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ABSTRACT

The principal objective of this research has been to

test the applicability of hydrodynamic laws to large

amplitude acoustic interaction phenomena. In particular

the interaction of large amplitude acoustic waves with cir-

cular orifices and small objects is investigated from the

point of view of steady state classical hydrodynamics.

The laws of hydrodynamics do not comprise linear relations

alone and it is the quadratic deviations from linearity

of these relations which are considered here.

Two theoretical relations are drawn from hydrodynamics

in treating the behavior of spheres and orifices. These

relations are inherently non-linear and explain most of

the experiments reported here. For the sphere the starting

relation is Oseen's second order correction to the drag

force on a sphere moving through a fluid. For the orifice

Bernoulli's law explains- qualitatively most of the non-

linear phenomena evident in orifices. In some cases these

two concepts, Oseen's drag correction for the sphere and

Bernoulli's law for the orifice yield relations in fair

agreement with the results of acoustical experiments, and

it is the points of departure from exact agreement which



present new problems which have yet to be resolved.

A few striking effects have been encountered in

the course of this investigation. For example forces

manyorders of magnitude greater than those due to radia-

tion pressure have been observed on spheres in a sound

field consisting of a sinusoidal fundamental plus a second

harmonic component. These forces can be explained in

terms of the non-linear hydrodynamic drag theory.

A technique is outlined for finding the force caused

by radiation pressure arising from the interaction of a

collimated beam of sound with an object. The force

is evaluated in terms of a surface integral of asym-

ptotic scattering functions for the oject. The ex-

pression for the force is valid for objects of any

shape having arbitrary non-uniform normal boundary

impedance. In addition, the method is simpler in its

application than King's method. Specific expressions

are derived for rigid spheres and cylinders of infinite

and zero mass.

It is shown that the effects of ordinary viscous

and thermal losses at the surface of small objects may

give rise to extra forces, induced by radiation pressure,

which are several orders of magnitude greater than the

classical values calculated by King. The exact value of

the force on the object cannot be obtained directly since

part is due indirectly to a transfer of momentum associated
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with the medium streaming by the object. The streaming

is caused by the wave momentum absorbed in the viscous

and thermal boundary layer surrounding the object.

It is also shown that the migration of particles

under any force whatsoever cannot be governed by Stokes'

law if the particle is at the same time exposed to a'

strong sound field. A modified form of Stokes' law is

given for this case. The absorption cross section of

spheres, small compared to the wavelength of sound, is

shown to depend upon whether the sphere has a steady com-

ponent of velocity along the propagation direction of

the sound wave. The absorption cross section of small

spheres is shown to depend upon the amplitude of the

sound. These absorption effects have not .been directly

measured but are predicted in a simple manner from the

same theory which explains the steady forces on the sphere.

Two terms are introduced to describe these two absorption

effects, the differential cross section eD, and the non-

linear cross section NL.NL.
The non-linear behavior of orifices has been found to

be quite similar in many respects to that of spheres. The

relation is in a sense a reciprocal one, relating the force

on the sphere to the velocity through the orifice. For ex-

ample if a second harmonic wave is superposed on a sinu-

soidal sound wave, a small steady flow through the orifice

is generated; the converse is also true. The acoustic
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resistance of orifices with a superposed unidirectional

flow has been called the differential resistance RD .

Measurements of the differential resistance have been

obtained and correlated'with measurements of flow re-

sistance and non-linear resistance of the orifice. It

has been found possible to modify a hydrodynamic treat-

ment due to Sivian which originally explained the non-

linear resistance of very small orifices in terms of

kinetic energy loss, so that in its present form the

theory accounts for most of the observed phenomena. The

modifications of Sivian's theory consist in including

the effects of contraction, and viscosity,

Bolt, Labate and Ingard found that the reactance of

an orifice is materially reduced at large ampliutde os-

cillations. We have found that the acoustic reactance for

small amplitude oscillations can also be considerably

decreased by forcing a study flow of air through the ori-

fice. Atheory has been developed which accounts for

the observed reduction in!mass. The theory predicts ap-

proximately the value of the non-linear reactance, which

experiments show to be a constant. The theory is also

capable of specifying at what particle displacement am-

plitude the reactance attains its constant non-linear

value.

The results of a large number of measurements of the
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harmonics generated by small orifices and nozzles are

reported. Harmonics as high as the 25th have been

measured.
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CHAPTER I

BASIC CONSIDERATIONS

1. Introduction

In this report phenomena are discussed which are

best explained by combining certain concepts derived from

acoustics on one hand and from the hydrodynamic theory of

real fluids on the other hand. We are interested in ex-

plaining certain effects, arising from the interaction of

large amplitude compressional waves with objects. This

explanation is sought in the application of steady flow

theory. The point of view adopted throughout the report

is that the steady flow equations are instantaneously

valid for periodic flow. The variety and accuracy of the

predictions stemming from such a point of view are in-

vestigated experimentally in air for frequencies between

0 and 800 cycles.

Attention is given in this chapter to some of the

phenomena which have been measured; their origin are

discussed from a physical point of view in terms of the

properties of the medium.

2. The Objects

The objects investigated in this study were spheres,

cylinders, and sharp-edged orifices. Thick orifices

(called nozzles) were also used. In all cases the objects

-1-
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are assumed to be small in comparison with the shortest

wavelength component of the interacting wave. Orifices

and nozzles are treated in Chapters II to IV; spheres and

cylinders in Chapters V and VI; while in Chapter VII the

points of similarity between apertures and obstacles are

discussed and certain applications of our findings are

suggested.

3. The Phenomena

The interaction of a wave and an object can be

described in terms of energy and momentum considerations.

For this description it is necessary to know the rate at

which energy and field momentum are abstracted from the

wave. It is also necessary to know how much of this

momentum and energy is divided between the object, the

medium, and the scattered wave. Momentum transmitted to

the medium in general results in a streaming of the fluid

medium. If the object is not free to move, no mechanical

energy will be communicated to it; however, a force may

be exerted on the object. The complete specification of

how energy and momentum divide appears to be an extremely

difficult problem. We shall consider separate idealized

problems in an attempt to reach approximate answers.

We shall deal only with average quantities such as

complex power, average momentum flux, and steady forces.
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Though the behavior of either the obstacle or the orifice

can be specified in equivalent terms, it turns out to be

simpler, from the experimental point of view, to determine

the energy behavior of orifices on the one hand and the

momentum behavior of obstacles on the other hand. Adopting

this operational point of view then, the quantities of

immediate interest are:

(1) The complex power transformed by the orifice to

the medium.

(2) The average rate at which the obstacle absorbs

momentum from the medium (not all this momentum

need come from the wave, and the wave need not

be sinusoidal.)

It is obvious here that the words"orifice" and

"obstacle" can be interchanged. As discussed in Chapter

VII, energy relations can be obtained from momentum measure-

ments and vice versa. The availability of both energy and

momentum measurements can serve to check the consistency

of the results.

The behavior of the orifice is ascertained by measuring

its acoustic impedance. Acoustic impedance is the complex

power absorbed by the orifice divided by the square of

the fundamental volume velocity amplitude. The units of

acoustic impedance are acoustic ohms or, in cgs units,



(dynes-sec)/cm5 . The orifice is studied only in the non-

linear region where its operation is essentially jet-like.

The power abstracted by means of the orifice is communicated

to the medium by way of the jet.

The behavior of the obstacle is ascertained by

measuring the total steady force acting upon it. This force

is the momentum abstracted from the medium. The origin

of this force is studied theoretically in both the low

amplitude and the high amplitude regions. In the small

particle displacement region, two mechanisms are responsible

for forces stronger than the force due to classical radiation

pressure. One of these mechanisms depends upon losses in

the boundary layer and hence is influenced by viscosity and

heat conduction, two properties of real fluids. The other

mechanism, based on the •temperature dependence of the

(1)viscosity has been treated elsewhere by the author

and thus it will not be developed in this paper. None

of these forces which occurS in the linear region has been

measured by us.

Two further mechanisms leading to forces in the non-

linear region of large particle displacements are discussed.

4. The Experimental Conditions

It turns out experimentally that certain effects do not

occur very strongly unless the particle displacement am-

plitude exceeds a characteristic linear dimension of the
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object by about one order of magnitude. For this reason

we arbitrarily speak of the low amplitude region as one

for which the particle displacement amplitude is considerably

less than the characteristic length of the object, projected

in the direction of the vibration vector. For example, in

dealing with the sphere, the ratio of the particle dis-

placement ,mplitude Jo to the radius a, u/a can be a-

dopted as a convenient dimensionless quantity. In general

if o > a, strong forces exist which disappear when f < a.

The author has previously suggested(2) that this ratio is

a convenient one for describing the behavior of orifices.

This ratio is also inversely proportional to the dimensionless

frequency, v', a number used by aerodynamicists in con-

nection with flutter phenomena. The dimensionless frequency

is given by

v

where v is the frequency, I a characteristic length and v

the velocity amplitude. Most of our experimental work

with orifices was obtained for a v' much less than 0.1,

in the jet region of operation. The experiments with spheres

and cylinders were performed at a v' in the vicinity of 0.1

In all experiments with obstacles, the peak Reynold's

number for the obstacle was in every case less then 50 and in

most cases less than 20, while the peak particle velocities

were less than 300 cm/sec. Peak Reynold's numbers as low as

.02 were investigated.

5
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Most of the experiments with orifices were carried out

at a peak Reynold's number of about 10 . The peak mach

number in the throat of the orifice was usually less than

0.1, so that compressibility effects could be neglected.

5. The Theory

The theoretical work reported in Chapters III and

V is for the most part purely adaptive. The results of

existing steady flow theory are applied to non-steady

phenomena without inquiring into the basic limitations of

such an approach. Insome instances the steady flow

theory is so complicated (Oseen's theory for example) that

it's extension to non-steady flow does not seem imminent.

One way of modifying the steady flow theory is

suggested from dimensbnal analysis. For example, it is

possible to show 3 ) that the relation between the force F

on a sphere moving with velocity u and acceleration V

must have the form
u 2 a2  2ua, (1)F p u a g(-v1 Vl

where p and v are the density and kinematic viscosity of

the medium and a is the radius of thB sphere. Now if u

is periodic with frequency, n, we see that g becomes a

functon of the Reynold's number R and the reduced frequency v'.

.-~El=Z~1~-~-------- r-:-----;;;;--- ---
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This suggests that the dependence of the average drag

coefficient might properly be expressed as a function of the

Reynold's number, and the reduced frequency. This is

standard procedure, in the limit of zero frequency, as is

illustrated in Figs.30, and 31. Our experimental results

in Chapter VI can be considered to yield this functional

dependence, for which there does not yet appear to be

an adequate theoretical development.



CHAPTER II

A BRIEF REVIEW OF THE ORIFICE PROBLEM

1. Introduction

The orifice is a precision instrument used frequently

in laboratories and in industrial processes for accurately

metering the flow of fluids. In view of its widespread

use a large body of literature exits, pertaining pre-

dominantly to the steady flow characteristics of the orifice.

The most authoritative information may be found in the

A.S.M.E. Fluid Meters Report (4) . A less detailed discussion

of the sharp-edged orifice adeqgate f6r :an und'er-

standing of the present problem may be found in "Unit

Operations' (5). Since our problem is to interpret how

the orifice responds to periodic driving forces, in terms

of its steady flow characteristics, these characteristics

will first be briefly reviewed.

Sivian(6), in the year 1935, appears to have been the

first person to have made a systematic study of the large

amplitude alternating flow characteristics of the orifice.

Sivian's pioneer measurements of the acoustic resistance

of orifices for large particle velocities will be re-

viewed. His measurements indicated that the non-linear

resistance was fundamentally attributabb to the jet forming

property of the orifice, and that in general the resistance

had a first power dependence on the particle velocity am-

plitude. He found the non-linear resistance essentially

-8-
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independent of frequency; however his measurements were not

carried out over as wide a range of conditions as was done

later by Ingard and Labate. The latter found operating

regions for which the resistance was strongly frequency-

dependent.

Sivian's attempt to apply hydrodynamic theory to the

non-linear acoustical performance of orifices is analyzed

and the importance of friction and contraction, two factors

neglected in his theory, will be emphasized. R. Clark

Jones(8)mentioned the need to consider contraction in

specifying non-linear resistance. Jones treated the

problem of a siren in which the port area varied periodi-

cally with time and due to the complexity of this problem,

he did not take contraction into account.

The author's(2) earlier explanation of non-linear

resistance in terms of the generation of harmonics is shown

in general, not to apply. Later evidence obtained by him

in support of the jet mechanism is discussed.

Some recent measurements performed by Ingard and Labate(7 )

of the non-linear resistance and reactance of orifices will be

discussed. Their extremely accurate work carried out in

conjunction with a detailed study of steady flow phenomena in

the neighborhood of the orifice demonstrates graphically

certain regions in which a classical hydrodynamic approach

is justified.
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2. Steady Flow Characteristics

Consider the arrangement in Fig.l depicting two

cylindrical pipes of equal cross-sectional area S1,

separated by a thin circular orifice of cross-sectional

area S2 . Fluid flows from left to right. A reasonable

distance to the left of the orifice the pressure P1 and

velocity V1 are considered to be uniform. The stream-

lines converge as they approach the orifice. The fluid issues

from the orifice in the form of a jet into a region where,

for the present, the absolute pressure will be assumed

zero. Close to the plane of the orifice the jet has a

minimum area S, called the vena contracta. The ratio of

the minimum jet area to the orifice area S2 is called the

coefficient of contraction Cc. A knowledge of this coef-

ficient, which turns out to be a function of geometry as

well as the Reynold's number for the orifice, is essential

to the discussion of jet-like flow. The exact magnitude

of this coefficient has not been obtained theoretically for

an orifice situated in a pipe; it is a function of the

ratio of the diameter of the orifice to that of the pipe.

When the orifice is small in comparison with the diameter

of the pipe and provided friction losses are neglected,

this coefficient may be obtained approximdely by applying

the principles of conservation of energy and momentum. The

exact formal expression for Cc may be set up by applying the
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FIG. I - ORIFICE IN TUBE
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principle of continuity of the flux of momentum to the

cross sections 1 and 2 in Fig. 1:

P1S = f pdA =- pu2  (1)
S1-S 2

where p is the density of the fluid. Conservation of energy

leads to:
pu3

P1u1S1  -U2  (2)

Continuity of incompressible matter, ulS 1 = u2S2, allows

Eq.(2) to be rewritten

2

P = - (3)

Eq. (3) is a statement of Bernoulli's principle which, in

connection with Eq.(l), determines the coefficient C :

t' P1a1 - -JS-2 pdA
C = = 12 2P1S 2 (4)=S 2 (4)

2

The integral in the above equation is not evaluated for

the orifice in a pipe. If the approximation is made that

the pressure at point 2 is uniform over the cross section

and equal to P1, it follows from Eq.(4) that Cc = 1/2. If

the velocity is assumed to be uniformly distributed over

hemispheres concentric with the center of the orifice, the

analysis gives Cc = 0.535. The methods of hydrodynamics

give 0.61 as the coefficient of catraction for a long narrow

slot.
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Bernoulli's equation (3) may be written in terms of

Q, the volume velocity through the orifice, the orifice area

S2 , and Cc:

Q = 0c 2 /• (5)

Now were it not for frictional losses in the orifice Eq.(5)

would relate the observed volume flow to the pressure head p.

Due to frictional effects the actual flow will be reduced by

a factor Cv , called the coefficient of velocity, which is

less than unity. It is conventional practice to call the

product of the two orifice coefficients (C C ) the coefficient

of discharge which is designated Cd . All hree of these coef-

ficients vary with the character of the liquid, the roughness

of the orifice, and the Reynold's number for the orifice.

Eq.(5) may be written so as to include the effects of con-

traction and viscosity:

Q = Cd2 (6)

Experimental values of Cd vary with the Reynold's number

of the orifice R = 2u where r is the radius of the orifice

and v the kinematic viscosity. Representative data (repro-

duced from "Unit Operations"(5) taken in a pipe are illus-

trated in Fig.(2). The range of Reynold's number spanned in

our experiments extends from 100 to 4000.

Measurements were made in the course of this investi-

gation from which the value of the discharge coefficients

of our orifices could be determined. These resu2ts appear in
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Chapter IV. The d-c characteristics were evaluated in terms

of the flow resistance RF which is defined as the ratio of

the d-c pressure p to the steady volume velocity Q. The flow

resistatme comes directly from Eq.(6) and is

R F ,2 (7)
= = 2(C d)2

It is not engineering practice to present orifice data

in terms familiar to the acoustician. We shall not be inter-

ested in the exact value of the more widely used coefficient

of discharge as long as our experiments yield values which

form reasonable extrapolations of previously existing data.

From Eq.(7) it is seen that. measurements of RF as a function

of the volume velocity through the orifice, enables the

coefficient of discharge to be evaluated. In addition to

the experimentally determined values of RF presented in the

Figs. 20 and 21 in Chapter IV, there is plotted (in heavy

solid line) the value of RF obtained from Eq.(7) by choosing

for the coefficient of discharge. It is fairly evi-

dent that the coefficient of discharge varies among orifices

of equal area but differing thickness, and the reason for this

is discussed next.

The effects of thickness and finite width on orifices

may be discussed in terms of the behavior of a nozzle. A

Henceforth, unless specifically mentioned S stands for the
actual area of the orifice.



nozzle is an orifice with an added discharge section which

confines the jet, causing the vena contracta to have the

same area as the discharge end of the nozzle. The orifice

equations apply to the nozzle plovided the constants are modi-

fied appropriately. For example, the coefficient of contraction

Cc of a nozzle with a thickness to diameter ratio three or

more is unity. On the other hand, it is to be expected

that the coefficient of velocity Cv should increase with the

thickness of the orifice (length of the nozzle), since viscous

losses vary approximately in direct proportion to the inner

cylindrical surface of the orifice. Thus the coefficient

of discharge Cd which is the produce of Cc and Cv might be

expected to have a maximum value for a thickness which corre-

sponds approximately to the thickness for which contraction is

completely suppressed; we shall call this the critical thickness.

The critical thickness would be expected to increase with

the Reynold's number. Hence, for a constant average velocity

through the orifice the critical thickness will become

greater for orifices of large diameter.

We have observed this effect quite clearly; it shows

up if one plots the measured d-c flow resistance against the

thickness of the orifice. Such a curve is given in Fig. 26 of

Chapter IV. In this figure the flow resistance is observed

first to decrease with increasing thickness, an effect attri-

butable to a suppressed contraction. A minimum in the resistance

of the 0.5 cm diameter orifice is seen to be followed by an

-14-
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increase brought about by friction.

In our work, discussed in Chapter IV, we have found that

the response of the orifice to alternating flow follows closely

its steady flow behavior. For examples, the non-linear a-

coustic resistance varies in the same manner as the d-c flow

resistance with the orifice thickness. Ingard's phase dia-

grams (see Figs. 5-8 of this Chapter), when plotted against

orifice thickness, correlate closely with the d-c flow re-

sistance curves provided the latter are inverted.

However, before discussing these regions of agreement

in detail, it is advisable to review Sivian's attempt to

correlate his steady flow and alternating flow measurements

with hydrodynamic theory.

3. Sivian's Measurements and Theory

L. J. Sivian( 6 ) in 1935 presented the results of

acoustic resistance measurements which he and R.T. Jenkins

had made in 1930 on three circular orifices varying in dia-

meter between .25 cm and 1.0 cm and having a thickness to

diameter ratio of 0.2 or less. This group of orifices he

called Group B. In the same article Sivian gave more recent

data he had obtained pertaining to four circular orifices

.034 cm in diameter with the length to diameter ratio varying

from about .15 to 1.5. He used a resonator technique which

enabled him to measure the resistance down into the approxi-

mately linear region. His data are given as plots of Acoustic
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Resistance versus rms particle velocity averaged over the

orifice. We have extrapolated the non-linear part of his

curves to a value pertaining to a peak velocity of 500 cm/sec

and subsequently tabulated this value in Table I along with

his theoretical values (see Eq.(7) of next section.) The

per cent deviation of his theory from the extrapolated

values has been listed. In the last column is tabulated

the power of the dependence RQUn. The power n was esti-

mated from Sivian's experimental curves. The first groups

of 5 orifices, group B, were all measured at 100 cps, where-

as the first and third listed orifices iniihis group were

also measured at 500 cps. No noticeable frequency dependence

was noted. No frequency was stated for the measurements

of the orifices in group A.

TABLE I

diam. thick. R(meas.) R(theo.) per n
(cm) (cm) ohms ohms cent

dev.

.034 .005 400 250 -38 1

.034 .013 poor data 1.8

.034 .025 400 250 -38 0.8

.051 .034 insufficient data

.071 .013 90 56 -38 1

.25 .051 8 4.2 -47 1

.5 .051 2.6 1.1 -58 1.3

1.0 .051 1 .28 -70 1.5



Two points of significance about the results, which

were not emphasized by Sivian, are the apparent increase

in the exponential dependence n with increasing diameter,

and the rather poor agreement of theory and experiment.

These features will be discussed later.

Sivian noted that, to a first approximation, the

growth of the observed resistance at high velocities

appears to be a velocity effect. This justified his

viewing the matter from the standpoint of d-c air flow.

His theoretical treatment consisted essentially in ap-

plying conservation of energy to the flow through the

orifice. We shall review in detail what we believe to be

his theoretical approach. This is done because there is

some ambiguity in the exact procedure presented in the

original article. We start by quoting Sivian directly:

"We shall estimate the effect of the kinetic energy
(K.E.) acquired by the air in an orifice on the re-
sistance of the latter. Simplifying the problem still
further, consider the case of an orifice S joining two
semi-infinite tubes, T1 and T2 whose cross sections

are much larger than that of S. Let the gas pressure
in T1 and T2 be p1 and P2 respectively. The tubes are
assumed so large that pl and p2 remain sensibly constant

while the velocity, V, of flow through S, is being ob-
served. Also, the velocity of the air in the tubes is
so small compared with the speed in the orifice, that
its K. E. may be neglected. We further assume: (1)
turbulence is negligible; (2) the flow is adiabatic;
(3)the velocity is uniform over any cross section of
the jet; (4) there is no internal dissipation. Then the
air flow through the orifice is isentropic, and as shown
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in thermodynamic texts,

pU2 1= a _ p)/apa (8)
where U = linear velocity and a = (Y -1). We shall
apply this equation to an orifice in which viscosity
and heat conductivity are effective even though that
somewhat violates conditions (2), (3) and (4). De-
noting the orifice area by A, and remembering that in
practically all cases of acoustic interest, pl-P 2 )/P41 l,
we have to a first approximation

R = R + 1/2(pU/S)
where R1 is the new orifice resistance and R is the "low

velocity" resistance. If this equation is to be used
with slowly alternating flow, we should write

R1 = R + u(p*lu)/S ." (9)

This ends the quotation from Sivian. There are several

points which bear consideration. In Eq.(8) it is important

to realize that U signifies the linear velocity in the vena

contracta, a fact neglected by Sivian.

Sivian does not state explicitly that Eq.(9) is the re-

lation which is supposed to represent the acoustic resis-

tance. Furthermore it is not evident from the text just

quoted what is implied by U . Suffice to say that if UI!

is chosen the rms particle velocity, Eq. (9) agrees with

Sivian's theoretical curves.

4. Non-Linear Reactance

Sivian, in his work discussed in the last section,
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reported that the reactive

orifices was substantially

result was contradicted in

Labate and Ingard. Bolt,

decreases strikingly with I

tiation of this discovery 1

Section 6 of this Chapter.

component of the impedance of

independent of velocity. This

a recent paper(10) by Bolt,

et al, found that the reactance

particle velocity. Later substan-

by Ingard will be discussed in

5. The Author's Previous Work

The author made a study of large amplitude acoustic

waves in 1947 and applied some of his results to the be-

havior of orifices. He studied the non-linear compressi-

bility effects associated with the spherically diverging

wave which issues from the orifice under high intensity

conditions. His measurements confirmed for the first time

the presence of strong odd harmonics Sivian (6 ) had pre-

dicted should exist, but was unable to measure. An example

of the relative strength of the first three harmonics is given

in Fig. 3. Fig. 4 illustrates the 1/2 power dependence of

the fundamental on the driving pressure. These two curves

were taken from the author's Master's thesis. The author

attempted to explain the variation both in resistance and

reactance in terms of compressibility effects. The increase

in resistance he attributed to the power abstracted by the

harmonics whose strength relative to the fundamental frequency
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component increased according to Nn , N being the ratio of

the particle displacement amplitude to orifice radius and

n the order of harmonic.

The validity of this mechanism was thrown into con-

siderable doubt when(2), at the author's suggestion, he and

H. Harrison viewed the jet issuing from the orifice under

stroboscopic illumination. Smoke on one side of the orifice

was observed to issue from the other side as discrete pulses,

which frequently assumed the nature of vortex rings. Later

work by Ingard and Labate (11) showed conclusively that

this jet was predominantly responsible for the resistance.

Later measurements by the author indicated that only under

special circumstances, could harmonic generation contribute

measurably to the dissipation. Thus it became clear that

orifice non-linearity was basically, as postulated by Sivian,

a hydrodynamic problem, and.that further work could most

profitably be carried out by modifying Sivian's inital methods

so as to bring them into agreement with the well established

engineering behavior of orifices under steady flow conditions.

6. The Results of Ingard and Labate

The non-linear acoustic behavior of orifices has most

recently( " ) been examined by Ingard and Labate. They studied

the circulation patterns generated in the vicinity of the
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orifice and correlated changes in the nature of these patterns

with measured values of the impedance. The circulation was

conveniently described by them in terms of contour plots

separating from each other the four different circulation

regions they have defined. These "phase diagrams" are plotted

by them in terms of the peak particle velocity, averaged over

the orifice; either the frequency of the sound or the thick-

ness of the orifice provides a second independent variable.

Several such diagrams which will be useful in our later dis-

cussion are shown in Figs. 5 to 8. A description in their

own words of the different circulation regions is given:

Region 1: A low particle velocity region with steady cir-

culation; the flow is directed out from the aperture along

the axis.

Region 2: A region of steady circulation in which the

direction of flow is along the axis toward the aperture,

i.e., the reverse of that in Region 1.

Region 3: A region characterized by the onset of turbulence.

Region 4: A high particle velocity region characterized by

the appearance of jets and vortex rings. The jet is pul-

satory and is made up of air pulses contributed by each

cycle of the sound wave. It appears symmetrically on each

side of the aperture.

The reader will do well to refer to the original article
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for a fuller description of these circulatory effects which

are illustrated by a remarkable sequence of photographs of

the streaming, made visible by means of smoke particles.

We will find that a close correlation exists between

the shape of Ingard's phase diagrams, which are plotted with

thickness as one variable, and the variation thickness of the

d-c flow resistance for the orifice. We shall also see that

the hydrodynamic interpretation of non-linear a-c resistance

is valid primarily in Region 4 of the diagram.

Ingard and Labate made extensive measurements of the

resistance of orifices for all conditions of circulation.

An analysis of their results discloses that the logarithm of

the resistance plotted against the logarithm of the particle

velocity amplitude suffers in general two broad discontin-

uities in slope. A typical plot is shown in Fig. 10 where a
sNL ' 4S RNL

quantity proportional to the resistance, = ---
d .84x10-3v

has been plotted against - the ratio of the particle dis-

placement amplitude to the thickness of the orifice. Here

S is the orifice area in cm2 , v the frequency in cps. For

orifices of small radius, the two changes in slope merge to

form a broad inflection at a gb/t of about unity, correlating

approximately with the transition from circulation Region 3

to 4.

A point of more significance to our problem is the fact

that if the particle displacement amplitude exceeds thickness
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by an order of magnitude or if the velocity exceeds the value

defining the boundary between Regions 3 and 4, the resistance

becomes roughly a function of the first power of the velocity.

If neither of these criteria is met, the resistance varies

with a power of the velocity greater than the second. Put

another way,. for low velocities or particle displacements

the non-linear resistance is less than would be predicted by

linearly extrapolating the high velocity value down to the

low velocity. This fact is in accord with the exponents

pertaining to Sivian's data tabulated in I. Approximate

values of the exponent n taken from Ingard's curves in the

similar velocity range are tabulated below:

TABLE II

Fig. llb 9 10 12 Ila

diam.dia(cm) .36 .5 .5 1 1 1.4 1.4 2 2(cm)
thick-• .09 .05 .05 .05 .05 .05

n 1.3 1.0 1.5 1.3 1.0 1.6 1.6 1 2

In general the thin orifices have an n value approaching

unity. Thick apertures of small diameter also have an n

close to 1.

Our experiments have confirmed the fact that the re-

sistance remains essentially a linear function of the velo-

city for velocity amplitudes about ten times greater than

that achieved by Ingard. It is within this operating region

that we will expect the hydrodynamic analogies to hold
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reasonably well.

Ingard and Labate determined the kinetic energy carried

by the vortices issuing from the orifice by measuring the

momentum and velocity of the vortex stream. They obtained

the momentum by finding the force caused by the vortices in

striking a torsion balance. They claim to have obtained a

surprisingly dose agreement between their measured values

of resistance and the value expected, assuming the loss of

energy to be that carried away by the vortices. Unfortun-

ately, we find that their measured value of momentum is

twice as great as the maximum value it could possibly have

from the momentum conservation principle. In order to

justify their force measurements it is necessary to postulate

that the vortex element rebounds elastically from aflat

surface; if this is true, the power carried by the vor-

tices is one-half the value they calculate.

Ingard has also measured the variation of the kinetic

mass of the orifice with amplitude. These stremely inter-

esting results are plotted in Fig. 13, in terms of an equi-

valent rd correction for the orifice. We shall present a

theory in the following chapter which interprets the reduction

in kinetic mass in terms of the destruction in the coherence

of the mass associated with the near field of the orifice.



CHAPTER III

THE THEORY OF NON-STEADY FLOW THROUGH AN ORIFICE

1. Introduction

We develop in this chapter a theory of the response of

the orifice (and nozzle) in terms of its steady state be-

havior, as outlined in Section 2 of the previous chapter.

We shall not assume, as did Sivian, that the velocity is

uniform over the cross section of the orifice, but we will

consider the effects of contraction. Losses within the

orifice due to friction and turbulence will be lumped to-

gether in their effect, and represented by the coefficient

of velocity.

The coefficient of contraction is assumed to be a

constant. This assumption in addition to the assumption of

incompresIble flow allows a theoretical expression for

non-linear resistance to be derived which can be expressed

in terms of the d-c flow resistance.

Next the transmission of sound through an aperture which

supports a steady flow of gas is investigated by means of

a trivial extension of flow resistance theory. The differ-

ential resistance, RD sintroduced as a measure of the a-

coustic resistance of apertures carrying air flow. The inverse

problem, that of the modification of the d-c flow resistance

by an intense acoustic wave is mentioned briefly.

-25-
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The rectifier-like properties of the orifice are considered

qualitatively. It is shown that the orifice may be made

to support a steady difference in pressure provided it is

excited with an asymmetric pressure wave whose square root

moment plp -1/2 differs from zero. This pressure difference

can be used to pump fluid through the orifice in a direction

which is determined by the sign ofipp . Harmonic

generation by the orifice is discussed briefly. Sivian's

prediction of the existence of odd harmonics is reviewed.

Second harmonics are shown to be generated by superposed

d-c flow.

Finally, the maximum available flux of momentum from

one side of an orifice is discussed. A calcualtion of

this quantity for an orifice driven by a simple harmonic

pressure is compared with Ingard and Labate's measurements

of the stagnation pressure of emitted vortices.

The measured force appears to be high by a factor of two.

2. The Non-Linear Resistance

If the pressure difference across the orifice is less

than 1 per cent of atmospheric (4) , it is sufficiently

accurate to consider the orifice flow to be governed by the

equation for incompressible flow. In this case Eq.(8) in

Chapter II reduces to the ideal flow equation:

2

PP P (1)p = pl - p2 = 2-2S8
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where pl is the pressure on the upstream side of the orifice

and p2 that on the downstream side, p is the density of the

gas, Q is the ideal theoretical volume velocity through the

orifice which has a cross section S. Eq.(l) neglects the

effects of friction and contraction which will be considered

later. If we now assume that Eq.(1) is instantaneously

valid, and that p varies sinusoidally, it is a simple matter

to compute the average power dissipated (see Appendix 1).

This power divided by one-half the square of the peak volume

velocity results in an expression for the non-linear re-

sistance,

RNL = 12 (2)
2S

where Q is the peak volume velocity. Eq.(2) may be ex-

pressed in terms of urms the rms average particle velocity

through the orifice

RNL 1.1 purms (3)

Unfortunately Eq.(2) disagrees by a factor of 1.1/12 with

the non-linear term in Sivian's equation (9) in Chapter II

for resistance. It is therefore difficult to justify

Sivian's equation, and we conclude that sufficient caution

was not exercised in its derivation.

Eqs.(2) and (3) could have been derived just as easily

from the equation for incompressible flow which has been
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properly corrected for contraction and losses (see Eq.(6) in

Chapter II). This procedure is only valid if the coeffident

of discharge Cd is a constant independent of the velocity.

The experimental results discussed in Chapter IV justify

assuming Cd constant. Inasmuch as the correct flow equation

differs from Eq.(l) which neglects contraction by the

-2
constant factor Cd , we may write immediately the correct

expression for the non-linear resistance

RNL L.pQ 2 (4)
2(SCd)

We have already seen (Eq. 7, Chapter II) that the flow

resistance is

RF P
2(SCd)

so that we may express the non-linear acoustic resistance

in terms of the flow resistance

RNL = 1.1 RF (5)

Eq.(5) will represent the facts if the coefficient discharge

has the same value for steady flow as for alternating flow,

a situation found not true within the experimentally a-

vailable frequency range. As will be seen in the following

chapter, the experimental data on thin orifices taken above

200 cps was found to agree fairly well with the relation
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RNL .6 RF (6)

indicating that the a-c flow coefficient is about (.6) - 1 /2 1.3

times larger than the d-cczefficient.

It is necessary to justify our having neglected the

reactance of the orifice in the preceding treatment. This

point is considered in more detail in the following section

on differential resistance where we shall merely give a

physically plausible reason for neglecting reactance. In

any event, as can be seen from Ingard and Labate's ex-

perimental results in Fig. 13 that the reactance of the

orifice decreases appreciably in the region where hydro-

dynamic laws become applicable.

3. The Differential Resistance and Reactance

In general, when there is an average transport of matter

through a small aperture, the acoustic conductivity of

the aperture decreases. This phenomenon can be discussed

in terms of the acoustic resistance of the aperture under

steady flow conditions; this resistance we shall call the

differential acoustic resistance. Strictly speaking it is

the complex impedance of the aperture which should be specified.

Since, however, even for moderate flow velocities, the impedance

of the orifice becomes essentially real, so that the dif-

ferential resistance is a useful quantity. To see this, we
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first examine the basic origin of kinetic mass.

The acoustic reactance (see Appendix II) of a system

driven at a single point can be expressed in terms of the

time average of wbaPe L, i~ the Lagrange function for the

system evaluated for unit trminal volume velocity amplitude.

To a first approximation a small orifice (and the tube to

which it is coupled) is a system whose behavior can be ex-

pressed in terms of the driving pressure, p, on one side of

the orifice and Q, the volume velocity through the orifice.

Thus, neglecting interaction between the incident wave

and the scattered wave from the orifice, we have for re-

actance X of the orifice

X 4 jwILAvQ=1(7)

If all boundaries are rigid, LAV can be expressed in terms

of volume integrals of the average kinetic and potential

energy densities tar and vav

LAV = f(tav - Vav)dT (8)

where the integral extends throughout the region occupied

by the field. It is shown in Appendix II that reactance

of a small orifice in a tube is given approximately by (7)

provided the orifice is considered to scatter as a simple

source. In this case the integral in Eq.(8) is taken over

a spherical volume concentric with the orifice and extending

to a radius rt, where rt is the radius of the tube. An
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examination of the integral (8) shows that in the limit when

the orifice radius ro is very small compared with the tube

radius rt, and for wavelengths long compared with the tube

radius, Eq.(8) approaches:

LAV TAV r, (3 + 5) (4qr (9)

The number 3 in the bracket represents the kinetic energy

in the region outside the hemispherical caps covering the

orifice, while 5 represents the kinetic energy inside.

If a steady stream is superimposed on the sound field,

the jet of gas issuing from one side of the orifice will

destroy the coherence of the mass contained inside the

hemispherical cap on the exit side.

This will remove 1/2 of 5/8 of the kinetic mass of

a thin orifice. It is not known how to determine the

destroyed fraction of kinetic mass on the inflow side.

Assuming for lack of alternative, that the same loss of mass

occurs on both sides, we could expect the reactance, under

flow conditions to be 3/8 C its normal value. This reduction

is in accord with recent measurements reported in the next

chapter.

We next derive the expression for differential re-

sistance, RD. This is facilitated by reference to Fig. 1',

which serves to summarize compactly the three kinds of re-

sistance, and some approximations involved in their derivation.

The pressure-volume velocity curve is drawn assuming a constant
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coefficient of contraction. If we consider the response to

a small signal superposed on a relatively large steady flow,

we see the differential resistance is defined to be (just

like the dynamic resistance of a vacuum tube) the slope

of the p-Q curve at the operating point established by

the steady flow velocity. Thus the differential resis-

tance is obtained by differentiating the flow equation (6)

of Chapter II,

R P2 (10)

We have already seen (Eq.(7) in Chapter II)that the flow

resistance is

RF
2(SC d)

so that we may express the differential acoustic resis-

tance in terms of the obw resistance:

RD = 2 RF (11)

Eq.(ll) will represent the facts if the coefficient

of discharge has the same value for steady flow as for

pulsating flow. We have verified Eq.(ll) experimentally.

A differential flow resistance (not to be cnfused

with the differential acoustic resistance) can be defined

which sp'ecifies the d-c flow resistance of the orifice

when an alternating flow is superposed. The problem of

modulated flow through an orifice has received some engineering
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attention because of the errors caused by pulsations in

orifice-type flow meters. By straightforward means Lindahl ( 1 2)

has obtained an expression relating the average flow through

an orifice under a pressure head p = P + Sp sin wt where

S' His relation, expressed in our notation is

2Pf 2 4
Qav =  d (12)16P20 I P2

o o

The differential flow resistance is

RDF = Po

QAV

which is, from (12) and remembering that P4jPo:
0

RDF = 1+ 1/8(- 2 11PDF 2(S 2 P ) +1 po(13)2(SCd)2  
0 P

The bracketed term is obviously a correction factor to the

steady flow resistance RF, which must be applied when there

exists a small sinusoidal pressure disturbance. The relation

for RDFhas not received experimental confirmation.

4. The Orifice as a Rectifier

The distortion products and steady flow terms produced

by an orifice are briefly investigated in this section. We

proceed to obtain an expression for the third, and predominant

harmonic. Starting from a quadratic pressure-velocity relation
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p = KQ2 , we look for the first two Fourier components of

Q when p is sinusoidal. If we say

p = P sin wt,

and Q = a sin ct + b sin cot

the coefficients a and b are

2K-1/P 2K-1CPo • (sin t) 3/2d t = 0 /(5/4)
a 0 d o T 7 (7/4)

and

2K- J1P 8K-14P (9/ )
b= sin 3wt(sin ct) 1/2dt = 3a - o0 (11/4

So Isin(11/n)

Thus the ratio of the third harmonic velocity com-

ponent to the fundamental is

b = 1/7 (14)

This is equivalent to a third harmonic that lies

16.92 ~# 17 db below the fundamental, a result in accord

with certain experiments reported in Section 7 of Chapter

IV.

The second harmonic component, usually weak in com-

parison with the third, becomes predominant if a steady flow

is superposed on the a-c signal. This is most easily seen

by expanding directly the expression for velocity
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Q = K(P dc+ Pac sin t) 1/ 2

considering Pac Pdc

P P 2 P1 +/ ac 22 +/(
K-d 1+ 2P c sin wt - 1/ 8 ( P  ) sin2t + 1/1•-2 C)3sinot ..

de dc dc

(15)

From Eq.(15) it is evident that the second harmonic term

is greater than the third by a factor of at least Pac/Pdc'

This effect is easily observed experimentally.

Finally we consider the effect of driving the orifice

with an asymmetric wave form such as that depicted in

Fig. (14a). While this wave form has a zero average

value, its square root moment p)pj/2 differs from zero

as is demonstrated in Fig.(14b). The average volume

velocity is proportional to pjp /2 so that the orifice

is seen to behave as a pump. Experimentally it has

been possible to derive enough power from this action to

drive a mechanical wet-test flow meter. Details are given

in the next chapter.

5. The Maximum Available Momentum Flux

The instantaneous flux of momentum transmitted through

the orifice is the produck of p, the instantaneous pressure

difference across the orifice with S, the area of the ori-

fice. In the positive half cycle of the driving pressure

a certain quantity of momentum J is trarsmitted through

in one direction, while during the negative half cycle an
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equivalent quantity returns. The total magnitude of

momentum which passes in the positive or negative half

cycle is

SPoT
J =S T/2 pdt = (16)

o 7I

where T is the period of the wave and Po the peak driving

pressure. If it is assumed that all this momentum is

carried away by vortex rings which detach themselves at
1

a frequency T, the maximum momentum flux carried away by
SP

the vortices on one side of the orifice is - . This

momentum may be expressed in terms of the non-linear resis-

tance and urms the rms particle velocity, averaged over

the orifice

/28
2

maximum momentum flux = F = / RNu (17)

The stagnation force of the vortices incident nor-

mally on plane surface would not be expected to exceed F

unless the impact were partially elastic. Ingard and

Labate ( 4 ) have measured both the resistance RNL and the force F

of the issuing vortices for one orifice. Their results do

not agree with Eq.(17) as may be seen by referring to

Fig. 16 which compares the direct measurement with the

value computed from Eq.(17). The measured force appears

to be two times greater than the value arrived at indirectly.

It is difficult to explain this inconsistency, particularly

since the energy carried away by the vortices would be, if
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anything, less than the total power expended at the ori-

fice, a consideration which leads to further disagreement.

Unfortunately these results have only been found recently

so that no experimental attempt has been made to resolve

the dilemma.



.5 CM. DIAMETER
.05 CM. THICK
238 C. PS.

/

x
x

DIRECT MEASUREMENT
(AFTER INGARD)

/

.7

x

/
/x

0

FROM MEASURED
RNL AND EQ.(17)

100 200 300 400
R.M.S. AVERAGE SOUND PARTICLE

IN ORIFICE - CM/ SEC

500
VELOCITY

FIG. 16 - MOMENTUM FLUX ISSUING FROM AN
ORIFICE.

/
140

120

100

80

60

40

20

600

E

H

0

,



CHAPTER IV

THE ORIFICE--EXPERIMENTAL RESULTS

1. Introduction

The following properties of orifices have been measured

and they are discussed in the designated sections: The d-c

flow resistance in Section 3; the non-linear acoustic re-

sistance in Section 4; the differential acoustic resistance

in Section 5; the influence of steady flow on the reactance

in Section 6; the spectral distribution of harmonics in Sec-

tion 7; the pumping action in Section 8. In section 2

certain general features common to most of the experiments

are outlined. Preliminary results on the measurements

of harmonics have been reported by the author (13). The author

was assisted in all other measurements discussed in this

chapter by Mr. Peter Sieck with whom he has also presented

a preliminary report of this work (14 )(15)

2. General Experimental Technique

The orifices studiedLin this work are small sharp-

edged circular orifices whose diameters are at least two

orders of magnitude smaller than the wavelengths of sound

used. The principal results were obtained using orifices

having diameters of 0.357 cm and 0.5 cm. The range of thick-

ness extended from 0.05 cm to 1.25 cm. The orifices used

were also those employed by Dr. Ingard in connection with

-38-
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his thesis. When radius and diameter conform, the orifices

used by us are also the same ones that were employed by

Bolt, Labate and Ingard (1 0 ) , as well as by Ingard and

Labate(ll) in their recent work which has been reported

in the literature.

All measurements, with the exception of the harmonic

analyses, were performed with the orifice situated axially

between two tubes, one having an inner diameter of three

inches, the other two inches. Fig. 17 is a block diagram

of the principal ingredients of the experiment with the

exception of the conventional oscillators, amplifiers,

etc. The equipment appears in a photograph in Fig. 18.

The driving cavity to the left of the orifice was made as

small as possible so that high alternating pressures could

be generated within by the high powered western electric

horn driver unit. The coupling cavity was 2" long with an

inside diameter of two inches. The output side of the orifice

was coupled by means of a 1-meter long steel tube of 3"in-

side diameter to a Fiberglas cone whose normal incidence ab-

sorption coefficient was 0.99+.

Acoustic resistance was determined by a transmission loss

technique. The incident driving pressure was measured by

the upstream sound-cell while the a-c volume velocity

through the orifice was indirectly determined by the down-

stream sound cell. The upstream sound cell was placed

sufficiently close to the orifice so that no wave correction
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had to be applied to its readings. Interference from

higher order modes was non-existent by virtVe of the large

values of resistance which were encountered.

Flow resistance was obtained by measuring the time

required for a metered quantity of air to flow through the

orifice under a fixed pressure head. Within the approxima-

tions set forth in Fig. 15, the d-c pressure head is measured

by the inclined draft gauge. No static pressure tap was

used on the down-stream side of the orifice; the orifice

was sufficiently small in relation to the tube sothat the

discharge could be considered to be into atmospheric pressure.

3. Flow Resistance

A typical plot of the measured pressure-volume velo-

city characteristics of an orifice is given in Fig. 19.

Data of this kind were obtained for each of the orifices

tested. It was noticed that the logarithm of the pressure

plotted against the logarithm of the volume velocity fell

extremely closely on a straight line, provided U,the average

particle velocity through the orifice exceeded about

150 cm/sec. Above 150 cm/sec the exponent in the pro-

portionality paUn was very close to two as can be seen

from the values tabulated below:
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TABIRE III

diameter thickness n
cm cm

.357 .09 2.05

.5 .05 1.96

.5 .32 2.10

.5 .64 2.00

.5 1.25 1.96

.5 1.9 1.92

.5 2.54 1.88

For flow velocities less than 150 cm/sec the log p - log Q

relation appears to fluctuate appreciably from a straight

line characteristic, a definite tendency to. break up being

noticed at about 100 cm/sec.

The data have been correlated and expressed in terms

of the d-c flow resistance by obtaining the ratio of the

pressure to the volume velocity from curves similar to

those shown in Fig. 19. The data are given in acoustic

ohms which have the dimensions of dyne-sec/cm5 or gm-sec/cm 4 .

The measured values of flow resistance are given in

Figs. 20 and 21. Plotted for comparison is the value of

flow resistance computed from formula (3) of Chapter III.

A discharge coefficient I = .74 was chosen. This value

of the coefficient is roughly consistent with values given

in the literature (see Fig. 2) and it enables the flow re-

sistance to be written in a simple way
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For C =4 RF = = (1)
2(SC d)

in terms of the average velocity through the orifice U,

the orifice are S and the density of air p. The measured

value of the discharge coefficient is obtained by equating

(RF)meas = 1-.PQ

2(SC d)

hence
C 1.pQ .74 pV/S
d (2S2RF ) meae..(I ) F meases

The quantity under the radical is the ratio of the re-

sistance obtained from the heavy curve, of • , divided

by the experimental values drawn in lighter lines. Thus

the actual coefficient of discharge, evaluated at 500 cm/sec

for the thin orifices turns out to be

C = .74 2.8 = .66 for the .5 cm orificed 3.5
Cd = .74 6.2 .66 for the .357 cm orifice

These values agree almost exactly with the value .07 ob-

tained from Fig. 2 for an orifice whose diameter is .2

times the pipe diameter.

A similar computation carried out at 500 cm/sec leads

to a value of .87 for both the orifices which are. 0.64 cm

thick. Theselarger values of the coefficient obtained for

thick orifices result from a decrease in the contraction as



discussed in Section 2 of Chapter II. A similar com-

putation for the 2.54 cm orifice would indicate that the

discharge coefficient for the .5 cm diameter orifice had

passed through a maximum, the coefficient now being re-

duced by the increasing importance of frictionin thiCker

orifices.

The variation of the measured flow resistance with

the thickness of the orifice has been plotted in Fig. 26.

The non-linear resistance, discussed in the next section,

has also been plotted in Fig. 26 for comparison.

4. The Measurement of Non-Linear Resistance

The transmission loss through a small orifice can be

divided into two regions; a low amplitude region in which

the transmission loss is independent of the amplitude

of the incident sound level and a high amplitude region

in which the transmission loss depends considerably on the

incident sound pressure. In the low amplitude, or linear

region, the transmission loss is controlled mainly by the

mass reactance of the aperture. In the non-linear region

the loss is governed by the non-linear resistance of the

orifice.

Fig. 22 depicts a typical measurement of the sound

pressure level transmitted into a three-inch pipe, plotted

as a function of the incident sound pressure level. The on-

set of non-linearity is clearly defined by the abrupt change

-43-
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in the slope of the curves plotted in Fig. 22. In the

linear region the slope is 1 db per db; in the non-linear

region it is 1/2 db per db. This is consistent with

previously obtained results indicated in Fig. 4. The

influence of mass reactance shows up clearly in the linear

region of Fig. (22). The transmission loss is seen to

increase directly with the frequency at low sound levels.

In the non-linear region the curves approach each other

and canbe represented by a single line. The exact point

at which non-linearity sets in is a function both of the

frequency and the geometry of the orifice. The critical

sound tressure level at which the transmission loss deviates

from constancy is presented in Fig. 23. This critical

sound pressure level increases about six db per octave

for the orifice of .5 diameter and roughly about 12 db

per octave for the .357 cm orifice.of the .1-1r:ticel. e O 'i.'.-

placement mplitude.

The values of the non-linear resistance obtained by

ithe transmission loss measurement technique are plotted in

Fig. 24 and 25. The data are given in acoustic ohms which

have the dimensions dyne-sec/cm 5 or gm-sec/cm . The data

were obtained over a frequency range extending from 150

cps to 800 cps. For comparison, the flow resistance has

been plotted at zero cps. The non-linear resistance was

measured at particle velocity amplitudes between 2000 and

7000 cm/sec; the values plotted have been linearly
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extrapolated to a particle velocity amplitude of 500 cm/sec.

The resistance appears to increase to its d-c value.

It was not possible to determine whether this increase

was monotonic as measurements were not obtained at

frequencies below the cut-off of the pc termination.

It is important to emphasize the fact that the

values of resistance given in Fig. 24 were not measured

at the peak velocity of 500 cm/sec. These data will

agree with measurements obtained at 500 cm/sec provided

the frequency of low measurement is enough to insure that

the orifice is in Ingard's jet region.

It is evident that a high degree of correlation exists

betteen the measurments of non-linear and flow resistance.

This correlation is even more evident when the two kinds

of resistance are' plotted for various values of the orifice

thickness as is done in Fig. 26. It is particularly clear

that the effects of reduced contraction influence the

non-limar resistance. According to Eq. (5) of Chapter III,

the non-linear resistance should be 10 per cent greater than

the flow resistance provided the same coefficient of dis-

charge is applicable in both cases. It is evident that

the non-linear resistance for thin orifices is considerably

less than Eq. (5) predicts. This implies that the coef-

ficient of contraction is greater for alternating flow (by

about 30 per cent) than it is for steady flow. For thicker
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orifices, the non-linear resistance and the flow resis-

tance are very closely equal. This result agrees with our

assumption of a suppressed contractionin the case of ori-

fices whose thickness-to-diameter ratio exceeds about 2.

5. Measurements of Differential Acoustic Resistance

The differential resistance for two thin orifices

of diameter 0.5 and 0.357 cm have been measured by tech-

niques similar to those employed in the previous section.

These'results are given in Figs. 27 and 28, in terms of

acoustic resistance which has the dimensions of dyne-sec/cm 5

or gm-sec/cm4 . The measured values of flow resistance

multiplied by 2 are plotted for comparison as well as the

equation (10) of Chapter III:

RD = pd2 - 2U (2)(SCd) 2

In general the measured differential resistance is less

than the flow resistance times 2, and greater than the value

calculated directly from the above equation. The measured

points corresponding to twice the flow resistance have been

omitted from the plot since they would fall on. the given

solid line. In obtaining the differential resistance, RD,

the a-c velocity amplitude is always considerably less than

the superposed d-c particle velocity. As can be seen from

Fig. 21, the direction of the d-c flow does not influence
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the results within the estimated experimental error,

which is about 20 per cent.

For sufficiently low values of the d-c flow velocity the

magnitude of the orifice impedance becomes independent

of the d-c velocity. These constant magnitudes of the im-

pedance have bben plotted arbitrarily at 100 cm/sec on

the abscissas of Figs. 27 and 28. It is of interest to

note that for flow velocities of the order of 200 cm/sec

the differential resistance is lessthan the magnitude of

the impedance at lower velocities. This means that the

eoudstic.,conductance: reaches a maximum value and thereafter

decreases approximately linearly with a further increase

in flow velocity. "This beha*ior may be qualitatively ex-

plained in terms of the mass reactance of the orifice. At

:low flow velocities the conductance is determined pr.imarily

by the mass reactance which, for the orifices considered,

was greater than the resistance.. As the d-c flow increases

the coherence of the air mass that contributes to the

reactance is destroyed, resulting in a. decreased mass reac-

tance and therefore an increased conductance., lA fthlther

increase in the 'flow velocity increases the differential

resistance so that ultimately the resistance overiIdes the

effect of a reduction in reactance. ThI q ...ntiy, '_,_j

lo&tt j. in F'" 1 I o •--e:.ruct n•.:n ,th t. 0•EIi mS1s
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The transmission loss technique is inherently in-

capable of measuring the differential resistance unless this

resistance exceeds the magnitude of the reactance. Con-

versely the reactance may be measured by this method only

when its magnitude exceeds that of the resistance. More

accurate measurements of the differential resistance and

of the dependence of the reactance on flow have subse-

quently been made by McAuliffe with the precision

impedance tube. (17 ) In Fig. 29 McAuliffe's results for the

differential resistance of a .5 cm orifice are compared

with our Eq.(2). The reactance is discussed in the

following section.

6. The Influence of Steady Flow and Large Amplitudes on the

Reactance

The reactance is observed to decrease considerably

with the initial increase in flow velocity. It thereupon

levels off to a constant fraction of its former value.

It is observed from Fig. 29 that the reactance drops from

26 ohms at zero flow velocity to about 11 ohms at high velo-

cities. This is a fractional reduction in the kinetic mass

of 11/26 = .42, which is to be compared with the fraction

5/8 Z .*38, derived from the approximate theory presented

in Section 3 of Chapter III,

Similar considerations might be applied to interpret

the behavior of non-linear reactance depicted in Ingard's
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curves reproduced in Fig. 13. The quantity, ( ) plotted

in Fig. 13 is the reduction in the acoustic mass of the

orifice expressed in terms of theaquivalent end correction

for that orifice. The asymmptotic approach of the non-linear

kinetic mass to a constant value, for high particle velo-

cities, cannot be explained in terms of the mass traas-

ferred to the jet(11) . The reason for this is that the

mass ejected by the orifice continues to inaease, after

the reactance has stabilized to a constant value.

We consider briefly now what we meant in Section 5

by the Statement "... the jet of gas issuing from one

side of the orifice will destroy the coherence of the

mass contained inside the hemispherical cap on the exit

side". We adopt the criteria that an't element of mass is

coherent if it remains within the region bounded by the

hemispherical caps on either side of the orifice during

one complete period; otherwise it is incoherent. This

leads to the following criticalrelation between the fre-

quency f, the radius r o and thickness t of the orifice

and the maximum flow velocity vdof the particles:

vc = f(2ro + t) (3)

Applied to the data of Fig. 29 which was obtained at 400 cps,

we obtain a critical velocity of 220 cm/sec, which is about

one-half the velocity at which the experimentally determined

reactance has reached its stable value for high flow velocities,
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In Fig. 52 of Chapter VII this criteria is applied in a

slightly different way to the data of Fig. 29 as well as

to some additional data. We now use the above concept

to estimate the velocity at which a constant non-linear re-

actance is attained. From considerations similar to those

used in the steady flow criterion, we assume the critical

particle displacement amplitude in the orifice to be , =

(2ro+t). Then if uc is the critical velocity amplitude

in the orifice, we have for alternating flow:

p5= (2r0 + t)

or (4)
uc = 27f(2r0 + t)

v We apply these last two relations to Ingard's measure-

ments (see Fig. 13b) of the non-linear reactance. We

note that the reactance of the .357 orifice has stabilized

by the time X/t ~ 6. Since this orifice is .1 cm thick,

the critical displacement is 0.6 cm from experiment. From

Eq.(4) we find:

Sc = (.357 + o.i) ' .46,
which is fair agreement.

This treatment cannot be applied to the measurements

of Figs. 13a or 13c since in these cases sufficient amplitude

was not attained to reduce the reactance to a constant value.

7. The Generation of Harmonics by Small Circular Orifices

The author has reported(2)(13) measuring the harmonic
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components generated by an orifice which was driven by

high intensity sinusoidal pressure. Harmonics of the

exciting pressure as high as the fortieth were detected.

It was found for the .357 cm orifice that the first three

harmonicp, including the fundamental, behave as if they

were emanating from a spherical source having a radius

equal to the radius of the orifice. This observation

was made on the orifice in an infinite baffle and while

the orifice was operating in the jet region.

We have made further measurements of the spectral

distribution of the harmonics. These measurements were

obtained at a distance of 7.0 cm from the center of the

orifice which was located centrally in a 4' x 6' rect-

angular baffle, yielding essentially free field con-

ditins. The sound pressure level was recorded through

a 640-AA coupled through an Erpi R-A 277 F Automatic

Frequency Analyzer to a Bruel and Kjaer Sound Level

Recorder. The 640-AA, without grill, was placed on the

baffle in such a position that the sand from the orifice

was received at grazing incidence. The orifice was driven

in the manner described in Sectin 2 of this Chapter.

Because of their bulk the spectrum curves have

been grouped together in Appendix .V Where they appear as

This partially justifies the tacit assumption made in
estimating the kinetic mass of the orifice (see Section 5
and Section 6) namely that the kinetic energy configuration
outside the jet region is unperturbed by non-linear effects.
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Figs. 61 to 7T.

A simple addition of the power carried away in each

of the first few harmonics would show how little acoustic

power is radiated compared with the power conferred to the

jet.

The author(2) has previously noted that increasing the

particle velocity amplitude causes the second harmonic to

increase • with the square of the fundamental low levels;

then the second harmonic suffers a sharp minimum which is

followed by an approximate fourth power recovery finally

going into a third power rise. This behavior is illustrated

in Figs. 3 and 72.

It has now been ascertained that this sharp dip in

the second harmonic occurs when the particle displacement is

approximately equal to the radius of the orifice. This

is evident from a glance at Fig. 73 where the second

harmnnic relative to the fundamental level is plotted

for orifices from .25 cm to 1 cm in diameter. Fig. 73 was

platted from values taken from Figs. 61 to 71. The in-

dependent variable N is the fundamental particle displace-

ment amplitude of a spherical source(having the radius

of the orifice)divided by the orifice radius.

The decay rate of the first few odd harmonics is given

in Fig. 74 in terms of the number of decibels decrease per

odd harmonic. In examining these results it is important

to realize the orifice behaves like a point source; hence
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the decay of the equivalent simple source will be 6 db per

octave greater than the value obtained from Fig. 74.

At sufficiently high levels the third harmonic

becomes directly proportional to the fundamental, as can

be seen from Fig. 3. In this region the theory given

in Section 4 of Chapter III can be used to predict

the ratio of the third harmonic to the fundamental.

According to this theory, the third harmonic pressure

should be about 7 db below the fundamental.

A glance at the-data taken at the highest levels,

on the small and thin orifices (Figs. 61, 62, 65) shows

that the third harmonic is very nearly 7 db below the

fundamental. The other data cannot be used in making

this comparison, since they do not represent data taken

in the jet region. Neither can the results given in Fig. 74

be used in this comparison, since this decay in Fig. 74

represents an average over several harmonics and in the jet

region the third harmonic is lower than would be predicted

from the average decay.

8. The Pumping Action of the Orifice

In Section 4 of Chapter III it was shown that an

orifice driven' by a pressure wave having a non-zero square

root moment should behave like a pump. This behavior was

confirmed in a single experiment with the .357 diameter orifice

having a thickness of .09 cm. With one obvious exception, the
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experimental arrangement was equivalent to that utilized

in obtaining the differential resistance. Instead of

forcing airflow through the orifice, the orifice was called

upon to pump air through the flow meter. The required

pumping power could be estimated from the product of the

pumping rate times the static head which also was measured.

The desired waveform was obtained by combining a 600 cps

tone with its second harmonic, both having the same sound

pressure level, 152 decibels measured behind the orifice.

The relative phase between the two waves was adjusted until

the maximum pumping rate of .95 liters per minute was achieved

against a pressure head of 4" which.represents a working

rate of the order of one milliwatt. The power 7 dissipated

by the orifice can be estimated from the relations
1 

2

2 Rrms Peak
rms NL 2

2(Cds)2

and r Prms Qrms

from which we obtain

g72 sp3/2TT rms

where the symbols have their usual meaning and Prms is the

pressure incident on the orifice. Using as an a-c coefficient

one that is 30 per cent greater than the d-c coefficient (the

d-c coefficient we found to be .66 in Section 3) we compute

that 3 watts is dissipated in the orifice.
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The mechanical efficiency of this pump.is evidently

less than one tenth of 1 per cent. Possibly this efficiency

could be improved by altering the wave form. Thicker ori-

fives of the same diameter were found to be less efficient

pumps.

The fact that small orifices pump quantities of gas has

meant that extreme care had to be taken to eliminate small

leaks from the tube before valid measurements of the force

on objects could be made.



CHAPTER V

THE THEORY OF STEADY FORCES CAUSED BY SOUND WAVES

1. Introduction

In general sound waves cause steady forces on objects

with which the waves interact. The nature of these forces

is understood provided one restricts the considerations

to ideal fluids lacking viscosity, and heat conductivity.

In these cases, if the object is not under steady trans-

lation, these forces are due to the well-known radiation

pressure. On plane reflection and absorbing screens

arising from radiation pressure, the forces have been

thoroughly investigated by L. Brillouin (18) , whereas the

forces on spheres have received a rather complete treat-

ment at the hands of L. V. King. ( 1 9)

Brillouin, in 1925, noted the importance of the flux

of momentum tensor specifying the radiationstress tensor,

a tensor defined by Brillouin. Adopting Brillouin's point

of view we shall derive in terms of the scattered and

absorbed energy a general expression yielding the radiation

pressure on an object of any shape and having arbitrary

normal boundary impedance. This general description of

radiation pressure enables the first step to be taken in

accounting for the non-idep.l character of the fluid. We

define the boundary of the object to be the outer surface

of its boundary layer which we assume, with Cremer (20), can

-54-
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be specified by a normal impedance. The losses incurred

within the boundary layer are shown to modify appreciably

the forces due to radiation pressure, particularly in the

case of spheres of small radii, and at low frequencies.

We next investigate forces which come about by virtue

of the non-linear properties of the medium. The 'author

has previously discussed(1)a force which exists by virtue

of the temperature dependence of viscosity. This so-called

Stokes-type force, which to date has not been measured,

is exerted in the direction opposite to the wave normal

and it depends upon the field intensity rather than upon

the energy density. It now appears that this Stokes force

may be just about cancelled by the modified radiation

pressure force which for spheres always acts in the direction

of the wave.

Consideration is next given to the influence of asymmetry

in the velocity wave form of the medium. It is shown that

asymmetry in the wave form will give rise to forces, which

as in the case of the Stokes-type force, cannot be ex-

plained in terms of the concepts of radiation pressure, but

which are caused by the non-ideal nature of real fluids.

We have chosen to call the forces arising from asymmetry

in the velocity the Oseen-type forces. This has been done

in order to emphasize the connection between this force

and the force resulting from steady flow which was investi-

gated theoretically by Oseen.
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The asymmetry in the velocity required to produce

Oseen-type forces may be realized in several ways. We

have chosen to examine in detail the effects of asymmetry

obtained by combining two or more harmonically related waves.

The asymmetry which results from endowing either the

medium or the particle with a steady velocity in addition

to the large amplitude harmonic disturbance is also studied.

We have found that these forces which come about through

the combined effects of a non-ideal fluid and an asymmetric

wave form can be ten or more orders of magnitude greater

than radiation pressure.

The non-ideality of the fluid is apparent in the force

velocity relation, which is found to exist for bodies

undergoing uniform translation. It is well known that

an ideal inviscid fluid exerts no force on a body under-

going uniform translation. In a real fluid the force velo-

city relation is in general non-linear. Hence any treat-

ment which does not take into account the real character

of the fluid is apt to lead to unrealistic conclusions.

Such a treatment due to Nabarro has appeated this month

(December 1950) in the literature. (21) Nabarro in treating

an ideal fluid deduces that there will be no force which

arises specifically from the non-linear interaction of a

sound field and the uniform velocity with which the body

is assumed to move through the field. Nabarro does find, as
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one would expect, that the classical radiation pressure

forces are modified due to flux and doppler considerations.

Because of his .assumption, Nabarro's treatment is valid

primarily in regions where the forces due to classical

radiation pressure are large, that isfbr large spheres or

for small wavelengths.

2. The Wave Drag Coefficient

In discussing the steady forces caused by sound waves,

it has been found expedient to introduce a quantity called

the wave drag coefficient and symbolized by DW. This

coefficient is defined as the magnitude of the force per

unit local acoustic energy density, divided by the object

area projected in the direction of the undisturbed particle

velocity. The coefficient DW may be thought to be the

magnitude of the sum of a number of partial vector drag

coefficients

Dw= I= dn
n

each dn representing forces arising from one specific

mechanism. The following partial drag coefficients are of

interest: dl , arising from radiation pressure; d2 ,involving

*'In some instances (Chapter VI for example) we have used twice
the average local kinetic energy density in place of the energy
density. This allows results obtained in travelling and
standing waves to be compared against a common theoretical
curve.
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mean viscous forces; d3 , describing the so-called Oseen-

type forces.

In the experiments reported in Chapter VI, the Oseen-

type forces are much greater than all the others, so that

it is proper to set DW = Id 3 1.

3. Forces Produced by Acoustical Radiation Pressure

A technique is outlined in this section for finding

the force caused by radiation pressure arising from the

interaction of a collimated beam of sound with an object.

The force is evaluated in terms of a surface integral

of asymptotic scattering functions for the object. The

expression for the force is valid for objects of any

shape having arbitrary non-uniform boundary impedance.

In addition, the method is simpler in its application

than King's.(19)Specific expressions are derived for

rigid spheres and cylinders of infinite and zero mass.

We shall see that the effects of ordinary viscous

and thermal losses at the surface of small objects may

give rise to extra forces, induced by radiation pressure,

which are several orders of magnitude greater than the values

calculated by King. The exact value of the force on the

object cannot be obtained directly since part is due in-

directly to a transfer of momentum associated with the

medium streaming by the object. The streaming is caused

by the wave momentum absorbed in the viscous and thermal
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boundary layer surrounding the object.

We seek first a relation between the average pressure

PE in fixed coordinates and the average Lagrange density

Lay. Taking the time average of Euler's equation(22)

gives:
p(u.i * )u + u l (pu)= -.VpE. (1)

If this. development is to be carried out to second order

in u, the solutions u and p0 to the first order wave

equation may be utilized. Thus Eq.(l) becomes:

Po(uo Vuo + UV. uo) = - VE . (2)
By taking the time average of Eckart's ( 2 2 ) Eq.(ll) and

assuming irrotational motion, one finds easily:

Po(uo Ou + UV. U) = +VLV (3)

Thus
pE =La + constant, (4)

establishing the first reletion required.

Next we look for a connection between the flux of

momentum density (a tensor of rank two whose connection

with radiatidn pressure was first recognized by Brillouin (23))

and the Lagrange density. Introducing the flux of

momentum density dyad pouu, we note that the relation:

,Vuu = u V u + u IV u,

in connection with Gauss's theorem

f J f (uu) dv = dA uu,

4 This equation called by Eckart the conservation law of acoustic
"momentum" is A -+ o~ou. *•o+ - P (•• v.) = o

where J is the acoustic energy flow (instantaneous intensity).
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enables Eq.(3) to be written as

- aA + po-# A * uu = o, (5)

establishing the second relation required.

The force on the object can be obtained from the pressure

evaluated in the coordinates of the boundary of the object,

which are fixed only if the object is rigid. (Continuity

of pressure and velocity is assumed at the fluid-object

interface; penetration of fluid into the object is ruled

out). The average pressure on the boundary pB may be ob-

tained .by applying the inverse stationary coordinate trans-

formf to the instantaneous pressure, in fixed coordinates,

and subsequently performing the time average. This leads

to the average boundary pressure:

L PE + d (• PE) (6)

in which dB is the boundary displacement.

Next, if the simplifying restriction is made that the

boundary moves only perpendicular to itself, the following

relation holds on the boundary:

dA- uu (v[dp) dA (7)

These results are now applied to obtain the force on

an object located on the axis of a collimated monochromatic

The direct trandbrm from moving to fixed coordinates is
(scalar in fixed coords.) = (scalar in moving coords.)
- d (scalar in moving coords.)
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incident beam. Eq.(5) is applied to the region bounded by

the outer surface of the object and a concentric surface R

enclosing the object. In two or three dimensicnal problems

the surface R is oonveniently chosen to be a cylinder or

sphere respectively, having a radius large compared with

the dimension of the object and the wavelength. The

boundary conditions at infinity are assumed to be perfect

absorption. One-dimensional problems have been treated in

detail elsewhere (23 ) and will not be discussed here. The

outer normal in both instances is considered positive.

By virtue of Eqs.(4) (5), and (7), the left-hand member

of Eq.(6) integrated over the surface of the object

yields the force on the object:

-.h
F =-f L dA + p dA * uu, (8)

obj. av obj.

The surface surrounding the scattering obstacle is suf-

ficiently far from the scattering region so that over most

of this surface there is no interference between the

incident and scattered waves: hence, on this outer sur-

face, Lay will differ from zero only in an arbitrarily

small region of interference. The integration over R of

the left member of Eq.(5) yields, therefore,

po dA uu . (9)
R

Since, by Eq.(5) the sum of (8) and (9) must be zero we find

F = -Po j dAr u'u,
R
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or, since L av 0 on R and u-LR, the force may be ex-

pressed in terms of the field momentum vector P:

F = -J IlP dA, (11)
R

or the field intensity:

F = -- dA. (12)
c R

A complex drag coefficient d1 may be defined, the

real part representing the component of the force per

unit projected area which lies in the direction of the

incident field momentum Po, and imaginary part the com-

ponent at right angles to Po. It is convenient to ex-

press d-*in terms of the total power scattered rs, the

total power absorbed ~a, and the magnitude of the scattered

intensity 7, all expressed per unit incident intensity.

If 9 is the angle formed by the incident and scattered

intensities and s is the projected area of the object we

find:
a 1 ,d = +4s- ' y cos 9 dA (13)

-J 7 sin 9 dA.
s

If the scattering object has an axis of symmetry coin-

ciding with the incident wave normal, d is real and

d d1  s + - f 7 cos 9 dAj. (14)

Eq.(1•, was used for computing the values of dl for
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progressive waves given in Table IV. Asymptotic expressions

for y, as given by Rayleigh(2 4 ) in the low frequency approx-

imation, were used to calculate dl for spheres and cylinders

of o mass. The appropriate dipole term was subtracted

for the case of 0 mass, the incorrect assumption being made

that the obstacle moves with the fluid.

The coefficient dl for standing waves was evaluated

integrating the space maximum time-averaged pressure in

fixed coordinates(1 ) over the surface of the obstacle.

King(19 ) has obtained expressions for the radiation

pressure on spheres. In the low frequency approximation

our results agree exactly in the traveling wave case.

The force on rigid objects of any shape can be

evaluated provided the object is small compared with the

wavelength. To accomplish this, the technique applied by

Lamb(25) to the scattering of sound by an obstacle of any

form can be applied.

TABLE IV

Wave Drag Coefficient

a = radius. of object k = wave number

Object Mass Progressive Maximum Value in
Wave Standing Wave

_--1 (ka)- 8-k
phere J9 a

8 40 .8(ka) 0

52 (ka) 3 ka
Cylinder 3 )

0 8(ka) 0



-64-

We now consider absorption of energy by the boundary

layer and its influence on the force communicated to the

object. In order to have a definite problem at hand, we

shall consider a rigid sphere with a radius much smaller

than the wavelength. Let us, however, consider the forces

which act on the outer surface of the acoustical boundary

layer rather than at, the -surface of the sphere. To simplify

the problem, only viscous losses will be considered. The

effect of viscous losses will be to bring in the term-a

in the expression for the drag coefficient.

For a small sphere (ka ' l) the fraction of the in-

cident energy which is lost through viscous action is,

approximately, 6v 2
ca

v being the kinematic viscosity and c the velocity of

sound. Thus that part of the coefficient due solely to

viscous absorption, is

a 6v(15)
s ca

The conditions for equality between the expression (15)

and the coefficient arising from scattering by the rigid

sphere is obtained by setting dl from Table IV equal to

Eq.(15): 11 4(ka) 6v
9 ca

for traveling waves, and

8 6vka.= --
3 ca

for standing waves.
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Recently several publications(26)(27) have appeared

in which the drift of aerosols under the influence of sound

has been discussed in terms of radiation pressure. Thus

it would be of interest to obtain numerical values for

the equalities (16) and (17). For a frequency of 10,000

cps in air the radius for equality is of the order of 20

microns for standing waves and 100 microns for traveling

waves.

The author has recently(1 ) predicted a steady force

which should occur as a result of the temperature de-

pendence of the viscosity. This we call the Stokes-type

force and it is supposed to be exerted in a direction op-

posite to the intensity vector. The author derived an

expression relating this force to the intensity of a sound

wave in a gas. He assumed a temperature dependence of the

viscosity given by simple kinetic considerations and thus

based his derivation on the assumption that the viscosity

varied with the 1/2 power of the temperature, (in reality

the variation is according to a higher power but this

does not influence the order of magnitude of the results.)

For a plane progressive wave the drag coefficient

associated with the Stokes force is

SY (16)
2  ca ca

where Y indicates the ratio of specific heats which has

been assumed to be 1.4 for air. We now see that d2 will be

smaller than the d1 of Eq.(15) and that, subject to the
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uncertainty in the true value of dl, the direct measure-

ments of d 2 may not prove feasible.

In the discussion of this section we have tacitly

assumed that the instantaneous temperature of the object

followed that of the medium. To have assumed otherwise

would have added unnecessarily to the complexity of the

problem.

4. The Oseen-type Forces

The force acting on a sphere moving at a constant

velocity relative to a viscous medium can be written to

include a term depending on the square of the velocity u:

Force = 6vrrou 1 + k IuJ (17)

where the first term is the well known Stokes law, and

the second term involves a constant k that is usually

determined experimentally. In steady flow, k is given

approximately by Oseen's second approximation to the re-

lation for the drag on a sphere. The relation (17) is

usually expressed by giving the hydrodynamic drag coef-

ficient which is defined to be the ratio of the force

divided by the projected area of the sphere and the kinetic

energy density of the fluid. If C is the drag coefficient

then, to within Oseen's approximation, Eq.(17) may be ex-

pressed as:
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C = 24R-1 1 + = 24R - 1 + D (18)

where R is the Reynold's number for the sphere. The de-

gree to which Eq.(18) conforms to the facts can be seen

in Fig. (30)which is taken from Prandtl end Tietjens (28)

The dotted line is a plot of Eq.(18) whereas the solid curve

represents experimental data. It can be seen that the

deviation from Stokes' law is definitely noticeable

fbr a Reynold's number of about 1. It is also evident

that Eq.(18) does not fit the facts to well for R > 1.

Goldstein(29) has obtained an expansion from which values

of C can be calculated for R as high as 2. His expansion

is

- 1  3 19 2  71 3 30179 4 122519 .5•
2R 1 + R - 12 + 20480  346400 + 50742400 -

(19)
The first term in the series, 24R -1 , is the value ob-

tained by Stokes' and the second approximation, Eq.(18)

was obtained by Oseen. Due to the complexity of Eq.(19)

we shall not consider it further.

Inasmuch as Oseen's approximation appears to account

in a crude way for the facts of steady flow, it is natural'

to ask to what degree the approximations will hold for

non-steady flow. The point of view adopted in this and

the succeeding chapter has been to adopt Oseen's approxi-

mation as a point of reference against which experimental

results may be compared. In order to carry this program

out we first assume Oseen's law to be instantaneously
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applicable and proceed to derive the consequences of this

assumption for non-steady flow.

It may be worth pointing out that for most of the

experiments we have done, the objects have been so small

and the frequencies so low that the first order acceler-

ation forces are of the same order or smaller than the

first order viscous forces. The time average of the first

order acceleration force is zero in a periodic wave. We

neglect second order acceleration forces. The acceleration

forces are tied up with the virtual mass of the sphere. It

is possible that the virtual mass is very much reduced

under the influence of large alternating amplitudes. This

latter point is discussed further in Section 2 of Chapter VII.

It is easy to see that if u is pe'riodic and has a zero

average value, the first term in Eq.(17) contributes

nothing to the average value of the force. Whether the

second term contributes to the average or not depends

on whether the average

J u luldt = u u (20)

is different from zero. Following Baerwald (see Appendix IV)

we shall call the average represented by ul ulthe Oseen-

type moment. There are an infinite variety of periodic wave

forms which havean Oseen-type moment different from zero.

One of the simplest is obtained by combining two harmonically

related waves in proper phase as indicated in Fig. 32. The

average force on a. sphere resulting from an assumption of
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Eq.(18) in conjunction with this wave ha.- been worked out

as a simple example. In this case k is easily expressed

in terms of D, the difference between Oseen's value of

C and Stokes' value for the same quantity

aD 4.5a
k = 12v = 12v

A more general wave than that depicted in Fig. 32 is

obtained by considering as adjustable parameters f, the

fraction of second harmonic and 0, the relative phase

angle between the fundamental and second harmonic. Such

a wave form would be the following:

u = uo sin wt + f sin(2wt + 4)]

This wave form is illustrated in the Figures 57 to 60

copied from one of Rider's handbooks (30 ) . These figures

can be used to adjust for desired waveform in case no

calibrated phase controls are at hand. An expression for

the Oseen-type moment of this more general wave is obtained

in Appendix III for special values of f and 4. The results

of Appendix III supplemented with calculations performed

by the Joint Computing Group indicate that the normalized

Oseen-type moment of this wave can be expressed as the pro-

duct of two functions

u ul-ulu = G(f ) (0)

= -G(f)sin
Here G(f) is a function of f alone and 4 is a function

only of the phase angle. The function G is plotted in Fig. 33.
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It is considerably neater to deal directly with the wave

drag coefficient, d3 instead of the force. For this more

general wave, then, the coefficient d turns out to be

S GO -4 .5 G sin0 (21)d3 =  D =  2 G211 + f 1 + f2

for a plane progressive wave.

The factor (1 + f2) in the denominator is proportional

to the energy density in the wave. The function G is shown

in Appendix III to be given by the following expression:

G ~ x 1-x2 + fx(3-2x2 ) - 2 x ; 1- [2x2_ ] - y(l+f2) (22)

where x = cos y

y = 1/2 cos -  - ( 1+8f2 - 1)

Approximate and asymptotic expressions for G are easily

found to be

G P4f as f -9-0
3v

G -~ 3 - 1/3 • .287 for f = 1 (23)

G 1 X.318 as f--wo

From these relations we see that the drag coefficient

varies inversely with the harmonic fraction, f, for small f,

whereas for large f, d3 varies inversely with the square off.

This means that d3 will have a maximum with respect to f, as

is evident from Fig. 43 in Chapter VI where the negative
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logarithm of DW = Id31 is plotted as a function of f,

f being expressed in decibels.

H. G. Baerwald has recently checked the maximum value

of our calculated d3 and he has extended the calculations

to a waveform containing three harmonic components. His

results which were privately communicated to the author

appear in Appendix IV. He found an appreciable increase in

the wave drag coefficient upon addition of the third

harmonic. Baerwald defined an "efficiency ratio"nt which

is the ratio of the Oseen-type moment to the power moment,

2u . In terms of this ratio, our partial wave drag coef-

ficient d3 is equal to 2.25 V\ . From Appendix IV we find

that the maximum values of *1 are .325 for two harmonic

components and .487 for three. In a letter to the author

Baerwald comments as follows:

"I had expected an appreciable increase of the 'wave
coefficient' upon addition of the third harmonic, as this
would tend both to enhance the sharpness of the pulse shape
at the in-phase point and to promote interference can-
cellation elsewhere. I wonder whether a different choice
of two harmonics added to the fundamental would improve
the result?

The combination of a larger number of harmonic oom-
ponents is probably quite academic as far as application
is concerned, and the corresponding calculation would be
rather cumbersome and boring; I understand that there
are quite a few harmonic synthetizers around and with such
a gadget in combination with a cathode ray tube, photo-
cell and some electronic circuitry, the whole matter could
be tackled automatically in no time - but would it worth
the effort?"

The experiments discussed in Chapter VI involve measuring

the force on a pendulum fashioned by hanging-a sphere from a
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small cylindrical wire or thread. In order to know the

fbrce acting on the sphere, the force which is exerted on

the cylinder must be known. Calculations similar to the

ones just carried out for the sphere are difficult to

duplicate for the cylinder because of the nature of the

steady flow resistance law for cylinders. Lamb's(25) re-

lation for the drag on a cylinder expressed in terms of

the force per unit length is:

F/a= -47rU (24)
UaIn 1- - 0.0772

where I and a are the length and radius, respectively of

the cylinder, p. is the viscosity and U the velocity, This

relation which holds only forsmall Reynold's number is

plotted in Fig. 31.. It is apparent that the drag coef-

ficients for cylinders and spheres are not too dissimilar

so that we might expect the Oseen-type forces due to sound

waves to be about equally. strong, on a unit area basis,

for spheres and cylinders, at least in the range of Reynold's

numbers depicted in the .graphs. The analytic difficulty

involved in computing the Oseen-type moment from Eq.(24)

has prompted us to resort to an approximation. Instead

of assuming the velocity waveforms to be compounded of

two harmonically related sinusoids, we have used the

rectangular wave depicted in Fig. 36. This wave, inserted

into Eq.(24) leads to values of the drag coefficient (re-

member the projected area of a cylinder is 2r2) which are
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a function of the peak Reynold's number as indicated in

Table V:
TABLE V

R0 d3

1 3.78
0.4 2.14
0.04 4.08
0.004 17.3

0.000ooo4 94.2
0.00004 596

Finally we investigate the wave drag coefficient d3

for a sphere in a moving stream of gas or liquid. In Appen-

dix III the Oseen-type moments have been evaluated for a

velocity wave consisting of a constant d-c term in addition

to a sinusoidal component. In the event the amplitude of

the alternating component is less than the d-c term the

velocity may be written

u= o[ 1 + f'sin at] f' 1 (25)

where f' here indicated the modulation index. The Oseen-

type moment of such a wave can be expressed as

u \ul= (1+ f'2/2)u2 (26)

In the event f' >'1 we may write for the velocity

u = u0 [ sin t + f, f 1 (27)

for which case the Oseen-type moment is shown to be

2ujuj= 0(f) u (28)
where 0(f) = ' (1+2f2)sin - l f + 3f -f2



and P for f< l,

A(M) = 3/2

By means of Eq.(26) and the fact that Eq.(25) can be

written as
u = (f'u) L 1/f' + sin ct,

A(f) can be defined for any f >/ 0. A plot of P is given

in Fig. (34).

We are not too much interested in the total force

experienced by the object in a combined sonic and flow

field. If we were, we would also have to take Stokes'

law into account. What we want is the additional force

caused by the interaction of the sonic and flow fields.

Thus it is neccessary to subtract from Eq.(28), f2, the

Oseen moment of the d-c flow field. This leads to a dif-

ferential P, called 0d and given by:

Pd = P- f2  (29)

from which we can obtain the wave drag coefficient per-

taining to a sinusoidal wave in the presence of steady

flow:

d3 = COd = 4.5Pd for f < 1

and (30)d =C= 2.25 for f •(1
3 2

Thus a d3 has been found which represents the interaction

force per unit project area divided by the acoustic (not in-

cluding the steady flow kinetic energy) energy density. From

Eqs.(30) it is seen that d3 depends through 0d on the steady

flow fraction f provided this fraction is less than unity.
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If f > 1 the drag coefficient is a constant. In the ex-

periments described in Chapter VI the flow velocity was

maintained at a fixed value, while f was varied by changing

the sound pressure level. In the experiments combining flow

and sound the condition f ((l was realized so that over the

available experimental range

d3 = 4.5 d and f(<(l1

O 4.50 by virtue of Eq.(29)

S18f by virtue of Eq. (28)

The negative logarithm of d3 obtained from Eqs.(30)

has been plotted as a function of the sound pressure level

in Figs.46 and 47, the values of the flow velocity being

indicated along side the solid curves tothich they pertain.

When dealing with one dimensional standing waves, the

wave drag coefficient is a function of where in the wave

one is. In waveforms consisting of a fundamental and

second harmonic component the coefficient has positions

of maxima and minima which occur roughly a eigth of a

wavelength apart. In a perfect standing wave d3 is zero

at the velocity nodes of the fundamental and second harmonic

components. The positions of maxima in d depend on the

relative amplitudes to which the two modes are excited. If

the second harmonic mode is excited to 1/3 or less of the

strength of the fundamental, the positions of the maxima in

d become essentially independent of the relative amplitudesof



the two modes. In this case if x is the distance from

the hard termination, the coefficient d and hence the

force vary according to

+ sin kx sin 2kx

The sign in this expression depends on the relative phase

angle between the harmonics, and the fundamental com-

ponent. The modulus of the above quantity has maxima

at x = (+0.152 + n/2)W, n = 1, 2, .... These results

should be compared with the x dependence of the radiation

pressure due to a single mode of wave number k. If a

positive force lies in the +x direction, then the classical

radiation pressure force varies according to

sin 2kx

which has a maximum modulus at x = (1/8 + n/4)A, n = 1, 2,...

Thus the behavior of the Oseen-type force in a standing wave

is very similar to the radiation pressure force except

that the Oseen force can act either in the same direction as

radiation pressure or in the opposite direction.

In Fig. 35 we have compared the three types of forces

discussed so far. The chart is primarily intended to convey

orders of magnitude and it pertains to spheres and wave

numbers for which kr (<< . Traveling waves as well as

standing waves have been treated. The curves for radiation

pertain to the ýClassical radiation pressure. The order

of magnitude of the radiation pressure when modified by

visoous losses may approach that of the Stokes' type force

as discussed in Section 3 of this chapter.
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CHAPTER VI

AN EXPERIMENTAL DETERMINATION OF THE-WAVE DRAG COEFFICIENT

ON SPHERES AND CYLINDERS

1. Introduction

The measurements of the average force exerted on

small spheres and cylinders in a plane wave acoustic field

are described in this chapter. Due to basic limitations

imposed by the available instruments, the measurements

were restricted to spheres having a radius of about 100

microns (0l 2cm). Cylinders having a radius of 1/2 and

7 microns were investigated.

The experimental technique is discussed in Section 2.

Most of the equipment associated with the orifice ex-

periments was used in these measurements. Early measure-

ments of the average force caused by a wave containing

second harmonic distortion, are discussed in Section 3.

In these early results the force on the fiber supporting

the sphere was unjustifiably neglected, an omission which

led to measured values of the force on the sphere which

were too large. These early measurements were performed

by Mr. Peter W. Sieck and the author who have jointly re-

ported their preliminary(31) findings. Measurements of the

force on cylinders are reported in Section 7; the results

of these measurements permitted the fiber force to be taken

into account in subsequent measurements with spheres. All

but the early measurements of Section 3 were performed by

-77-
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Mr. Keith Hoyt and the author. The results of some

of these measurements have recently been reported.(32)

The experimentally determined variation of the force

with the second harmonic fraction and with the phase

angle between the harmonic components is discussed in

Section 4, while the results of varying the sound pressure

level are presented in Section 5. In Section 6 results

are presented of measurements made on the forces arising

from the interaction of a steady flow with sounds.

2. Experimental Technique

All measurements of force were obtained by observing

the deflection of a pendulum which was suspended in the

acoustic field. This pendulum was fashioned out of spheres

and cylinders. Fig. 37 illustrates how a sphorical particle

was suspended so as to hang on the axis of the horizontal

three inches in diameter. A loudspeaker is fixed to

one end of the tube about 1 meter from the sphere. The

opposite end of the tube is terminated with a 1-meter

long pc fiberglass wedge (described in Section 2 of Chapter

II) whose tip was 1 meter from the sphere.

The whole tube assembly is tightly sealed with modelling

clay. Sound pressure measurements were obtained using one

section of a Brush rochelle salt cell placed in the tube

about two feet from the sphere. Before each measurement, this

microphone was calibrated in situ at each frequency for which
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measurements were to be obtained. The calibration was

a comparative procedure utilizing a Western Electric

640-AA having its diaphragm flush with the inside walls

of the tube.

The deflection of the pendulum was observed through

a plane glass port in one section of the tube. The magnitude

of the deflection was ascertained by viewing the foot

of the pendulum through a low powered microscope equipped

with an eyepiece which included a scale.

The basic equipment is illustrated in the Block Diagram

of Fig 37. In the photograph of Fig. 18, the microscope

can be seen in place, just to the right of the attenuators.

The flow metering apparatus was used in connection with the

interaction experiments described in Section 6. In the

lower righthand corner, the 640-AA microphone can be seen

projecting into the tube.

Two loudspeakers, each with their separate amplifiers,

were sometimes used instead of one; this was usually done

in measurements involving two harmonics. The two speakers,

coupled to the left end of the tube, are partially visible

in Fig. 18. The black spoked wheel-like object in the right

center part of the photograph is an acoustical delay line

employed to vary the relative phase between the two harmonic

components. This delay line was used only when accurate

values of the phase angle different from + 7/2 were required

as was the case for the results reported in Section 4.
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In most of the experiment the relative phase of the

second harmonic was adjusted so that 4 = + 7/2; this was

done by a convenient electronic phase shifting circuit due

to Baruch(3) . The schematic diagrams of the electronic

phase control apparatus, and two of the frequency doubler

circuits used are given if Figs. 38a, b, and c. The elec-

tronic doubler and phase shifter were incorporated on a

single chassis. The crystal doubler was connected directly

to the Western Electric 555 which drove the acoustic de-

lay line. All phase adjustments were made with reference

to 4 = + r/2; the + 7/2 adjustment being obtained with the

aid of an oscilloscope which was connected to the output

of the microphone. This adjustment was not independent of

amplitude; hence it was necessary to make the adjustment

whenever the amplitude of either harmonic component was

-changed.

The 'maximum' available sound pressure level

and the particle displacement amplitude measured for two

kinds of loudspeaker units are plotted in Fig. 39. These

measurements were made for progressive waves. If these

maximum levels are exceeded, a fairly poor wave form is

observed on the oscilloscope.

In all experiments the mass reactance of the spheres

was sufficient to prevent the sphere from following the

oscillatory motion of the medium;(1) this was not so for

the supporting fiber.
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In computing from the deflection of the pendulum

the force exerted on the sphere from the deflection of the

pendulum, it was necessary to correct for the weight of

the supporting fiber as well as for the force exerted

on the fiber by the acoustic wave.

For the measurements in a standing wave, the pen-

dulum was maintained at a fixed distance of cm from the

hard termination which replaced the pc cone. It was

found necessary to adjust the frequencies slightly

of the tube resonance, which reduced the steady cir-

culations in the tube to a point where they did not

cause disturbing forces on the pendulum.

3. Early Experimental Results

The first experiments consisted of qualitative

observations on the behavior of a wax sphere 137 microns

in radius. The sphere was hung from a nylon strand 3.5

microns long, which had a radius of 7 microns. When the

sound consisted of a combination of two tones, one having

almost twice the frequency of the other, the sphere

would oscillate about its equilibrium position with a

period that corresponded to the pernbc of the audible beats

between the two tones.

Fine cork particles were introduced into the tube and

the typical Kundt's dust figures were observed to form.

That is, these cork particles distributed themselves into

a series of fine striations, like ribs, across the bottom
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of the tube. As described by Wood ( 3 4 ) for the case of

a standing wave: "This rib-like structure is seen to con-

sist of thin laminae formed of small dust particles in

vigorous vibrations". However, for a traveling wave we

observed that these ribs progressed slowly in the direction

of propagation of the wave. By introducing a second

harmonic component, the migration of the rib-like structures

could be reversed in:direction.

A quantitative measurement was next performed with

the pendulum described in the first paragraph of this

section. The results (3 1) are given in Fig. 40. In this

experiment the amplitude of the 400 cps fundamental sound

pressure level was maintained constant at 131 decibels.

Two oscillators were used and as the phase varies slowly,

the particle is observed to oscillate slowly about its

equilbrium position. The maximum values of the positive

and negative swings are plotted (a positive swing is

away from the source) as a function of the harmonic fraction

in decibels. Theequilibrium position of the particle is

very closely the position assumed by the particle inthe

absence of a sound field; the reason the two positions are

not exactly alike is due to the fact that any large ampli-

tude wave is likely to contain second harmonic distortion

which will give a 'background force'. The drag coefficient

evaluated from these measurements at f = -4db has been plotted

in Fig. 43 as a star. This point lies above the theoretical
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curve and later experimental data, due to the fact that

the force acting on the supporting fiber has been neglected.

In analyzing subsequent data, corrections either were ap-

plied to account for this fiber force, or else it was as-

certained thatthis force could be neglected in comparison

with other experimental uncertainties.

A qualitative experiment was next performed to de-

termine roughly the space dependence of this force

along the length of a one-dimensional standing wave. The

standing was set up in a transparent plexiglass tube with

a hard termination. The phase was adjusted so as to render

a force in a direction opposite to that which would be

caused bu radiation pressure. The pendulum was hung from

a small magnet keeper whose position in the tube coincided

with the position of an external magnet to which the keeper

was attracted. Both the steady deflection of the pendulum

from its equilibrium position, and the vibratory amplitude

of the fiber were noted. These quantities are plotted in

Fig. 41. It is evident that the second harmonic fraction

is quite small, since the curve of fiber velocity amplitude

shows no evidence of second harmonic distortion.

Other qualitative experiments were made in order to.

see if free spheres could be supported against gravity. It

was found that polystyrene spheres from 5 to 20 microns

in diameter could be supported in a field estimated to be

of 150 db strength.
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A series of experiments were performed to determine

whether asymmetry in the sphere or in its aspect or mounting

influenced the brce. The results are shown in Fig. 42,

where - logid 3 has been plotted for various angular orien-

tations 9 of the pendulum. The angle 9 is an arbitrary

angle of rotation of the supporting fiber about its own

axis. It is evident that the force is independent of 9.

4. The Variation of - logldzwith f and 4

Detailed measurements were undertaken to determine

the dependence of the partial drag coefficient, d3, on

the fractional harmonic content f and on the phase 0.

In Fig. 43 the experiments with f as variable are compared

with the theory developed in the preceding chapter. The

general shape of the experimental curve agrees with theory

in having a broad maximum. The experimental maximum however

comes at too large a value of f. Furthermore for f values

less than -4db, the experimental values appear to be 0.5

greater than the theoretical curve.

As discussed in Section 5, d3 has been found to vary

both with the frequency and with the sound pressure level.

In view of this fact the results presented in this section

can be considered to constitute fairly good agreement with

the simplified theory which does not itself explain why d3

should vary with either the frequency or the intensity of

the wave.
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In Fig. 44 some experimental data are given holding f

constant and varying 0 . Theoretical curves are plotted

for varying percentages of the second harmonic.distortion.

The results of two experiments have been plotted. Data

plotted as circles and plus marks were obtained with

f = -6db while the squares and crosses refer to data taken

with f = -13 db. The plus and cross marks refer to data

obtained with 0 positive while the circles and squares

signify negative phase angles. All the data plotted in

Fig. 44 were obtained using a 340 cps fundamental sound

pressure level of 134 decibels. As with the previous

results these experimental points again show that the

measured force is less than that predicted by theory.

However, the shape of the experimental curve agrees reason-

ably well with the theoretical curves.

At this point it is well worth remembering that the

scale in Figs. 43 and 44 is considerably expanded com-

pared to the scale in Fig. 35. The complete extent of

the abscissa of Figs 43 and 44 corresponds to about two

divisions in Fig. 35. We see from this fact that the magni-

tude of the Oseen-type force will not depend critically

on the phase angle 0. It is also possible for the Oseen

force to be relatively strong even for waves having

as low as 1 per cent second harmonic distortion.
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5. The Wave Drag Coefficient Versus Sound Pressure Level

and Frequency

The measurements of the wave drag coefficient dis-

cussed in this, and subsequent sections, were taken as

a function of the sound pressure level of the fundamental

wave component. Three discrete fundamental frequencies

were used; the frequencies being generally in the neigh-

borhood of 200, 340, and 600 cps. The measurements

involving second harmonic distortion were performed with

a constant f of -3 decibels, that is the second harmonic

distortion was 71 per cent. The data presented were

evaluated by averaging the wave coefficient measured at

0 = +w/a with that measured at P = -7/2.

The experiments illustrating the interaction of steady

flow with sound,were made by holding the steady flow

velocity constant; this means that the flow fraction, f, is

a function of the sound pressure level. The theoretical

drag coefficient, therefore will be in this case a function

of the sound pressure level.

Special attention should be payed to the way in

which data obtained in standing waves has been presented.

As mentioned in the footnote of Section 2, Chapter V, d3

is here evaluated for standing waves by dividing the force,

not by the energy density but by the local kinetic energy

density multiplied by two. Furthermore by sound pressure

level we mean the sound pressure level of an equivalent

progressive wave which has the same average kinetic energy
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density as the standing wave at the position of the object.

These conventions permit us to represent on the same figure

the measurements obtained in stationary as well as pro-

gressive waves.

In iPig.45 results are given for measurements taken

in a progressive wave containing a fundamental and a

second harmonic component. The data pertain to a sphere

105 microns in radius supported on a 1 miron diameter

platinum Wollaston wire. The results have not been

corrected for the fiber force. Such a correction would

add about 0.1 to the experimental curves.

A characteristic of these results is that - log Dw

appears to be much greater than theory predicts (force too

small) unless the medium displacement amplitude.exceeds

about 3 sphere diameters; in which case, within the

limits imposed by the dynamic range of the experiment,

- log D appears to level off to a value which depends on

frequency. This constant value increases with increasing

frequency. A linear extrapolation of-log D to zero fre-

quency gives .45, a value about .3 greater than the theory

(drag too small by a factor of 1/2). This extrapolation

was made for a sound pressure level of about 140 db. One

can estimate from Fig. 56 that a sphere of 105 micron radius

in such a sound field, has a peak Reynold's number of about

10. From Fig. 30 it can be seen that the Oseen theory
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predicts drags at a Reynold's number of 10, which are

high by a factor of about 2. Thus, it appears that for

sufficiently large particle displacement amplitudes,

the zero frequency extrapolation of the average drag

coefficient measured in a periodic velocity field is

given fairly closely by the theory. The implications

of this agreement are discussed in Section 1 of Chapter VII

where indirect evidence is presented which suggests

that the virtual mass of the sphere is reduced whenever

S' d.

The differential force due to the superposition of

a sound wave on a steady flow field has been measured,

these results appear in Fig. 46 in terms of the negative

logarithm of DW (which might in this instance be called

a differential drag coefficient indicative of the fact

that it represents the difference in the force acting with

and without sound). Theoretical curves are plotted for

uniform and parabolic d-c flow distributions. Notice

that the experimental values bear a relAtion to the

theoretical curves which is very similar to that found

in Fig. 45. Further results obtained in a stationary

wave are given in Fig. 47. A correction for the fiber

force cannot be applied to the data of Figs. 46 and 47

unless it is assumed that the same correction is appli-

cable which pertains to the data of Fig. 45. No direct

measurement of the differential drag coefficient for the

supporting fiber was made.
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The drag coefficient for the Wollaston Wire suspension

was measured for a sound field containing second harmonic

distortion (f = - 3db). It was necessary to consider

the oscillatory motion of the fine wire. The experimental

points and the dashed curves in Fig. 48 represent data

which have not been corrected for fiber motion. The

corrected experimental curves are plotted in solid lines;

The corrected curves are more in accord with the results

presented previously for spheres than are the uncorrected

curves. The nature of the correction for motion of the

object is best understood by rrblizing that the corrected

d represents the force per unit average kinetic energy

density times two, where the kinetic energy is evaluated

in the coordinates of the oscillating wire. The ordinate

then corresponds to the sound pressure level of an equiva-

lent progressive wave whose energy density just equals

2Tav. Stated another way, the corrected d is the d that

would be measured if the wire were infinitely massive and

thus incapable of oscillating with the medium.

Strictly speaking it is necessary to measure both

the amplitude and the phase of the fiber oscillations with

respect to the medium. Only amplitude was measured, and

these results are given in Fig. 50. The correction for

fiber motion was based on the assumption that the relative
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velocity amplitude of the fiber and medium was equal to

the medium velocity amplitude diminished by the fiber

velocity amplitude. The validity of this assumption

should be determined. Furthermore a curve such as

Fig. 50 should be determined for several values of the

sound pressure level.

The drag coefficient for a nylon fiber is given in Fig.

49. As can be seen from Fig. 51, the nylon fiber did

not vibrate appreciably with the- medium, and for this

reason no correction was applied to the data of-Fig. 49

for fiber motion.

The wave drag coefficient on a cylinder appears not

to stabilize until the ratio qo/d reaches roughly 102

at which point the peak Reynold's number at 300 cps is about
-210-2 for the Wollaston wire, and about 2 for the Nylon

strand. Thus the observation that the drag coefficient for

the Nylon does not approach the theoretical value as

closely as it does for the Wollaston wire may be due to

the fact illustrated in Fig. 31 that the steady flow

theory for cylinder represents reality rather poorly

for a Reyonld's number greater than one.
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CHAPTER VII

SIGNIFICANCE OF THE RESULTS

1. The Virtual Mass of an Oscillating Sphere

In this and the following sections we shall draw

some conclusions about the oscillating sphere by com-

paring the non-linear behavior of the sphere with that

of the orifice.

In Fig. 52 we have plotted on the same curve

quantities proportional to the fractional reduction in

the orifice as well as a quantity proportional to the

drag coefficient for the sphere. The data are given

for experiments carried out both with and without

d-c flow velocity. The ordinate is a dimensionless

particle displacement parameter obtained by dividing

the effective displacement amplitude by the effective

length dc the object. In the absence of d-c flow the

effective displacement amplitude is the amplitude of

the fundamental component of the particle displacement.

(This definition would need to be modified whenever the

second harmonic exceeded the fundamental). When there

is steady flow, the effective displacement amplitude

is defined either as above, or as the ratio of the

average distance travelled by the medium in one period

of the wave, depending on which of the two definitions

leads to the larger value. The effective length of the

-91-
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orifice is the sum of the diameter and the thickness of

the orifice. The effective length of the sphere is its

diameter.

The quantities plotted in Fig. 52 are:

sNL--, the ratio of the reduction in the orifice
mass NL expressed as an effective end correction, di-

vided by the diameter of the o'ifice;

X - XL

X. , the ratio of the reduction in the ori-

Ace reactance, from its linear value X2, divided by XL;

(2 DW)meas.
W)theo., the ratio of twice the measured

wave drag coefficient for the sphere divided by the

theoretical value for this quantity obtained in Chapter V.

For the rough comparison we wish to, make, it

L X - XLis justifiable to consider d and XL as beingd a XL
a measure of the same quantity.

From the results plotted in Fig. 52 we see that the

fractional reduction of the orifice reactance and quantity

2(D )meas for the sphere, vary in a similar way with the
2(Dw theo

particle displacement parameter. Both these quantities

tend to approach a constant value which is reached approxi-

mately when the effective particle displacement is the same

order of magnitude as the effective dimension of the object.
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Since the reactance of the orifice is proportional

to its kinetic mass, we see as mentioned in Section 6

of Chapter IV that the kinetic mass of the orifice is

considerably reduced at large amplitudes.

We may now ask whether the virtual mass of the sphere

is reduced at large amplitudes by the same mechanism which is

responsible for reducing the kinetic mass of the orifice.

There are two considerations which make this supposition

plausible. Wewfirst examine (35) the general hydrodynamic

equation:

+ (u V)u - v v(. u) +F

(1)

where v is the kinematic viscosity assumed to be constant, p

is the density, and u the velocity. We assume all body

forces, F are zero and we assume that the fluid is in-

compressible;hence
V.u 0

and Eq.(l) becomes

+ (u. )u + -p v2u = 0 (2)

If the first two terms of Eq.(2) are omitted the

remaining equation leads to Stokes' solution when ap-

plied to a sphere. The omission of the first term im-

plies the steady state; while the omission of the second

term linearizes the equation.

Oseen's extension(25) of Stokes' solution provides
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a rough approximation to the time independent solution of

Eq.(2). Oseen's solution includes for a sphere the in-

fluence of the second order term. No solution in the

literature has been found for the oscillatory case which

includes the effects of the second order term.

The acceleration forces are represented by the term

-t". This term is also responsible for the radiation re-

actance of an oscillating sphere from Eq.(7) of Chapter III.

If it is true that at larg amplitudes of oscillation

the radiation reactance of the sphere is diminished (just

as for the orifice,) one would conclude that the influence

of the local acceleration term, had diminished corre-

spondingly. Thus a treatment which neglected altogether

the local acceleration forces, might be expected to

agree approximately with experiments performed at large

amplitudes, even though such a treatment represented

poorly the- results of experiments performed at low am-

plitudes. We have seen that the experimental results

discussed in Chapter V bear out this point of view.

It is possible to apply the coherence criterion

of Section 6 of Chapter IV to the virtual mass of the

sphere. The kinetic mass of a sphere which is siall com-

pared with the wavelength, is 1/2 mass of the fluid dis-

placed by the sphere. This mass is for the most part

concentrated in the vicinity of the sphere. When the

particle displacement amplitude approaches the diameter
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of the sphere, it is reasonable to assume that the co-

herence of this mass will be diminished. For flows

having a low peak Reynold's number the reduction in

the mass results from the irreversible nature of Oseen's

solution. The wake formed periodically on either side of

the sphere plays a role similar to the jet in the case

of the orifice. The kinetic mass in the region of

the wake will be diminished. Just as with the jet,

the coherent reaction of the fluid which is undisturbed

by the wake can be considered to take place across the

free boundary separating the wake from the rest of the

fluid; fbr this reason the radiation reactance of the

sphere should not vanish completely as the particle

displacement amplitude increases at least not

until compressibility effects become important.

2. The Non-Linear and Differential Absorption Cross-

Section of a Small Sphere

In addition to the usual viscous and thermal boundary

losses, other losses at the sphere will occur either at

large acoustic ampliutdes (non-linear absorption) or at

small ampliutdes provided the sphere drifts through the

medium (differential absorption).

By methods analogous to those employed to ascertain

the non-linear losses in orifices, we find that the non-

linear absorption cross-section for a sphere, based on the
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Oseen force, is
6 NL = 9a2uo/c (3)

In the above formula a is the radius of the sphere, u0

the particle velocity amplitude of the wave and c the velo-

city of sound.

The differential absorption cross-section for steady

flow in the same direction asthe wave vector, is

6 D = 14.1 r 2 Udc/C (4)

provided the drift velocity exceeds the alternating

velocity amplitude. The differential cross-section is

proportional to the ratio of the drift velocity ude to

the sonic velocity.

Now it must be emphasized that Eqs.(3) and (4) are

based on Oseen's theory and we have seen that the appli-

cation of this theory to periodic flows is approximately

valid only for low frequencies and for large particle

displacements. In the absence of direct measurements

a better approximation to aNL and 4D might be based on

experimentally determined value of the wave drag coeff-

icient. One might modify Eqs. (3) and (4) by multiplying

them by the ratio of the experimental value of the wave

drag coefficient to its theoretical value.

3. Floating Particles with Sound

The Oseen-type force can be used to support particles

against gravity. For this purpose a wave compounded of the
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fundamental and second harmonic components can be used.

A chart, based on the theory of Chapter V, is given in

Fig. 53 which relates the radius of the sphere to the

total sound pressure level theoretically required to

support the sphere. In actual experiments the sound

pressure level would have to be greater for two

reasons. First the actual wave drag coefficient at a

constant sound pressure level decreases with increasing

frequency.- Secondly at sufficiently low frequencies the

sphere will begin to oscillate with the medium; this

has the effect of reducing the sound particle velocity

with reference to the sphere and hence the force on the

sphere is reduced. From these considerations we see

that for a sphere with a specified radius and density,

there is at any given sound pressure level an optimum

frequency which will maximize the force acting on the

particle.

4. Free Fall Velocity in a Sound Field

We expect that the terminal velocity of particles

moving under the influence of a steady force will be

modified in the presence of a large amplitude sound wave

travelling parallel to the steady velocity of the particle.

Subject to the same restrictions discussed above in Section 5,

we have shown in Figs. 54 and 55 how the terminal velocity

would theoretically be reduced in case the oscillating
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velocity amplitude were considerably greater than the

velocity of free fall. In this instance the wave has been

assumed sinusoidal so that the additional retarding force

is due to the interaction of the steady flow velocity

with the sonic wave. Fig. 56 which is useful in connection

with Fig. 55 enables the peak Reynold's number to be found

for a sphere in a plane progressive sinusoidal wave

5. Recommendations For Future Work

One of the major results of this work has been the

discovery that bw frequency sound waves can produce strong

forces on small particles. These so-called Oseen-type

forces have been measured for a rather restricted range

of the variables upon which they depend. It would be

valuable to extend the measurements for a wider range

6f the variables. To accomplish this it would be use-

ful to have sources providing~uptol kilowatt of acoustical

power. The forces generated in a periodic and inhomogenous

velocity field could be measured by the techniques we

have developed. For this measurement, the sphere could

be suspended in a simple harmonic standing wave field.

Andrade (36 ) has suggested that steady circulations induced

in the vicinity of small objects have a great deal to do

with the forces on particles in a standing wave.

The effects of asymmetric wave forms on diffusion
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processes in gases and liquids would form an interesting

problem for future work. Diffusion across semi-permeable

membranes might be influenced by wave forms having a

square root type moment.

Controlled experiments should be carried out to

ascertain what part the Oseen-type forces play in the

industrially established sonic agglomeration process.



APPENDIX I

A DERIVATION OF NON-LINEAR RESISTANCE FOR THE ORIFICE

The pressure, p, and the volume velocity, Q, being related

as in p = KQ2 , we wish to show that if p varies sinusoidally, the

non-linear resistance is RNL = KQ . Here Qo stands for the

peak volume velocity amplitude through the orifice.

If p = P sin wt, the magnitude of Q is

/ Q = K-1/2 Po/sin (t/

The instantaneous power is

= p = K-1/2 p3/2 I sin322utl

from which the average power is obtained

K -1/2 p3/2
I' = oT Jdt = o B(5/4, 1/2)

0 B(5/4' 1/2)

The B function is expressible in terms of the /7 functions

B(5/4, 1/2) = 5/4) P( 1.748P = 5/4;+ ,_j/2)=

So that the resistance turns 'out to be

21
R L = 2 =112 KQ (1)

The same result would have been obtained had one computed the

fundamental component of Q and then divided by p.
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APPENDIX II

ACOUSTICAL IMPEDANCE IN TERMS OF ENERGY FUNCTIONS

The acoustical (analogous) driving point impedance of a

lumped acoustical network can be expressed in terms of the

Lagrangian and dissipation functions of the system, a well-

known procedure in electrical network theory. This approach

can easily be extended further to the case of a continuous

medium bounded by a surface of arbitrary impedance. The ex-

tension for a continuum is obtained by expressing the energy

functions in terms of surface and volume integrals. The surface

integrals may be interpreted in terms of an infinite number of

terminal pairs serving to connect the "volume network" to the

"surface network". This procedure facilitates the solution of

certain perturbation problems.

For a one-terminal pair network, E is the complex voltage

amplitude and I the complex current amplitude at the terminal.

In the steady state

1/2E I = Pay + 2jVav- Tav av +  av (1)

in which Pav is the average power dissipated in the network,

and Vav is the quadratic form defined on the loop basis:
I

V a S kI (2)av 4w2 sk s k

Similarly 2
Tav = 1/4 i LskI s k

s,k=l1

F = 1/4 ' R II = 1/2 Py
av sk sskk av

s ,k= 1
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where R, L and S are the resistance, inductance, and elastance

loop parameter matrices respectively; Is and Ik are the current

amplitudes in the sth and kth loops respectively; Qav is the

reactive power supplied by the source. Defined in this manner,

Tav and Vav are, respectively, the average kinetic and potential

energy stored in the network.

In network theory, the driving point impedance of the

network under discussion is given by (6)

2Pa +l 4j(T -V )
(j) = av 2av av(3)

12

= L2Pav + 4jw(Tav - Vav) I=1

The current I can be identified with the volume velocity Q,

and the voltage E with the pressure P at a simple source con-

sidered to be the input of an acoustical network. Z now becomes

an acoustic impedance. In this analogy R, L and S are replaced by

the analogous lumped resistance, mass and compliance.

Two further extensions will be made. The acoustic network

is considered as a continuum, enclosed by a boundary with an

arbitrary impedance ratio. The coupling of the continuum to

the boundary can be effected by an infinite number of properly

positioned terminal pairs. These two steps are formally represented

by expressing the energy functions in terms of volume and surface in-

tegrals. The volume integrals for a dissipationless medium re-

duce to the volume integral of the time average of the Lagrangian

density.

When the medium is isotropic, these integrals are:



T v(vol) = 1 2/ f PJ2d '

Vav(vol) = --1 JPf 2 dV
4pc

By analogy with Eq. 1, the surface integrals result from

integrating the complex power flowing into the boundaries:

P av(surf) = 1/2 Reff POU d•"]
(5)

Tav (surf) - V (surf) -Im f PU dav avIm PUd

where U is the complex particle velocity amplitude.

Eq.(5) can be written in terms of the boundary admittance

since U =qP:

Pav(surf) = 1/2Re fj/p/ 2 d

Tav(surf) - Vav(surf) = lmf 1P 2 d(6)

or, if is independent of position,

Pav(surf) = 1/2 Re •q fIP/ 2 dG
(7)

T (surf) -V (surf) = Im / I PI2 diav av

The acoustic impedance is obtained by substituting

Tav(vol) + Tav(surf) for Ta, V av(vol) + V av(surf) for Vav

and Fav(surf) for F in Eq. (3).

The extension of this technique for systems that consist

of lumped elements in addition to a continuum, or to the coupling

of several continuous systems through one or more terminal pairs,
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is possible. The above results have been obtained by analogy

with a network theorem. A more rigorous development can be

obtained from a simple application of Green's theorem.

Simple examples of the technique described above will be

used to derive, first, the impedance of a spherically symmetric

source and then a correction term for the kinetic energy contained

within a hemisphere, leading to an approximate value for the

end correction. The correction factor for the radiation mass of

an orifice in a tube will also be obtained.

The complex pressure amplitude P due to a source of strength

Qoejot is given by

P Q e- jkr-r (8)

where a is the angular frequency, k = )/c, r is the distance

from the source and p the density. The damping term 0( is

introduced (after the fashion of the screening potential in

the quantum mechanical treatment of the coulombfield) so that

the integrals in Eq.(4) will converge. After performing the

integration,o may be allowed to go to zero so that if the in-

tegration is carried out over the volume bounded by the source

of radius ro and some arbitrary radius R ro we obtain:

2

T (vol) = k 2 (R - r) 1 1

av 16r 0

Obviuosly if all space outside the source is included, R -co

in the integration and T and V become infinite, although the



difference T-V does-not. P may be obtained from the first Eq.(5)I av

evaluated over any fixed surface enclosing the source; this

yields the radiated power.

If Eqs.(9) are introduced into Eq.(3) and R -y , there

results an expression for the rpactance, X, of a spherical

wave emitted by a source of radius ro:

X = (jwp)/(47r 0) (10)

In considering the radiation from a small piston (r << X) in

an infinite baffle, X will have twice the value given by Eq.(10)

plus an additional term due to the kinetic energy of the fluid in

the hemispherical cap covering the piston. This additional

energy will be 2

1/2p2/3rr3 (U, ) 2  1/4p 2/3 (11)

where (U')2 is the space and time average of the square of

the velocity with which the particles in the hemisphere move.

-The weighting constant b can be obtained approximately by

averaging the square of the velocity of the piston with that

at the surface of the hemisphere. This leads to b = (1 + 1/4)/2=5/8.

Hence the extra kinetic energy becomes (5pQo2)/(48)rro) which,

inserted into Eq.(3), leads to the correction to the impedance

(5jwop)/(12rro). The approximate end correction is obtained by

adding the above to twice the value given by Eq.(10):

X 11/12 = 0.29 jm - -
0Tr ro o
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This approximate value is 7.4 per cent higher than the classical

value.

The approximate correction factor (7), 6, for the radiation

mass in a circular tube of radius Rt is obtained by letting

R = Rt in Eqs.(9). The ratio of (Tav - Vav)R=Rt to

('Tav - Vav)R=O gives immediately the low frequency approximation,

= 1 - r /R t , where r o is the orifice radius.



APPENDIX III

CALCULATION OF THE OSEEN-TYPE AVERAGE

1. Wave Form Comprising a Fundamental and Second Harmonic

Component

We wish to obtain the average value of u u , where

u = sin wt - f cos 2wt. We first find the zeros of u to

be the solutions of

cos 2wt =- 1 -1 +  8f2

where the + sign preceding the radical pertains to the

case f < 1, and both + and - are required when f > 1. We

shall only treat the case f < 1. In this case the zeros of

u in increasing order of wt are at

Wt I = 1 cos- L +82 - 1)

Wt2 = 7r - t1

We then obtain readily

1 2 2 2
G - 0 dct + u2 dcuat u dwt21 Lot 1  2

which yield Eq.(21) of Chapter V.

The average value P of ululfor the more general wave

u = sin cot - f sin(2mot + 4), can be expressed as a product

of G(f) and 4(4). The evaluation of 4 for f = 1 is trivial

and leads to 4 = - sin 4. Calculations carried out by the Joint

Computing Group show that g can be represented as a product

of G and 4 for any value of f ) 0 although this has not been

demonstrated analytically.
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APPENDIX IV

MAXIMIZING THE OSEEN-TYPE MOMENT

(by Dr. H.G. Baerwald) *

Consider a periodic function u(x), e.g., with period 2r

and with zero d-c component: u = f udx = 0. Consider the "power"
(2r)

moment P = u 2 and "Oseen"-type moment Q = ulul. We want to

make the modulus of the "efficiency ratio" R = maximal. As

2(u) is odd, we need consider only the case ;2-0. Evidently,

S= 0 and 9 = 1 are limiting values. It is also evident that:

(1) in (-r, +i), .7 = 0 for u = odd, i.e., only even functions

u(x) need be considered; (2) other things being equal, I becomes

maximal if, in (0,r), u(x) has only one zemox , being, e.g., ) 0

for 0:5 <x0 and <0 for x 4 x:f ; will then approach the

bound 1 for xo-O0, i.e., if u(x)is of the pulse type at 0, fol-

lowed by a shallow negative trough. Simplest example, with P = 1:

f for 0o eIxI ar

u(x) =o .r Q = 11 -28

The present problem is to maximize 2 if u(x) is composed of

a finite number of harmonic components only. It is evident from

the preceding that these must all be in phase at x = 0. As I is

homogeneous of order zero, a common amplitude factor is irrelevant,

and we may put N
uN(x) = cosx +, P1ncos nx, with PN 0 for n ) N

n=2

The Brush Development Company, Cleveland, Ohio.
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The problem is to determine the pNn such that

4 + -lN i u 2 dx = max.
N(PNn ) +d- P=1- xL

2

xN being the sole zero of u in (o,w). As x N should be small and,

evidently, will be it is apropos to put x = - , cosx = sin y

and xN  - sin #N N; also to eliminate one of the

unknowns pNn by introducing #N (or PN) into u. For N " 3, there

is then a preliminary algebraic restriction on the possible
uN(y) - u(pN)values of pN and PNn' namely that all roots of uN(PN = 0,

which is an equation of degree (N'l) only, must either be complex

or, if real, absolutely Pl.

The equati on:

1 + 2PNPN2 - (3p)N 3 -BPN(1-p2) N4.3 2N + 2

-4(1-p2) 4N... 2y + 2(pN+2NN...)y 2  N...) + ... = 0

with

o = PN +(2pN-1)p2 + p (4p2 -3)pN3N + * -FP +1)p4N + .

the case N = 2:
sin 2

Here simply u = sinf - cos 2_2 cos 2/;

_21sin 4 2  2 2
2 2 (1+-cos 2 ) - 2

sin2 2 + cos 2 2  2

sin *2  0 <2 = - for 0 =p=
As P22 cos 2 2 2 6 1

*2 6 gives .2 = 2869 with d 2 ( 0;
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= 13/2+1 1 d 2
2 =  gives 2  (22-1) - 31245 with 2 0;

then by successive interpolation:

(2)opt = .4461 = .2840. o (22)opt 6873 max.= 32492

for N>2, one may show that

cos 2N+ cos 2*2SN+ +1 2N PN - 1(= 1 for N = 2 onlyý0 * N+1 4 N and sin N+ sin 9NN+1 N

Thus we may put
sin N

uN = sin- cos 2VN (1-aN)cos 2 ... , 1 >aN+1 ' >0.

The case N = 3:

sin 3 cos 2 1 + 2cos 21
u3 = sin -(l-a 3 ) cos 293 cos 2 - a3sin 1 + 2cos 2*2

then the restrictive algebraic condition is tat the roots of

1 + cos 2* 4 cos 2
-2 + 2 s -1 c- 0y + 2 sin 3 1 + 2 cos 23 1 + 2 cos 23 = 0

are either complex or both absolutely > 1, This means either:

tl - a3 + 2cos 2*312 sin 2*3 - 4i•3 (-a 3 )cos 2* 3 (1+2-cos 2*3)< 0

or:
2 sin *

Preliminary inspection leads to the expectation that a > 1 and

that though r3 ?2 ' 3 . With

S= in 4 *3(1+ 2cos 2*3) R(cos 2*,, a,) - 2*- with
.330 .;,- 9.
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5(1+273)(13+13) - 2(1+27 3 -4L13)a 3 - 3+'r 3'3 cos 2*k3

(1+23) 2(1[_3) (1_)2 + 2 3

trial and interpolation gives the optimum result:

(3) opt =  687 , ( a 3 ) opt = .752' whence:

(P2)opt = 804 (3)opt =  541; then (3)max .487 ( + )

This represents a substantial improvement over N = 2.

Naturally, d,zbeing an etrenum, its value is not too sensitive

to small deviations of pNn from their optimum values. No

numerical investigation was made for cases N >4. The seeming-

ly plausible approach of approximating the initially intro-

duced J-function, with optimally adjustable parameter

cN = Jc(N), by uN via least squares, which would represent

a numerically far simpler procedure, practical even for larger

N, proves to be unexpectedly weak for N = 2 and 3, i.e., with

results rather far off~?N max., and is therefore not recom-

mended.



APPENDIX V

THE GENERATION OF HARMONICS BY ORIFICES

The results of the harmonic measurements discussed

in Section 7 of Chapter IV, appear in the following

group of figures. All the measurements but the one

represented in Fig. 72 were obtained by driving the

orifice at 180 cps.
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