatisfactory semantics for effect assertions in the KB (Section 5.4.1).

* The fragility of the model construction algorithm (Section 6.3.4).

9.2.1 Tradeoffs

The tradeoff barrier is an obvious boundary of SUDO-PLANNER's decision-making

abilities. Sections 7.3 through 7.5 discuss the nature of this obstacle and propose

some approaches toward overcoming it.

The subtle tradeoff of Section 7.3.1 suggests that-though close inspection reveals

that this situation contains genuinely conflicting factors-the QPN formalism does

not correspond exactly to our intuitive notion of tradeoff. Further theoretical and

empirical analysis is required to allocate blame for this mismatch to inferential weak-

ness, omission of critical qualitative distinctions, and various cognitive elements. The

first step is to develop a precise characterization of the completeness of QPN inference

mechanisms, that is, the potential for spurious ambiguity.1

9.2.2 Time

No theory of planning is complete without an adequate treatment of temporal rela-

tions among actions and events. SUDO-PLANNER's representations for plan classes,

actions, and events, however, are entirely atemporal. Failing to deal with time is one

of the major shortcomings of SUDO-PLANNER.

Most planners handle simple sequencing among actions. For typical medical de-

cision problems, such a mechanism is not nearly adequate and barely provides an

advantage over no temporal reasoning at all. For example, in patients presenting

with symptoms of appendicitis, there is a tradeoff between performing an appen-

'Kuipers has carried out an analogous analysis of qualitative simulation [73], concluding that
spurious qualitative behaviors are in fact produced by local inference schemes.

215

CHAPTER 9. CONCLUSION

dectomy immediately or waiting and observing the patient to better establish the

diagnosis. Waiting avoids some unnecessary surgeries while increasing the risk of un-

treated disease. In this planning problem, the ordering of actions is already known;

the task is to determine the optimal waiting time as a function of the observations.

To attack this problem with SUDO-PLANNER, one would have to treat its temporal

aspect as just another domain-dependent characteristic of the situation. Because they

enjoy no special status in the planner, references to time must be expressed within the

existing representations for action and event variables. In this case, we can include a

time-of-surgery role in the specification of the action appendectomy. The filler

for that role is a time variable whose effects can be represented via the mechanisms

described in Chapter 5.

SUDO-PLANNER does supply one construct specifically to account for time rela-

tions: the Markov influence assertion of Section 5.5. Markov influences implicitly

encode the temporal ordering among an action and the value of an event variable

before and after its application.

But even a large set of representation constructs like Markov influences combined

with vigorous use of special time-related roles is no substitute for an explicit uniform

treatment of time within the planner and in the representation for effects of actions.

Failing to recognize that the time-of-surgery role of appendectomy is related to

other temporal measures in the KB and plan graph inevitably leads to significant

missed inference opportunities.

Temporal reasoning is likely to pose special problems in the dominance-proving

architecture because of its emphasis on deriving properties of plan classes. In categor-

ical planning, plans with partial temporal descriptions require the planner to establish

that facts hold in all consistent completions, a problem known to be difficult [21]. It

remains to be seen whether techniques from traditional planning can be adapted to

this framework, or, for that matter, whether the dominance-proving task will admit

216

CHAPTER 9. CONCLUSION

some special solutions not available in the traditional case.

9.3 Further Work

The preceding chapters contain numerous digressions outlining plans and speculations

about future work. This section elaborates on a few of these possibilities.

9.3.1 Extending the Dominance Prover

There are a few straightforward extensions to the SUDO-PLANNER implementation

that should enlarge the dominance prover's scope without presenting conceptual dif-

ficulties. One would be to incorporate explicit reasoning about landmark values, as

described in Section 4.7.5. For example, CADo might be an important landmark value

for CAD, representing no coronary disease or perhaps the normal extent of CAD for

a given population. A medical KB would also be likely to include the value of z*,

the normal threshold value on AAA size above which AAA repair is indicated. The

threshold z* is a rule of thumb, valid as a decision criterion only for patients with no

extenuating circumstances. Thus, use of z* implicitly assumes CAD = CADo, among

other things. Suppose a patient presents with CAD worse than CADo and a AAA

smaller than z*. The patient's coronary disease is an "extenuating circumstance" for

the AAA repair decision, but we know from SUDO-PLANNER's plan graph that ex-

tensive CAD only decreases our willingness to perform aneurysm surgery. Since the

patient's AAA is below the nominal threshold, we can conclude that it is also below

the revised threshold and therefore the optimal plan does not prescribe aneurysm

repair.

The reasoning scenario presented above makes use of dominance results produced

by the current version of SUDO-PLANNER. Hence, extending SUDO-PLANNER to han-

217

CHAPTER 9. CONCLUSION

dle landmark values would not require changes in either the QPN formalism or the

model construction process.

A second extension of the dominance prover is the incorporation of explicit con-

ditioning of qualitative relation assertions and dominance results. Maintenance of

context-dependent conclusions (such as the conditional dominance relations of Defi-

nition 2.3) can be implemented directly in a standard TMS. SUDO-PLANNER's plan

class representation already provides for conditional constraints (Section 3.4.3), al-

though its subsumption algorithm for plan classes with conditionals is incomplete

(Section 3.5.3).

Other extensions-involving new qualitative relations, plan class constraints, or

tradeoff resolution capabilities-are more fundamental, requiring significant modi-

fications of SUDO-PLANNER's existing mechanisms. I expect that further work on

SUDO-PLANNER will explore each of these directions.

9.3.2 Temporal Representations

Designers of temporally competent dominance-proving planners need to address three

basic representation requirements. A temporal knowledge representation must include

facilities to express:

1. the temporal relation among actions and observations in plans,

2. effects of action over time, and

3. time preference for the occurrence of events, including the temporal resolution

of uncertainty [72].

The first item involves extensions of the plan constraint language, while the second

and third are the responsibility of the domain modeling language.

218

CHAPTER 9. CONCLUSION

There is no reason to develop languages for expressing temporal relations among

actions in a plan unless the planner has some basis for distinguishing the effects of

the different temporal patterns of action. The first step in adding temporal concepts

to SUDO-PLANNER, therefore, should be to extend the QPN formalism to include

conditions on relations among variables over time. One approach is suggested by

Cox's investigations of a temporal version of first-order stochastic dominance [16].

Because atemporal FSD is the basis for the existing QPN relations, such a condition

is a promising candidate for a smooth extension into the temporal dimension.

A contrasting approach is to add temporal structure to the event variables rather

than to the relations. This is the path taken in a representation scheme I designed for

a proposed health outcome knowledge base [157]. The KB design is organized around

a taxonomy of temporal patterns, orthogonal to the health-related characteristics

of the concepts. Given a temporal semantics for the pattern-definition constructs

(perhaps in the spirit of Allen [1]), relations on these variables have clear temporal

interpretations. The same constructs could then be applied to the specification of

temporal characteristics of actions as well.

9.3.3 Critiquing Based on the Dominance-Proving Archi-

tecture

Perhaps the most immediate application of the dominance-proving architecture should

be to critiquing systems [91, 159], programs that analyze a user's proposed plan

rather than generate solutions from scratch. A dominance-proving planner critiques

by exploring the plan-space neighborhood of the given plan or plan class. Dominance

results involving plan classes that encompass the user's proposal suggest incremental

improvements to be recommended by the critiquer.

The user's strategy focuses the dominance-proving planner on a narrow slice of

219

CHAPTER 9. CONCLUSION

the search space that might have received only fractional attention in unrestricted

search. Though the planner may not have gotten there in the first place, it is possible

that once there it can derive an abundance of useful results.

A proposed plan often implicitly contains resolutions of tradeoffs that would have

caused SUDO-PLANNER to hang. This might be attributable to more domain knowl-

edge, more information about the case context, or greater willingness to make as-

sumptions or guesses. Assumptions inferred from the proposal can be asserted in the

planner's KB, in much the same way as results are incorporated from black-box trade-

off resolvers in the framework of Section 7.4. Further refinements or modifications to

the plan justified by its implicit assumptions are valid dominance results that should

be reported in the critique.

We have incorporated some of these ideas in BUNYAN, a program for critiquing

medical decision trees [160]. One of BUNYAN's "critiquing principles" is to alert the

analyst to decision models that contain qualitatively dominated strategies. Although

the program does not perform explicit dominance proving, the criteria for detecting

dominance are based on qualitative probabilistic relations holding between abstract

concepts of medical decision problems.

9.3.4 Tradeoff Resolution

Section 7.5 outlines three approaches toward resolving tradeoffs in ways compatible

with SUDO-PLANNER's existing dominance-proving mechanisms:

1. Spanning relations.

2. Negligibility reasoning.

3. Higher-precision knowledge.

220

CHAPTER 9. CONCLUSION 221

Pursuit of each of these directions should be part of a full-scale assault on SUDO-

PLANNER's tradeoff barrier.

9.4 Outlook on SUDO Planning

The central task that this research attacks-planning for partially satisfiable goals-

is so pervasive, and the need for comprehensive AI approaches so acute, that partial

solutions are well worth striving for. The same holds for other major issues addressed

by SUDO-PLANNER: qualitative probability, multilevel knowledge representation, and

decision model construction. It is a virtual certainty, then, that others will take up

these problems, whether or not they adopt techniques from SUDO-PLANNER.

However, the outlook for SUDO-PLANNER: THE PROGRAM is quite dim. In this

chapter and throughout the thesis I have chronicled numerous defects of SUDO-

PLANNER that preclude it from direct application to realistic planning problems.

SUDO-PLANNER is merely a demonstration vehicle, providing an instance of the

dominance-proving architecture for planning with partially satisfiable goals, and a

testbed for the application of qualitative probabilistic networks to problems of deci-

sion making under uncertainty. Future tradeoff formulators will surely operate much

differently, as researchers discover and exploit regularities in problems and domains.

And dominance-proving planners of the future will emphasize tradeoff resolution to

the point that resemblance to SUDO-PLANNER will be slight at best.

In contrast, I find it easy to be optimistic about the prospects for SUDO-PLANNER:

THE APPROACH. The full range of dominance-proving planners has not yet been ex-

plored, nor has the variety of possible uses for QPNs. The SUDO-PLANNER experience

to date has been encouraging; however, much work remains before we can evaluate

with confidence the utility of these ideas in establishing a principled basis for auto-

mated decision making.

Appendix A

Notation

Listed below are brief descriptions of notational symbols employed in the body of

this thesis, with references to the pages where they are introduced or defined. For

symbols with more than one interpretation, the appropriate choice should always be

clear in context.

a* A landmark value of variable a, either specially designated as such or de-
termined to correspond to landmark value of some other variable (p. 119).

ai 1. An action in the action alphabet A (p. 43).

2. A generic action type (p. 71).

3. A specific value taken on by variable a: ai E X(a). Used in conditional
probability expressions as an abbreviation for the proposition a = ai
(p. 96).

ai(vr) The action type formed by value-restricting some role of a, to vr (p. 71).

ag(b) A function that returns the value of a maximizing g(a, b) (p. 113).

A 1. An alphabet of actions for a simple plan language (p. 43).

2. The proposition interpreted as a = true, where a is a boolean variable
in a QPN (p. 93).

A* The set of strings in the alphabet A, or a wildcard in a regular expression
(p. 43).

Ai The proposition a = false (p. 93).

222

APPENDIX A. NOTATION

A The universal action class. A = X(action) (p. 71).

lA A generic set of actions. Ai = X(a,) (p. 71).

action The root of the action taxonomy (p. 71).

arg maxa The value of a that maximizes the associated expression (p. 113).

av An action variable type (p. 73).

AV An action variable instance of type av (p. 74).

AV(7r) The value of action variable instance AV in the unconditional plan ir
(p. 74).

c The consequence descriptor in decision analysis used as argument to the
utility function (p. 179).

c The minimal value of variable c (p. 228).

CO(a1 , ev) A creates-observable assertion. Performing an action of type ai renders
event variable ev observable (p. 141).

D 1. Dominance relation over plan classes (p. 46).

2. The set of decision variables in a QPN (p. 89).

D' Strict plan class dominance (p. 46).

Ds Conditional dominance relation for condition S (p. 47).

dFb(bo) The derivative of the cumulative distribution, appearing in integrals.
Equivalent to fb(bo)db (p. 95).

dep(G) The dependency graph of a QPN G (p. 97).

dir(a, b, G) The direction of influence of a on b in G (p. 97).

ej A generic event type (p. 79).

e : II A conditional plan class constraint that the plan must be in II under
condition ei (p. 79).

ek Expectation under the monotonic transform q (p. 113).

E,[g(x)] The expectation of g(z) with respect to x. Equivalent to f g(x)ff(xo)dxo
(p. 179).

223

APPENDIX A. NOTATION

E The universal event class. E = X(event) (p. 75).

'i A generic set of events. Ci = X(e1) (p. 79).

ev An event variable type (p. 75).

EV An event variable instance of type ev (p. 75).

EV(obs) The value taken by the observable event variable instance EV in the
observation obs (p. 75).

event The root of the event taxonomy (p. 75).

fb Probability density function for b (p. 96).

fb(bo x) Conditional probability density function for condition x evaluated at b =
bo (p. 96).

Fb Cumulative density function (CDF) for b (p. 95).

Fb(.Ix) Conditional CDF for b given x (p. 96).

FSD First-order stochastic dominance relation (p. 95).

G 1. A goal predicate (p. 18).

2. A qualitative probabilistic network (p. 89).

idi Unique identifier associated with an action type in a plan class in-list
(p. 76).

K61,62 A Markov influence assertion with influence direction 61 and synergy
direction 62 (p. 139).

O The set of possible patterns of observation over time (p. 68).

obs An observation in 0 (p. 68).

p The set of plan classes expressible in the constraint language, P C 20
(p. 52).

p7 The plan classes expressible in planner-i's constraint language in the
cascaded planning architecture (p. 70).

PE The plan classes accepted by the executor (p. 70).

pred Predecessor function (p. 93).

224

APPENDIX A. NOTATION

Q The set of qualitative relations in a QPN (p. 89).

.r The extreme value in role rj's range, maximum if 6 = + and minimum
if 6 = - (p. 190).

R A generic relation on CDFs (p. 104).

Rs Ordinal comparison relation holding for undefined terms by default
(p. 78).

R Annotation on a plan graph link indicating a restriction relation (p. 26).

•R The real numbers (p. 52).

red(b, G) The network obtained by reducing b from G (p. 99).

rev(a, b, G) The network obtained by reversing a and b in G (p. 99).

result Function returning the state resulting from performing a plan in a given
state in the situation calculus (p. 45).

role(ai) The action variable formed from concept a2 and role role (p. 73).

si The initial situation in situation calculus planning (p. 45).

Sa Set of event variables directly affected by action a (p. 134).

S" Set of event variables directly affected by action a, plus any other vari-
ables that affect those in Sa (p. 135).

S6 A qualitative influence assertion (pp. 92, 93, 96).

u The utility function (pp. 96, 179).

U6 Qualitative influences on utility (p. 96).

v The specially designated value node in a QPN (p. 89).

V The set of variables in a QPN (p. 89).

z Context variable in qualitative relation definition (p. 93).

X(a) The domain of variable a (p. 89).

X(c) The extension of a (NIKL) concept c (p. 71).

Y6 A qualitative synergy assertion (pp. 109, 110).

225

APPENDIX A. NOTATION

YU, Qualitative synergy on utility (p. 114).

8 A qualitative direction, one of +, -, ?, or 0 (pp. 78, 92).

(8, av, ev) A monotonic policy constraint in direction 8 between av and ev (p. 78).

8 A state of nature (pp. 118, 179).

O The set of possible states of nature (p. 179).

7r A plan (p. 45, defined in Section 3.1).

ir[ei] A partial plan function defined only on the extension C& of ei (p. 79).

II A plan class or partial plan (p. 43).

II(av, ev) The plan class where av is a monotonic function (with direction 8) of ev
(p. 54).

II[ei] A class of partial plan functions defined only on the extension E; of e1.
(p. 80).
A monotonic transform (p. 95).

w A course of action in £,,, (p. 68).

g The universal plan class, or set of all syntactically valid plans (p. 43).

0o The set of (semantically) legal plans (p. 69).

ez,, The set of executable courses of action (p. 68).

>_ Strict preference relation over plans (p. 45).

_ Non-strict preference relation over plans (p. 45).

~ Indifference relation over plans (p. 45).

Sign multiplication operator (Table 4.1, p. 100).

E Sign addition operator (Table 4.1, p. 100).

226

Appendix B

Proofs of QPN Results

Lemma 4.9 If b V pred*(a) then a and b are d-separated in dep(G) by any S such

that predG(b) C S C pred (b).

Proof: Two variables are d-separated iff every undirected path between them is

blocked according to one of the conditions of Definition 4.8. Every path between

a and b must pass through one of b's predecessors or one of its successors. Because

predG(b) C_ S, the paths through the predecessors are blocked by the first condition.

Consider a path through a successor of b. Let t be the first variable on the path,

starting from b, that has both incident edges leading in. Such a variable must exist

because b V pred*(a). Because it is the first, there is a directed path to it from b.

Note that every variable in the separating set S has a directed path to b because

S C pred*(b). Therefore if t or any of its successors were in S, there would be a

cycle from b through t. Because dep(G) is acyclic, t blocks the path via the second

condition of Definition 4.8. O

Theorem 4.10

S'1(a, b, G) A S'2(b, c, G) A So(a, c, G) = S6102(a, c,red(b, G)),

where 6i E {+, -, 0, ?} and ® denotes sign multiplication, described by Table 4.1.

227

APPENDIX B. PROOFS OF QPN RESULTS

Proof: I will prove the case 81 = 82 = +; the others are analogous. Choose a, and a2

such that al a2, and an zo in X(pred(b) U pred(c) - {a, b}) that is consistent with

al and a2. Let F, denote the conditional CDF for c and c the minimal value of the

variable. By the definition of cumulative probability we have

F(colaixo) = o f f(bocl azo)dbodcl.

Changing the order of integration and decomposing the joint probability yields'

Fc(colaizo) = If 0 c fC(cIaibozo)fb(bolaixo)dcidbo. (B.1)

Because a and c are conditionally independent given b and z, by the So premise and

Lemma 4.9, we can remove ai from the fc expression. Rewriting the density function

as the derivative of a cumulative, we get

Fc(colaixo) = fc(cxlboxo)dcldFb(bo aizo). (B.2)

The inner integral is simply the CDF for c given bo.

Fc(colaixo) = f FC(colbozo)dFb(boa xzo). (B.3)

Because b positively influences c, the pointwise FSD condition (4.3) implies that

for any co, Fe(colbozo) is a decreasing function of bo. And S+(a,b) entails FSD of

Fb(bolaxzo) over Fb(boIa2zo). Therefore, (4.4) applies with the inequality reversed

(negating F,(colbzo) yields an increasing function), leading to the conclusion

Vco F,(colalzo) < F.(cola2zo),

implying FSD. Because al, a2, and zo were chosen arbitrarily, we have finally S+(a, c).

1If some values of bo are inconsistent with zo, then distributions of c conditioned on bo and Zo
(and therefore the right-hand sides of equations (B.1), (B.2), and (B.3)) are not well-defined. This
has no consequence, however, because the value of f&(bolaizo) in such cases will always be zero.

228

APPENDIX B. PROOFS OF QPN RESULTS

Theorem 4.11

S6 (a, b, G) A S12(b, c, G) A S63 (a, c, G) . S(6106 2)3 (a, c, red(b, G)),

where $ denotes sign addition, also described in Table 4.1.

Proof: Proceed as for the proof of Theorem 4.10 to equation (B.1). Because 63 is not

generally zero, we cannot remove ai in the next two steps.

Fc(coaizxo) = F(co ajboxo)dFb(bolaizo).

Define F, as a variant where ai is fixed to al in the first term

F,.(colaizo) = J F(coIalbozo)dFb(bo aigo).

Note that Fe(colalo) = F (colalxo) and that

63 = +(-) Vco Fc(cola1bozo) < (>) F.(co a2bozo), therefore

Vco Fc(cola 2 zo) < (>) F(colazzo). (B.4)

When 63 = ? it is possible that the relation varies with co. Regardless of S3,

Fc(colalbozo) is a decreasing/increasing/non-monotonic function of b0 as 62 is +/ - /?.

For concreteness, suppose 61 = 62 = + (again, the other cases are analogous). Fol-

lowing the reasoning in the proof of Theorem 4.10 above, we get

iF(colalxo) = Fc(colaixo) FSD Fc(coIa 2zo).

If 63 = + (more generally if 63 agrees with the polarity of the FSD relation), this

result combines with (B.4) to imply FSD of the corresponding unhatted Fes, thereby

establishing the result. Without such agreement FSD may be violated, permitting us

to conclude only S?(a, c, r ed(b, G)). o

229

APPENDIX B. PROOFS OF QPN RESULTS

Theorem 4.12 Let G' = rev(a, b, G). G' inherits all the qualitative influences of G

except:

1. dir(a, b, G') is undefined.

2. dir(b, a, G') = dir(a, b, G).

3. Vw E predG,(b),

dir (w, b, G') = [dir(w,a, G) ® dir(a, b, G)] E dir(w,b, G).

4. Vw E predGl(a) - {b},

dir(w,a,G') = dir(w,a, G) if dir(w, b, G) = 0
? otherwise.

Proof: First, note that all variables outside predG(a) U predc(b) retain the same set

of d-separations. Second, let us verify each relation above:

1. There is no longer an influence from a to b.

2. To show that the influence on the reversed link remains unchanged it is conve-

nient to work with the likelihood form of S', equation (4.6). Applying Bayes's

formula:

f,(adlbj) fb(bjlz)fb(bjlaiz) = a(ailbx)f
fa(aI x)

Choose four values ax > a2 and b, > b2.

fb(blaix) f,(ajIblx)fb(buIx) = g(bIb 2,) fa(ai blx)

fb(b2laiz) f- (aIlb 2z)fb(b2 |z) fa(ailb2 z)

Using the monotone likelihood property, dir(a, b, G) = +(-) implies

fb(bl1aix) fb(bl1a 2X)

fb(b21alx) (- f(bla2)

230

APPENDIX B. PROOFS OF QPN RESULTS

Rearranging we get
fb(blIaxz) fb(b2 alz)
fb(bl a2X) - fb(b2 a2z)

the MLRP for b given a. As noted above (and proven by Milgrom [90]), this is

necessary and sufficient for our posterior FSD condition to hold for any prior

Fa(aolz).

3. In G, the influence of w on b is relative to a predecessor set that includes a. In

G' the influence is not so conditioned and is therefore equivalent to the influence

on b obtained by splicing a out of the network. Applying Theorem 4.11 with

the original influences yields the expression above.

4. Here we are transforming an unconditional relation to a conditional one. If

dir(w, b, G) = 0, w and b are d-separated by pred(b) in dep(G) (by Lemma 4.9),

therefore f,(wolabx) = f,(woazx) by conditional independence. In that case the

MLRP obviously holds for the conditional density iff it holds for the marginal

one. If w has nonzero influence on b in G, this independence does not hold.

Because a and w may interact significantly in their influence on b we cannot

say anything about their relation given b. For example, let the three variables

be binary with a and w marginally independent (that is, dir(w, a, G) = 0),

Pr(A) = Pr(W) = .5, Pr(BIAW) = .1, Pr(BIAW) = .2, and Pr(BIAW)= .9.
Then dir(w,a,G') can be + or - depending on whether Pr(B|AW) is less

than or greater than .45. Either possibility is consistent with an initial G with

dir(a, b) = dir(w, b)= +.

Theorem 4.13 Let S+(a,b) be defined by (4.10). Given the following conditions:

1. Theorem 4.10

231

APPENDIX B. PROOFS OF QPN RESULTS

2. For binary b, al > a2, and 2,

Fb(.Iaxz) R Fb(.la 2zz) '* Pr(B aiz) Ž Pr(Bla2z) (B.5)

the weakest R is FSD.

Proof: First, note that FSD satisfies these conditions. Next, assume that R satisfies

them but R does not entail FSD. We will start with an instantiation of Theorem 4.10

and derive a contradiction. Let a, b, and c be the only variables (so we can safely ignore

x) with S+(a, b), S+(b, c), and no other direct links. For concreteness, let b range over

the unit interval [0, 1] and c be binary with Pr(CIab) = 0(b), for some 4 : [0, 1] -- [0, 1]

monotonic. The monotonicity of 4 guarantees S+(b, c) and its independence from a

validates So(a, c) in the original network. By assumption, Theorem 4.10 applies,

yielding the conclusion S+(a,c) and therefore Fc(colal) R Fc(cola2). Because c is

binary, (B.5) must hold. Using Pr(Clai) = f Pr(Cjaibo)dFb(bojla), the RHS of (B.5)

becomes

fo• (bo)dFb(bola1) > fo 0(bo)dFb(bo 1a). (B.6)

Because 4 may be any monotonic function, FSD is necessary for (B.6) and is therefore

entailed by R. O

Theorem 4.14 Suppose U'2(b, G) and Uo(a, G). A necessary and sufficient condi-

tion for U6 1s2 (a,red(b, G)) is S' (a, b, G) as in Definition 4.4.

Proof: The expected utility of ai with any z is given by

u(ai,) = u(bo, z)dFb(boIax). (B.7)

Let us prove the case 81 = 82 = +. U+(a) is satisfied in the reduced network iff u(ai, z)

is increasing in ai. From (4.8) we know that u(bo, z) is monotonically increasing in bo.

In fact, it can be any monotonic function. Therefore, (B.7) is increasing in ai under

232

APPENDIX B. PROOFS OF QPN RESULTS

the same conditions as (4.4), which is exactly the S + condition (4.5) of Definition 4.4.

Lemma 4.18 Y+({a, b}, c) (respectively Y- and YO) holds iff the function

e0(a, bz) = Jf (co)fc(colabx)dco (B.8)

is supermodular (submodular, modular) in a and b for all increasing functions 4 and

contexts z.

Proof: Choose arbitrary al > a2 , bl > b2, and x. By Definition 4.17, e4 is supermod-

ular iff

e,(a, bil~) + eo(a 2, b2jl) 2 e0(a, b2az) + eo(a 2, bi z).

Rearranging,

e,(ax, bxlz) - eo(a2, bixz) 2 eo(ai, b2lX) - eo(a 2, b2 a).

Substituting the definition of e, (B.8) and combining the integrals,

S(co) [fc(colalbix) - fc(cola 2bix)] dco (co) [fc(colalb2x) - fc(cola 2b2x)] dco

(B.9)

A necessary and sufficient condition for (B.9) to hold for any increasing function 4 is

that the bracketed distribution differences be related by FSD. (Recall the equivalence

between (4.3) and (4.4) in Section 4.3.2.) That is,

Vco F(co(labix) - Fc(cola2bix) < Fc(colaib2) - Fe(cola2b2 *).

This is exactly the Y+ condition of Definition 4.16. O

Theorem 4.20 Synergies can be extended along qualitative influences by reduction

according to the following.

Y61 ({a, b}, c, G) A S62 (c, d, G) A So(a, d, G) A So(b, d, G) •
Y6

1
6

2 ({a, b}, d, red(c, G)).

233

APPENDIX B. PROOFS OF QPN RESULTS

Proof: Let us assume that 81 = 62 = +; the other cases are analogous. We can describe

the cumulative for d conditional on a and b by integrating over its counterpart for c.

Fd(doabx) = j fd(d I|abcoaz)fC(coIabx)dcodd (B.10)

= l fd(dIcox)ddl fc(colab)dco (B.11)

= Fd(dolcoz)fc(colabz)dco. (B.12)

In going from (B.10) to (B.11) I took advantage of the conditional independence

between d and each of a and b given c implied by the So conditions and Lemma 4.9.

Because S+(c,d), Fd(dolco) is a decreasing function of co for any do. Therefore,

equation (B.12) and Lemma 4.18 imply that Fd(doIabx) is a submodular function of a

and b for all do (a function g is submodular iff -g is supermodular). By the definition

of submodularity,

Vdo Fd(doialb•l) - Fd(dola2blz) _ Fd(dolalb2b) - Fd(dola2b2X), (B.13)

which is the condition for Y+({a, b}, d) of Definition 4.16. O

Theorem 4.21

Y61({a, b}, c, G) A S62(c, d, G) A Y 6'({a, c}, d, G) A Y 6 4({b, c}, d, G)

AS 6'(a, c, G) A S'6(b, c, G) A Y'6 ({a, b}, d, G) -=

y(6106 12)E(6 306 6s)(s64)es) 6 ({a, b}, d, r ed(c, G)).

Proof: Start as in the proof of Theorem 4.20, but do not use conditional independence.

Fd(dolab=) = fd(dol abcox)fc(colabx)dcodd,

= Fd(dojabcox)dFC(cojabx).

234

APPENDIX B. PROOFS OF QPN RESULTS

As in the proof of Theorem 4.11, define Pd to be the CDF with the conditioning

variables fixed in the first term, to al and bl in this case.

Fd(dolab) = Fd(doIalblcox)dFc(cojabx).

Regardless of al and bl, Fd(dolalbicoz) has monotonicity properties determined solely

by 62. Following the reasoning of the Theorem 4.20 proof, we have the following fact

about Fd (a hatted version of (B.13)):

Vdo0 Id(doaalblx) - Pd(dola2blx) R Fd(do0alb2z)- Fd(dojazbzz), (B.14)

with R the relation <, >, =, or ? as S1 (62 is +, -, 0, or ?. Henceforth I will

refer to functions satisfying conditions of the form (B.14) as R-modular. Let Fd be

intermediate between Fd and Fd where only b is fixed

A(do ab) = / d(do ablcoz)dF.(colabx).

Note that Fd(dolalbi) = Fd(dolalbxz) for either bi. Therefore F is R-modular iff

Vdo •d(dolalblx) - (dola 2blz) R FA(dOjalb2z) - P(doab) ab). (B.15)

Using (B.14) and a little rearrangement, a sufficient condition for (B.15) is

Vdo A,(do) R A2(do), where (B.16)

Aj(do) Id(dojaAbi) - (dolIa 2bi) (B.17)

Expanding the definitions for FP and Fj,

A(do) = [Fd(dolalblco) - Fd(dola2blcoz)] dF,(cola2bzx). (B.18)

The difference inside the integral of equation (B.18) is an increasing, decreasing, or

constant function of co as 83, the synergy of a and c, is -, +, or 0. The influence of b on

235

APPENDIX B. PROOFS OF QPN RESULTS

c, 86, determines an FSD relation among the Fc(colabi). Therefore, condition (B.16)

holds if 83 0 86 agrees with R, which was determined by 61 0 (2.

Another application of this line of reasoning with the roles of a and b reversed

leads to the conclusion that Fl', where

fP'(dolab) =f Fd(doal1bcoa)dF,(colabz).

is R-modular if 84085 agrees with R. Thus, agreement among these pairwise products

yields R-modularity of Fd, PF, and Fd'.

Suppose that 87 also agrees with R. Then, from the Y6 definition we have

Vdo Fd(dolalblcoz) - Fd(do a2 blcoX) R Fd(dojalb 2coz) - Fd(dola2b2coZ),

which entails the following inequality when integrating over a positive function:

Vdo J [Fd(dolalblcoz) - Fd(dola2blcoz)] dFc(cola2 bz)

R J [Fd(dojalb2coz) - Fd(dola2b2cox)] dFc(cola 2b2z).

Equivalently,

Vdo Fd(do Iab 2 c) - (dola2b2X) R .'(doIa 2b2z)- Fd(dola2b2X). (B.19)

We can transform (B.19) to a relation on Fd alone by applying some R-modularity

conditions already known and taking advantage of the equivalences among the hatted

and primed Fs for particular values of a and b. Combining (B.19) with R-modularity

of Fd',

Vdo Fd(dolalbpx) - •'(dola 2bx) + Fd(dola 2b2 X) - P(dola 2 bz z)

R Fd(dolalb2z)- Fd(dola 2b2X).

Applying R-modularity of Fd yields

Vdo 2Fd(dolalbxx) - Fd(dola2 blx) - F'(dola2bxz) + Fd(dola2b2z)

236

APPENDIX B. PROOFS OF QPN RESULTS 237

R Fd(dojalb2z) - Fd(do a2b2z) + F'(dolalb2z),

and finally, R-modularity of F leads to the result

Vdo Fd(dolalbiz) - Fd(dola2b x) R Fa(dolalb2zX) - Fd(dola2 b2 X).

Therefore, unanimity among the terms in the new synergy expression given by the

theorem statement implies R-modularity of Fd, the condition of interest. Dissent by

any term results in a synergy of Y?, vacuously true. O

Appendix C

SUDO-Planner Knowledge Base

This appendix provides a complete description of SUDO-PLANNER's KB for the run-
ning example.

C.1 Event Taxonomy

Figure C.1 is a graphical view of the event taxonomy, which includes the action tax-
onomy fragment depicted in Figure 3.4. The taxonomy consists of NIKL concepts
representing event types. All of SUDO-PLANNER's event variables are defined by com-
bining these concepts with the NIKL roles depicted in Figure C.2. The specialization
relations in these two taxonomies define the taxonomic dimension of the event variable
KB described in Section 6.2.

C.2 Qualitative Relation Assertions

Table C.1 lists the qualitative influence (S6) assertions in SUDO-PLANNER's KB. A
subset of these assertions appear in graphical format in the event variable KB frag-
ment of Figure 6.3. Qualitative synergy (Y6) assertions are listed in Table C.2 and
Markov influences (K61' 62) in Table C.3.

C.3 Observable Creators

The SUDO-PLANNER KB requires only two tests for this example (see Table 1.1):

CO(cardiac-catheterization(true), extent(cardiac-cath-result)

CO(carotid-arteriography(true), extent(carotid-arteriography-result)

238

APPENDIX C. SUDO-PLANNER KNOWLEDGE BASE 239

I CCRROTID- ,ICICHENOTHERAPY - ICIHEP-CHENOTHERAPY
'ARTERIOCRRPHY-RESULT ICI NEDICRL-RCTION-

ICICAROIRC-CATH-RESULT

ICISURGICAL-ACTION

ICIRCTIO

ICIENDORTERECTONY

ICICABG

ICIRAA-REPRIR

ICIHEP-RESECTION

II Ir OTlDfTn--QTrCTOnGaUPu

ICITRTREHENT------•
ICI EPRTONA-THERAPY ICICARDIRC-

IC ITEST IC IDIRNOSTIC-TEST CRTHETERIZATION

ICISTROKE ICI TREATABILITY-TEST

ICiMNI ICIDISEASE-
INDICATOR-TEST

ICIANESTHETIC-CX
ICIEVENT ICIUNDESIRRBLE-EVENT

ICjHORTRALITY
IcittSt I CILONG-TERH-HORBIDITYIC-IN-CtRt V T ICIfOR

B
IDITY -

ICICLINICAL-EVENT I ICISHORT-TERN-NORBIDITY

ICIAGENT ICICVO-EVENT

ICI DISERSE-EVENT ICICD-EVENT

I C I RNEURYS-EVENT------ -- IC I RRA-EVENT

IclIEPATONA-EVENT

Figure C.1: SUDO-PLANNER's event taxonomy. The taxonomy also includes several event
types not used in the running example.

IRIPRESENCE--- IRIRUPTURE

IRIHISTORY

IRISEVERITY< IRISIZE

IRIVALUE

IRITIIE

Figure C.2: Roles used to define event variables in the running example.

APPENDIX C. SUDO-PLANNER KNOWLEDGE BASE

presence(undesirable-event)
time(undesirable-event)
severity(morbidity)

history(disease-event)
presence(treatment)

presence(surgery)
presence(surgery)

presence(surgery)

presence (vessel-repair)

presence(medical-action)

presence(anesthetic-cx)
presence(surgery)

rupture (aneurysm-event)
size(aneurysm-event)
size(AAA-event)
presence(AAA-repair)
history(CAD-event)
presence(MI)

presence (stroke)

presence (stroke)

presence(vessel-repair)

presence (vessel- repair)
presence (vessel-repair)
presence(AAA-repair)

(extent (CAD-event)

(extent (cardiac-cath-result)
history(CVD-event)
extent (CVD-event)
extent (carotid-arteriography-result)

-4

+

-4
+

+

--- 4
- 7

- 7

-- 4

+-4

+

-4+-4

++

+

+

+

+

value(agent)
value(agent)
value(agent)
severity(disease-event)
value(agent)

severity(short-term-morbidity)
time(mortality)

value(agent)

value(agent)

value(agent)

time(mortality)
presence(anesthetic-cx)
time(mortality)
rupture (aneurysm-event)
rupture(AAA-event)
rupture (AAA-event)

extent (CAD-event)
time(mortality)

time(mortality)

severity(long-term-morbidity)
presence(MI)

presence (stroke)
time(mortality)
time(mortality)
presence(MI)

extent (CAD-event)
extent (CVD-event)
presence(stroke)
extent (CVD-event)

Table C.1: Qualitative influences in the SUDO-PLANNER KB.

240

APPENDIX C. SUDO-PLANNER KNOWLEDGE BASE

severity(long-term-morbidity)
time(mortality)
presence(AAA-repair)
size(AAA-event)
presence(CABG)
presence(AAA-repair)
presence(endarterectomy)

-*- value(agent)

Zj-4 rupture(AAA-event)

D--+ presence(anesthetic-cx)

presence(vessel-repair)
rupture(aneurysm-event)
presence(MI)
presence(stroke)
presence(anesthetic-cx)
extent(CAD-event)
presence(AAA-repair)
presence(CABG)
presence(AAA-repair)
presence(CABG)
presence(AAA- repair)
presence(CABG)
presence(AAA-repair)
extent (CVD-event)
presence(AAA-repair)
presence(endarterectomy)
presence(AAA-repair)
presence(endarterectomy)
presence(AAA-repair)
presence(endarterectomy)
presence(AAA-repair)

time(mortality)

Spresence(MI)

- time(mortality)

- presence(stroke)

presence(MI)

iC-, presence(stroke)

time(mortality)

J-+ presence(stroke)

presence(MI)

Table C.2: Qualitative synergies in the SUDO-PLANNER KB.

presence(CABG)

presence(endarterectomy) Wz
extent (CAD-event)

extent (CVD-event)

Table C.3: Markov influences in the SUDO-PLANNER KB.

241

Bibliography

[1] James F. Allen. Towards a general theory of action and time. Artificial Intel-
ligence, 23:123-154, 1984.

[2] Steen Andreassen, Marianne Woldbye, Bjorn Falck, et al. MUNIN: A causal
probabilistic network for interpretation of electromyographic findings. In Pro-
ceedings of the Tenth International Joint Conference on Artificial Intelligence,
pages 366-372, 1987.

[3] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-
Verlag, second edition, 1985.

[4] Daniel G. Bobrow, editor. Qualitative Reasoning about Physical Systems. MIT
Press, 1985.

[5] Ronald J. Brachman. 'I lied about the trees,' or, Defaults and definitions in
knowledge representation. AI Magazine, 6(3):80-93, 1985.

[6] Ronald J. Brachman, Richard E. Fikes, and Hector J. Levesque. Krypton:
A functional approach to knowledge representation. Computer, 16(10):67-73,
1983.

[7] Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption
in frame-based description languages. In Proceedings of the National Conference
on Artificial Intelligence, pages 34-37. AAAI, 1984.

[8] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9:171-216, 1985.

[9] John S. Breese. Knowledge representation and inference in intelligent decision
systems. Research Report 2, Rockwell International Science Center, Palo Alto,
April 1987.

242

BIBLIOGRAPHY

[10] Jack Breese and Edison Tse. Integrating logical and probabilistic reasoning for
decision making. In Proceedings of the Workshop on Uncertainty in Artificial
Intelligence, pages 355-362, July 1987.

[11] B. Chandrasekaran and Sanjay Mittal. Deep versus compiled knowledge ap-
proaches to diagnostic problem-solving. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 349-354. AAAI, August 1982.

[12] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-
377, 1987.

[13] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence.
Addison-Wesley, Reading, MA, 1985.

[14] Gregory Floyd Cooper. NESTOR: A Computer-Based Medical Diagnostic Aid
that Integrates Causal and Probabilistic Knowledge. PhD thesis, Stanford Uni-
versity, November 1984.

[15] Gregory F. Cooper. The computational complexity of probabilistic inference
using belief networks. Memo KSL-87-27, Knowledge Systems Laboratory, Stan-
ford University, May 1988.

[16] Louis Anthony Cox, Jr. Mathematical Foundations of Risk Measurement. PhD
thesis, Massachussetts Institute of Technology, May 1986.

[17] Ernest Davis. Order of magnitude reasoning in qualitative differential equa-
tions. Technical Report 312, New York University Computer Science Depart-
ment, August 1987.

[18] Martin Davis and Reuben Hersh. Nonstandard analysis. Scientific American,
226(6):78-86, June 1972.

[19] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127-162,
1986.

[20] Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence,
28:197-224, 1986.

[21] Thomas Dean and Mark Boddy. Incremental causal reasoning. In Proceedings
of the National Conference on Artificial Intelligence, pages 196-201. AAAI,
1987.

[22] Keith L. Downing. Diagnostic improvement through qualitative sensitivity
analysis and aggregation. In Proceedings of the National Conference on Ar-
tificial Intelligence, pages 789-793. AAAI, 1987.

243

BIBLIOGRAPHY

[23] Jon Doyle. A truth maintenance system. Artificial Intelligence, 12(2):231-272,
1979.

[24] Jon Doyle. A model for deliberation, action, and introspection. TR 581, MIT
Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA,
02139, 1980.

[25] Jon Doyle. Artificial intelligence and rational self-government. Technical Re-
port CS-88-124, Carnegie-Mellon University Computer Science Department,
1988.

[26] Van H. Dunn. Grand rounds, Beth Israel hospital. Unpublished decision anal-
ysis consult report, Division of Clinical Decision Making, Tufts-New England
Medical Center, 1984.

[27] Richard Engelbrecht. A note on multivariate risk and separable utility func-
tions. Management Science, 23:1143-1144, 1977. Note on Richard [112].

[28] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning
about probabilities. Research Report RJ 6190, IBM, April 1988.

[29] Jerome A. Feldman and Robert F. Sproull. Decision Theory and Artificial
Intelligence II: The hungry monkey. Cognitive Science, 1:158-192, 1977.

[30] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence, 2:189-208,
1971.

[31] Peter C. Fishburn. Analysis of decisions with incomplete knowledge of proba-
bilities. Operations Research, 13:217-237, 1965.

[32] Peter C. Fishburn. Von Neumann-Morganstern utility functions on two at-
tributes. Operations Research, 22:35-45, 1974.

[33] Peter C. Fishburn and Raymond G. Vickson. Theoretical foundations of
stochastic dominance. In Whitmore and Findlay [162].

[34] Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85-
168, 1984.

[35] Kenneth D. Forbus. Interpreting measurements of physical systems. In Pro-
ceedings of the National Conference on Artificial Intelligence, pages 113-117.
AAAI, 1986.

244

BIBLIOGRAPHY

[36] Kenneth D. Forbus. QPE: Using assumption-based truth maintenance for qual-
itative simulation. International Journal of AI in Engineering, 1988.

[37] Mark S. Fox. Constraint-directed search: A case study of job-shop scheduling.
Technical Report CMU-RI-TR-83-22, CMU-CS-83-161, The Robotics Institute,
Carnegie-Mellon University, December 1983.

[38] Mark S. Fox, Brad Allen, and Gary Strohm. Job-shop scheduling: An investiga-
tion in constraint-directed reasoning. In Proceedings of the National Conference
on Artificial Intelligence, pages 155-158. AAAI, 1982.

[39] Peter Gardenfors. Qualitative probability as an intensional logic. Journal of
Philosophical Logic, 4:171-185, 1975.

[40] Michael P. Georgeff and Amy L. Lansky, editors. Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann, 1986.

[41] I. J. Good. The Bayesian influence, or How to sweep subjectivism under the
carpet. In Good Thinking: The Foundations of Probability and Its Applications
[42]. Originally appeared in 1973.

[42] I. J. Good. Good Thinking: The Foundations of Probability and Its Applications.
University of Minnesota Press, 1983.

[43] I. J. Good. On the principle of total evidence. In Good Thinking: The Foun-
dations of Probability and Its Applications [42]. Originally appeared in British
Journal of Philosophy of Science, 17:319-321, 1967.

[44] G. Anthony Gorry, Howard Silverman, and Stephen G. Pauker. Capturing
clinical expertise: A computer program that considers clinical responses to
digitalis. American Journal of Medicine, 64:452-460, March 1978.

[45] Benjamin N. Grosof. Non-monotonicity in probabilistic reasoning. In Lemmer
and Kanal [79], pages 237-249.

[46] Ira J. Haimowitz, Ramesh S. Patil, and Peter Szolovits. Representing medical
knowledge in a terminological language is difficult. In Symposium on Computer
Applications in Medical Care, 1988.

[47] Joseph Y. Halpern and David A. McAllester. Likelihood, probability, and
knowledge. In Proceedings of the National Conference on Artificial Intelligence,
pages 137-141. AAAI, 1984.

245

BIBLIOGRAPHY

[48] Joseph Y. Halpern and Michael O. Rabin. A logic to reason about likelihood.
Artificial Intelligence, 32:379-405, 1987.

[49] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projec-
tion. Artificial Intelligence, 33:379-412, 1987.

[50] Gordon B. Hazen. Partial information, dominance, and potential optimality in
multiattribute utility theory. Operations Research, 34:296-310, 1986.

[51] David E. Heckerman and Eric J. Horvitz. The myth of modularity in rule-based
systems for reasoning with uncertainty. In Lemmer and Kanal [79], pages 23-34.

[52] Max Henrion. Practical issues in constructing a Bayes' belief network. In
Proceedings of the Workshop on Uncertainty in Artificial Intelligence, pages
132-139, July 1987.

[53] Max Henrion and Daniel R. Cooley. An experimental comparison of knowledge
engineering for expert systems and for decision analysis. In Proceedings of the
National Conference on Artificial Intelligence, pages 471-476. AAAI, 1987.

[54] Carl Hewitt. Offices are open systems. ACM Transactions on Office Informa-
tion Systems, 4:271-287, 1986.

[55] Jerry R. Hobbs. Granularity. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 432-435, 1985.

[56] J. P. Hollenberg. The decision tree builder: An expert system to simulate medi-
cal prognosis and management. Medical Decision Making, 4(4), 1984. Abstract
from the Sixth Annual Meeting of the Society for Medical Decision Making.

[57] Samuel Holtzman. Intelligent Decision Systems. PhD thesis, Stanford Univer-
sity, March 1985.

[58] John E. Hopcroft and Richard M. Karp. An ns/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.

[59] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[60] Eric J. Horvitz, John S. Breese, and Max Henrion. Decision theory in expert
systems and artificial intelligence. Journal of Approximate Reasoning, 1988.

[61] Ronald A. Howard and James E. Matheson. Influence diagrams. In The Prin-
ciples and Applications of Decision Analysis [62], pages 719-762.

246

BIBLIOGRAPHY

[62] Ronald A. Howard and James E. Matheson, editors. The Principles and Ap-
plications of Decision Analysis. Strategic Decisions Group, Menlo Park, CA,
1984.

[63] Patrick Humphreys and Wendy McFadden. Experiences with MAUD: Aiding
decision structuring versus bootstrapping the decision maker. Acta Psycholog-
ica, 45:51-69, 1980.

[64] Paul Humphreys. Cutting the causal chain. Pacific Philosophical Quarterly,
61:305-314, 1980.

[65] Harry B. Hunt, III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the
equivalence, containment, and covering problems for the regular and context-
free languages. Journal of Computer and System Sciences, 12:222-268, 1976.

[66] Thomas S. Kaczmarek, Raymond Bates, and Gabriel Robins. Recent develop-
ments in NIKL. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 978-985. AAAI, 1986.

[67] Samuel Karlin and Herman Rubin. The theory of decision procedures for dis-
tributions with monotone likelihood ratio. Annals of Mathematical Statistics,
27:272-299, 1956.

[68] Ralph L. Keeney. Identifying and structuring values. Decision analysis series
report, University of Southern California, Los Angeles, CA, December 1986.

[69] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs. John Wiley and Sons, New York, 1976.

[70] Jin H. Kim and Judea Pearl. A computational model for causal and diagnostic
reasoning in inference systems. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 190-193, 1983.

[71] David H. Krantz, R. Duncan Luce, Patrick Suppes, et al. Foundations of Mea-
surement. Academic Press, New York, 1971.

[72] David M. Kreps and Evan L. Porteus. Temporal von Neumann-Morganstern
and induced preferences. Journal of Economic Theory, 20:81-109, 1979.

[73] Benjamin Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338,
1986.

[74] Benjamin Kuipers and Daniel Berleant. Using incomplete quantitative knowl-
edge in qualitative reasoning. In Proceedings of the National Conference on
Artificial Intelligence. AAAI, 1988.

247

BIBLIOGRAPHY

[75] Benjamin Kuipers and Jerome P. Kassirer. Causal reasoning in medicine: Anal-
ysis of a protocol. Cognitive Science, 8:363-385, 1984.

[76] Curtis P. Langlotz, Lawrence M. Fagan, Samson W. Tu, et al. A therapy
planning architecture that combines decision theory and artificial intelligence
techniques. Computers and Biomedical Research, 20:279-303, 1987.

[77] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society, B50, 1988.

[78] E. L. Lehmann. Some concepts of dependence. Annals of Mathematical Statis-
tics, 37:1137-1153, 1966.

[79] John F. Lemmer and Laveen N. Kanal, editors. Uncertainty in Artificial Intel-
ligence 2. North-Holland, 1988.

[80] Doug Lenat, Mayank Prakash, and Mary Shepherd. CYC: Using common sense
knowledge to overcome brittleness and knowledge acquisition bottlenecks. AI
Magazine, 6(4):65-85, 1986.

[81] Hector J. Levesque. Making believers out of computers. Aritificial Intelligence,
30(1):81-108, October 1986.

[82] Vladimir Lifschitz. On the semantics of STRIPS. In Georgeff and Lansky [40],
pages 1-9.

[83] W. J. Long, S. Naimi, M. G. Criscitiello, et al. Using a physiological model for
prediction of therapy effects in heart disease. In Proceedings of the Computers
in Cardiology Conference. IEEE, October 1986.

[84] W. J. Long, S. Naimi, M. G. Criscitiello, et al. An aid to physiological reasoning
in the management of cardiovascular disease. In Proceedings of the Computers
in Cardiology Conference, pages 3-6. IEEE, September 1984.

[85] William J. Long and Thomas A. Russ. A control structure for time depen-
dent reasoning. In Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, pages 230-232, 1983.

[86] David A. McAllester. An outlook on truth maintenance. AIM 551, MIT Arti-
ficial Intelligence Laboratory, 545 Technology Square, Cambridge, MA, 02139,
1980.

248

BIBLIOGRAPHY

[87] David A. McAllester. ONTIC: A knowledge representation system for mathe-
matics. TR 979, MIT Artificial Intelligence Laboratory, 545 Technology Square,
Cambridge, MA, 02139, 1987.

[88] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463-502. Edinburgh University Press, 1969.

[89] Drew McDermott. Planning and acting. Cognitive Science, 2:71-109, 1978.

[90] Paul R. Milgrom. Good news and bad news: Representation theorems and
applications. Bell Journal of Economics, 12:380-391, 1981.

[91] Perry L. Miller. Expert Critiquing Systems: Practice-Based Medical Consulta-
tion by Computer. Springer-Verlag, 1986.

[92] Marvin Minsky. The Society of Mind. Simon and Schuster, 1986.

[93] Robert C. Moore. A formal theory of knowledge and action. In Jerry R. Hobbs
and Robert C. Moore, editors, Formal Theories of the Commonsense World,
pages 319-358. Ablex, Norwood, NJ, 1985.

[94] J. Mostow and K. Voigt. Explicit integration of goals in heuristic algorithm
design. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pages 1090-1096, 1987.

[95] D. S. Nau. Hierarchical abstraction for process planning. In D. Sriram and R. A.
Adley, editors, Knowledge Based Ezpert Systems in Engineering: Planning and
Design, pages 129-141. Computational Mechanics Publications, 1987.

[96] Bernhard Nebel. Computational complexity of terminological reasoning in
BACK. Artificial Intelligence, 34:371-383, 1988.

[97] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87-127, 1982.

[98] Ramesh S. Patil. Causal representation of patient illness for electrolyte and
acid-base diagnosis. TR 267, MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA, 02139, October 1981.

[99] Ramesh S. Patil and Oksana Senyk. Efficient structuring of composite causal
hypotheses in medical diagnosis. In Symposium on Computer Applications in
Medical Care, pages 23-29. IEEE, November 1987.

249

BIBLIOGRAPHY

[100] Ramesh S. Patil, Peter Szolovits, and William B. Schwartz. Causal under-
standing of patient illness in medical diagnosis. In Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, pages 893-899, 1981.

[101] Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29:241-288, 1986.

[102] Judea Pearl. Embracing causality in default reasoning. Artificial Intelligence,
35:259-271, 1988.

[103] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks and Be-
lief. Morgan Kaufmann, 1988.

[104] Judea Pearl and Thomas Verma. The logic of representing dependencies by
directed graphs. In Proceedings of the National Conference on Artificial Intel-
ligence, pages 374-379. AAAI, 1987.

[105] Edwin P. D. Pednault. Preliminary report on a theory of plan synthesis. Tech-
nical Note 358, SRI Artificial Intelligence Center, August 1985.

[106] Edwin P. D. Pednault. Extending conventional planning techniques to handle
actions with context-dependent effects. In Proceedings of the National Confer-
ence on Artificial Intelligence. AAAI, 1988.

[107] Harry E. Pople, Jr. Heuristic methods for imposing structure on ill-structured
problems: The structuring of medical diagnostics. In Peter Szolovits, editor,
Artificial Intelligence in Medicine, volume 51 of AAAS Selected Symposium
Series, pages 119-190. Westview Press, Boulder, Colorado, 1982.

[108] John W. Pratt, Howard Raiffa, and Robert Schlaifer. The foundations of de-
cision under uncertainty: An elementary exposition. Journal of the American
Statistical Association, 59:353-375, 1964.

[109] Howard Raiffa. Decision Analysis: Introductory Lectures on Choices Under
Uncertainty. Addison-Wesley, Reading, MA, 1968.

[110] Olivier Raiman. Order of magnitude reasoning. In Proceedings of the National
Conference on Artificial Intelligence, pages 100-104. AAAI, 1986.

[111] Glenn D. Rennels. A Computational Model of Reasoning from the Clinical
Literature, volume 32 of Lecture Notes in Medical Informatics. Springer-Verlag,
1987.

250

BIBLIOGRAPHY

[112] Scott F. Richard. Multivariate risk aversion, utility independence and separable
utility functions. Management Science, 22:12-21, 1975.

[113] Chuck Rieger and Milt Grinberg. The declarative representation and procedural
simulation of causality in physical mechanisms. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages 250-256, 1977.

[114] Stanley J. Rosenschein and Leslie Pack Kaelbling. The synthesis of digital
machines with provable epistemic properties. In Joseph Y. Halpern, editor,
Theoretical Aspects of Reasoning About Knowledge: Proceedings of the 1986
Conference, pages 83-98. Morgan Kaufmann, 1986.

[115] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Academic
Press, 1983.

[116] Cynthia J. Rutherford, Byron Davies, Arnold I. Barnett, et al. A computer
system for decision analysis in Hodgkins Disease. TR 271, MIT Laboratory for
Computer Science, 545 Technology Square, Cambridge, MA, 02139, 1981.

[117] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[118] Earl D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier,
1977.

[119] Elisha P. Sacks. Hierarchical reasoning about inequalities. In Proceedings of
the National Conference on Artificial Intelligence, pages 649-654. AAAI, 1987.

[120] Erik Sandewall. Nonmonotonic inference rules for multiple inheritance with
exceptions. Proceedings of the IEEE, 74(10):1345-1353, 1986.

[121] Leonard J. Savage. The Foundations of Statistics. Dover Publications, New
York, second edition, 1972.

[122] James G. Schmolze and Thomas A. Lipkis. Classification in the KL-ONE knowl-
edge representation system. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, pages 330-332, 1983.

[123] Ross D. Shachter. Evaluating influence diagrams. Operations Research, 34:871-
882, 1986.

[124] Ross D. Shachter. Probabilistic inference and influence diagrams. Operations
Research, in press.

251

BIBLIOGRAPHY

[125] Ross D. Shachter and David E. Heckerman. Thinking backward for knowledge
acquisition. AI Magazine, 8(3):55-61, 1987.

[126] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[127] Glenn Shafer. Constructive probability. Synthese, 48:1-60, 1981.

[128] Glenn Shafer. Savage revisited. Statistical Science, 1:463-501, 1986.

[129] Glenn Shafer and Amos Tversky. Languages and designs for probability judg-
ment. Cognitive Science, 9:309-339, 1985.

[130] Yoav Shoham. What is the frame problem? In Georgeff and Lansky [40], pages
83-98.

[131] Herbert A. Simon. Spurious correlation: A causal interpretation. Journal of
the American Statistical Association, 49:467-479, 1954.

[132] Herbert A. Simon. The Sciences of the Artificial. MIT Press, second edition,
1981.

[133] Brian Cantwell Smith. Limits of correctness in computers. Technical Report
CSLI-85-36, Center for the Study of Language and Information, October 1985.

[134] David J. Spiegelhalter. Probabilistic reasoning in predictive expert systems.
In Laveen N. Kanal and John F. Lemmer, editors, Uncertainty in Artificial
Intelligence, pages 47-67. North-Holland, 1986.

[135] David J. Spiegelhalter and Robin P. Knill-Jones. Statistical and knowledge-
based approaches to clinical decision-support systems, with an application in
gastroenterology. Journal of the Royal Statistical Society, 147:35-77, 1984.

[136] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided circuit anal-
ysis. Artificial Intelligence, 9(2):135-196, 1977.

[137] Mark Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelli-
gence, 16:111-140, 1981.

[138] Mark Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intel-
ligence, 16:141-170, 1981.

252

BIBLIOGRAPHY

[139] Devika Subramanian and Michael R. Genesereth. The relevance of irrelevance.
In Proceedings of the Tenth International Joint Conference on Artificial Intel-
ligence, pages 416-422, 1987.

[140] Patrick Suppes. A Probabilistic Theory of Causality. North-Holland Publishing
Co., Amsterdam, 1970.

[141] William R. Swartout. XPLAIN: A system for creating and explaining expert
consulting programs. Artificial Intelligence, 21:285-325, 1983.

[142] William Swartout and Robert Neches. The shifting terminological space: An
impediment to evolvability. In Proceedings of the National Conference on Arti-
ficial Intelligence, pages 936-941. AAAI, 1986.

[143] Peter Szolovits, Ramesh S. Patil, and William B. Schwartz. Artificial intelli-
gence in medical diagnosis. Annals of Internal Medicine, 108:80-87, 1988.

[144] Peter Szolovits and Stephen G. Pauker. Categorical and probabilistic reasoning
in medical diagnosis. Artificial Intelligence, 11:115-144, 1978.

[145] Josh Tenenberg. Planning with abstraction. In Proceedings of the National
Conference on Artificial Intelligence, pages 76-80. AAAI, 1986.

[146] Donald M. Topkis. Minimizing a submodular function on a lattice. Operations
Research, 26:305-321, 1978.

[147] David S. Touretzky. The Mathematics of Inheritance Systems. Morgan Kauf-
man, Los Altos, CA, 1986.

[148] David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash of
intuitions: The current state of nonmonotonic multiple inheritance systems. In
Proceedings of the Tenth International Joint Conference on Artificial Intelli-
gence, pages 476-482, 1987.

[149] A. Tversky. On the elicitation of preferences: Descriptive and prescriptive
considerations. In David E. Bell, Ralph L. Keeney, and Howard Raiffa, editors,
Conflicting Objectives in Decisions. John Wiley and Sons, 1977.

[150] Marc B. Vilain. The restricted language architecture of a hybrid representation
system. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pages 547-551, 1985.

[151] Detlof von Winterfeldt. Structuring decision problems for decision analysis.
Acta Psychologica, 45:71-93, 1980.

253

BIBLIOGRAPHY

[152] Richard Waldinger. Achieving several goals simultaneously. In E. Elcock and
D. Michie, editors, Machine Intelligence 8, pages 94-136. Edinburgh University
Press, 1977.

[153] Sholom M. Weiss, Casimir A. Kulikowski, Saul Amarel, et al. A model-based
method for computer-aided medical decision making. Artificial Intelligence,
11:145-172, 1978.

[154] Daniel S. Weld. Exaggeration. In Proceedings of the National Conference on
Artificial Intelligence. AAAI, 1988.

[155] Daniel S. Weld. Theories of comparative analysis. TR 1035, MIT Artificial
Intelligence Laboratory, 545 Technology Square, Cambridge, MA, 02139, May
1988.

[156] Michael Paul Wellman. Reasoning about preference models. TR 340, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA,
02139, May 1985.

[157] Michael P. Wellman. Representing health outcomes for automated decision
formulation. In R. Salamon, B. Blum, and M. Jorgensen, editors, MEDINFO
86: Proceedings of the Fifth Conference on Medical Informatics, pages 789-793,
Washington, October 1986. North-Holland.

[158] Michael P. Wellman. Dominance and subsumption in constraint-posting plan-
ning. In Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pages 884-890, 1987.

[159] Michael P. Wellman. Review of Perry L. Miller, Expert Critiquing Systems.
Artificial Intelligence, 35:273-276, 1988.

[160] Michael P. Wellman, Mark H. Eckman, Craig Fleming, et al. Automated cri-
tiquing of medical decision trees. Submitted for publication, 1988.

[161] Michael P. Wellman and David E. Heckerman. The role of calculi in uncer-
tain reasoning. In Proceedings of the Workshop on Uncertainty in Artificial
Intelligence, pages 321-331, July 1987.

[162] G. A. Whitmore and M. C. Findlay, editors. Stochastic Dominance: An Ap-
proach to Decision Making Under Risk. D. C. Heath and Company, Lexington,
MA, 1978.

254

BIBLIOGRAPHY

[163] Robert Wilensky. Meta-planning: Representing and using knowledge about
planning in problem solving and natural language understanding. Cognitive
Science, 5(3):197-233, 1981.

[164] Brian C. Williams. MINIMA: A symbolic approach to qualitative algebraic
reasoning. In Proceedings of the National Conference on Artificial Intelligence.
AAAI, 1988.

[165] William A. Woods. What's in a link: Foundations for semantic networks. In
Bobrow and Collins, editors, Representation and Understanding, pages 35-82.
Academic Press, New York, 1975.

[166] Ramin Zabih. Dependency-directed backtracking in non-deterministic Scheme.
Master's thesis, Massachussetts Institute of Technology, Cambridge, MA, Jan-
uary 1987.

[167] Ramin Zabih, David McAllester, and David Chapman. Non-deterministic Lisp
with dependency-directed backtracking. In Proceedings of the National Confer-
ence on Artificial Intelligence, pages 59-64. AAAI, 1987.

255

Index

Allen, Brad 64
Allen, James F. 219
Amarel, Saul 86
Andersen, Stig K. 27
Andreassen, Steen 27

Barnett, Arnold I. 175
Bates, Raymond 71, 83
Berger, James 0. 96, 124
Berleant, Daniel 201
Bobrow, Daniel G. 86
Boddy, Mark 61
Brachman, Ronald J. 57, 60, 62, 71-72,

131, 151
Breese, John S. 23, 31, 176, 199

Chandrasekaran, B. 177
Chapman, David 48, 59, 61, 63
Charniak, Eugene 22
Cooley, Daniel R. 27
Cooper, Gregory F. 89, 101, 125, 128
Cox, Louis Anthony, Jr. 219
Criscitiello, M. G. 197

Davies, Byron 175
Davis, Ernest 200
Davis, Martin 200
Dawid, A. P. 182
de Kleer, Johan 48, 58-59
Dean, Thomas 61
Desforges, Jane F. 175
Downing, Keith L. 198
Doyle, Jon 57, 65, 186
Dunn, Van H. 15

Eckman, Mark H. 175, 220
Engelbrecht, Richard 114

Fagan, Lawrence M. 23
Fagin, Ronald 123
Falck, Bjorn 27
Feldman, Jerome A. 23
Fikes, Richard E. 131, 133
Findlay, M. C. 95, 124, 200
Fishburn, Peter C. 95, 114, 200
Fleming, Craig 175, 220
Forbus, Kenneth D. 120, 126, 179
Fox, Mark S. 64

Girdenfors, Peter 123
Genesereth, Michael R. 170
Good, I. J. 142, 185
Gorry, G. Anthony 90
Grinberg, Milt 86, 112
Grosof, Benjamin N. 94

Haimowitz, Ira J. 131
Halpern, Joseph Y. 122-123
Hanks, Steve 134, 151
Hayes, P. J. 19, 45, 133
Hazen, Gordon B. 200
Heckerman, David E. 30, 87, 166, 180,

185
Henrion, Max 23, 27, 31, 112
Hersh, Reuben 200
Hewitt, Carl 179
Hobbs, Jerry R. 144, 177
Hollenberg, J. P. 175
Holtzman, Samuel 175

256

INDEX

Hopcroft, John E. 52, 82
Horty, John F. 151
Horvitz, Eric J. 23, 30-31, 87
Howard, Ronald A. 27, 89, 142, 180
Humphreys, Patrick 174
Humphreys, Paul 124
Hunt, Harry B., III 61

Jayes, R. 197

Kaczmarek, Thomas S. 71, 83
Kaelbling, Leslie Pack 69
Karlin, Samuel 118
Karp, Richard M. 82
Kassirer, Jerome P. 145
Keeney, Ralph L. 96, 174
Kim, Jin H. 28
Knill-Jones, Robin P. 31
Krantz, David H. 95
Kreps, David M. 218
Kuipers, Benjamin 119, 125, 145, 201,

215
Kulikowski, Casimir A. 86

Langlotz, Curtis P. 23
Lauritzen, S. L. 89
Lehmann, E. L. 105, 124
Lenat, Doug 28
Levesque, Hector J. 60, 62, 131, 145
Lifschitz, Vladimir 134
Lindley, D. V. 182
Lipkis, Thomas A. 57, 73
Long, William J. 171, 197
Luce, R. Duncan 95

Marshall, Sharon L. 175, 220
Matheson, James E. 27, 89, 142, 180
McAllester, David A. 48, 57, 59, 122,

165
McCarthy, J. 19, 45, 133
McDermott, Drew 21-22, 134, 151

McFadden, Wendy 174
Megiddo, Nimrod 123
Milgrom, Paul R. 96, 124, 231
Miller, Perry L. 219
Minsky, Marvin 13
Mittal, Sanjay 177
Moore, Robert C. 133
Mostow, J. 121

Naimi, S. 197
Nau, D. S. 72
Nebel, Bernhard 60
Neches, Robert 71, 133
Newell, Allen 63
Nilsson, Nils J. 133

Patil, Ramesh S. 86,
Pauker, Stephen G.

220
Pearl, Judea 27-28,

122, 124
Pednault, Edwin P.
Pople, Harry E., Jr.
Porteus, Evan L. 211
Prakash, Mayank 28
Pratt, John W. 179

131, 145, 147, 178
31, 90, 175, 197,

31, 86, 89, 98, 111,

D. 48, 64,
147, 162,

136
178, 199

Rabin, Michael 0. 122
Raiffa, Howard 22, 96, 179-180
Raiman, Olivier 200
Rennels, Glenn D. 197
Richard, Scott F. 114
Rieger, Chuck 86, 112
Rivest, Ronald L. 61
Robins, Gabriel 71, 83
Rosenkrantz, Daniel J. 61
Rosenschein, Stanley J. 69
Ross, Sheldon M. 112-113, 124
Rubin, Herman 118
Russ, Thomas A. 171
Rutherford, Cynthia J. 175

257

INDEX

Sacerdoti, Earl D. 61, 72
Sacks, Elisha P. 200
Safir, Aaron 86
Sandewall, Erik 151
Savage, Leonard J. 22, 51, 106, 123,

179, 181-182, 185, 214
Schlaifer, Robert 179
Schmolze, James G. 57, 71-73
Schwartz, William B. 86, 145
Senyk, Oksana 178
Shachter, Ross D. 27, 89, 99, 122, 142,

166
Shafer, Glenn 112, 182, 185
Shepherd, Mary 28
Shoham, Yoav 122, 133
Shortliffe, Edward H. 23
Sikic, Branimir I. 23
Silverman, Howard 90
Simon, Herbert A. 20, 124
Smith, Brian Cantwell 181
Sonnenberg, Frank A. 175, 220
Spiegelhalter, David J. 31, 89
Sproull, Robert F. 23
Stallman, Richard M. 57
Stefik, Mark 44, 65, 72
Strohm, Gary 64
Subramanian, Devika 170
Suppes, Patrick 95, 124
Sussman, Gerald J. 57
Swartout, William R. 71, 90, 108, 121,

133
Szolovits, Peter 31, 86, 131, 145, 197
Szymanski, Thomas G 61

Tversky, Amos 95, 180, 185

Ullman, Jeffrey D. 52

Verma, Thomas 98
Vickson, Raymond G. 95
Vilain, Marc B. 71, 131
Voigt, K. 121
von Winterfeldt, Detlof 174

Waldinger, Richard 134
Weiss, Sholom M. 86
Weld, Daniel S. 198, 200
Wellman, Michael P. 15, 63-64, 87, 121,

175, 177, 180, 185, 200, 219-
220

Whitmore, G. A. 95, 124, 200
Wilensky, Robert 65
Williams, Brian C. 201
Woldbye, Marianne 27
Woods, William A. 131

Zabih, Ramin 59

Tenenberg, Josh 72
Thomason, Richmond H. 151
Topkis, Donald M. 112
Touretzky, David S. 151
Tse, Edison 176
Tu, Samson W. 23

258

