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Abstract

The mid-to-deep Arctic Ocean is generally characterized by a cyclonic circulation,

contained along shelves and ridges. Here we analyze the general Arctic circulation

using an idealized numerical model consisting of a circular basin with two channels

acting as inflow and outflow. We analyze the circulation (direction, strength and

sensitivity) for wind forcing with and without bathymetry (ridges), and with and

without stratification. We find that the circulation is modified drastically by both

bathymetry and wind direction, where an altered wind field can change both the

direction of the horizontal basin circulation as well as the strength of the inflow

and outflow. The idealized circulations imply that the Arctic circulation, and the

associated export of freshwater, can easily switch states in a changing climate.
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Chapter 1

Introduction

Oceanography is a young science; Arctic oceanography younger still. The methods

and instruments that have been honed in the sub-polar and tropical oceans have rarely

been applied to the Arctic Ocean: not because the Arctic is dull or lacks importance,

but because of the harsh conditions of the Arctic. Beyond the usual oceanography

challenges of working in a salty environment that can play havoc with electronics, a

thick ice pack necessitates use of slow icebreakers and icebergs threaten instruments

that dare sample the upper water column. The end result is a relative lack of knowl-

edge in a region thought to be highly sensitive to global climate change.

The climate system of the Arctic Ocean is controlled via intricate feedbacks be-

tween the atmosphere, sea ice, and the ocean. These feedbacks act on daily, seasonal,

annual, and decadal time scales and on spatial scales from meters to hundreds of

kilometers. The processes which act at smaller scales are easier to study, given the

lack of long-term measurements and scattered observations, but the actual processes

by which sea ice, the atmosphere, and the ocean interact on time scales longer than

annual time scales are a, current topic of investigation. The enormity of the task

facing polar scientists has been recognized by the creation of the International Polar

Year (IPY) 2007-2009. During IPY, an international research effort will converge on

the poles to study aspects of polar science ranging from physics to biology to an-



thropology - and everything in-between. A planning group has set forth a series of

questions and themes in an attempt to focus research efforts. The first question of

the first theme is revealing:

What are the current composition and the patterns of circulation of the

high latitude ocean-atmosphere-ice system; and what are the interactive

processes that drive high-latitude circulation? - A framework for the In-

ternational Polar Year 2007-2008 [3]

It is sobering to acknowledge that the current composition and the patterns of

circulation of the Arctic Ocean circulation are still a valid research subject; that the

frontier of knowledge has barely advanced since the first Arctic oceanographers such

as Nansen first explored the Arctic. At the same time, it is exciting to imagine that

while many fundamental discoveries have been made in the past, many more are yet

to be made; some which may have relevance towards the pressing issue of global

climate change.

This thesis will examine the effect of variable wind forcing on the Arctic circulation

in an idealized Arctic numerical model. The attached paper describes how varying

an idealized wind field can drastically affect the circulation. It is also shown that

shifts in the historical wind field analogous to the modeled idealized wind fields have

recently been observed. In order to give context to the results, the basic state of Arctic

Ocean circulation will first be described. Next, the motivation for this problem will

be discussed. After the aforementioned paper, a few caveats to the approach will be

discussed, as will suggestions for future directions this work may take.



9O

Bathyrmetrc and topograpihi t~h

-5000-4000-3oo -250.-2oo-ISOO1-1000 -00 -200 -100 -50 -25 -10 0 50 100 200 300 400 500 600 700 00 1000 W hrs)

Figure 1-1: Map of the Arctic with bathymetry from the International Bathymetric
Chart of the Arctic Ocean (IBCAO). 1) Bering Strait 2) Fram Strait 3) Barents Sea
4) Canadian Archipelago 5) Lomonosov Ridge





Chapter 2

The Current Understanding of the

Arctic

The geography of the Arctic Ocean is often contrasted to the Southern Ocean. The

Southern Ocean is bounded by land on its polar side, but has broad connections to

the surrounding Pacific, Atlantic, and Indian Oceans. The Arctic Ocean on the other

hand, is a mediterranean sea, constrained by land except for a few connections which

connect to the Atlantic and Pacific Oceans. These straits are the narrow and shallow

Bering Strait, the narrow but deep Fram Strait, the broad and shallow Barents Sea,

and the small but numerous pathways that make up the Canadian Archipelago (Figure

1-1).

In addition to being a mediterranean sea, the Arctic has many other interesting

properties. It has an area of 9.5 x 106 km2 - roughly the area of the United States.

Ice covers an area of approximately 7.8 x 106 km2 in September and 14.8 x 106 km 2

in March [2]. Many reasons conspire to ensure that the ice cap lasts the summer (for

the near future anyways). The air temperature averages below -30' C in the winter

and near freezing during summer. In addition, the tilt of the Earth's axis ensures

that no light reaches the Arctic during the winter. Also, the high albedo of snow and

ice limits the radiation absorbed and delays spring melt. Finally, although the Arctic



occupies 1.5% of the world's ocean surface area, it receives 10% of the river runoff.

This large amount of fresh water flux caps the surface of the Arctic with a layer of

relatively fresh water which allows the water in the shallow mixed layer to cool to the

freezing point.

One third of the Arctic is composed of shallow Eurasian seas less than 200 meters

in depth. It is these shallow seas where new ice is usually formed when wind pushes

old ice offshore to expose surface water to freezing conditions. In the interior, two

large basins, the Canadian and Eurasian, both reach depths of over 4000 meters. They

are separated by the Lomnonosov Ridge that transects the Arctic from Greenland to

Russia, passing near the North Pole.

Shelves and ridges are important because bathymetry is thought to have a large

impact on the Arctic circulation. At the shelf break, a rim current travels around

the Arctic in a cyclonic direction. At the ridges which transect the interior Arctic,

relatively large currents (compared to the basin interiors) have been inferred from the

measurements. The deep basins are quiet and sheltered because of minimal of deep

convection in the Arctic (aside from a small amount of dense water production from

polynyas). The Canada Basin is isolated enough so that geothermal heating from the

ocean bottom is an important factor for deep mixing [14].

Water masses entering the Arctic from the Pacific and Atlantic have distinct

salinity, temperature, and oxygen levels which can be measured to track its progress

throughout the Arctic. The surface waters of the Arctic are relatively cold (below 0O

C) and fresh (30-32 psu) compared to Atlantic water (salinity of 35 psu, temperature

greater than 00 C). The water entering from the Atlantic salty enough so that upon

entering the Arctic, the warm water mass counter-intuitively sinks below the cold,

fresh surface layer of the Arctic. The end result is an easily tracked warm maximum

from about 200m to 800m which is called the Atlantic layer. After entering the Arctic

through the Fram Strait (west of Svalbard) and Barents Sea, the Atlantic layer travels

cyclonically around the Arctic and eventually exits back through the Fram Strait (east

of Greenland).
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Chapter 3

Forcing from Potential Vorticity

Advection

Because of the scarcity of observations, numerical models have been used to try to

determine the circulation patterns of the Arctic. The circulation of the Atlantic layer

was the focus of a confounding contradiction between observations and numerical

models. The Arctic Ocean Model Intercomparison Project (AOMIP) compared 14

numerical models in an attempt to better understand the behavior of Arctic numerical

models. These models were fully 3D models including ice, realistic bathymetry, and

coupling to the atmosphere. A puzzling finding was the direction of the circulation of

Atlantic water: 7 models showed an anticyclonic circulation, and 7 models showed a

cyclonic circulation. Each of the models used the same standardized forcing, so such

a large anomaly was perplexing.

Yang [16] used a homogeneous model with no wind forcing to model the circulation

through the Arctic of sub-surface Atlantic water. Yang examined the question of why

the Atlantic layer water in different AOMIP models circulated in opposite directions,

half cyclonic, half anticyclonic. In an idealized numerical model and using a basin-

wide potential vorticity (PV) constraint, he showed that the advection of potential

vorticity into the basin can control direction of the circulation.



In a symmetrically forced basin, where the sill depth of the outflow is the same

as the sill depth of the inflow, there is no net potential vorticity introduced into the

basin. The potential vorticity of a water mass entering the basin is equal to the

potential vorticity of a water mass exiting the basin, with no net potential vorticity

creation inside of the basin. The sea surface height (SSH) contours in Figure 3-1

confirm that in one side of the basin, potential vorticity is added into the basin, and

in the other side, an equal amount of potential vorticity is extracted from the basin.

Moreover, there is no sign of an intense boundary layer where potential vorticity can

be introduced or extracted from the basin.

Basins with unsymmetrical forcing are just as illuminating. The symmetry is

broken by tilting the basin such that the sill depths of the inflow and outflow are

now at different heights. In this case, the potential vorticity of a water mass entering

the basin is different than the potential vorticity of a water mass exiting the basin,

producing a net production or net extraction of potential vorticity internally to the

basin.
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To illustrate this point, the case where the inflow sill depth is deeper than the

outflow sill depth will be examined. The PV of the inflow is now smaller than the

PV of the outflow which means PV must be introduced into the basin by the only

mechanism possible in our model, by horizontal diffusion. We see in Figure 3-2 that

the horizontal diffusion of PV into the basin takes place in a strong boundary layer

which is limited to only one side of the basin. And contrary to the expected result

where a water parcel turns to its right due to the .Coriolis force (in the northern

hemisphere), the current turns to its left. This is because a boundary current with a

wall on its left diffuses PV from the wall into the boundary current, thus satisfying

the PV basin constraint.

This result has direct application to the Arctic Ocean. The Arctic Ocean is rel-

atively isolated, with only a few connections to external oceans. Therefore, one can

sum the PV of water masses entering and exiting the basin, through the Bering St,

Fram St, Barents Sea, Canadian Archipelago, and extract a budget for the net PV

entering the basin. There are uncertainties in the mean transport through these pas-

sageways, but within uncertainties, there is a net flux of PV into the Arctic, largely

because of the large contribution of positive PV by the shallow Bering Strait (r50m

vs. -2000 m for the Fram Strait) [16].

If we apply the PV budget to the Arctic, since there is a net flux of PV into

the basin from the inflows and outflows, there must also be a negative flux of PV to

keep the basin in steady state. As is seen in classical studies of the North Atlantic

gyre, the flux of PV must take place in a frictional boundary layer. In the case of

a circular basin, this results in a strong boundary layer current with the wall on its

right (cyclonic flow) which diffuses negative PV from the frictional boundary layer.

This is one possible explanation for the cyclonic circulation of the Arctic circumpolar

current.

One drawback to this analysis is that there is no examination of forcing internal to

the Arctic. The PV constraint is a broad conservation rule that applies to an entire

basin. Some insight can be gained into the interior flow, but it is hard to extract



specifics from such a conservation rule. The PV constraint specifies how water at the

boundaries must behave, yet the interior flow rnay take any form.

Yang's [16] study suggests that the potential vorticity of water masses at the gate-

ways of the Arctic is the crucial factor for determining the direction of the circulation

of the Atlantic Water in the Arctic. Yang examined the case where the transport of

water through the gateways was fixed, but the geometry of the basin was varied. The

following paper extends Yang's argument by examining the case where the geometry

of the basin is fixed, but where the transport of water will vary. In addition, Yang's

study solely focused on external forcing by volume transport through the straits. The

following paper focuses solely on internal forcing in the form of wind stress at the

surface.



1500

o o0

-2
-1500

-1500 0 1500 -1500 0 1500

kmrn kIn

(a) (Ib)

1500

E 0

-1500

0
o

-1

-2

-1

-1500 0 1500 -1500 0 1500

(c) (d)

Figure 3-2: PV forcing in for a) a symmetric basin b) high PV outflow c) depth

contours for symmetric basin d) depth contours for asymmetric basin (tilted so that

right is shallower, left is deeper).

1500

G 0

-1500

1500

. 1 0

-1500io

-3
.---





Chapter 4

Arctic Circulation in an Idealized

Numerical Model

4.1 Introduction

The Arctic Ocean is bounded an ice cap at its surface and by land at its side and

bottom. The only contact between the Arctic Ocean and its surrounding seas are

through just a few points - the Bering St., Canadian Archipelago, Fram Strait, and

through the Barents Sea. The only contact between the Arctic Ocean and the atmo-

sphere is mediated through a semi-rigid icepack that ranges from tens of meters thick

to non-existent thickness.

Observations in the interior Arctic have been limited by the icepack and in the best

of times, can be sporadic. Currently, observations are limited to infrequent icebreaker

transects, whose routes are guided by leads in the ice pack; therefore repeatable mea-

surements in space and time are nearly impossible. These limitations mean that the

Arctic circulation is not well known. In addition to the paucity of observations, the

variability in the Arctic may be quite large, even on time scales as short as a day

[10]. As a result, gleaning the general circulation from CTD casts that are separated

in time by hundreds of days and in space by hundreds of kilometers is a challenging



task.

However, a best guess of the present day circulation has been synthesized from

available data. The passageways into the Arctic are relatively easy to access, and thus

the currents entering and exiting the Arctic are relatively well-sampled and estimates

of their magnitude have been made. At the shallow Bering St. [50 in], about 0.8 Sv

(Sverdrups) of cold and fresh water enters the Arctic from the Pacific [11]. From the

Atlantic, water diverges around Svalbard into Fram St. and the Barents Sea. In the

Barents Sea, about 2.2 Sv enters and is transformed, to various degrees, by winter

processes like cooling and brine rejection from ice formation, before finally spilling

over the shelf into the Arctic Ocean [12]. At the deeper Fram St. [2300 m], warm

and salty water from the Atlantic enters the Arctic with a magnitude between 1 and

2 Sv [4].

Upon entering the Arctic, the remnants of the Atlantic water subducts below the

fresh and buoyant surface waters of the Arctic and circumnavigate the Arctic Ocean

in a cyclonic direction. This Atlantic layer occupies the intermediate depths below

the surface waters and above the ridges that subdivide the Arctic Ocean. When the

Atlantic layer encounters one of the ridges that bisect the Arctic, the current then

appears to split with one branch following the bathymetry into the interior and an-

other following the shelf break around the rim towards the Canada Basin. Below

the sill height of the ridges, in the deep basins, the water is relatively quiescent with

residence times of hundreds of years [13].

Because of the scarcity of observations, numerical models have been used to try

to determine the circulation patterns of the Arctic. Many of these models are fully

3D models including ice, realistic bathymnetry, and coupling to the atmosphere. The

AOMIP project compared 14 of these numerical models in an attempt to better un-

derstand the behavior of Arctic numerical models. A most intriguing finding was

the direction of the circulation of Atlantic water: 7 models showed an anticyclonic

circulation, and 7 models showed a cyclonic circulation. Each of the models used the

same standardized forcing, so such a large anomaly was puzzling.



The likely explanation for this behavior was found by analyzing an idealized Arc-

tic basin. Yang [16] studied a homogeneous barotropic model which was forced solely

by advection through channels at opposite ends of an Arctic-like basin. Using a

basin-wide potential vorticity constraint, Yang showed that the advection of poten-

tial vorticity into the basin can control direction of the circulation. By varying the

sill depth of the channels, the potential vorticity of the inflow and outflow was mod-

ified. Yang's idealized basin was an excellent example of using a simplified model to

understand circulation dynamics in the Arctic.

Isachsen and Nost [8] examined the effect of bottom topography on the Arctic cir-

culation. They noted that "even the surface flow follows the topographic features".

By varying a bottom friction parameter in a numerical model, they found that the

integrated effect of the wind stress curl over a closed f/H contour [f being the coriolis

parameter, H the depth] determines the direction of circulation in the Arctic Ocean

and Nordic Seas. Furthermore, they argued that the Arctic circumpolar current was

mainly forced by wind stress curl in the Nordic Seas as opposed to the wind stress curl

in the Arctic Ocean. This explanation fits in nicely with Yang's simplified model since

Yang examined an Arctic model with no internal wind forcing. Instead, the model

was indirectly forced by external wind in the form of advection of water through exit

and entrance channels.

Bottom topography may be important in the Arctic, but to what extent does it

have an effect on the circulation? It has also been shown that vertical stratifica-

tion plays an important role in determining how strongly bottom topography affects

circulation dynamics. Marshall and Stephens [6] found that in a stratified ocean,

the density field baroclinically shields the surface, wind driven circulation from the

influence of bottom topography. It is only when topography penetrates above the

'level of density compensation' (halocline in the Arctic, thermocline elsewhere) that

topography has an effect on the surface circulation.

Proshutinsky and Johnson [9] used a two-dimensional, barotropic, vertically inte-

grated, coupled ice-ocean model to examine the case of a wind-driven Arctic Ocean



that oscillated between anticyclonic and cyclonic circulation regimes on the decadal

time-scale. They suggested that the regime shifts are driven by wind. Specifically, by

the location and relative magnitudes of high and low pressure systems in the Arctic

- the Icelandic Low and the Siberian High.

Thus there are conflicting ideas on whether eternal forcing or internal forcing

drives the circulation of the Arctic Ocean. Internal forces are buoyancy forcing from

river outflow, polynyas, or ice formation/melt, but primarily wind stress from the

atmosphere. External forcing can be thought of as the net integrated effect of wind

forcing external to the Arctic, with the end result of advection of water through nar-

row straits into the Arctic.

To date, simplified models have been used to examine the case of external forcing

(Nost and Isachsen, Yang), but studies of a simplified Arctic ocean forced primar-

ily by wind stress are rare. Newton et al. [7] studied the case of a closed, 2-layer,

cylindrical basin and focused on the response of the basin to annular wind modes.

However, their focus was on the tilt of the SSH (sea surface height) and pynocline,

not on the interior circulation of the Arctic. This study uses an idealized basin to

study the effect of internal wind forcing on an Arctic-like basin. In addition, examples

with and without ridges and stratification are examined to in order to determine the

relative importance of both bottom topography and stratification.

4.2 Model Description

The model geometry used in all calculations is a simplified representation of the Arc-

tic, consisting of a circular basin with a bowl shaped bathymetry that has two shallow

channels for in and outflows. The model used for our calculations is the primitive

equation MITgcm [5]. In each case, the model was run until steady state conditions

were reached. As in the Arctic, the coriolis parameter, f, was specified to be at a

maximum in the center of the basin and decreasing radially. At the walls of the

basin, no-slip and no-flux conditions were specified. The horizontal viscosity was set



at 400 m2 /s and when stratification was included, the vertical diffusivity was set at

0.01 m2 /s and 12 vertical layers were used. The thickness of the layers increased

from 25m at the surface to 400m at the bottom. The stratification was introduced

by varying the temperature rather than the salinity. This choice for an Arctic-like

basin was made because we are only interested in the density stratification. The wind

stress, r, has magnitude of 0.04 N2 /m.

Ideally, when examining a two-channel basin forced by wind, the transports through

the channels would be allowed to vary independently of each other. However, in such

a scenario, the volume transport would quickly become unbalanced. In a model with

open boundaries, one must choose to either fix the velocity at the boundaries, or al-

ternatively, use repeating boundary conditions. However, once the transport is fixed

by specifying the velocity at the boundary, then the basin is not fully free to adjust its

circulation to internal forcing. The purpose of this study is to examine the effect of

the wind on the internal forcing, therefore repeating boundary conditions were used

instead of open boundary conditions..

The basin was forced by wind forcing which was constant in time, but varied in

strength and orientation: cyclonic, anticyclonic, zonal, and meridional. The main

focus of this paper is on the contrast between "zonal" winds (parallel to the channel)

and "meridional" winds (perpendicular to the channel).

The same bowl shaped bathymetry was used as in Yang's experiment [16].

R~e- • r<R
H(r) =

0 r>R

where H is the depth of the basin and R is the radius of the basin and equal to 1.5

km. The horizontal resolution was 7.5 km. The channels have straight walls and a

width of 112.5 km. For the wind forced runs, the channel depths at each end of the

basin are equal (- 450 m). Model runs with unequal channel depth are not possible

with the use of repeating boundary conditions.



Case Wind Orientation Ridge Orientation Stratification Transport (Sv)
1 Parallel - N 8.88
2 Parallel - Y 10.84
3 Parallel (Strong) - N 25.68
4 Parallel (Strong) - Y 32.79
5 Parallel Parallel N 17.79
6 Parallel Parallel (Deep) N 8.88
7 Parallel Perpendicular N 6.89
8 Parallel Parallel Y 0.40
9 Parallel Perpendicular Y 0.52
10 Perpendicular - N 0.26
11 Perpendicular - Y 0.57
12 Perpendicular Parallel N 0.18
13 Perpendicular Perpendicular N 0.35
14 Cyclonic - N 0.00
15 Anticyclonic - N 0.00

Table 4.1: Parallel and Perpendicular refer to the orientation of wind/ridges relative
to the channel. For wind orientation, "Strong" means 3 times the strength of normal
forcing. For ridge orientation, "Deep" refers to a deep ridge at depth of 860m, if
unspecified, the ridge is equal to the depth of the channel. All parameters are time
invariant.

Ridges were introduced to examine the effect of bathymetry on the circulation.

The ridges bisect the basin and are orientated in two directions; parallel or perpen-

dicular to the channels. The ridges have vertical walls and are equal in width to the

channels. The depth of the ridges are either "shallow" and equal to the depth of the

channels, or they are "deep" and located at a depth of 860 meters. In either case,

the ridges have the same width as the channels.

4.3 Results

4.3.1 Wind Forcing

With the introduction of wind, the simplest case is a basin forced by a uniform zonal

wind (Figure 4-1). In this case, no PV is introduced into the basin and there should

be no net production or dissipation of PV in this basin. The net result is a SSH



buildup in the direction of the wind and an antisymmetric distribution of velocity

which cancels out any PV diffusion through the boundary of the basin.

The next case is an open basin which is forced by both along-channel and cross-

channel wind (Figure 4-2). These two examples illustrate how a 90 degree shift in

wind direction can produce a large change in the circulation of the basin. In the case

of the along-channel wind, a sharp boundary current is produced, and the channel

through-flow is 8.88 Sv. In the case of cross-channel wind, there is a dramatically

smaller transport through the channel (0.26 Sv), resulting in a circulation which looks

remarkable similar to the closed basin. The dramatic reduction of transport can be

explained by comparing the open basin model runs to the closed basin model run.

If we examine the SSH of the closed basin with "zonal" wind (Figure 4-la), then

introduce channels on the right and left, this would have the effect of introducing

two channels at the point where the SSH height difference in maximum. So when the

channels are added, the SSH gradient can be relaxed and a strong channel transport

results (Figure 4-2a).

On the other hand, if we again examine a closed basin with "zonal" wind but now

introduce channels on the top and bottom. This has the effect of adding two channels

at the point where the SSH height difference is at a minimum. With SSH being nearly

equilibrated, when the channels are added, there is now almost no channel transport

(Figure 4-2b). A basin forced by cyclonic and anticyclonic winds was also examined

(Figure 4-3). In these cases, the wind forcing is parallel to f/H contours and easily

to excite flow along f/H contours. Note that there is no strong boundary layer in the

cyclonic or anticyclonic wind scenarios. Instead, the velocity slowly increases radially

from the center of the basin. However, there is now a net diffusion of PV into the

basin through the wide frictional boundary layer in either case due to the anticyclonic

and cyclonic circulation. This compensates the PV input from the wind so that the

basin-wide budget of PV is conserved.
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4.3.2 Addition of Bathymetry (Ridges)

To which degree do f/H contours affect the circulation? We addressed this by adding

a ridge to the basin, and forcing it with the same variation of winds as in the previous

cases. The depth and width of the ridge is equal to the depth and width of the channel

and is orientated either parallel or perpendicular to the channel. This results in two

symmetric sets of closed f/H contours, one on each side of the basin, divided by the

ridge.

In the case with cross-channel and along-channel winds, the only significant change

comes where the wind, channel, and ridge are all aligned in the same direction (Figure

4-4c). There is now a strong current flowing in the center of the basin, following the

ridge. With the addition of this ridge, the net transport through the channel is

doubled from 8.9 Sv (no ridge) to 17.8 Sv (with ridge). The doubling of transport

results from the addition of another f/H contour which facilitates the flow of water

from one end the basin to the other. This extra f/H contour (the ridge) has a volume

transport of almost 10 Sv, accounting for the large increase in transport. Away from

the ridge and boundaries, the basin is nearly quiescent.

In the model run with the ridge perpendicular to both the wind and the channel

(Figure 4-4a), the addition of a ridge does not significantly change the circulation

compared to the model runs without a ridge. There is now a slight transport along

the ridge, but the channel transports are still of the same magnitude, with about

a 25% reduction in transport through the strait (compared to the same case with

no ridge). In this orientation, the ridge does not facilitate transport through the

channels; instead it impedes the boundary currents which are the only pathways

capable of transporting water from one end of the basin to the other. This model

orientation resembles the real bathymetry of the Arctic Ocean. In the Arctic Ocean,

the Lomonosov Ridge transects the Arctic roughly perpendicularly to the Bering and

Fram Straits with its shallowest point at about 1000m.

The two cases with cross-channel wind (Figures 4-4b, 4-4d) are similar to the



model runs without ridges. The channel transports are all less than 0.5 Sv.
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4.3.3 Effect of Stratification

Stratification is a necessary addition to our model in order to study whether the

density field blocks the effect of f/H contours. There is not much change in basins

without ridges once stratification is added. But when the basins with ridges are

examined, a large shift is seen. In these cases, the stratification drastically affects

the circulation. In the case with wind, channel, and ridge aligned (Figure 4-5d),
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the transport through the channel shrinks from 17.8 Sv to 0.4 Sv compared to the

barotropic case (Figure 4-5b), almost a 50-fold reduction in magnitude. In addition,

where there was once a calm interior (Figure 4-5b) there is now an interior circulation

created in the basins on either side of the ridge.

The main reason for this dramatic reduction of transport is made clear by closely

examining the currents around the ridge. In the unstratified case, there is only

uniform current. However in the stratified case, on either side of the ridge is an

opposing current with volume transport each of about 1.5 Sv. This is because there

are now two cyclonic gyres set-up, one on either side of the ridge. This is similar to the

case of the Arctic where there are opposing currents on either side of the Lomonosov

Ridge with corresponding cyclonic gyres in the surrounding basins.
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4.4 Discussion and Conclusions

Newton et al. [7] examined an idealized Arctic-like basin forced solely by annular

winds. This study also examines an idealized Arctic basin forced by zonal or merid-

ional winds. In both cases it was found that the winds can modulate the SSH gradient

which will affect the transport of water between the Arctic Ocean and its surrounding

oceans. In this paper, it was shown that a 90 degree shift in wind direction, from

zonal to meridional (or vice versa), can shut off or intensify transport through the

channels by modulating the SSH at the boundaries.

Our model was forced with basin-scale winds and reached steady state after 100

days (much sooner in most cases). When forced with winds parallel to the channels,

the channel transport was found to be 10 Sv. However, when forced with perpendic-

ular wind, the transport was reduced 0.5 Sv. And when forced with an annular wind,

there was no transport through the channels. This is in contrast to the measured flow

in the Bering Strait of 0.8 Sv, the inflow at the Barents Sea of 2 Sv, and at the Fram

St. of 1.2 Sv. This result shows that internal wind forcing can play a dominant role

in setting the circulation of the Arctic. An average wind stress was applied in the

along channel direction and a channel transport an order of magnitude larger than

the observed mean transport through the Bering St. was created.

This is no mere theoretical exercise as observations show that it is possible for

the transport between the Arctic and its surrounding seas to the greatly modulated

by the wind. In the Bering St., it is believed that the mean flow of about 0.8 Sv is

primarily due to a pressure head difference between the Arctic and Pacific' Oceans.

Transport due to wind forcing is then super-imposed on top on the mean flow (the

annual mean wind opposes the mean flow [15]). Observations from moorings in the

Bering St. show that local winter storm events are strong enough to not just shut

off the flow through the channel, but reverse the transport for days at a time. This

shows that local wind events may not merely shut off the flow, but also reverse the

flow in a shallow channel.



A more relevant question to climate is whether these shifts in wind occur at longer

time-scales and at larger spatial scales. Do large-scale Arctic SLP (sea level pressure)

patterns vary at seasonal, annual, or decadal time-scales? How closely do they re-

semble our zonal and meridional winds? Figure 4-6 shows the Arctic SLP (sea level

pressure) for the mean of July and August for 4 consecutive years (1993-1996). The

contrast between 1995 and 1996 is most noticeable. In both years the geostrophic

wind is directly along the Fram St., but there is nearly a 180 degree shift in SLP in

the span of one year. In 1995, the geostrophic wind points out of the Arctic, but in

1996, the geostrophic wind is directed into the Arctic. The effect of these large-scale

pressure variations was quite dramatic. In 1995 an abnormally large ice export was

recorded but in 1996 an abnormally small ice export was recorded.

In addition to the 90 degree shift of winds, it was also found that bathymetry (in

the form of ridges) and stratification play a role in setting the circulation of the Arctic

Ocean. Figure 4-5 shows the contrast between a barotropic basin without ridges (a),

a barotropic basin with a shallow ridge (b), a barotropic basin with a deep ridge (c),

and a stratified basin with a shallow ridge (d).

The effect of bathymetry can be examined by contrasting the first three barotropic

cases. With the addition of a ridge, there are now closed f/H contours that cross

the interior of the basin (Figure 4-7). In the case of the shallow ridge, those closed

contours add a direct path from one end of the basin to the other enable an increased

transport. But in the case of a deep ridge, the closed contours are formed deeper,

in the quiet interior of the basin. There is no new path a water parcel may follow

into the interior basin and therefore the deep ridge and the no-ridge runs are nearly

identical.



The effect of stratification can be examined by contrasting the barotropic shallow

ridge and the stratified shallow ridge cases (Figures 4-5b, 4-5d). The most visible

difference is the net transport through the channels: 17.8 Sv in the barotropic case,

0.4 Sv in the stratified case. In the stratified case, as opposed to the barotropic case,

there is no large transport from one end of the basin to the other. Instead, the ridge

separates two currents moving in opposite direction, a more realistic scenario that is

similar to the circulation patterns near the Loinonosov ridge.

This study, although highly idealized, has similarities to the real Arctic Ocean.

There are only a few relatively narrow channels connecting the Arctic to the out-

side world, the Lomonosov ridge bisects the Arctic (roughly perpendicularly to the

Bering and Fram Straits), and atmospheric pressure patterns have been observed to

have a time variability ranging from days to decades (and most likely unobserved for

centuries, millennia, etc.). There is a need for more idealized models that can shed

light on the underlying dynamics of the Arctic circulation. They are an underutilized

tool which can not only be used to explain the behavior of more complex numerical

models, but also the behavior of the real Arctic Ocean.
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Chapter 5

Conclusion

There are many tools physical oceanographers may use to attack the complex prob-

lem of ocean geophysical fluid dynamics. The tool that is chosen must fit the goal

of the study. Scientists who study the problem of how much temperatures may rise

in future climates must necessarily use the only tool available - fully coupled global

models. The goal of this study is much less ambitious and so the tool that is chosen

is an idealized numerical model. With this simpler approach, "real forecasts" are

sacrificed to gain understanding of a small piece of the puzzle of ocean dynamics.

This study took the approach of stripping away much of the extraneous details to

look at the fundamental dynamics of the system. Thus, the difficult task was to avoid

introducing too many variables which might clutter the experiment while at the same

time devising experiments which would allow insight into the underlying dynamics.

In every experiment, bathymetry was kept symmetric and winds were always uniform

in both space and time. Among the most significant missing variables were the ice

cover, atmospheric heat flux, freshwater cycles, and time-varying winds.

This idealized numerical model complements rather than competes with highly

complex numerical models. An intriguing next step to this study would pair this ide-

alized numerical model with an intermediate-to-high complexity model. Both models

would have exactly the same parameters - most notably wind forcing and stratifica-



tion - but the more complex model would use realistic Arctic bathymetry and an ice

cover. This would check to what extent the dramatic shift in regimes between stor-

age and transport that we saw in the idealized model takes place in a more realistic

setting.



Appendix A

Additional figures
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Figure A-1: Anticyclonic wind forcing for a basin with a) normal magnitude winds

b) strong magnitude winds (3x normal)

Discussion: The SSH response to strengthening wind is nearly linear; a three-fold

increase in wind stress corresponds to a three-fold increase in SSH. In addition, you

can see the effect of a wind which is parallel to f/H contours on the magnitude of the

SSH. Compared to the cases with wind parallel/perpendicular to the channels, the

anticyclonic SSH is 1-2 orders of magnitude larger.
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Figure A-2: Cyclonic wind with a shallow ridge parallel to the channels: a) SSH b)
depth contours

Discussion: In this case, bathymetry has a large effect on the circulation. The shallow

ridge blocks the free flow along circular f/H contours. The result is a stagnant interior

and a slight SSH build-up windward of the ridge.
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Figure A-3: Wind forcing parallel to the channels in an open basin with a) normal

strength winds b) strong winds (3x normal)

Discussion: Again, the response to wind is nearly linear (3x wind - 3x SSH). In the

case with the strong winds, the velocity shear between the boundary current and

interior is large enough so that eddies can be seen to be shedding. The plotted SSH

is in quasi-steady state.
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Figure A-4: Wind forcing parallel to the channels in an open basin with ridges of
varying orientation: a) shallow ridge parallel to channels b) deep ridge parallel to
channels c) shallow ridge perpendicular to channels d) deep ridge perpendicular to
channels

Discussion: The first thing to notice is that the right-hand plots are practically iden-

tical. In fact, they are also nearly identical to figure A-3(a). The deep ridges have no

effect on the circulation because they do not interact with the strong boundary cur-

rents. The next thing to notice is the large effect the shallow ridges have on the SSH.

The shallow ridges are level with the channels, thus they interact with the boundary

current and unnaturally divide the basin into two halves with alarmingly differenct

SSH.
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Figure A-5: Wind forcing perpendicular to channels in an open basin with varying

ridge orientations: a) shallow ridge parallel to channels b) deep ridge parallel to

channels c) shallow ridge perpendicular to channels d) deep ridge perpendicular to

channels

Discussion: Same as figure A-4, but with wind forcing perpendicular to the channels

instead of parallel to the channels. Again, the deep ridges have negligible effect on

the circulation, while the shallow ridges have a much larger effect.
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Figure A-6: Zonal wind forcing in a closed basin: a) homogeneous b) stratified

Discussion: This is the simplest experiment set-up; a uniform zonal wind in a closed

basin, thus an ideal test case for the first run with stratification. All is well as the

SSH is nearly identical between the homogeneous and stratified basins.
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Figure A-7: Wind forcing parallel to channels in a stratified basin: a) normal winds

b) strong winds (3x normal) c) normal winds with a ridge parallel to channels d)

normal winds with a ridge perpendicular to channels

Discussion: Again, the strong wind case has a SSH about 3x the SSH of the normal

wind case. The new feature to notice is the symmetry of the SSH in the case with

ridges. Compare figure A-7(c,d) to figure A-4(a,c). Without stratification, there is

just a single, strong jet confined to the ridge. But the addition of stratification enables

currents on either side of the ridge to flow in opposite directions, exactly what is seen

near the Lomonosov Ridge.
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