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ABSTRACT

The principal objective of this research has been to
test the applicability of hydrodynamic laws to large
amplitude acoustic interaction phenomena. In particular
the interaction of large amplitude acoustic waves with cir-
cular orifices and small objects is investigated from the
point of view of steady stéte classical hydrodynamics.

The laws of hydrodynamics do not comprise linear relations
alone and it is the quadratic deviations‘from linearity
of these relatiohs vwhich are considered here.

Two theoretical relations are drawn from hydrodynamics
in treating the behavior of spheres and orifices. These
relations are inherently non-linear and explain most of
the experliments reported here. For the sphere the starting
relation 1is Oseen's second order correction to the drag
force on a sphere moving through a fluid. For the orifice
Bernoulli's law explains: qualitatively most of the non-
linear phenomens evident in orifices. In some cases these
two concepts, Oseen's drag correction for the sphere and
Bernoulli's law for the orifice yield relations in fair
agreement with the results of acoustical experiments, and

it is the points of departure from exact agreement which
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present new problems which have yet to be resolved.

A few striking effects have been encountered in
the course of this investigation. For example forces
many orders of magnitude greater than those due to radia-
tion pressure have been observed on spheres in a sound
field consisting of a sinusoidal fundamental plus s second
harmonic component. These forces can be explained in
terms of the non-linear hydrddjnamic drag theory.

A tecﬁnique is outlined for finding the force caused
by radiation pressure arising from the interaction of a
collimated'beam of sound with an object. The force
is evaluated in terms of a sufface integrsl of asym—
ptotic scattering functions for the ohject. The ex-
pression for the force is valid for objects of any
shape having arbitrary ndn-unifofm normal boundary
impedsnce. In addition, the method is Simpler in its
application than King's method . Specific expressions
are derived for rigid sphéres and cylinders of infinite
and zer o mass,

It is shown that the effects of ordinary viscous
and thermal losses at the surface of small objects may
give rise to extra forces, induced by radiation pressure,
wvhich ére several orders of magnitude greater than the
classical values calculated by King. The exact value of
the force on the object cannot be obtained directly since

part 1s due indirectly to a transfer of momentum associated
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with the medium streaming by the object. The streaming
is caused by the wave momentum absorbed in the viscous
and thermal boundary layer surrounding the object.

It is also shown that the migration of particles
under any force whatsoever cannot be governed by Stokes'
law if the particle is at the same time exposed to a-
strong sound field. A modified form of Stokes' law is
given for this case. The absorption cross section of
spheres, small compared to the waveiength of sound, is
shown to depend upon whether the sphere has a steady com-
ponent.of velocity along the prdpagation direction of
the sound wave. The absorption cross section of small
spheres is shown to depend upon the amplitude of the
sound. These absorption effects have not been directly
measured but are predicted in a simple mahner from the
same theory which explains the steady forces on the sphere.
Two terms are introduced to describe these t#o‘absorption
effects, the differential cross sectionch, and the non-
linear cross section ‘;NL.

The non-linear behavior of orifices has been found to
be quite similar in many respects to that of spheres. The
relation 1s in a sense a reciprocal one, releting the force
on the sphere to the velocity through the orifice. For ex-
ample if a second harmonic wave is superposed on a sinu-
soidal sound wave, a small steady flow through the orifice

is generated; the converse is also true. The acoustic
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resistance of orifices with a superposed unidirectional
flow has been called the differentidl resistance Ry,
Measurements of the differential resistance have been
obtained and correlated 'with measurements of flow re-
sistance and non-linear resistance of the orifice. It
has been found possible to modify a hydrodynamic treat-
ment due to Sivian which originally explained the non-
linear resiétance of very small orifices in terms of
kinetic energy'loss, so that in its present form the
theory acoounts for most of the observed phenomena. The
- modifications of Sivian's theory consist in iﬁcluding
the effects of contraction, and viscosity.

Bolt, Labate and Ingard found that the reactance of
an orifice is materially reduced at large ampliutde os-
cillations. We have found that the acoustic reactance for
small smplitude oscillations can slso be considersbly
decreased by forcing a study flow of alr through the ori-
fice. Atheory has been developed which accounts for
the observed reduction inmass. The theory predicts ap-
proximately the value of the non-linear reactance, which
experiments show to be a constant. The theory 1s also
capable of spécifying at what particle displacement am-
plitude the reactance attains its constant non-linear
value.

The results of a large number of measurements of the



harmonics generated by small orifices and nozzles are
reported. Harmonics as high as the 25th have been

measured.
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CHAPTER I
BASIC CONSIDERATIONS

1. Introduction

In this report phenomene are discussed which are
best explained by combining certain concepts derived from
acoustics on one hand and from the hydrodynemic theory of
real fluids on the other hand. We are interested in ex-
pleining certain effects, arising from the interaction of
large amplitude compressionel waves with objects. This
explanation is sought in the application of steedy flow
theory. The polnt of view adopted throughout the report
1s that the steady flow equations are instantaneously
valid for periodic flow. The variety and accuracy of the
predictions stemming from such a point of view are in-
vestigated experimentally in air for frequencies between
0 and 800 cycles.

Attention is given in this chapter to some of the
phenomena which have been messured; their origin are
discussed from a physical point of view in terms of the

properties of the medium.

2. The Objects

The objects investigasted in this study were spheres,
cylinders, and sharp-edged orifices. Thick orifices

(celled nozzles) were also used. In all cases the objects

-1-
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are assumed to be small in comparison with the shortest
wavelength component of the interacting wave. Orifices
and nozzles are treeted in Chepters II to IV; spheres and
cylinders in Chapters V and VI; while in Chapter VII the
points of similarity between apertures and obstacles are
discussed and certalin applications of our findings are

suggested.

3. The Phenomena

The interaction of a wave and an object can be
described in terms of energy and momentum considerations.
For this description 1t 1s necessary to know the rate at
which energy and field momentum are gbstracted from the
wave. It is also necessary to know how much of this
momentum and energy 1s divided between the object, the
medium, and the scattered wave. Momentum transmitted to
the medium in general results in & streaming of the fluid
medium. If the object is not free to move, no mechanicsl
energy will be communicsted to it; however, a force may
be exerted on the object. The complete specification of
how energy and momentum divide appears to be an extremely
difficult problem. We shall consider separate idealized
problems in an sttempt to reach approximate answers.

We shell deal only with average quantities such as

complex power, average momentum flux, and steady forces.



-3~

Though the behavior of either the obstacle or the orifice
can be specified in equivalent terms, it turns out to be
simpler, from the experimental point of view, to determine
the energy behavior of orifices on the one hand and the
momentum behavior of obstaéles on the other hand. Adopting
this operational point of view then, the quantities of

immediate lnterest are:

(1) The complex power transformed by the orifice to

the medium.

(2) The average rate at which the obstacle absorbs
momentum from the medium (not all this momentum
need come from the wave, and the wave need not

be sinusoidel.)

It is obvious here that the words"orifice" and
"obstaqle" can be interchanged. As discussed in Chapter
VII, energy reiations can be obtained from momentum measure-
ments and vice.versa. The availability of both energy and
momentum measurements can serve to check the consistency
of the results. |

The behavior of the orifice is ascertained by measuring
its acoustic impedance. Acoustic impedance is the complex
power sbsorbed by the orifice divided by the square of
the fundamental volume velocity amplitude. The units of

acoustic lmpedance are scoustic ohms'or, in cgs units,
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(dynes-sec)/cmB. The orifice 1s studied only in the non-
linear region where its operation is essentially jet-like.
The power abstracted by meens of the orifice is communicaéed
to the medium by wéy of the jet.

The behgvior of the obstacle. 1is ascertained by
measuring the total steady force acting upon it. This force
is the momentum abstracted from the medium. The origin
of this force is studied theoretically in both the low
amplitude and the high:-amplitude regions. In the small
particle displacement region, two mechanisms are responsible
for forces stronger than the force due to classical radiation
pressure. One of these mechanisms depends upon losses in
the boundary layer and hence is influenced by viscosity and
héat conduction, two properties of real fluids. The other
mechenism, based on the :temperature dependence of the
viscosity has been treated elsewhere(l) by the author
and thus it will not be developed in this paper. None
of these forces which occury in the linear region has been
measured by us.

Two further mechanisms leading to forces in the non-

linear region of large particle displacements are discussed.

4, The Experimental Conditions

It turns out experimentally thsat certain effects do not
occur very strongly unless the particle displacement am-

plitude exceeds a characteristic linear dimension of the
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object by about one order of magnitude. For this reason

we arbitrarily speak of the low amplitude region as one

for which the particle displacement amplitude i3 considerably
less than the characteristic length of the object, projected
in the direction of the vibration vector. For example, in
dealing with the sphere, the ratio of the particle dis-
placement émplitude ‘;0 to the radius sa, .g/a can be a-
dopted as a convenient dimensionless quantity. In general
if £, > &, strong forces exist vhich disappesr when £ < a.
The author has previously suggested(g) that this ratio is

a convenient one for describing the behavior of orifices.
This ratio 1s slso inversely proportional to the dimensionless
frequency, v', a number used by aerodynamicists in con-
nection with fiutter phenomena. The dimensionless frequency

is given by

vi
v

vhere v is the frequency, £ a characteristic length and v

the velocity amplitude. Most of our experimental work

with orifices was obtained for s v' much less than 0.1,

in the jet region of opération. The experiments with spheres
and cylinders were performéd at & v' in the vicinity of 0.1

In 811 experiments with obstacles, the peak Reynold's

number for the obstacle was in every case less than 50 and in
most cases less thsn 20; while the peak particle velocities
were less than 300 cm/sec. Peak Reynold's numbers as low as

.02 were investigated.



Most of the experiments with orifices were carried out
at a peak Reynold's number of about 104. The peak mach
number in the throat of the orifice was ususlly less than

0.1, so that compressibility effects could be neglected.

5. The Theory

The theoreticsal ﬁork reported in Chapters III and
V is for the most part purely adaptive. The results of
existing steady flow theory are applied to non-steady
phenomena without inguiring into the basic limitations of
such an approéch. Insome instances the steady flow
theory is so complicated (Oseen's theory for example) that
it's extension to non-steady flow does not seem imminent.

One way of modifying the steady flow theory is
suggested from dimensbnal snalysis. For exaumple, it 1is
possible.to show(B) that the relation between the force F
on g sphere moving with velocitﬁ u and acceleration u
must have the form

F = puea2 g(g%é, %%) . (1)

vhere p and v are the density and kinematic viscosity of
the medium and a 1s the radius of thke sphere. Now if u
is periodic with frequency, n, we see that g becomes a

- function of the Reynold's number R and the reduced frequency v'.
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This suggests that the dependence of the average drag
coefficient might properly be expressed as a function of the
Reynold's number, and the reduced frequency. This is
standard procedure, in the limit of zero frequency, as is
i1llustrated in Figs.30, and 31. Our experimental results
in Chapter VI can be considered to yield this functional
dependence, for which there does not yet appear to be

ean adequate theoretical development.



CHAPTER II
A BRIEF REVIEW OF THE ORIFICE PROBLEM

1. Introduction

The orifice is a precision instrument used frequently
in laboratories and in industrial processes for accurately
metering the flow of fluids. In view of its widespread
use a large body of literature exists, pertaining pre-
dominantly to thé steady flow characteristics of the orifice.
The most authoritative information may be found in the
A.3.M.E. Fluig Meters‘Report(q). A less detailed discussion
of the sharp-edged orifice adéqﬁate for 'an ' under-:
standing of the present problem may be found in "Unit
Operations"(5). Since our problem is to interpret how
the orifice responds to periodic driving forces, in terums
of its steady flow characteristics, these characteristics
will first be briefly reviewed.

Sivian(6), in the year 1935, appears to have been the
first person to have made a systematic study of the large
amplitude alternating flow characteristics of the orifice.
Sivian's pioneer measurements of the acoustic resistance
of orifices for large particle velocities willl be re-
viewed. His measurements indicated that the non-linear
resistance was fundamentally attributebk to the jet forming
property of the orifice, and that in general the resistance
had a first power dependence on the particle velocity am-
plitude. He found the non-linear resistance essentially

-8~
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independent of frequency; however his mesgsurements were not
carried out over as wide a range of conditions as was done
later by Ingard and Labate.(7) The lstter found operating
regions for which the resistance was strongly frequency-
dependent.

Sivian's attempt to apply hydrodynamic theory to the
non-linear acoustical performance of orifices is analyzed
and the importance of friction and contraction, two factors
neglected in his theory, wili be emphasized. R. Clark
Jones(S)mentioned the need to consider contraction in
specifying non-linear resistance. Jones treated the
problem of a siren in which the port area varied periodi-
cally with time and due to the complexity of this problem,
he did not take contraction into account.

The author's(z) earlier explanation of non-linear
resistance in terms of the generation of harmonics is shown
in general not to apply. Later evidence obtained by him
in support of the jet mechanism 1s‘discussed.

Some recent measurements performed by Ingard and Labate

(7)

of the non-linear resistance and reactance of orifices will be

discussed. Their extremely accurate work carried out in

conjunction with a detailed study of steady flow phenomens in

the neighborhood of the orifice demonstrates graphically
certain regions in which a classical hydrodynamic approach

is justified.
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2. Steady Flow Characteristics

Consider the arrangement in Fig.l depicting two
cylindrical pipes of equal cross-sectional area Sl’
separated by a thin circular orifice of cross-sectional
ares 32. Fluid flows from left to right. A reasonable
distance to the left of the orifice the pressure P, and
velocity Vl,are consldered to be uniform. The stream-
lines converge as they approach the orifice. The fluid issues
from the orifice in the form of a jet into a region where,
for the‘present, the absolute pressure will be assumed
zero. Close to the plane of the orifice the jet has s
minimum area‘Sé called the vens contracta. The ratio of
the minimum jet area to the orifice aresa 82 is called the
coefficient of contraction Cc‘ A knowledge of this coef-
ficient, which turns out to be a function of geometry ss
well as the Reynold's number for the orifice, is essential
to the discussion of jet-like flow. The exact magnitude
of this coefficient has not been obtained theoretically for
an orifice situated in a pipe; it is g function of the
ratio of the diameter of the orifice to that of the pipe.
When the orifice is small in comparison with the diameter
of the’pipe and provided friction losses are neglected,'
this coefficient may be obtained approximdely by applying
the principles of conservation of energy and momentum. The

exact formal expression for Cc may be set up by applying the
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FIG. | - ORIFICE IN TUBE
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principle of continuity of the flux of momentum to the

cross sections 1 and 2 in Fig. 1l:

P8, = é 5 PdA = pugSé (1)
1772

where p 1s the density of the fluid. Conservation of energy

leads to:
1998, = 3~ (2)

Continuity‘of incompressible matter, uls1 = uESé, allows

Eq.(2) to be rewritten
2
PYs
Pl = -5 (3)

Eq. (3) is a statement of Bernoulli's principle which, in
connection with Eq.(1), determines the coefficient C,:

-

P.S. - [ pdA

(%)
2P, S,

Q
[¢]
]
7
n
|

n

The integrel in the gbove equation is not evaluated for

the orifice in a pipe. If the approximation is made that
the pressure at point 2 is uniform over the cross section
and equal to P,, it follows from Eq.(4) that C, = 1/2. 1f
the velocity 1s assuméd to be uniformly distributed over
hemispheres concentric with the center of the orifice, the
anglysis gives Cc = 0.535. The methods of hydrodynamics
give 0.6l as the coefficient of catraction for a long narrow

slot.
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Bernoulli's equation (3) may be written in terms of
Q, the volume velocity through the orifice, the orifice ares
82, and CC:
= 2P
Q= C.5, {p (5)

Now were it not for frictionsl losses in the orifice Eq.(5)
would relate the observed volume flow to the pressure head p.
Due to frictional effects the actual flow will be reduced by
a’factor Cv, called the coefficient of velocity, which is

less than unity. It 1s conventional practice to call the
product of the two orifice coefficients (C,C ) the coefficient

of discharge which is designated C All three of these coef-

q°
ficients vary with the character of the liquid, the roughness
of the orifice, and the Reynold's number for the orifice.
Eq.(5) mey be written so as to include the effects of con-

traction and viscosity:

0 = g, 22 (6)

Experimental values of Cd vary with the Reynold's nuumber
of the orifice R = 2%3, where r is the radius of the orifice
and v the kinematic viscosity. Representative data (repro-
duced from "Unit Operations"(s) taken in a pipe are illus-
trated in Fig.(é). The renge of Reynold's number spanned in
our experiments extends from 100 to 4000.

Measurements were made in the course of this investi-

gation from which the value of the discharge coefficients

of our orifices could be determined. These resulis appear in
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Chapter IV. The d-c¢ characteristics were evaluated in terms
of the flow resistance RF which is defined as the ratio of
the d-c pressure p to the steady volume velocity Q. The flow
resistarce comes directly from Eq.(6) and 1s%
RF=§=;(-§9-%T§ (7)

It 1s not engineering practice to present orifice data
in terms familiar to the acousticlan. We shall not be inter-
ested in the exact valqe of the more widely used coefficient
of discharge as long as our experiments yield values which
form reasonsble extrapolations of previously existing data.
From Eq.(7) it is seen that measurements of Ry as a function
of the volume velocity through the orifice, enables the
coefficient of discharge to be evaluated. In additiomn to
fhe experimentally determined values of RF’presented in the
Figs. 20 and 21 in Chapter IV, there is plotted (in heavy
solid line) the value of Ry obtained from Eq.(7) by choosing

lél for the coefficient of discharge. It is fairly evi—

dent that the coefficient of discharge varlies among orifices

- of equal area but differing thickness, and the reason for this
is discussed next.

The effects of thickness and finite width on orifices

may be discussed in terms of the behavior of a nozzle. A

* Henceforth, unless specifically mentioned S stands for the
actual srea of the orifice.
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nozzle 1s an orifice with an added discharge section which
confines the jet, causing the vena contracta to have the
same area as the discharge end of the nozzle. The orifice
equations apply to the nozzle pmvided the constants are modi-
{led appropriately. For example, the coefficient of contraction
Cc of a nozzle with a thickness to diameter ratio three or
more is unity.(g) On the other hand, it is to bé expected
that the coefficient of velocity CV should increase with the
thickness of the orifice (length of the nozzle), since viscous
losses vary approximately in direct proportion to the inner
cylindrical surface of the orifice. Thus the coefficient
of discharge Cd wvhich is the produce of Cc and Cv might be
expected to have a maximum value for a thickness which corre-
sponds agpproximately to the thickness for which contraction is
completely suppressed; we shallncall this the critical thickness.
The critical thickness would be expected to lncrease with
the Reynold's number. Hence, for a constant average velocity
through the orifice the critical thickness will become
greater for orifices of large diameter.

We have observed this effect quite clearly; it shows
up if one plots the measured d-c flow resistance against the
thickness of the orifice. Such a curve is given in Fig. 26 of
Chapter IV. In this figure the flow resistance is observed
first to decrease with increasing thickness, an effect attri-
butable to a suppressed contraction. A minimum in the resistence

of the 0.5 cm dlameter orifice 1s seen to be followed by an
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incresse brought sbout by friction.

In our work, discussed in Chapter IV, we have found that
the response of the orifice to alternating flow follows closely
its steady flow behavior. For examples, the non-linear a- -
coustic resistence varies in the ssme menner as the d-c flow
resistence with the orifice thickness. Ingard's phase dia-
grams (see Figs. 5-8 of this Chapter), when plotted against
orifice thickness, correlste closely with the d-c flow re-
sistence curves provided the latter are inverted.

However, before discussing these regions of agreement
in detail, it is advisable to review Sivian's attempt to
correlste his steady flow and alternating flow measurements

with hydrodynamic theory.

3. OSivian's Measurements and Theory

L. J. Sivian(6) in 1935 presented the results of
acoustic resistence measurements which he and R.T. Jenkins
had made in 1930 on three circular orifices varying in die-
meter between .25 cm and 1.0 cm and having a thickness to
diasmeter ratio of 0.2 or less. This group of orifices he
called Group B. In the same article Sivian gave more recent
date he had obtained pertaining to four circular orifices
.034 cm in dismeter with the length to diemeter ratio varying
from about .15 to 1.5. He used a resonator technigque which
enasbled him to meesure the resistance down into the approxi-

mately linear region. His data are given as plots of Acoustic
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Resistance versus rms particle velocity aversged over the
orifice. We have extrapolated the non-linear part of his
curves to a value pertaining to a peek velocity of 500 cm/sec
and subsequently tabulated this value 1n Table I along with
his theoretical values (see Eq.(7) of next section.) The

per cent deviation of his theory from the extrapolated

values has been listed. In the last column is tabulated

the power of the dependence RaU®. The power n wes esti-
mated from Sivian's eXperimental curves. The first groups

of 5 orifices, group B, were all wmeasured at 100 cps, where-
as the first ahd third listed orifices in this group were
slso measured at 500 cps. No noticeable frequency dependence
was noted. No frequency was stated for the measurements

of the orifices in group A.

TABLE I

diam. thick. R(meas.) R(theo.) per n
(cm) (cm) ohms ohms cent

dev.
034 .005 400 250 -38 1
.034 - .013° poor data 1.8
L03h .025 100 250 -38 0.8
.051 034 insufficlent datae
071 .013 90 56 -38 1
.25 .051 8 4.2 ~-47 1
.5 .051 2.6 1.1 | -58 1.3
1.0 .051 1 .28 ~-T70 1.5
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Two points of significance sbout the results, which
were not emphasized by Sivian, are the’apparent increase

in the exponential dependence n with increasing diameter,
and the rather poor sgreement of theory and experiment.
These features will be discussed later.

Sivian noted that, to a first approximation, the
growth of the observed resistance at high velocities
appears to be a velocity effect. This justified his
viewing the matter from the standpoint of d-c air flow.
His theoreticsl treatment consisted essentislly in ap-
plying conservation of energy to the flow through the
orifice. We shall review in detail whsat we believe to be
his theoretical approéch. This is done because there 1s
some ambiguity in the exact procedure presented in the
original article. We start by quoting Sivian direétly:

"We shall estimate the effect of the kinetic energy
(K.E.) acquired by the eir in an orifice on the re-
sistance of the latter. Simplifying the problem still
further, consider the case of an orifice S joining two
semi-infinite tubes, Tl and T2 whose cross sections

are much lsrger than that of S. ILet the gas pressure
in Tl and T2 be P and Py respectively. The tubes. are

assumed so large that p, and p, remain sensibly constant

while the velocity, V, of flow through S, is being ob-
served. Also, the velocity of the air in the tubes is
so small compared with the speed in the orifice, that
its K. E. may be neglected. We further assume: (1)
turbulence is negligible; (2) the flow is adiabatic;
(3)the velocity is uniform over any cross section of

the jet; (4) there is no internel dissipation. Then the
air flow through the orifice is isentropic, and as shown
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in thermodynemic texts,

2o0% = py (0 - p3) /ap] (8)

where U = linear velocity and a = (¥ -1). We shall
apply this equation to an orifice in which viscosity
and heat conductivity are effective even though that
somewhat violates conditions (2), (3) and (4). De-
noting the orifice area by A, and remembering that in
practicslly all cases of acoustic interest, %pl-pe)/pl<‘l,
we have to s first approximation

Ry =R + 1/2(pu/s)

where R1 is the new orifice resistance and R is the "low

velocity" resistance. If this equation is to be used
with slowly alternating flow, we should write

Ry = R + 3(p-ud) /s R (9)

This ends the quotation from‘Sivian. There are several
points which bear consideration. In Eq.(8) it is important
to reslize that U signifies the linear velocity in the vens
contracta, a fact neglected by Sivian.

Sivian does not state explicitly that Eq.(9) is the re-
lation which is supposed -to represent the acoustic resis-
tance. Furthermore it is not evident from the text just
quoted what is implied by U . Suffice to sey that if [Uf
is chosen the rms particle velocity, Eq. (9) agrees witﬁ

Sivian's theoretical curves.

4, Non-Linear Reactance

Sivian, in his work discussed in the last section,
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reported that the reactive component of the impedance of
orifices was substantislly independent of velocity. This
result was contradicted in a recent paper(lo)'by Bolt,
Labate and Ingard. Bolt, et al, found that the reactance
decreases strikihgly with particle velocity. Later substan-
tiation of this discovery by Ingard will be discussed in
Section 6 of this Chapter.

5. The Author's Previous Work

- The suthor made a study of large amplitude acoustic
waveé in 1947 and applied some of his results to the be-
hevior of orifices. He studied the non-linear compressi-'
bility effects associated with the spherically diverging
vave which issues from the orifice under high intensity
conditions.  His messurements confirmed for the first time
the presence of strong odd harmonics Sivian(e) had pre-
dicted should exist, but was unsble to measure. An example
of the relative strength of the first three harmonics is given
in Fig. 3. Fig. 4 illustrates the 1/2 power dependence of
the fundemental on the driving pressure. These two curves
were taken from the suthor's Master's thesis. The author
attempted to explain the varistion both in resistance and
reactance in terms of compressibility effects. The increese
in resistance he attributed to the power abstracted by the

harmonics whose strength relative to the fundamental frequency
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component increased gécording to Nn, N being the ratio of
the particle displacement amplitude to orifice radius and
n the order of harmonic. o

The validity of this mechanism was thrown into con-
siderable doubt when(e), at the author's suggestion, he and
H. Harrison viewed the jet issuing from the orifice under
stroboscopic i1llumination. Smoke onlone side of the orifice
was observed td issue from the other side as discrete pulses,
which frequently assumed the nature of vortex rinng Later

work by Ingard and Labate(ll)

showed conclusively that

this jet was predominantly responsible for the resistance.
Later measurements by the author indicated thst only under
special circumstances, could harmonic generation contribute
measuraﬁly' to the dilssipation. Thus it became clear that
orifice non-linearity was basically, as postulated by Sivian,
a8 hydrodynamic problem, and. that further work could most
profitably be carried out by modifying Sivian's inital methods
so as to bring them into agreement with the well established

engineering behavior of orifices under steady flow conditions.

0. The Results of Ingard and Labate

The non-linear acoustic behevior of orifices has most
recently(ll) been examined by Ingard and lLabate. They studied

the circulation patterns generated in the vicinity of the
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orifice and corrélated changes in the nsature of these patterns
with measured values of the impedance. The circulation was
conveniently described by them in terms of contour plots
separating from each other the four different circulation
regions they have defined. These "phase diagrams" are plotted
by them in terms of the peak particle velocity, averaged over
the orifice; either the frequency of the sound or the thick-
ness of the orifice provides a second independent variable.
Several such diagrems which will be useful in our later dis-
cussion are shown in Figs. 5 to 8. A description in their

own words of the different circulation regions is given:

Region 1: A low particle velocity region with steady cir-
culation; the flow is directed out from the aperture along

the axis.

Region 2: A region of steadyvcirculation in which the
direction of flow is salong the axls toward the aperture,

i.e., the reverse of that in Region 1.
Region 3: A reglon characterized by the onset of turbulence.

Region 4: A high particle velocity region chsracterized by
the appearance of jets and vortex rings. The jet is pul-
satory and is made up of air pulses contributed by each
cycle of the sound wave. It appears symmetrically on each

side of the aperture.

The reader will do well to refer to the original article
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for a fuller description of these circulatory effects which
are 1llustrated by a remarkable sequence of photographs of
the streaming, méde visible by means of smoke particles.

We will find that a close correlstion exists between
the shape of Ingard's phase diagrams, which are plotted with
thickness as one variable, and the varistion thickness of the
d-c flow resistancé for the orifice. We shall also see that
the hydrodynemic interpretation of non-linear a-c resistance
is valid primarily in Region 4 of the diagram.

Ingard and Labate made extensive measurements of tle
resistance of orifices for gl1l conditions of circulation.

An anselysis of their results discloses that the logarithm of
the resistance plotted against the logarithm of the particle
vélocity amplitude suffers in general two broad discontin-

uities in slope. A typical plot is shown in Fig. 10 where a

4S R
quantity proportional to the resistance,ztfl'= NL

, .84x10'3¥v
has been plotted against %ﬁ the ratio of the particle dis-

placement amplitude to the thickness of the orifice. Here
3 is the orifice area in cm2, v the frequency in cps. For
orifices of smallvradius, the two changes in slope merge to
form a broad inflection at a 3%/t of about unity, correlating
approximately with the transition from circulation Region 3
to 4;

A point of more significance to our problem is the fact

that if the particle displécement amplitude exceeds thickness
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by an order of megnitude or if the veloclty exceeds the value
defining the boundary between Regions 3 and 4, the resistance
becomes roughly a function of the first power of the velocity.
If neither of these criteria is met, the resistance véries
with a power of the velocity greater than the second. Put
another way,. for low velocities or particle displacements
the non-linear resistance is less than would be predicted by
linearly extrapolating the high velocity value down to the
10w>velocity. This fact is in accord with the exponents
pertaining to Sivian's data tabulated in I. Approximate
values of the exponent n taeken from Ingard's curves in the

similar veloclity range are tabulated below:

TABIE II
Fig. 11 9 10 12 11a
diam. : _ ‘
oo 36 .5 .5 1 1 1.4 1.4 2 2
th-’;"k" .09 .05 .05 .05 .05 .05
Peqy
n 1.3 1.0 1.5 1.3 1.6 1.6 1.6 1 2

In generai the thin orifices hsve an n value spproaching
unity. Thick apertures of small diameter also have an n
close to 1.

Our experiments have confirmed the fact that the re-
sistance remains essentially a linear function of the velo-
city for velocity amplitudes about ten times gresater than
that achleved by Ingard. It is within this operating regibn
that we will expect the hydrodynamic analogies to hold
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reasonably well.

Ingard and Labate determined the kinetic energy carried
by the vortices‘issuing from the orifice by measuring the
momentum and Qelocity of the vortex stream. They obtained
the moméntum by finding the force caused by the vortices in
striking a torsion balance. They claim to have obtained a
surprisingly dose agreement between their measured values
of resistance and the value expected, assuming the loss of
energy to be that carried away by the vortices. Unfortun-
ately, we find that their measured value of momentum 1is
twice as great as the maximum value it could possibly have
from the momentum conservation principle. In order to
justify‘their force measurements it is necessary to postulate
that the voftex element rebounds elastically from a flat
surfacé; if this is true, the power'carried by the vor-
tiées is bnéFhalf the value they calculate.

Ingard has also measured the variation of the kinetic
mass of the orifice with amplitude. These extremely lnter-
esting results are plotted in Fig. 713, in terms of an equi-
valent gﬁﬁicorrection for the orifice. We shall present a
theory in the following chapter which interprets thé reduction
in kinetic mass in terms of the destruction in the cohérence

of the mass associated with the near field of the orifice.



CHAPTER III
THE THEORY OF NON-STEADY FLOW THROUGH AN ORIFICE

1. Introduction

| We develop in this chapter a theory of the response of
the orifice (and nozzle) 1h terms of its steady state be-
havior, as outlined in Section 2 of the previous chapter.
We shall not aséume, as did Sivian, that the velocity is
uniform over the cross section of the orifice, but we will
consider the effects of contraction. Losses within the
orifice due to friction and turbulence will be lumped to-
gether in their effect, and represented by the coefficlent
of velocity.

- The coefficient of contraction is assumed to be a
constant. This assumption in addition to the assumption of
incompresible flow allows g theoretical expression for
non-linear resisténce to be derived which can be expressed
in terms of the d-c flow resistance.

Next the transmission of sound through an aperture which
supports a steady flow of gas 1is investigated by means of
a trivial extension of flow resistance theory. The differ-
ential fesistance, RDisintroduced as a measure of the a-
coustic resistance of apertures carrying air flow. The inverse
probiem, that of the modification of the d-c¢ flow resistance

by an intense acoustic wave 1s mentioned briefly.
-25-
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The rectifier-like properties of the orifice are considered
qualitatively. It is shown that the orifice may be made
to support a steady difference in pressure provided 1t is
excited with an asymmetfic pressure wave whose square root
moment p)p[—l/z differs from zero. This pressure difference
can be used to pump fluid through the orifice in a direction
which 1s determined by the sign of p]prlzz. Harmonic
generation by the orifice is discussed briefly. Sivian's
prediction of the existence of odd harmonics is reviewed.
Second harmonics are shown to be generated by~superposed
d-c flow.

Finélly, the maximum available flux of wmomentum from
one side of an orifice is discussed. A calcusaltion of
this quantity for an orifice driven by & simple harmonic
pressure is compared with Ingard snd Lsbate's megsurements
of the stagnation pressure of emitted vortices.

The measured force appearé to be high by a factor of two.

2. The Non-Linear Résistance

- If the pressure difference across the orifice is less
than 1 per cent of atmospheric(u), it 1is sufficiently
accurate to consider the orifice flow to be governed by the
equation for incompressible flow. -In this case Eq.(8) in
Chapter II reduces to the ideal flow equation:

[ (1)
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where Py is the pressure on the upstream side of the orifice
and.p2 that on the downstream side, p is the density of the
- gas, Q 1s the 1deal theoretical volume velocity through the
orifice which has a cross section S. Eq.{(l) neglects the
effects of friction and contraction which will be considered
later. If we now assume that Eq.(1l) is instantaneously
valid, and that p varies sinusoldally, it 1s a simple matter
to compute the average power dissipated (see Appendix 1).
This power divided by one-half the square of the peak volume

velocity results in an expression for the non-linear re-

Ry, = S (2)

28°

sistance,

where Q is the peak volume velocity. Eq.(2) may be ex-

pressed in terms of u the rms average particle velocity

rms
through the orifice

- 1.1 pu,
R.. = ms (3)
NL &= ————

{28

Unfortunately Eq.(2) disagrees by a factor of 1.1/Y2 with
the non;linear termyin Sivian's equation (9) in Chﬁpter II
for resistance. It is therefore difficult to justify |
Sivian's equation, and we conclude that sufficlent caution
was not exercised in its derivation.

Egs.(2) and (3) could have been derived just as easily

from the equation for incompressible flow which has been
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properly corrected for contraction and losses (see Eq.(6) in
Chapter II). This procedure is only valid if the coefficent
of disgharge Cd is a constant independent of the velocity.
The experimental results discussed in Chapter IV justify
assuming Cd constant. Inasmuch as the correct flow equation
differs from Eq.(l) which neglects contraction by the

2

constant factor C& , We may write immediately the correct

expression for the non-linesr resistance

Ryp, = ool (4)

~ 2(sC,)

We have already seen (Egq. 7, Chapter II) that the flow

Rp = —B—

2(scd)

resistance is

8o that we may express the non-linear acoustic resistance

in terms of the flow resistance

RNL = 1.1 RF (5)

Eq.(5) will represeht the facts if the coefficient discharge
has the same value for steady flow as for alternating flow,
a situation found not true within the experimentally a-
vailable frequency range. As will be seen in the following
chapter, the experimental data on thin orifices taken above

200 cps was found to agree fairly well with the relation
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Ry, 0 Ry | (6)
indicating that the a-c flow coefficient is about (.6) /2 1.3
times larger than the d-c wefficient.

It is necessary to justify our having neglected the
reactanéé of the orifice in the preceding treatment. This
point 1is considéred in more detail in the following section'
on differential resistance where we shall merely give a
physicaily plausible reason for neglecting reactance. 1In
any event, as can be seen from Ingard and Lsabate's ex-
perimental results in Fig. 13 that the reactance of the
orifice decreases appreciably in the region where hydro-

dynamic laws become applicable.

3. The Differential Resistance and Reactance

In general, when there is an average transport of matter

through a small aperture, the acoustic conductivity of

the aperture decreases. This phenomenon can be discussed

in terms of the acoustic resistance of the aperture under

steady flow conditions; this resistance we shall call the
differential acoustic resistance. Strictly spesking it 1s

the complex impedance of the aperture which should be specified.
Since, however, even for moderate flow velocitles, the lmpedance
of the orifice becomes essentially real, so that the 4if-

ferential resistance 1s a useful quantity. To see this, we
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first examine the basic origin of kinetic mass.

The acoustic reactance (see Appendix II) of a system
driven at a single point can be expressed in terms of the
time average df whens L)ie-the Lagrange function for the
system evaluated for unit terminal volume velocity amplitude.
To a first approximation a small orifice (and the tube to
which it is coupled) is a system whose behavior can be ex-
pressed in terms of the driving pressure, p, on one side of
the orifice and Q, the volume velocilty through the orifice.
Thus, neglecting interaction between the lncident wave
and the scattered wave from the orifice, we have for re-

acteance X of the orifice

=4 jw[LAV]Q-—-l (7)

If all boundaries are rigid, LAV can be expressed in terms
of volume integrals of the average kinetic and potential

energy densities ta and va

v v

Lyy = J(tgy - Vay) 4T (8)

where fhe integral extends throughout the region occupied

by the field. It is shown in Appendix II thet resctance

of a smallvorifice in & tube is given spproximately by (7)
provided the orifice is considered to scatter as a simple
source. In this case the integrel in Eq.(8) is taken over

a spherical volume concentric with the orifice and extending

to a radius Ty where Ty is the radius of the tube. An
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examination of the integral (8) shows that in the limit when
the orifice radius Ty is very small compared with the tube
radius ry, and for wavelengths long compared with the tube

radius, Eq.(8) approaches:
2

The number 3 in the.bracket represents the kinetic energy
in the region outside the hemispherical caps covering the
orifice, while 5 represents the kinetic energy inside.

If a steady stream is superimposed on the sound fileld,
the jet of gas 1ssuing from one side of the orifice will
~destroy the coherence of the mass conteined inside the
hemispherical éap on the exit side.

This will remove 1/2 of 5/8 of the kinetic mass of
a thin orifice. It is not known how to determine the
destroyed fraction of kinetic mass on the inflow side.
Assuming for lack of alternative, thet the seme loss of mass
occurs on both sides, we could expect the reactance, under
flow conditions to be 3/8 & its normal value. This reduction
is in accord with recent measurements reported in the next
chapter.

We next derive the expression for differential re-

sistance, R This is facilitated by reference to Fig. 15,

DO
which serves to summgrize cémpactly the three kinds of re-
sistance, and some approximations involved in their derivation.

The pressure-volume velocity curve is drawn assuming a constant
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coefficient of contraction. If we consider the response to
a small signal superposed on a relatively large steady flow,
we see the differential resistance is defined to be (just
like the dynamic resistance of a vacuum tube) the slope
of the p-Q curve at the operating point established by
the steady flow velocity. Thus the differential resis-
Bnce is obtained by differentiating the flow equation (6)
of Chapter II,

R, = %5 = —99:———2 5 (10)

(s¢,)

We have already seen (Eq.(7) in Chapter II) that the flow

resistance is

Rp = —_EQ;_ﬁ

2(scd)
so that we may express the differential acoustic resis-

tance in terms of the fbw resistance:
Ry = 2 Ry (11)

Eq.(11) will represent the facts if the coefficient
of discharge has the same value for steady flow as for
pulsating flow. We have verified Eq.(1l) experimentally.

A differential flow resistance (not to be amfused
with the differential acoustic resistance) can be defined
which specifles the d-c¢ flow resistance of the orifice
when an alternating flow 1s superposed. The problem of

modulated flow through an orifice has received some engineering
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attention because of the errors caused by pulsations in
orifice-type flow meters. By straightforward means Lindahl(lz)
has obtalned an expression relating the average flow through
an orifice under & pressure heed p = P + §p sin ot where

éfi:iﬁgPo. His relation, expressed in our notation is

Py

2P 2 4
= —9° _-p_ _1
%av CdJ b [ Ten? oar ‘p‘r] (12)
o)
The differential flow resistance is

RDF = Py
Uy
which is, from (12) and remembering that PP :

-

2
R = —E-Q‘———é 11 + 1/8(-%;)2 11 (_113__) & (13)
0

PP 2(scy)® + 1051

The bracketed term is obviously s correction factor to the
steady flow resistance RF, which must be applied when there
exists a small sinusoidal pressure disturbance. The relstion

for R..has not received experimental confirmetion.

DF

4., MThe Orifice as g Rectifler

The distortion products and steady flow terms produced
by an orifice are briefly investigated in this section. We
proceed to obtain an expression for the third, end predominant

harmonic. Starting from a quadratic pressure-velocity relation
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P = KQ2, we look for the first two Fourier components of
Q when p is sinusoidal. If we say
D= Posin wt,

and Q = a sin wt + b sin 3wt

the coéfficieﬁts a and b are

-1 -1
ox~1yp oK~ Y/P
) o . 3/2, . _ o [1(5/4)
and
-1 -1
—— 8K™VP _ M1(9/Y4)
b= ———2 [T sin 3ot(sin wt)/ 2ot = 3a - > AL/

m o J‘IT

Thus the ratio of the third harmonic velocity com-

ponent to the fundamental is

wlo

= 1/7 (1)

This is equivalent to a third harmonic that lies
16.92 =~ 17 db below the fundamental, a result in accord
with certain experiments reported in Section 7 of Chapter
Iv.

The seoond harmonic component, usually weak in com-
parison with the third, becomes predominant if a steady flow
is superposed on the a-c signal. This is most easily seen

by expanding directly the expression for velocity
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- w1 1/2
Q =K (Pdc + P . sin wt)
considering Pac Pdc
P P 2 P
Q=KP, 1+ 2% sinot - 1/8(2) sinwt + 1/16(322) Binb t-. .
dec dc dc
(15)

From Eq.(15) it is evident that the second harmonic term
is grester than the third by a factor of at least Pac/Pdc.
This effect is easily observed experimentally.

Finally we consider the effect of driving the orifice
with an asymmetric wave form such as that depicted in
Fig. (14a). While this wave ﬁgzg_gas & zero aversge
value, its square root moment p)ﬁP/e differs from zero
as 1s demonstrated in Fig.(14b). The average volume

e

velocity 1is proportional to p;pfi/e so that the orifice
is seen to behave as a pump. Experimentelly it has
been possible to derive enough power from this action to
drive a mechanical wet-test flow meter. Detalls sre given

in the next chapter.

5. The Maximum Available Momentum Flux

The instantaneous flux of momentum transmitted -through
the orifice is the producé of p, the instantaneous pressure
gifference across the orifice with S, the srea of the ori-
fice. In the positive half cycle of the driving pressure
& certain quantity of momentum J is trarsmitted through

in one direction, while during the negative half cycle an
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equivalent quantity returns. Thé total magnitude of
momentum which passes in the positive or negative half

cycle is

SP T

/2 o
= l —3
J =8 //° pat (16)

where T is the period of the wave and PO the pesk driving
pressure. If it i1s assumed that all this momentum is
carried away by vortex rings which detach themselves at

a frequency %g the maximum momentum flux carried away by

. SP
the vortices on one side of the orifice is —;9 . This

momentum may be expressed in terms of the non-linear resis-

tance and Upms the rms particle velocity, averaged over

the orifice

: /282
maximum momentum flux = F = —— Ryyu (17)

The stagnation force of the vortices incident nor-
mally on plane surface would not be expected to exceed F
uhléss the imbact:were partislly elastic. Ingard and
Labate(u) have measured both the resistance RNL and the force F
of the issuing vortices for one orifice. Their results do
not agree with Eq.(17) as may be seen by referring to
Fig. 16 which compares the direct measurement with the
value computed from Eq.(17). The measured force appears
to be two times greater than the value arrived at indirectly.
It is difficult to explain this inconsistency, particularly

since the energy carried away by the vortices would be, if
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anything, less than the total power expended at the ori-
fice, a consideration which leads to further disagreement.
Unfortunately these results have only been found recently
so that no experimental attempt has been made to resolve

the dilemma.
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CHAPTER IV

THE ORIFICE--EXPERIMENTAL RESULTS

1. Introduction

The following properties of orifices have been measured
and they are discussed in the designated sections: The d-c
flow resistancé in Section 3; the non-linear acoustic re-
sistance in Section 43 the differential acoustic resistance
in Section 5; the influence of steady flow on the reactance:
in Section 6; the spectral distribution of harmonics in Sec-
tion T7; the pumping action in Section 8. 1In section 2
certain general features common to most of the experiments
are outlined. Preliminary results on the measurements
of harmonics have been reported by the author(13). The author
was assisted in all other measurements discussed in this
chapter by Mr. Peter Sieck with whom he has also presented

a préliminary report of this WOPk(lu)(15).

2. General Experimental Technique

The orifices studied in this work are small sharp-
edged circular orifices whose diameters are at least two
orders of magnitude smaller than the wavelengths of sound
used. The principal results were obtained using orifices
having dlameters of 0.357 cm and 0.5 cm. The range of thick-
ness extended from 0.05 cm to 1.25 cm. The orifices used

were also those employed by Dr. Ingard in connection with

-38-
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his thesis. When radius and diameter conform, the orifices
used by us are also the same ones that were employed by

Bolt, Labate and Ingard(lo)

, as well as by Ingard and
Labate(ll) in their recent work which has been reported
in the literature.

All measurements, with the exception of the harmonic
analyses, were performed with the orifice situated axially
between two tubes, one having an inner diameter of three
inches, the other two inches. Fig. 17 is a biock diagram
of the principal ingredients of the experiment with the
exception of the conventional oscillators, amplifiers,
etc. The equipment appears in a photograph in Fig. 18.

The driving cavity to the left of the orifice was made as
small as possible so that high alternsting pressures could

be generated within by the high powered western electric

horn driver unit. The coupling cavity was 2" long with an
inside diameter of two inches. The output side of the orifice
was coupled by means of a l-meter long steel tube of 3"in-

side diameter to a Fiberglas cone whose normal incidence ab-
sorption coefficient was 0.99+.

Acoustic resistance was determined by a transmission loss
technigque. The 1ncldent driving pressure was measured by
the upstream sound-cell while the a-c volume velocity
through the orifice was indirectly determined by the down-
stream sound cell. The upstream sound cell was placed

sufficiently close to the orifice so that no wave correction
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had to be applied to its readings. Interference from
higher order modes was non-existent by virtve of the large
values of resistance which were encountered.

Flow resistance was obtained by measuring the time
required for a metered quantity of air to flow through the
orifice under a fixed pressure hesd. Within the approxima-
tions set forth in Fig. 15, the d-c pressure head 1is measured
by the inclined draft gauge. No static pressure tap was
used on the down-stresm side of the orifice; the orifice
was sufficiently small in relation to the tube sothat the

discharge could be considered to be into atmospheric pressure.

3. FPlow Resistance

A typicsl plot of the measured pressure-volume velo-
city characteristics of an orifice is given in Fig. 19.
Data of this kind were obtained for each of the orifices
tested. It was noticed that the logarithm of the pressure
plotted against the logarithm of the volume velocity fell
extremely closely on a straight line, provided U,the average
particle velocity through the orifice exceeded about
150 cm/sec. Above 150 cm/sec the exponent in the pro-
portionality paU? was very close to two as can be seen

from the values tebulated below:
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TABLE III
diameter thickness n

cm cm

357 .09 2.05
5 .05 1.96
5 .32 2.10
5 .64 2.00
5 1.25 1.96
.5 1.9 1.92
5 2.54 1.88

For flow velocities less than 150 cm/sec the log p - log Q
relation appears to fluctuate apprecisbly from a straight
line characteristic, a definlite tendency to. bresk up being
‘noticed at about 100 cm/sec.

The data have been corfelated and expressed in terus
of the d-c flow resistance by obtaining the ratio of the
pressure to the volume velocity from curves similar to
those shown in Fig. 19. The data are given 1n acoustic
ohms which have the dimensions of dyne-sec/cm5 or gm-sec/cmq.

The measured values of flow resistance are given in
Figs. 20 and 21. Plotted for comparison is the value of

flow resistance computed from formula (3) of Chapter III.

1.1
2

of the coefficient 1s roughly consistent with values given

A discharge coefficilent = .74 was chosen. This value

in the literature (see Fig. 2) and it enables the flow re-

sistance to be written in a simple way



ACOUSTIC RESISTANCE IN ACOUSTIC OHMS

DC FLOW RESISTANCE OF ORIFICES .5 CM DIAM
t
e .05
o .32
X .64
v 1.25
A 1.9
a 2.54
10 :
2.54 CM THICK
0.05 CM _ |0<0.32 cM
k— |.9 CM
1.25 CM
™~ 0.64 cm
I o
o
pu
s
0.)
10 100 1000

AVERAGE PARTICLE VELOCITY

IN CM/SEC

FIG. 20

5000



ACOUSTIC RESISTANGCE IN ACOUSTIC OHMS

100

10

0.l

DC FLOW RESISTANCE OF ORIFICES .357 CM DIAM

=
0.09 CM THICK %

\\\>< \

0.32 CM THICK
0.64 CM THICK

y/
’ r
100 1000
AVERAGE PARTICLE VELOCGITY
IN CM/SEC

FIG. 21

5000



ho-

por ¢ = [L1, R, = 1100 _ 29 _ pU (1)
2(scd) S

in terms of the average velocity through the orifice U,
the orifice are S and the density of air p. The measured

value of the discharge coefficient is obtained by equating

(RF)meas. = 2=;£Q~§

2(SCd)

hence '
¢. = 1.1pQ = 74 pv/S
F/meas.

‘a 2
(28 RF)mea,s.

. The quantity under the radical is the rstio of the re-
sistance obtained from the heavy curve, of-gg, divided
by the experimental values drawn in lighter lines. Thus
the actual coefficient of discharge, evaluated at 500 cm/sec

for the thin orifices turns out to be

-— 2'8 -—
Cd = 74 35 = .66 for the .5 cm orifice
C — 4 6.2 — 6/‘ -
a= T 79 = - &) for the .%57 cm orifice

These values ggree almost exactly with the value .07 ob-
tained from Fig. 2 for an orifice whose diameter is .2
times the pipe dliameter.

A similar computation carried out at 500 cm/sec leads
to a value of .87 for both the orifices which are. 0.64 cm
thick. Theselarger values of the coefficient obtained for

thick orifices result from a decrease in the contraction as
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discussed in Section 2 of Chapter II. A similar com-
putation for the 2.54 cm orifice would indicate that the
discharge coefficient for the .5 cm diameter orifice had
passed through a maximum, the coefficient now being re-
duced by the increasing importance of frictionin thic¢ker
orifices. |

The variation of the measured flow resistance with
the thickness of the orifice has been plotted in Fig. 26.
The non-linear resistance, discussed in the next Section,

has also been plotted in Fig. 26 for comparison.

4, The Measurement of Non-Linear Resistance

The transmission loss through a small orifice can be
divided into two regions; a low amplitude region in which
the transmission loss is independent of the amplitude
of the incident sound level and a high amplitude region
in which the transmission loss depends considerably on the
incident sound pressure. In the low amplitude, or linear
region, the transmission loss 1is controlled mainly by the
mass reactance of the aperture. In the non-linear region
the loss 1s governed by the non-linear resistance of the
orifice.

Fig. 22 depicts a typical measurement of the sound
pressure level transmitted into a three-inch pipe, plotted
a8 a function of the incident sound pressure level. The on-

set of non-linearity is clearly defined by the abrupt change
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in the slope of the curves ploted in Fig. 22, In the
linear region the slope is 1 db per db; in the non-linear
region it is 1/2 db per db. This is consistent with
previously obtained results 1ndiceted}in Fig. 4. The
1nf1uence'dfimass reactance shows up clearly in the linear
region of Fig. (22). The trahemiseion loss is seen to
intrease directly with the frequency at low sound levels.
In‘the;non-linearfregion the cur#es approach each other
and canbe represented by a single line. The exact point
at which non-lineerity sets in is a function both of the
frequency and the geometry of the orifice. The critical
sound pressure level at which the transmission-lose deviates
from constancy is presented in Fig. 23. This criticale |
sound pressure level increases aboutrsix'db per octave

for the orifice of .5 diameter and roughly about 12 db

per octave for the .35T7 cm orifice.of the L&rticle:ﬂisw
blscement amplitule.

The values of the non-linear resistance obtained by
the transmission loss measurement technique are plotted in
Fig. 24 and 25. The data are given in acoustic ohms which
have the dimensions dyne—sec/cm5 or gm—sec/cmu. The data
were obtalned over a frequency range extending from 150
cps to 800 cps.. For comparison, the flow resistance has
been plotted at zero cps. The non-linear resistance was
measured at particle velocity amplitudes between 2000 and

7000 cm/sec; the values plotted have been linearly
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extrapolated to a particle velocity émplitudé of 500 cm/sec.

The resistance appears to increase to its d-c¢ value.
It was not possible to determine whether this increase
was monotonic as measurements were not obtained at
frequencies below the cut-off of the pc termination.

It is important to emphasize the fact that the
values of resistance given in Fig. 24 were not measured
at the peak velocity of 500 cm/sec. These data will
agree with measurements obtained at 500 cm/sec provided
the frequency of low measurement 18 enough to insure that
the orifice is in Ingard's jet region.

It is evident that a high degree of correlation exists
bewteen the measurments of non-linear and flow resistance.
This correlation is even more evident when the two kinds
of resistance are plotted for various values of the orifice
thickness as 1s done in Fig. 26. It is particularly clear
that the effects of reduced contrsction influence the
non-lirear resistance. According to Eq. (5) of Chepter III,
the non-linear resistance should be 10 per cent greater than
the flow resistance provided the same coefficlent of dis-
charge is applicable in both cases. It is evident that
the non-linear resistaﬁce for thin orifices is considerably
less than Eq. (5) predicts. This implies that the coef-
ficient of contraction is greater for alternatihg flow (by

about 30 per cent) than it is for steady flow. For thicker
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orifices, the non-linear resistance and the flow resis-
tance are very closely equal. This result agrees with our
assumption of a suppressed contractionin the case of ori-

fices whose thickness-to-diameter ratio exceeds sbout 2.

5. Measurements of Differentisl Acoustic Resistance

The differential resistance for two thin orifices
of dismeter 0.5 and 0.357 cm have been measured by tech-
niques similar to those employed in the previous section.
These 'results are given in Figs. 27 and 28, in terms of

acoustic resistance which has the dimensions of dyne—sec/cm5

or gm-sec/cm4. The measured values of flow resistance
multiplied by 2 are plotted for comparison as well as the

equation (10) of Chapter III:

2 g, =qi:d
_ P9 d 2, 20U (2)

In general the measured differential resistance is less

than the flow resistence times 2, and greater than the value
calculated directly from the above equation. The measured
points corresponding to twice the flow resistance have been
omitted from the plot since they would fall on. the given
solid line. In obtaining the differential resistance, RD’
the a-c veloclity amplitude is always considerably less than

the superposed d-c¢ particle velocity. As can be seen from

Fig. 21, the direction of the d-c¢ flow does not influence
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iithe results within the estimated exper»mental error, o
iiwhich is about 20 per cent.» iw';"f"fi M

‘_ For sufficiently low values of the d—c flow velocity the
: magnitude of the orifice impedance hecomes independent ;‘
t:of the d c velocity.' These constant magnitudes of the im-
"pedance have been plotted arbitrarily at 100 cm/sec on ;
;the abscissas of Figs. 27 and 28 : It is of interest tov
"note that for flow velocitﬂs of the order of 200 cm/sec‘"
“the differential resistance is less than the magnitude of

| ‘the impedance at lower velocities.\ This ‘means that the
acoustic conductance reaches a. maximum value and thereafter,”‘
decreases approximately 1inearly with a further increase

in flow velocity. This behatior may be qualitatively ex-‘

| plained in terms of the mass reactance of the orifice. At""
slow flow velociﬁes the conductance is determined primarily

by the mass reactance which, for the orifices considered,l'
was greater than the resistance. As the d-c flow increases
'the coherence of the air mass that contributes to the “‘
reactance is destroyed, resulting in a. decreased mass reac-
tance and therefore an increased conductance. A further _H
‘increase in the flow velocity increases the-, differential
‘resistance so that ultimately the resisﬁance overrides the R

St

-effect of a reduction‘in reactance. Wha qxen itj, (ijg}-

biﬁzhﬁ”ln'ﬁiﬁg l?ﬂ.b rbﬁthiJn‘iﬂrﬁﬂf acosiic mess

of the oeifice M"})csseﬁ'xn‘iﬁrms AP tﬁé-»ﬁﬂivdient\enr
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The transmission loss technigque is inherently in-
capable of measuring the differential resistence unless this
resistance exceeds the magnitude of the reactance. Con-
versely the reactance may be messured by this method only
when its magnitude exceeds that of the resistance. More
accurate measurements of the differential resistance and
of the dependenée of the reactance on flow have subse-
quently been made by McAuliffe(lé) with the precision
impedance tube.(l7) In Fig. 29 McAuliffe's results for the
differential resistance of a .5 cm orifice are compared
with our Eq.(2). The reactance is discussed in the

following section.

6. The Influence of Steady Flow and Large Amplitudes on the

Reactance

The reactance is observed to decrease considerably
with the initial increase in flow velocity. It thereupon
levels off to a constant fraction of iﬁs former value.
It is observed from Fig. 29 that the reactance drops from
26 ohms at zero flow velocity to sabout 11 ohms at high velo-
cities. This is a fractional reduction in the kinetic mass
of 11/26 = .42, which is to be compared with the fraction
5/8 &~ .38, derived from the approximate theory presented
in Section 3 of Chapter III.

Similar considerations might be applied to lnterpret

the behavior of non-linear reactance depicted in Ingard's
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S

d
in Fig. 13 is the reduction in the acoustic mass of the

curves reproduced in Fig. 13. The quantity, ( ) plotted

orifice expressed in terms of theaulvalent end correction
for that orifice. The asymmptotic approach of thé non-linear
kinetic mass o a constant value, for high particle velo-
cities, cannot be explained in terms of the mass tras -
ferred to the jet(1l). The reason for this is that the
mass ejected by the orifice continues to inaease, after
the reactance has stabilized to a constant value.

We consider briefly now what we meant in Section 5
by the Statement "... the jet of gas issulng from one
side of the orifice willl destroy the coherence of the
mass contained inside the hemispherical cap on the exit
side". We adopt the criteria that an: element of mass is
coherent if it remains within the region bounded by the
hemispherical caps on either side of the orifice during
one complete period; othérwise it is incoherent. This
leads to the following criticalrelation between the fre-

quency f, the radius r_and thickness t of the orifice

o
and the maximum flow velocity vdof the particles:
v, = f(2r_ + t) (3)

Applied to the data of Fig. 29 which was obtained at 400 cps,
we obtain a critical velocity of 220 cm/sec, which is about
one-half the velocity at which the experimentally determined

reactance has reached its stable value for high flow velocitiles,
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In Fig. 52 of Chapter VII this criteria 1s applied in a
slightly differeht way to the data of Fig. 29 as well as

to some additional data. We now use the above concept

to estimate the velocity at which a constant non-linear re-
actance is attained. From considerations similar to those
used in the steady flow criterion, we assume the critical
particle displacement amplitude in the orifice to be jﬂ‘=

(2ro+t). Then if u_, is the critical velocity amplitude

c
in the orifice, we have for alternating flow:

£=(2r_ + t)
| (%)

or

u, = 2vf(2ro + t)

3 We apply these last two relations to Ingard's measure-
ments (see Fig. 13b) of the non-linear reactance. We

note that the reactance of the .357 orifice has stbilized
by the time as/t ¥ 6. Since this orifice is .1 cm thick,
the critical displacement is 0.6 cm from experiment. From

Eq.(4) we find:
j’c = (,357 + 0.1) = .46,

which 1s falr agreement.
This treatment cannot be applied to the measurements
of Figs. 13a or 13c since in these cases sufficient amplitude

was not attained to reduce the reactance to a constant value.

7. The Generation of Harmonics by Small Circular Orifices

The guthor has reported(e)(l3) messuring the harmonic
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components generated by an orifice which was driven by
high intensity sinusoidal pressure. Harmonics of the
exciting pressure as high as the fortieth were detected.
It was found for the .357 cm orifice that the first three
harmonics, including the fundamental, behave as if they
were emanating from a spherical source having a radius
equal to the radius of the orifice. This observation

wes made on the orifice in an infinite baffle and while
the orifice was operating in the jet region.

We have made further measurements of the spectral
distribution of the harmonics. These measurements were
obtained at a distance of 7.0 cm from the center of the
orifice which was located centrally in a 4' x 6' rect-
angular baffle, ylelding essentially free field con-
ditions. The sound pressure level was recorded through
a 640-AA coupled through an.Erpi R-A 277 F Automatic
Frequency Analyzer to a Bruel and Kjaer Sound Level
Récorder. The 640-AA, without grill, was placed on the
baffle in such a position that the samd from the orifice
was received at grazing incidence. The orifice was driven
in the manner described in Sectibn 2 of this Chapter.

Becaguse of their bulk the spectrum curves  have

been grouped together in Appendix .V where they appear as

This partially justifies the tacit assumption made in
estimating the kinetic mass of the orifice (see Section 5
and Section 6) namely that the kinetic enmergy configuration
outside the jet reglon is unperturbed by non-linear effects.
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Figs. 61 to 71.

A simple addition of the power carried away in each
of the first few harmonics would show how litfle écoustic
power is radliasted compared with the power conferred to the
jet.

The author(g) has previously noted that lncreasing the
particle velocity amplitude causes the second harmonic to
increase  with the square of the fundamental low levels;
then the second harwmonic suffers a sharp minimum which is
followed by an approximate fourth power recovery finally
going into a third power rise. This behavior is illustrated
in Figs. 3 and 72.

It has now been aécertained that this sharp dip in
the second harmonic occurs when the particle displacement is
approximately equal to the radius of the orifice. This
is evident from a glance at Fig. 735 where the second
harmnnic relative to the fundamental level 1s plotted
for orifices from .25 cm to 1 cm in diameter. Fig. 73 was
ploted from values taken from Figs. 61 to 71. The in-
dependent variasble N is the fundamental particle displace-
ment amplitude of a spherical source(having the radius
of the orifice)divided by the orifice radius.

The decay rdte of the first few odd harmonlcs is given
in Fig. T4 in terms of the number of decibels decrease per

odd harmonic. In examining these results it is important

to realize the orifice behaves like a point source; hence
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the decay of the equivalent simple source will be 6 db per
octave greater than the value obtained from Fig. T4.

At sufficiently high levels the third harmonic
becomes directly proportional to the fundamental, as can
be seen from Fig. 3. In this region the theory given
in Section 4 of Chapter III can be used to predict
the ratio of the third harmonic to the fundamental.
According to this theory, the third harmonic pressure
should be asbout 7 db below the fundamental.

A glance at the -data taken at the highest levels,
on the small and thin orifices (Figs. 61, 62, 65) shows
that the third harmonic is very nearly 7 db below the
fundemental. The other data cannot be used in making
this comparison, since they dp not represent data tsken
in the jet region. Neither can the results given in Fig. T4
be used in this compafison, since this decay in Fig. T4
represents an average over several harmonics and in the jet
.region the third harmonic is lower than would be predicted

from the average decay.

8. The Pumping Action of the Orifice

In Section 4 of Chapter III it was shown that an
orifice driven: by a pressure wave having a non-zero square
root moment should behave like a pump. This behavior was
confirmed in a single'experiment with the .357 diameter orifice

having a thickness of .09 cm. With one obvious exception, the
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experimental arrangement was equivalent to that utilized

in obtaining the differentisl resistance. Instead of
forcing airflow through the orifice, the orifice was called
upon to pump air through the flow meter. The required
pumping power could be estimated from the product of the
pumping rate times the static head which also was measured.
The desired waveform was obtained by combining a 600 cps
tone with its second harmonic, both having the ssme sound
pressure level, 152 declbels measured behind the orifice.
The relative phase between the two waves was adjusted until
the maximum pumping rate of .95 liters per minute was achieved
against a pressure head of y" which_representsva working
rate of the order of one milliwatt. The power 7 dissipated

by the orifice can be estimated from the relations

. 2
T = Q2 R - 1.1 Qrms pQ’peak
- ®*rms NL ~ ’ 2
e(cds)
and T = PonsQrms
from which we obtain
_"J? 3/2
T =T.1p CaSPrms

where the symbols have their usual meaning and Prms 1s the
pressure incident on the orifice. Using as an s-c coefficient
one that is 30 per cent greater than the d-c coefficient (the -
d-c¢ coefficient we found to be .66 in Section 3) we compute

that 3 watts 1is dissipated in the orifice.
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The mechanical efficiency of this pump. is evidently
less than one tenth of 1 per cent. Possibly this efficiency
could be improved by altering the wave form. Thicker ori-
fives of the same diameter were found to be less efficient
pumps.

The fact that small orifices pump quantities of gas has
meant that extreme care had to be taken to eliminate small
leaks from the tube before valid measurements of the force

on objects could be made.



CHAPTER V
THE THEORY OF STEADY FORCES CAUSED BY SOUND WAVES

1. Introduction

In general sound waves cause steady forces on objects
with which the waves interact. The nature of these férces
i1s understood provided one restricts the considerations
to ideal fluids lacking viscosity, and heat conductivity.
In these cases, if the object is not under steady trans-
lation, these forces are due to the well-known radiation
pressure. On plane reflection and absorbing screens
arising from radiation pressure, the forces have been

thoroughly investigated by L. Brillouin(l8)

, Whereas the
forces on spheres have received a rather complete treat-
ment at the hands of L. V. King.(lg)

Brillouin, in 1925, noted the importance of the flux
of momentum tensor specifying the rédiatinnstress tensor,
s tensor defined by Brillouin. Adopting Brillouin's point
of view we shall derive in terms of the scattered and
absorbed energy a general expression yielding the radiation
pressure on an object of any shape and having arbitrary
normal boundary impedance. This general description of
radiation pressure enables the first step to be taken in
accounting for the non-idesl character of the fluld. We

define the boundary of the object to be the outer surface

of its boundary layer which we assume, with Cremer(eo), can

-5}
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be specified by a normal.impedance. The losses 1ncurred
within the boundary layer are shown to modify appreciably
the forces due to radiation pressure, particularly in the
case of spheres of small radii, and at low frequéncies.

We next investigate forces which come about by virtue
~ of the non-linear properties of the medium. The -author
has previously discussed(l)a force which exists by virtue
of the temperature dependence of viscosity. This so-called
Stokes-type force, which to date has not been measured,
is exerted in the direction 6pposite‘to the wave normal
and it depends upon the field intensity rather than upon
the energy density. It now appears that fhis Stokes force
may be just about cancelled by the modified radiation
pressure force which for spheres always scts in the direction
of the wave. |

Consideration is next given to the influence of asymmetry
in the velocity wave form of the medium. It 1s shown that
asymmetry in the wave form will give rise to forces, which
as 1n the case of the Stokes-type force, cannot be ex-
plained in terms of the concepts of radistion pressure, but
‘which are caused by the non-ideal nature of real fluids.
We have chosen to call the forces arising from asymmetry
in the velocity the Oseen-type forces. This has been done
in order to emphasize the connection between this force
and the force resulting from steasdy flow which was investi-

gated theoretically by Oseen.
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The asymmetry in the velocity required to produce
Oseen-type forces may be realized in seversl ways. We
have chosen to examine in detall the effects of asymmetry
obtaihed by combining two or more harmonically related waves.
The asymmetry which results from endowing either the
medium or the particle with a steady velocity in addition
to the large amplitude harmonid disturbance is also studied.
We have found that these forces which come about through
the combined effects of a non-ideal fluid and.an asymmetric
wave form can be ten or more orders of magnitude greater
than radiation pressure.

The non-ideality of the fluid is apparent in the force
veiocity relation, which is found to exist for bodies
undergoing uniform translation. It is well known that
an ldeal inviscid.fluid exerts no force on a body under-
going uniform translation. In a real fluid the force velo-
city relation is in general non-linear. Hence any treat-
ment which does not teke into account the real character
of the fluid is apt to lead to unrealistic conclusions.

Such a treatment due fo Nabarro has appeared this month
(December 1950) in the literature.2l) Nabarro in treating
an ideal fluid deduces that there will be no force which
arises specificelly from the non-lineer interaction of a
sound field and the uniform velocity with which the body

is assumed to move through the field. Nabarro does find, as
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one would expect, that the classical radiastion pressure
forces are modified due to flux and doppler considerations.
Because of his .assumption, Nabarro's treatment is valid
primarily in regions where the forces due to classical
radiation pressure are large, that is for large spheres or

for small wavelengths,

2. The Wave Drag Coefficient

In discussing the steady forces caused by sound waves,
it has been found expedient to introduce a quantity called
the wave drag coefficient and symbolized by DW' This
coefficient is defined as the magnitude of the force per.

>)"’kdivided by the object

unit local acoustic energy density
ares projeéted in the direction of the undisturbed particle
velocity. The coefficient Dw may be thought to be the
magnitude of the sum of a number of partial vector drag
coefficlents

DW - ’ﬁi dn!

n

each dn representing forces arising from one specific

mechanism. The following»partial drag coefficients are of

interest: dl’ arising from radiation pressure; d2,involv1ng

4. In some instances (Chapter VI for example) we have used twice
the average local kinetic energy density in place of the energy
density. This allows results obtained in travelling and
standing waves to be compared against a common theoretical
curve.
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mean viscous forces; d3, describing the so-called Oseen-
type forces.

In the experiments reported in Chspter VI, the Oseen-
type forces are much greater than all the others, so that

it is proper to set DW = 'd3|°

3. Forces Produced by Acoustical Redliation Pressure

A technique is outlined in this section for finding
the force caused by radiation pressure arising from the
interaction of a collimated beam of sound with an object.
The force is evaluated in terms of a surface integral
of asymptotic scattering functions for the object. The
expression for the force 1s valid for objects of any
shape haviﬁg arbitrary non-uniform boundary impedance.
In addition, the method is simpler in its application
than Kihg's.(lg)Specific expressions are derived for
rigid spheres and cylinders of infinite and zero mass.

We shall see that the effects of ordinafy viscous
and thermal losses at the surface of small objects may
gve risektO'extra forces, induced by radiation pressure,
which are several orders of magnitude greater than the values
calculated by King. The exact value of the force on the
object cannot be obtained directly since part is due in-
directly to a transfer of momentum associated with the
medium streaming by the object. The streaming is csgused

by the wave momentum absorbed in the viscous and thermal



..59_

boundary layer surrounding the object.
We seek first a relation between the average pressure

pE in fixed coordinates and the average lLagrange density

Lav’ Taking the time average of Euler's equation(ee)

ot

p(uey)u+uler (pu)]= -yBg- (1)

glves:

If this.development is to be carried out to second order
in u, the solutions Uy and Po to the first order wave

equation may be utilized. Thus Eq.(l) becomes:

po(uocVuo + uOV- uo) = _VBE . (2)
By taking the time average of Eckart's(ag) Eq.(llfgand

assuming irrotational motion, one finds easily:

po(uO-Vuo + ro" uo) = +VLav (3)
Thus _
Py =-L_, + constent, (4)

establishing the first relastion requlred.

Next we look for a connection between the flux of
momentum density (a tensor of rank two whose connection
with radiation pressure was first recognized by Brillouin(23))
and the Lagrange density. Introducing the flux of

momentum density dyad p,uu, we note that the relation:

Vouu=u .Yu+uy¢:  u,
in connection with Gauss's theorem

[1J¥ « (uu) dv = €f GA - uu,

& This equation called by Eckart the conservation law of aeoustic

"momentum" 1sEr §L + 0, [Ue +VUo ¥ U Prlto [ = PL # L0ty Px (Paus) 2 O

where J is the acoustic energy flow (instantaneous intensity).
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enables Eq.(3) to be written as

_@Lavﬁ+po@ﬁ-‘fﬁi=o, (5)
establishing the second relation required.

The force on the object csn be obtained ffom the pressure
evaluated in the coordinates of the boundary of the object,
which are fixed only if the object is rigid. (Continuity
of pressure and velocity 1s assumed at the fluid-object
interface; penetration of fluid into the object is ruled
out) . The average pressure on the boundary‘pB mey be ob-
taeined .by applying the inverse stationary coordinate trans-
form: to the instantaneous pressure, in fixed coordinates,
and subsequently performing the time average. This leads

to the sverage boundary pressure:

—-—

pL = 5E + dB . (VPE) (6)

in which d, is the boundary displacement.

B
Next, if the simplifying restriction is made that the
boundary moves only perpendicular to itself, the following

relation holds on the boundary:

ah- W =fop  (Veg)|dR (7)

These results are now applied to obtain the force on

an object located on the axis of a collimated monochromatic

(1)

The direct transbrm from moving to fixed coordinates is
(scalar in fixed coords.) = (scalar in moving coords.)
- d (scalar in moving coords.)
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incident beam. Eq.(5) 1s applied to the region bounded by
the outer surface of the object and a concentric surface R
enclosing the‘object. In two or three dimensimal problems
the surface R is oonveniently chosen to be & cylinder or
sphere respectively, having a radius large compared with
the dimension of the object and the wavelength. The
boundary conditions at infinity are assumed to be perfect
absorption. One-dimensional problems have been treated in
detall elsewhere(QB) and will not be discussed here. The
outer normal in both instances is-consideyed positive.

By virtue of Egs.(4) (5), and (7), the left-hand member

of Eq.(6) integrated over the surface of the object

yields the force on the object:

F==f L dA+p. J F-wm, (8
obj. &v © obj.

The surface surrounding the scattering obstacle is suf-
ficiently far from the scattering region so that over most
of this surface there is no interference between the
incident and scattered waves: hence, on this outer sur-
face, Lav will differ from zero only in an arbitrarily
small region of interference.” The integration over R of

the left member of Eq.(5) ylelds, therefore,

po | A~ . (9)

Since, by Eq.(5) the sum of (8) and (9) must be zero we find
e -l
F = -po f dA f‘fﬁl‘,
R
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or, since L, £~ 0 on R and u--R, the force may be ex-

pressed in terms of the field momentum vector P:

F = -J |'P| aa, (11)
R

or the field intensity:

F--1 [Pl (12)
R

A complex drag coefficient dl may be defined, the
real part representing the component of the force per
unit projected area which lies in the direction of the
incident field momentum PO, and imaginary part the com-
ponent at right angles to PO. It is convenient to ex-
press di*in terms of the total power scattered ws,_the
total power absorbed L and the magnitude of the scattered
intensity v, all expressed per unit incident intensity.
If 0 is the angle formed by the incident and scattered
intensities and s 1s the projected area of the object we
find:

dy = %{va +7 - [y cos 9 dA] (13)

—%f'ysinGdA.

If the scattering object has an axis of symmetry coin-
ciding with the incident wave normal, d{%is real and
*% 1 | ’

Eq.{(14 wes used for computing the values of d, for
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progressive waves given in Table IV. Asymptotic expressions
for v, as given by Rayleigh(zq) in the low frequency approx-
imetion, were used to calculate d1 for spheres and cylinders
of « mass, The appropriaste dipole term was subtracted

for the case of 0 mass, the incorrect assumption being made
that the obstacle moves with the fluigd.

The coefficient d, for standing waves was evaluated
.'m'integrating the space maximum time-averaged pressure in
fixed coordinates(l) over the surface of tle obstacle.

King(lg) has obtained expressions for the radiation

pressure on spheres. In the low frequency approximation
our results agree exactly in the traveling wave case..

The force on rigid objects of any shape can be

evaluated provided the object 1s small compared with the
wavelength. To accomplish this, the technique applied by
Lamb(25) to the scattering of sound by an obstacle of any

form can be applied.

TABLE IV
Wave Drag Coefficient
e = radius. of object k = wave number
Object Mass Progressive Maximum Value in
Wave Standing Wave
© 11 y 8
=—(kx =
Sphere 9 (ka) 3 Kq
0 §(ka)4 0
9
2 5
o 571 (ka) Tka
ICylinder: 52
Tk&) 0
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We now consider absorption of energy by the bouhdary
layer and its influence on the force communicated to the
object. In order to have a definite problem at hand, we
shall consider a rigid sphere with a radius much smaller
than the wavelength. Let us, however, consider the forces
which act on the outer surfsce of the acoustical boundary
layer rather than at' the 'surface of the sphere. To simplify

the problem, only viscous losses will be considered. The

™
effect of viscous losses will be to bring in the term-gg

in the expression for the drag coefficient.
For a small sphere (ke <'1) the fraction of the in-
cident energy which is lost through viscous action is,

approximately,(25) Ev 5

'(E‘ITB.

v being the kinematic viscosity and ¢ the velocity of
sound. Thus that part of the coefficient due solely to

viscous absorption, is

T
a 6v
s Ca (15)

The conditions for equality between the expression (15)
and the coefficient arising from scattering by the rigid

sphere is obtained by setting dl from Table IV equal to

Eq.(15): 11 4 6y
9 (ka) = -(-3—8.-
for traveling waves, and
8 _ bv
-3‘ ka = —CE

for standing waves.
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Recently severasal publications(26)(27) have appeared
in which the drift of aerosols under the influence of sound
has been discussed in terms of radiation pressure. Thus
it would be of interest to obtain numerical values for
the equalities (16) and (17). For a frequency of 10,000
cps in air the radius for equality is of the order of‘20
microns for standing waves and 100 microns for traveling
waves. ’

The author has recently(l) predicted a steady force
which should occur as a result of the temperature de-
rendence of the viscosity. This we call the Stokes-type
force and it 1s supposed to be exerted in a direction op-
posite to the intensity vector. The author derived an
expression relating this force to the intensity of a sound
wave in a gas. He assumed a temperature dependence of the
viscosity gi&en by simple kinetic considerations and thus
based his derivation on the assumption that the viscosity
varied with the 1/2 power of the temperature, (in reality
the variation is according to a higher power but this
does not influence the order of magnitude of the results.)

For a plane progreséive wave the drag coefficient

associated with the Stokes force is

_=3(¥ - 3)v A -5V
dy = ce 2) ~ Tca (16)

where ¢ indicates the ratio of specific heats which has
been assumed to be 1.4 for sir. We now see that do will be

smaller than the d, of Eq.(15) and that, subject to the
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uncertainty in the true value of dq, the direct measure-
ments of d2 may not prove feasible. ’

In the discussion of this section we have tacitly
assumed that the instantaneous temperature of the object
followed that of the medium. To have assumed otherwise
would have added unnecessarily to the complexity of the

problem.

4, The Oseen-type Forces

The force acting on a sphere moving at a constant
velocity relative to a viscous medium can be written to

include a term depending on the square of the velocity u:

————

Force = 61rr/uo-ﬁ [1 + k lul] ' (17)

.where the first term is the well known Stokes law, and
the second term involves a constant k that 1s usually
determined experimentally. In steady flow, k is given
approximately by Oseen's second approximation to the re-
lation for the drag on a sphere. The relation (17) is
usually expressed by giving the hydrodynamic drag coef-
ficlent which is defined to be the ratio of the force

divided by the projected area of the sphere and the kinetic

energy density of the fluid. If C is the drag coefficient
then, to within Oseen's approximetion, Eq.(17) may be ex-

pressed &as:
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C = 24R‘1{1+§%}= 24R™1 + D (18)

where R is the Reynold's number for the sphere. The de-
gree to which Eq.(18) conforms to the facts can be seen
in Fig. (BQ)which is taken from Prendtl and Tietjens(28).

The dotted line is a plot of Eq.(18) whereas the solid curve
represents experimental data. It can be seen that the
‘deviation from Stokes' law is definitely noticeable

Ibf a Reynold's number of about 1. It is also evident

that Eq.(18) does not fit the facts to well for R ) 1.

Goldstein(eg) has obtained an expansion from which values

of C can be calculated for R as high es 2. His expansion

is
el 3 19 _2 13 30179 o4 ., 122519 5
C=20R"1+4R - 1558 + 20185 R - 31760 EooR + 5@074?%? R7-..)
19

The first term in the series, 24R—1, is the value ob-
tained by Stokes' and the second approximation, Eq.(18)
was obtained by Oseen. Due to the complexity of Eq.(19)
we shall not consider it further.

Inasmuch as Oseen's approximation appears to account
in a crude way for the facts of steady flow, it 1s natural
to ask to what degree the approximations will hold for
non-steady flow. The point of view adopted in this and
the succeeding chaspter has been to adopt Oseen's approxi-
mation as a point of reference against which experimental
results may be compared. In order to carry this program

out we first assume Oseen's law to be instantaneously
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applicable and proceed to derive the consequences of this
assumption for non-steedy flow.

It may be worth pointing out that for most of the
experiments we have done, the objects have been so smsll
and the frequencies so low that the first order acceler-
ation forces are of the same order or smsller than the
first order viscous forces. The time average of the first
order acceleration force 1s zero in & periodic wave. We
neglect second order acceleration forces, The acceleration
forces are tied up with the virtual mass of the sphere. It
is possible that the virtual mass is very much reduced
under the influence of large slternating amplitudes. This
latter point is discussed further in Section 2 of Chapter VII.

’It is easy to.see that if u is periodic and has a zero
average value, the first term in Eq.(17) contributes
nothing to the average value of the force. Whether the
second term contributes to the average or not depends
on whether the average

1t =) 20
T jo u|luldt = u |ul (20)

is different from zero. Following Baerwald (see Appendix IV)

we shall call thé average represented by u | ulthe Oseen-

type moment. There are an infinite variety of periodic wave
forms which have en Oseen-type moment different from zero.

One of the simplest is obtained by combining two harmonically
related waves in proper phese as indicated in Fig. 32. The

average force on alsphere resulting from an asssumption of
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Eq.(18) in conjunction with this wave ha: been worked out
as a simple example. In this case k is easily expressed
in terms of D, the difference between Oseen's value of

C and Stokes' value for the same quantity

8D _ 4.5a
12v — 12v

k =

A more general wave than that depicted in Fig. 32 is
obtalined by considering as ad justable parsmeters f, the
fraction of second harmonic and ¢, the relative phase
angle between the fundamentel and second harmonic. Such

a wave form would be the following:

u=ug [sin wt + £ sin(2wt + ¢)]

This wave form is illustrated in the Figures 57 to 60

(30). These figures

copied from one of Rider's handbooks
can be used to adjust for desired waveform in ¢ase no
calibrated phase controls are at hand. An expression for
the Oseen-type moment of this more general wave is obtained
in Appendix III for special values of f and ¢. The results
of Appendix III supplemented with calculations performed

by the Joint Computing Group indicate that the normalized
Oseen-type moment of this wave can be expressed as the pro-
duct of two functions

—————

u“eﬂ G(£)o(9)
uO

= -G(f)sin ¢
Here G(f) is a function of f alone and ¢ is a function

only of the phase angle. The function G is plotted in Fig. 33.
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It is considerably neater to deal directly with the wave
drag coefficient, d3 instead of the force. For this more

general wave, then, the coefficient d3 turns out to be

26 o (21)
+

d, = D =
5 1+ £°

for a plane progressive wave.
The factor (1 + f2) in the denominator is proportional
to the energy density in the wave. The function G 1s shown

in Appendix III to be given by the following expression:

G =2 {xJ 1-x2 + —%fx(}-zxz) - 12 xy{1-52 [2}(2-1] - y(l+f2)}

m

where x = cos y

and
y 1/2 cos [ ; > (j 1+8f lﬂ

Approximate and asymptotic expressions for G are easily

found to be
G _»hif as £ —»0
31
G—'"%%é -1/3 =~ .287 for f =1 (23)

G-'"‘%_ ~.318 as f—po

From these relations we see that the drag coefficient

varies inversely with the harmonic fraction, f, for small f,
whereas for large f, d3 varies inversely with the square of f.
This means that d3 will have a maximum with respect to f, as

is evident from Fig. 43 in Chapter VI where the negative
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logarithm of Dy = [d3l is plotted as a function of f,
f being expressed in decibels.

H. G. Baerwald has recently checked the maximum value
of our calculated d3 and he has extended the calculstions
to a ﬁaveform conteining three harmonic components. His
results which were privately communicated to the author
appear in Appendix IV. He found an appreclable increase in
the wave drag coefficient upon addition of the third
harmonic. Baerwald defined an "efficiency ratio" ¥ which

is the ratio of the Oseen-type moment to the powér moment,

u2. In terms of this ratio, our partial wave drag coef-

ficient 4, 1is equal to 2.25M . From Appendix IV we find

>3
that the maximum values of ¥ are .325 for two harmonic

components and .487 for three. In a letter to the author
Beaerwald comments as follows:

"I had expected an appreciable increase of the 'wave
coefficient'! upon additlion of the third harmonic, as this
would tend both to enhance the sharpness of the pulse shape
at the in-phase point and to promote interference can-
cellation elsewhere. I wonder whether a different choice
of two harmonics added to the fundamental would improve
the result?

The combination of a larger number of harmonic com-
ponents 1s probably quite academic as far as application
is concerned, and the corresponding calculation would be
rather cumbersome and boring; I understand that there
are quite a few harmonic synthetizers around and with such
a gadget in combination with a cathode ray tube, photo-
cell and some electronic circuitry, the whole matter could
be tackled automatlically in no time - but would it worth
the effort?"

The experiments discussed in Chapter VI involve measuring

the force on a pendulum fashioned by hanging a sphere from a
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small cylindrical wire or thread. In order to know the
frce acting on the sphere, the force which is exerted on
the cylinder must be known. Calculations similar to the
ones just carried out for the sphere are difficult to
duplicate for the cylinder because of the nature of the
steady flow resistance law for cylinders. Lamb's(25) re-
lation for the drag on s cylinder expressed in terms of

the force per unit length is:

F/L = - Uy (24)
- ln g - 0.0772

wﬁere £ and a aré the length and radius, respectively of
the cylinder, W 1is the viscosity and U the velocity, This
relation ﬁhich.holds only forsmall Reynold'!s- number 1is
plotted in Fig. 31.. It is apparent that the drag coef-
ficients for cylinders and spheres are not too dissimilar
so that we might expect the Oseen-type forces due to sound
waves to be sbout equally strong, on a unit area basis,
for spheres and cylinders, at least in the range of Reynold's
numbers depicted in the graphs. The analytic difficulty
involved in computing the Oseen-type moment from Eq.(24)
has prompted us to resort to an approximation. Instead

of assuming the velocity waveforms to be compoundéd of

two harmonically relsted sinusoids, we have used the
rectangular wave depicted in Fig. 36. This wave, inserted
into Eq.(24) leeds to values of the drag coefficient (re-

member the projected ares of a cylinder is 2rf) which are
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a function of the peask Reynold's number as indicated in

Table V:
TABLE V
R, d
1 ' 3.78
0.k 2.14
0.04 4,08
0.004 17.3
0.0004 94,2
0.00004 596

Finally we investigate the wave drag coefficient d3
for a sphefe in a moving stream of gas or liquid. In Appen-
dix III the Oseen-type moments have been evaluated for s
velocity wave consisting of a constant d-c term in addition
to a sinusoidal component. In the event the amplitude of
the alternating component is less than the d-c term the
velocity may be written

u=u[1+¢rsin ot , rr €1 (25)
vhere f' here indicated the modulation index. The Oseen-
type moment of such a wave can be expressed as

wlul= (1+ £1%/2)u2 (26)

In the event f' 7> 1 we may write for the velocity
u=uo[éinwt+f], r €1 (27)

for which case the Oseen-type moment is shown to be

ulal= B(f) w2 (e8)

o
where B(f) =‘% [(1+2f2)sin-lf + 3f ll-f2]
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wdﬁﬁ%g for £ K1,
B(1) = 3/2
By means of Eq.(26) and the fact that Eq.(25) can be

written as
u = (f'uo) [ 1/ + sincut],

B(f) can be defined for any £ 2 0. A plot of B is given
in Fig. (34%).

We are nét too much interested in the total force
experienced by the objéct in a combined sonic and flow
field. If we were, we would also have to take Stokes'
law into account. What we want is the additional force
caused by the interaction of the sonic and flow fields.
Thus 1t 1s neccessgry to subtract from Eq.(28), f2, the
Oseen moment of the d-c¢ flow field. This leads to a 4if-
ferential B, called ﬁd and given by:

By = B - £° (29)

from which we can obtalin the wave drag coefficient per-
taining to a sinusoidal wave in the presence of steady
flow:

ds = CBy = 4.58, for £ £1

- C_ >
d3 =5 = 2.25 for £f =1

Thus a d3 has been found which represents the interaction
force per unit project area divided by the acoustic (not in-
cluding the steady flow kinetic energy) energy density. From
Egs.(30) it is seen that d5 depends through By on the steady

flow fraction f provided this fraction 1is less than unity.
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If £ > 1 the drag coefficient is a constant. In the ex-
periments described in Chepter VI the flow velocity was
maintained at a fixed value, while f was varied by changing
the sound pressure level. In the experiments combining flow
and sound the condition f<{{ 1 was realized so that over the

available experimental range

d5 = 4.5 By and f (1
= 4 5B by virtue of Eq.(29)
= 18f

= by virtue of Eq. (28

The negative logarithm of d3 obtained from Egs.(30)
has been plotted as a function of the sound pressure level
in Figs.46 and 47, the values of the flow velocity being
indicated along side the solid curves towich they pertain.

When dealing with one dimensional standing waves, the
wave drag coefficient is a function of where in the wave
one is. In waveforms consisting of a fundamental and
second harmonic component the coefficient has positions
of maxima and minima which occur roughly s eigth of a
wavelength gpart. In a perfect standing wave d3 is zero
at the velocity nodes of tke fundamental and second harmonic
éomponents; The positions of maxima in 4 depend on the
relative amplitudes to which the two modes are excited. If
the second harmonic mode is excited to 1/3 or less of the
strength of the fundamental, the positions of the maxime in

d become ess8entislly independent of the relative amplitudesof



~-76-

the two modes. In this case if x 1s the distance from
the hard termination, the coefficient d3 and hence the
force vary according to

+ 8in kx sin 2kx
The sign in this expression depends on the relative phase
angle between the harmonics, and the fundamental com-
ponent. The modulus of the above quantity has maxima
at x = (+0.152 + n/2)A\, n=1, 2, ... . These results
should be compared with the x dependence of the radiation
pressure due to a single mode of wave number k. If a
positive force lles in the +x direction, then the classical
radiation pressure force varies according to

sin 2kx
which has a maximum modulus at x = (1/8 + n/4)A, n= 1, 2,...

Thus the behavior of the Oseen-type force in a standing wave
is very similer to the radiation pressure force except

that the Oseen force can act either in the same direction as
radiation pressure or in the opposite direction.

In Fig. 35 we have compared the three types of forces
discussed so far. The chart 1s primarily intended to convey
orders of magnitude and it pertains to spheres and wave
numbers for which kr 1. Traveling waves as well as
stending waves have been treated. The curves for radiastion
pertain to the «¢lassical radiation pressure. The order
of magnitude of the radiation pressure when modified by
visoous losses may approach that of the Stokes' type force

a8 discussed in Section 3 of this chapter.



-1
[ [ | | !
/["STANDING WAVE OSEEN PRESSURE, (f=1, =T
e e Ry st e P S
, (T2, R
ZPROGRESSIVE WAVE OSEEN PRESSURE, (f=1, =+ T
\ ] 2,
' T 100 ¥C , 10 KO
.\,'<’ - \KG '
> el \;?_TOKEE = T~ CPS
[ — L - PRES — \OO —
3 =" WAYE o= ——=LAIR 10 6P°~
- ND\NG -+ sURE o \\/ -
T -y -
4 — RAD\A —
5 el
- _ -
:6 _ ‘//
[ /
7 oA
04*
: 4
9 "/
10 / -

y.d4

0.5

1.O

1.5 2.0

LOG r, r IN MICRONS
THE PARTIAL DRAG COEFFICIENTS COMPARED

FIG. 35

3.0



RECTANGULAR WAVE WITH AN OSEEN
MOMENT

FIG. 36



CHAPTER VI

AN EXPERIMENTAL DETERMINATION OF THE WAVE DRAG COEFFICIENT
ON SPHERES AND CYLINDERS

1. Introduction

The measurements of the average force exerted on
small spheres and cylinders in a plane wave acoustic field
are described in this chapter. Due to basic limitations
imposed by the availéble instruments, the measurements
were restricted to spheres having a radius of about 100
microns (10=2cm). Cylinders having a radius of 1/2 and
7 microns were investigated.

The experimental technique is discussed in Section 2.
Most of the equipment assoclated with the orifice ex-
periments was used in these measurements. FEarly measure-
ments of the average force caused by a wave containing
second harmonic distortion, are discussed in Section 3.

In these early results the force on the fiber supporting
the sphere was unjustifiably neglected, an omission which
led to measured values of the force on the sphere which
were too large. These early measurements were performed

by Mr. Peter W. Sieck and the author who have jointly re-
porfed their preliminary(Bl) findings. Measurements of the
force on cylinders are reported in Section 7; the results
of these measurements permitted the fiber force to be taken
into account in subsequent measurements with spheres. All

but the early measurements of Section > were performed by

..77-
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Mr. Keith Hoyt and the suthor. The results of some

of these meesurements have recently been reported.(32)
The experimentaelly determined variation of the force

wvith the second harmonic fraction and with the phase

angle between the harmonic components is discussed in

Section 4, while the results of varylng the sound pressure

level are presented in Section 5. In Section 6 results

are presented of measurements made on the forces arising

from the interaction of s steady flow with sounds.

2. Experimental Technique

All measurements of force were obtained by observing
the deflection of a pendulum which was suspended in the
acoustic field. This pendulum ﬁas fashioned out of spheres
and cylinders. Fig. 37 illustrates how a sphorical particle
was suspended so as to hang on the axis of the horizontsal
three inches in diameter. A loudspeaker 1s fixed to
one end of the tube gbout 1 meter from the sphere. The
opposite end of the tube is terminated with a l-meter
long pc fiberglass wedge (described in Section 2 of Chapter
II) whose tip was 1 meter from the sphere.

The whole tube assembly is tightly sealed with modelling
clay. Sound pressure measurements were obtained using one
section of a Brush rochelle salt cell placed in the tube
about two feet from the sphere. Before each measurement, this

microphone was calibrated in situ at each frequency for which
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measurements were to be obtained. The calibration was
a comparative procedure utilizing a Western Electric
640-AA having its diephragm flush with the inside walls
of the tube.

The deflection of the pendulum was observed through
a plane glass port in one section of the tube. The magnitude
of the deflection was ascertained 5y viewing the foot
of the pendulum through a low powered microscope equipped
with an eyepiece which included a scale.

The basié equipment is 1llustrated in the Block Diagram
of Fig 37. In the photograph of Fig. 18, the microscope
can be seen in place, just to the right of the attenuators.
Thé flow metering apparatus wes used in connection with the
interaction experiments described in Section 6. In the
lower righthand corner, the 640-AA microphone can be seen
projecting into the tube.

Two loudspeskers, each with their separate amplifiers,
were sometimes used instead of one; this was usually done
in measurements involving two harmonics. The two speskers,
coupled to the left end of the tube, are partially visible
in Fig. 18. The black spoked wheel-likeobject in the right
center part of the photograph i1s an acousticsl delay line
employed to vary the relative phase between the two harmonic
components. This delay line was used only when accurate
values of tﬁe phase angle different from + m/2 were required

as was the case for the results reported in Section 4;
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In most of the experiment the relative phase of the
second harmonic was adjusted so that ¢ = + 7/2; this was
done by a convenient electronic phase shifting circuit due
to Baruch(BB). The schematic diagrams of the electronic
phase control apparatus, and two of the frequency doubler
circuits used are given if Figs. 38a, b, and ¢c. The elec-
tronic doubler and phase shifter were incorporated on a
single chassis. The crystal doubler was connectéd directly
to the Western Electric 555 which drove the acoustic de-
lay line. All phase 8sdjustments were made with reference
to ¢ = + 7/2; the + 7m/2 adjustment being obtained with the
aid of an oscilloscope which was connected to the output
of the microphone. This adjustment was not independent of
amplitude; hehce it was necessary to mske the sd justment
whenever the asmplitude of either harmonic component was
.changed.

The 'maximum' available sournd pressure level
and the particle displacement smplitude measured for two
kinds of loudspeaker units are plotted in Fig. 39. These
measurements were made for progressive waves. If these
maximum levels are exceeded, a fairly poor wave form 1is
observed on the oscilloscope.

In all experiments the mass resctance of the spheres
wes sufficient to prevent the sphere from following the
oscillatory motion of the medium;(l) this weas not so for

the supporting fiber.
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In computing from the deflection of the pendulum
the force exerted on the sphere from the deflkction of the
pendulum, it was necessary to correct for the weight of
the supporting fiber as well as for the force exerted
on'the fiber by the acoustic wave.

For the measurements in & standing wave, the pen-
dulum was maintained at a fixed distance of cm from the -
hard termination vhich replaced the pc cone. It was
found necessary to adjust the frequencies slightly
of the tube resonance, which reduced the steady cir-
culations in the tube " to a point where they did not

cause disturbing forces on the pendulum.

3. Eerly Experimentai Results

The first experiments consisted of qualitative
observations on the behavior of s wex sphere 137 microns
in radius. The sphere was hung from a nylon strand 3.5
microns long, which had a rsdius of 7 microns. When the
sound consisted of a combinetion of two tones, one laving
almost twice the frequency of the other, the sphere
would oscillate gbout its equilibrium position with a
period that corresponded to the perbd of the audible beats
between the two tones.

Fine cork particles were introduced into the tube and
the typical Kundt's dust figures were observed to forﬁ.
That is, these cork particles distributed themselves into

a series of fine striations, like ribs, across the bottom
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of the tube. As described by Wood(Ea) for the case of

a standing wave: "This rib-like structure is seen to con-
sist of thin laminae formed of small dust particles in
vigorous vibraﬁions". However, for a traveling wave we
observed that these ribs progressed slowly in the direction
of propasgstion of the wave. By introducing a second -
harmonic component, the migration of the rib-like structures
could be reversed.in;direction..

A quantitative measurement was next performed with
‘the pendulum described in the first'paragraph of this
section. The results(Bl) are given in Fig. 40. 1In this
experiment the amplitude of the 400 cps fundamental sound
pressure level was masintained constant at 131 decibels.

Two osc¢illators were used and as the phase varies slowly,
the particle is observed to osc¢illate slowly about its
equilbrium position. The maximum values of the positive
and.negative swings are plotted (a positive swing is

away from the source) as a function of the harmonic fraction
in decibels. Theeguilibrium position of the particle is
very closely the position assumed by the psrticle inthe
absence of a sound fleld; the reason the two positions are
not exactly alike 1s due to the fact that any large ampli- .
tude wave 1is likely to contain second harmonic distortion
which will give a 'background force'. The drag coefficient
evaluated from these meassurements at f = -4db has been plotted

in Fig. 43 as a star. This point lies sbove the theoretical
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curve and later experimental data, due to the fact that
the‘force acting on the supporting fiber has been neglected.
In anslyzing subsequent data, corrections either were ap-
plied to account for this fiber force, or else it was as-
certained thatthls force could be neglected in comparison
with other‘experimental uncertainties.

| A qualitative experiment was next performed to de-
tefmihe rougﬁly the space dependence of this force
along‘the length of & one-dimensional standing wave. The
standing was set up 1n a transparent plexiglass tube with

& hard termination. The phase was adjusted so as to render
a force in a direction opposite to that which would be
caused bu radiation pressure. The pendulum was hung from

a small magnet keeper whose position in: the tube coincided
with the position'of an: externsl magnet to which the keeper
was attracted. Both the steady deflection of the pendulum
from its eQuilibrium position, and the vibratory amplitude
of the fiber were noted. These quasntities are plotted in
Fig. 41. It is evident that the second harmonic fraction
is quite small, since the curve of fiber velocity amplitude
shows no evidence of second hermonic distortion.

Other qualitative experiments were made in ordef to:
see if free spheres could be supported againSt gravity. It
was found that polystyréne spheres from 5 to 20 microns
in diameter could be supported in a fiéld estimated to be
of 150 db strength.
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A series of experiments were performed to determine
whether asymmetry in the sphere or in its aspect or mounting
influéﬁced the Prce. The results are shown in Fig. 42,
where - log(d3(has been plotted for various angular orien-
tations é\of the pendulum. The angle 6 1is an arbitrary
angle,bfffotatibn of the supporting fiber about its own

axis. It is evident that the force is independent of 8.

4, The Variation of - logld.|with £ and ¢
7

Detailed measurements were undertsken to determine
the dependence of the partigl,dragtcoefficient, d3, on
the fractional harmonic content f and on the phase ¢.

In Fig. 43 the experiments with f as variable are compared
with the'theory developed 1in the preceding chapter. The
general shape of the experimental curve agrees #ith theory
in having a broad maximum. The experimental maximum however
comes at too large a value of f. Furthermore for f values
less than -4db, the experimental values appear to be 0.5
greater than the theoretical curve.

As discussed in Section 5, d3 hes been found to vary
both with the frequency and with the sound pressure level.
In view of this fact the results presented invthis section
can be considered to constitute fairly good sgreement with
the simplified theory which does not itself explain why d3
should vary with either the frequency or the intensity of

the wave.
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In Fig. 44 some experimental data are given holding f
constant and varying ¢ . Theoretical curves are plotted
fqr varyihg percentages of the second harmonic.distortion.
The results of two experiments have been plotted. Data
plotted as circles and plus marks wére obtained with

f = -6db while the squares and crosses refer to data taken

il

with £ = -13 db: The plus and cross marks refer to data
‘obtained with ¢ positive while the circles and squares
signify negative phase angles. All the data plotted in
Fig. 44 were obtained using a 340 cps fundamental sound
pressure level of 134 decibels. As with the previous
results these experimental points again show that the
measured force is less than that predicted by theory.
However, the shapé of the experimental curve agrees resason-
ably well with the theoretical curves.

At this point it 1s well worth remembering that the
scale in'Figs. 43 and 44 is considerably expasnded com-
pared to the scale in Fig. 35. The complete extent of
the abscissa of Figs 43 and 44 corresponds to about two
divisions in Fig. 35. We see from this fact that the magni-
tﬁde of the Oseen-type force will not depend critically
on the phase angle ¢. It is glso possible for the Oseen
fbrce to be relatively strong even for waves having’

as low as 1 per cent secohd harmonic distortion.
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5. The Wave Drag Coefficient Versus Sound Pressure Level

and Frequency

The measurements of the wave drsg coefficient dis-
cussed in this, and subsequent sections, were taken as
a function of the sound pressure level of the fundamental
wave component. Three discrete fundamental frequencies
were used; the frequencies being generally in the neigh-
borhood of 200, 340, and €00 cps. The measurements
involving second harmonic distortion were performed with
a constant f of -3 decibels, that is the second harmonic
distortion was 71 per cent. The dats presented were
evaluated by averaging the wave coefficient measured at
¢ = +7/a with that measured at ¢ = -w/2.

The experiments illustrating the interaction of steady
flow with sound, were made by holding the steady flow
velocity constant; this means that the flow fraction, f, is
a function of the sound pressure level. The theoretical
drag coefficient, therefore will be in this case a function
of the sound pressure level.

Special attention should be payed to the way in
which data obtained in standing waves ﬁas been presented.
As mentioned in the footnote of Section 2, Chapter V, d3
is here evaluated for stahding waves by dividing the force,
not by the energy density but by the local kinetic energy
denéity multiplied by two. Furthermore by sound pressure
level we mean the sound pressure level of an equivalent

progressive wave which has the same average kinetic energy
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density as the standing wave at the position of the object.
These conventions permit us to represent on the seme figure
the measurements obtsined in stationary as well as pro-
gressive waves.

In ¥ig.45 results are given for measurements taken
in a progressive wave containing a fundamental and a
second harmonic component. The dats pertain to a sphere
105 microns in radius supported on a 1 miron diameter
platinum Wollaston wire. The results have not been
corrected for the fiber force. Such a correction would
add about 0.1 to the experimental curves.

A characteristic of these results is that - log Dy
appears to be much greaster than theory predicts (force too
small) unless ﬁhe medium displacement amplitude.exceeds
about 3 sphere diameters; in which case, within the
limits imposed by the dynamlic range of the experiment,

- log D appesrs to level off to a value which depends on
frequency. This constant value increases with increasing
frequency. A linear extrapolation of -log D to zero fre-
quency gives .45, a value about .3 greater than the theory
(drag too small by a factor of-1/2). This extrapolation
was made for a sound pressure level of about 140 db. One
can estimate from Fig. 56 that a sphere of 105 micron radius
in such a sound field, has a peak Reynold's number of about

10. From Fig. 30 it can be seen that the Oseen theory
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predicts drags at a Reynold's number of 10, which are
high by a fector of about 2. Thus, it appears that for
sufficienﬁly large particle displacement amplitudes,
the zero frequency extrapolation of the average drag
coefficient measured in a periodic velocity field is
given fairly closely by the theory. The implications
of this agreement are discussed in Section 1 of Chapter VII
wvhere 1ndirect evidence is presented which suggests
that the virtual mass of the sphere is reduced whenever
€ >a.

The differential force due to the superposition of
a sound wave on a steady flow field has been.measured,
these results appear in Fig. 46 in terms of the negative
logarithm of DW (wvhich might in this instance be called
a differential drag coefficient indicative of the fact
that 1t represents the difference in the force acting with
and without sound). Theoretical curves are plotted for
uniform and parabolic d-c flow distributions. Notice
that the experimental values bear a relation to the
theoretical curves which 1s very similar to that found
in Fig. 45. Further results obtained in a stationary
wvave are given in Fig. 47. A correction for the fiber
force cannot be applied to the data of Figs. 46 and 47
unless it is assumed that the same correction is appli-
cable which pertains to the data of Fig. 45. No direct
measurement of the differentiasl drag coefficient for the

supporting fiber was made.
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The drag coeefficlent for the Wollaston Wire suspension
was measured for a sound field containing second harmonic
distortion (f = - 3db). It was necessary to consider
the oscillatory motion of the fine wire. The experimental
points and the dashed curves in Fig. 48 represent data
which have not been corrected for fiber motion. The
corrected experimental curves are plotted in solid lines;
The cofrected curves are more in accord with the results
presented previoﬁsly for spheres than are the uncorrected
curves. The nature of the correction for motion of the
object 1S'best'understood by:réalizing that the corrected
d3 represents the force per unit gverage kinetic energy
density times two, where the kinetic energy is evaluated
in the'coordinétes of the osclillating wire., The ordinate
then corresponds to the sound pressure level of an equiva-
lent progressive wavé whose energy density just equals
aTav' Stated another way, the corrected d3 is the d3 thgt
would be measured 1f the wire were infinitely massive and
thus incapable of oscillating with the.medium.

Strictly speaking 1t is necessary to measure both
the. amplitude and the phase of the fiber oscillations with
respect to the medium. Only amplitude was measured, and
these results are given in Fig. 50. The correcti.n for

fiber motion was based on the assumption that the relative
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velocity amplitude of the fiber and medium was equal to
the medium velocity amplitude diminished by the fiber
velocity amplitude. The validity of this assumption
should be determined. Furthermore a curve such as
Fig. 50 should be determined for several vaglues of the
sound pressure level. f
‘The drag coefficient for & nylon fiber is given in Fig.
49, As can be seen from Fig. 51, the nylon fiber did
not vibrate apprecisbly with the - medium, and for this

reason no correction was applied to the data of -Fig. 49

. for fiber motion.

The wave drag coefficlent on a cylinder appears not
to stabilize until the ratio §_/d reaches roughly 10°

ét which point‘the peak Reynold's number at 300 cps is about
10-2 for the Wollaston wire, and sbout 2 for the Nylon
strand. Thus the observation that the drag coefficient for
the Nylon does not approach the theoretical value as

c losely as it does for the Wollaston wire may be due to

the fact illustrated in Fig. 31 thet the steady flow
theory for cylinder repfesents reality rather poorly

for a Reyonld's number greater than one.
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CHAPTER VII
SIGNIFICANCE OF THE RESULTS

1. The Virtual Mass of sn Oscillating Sphere

In this and the following sections we shall draw
some conclusions about the oscillating sphere by com=
paring the non-linear behavior of the sphere with that
of the orifice.

In Fig. 52 we have plotted on the same curve
‘quantities proportional to the fractional reduction in
the orifice as well as a quantity proportional to the
drag coefficient for the sphere. The data are given
for experiments carried out both with and without
d-c flow velocity. The ordinate is a dimensionless
marticle displacement parameter obtained by dividing
the éffective displacement amplitude by the effective.
length & the object. In the absence of d-c flow the
effective displacement amplitude 1is the amplitude of
the fundamenta! component of the particle displacement,
This definition would need to be modified whenever the
second harmonic exceeded the fundemental). When there
is steady flow, the effective displacement amplitude
is defined either as sgbove, or as the ratio of the |
average distance travelled by the medium 1n one period
of the wave, depending on which .of the two definitions
leads to the larger value. The effective length of the
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orifice is the sum of the diameter and the thickness of
the orifice. The effective length of the sphere is its
diameter.

The quantities plotted in Fig. 52 are:

E%EQ, the ratio of the reduction in the orifice

mass NL expressed as an effective end correction, di-

vided by the diameter of the orvifice;

< L , the ratio of the reduction in the ori-
L
fice reactance, from its linear value X2, divided by XL;

(2 DW)meas.

D) theo.
wave drag coefficlent for the sphere divided by the

» the ratio of twice the measured

theoréticai value for this quantity obtained’in Chapter V.

For the rqugh comparison we wish to: mske, it

- X - X

is justifisble to consider as being
a measure of the same quantity.
¥From the results plotted in Fig. 52 we see that the

fractional reduction of the orifice reasctance and quantity

(DW)meas
2 — for the sphere, vary in a similar way with the

(D | A

W/ theo.

particle displacement parameter. Both these quantities
tend to gpproach a constant value which is resched approxi-
mately when the effective particle displacement is the same -

order of magnitude as the effective dimension of the object.
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Since the reactance of the orifice is proportional
to its kinetic mass, we see as mentioned in Section 6
of Chapter IV that the kinetic mass of the orifice 1s
considerably reduced at large amplitudes.

We may now ask whether the virtual mass of the sphere
is reduced at large amplitudes by the same mechanism which is
responsible for reducing the kinetic mass of the orifice.
There are two considerations which make this supposition

(35)

plausible. We:first. -examine the genersal hydrodynamic

equation:
%—g + (u-¥)u - v 7% -%vV(V-u) ='%E +-I:"/p
(1)

where v is the kinematic viscosity assumed to be constant, p
is the density, and u the velocity. We assume all body

—
forces, F are zero and we assume that the fluid is in-

compressibleshence
V-u= 0
and Eq.(1) becomes
%%+(u-V)u+%B-v72u=O (2)

If the first two terms of Eq.(2) are omitted the
remaining equation leeds to Stokes' solution when ap-
plied to a sphere. The omission of the first term im-
plies the steady state; while the omission of the second
term linearizes the equation.

Oseen's extension(25) of Stokes' solution provides
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a rough approximation to the time independent solution of
Eq.(2). Oseen's solution includes for a sphere the in-
fluence of the second order term. No solution in the
literature has been found for the oscillatory case which
includes the effects of the second order term.

The acceleration forces are represented by the term
g-‘tl. This term is also responsible for the radiation re-
actance of an oscillating sphere from Eq.(7) of Chapter III.
| If it is true that at 1arg§ amplitudes of oscillation
the radiation reactance of the sphere is diminished (just
as for the orifice) one would conclude that the influence
of the local acceleration térm,-g% had diminished corre-
spondingly. Thué a treatment which neglected altogether
the local acceleration forces, might be expected to
agree approximately with experiments performed at large
amplitudes, even though such a treatment represented
poorly the results of experiments performed at low am-
plitudes. We have seen that the experimental results
discussed in Chapter V bear out this point of view.:

It is possible to apply the coherence criterion
of Section 6 of Chapter IV to the virtusl mass of the’
sphere. The kinetic mass of a sphere which is small com-
pared with the wavelength, is 1/2 mass of the fluld dis-
placed by the sphere. This mass is for the most part
concentrated inthe vicinity of the sphere. When the

particle displacement amplitude approaches the dismeter
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of the sphere, it 1s reasonable to assume that the co-
herence of this mass will be diminished. For flows
having a low peak Reynold's number thé reduction in
the mass resuls from  the irreversible nature of Oseen's
solution. The wake formed periodically~on either side of
the sphere plays & role similar to the jet in the case
of the orifice. The kineﬁic mass in the region of

the wake will be diminished. Just as with the jet,

the coherent reaction of the fluid which is undisturbed
by the wake can be considered to take place across the
free boundary separating the wake from the rest of the
fluid; Por this reason the radistion reactance of the
sphere should not vanish completely as the particle
displacement émplitude increases at least not

until compressibility effects become 1lmportant.

2. The Non-Linear and Differential Absorption Cross-
Section of a Small Sphere

In addition to the usual viscous and thermal boundary
losses, other losses at the sphere will occur either at
large acoustic ampliutdes (non-linear absorption) or at
small ampliutdes provided the sphere drifts through the
medium (differential absorption).

By methods analogous to thpse employed to ascertain
the non-linear losses in orifices, we find that the non-

linear sbsorption cross-section for s sphere, based on the
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Oseen force, is
2
6NL = Qg uo/c (3)

In the above formula a is the radius of the sphere, Uy
the particlé velocity amplitude of the wave and c the velo-
¢ity of sound.

The differential absorption cross-section for steady
flow in the same directién as the wave vector, is

€D = 14.1 r° udc/c (4)

provided the drift velocity exceeds the alternating
velocity amplitude. The differential cross-section is
proportional to the ratio of the drift velocity Uz to
the sonic velocity.

Now it must be emphasized that Eqs.(3) and (4) are
based on Oseeh's theory and we have seen that the appli-
cation of this theory to periodic flows is approximately
velid only for low frequencies and for large particle'
displacements. In the absence of direct measurements
a better approximstion to KNL and 6D might be based on
experimentally determined value of the wave drag coeff-
iciént. One might modify Eqs: (3) and (4) by multiplying
them by the ratio of the experimental value of the wave

drag coefficient to its theoretical value.

3. Floating Particles with Sound

The Oseen-type force can be used to support particles

against gravity. For this purpose a wave compounded of the
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fundamentsal and second harmonic components can be used.
A chart,‘based on the theory of Chapter V, is given in
Fig. 53 which relates the radius of the sphere to the
total sound pressure level theoretically required to

. support the sphere. In aétual experiments the sound
pressure level would have to be greater for two |
reasons. First the actual wave drag coefficlent st e
constant sound pressure level decreases with increasing
fr?quency.; Secondly at sufficiently low frequencies the
sphere will begin to oscillate with the medium; this
has the effect of reducing the sound particle velocity
with reference to the sphere and hence the force on the
sphere 1is feduced. From these considerations we see
that for a sphere with a specified radius and density,
thére is at any given sound pressure level an optimum
frequency which will meximize the force acting on the

particle.

4, Free Fall Velocity in a Sound Fleld

We expect that the terminal velocity of particles
moving under the influence of a steady force will be
modified in the presence of a large amplitude sound wave
travelling parallel to the steady velocity of the particle.
Sub ject to the seame restrictions discussed above 1n Section 5,
we have shown in Figs. 54 and 55 how the terminal velocity

would theoretically be reduced in case the oscillating
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velocity amplitude were considerably greater than the
velocity of free fall. In this instance the wave has been
assumed sinusoidal so that the additional retarding force
is due to the interaction of the steady flow velocity

with the sonic wave. Fig. 56 which is useful in connection
with Fig. 55 enables the peask Reynold's number to be found

for a sphere in a plane progressive sinusoidal wave

5. Recommendations For Future Work

One of the major results of this work has been the
discavery that bow frequency sound waves can produce strong
forces on small particles. These so-called Oseen-type
forces have been-measured for a rather restricted range
of the variables upon which they depend. It would be
valuable to extend the measurements for a wider range
6f the varisbles. To accomplish this it would be use-
ful to have sources providinguptol kilowatt of acoustical
power. The forces generagted in a periodic andé inhomogenous
velocity field could be measured by the techniques we
have developed. For this measurement, the sphere could
be suspended in a simple harmonic standing wave field.
Andrade(36) has suggested that steady circulations induced
in‘the vicinity of small objects have s great deal to do
with the forces on particles in a standing wave.

The effects of asymmetric weve forms on diffusion
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processes in gases and liquids would form an interesting
problem for future work. Diffusion across semi-permeable
membrenes might be influenced by wave formsihaving a
square root type moment.

Controlled experiments shouldlbe carried out to
ascertain what part the Oseen-type forces play in the

industriglly established sonic agglomeration prccess.



APPENDIX I
A DERIVATION OF NON-LINEAR RESISTANCE FOR THE ORIFICE

The pressure, p, and the volume velocity, Q, being related
as inp = KQQ, we wish to show that 1f p varies sinusoidally, the
non-linear resistance is RNIJ: KQO. Here QO stands for the
peak volume veloclity amplitude through the orifice.

‘If P = Posin wt, the magnitude of Q is}

1af = &°M2f2 Jstn ot/

The instantaneous power is
Y = Q= g~1/2 P2/2 lsinB/%mt‘

from which the average power is obtalned
-1/2 ;3/2
Z _ 1 /T, K Po
7-2 /M vat = —— B(5/%, 1/2)

3
It B(5/4%, 1/2)

m

The B function is expressible in terms of the /7 functions

B(5/4, 1/2) = j: 2 4;17\1 2L = 1.748

So that the resistance turns out to be
27
RNL = — = Lll2 KQO | (1)
Qo
The same result would have been obtained had one computed the
fundamental component of Q and then divided by p.
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APPENDIX II
ACOUSTICAL IMPEDANCE IN TERMS OF ENERGY FUNCTIONS

The acoustical (analogous) driving point impedance of a
lumped acoustical network can be expressed in terms of the
Lagrangian and dissipation functions of the system, a well-
known procedure in electrical network theory. This approach
can easlly be extended further to the case of a continuous
medium bounded by & surface of arbitrary impedance. The ex-
tension for a continuum is obtalned by expressing the energy
functions in terms of surfece and volume integrals. The surface
integrals may be interpreted in terms of an infinite number of
terminal palrs serving to connect the "volume network" to the
"surface network". This procedure facilitates the solution of
certain perturbation problems.

For a one-terminal pair network, E is the complex voltage
amplitude and I the complex current amplitude at the terminsl.

In the steady state

o :
1/2E'I = P, + 2jm[vav - T ol = By t Qo (1)

in which Pav is the average power disslipated in the network,

and vav is the quadratic form defined on the loop basis:
£

= 1 *
Vay = 42 EEE Ssifstie - (2)
s,k=1
Similarly £ s
Toy = 1/ = L N g
8,k=1
4 ’ - ;
Fov = 1/ . Ralsly = 1/2 Pav?
8,k=1
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wvhere R, L and S are the resistance, inductance, and elastance
loop parameter matrices respectively; Is and Ik are the current

th and kth loops respectively; Qav is the

amplitudes in the s
reactive power supplied by the source. Defined in this manner,
Tav:and V&v are, respectively, the average kinetic and potential
energy stored in the network.

In network theory, the driving point impedance of the
network under discussion is given by (6)

2P + U4 jo(T -V._.)
Z(jw) - av 32 av av (3)

I

- szav + jo(T, - VM)JI___1

The current I can be identified with the volume velocity Q,
and the voltage E with the pressure P at a simple source con-
sidered to be the input of an scoustical network. Z now becomes
an acoustic impedance. In this gnalogy R, L and 3 ére replaced by
the anaslogous lumped resistance, mass and compliance.

Two further extensions will be made. The acoustic network .
is conéidered as a continuum, enclosed by a boundary with an
arbitrary impedance ratio. The coupling of the continuum to
the boundary can be effected by an infinite number of properly
poéitioned terminal pairs. These two steps sare formally represented
by expressing the energy functions in terms of volume and surface in-
tegrals. The voiume 1ntegrals’for g8 dissipationless medium re-
duce to the volume integral of the time average of the Lagrangian
density.

When the medium is isotropic, these lntegrsls are:
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7 (vol) = I};wlé_ [ |ve)Rar .

1 2
V_ . (vol = —x [ ]?]|€ a¥
av ) 4pe J2l

By analogy with Eq. 1, the surface integrals result from

integrating the complex power flowing into the boundaries:

P (surf) = 1/2 Re[ [ P U as |
(5)

i - =
Tav(surf) - Vav(surf) 75 Im [PUdes

where U is the complex particle velocity amplitude.
Eq.(5) can be written in terms of the boundary admittance ,

since U =7 P:
2 -
P&V(§urf) = 1/2Re [#[P] a €

Tav(surf) - Vav(surf) = %Im[ﬁ? p]? dG'] - (6)

or, if is independent of position,

P_,(surf) = 1/2 Re [%] ’f[PIE a6
' (7)

T (surf) -V, (surf) =7fIa[2] [|P[? a5

The acoustic impedance is obtained by substituting
Tav(wl) + 'I‘av(surf) for T ., Vav(vol) + V&v(surf) for V_,
a.nd'F&v(surf) for F in Eq. (3).

The extension of this technique for systems that consist
of lumped elements in addition to a Continuum, or to the coupling

of several continuous systems through one or more terminal pairs,
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is possible. The above results have been obtained by analogy
with a network theorem. A more rigorous development can be
obtained from a simple application of Green's theorem.

Simple examples of the technique described above will be
used to derive, first, the impedance of a spherically symmetric
source and then a correction term for the kinetic energy contalned
within a hemisphere, léading to an approximate value for the
end correction. The correction factor for the radiation mass of
an orifice in a tube will also be obtained.

The complex pressure amplitude P due to a source of strength

Q erb is given by -
o jopQ —iKP-op
C &7 (8)

P =05

where w is the angular freqﬁency, k = w/c, r is the distance
from the source and p the density. The demping term & is
introduced (after the fashion of the screening potential in
the quantum mechanical trestment of the coulombfield) so that
the integrals in Eq.(4) will convérgé. After performing the
integration,« may Bé allowed to go to zero so that if the in-
tegration is carried out over the volume bounded by the source
~of radius r_ and some arbitrary radius R r_ we obtain:
2
Tay(von) = 2 [ - x) v 3} ]

° (9)
2

PQ 5
Vey(vol) = =2 xR - r )

Obviuosly if all space outside the source 1s included, R —> «
in the integration and T and V become infinite, although the
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difference T-V qOes-not. Pav may be obtained from the first Eq.(5)
evaluated over any fixed surface enclosing the source; this
.yields the radiated power.

If Eqs.(9) are introduced into Eq.(3) and R —» ®, there
results an expression for the reactance, X, of a spherical

wave emitted by a source of radius T,

X = (jop)/(trr,) (10)

In considering the radiation from a small piston (r &< A) in

an infinite baffle, X will have twice the value given by Eq.(10)
plus an additionél term due to the kinetic energy of the fluid in
the hemisphericgl cap covering the piston. This additional
energy will be ' 2

B
1/2p2/3mr2(U)% = 1/kp 2/3 =2 . (11)
o

where (U')2 is the space and time average of the square of

the veloclity with which the particles in the hemisphere move.

The weighting constant b can be obtailned approximately by

averaging the square of the velocity of the piston with that

at the surfsce of the hemisphere. This leads to b = (1 + 1/4)/2=5/8.
Hence thefeitra kinetic energy becomes (59Q§)/(48)WPO) which,
inserted into Eq.(3), leads to the correction to the impedance
(Bjmp)/(12wro). The approximste end correction is obtained by

adding the above to twice the value given by Eq.(10):

-j(_D-E. = 3 -E-—
X 11/12 o 0.29 jo -
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This approximate value is 7.4 per cent higher than the classical
value.

The approximate correction factor (7), 8§, for the radiation
mass in a circulagr tube of radius Rt is obtained by letting
R = R, in Eqs.(9). The ratio of (T_, - V&V)R=Rt to

ﬂTav - vév)R=m gives immediately the low frequency approximstion,

S =1 - ro/Rt’ where r_ 1s the orifice radius.

o)



APPENDIX III
CALCULATION OF THE OSEEN-TYPE AVERAGE

1. Wave Form Comprising a Fundamental and Second Harmonic
Component

We wish to obtain the average value of u u , where
u= 8in ot - £ cos 2wt. We first find the zeros of u to

be the solutions of

cos 2mt=—:;%§[l-_i_-ll + 8f2]

wvhere the + sign preceding the radical pertains to the

‘case £ <'1, end both + and - are required when f'> l. We
shall only treat the case £ 1. In this case the zeros of
u in increasing order of wt are at

wty % cos™L [—1-2-(41 + 8% - 1)]

I’

wt2 T - wtl

We then obtain readily

wt wt2
1| 2 2 2
:G = 5= |- fo u“dwt + fmtl u“dot - u“dwt

which yield Eq.(21) of Chapter V.

fwte

The average value B of uluffor the more‘general wave
u = sin wt - £ sin(2wt + ¢), can be expressed as a product
of G(f) and ¢(¢). The evaluation of ¢ for f = 1 is trivial
ahd leads to ¢ = - sin ¢. Calculations carried out by the Joint
Computing Group show that B can be represented as & product
of G and ¢ for any velue of f >'0 although this has not been
demonstrated analytically.
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o° 0° to +135°
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J\/\/\/\/\/\/W W%\N\/\]
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APPENDIX IV
MAXIMIZING THE OSEEN-TYPE MOMENT
(by Dr. H.G. BaerWald)*
Consider a periodic function u(x), e.g., with period 2w

and with zero d-c component: Ti'=(f 1)1dx = 0. Consider the "power"
2
moment P = u° and "Oseen"-type moment Q = TWIW. We want to

make the modulus of the "efficiency ratio”" 7 = % maximal. As

7 (u) is odd, we need consider only the case 2> 0. Evidently,
Z7=0 8nd # =1 are limiting values. It is glso evident that:

(1) in (-m, +7), #= 0 for u = odd, i.e.; only even functions

u(x) need be considered; (2) other things being equal, % becomes
maximal if, in (0,7), u(x) has only one zew X, being, e.g., >0
for 0&x <x, and <0 for x, < x£7; & will then approach the

bound 1 for x ~»0, i.e., if u(x) is of the pulse type at 0, fol-
lowed by a shallow negative trough. Simplest example, with P = 1:

1-
o
u(x) = . Q==1 - 28

Ti-%" for §.m < |x|=7

for Offx| <&

The present problem is to meximize 97 1if L;(x) is composed of
a finite number of harmonic components only. It is evident from
the preceding that these must all be in phase at x = 0. As 72 is

homogeneous of order zero, a common amplitude factor is irrelevant,

and we may put N
UN(x) = cosx +22 PynCo8 DX, with PNI;'-'O for n » N
n=

* The Brush Development Company, Cleveland, Ohio.
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The problem is to determine the pNn such that

N -1 T
’[N(PNn) =1 - % [1 + = Pl%n—] fouzdx = max.
, 2

xy being the sole zero of u in (o,m). As Xy should be small and,
evidently, will be ( -g it is apropos to put x = -125 -g‘ , CO8X = sin}’s_ y
and Xy = - zer, sin WN = Py’ also to eliminate one of the

unknowns pN by introducing ¥y (or N) into u. For NZ 3, there

is then a preliminary algebraic restriction on the ﬁ)ossible

Py)
vglues of py and py,, namely that all roots of 7= PI:N . Q,
which is an equation of degree (N=1) only, must either be complex

or, if real, absolutely >1.
The eqquation:

{1 + 2pyPyp - (3- 4pN)pN3 - &py(1- PN)pN4... {pQN + 2pyPzy

—4(1-P§)p4N'°~ 2y + l?(PBN""?PNPm-.-)Ye + ?(qu-..)yB + 0. =0
with
2 2 4 2

the case N = 2:
sin 1#2
Here simply u = sinf -~ Gos oy, cos 25 ;
2

T2 = —5 . (1+-16003211/2) v,
sin 102 + cos 21(/2
sin ¥
- 2 < <7 £ _<
A P =gosar, 0 S Ve for0=p=1
d
T _ 9 1 _ K¢ .
'4’2 5 givesfe- B?rz - 3 = .2869 Witha%-— < Gs



dz
v, = _18r gives 7, = iz/evd %. = 3124 With —22 > 0;

6m(2/2-1) d¥;

then by successive interpolation:

(*2)opt = J446] = .2840.% or (p22)opt = 6873 : (’72)max. = .3249,

for N> 2, one may show that

cos 21/zn+1 cos 21’21\1

. £ 1(= 1 for N = 2 only,
0¥y < ¥y and gy - PN gy s v S v

Thus we may put
sin WN

uN = sing - m (l—O.N)COS 2f..., 1>0N+1 >ON>Oo
The case N = 3: -

sin ¥
_ 3 1 + 2cos 28
uz = sing —(1—Ct3) Egg—ﬁg cos 2§ - az8in T5oog ¥,

then the restrictive algebraic condition is that the roots of

5 1+—1-%a;-cosew3.l 4;;.;0082?3
v +281nw31+2cc/>3211/3 VY TE Z oo o9 =0

are either complex or both absolutely > 1, This means either:

{1 - a5 + 2cos 211/3}2 sin2w3 - Haz(1-0z)cos 2¥5(1+2-cos 2¥5)< 0

1+
or: ‘l + 1—a3 cos 2¢3 |
h+ TS - cos 211:3‘

Preliminery inspection leads to the expectation that a > 1 and
T
that though 1{/3 7102 s 1,'/3?-5 . With

_ sin 4 ¥o(1+ 2cos 2v¥,)

- R(cos 211«3, a3) - 2"’5 with
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. 5(1+275) (13+75) - 2(1+27 3-41-‘;)03 - (63+7’5-2?§)a
(1+275) 2[(1-%)2(1-f§)+27§} + 2 a§1§

2
3. -
,'73 cos

trial and interpolation gives the optimum result:

(1k3)opt = .687 ,(QB)opt = .75,, whence:

+
(132)opt = .80, , (193)0pt = .54;; then (;23)max= .487(t)

This represents a substantial ilmprovement over N = 2.
Naturally, - being an exrenum, its value 1is not too sensitive
'to small deviations of PNn from their optimumtvalues. No
numerical investigation was made for cases N >4. The seeming-
ly plausible approach of approximating the initially intro-

duced & -function, with optimally adjustable parsmeter

JN = J (N), by uy via least squares, vhich would represent
a numerically far simpler procedure, practical even for larger
N, proves to be unexpectedly weak for N = 2 and 3, 1.e., with
resuits rather far offI?N max., and is therefore not recom-

mended.
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APPENDIX V
THE GENERATION OF HARMONICS BY ORIFICES

The results of the harmonic measurements discussed

in Section 7 of Chapter IV, appear in the following
group of figures. All the measurements but the one

represented in Fig. 72 were obtalned by driving the

orifice at 180 cps.
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