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Abstract

The Hellenides of Greece have undergone a series of extensional deformation events
from early Miocene to present time. Two of the fault systems that accommodate this
deformation in central Greece are the Itea-Amfissa detachment and the Parnassos
detachment. The Itea-Amfissa detachment is known to have been active during Middle
Miocene (Langhian and Serravallian time) from dating of marine sediments within the
syn-tectonic hanging wall basin. The Parnassos detachment is probably younger, based
on the Lower Pliocene sediments deposited in the hanging wall, but stratigraphically
lower sediments are undated. The North Giona fault extends east-west from near the
northern end of the Itea-Amfissa detachment to near the northern end of the Parnassos
detachment. This steeply north-dipping normal fault probably truncates the Itea-Amfissa
detachment, and approaches the Parnassos detachment in an area where the topography is
low and highly irregular, suggesting that it may connect to and absorb some of the motion
along the Parnassos detachment. Structural mapping in this area between the North
Giona fault and the Parnassos detachment demonstrates that the limestone and flysch of
the Parnassos nappe are folded without significant faulting. Folds occur in two
orientations; the northwest-oriented structures are older and are probably related to nappe
emplacement; the younger, east-west trending folds are probably related to Late Cenozoic
extension. The lack of through-going faults indicates that the North Giona fault and the
Parnassos detachment do not connect. Structural relations also show that the Parnassos
detachment is younger than the east-west trending fold structures within the field area,
and also probably younger than the North Giona fault.



Introduction

Subduction, accompanied by upper plate extension, has dominated the tectonic

evolution of the Mediterranean region since 30 Ma. Today, the Hellenic system is the

only one of these systems that displays rapid rates of subduction and upper plate

extension. Within the Hellenides, the rate of subduction varies along strike, with

subduction beneath the northern portion of the system (north of Kephalonia) occurring at

rates of 5-10 mm/yr, while subduction beneath the southern portions of the system occurs

at -35 mm/yr, as constrained by GPS observations. GPS data also show a broad zone of

dextral shear and extension within the upper plate lithosphere, with a total rate of

displacement that is approximately equal to the difference in subduction rate between the

northern and southern Hellenides. This zone, referred to as the Central Hellenic Shear

Zone, divides the upper plate above the northern Hellenides from that above the southern

Hellenides and appears to provide structural accommodation for the differences in

subduction rate along the Hellenic arc (Papanikolaou and Royden, 2007).

The modern rate of subduction and dextral shear are well constrained, but the

evolution of slip rates and displacement over geologic time, even over the past 10-15 Ma,

is more poorly known. One means of constraining the temporal history of subduction

along the Hellenic arc is by documentation and dating of faults within the Central

Hellenic Shear Zone. In this paper, we examine an area adjacent to one of these older

extensional faults located near the northern boundary of the Central Hellenic Shear Zone,

the Parnassos detachment (Figure 1). The goal of this study is to constrain how the

northern boundary of the Central Hellenic Shear Zone may have moved through time,

and how the older extensional features may have connected and interacted during the



initial development of the Central Hellenic Shear Zone. This paper describes the field

relations near the northwestern portion of the Parnassos detachment and its implications

for the extensional history of the region.

Regional Geolouy

The Hellenic subduction system off the western coast of Greece (Figure 1) is the

major geologic feature that has created and shaped the Hellenides. Subduction occurred

along the Hellenic Arc from Jurassic time until present, imbricating sedimentary and

basement rocks that have been scraped from the down going plate and, at times, pieces of

the upper plate, into a series of thrust sheets emplaced to the south and southwest

(Mariolakis et al, 2001 and references therein). The imbricated sequences of nappes

trend roughly north-northwest in mainland Greece.

From Eocene time to present, this imbrication has resulted in the emplacement of

the continental internal Hellenides, the continental Parnassos unit, the deep water Pindos

unit, and then the external carbonate platforms. The external Hellenides were emplaced

from Eocene time in their eastern section to recent time in their western section. They

are defined as those units with no lower Cretaceous unconformity (Mariolakis et al, 2001

and references therein). The Parnassos unit, which is exposed in the field area, is one of

the most internal (westernmost) units of the external Hellenides. This unit consists of

Mesozoic to early Cenozoic marine rocks deposited on continental lithosphere that were

thrust over the external Hellenides during subduction of the Pindos Ocean.

Beginning in Oligocene time, the nappes in the back-arc area, from the Aegean to

the Sterea Hellas, underwent extensional deformation. In places, this extension is



expressed by gently-dipping detachment faults within the Aegean region and mainland

Greece (Figure 1).

During Miocene time in the southern part of the Hellenic arc, dense oceanic

lithosphere of the Ionian Sea region entered the trench, increasing its rate of subduction

and retreat relative to the northern Hellenides, where subduction continued at -8 mm/yr.

This difference in rate is accommodated along the Kephalonia transform (Figure 1).

During Pliocene time, the extensional deformation style within the northern

Aegean underwent a transition, with younger faults trending more east-west and being

more steeply dipping at the surface. These young faults are localized to the Central

Hellenic Shear Zone, and appear to accommodate the difference in trench retreat rate

between the northern and southern Hellenides. They extend westwards to the Kephalonia

transform and eastwards to the North Anatolian Fault. In Pliocene time, the rate of slip

along the North Anatolian Fault also increased to 25 mm/yr.

Evidence for extension and shear in the Central Hellenic Shear Zone can be

observed in the structures exposed on mainland Greece. The earlier extension was

accommodated along gently-dipping faults such as the Parnassos detachment. This fault

has an overall northwest-southeast trend and forms the southern boundary of the

Voiotikos-Kifissos basin. Its continuation towards the northwest, beyond the basin is

unclear. At least some part of the displacement continues northwest to merge with the

active north-dipping fault that bounds the southern side of the Malea Kos Gulf. A

morphological break in the footwall near the northern end of the Parnassos detachment

also suggests that a splay of the detachment may trend west to connect to the North Giona

fault. This fault trends nearly east-west and has a strong morphological expression, with



Mesozoic limestone in the footwall forming a steep slope south of a down-thrown

Cenozoic flysch. How the Parnassos and the North Giona faults interact is not well

known.

This paper describes the field relations near the northwestern portion of the

Parnassos detachment, near Gravia (Figure 2), in order to document the northward

continuation of the Parnassos Detachment at the western end of the Voiotikos-Kifissos

Basin, and understand its implications for constraining the interactions of several

extensional faults in the area.

Stratigraphy

The field area sits in the footwall of the Parnassos detachment, and all units

exposed here belong structurally to the Parnassos nappe. The Parnassos nappe consists of

a sequence of sedimentary rocks that have been folded and imbricated during early

Tertiary emplacement by thrust faults. These rocks span an age from upper Triassic to

lower Tertiary, but in the area mapped only upper Cretaceous to Eocene-Oligocene rocks

are exposed (Papastamatiou, 1960). The unit consists of massive limestone grading

upwards to a fine- to medium-grained flysch.

The lowermost, massive limestone unit is generally without foliation or bedding

except near its upper boundary. It is commonly white in the southern portion of the field

area, but can be varying shades of light gray. It is a cliff-forming unit, capping nearly all

the ridges in the area. Cenomanian bauxite horizons, heavily mined, are present in the

lower part of the limestone sequence. Near the outcrops of bauxite, the limestone

weathers to bright orange or rusty red. Rudists are present in the upper part of the

limestone section, indicating an Upper Cretaceous age (Figure 26). This limestone unit



grades upwards into flysch and near the transition, the limestone becomes thinly bedded

and displays a pronounced foliation (Figure 13 and 23).

This transitional limestone unit ranges in thickness from 1 to 35 m and may be

absent, perhaps reflecting tectonic modification of its original thickness. In general, the

transitional limestone beds appear similar to the flysch above, but are lighter in color

(Figures 13, 22 and 23). Locally, the transitional beds are fine-grained and yellowish in

color.

The flysch unit is a fine-grained siliciclastic sequence, usually mudstone or

siltstone with occasional sandier layers. It shows a strongly developed slaty cleavage,

although bedding can be observed in some coarser grained layers. Locally, the layers

may be sheeny and almost phyllitic in appearance. This unit is generally maroon but

locally may be green. It is readily weathered into platy pieces and forms the valleys in

the area. The red flysch grades upwards into yellow flysch that is medium-grained and

composed predominantly of sandstone interbedded with finer-grained layers, with beds 2-

5 cm thick. Its color variations include gray, brown, and orange. It generally crops out

poorly and, when weathered, crumbles into rounded pieces. The yellow flysch generally

displays more prominent bedding than the red flysch.

Structure

The field area sits structurally beneath the north-dipping Parnassos detachment

fault and potentially contains structures related to early Cenozoic thrusting along the

Hellenic arc as well as to younger unroofing along the detachment fault. The structures

developed in the field area were primarily mapped by following the contact between the

white limestone below and the foliated red flysch above. The mapped contact is defined



as the color break between the foliated upper portion of the white limestone (the

"transitional unit") and the lowest red-colored flysch bed. Two dominant structural

trends, defined by folds and normal faults, are present in the area. The first set of

structures is oriented northwest-southeast, and the second is oriented east-west.

The oldest structural feature in the field area is a slaty cleavage that is generally

sub-parallel to the limestone-flysch contact or heavily deformed. It generally trends

northwest-southeast although is highly folded in some localities (Figure 25).

The northwest-southeast trending structures are well-developed in the southern

portion of the field area (areas near A, B, and C on Figure 3). The largest is an anticline

trending 120o, plunging 150, and forming a limestone ridge that crosses the field area

(area B on Figure 3). The fold limbs are steep, and the northeastern limb is slightly

overturned. At the western edge of the field area, the limestone-flysch contact along the

northeastern limb is missing the transitional unit, indicating minor faulting. The

limestone-flysch contact on the southwestern limb shows evidence of small-scale slip and

it;s straight-line surface trace implies a steep orientation. Bedding in the limestone unit

near the contact dips 180 southwest (Figure 13). Near the nose of the fold, the limestone

beds dip -20o southeast (Figure 14). On top of the limestone ridge a small outcrop of

flysch has undergone parasitic folding.

North of area B (Figure 3), a large synclinal valley contains flysch in its core,

with foliation striking -320o and dipping 30-40' north-northeast. Parallel to and

northeast of this valley, another limestone ridge trends northwest and contains porpoising

folds southeast of the fold nose (Figures 4, 8, 9 and 10). This anticlinal ridge displays an

irregular limestone-flysch contact along its southwestern limb, and displays a flexural slip



surface near the fold nose (just east of D, Figure 3). This minor faulting surface has

corrugations trending 630 and plunging 530 (Figure 15, 16). The limestone-flysch

contact along the northern part of its northeastern limb is faulted, with bauxite-rich

limestone juxtaposed against red flysch (Figure 21).

The south-westernmost portion of the field area (area A, Figure 3) is a valley

cored by red flysch with cleavage striking 320-350' and dipping 40-60o, sub-parallel to

those by area C (Figures 3, 4). A highly folded area near the letter A shows cleavage

orientations that define a fold axis that plunges 30 towards 327' (Figure 5). Measured

fold axes are similar (eg 5' towards 3080). South of area F, the limestone-flysch contact

shows small-scale folds around a similar axis of 40 towards 1290 (Figure 6).

East-west trending structures are present, in areas E and F (Figure 3) and include

two synclines with yellow flysch in their cores (Figures 9, 10). The southernmost

syncline shows well-developed (-325' /250) cleavage in the red flysch and bedding in the

yellow flysch. Its southern edge is truncated by a steeply dipping normal fault (Figure

17) with corrugation axes plunging 450 towards 40. The proximity of the yellow flysch to

the bauxite limestone (between D and E, Figure 3) indicates omission of section, and the

fault's continuation beneath the mine cover.

The northern syncline shows depositional contacts between the limestone, red

flysch, and yellow flysch (Figures 22 and 23). The southern contact shows thinning of

the red flysch unit, probably tectonic (Figures 4 and 10). North of area E, a steeply-

dipping fault oriented 2880/760, displays corrugations and mineral lineations plunging 710

towards 270 (Figure 20). The hanging wall contains limestone and flysch units, with a

tightly folded contact between (Figure 7).



Structures in the area with neither northeast nor east-west trends include a north-

south trending fault found in the eastern part of the field area (southeast of area E), and

the contact between limestone and flysch in the northwestern part of the field area (area

G). The north-south trending fault juxtaposes bauxite-rich limestone against red flysch

(Figure 18). This steep fault shows multicolored bands of flysch folded upwards in a

drag fold (Figure 19), and is truncated by one of the east-west trending faults.

The northwesternmost flysch-limestone contact (area G, Figure 3) shows small-

scale undulations, and dips 450 to 850 NW (Figure 24). This steep contact is on the

northwestern limb of a broad anticline north of area F (Figure 3).

The foliation within the flysch and transitional beds is the oldest structural feature

in the area, and is interpreted to have formed during the emplacement of the nappes

because it trends subparallel to the overall trend of the nappes. This foliation is folded by

the northwest- trending folds, so it probably corresponds to an early phase of nappe

emplacement.

The northwest-trending folds are also interpreted to have formed during nappe

emplacement because their orientation is subparallel to that of overall nappe structure in

this part of the Hellenides. The northwest trend of the fold hinges is dominant, even in

areas that have been refolded by east-west trending structures (e.g. north of E) (Figures 5,

6, and 7). The northwest-trending folds fold the foliation, indicating that the foliation

probably corresponds to an early phase of nappe emplacement. The east-west trending

structures in the field area are probably the youngest structures and truncate or fold all

other structures. It is likely that the east-west trending folds are the same age as the east-

west trending faults.



The northeast-trending anticline has no clear cross-cutting relationships. It may

be of similar age to the North Giona fault because it differs in strike by only -30' and

both structures result in downward displacement to the north.

The age of the North Giona fault relative to the structures in the field area cannot

be determined definitively. However, it seems likely that the east-west trending

structures in the field area and the northeast-trending anticline may be related to the

activity along the North Giona fault. This is suggested by Figures 11 and 12, which

shows that these folds splay out from the eastern end of the North Giona fault.

The Parnassos detachment appears to be younger than all of the structures mapped

in the field area. The east-west trending structures, projected eastward to the detachment

surface, do not affect the trace of the Parnassos detachment. While the eastward

continuation of these structures is difficult to observe within the massive limestone that

forms the immediate footwall for the detachment, the synclines containing flysch

outcrops project eastward into morphologic saddles, and the anticlines project eastward

into morphologic ridges and peaks. This suggests that the east-west trending folds

continue to the detachment surface and are truncated by the detachment. It also appears

that the Parnassos detachment truncates the northeast-trending fold between F and G

(Figure 3).

Interpretation and Discussion

The field map shows unambiguously that the Parnassos detachment fault, exposed

to the east of the field area, and the North Giona fault, exposed to the west of the field

area, do not connect to one another through the area mapped (Figure 4). Therefore the

Parnassos detachment must continue to the north, connecting with the north-dipping fault



system that bounds the Malea Kos Gulf. Slip along the North Giona fault must decrease

and end towards the east, but its down-to-the-north displacement could be taken up in the

field area by folding distributed over a width of several kilometers.

The structures in this area and their interrelationships help constrain the relative

timing of regional deformational events. Below I outline a chronology for these events

that is consistent with the geological evidence.

1) Nappe emplacement along the Hellenic arc likely occurred in a west-southwest

direction, perpendicular to the orientation of the thrust faults, folds and foliation. This

occurred during the Oligocene when these sedimentary rocks that make up the thrust

sheets were stripped from the top of the subducting slab (Papanikolaou et al 2008).

2) The Itea-Amfissa detachment is sub-parallel to the nappe structures, consistent

with early extensional deformation prior to the disruption of the Hellenic arc by cross-

cutting normal faults. Fossils found in the sedimentary rocks in the valley formed by the

Itea-Amfissa detachment indicate that it was active from -18-8 Ma, Burdigalian to

Tortonian time (Papanikolaou et al, 2008). This fault shows an increase in structural

omission towards the south, and east-northeast trending transverse faults developed in the

lower part of the sequence contribute to a greater displacement to the south. This fault

has decreasing displacement towards the north, until no displacement is detected just

south of Mt. Giona. It may continue into three splays with lesser displacement at its

northern extent, but it is difficult to trace these minor faults into the Itea-Amfissa fault. If

these are indeed splays, then the North Giona fault appears to truncate them (Figure 27).

3) The North Giona fault has poor age constraints. If it truncates the Itea-Amfissa

detachment and its possible northward continuation into a series of splays, and if the



folds in the field area are in fact related to the North Giona fault, then the age of the

North Giona fault must be between that of the Itea-Amfissa and the Parnassos

detachments. This interpretation is speculative.

4) If the assumptions above are correct, then the Parnassos detachment must be

younger than the Itea-Amfissa detachment. This would give an age younger than

Serravallian. This is consistent with the age determination of Kranis and Papanikolaou,

(2001), which is based on the assumption that the Parnassos detachment underlies the

Lokris basin and that the Late Miocene and early Pliocene sediments in the Lokris Basin

correspond to the age of the Parnassos detachment.

5) Central Greece has been undergoing extension along east-southeast trending

faults since the Upper Pliocene (Kranis and Papanikolaou, 2001). These faults truncate

the older detachment faults, including the Itea-Amfissa and Parnassos detachments, and

have formed the Gulfs of Corinth and Evia (Kranis, 2007, and Papanikolaou and Royden,

2007).

Conclusions

The geological structures within the Pamassos nappe in the field area show that

there is no through-going fault between the North Giona fault and the Pamassos

detachment. Structures in the field area include mostly folds, and some small faults, in

two distinct orientations, with younger east-west trending structures truncating older

northwest-southeast structures. The east-west trending features may be related to

displacement along the North Giona fault. If so, their truncation by the Parnassos

detachment would indicate that the North Giona fault is older than the Pamassos



detachment. If North Giona fault is younger than the Itea-Amfissa detachment, then the

Parnassos detachment is younger than the Itea-Amfissa detachment as well.

An interpretive chronology of events affecting rocks in the and around the field

area can be summarized as: 1) Oligocene nappe emplacement forms a north to

northwest-trending foliation that is then folded by subparallel folds; 2) Extension that is

upper plate to the Hellenic subduction system causes north to northwest-trending

detachment faults to form parallel to the trend of the thrust belt, such as the Itea-Amfissa

detachment; 3) At the same time, or subsequently, the North Giona fault and the east-

west and northeast-trending folds in the field area form; 4) The Parnassos detachment

forms, perhaps related to the propagation of the North Anatolian Fault westward into the

Hellenides. 5) East-west trending faults of Upper Pliocene and Quaternary age

accommodate extension throughout the Hellenides, including those along the Gulf of

Evia and Corinth.
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Figures

8mmlyr

Figure 1: Extensional features in Greece. Green box shows location of field area in this
study. EP, East Peloponnese Detachment; IA, Itea-Amfissa Detachment Fault; G, N.
Giona Fault; P, Parnassos Detachment; AK, Arkitsa Fault; M, Maliac Detachment; K,
Kephalonia Transform. Arrows give rates of trench migration. From Papanikolaou and
Royden (2007).
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Figure 2: Map showing field area in relation to regional faults. Area mapped in this study
outlined in purple. Blue - Western Thessaly-Beotia nappe; red and orange - flysch of the
Parnassos nappe; green - limestone of the Parnassos nappe; yellow -Pliocene and younger
sediments. IA, Itea-Amfissa Detachment; G, North Giona Fault; P, Parnassos
Detachment.
From Papastamatiou (1960).
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Figure 3: Simplified map with letters for reference within the paper. See Figure 4 for
colors and symbols.



AA

Figure 4: Geologic field map, with black strike and dips symbols for bedding, blue strike
and dips symbols for foliations; purple line for outline of field area, black lines for
depositional contacts; red lines for faults; black lines with arrows for fold hinges; blue
lines for location of cross-sections (Figures 8, 9, and 10). Green- limestone; red- red
flysch; yellow- yellow flysch; purple stippled- mine-dump covered.
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Figure 5: Poles to flysch foliations measured in flysch valley
foliation poles define a fold with a hinge plunging 3' towards
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Figure 6: Poles to flysch foliations measured south of area F where the two dominant
deformation styles appear to interact. The northwest-trending folds appear to dominate,
with the east-west trending folds slightly increasing the scatter.
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Figure 7: Poles to measured foliation planes of red flysch within a 10m radius near
limestone-red flysch contact north of the mine dump, just north of E. The fold hinge that
best fits this set of orientations plunges 60 towards 1350.
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Figure 9: Cross-section showing sub-surface
Figure 4.

features from B-B'. Colors the same as in
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Figure 10: Cross-section showing sub-surface features from C-C'. Colors the same as in
Figure 4.
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Figure 11: Geological structures projected onto topography. View to the west-southwest.
Northeast-trending anticline is in the foreground. Colors the same as in Figure 4.



Figure 12: Geological structures projected onto topography, looking east down the North
Giona fault. The valleys containing flysch appear to splay away from the end of the
North Giona fault. Colors the same as in Figure 4.



Figure 13: sub-horizontal toliation in the transitional limestone.



r gure 14: view to northeast, showing orientation of limestone bedding (white line) at
nose of anticline.



t igure 15: minor tault surtace near the nose of a northwest-southeast trending anticline
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rigurc 1 o: minor outcrop OI IiysCn wltlin limestone. 'noto taken near Figure 15.



rigure 1/: steeply clipping normal tault with corrugation axes plunging 450 towards 4' .

View towards the south.



r lgure i : iINortm-south orientated lault placing bauxite-rich limestone over red flysch.



P igure 19: Multicolored bands ot altered l1ysch near north-south oriented fault.



I lgure 20: A steeply-dipping fault oriented 2880/760, displays corrugations and mineral
lineations plunging 710 towards 27'. View towards the south.



Figure 21: Faulted contact between bauxite-rich limestone and red flysch. View towards
the southwest.



Figure 22: Red flysch over transitional limestone north of the syncline by area F.



t igure 21: transitional unit with hammer in the same position as in Figure 22.



Figure 24: Steeply dipping (85") limestone-tlysch contact near area G. rf- red flysch, Is-
limestone, white line- approximate limestone-red flysch contact. Flysch clearly lies
above limestone elsewhere along this contact.



Figure 25: Highly folded flysch cleavage in area A



tigure 20: Limestone unit with Cretaceous Rudist fossils, a few of which are indicated by
arrows.
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Figure 27: map showing the Itea-Amfissa,
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