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Abstract
Guimaraes et al. (1998) showed that sound-evoked fMRI activation in the auditory midbrain was
significantly improved by a method which reduces image signal variability associated with
cardiac-related brainstem motion. The method, cardiac gating, synchronizes image acquisition to
a constant phase of the cardiac cycle. Since that study, several improvements to auditory fMRI
have been made, and it is unclear whether cardiac gating still yields worthwhile benefits. The
present study re-evaluated the effects of cardiac gating for detecting fMRI activation with current
auditory fMRI standards. In 11 experiments, we directly compared fMRI activation for images
acquired with a fixed repetition time (ungated) vs. those acquired by triggering image acquisition
(gated) to the oxygen saturation at the fingertip (SpO2), an indirect measure of cardiac activity.
Three of these experiments compared the effects of gating with the Sp 0 2 signal vs. gating with
the R-wave of the electrocardiogram (ECG). fMRI activation was routinely detected at all levels
of the auditory pathway from the cochlear nucleus to the auditory cortex. Compared to ungated
acquisitions, cardiac gating with the SpO2 reduced image signal variability in all centers of the
auditory system and increased the magnitude of activation in the inferior colliculus (p < 0.01)
and medial geniculate body (p < 0.1). Simultaneous measurements of the SpO2 and ECG
indicated that the peak of the SpO2 signal followed the ECG R-wave by approximately 400 ms,
placing early images in a motion-stable phase of the cardiac cycle during Sp02-gated
experiments. This may account for the fact that image signal variability with Sp02-gated
acquisitions was always lower than with ECG-gated acquisitions. That sound-evoked activation
could be regularly detected without cardiac gating indicates that gating may not be worth the
minimal experimental complexity it entails. However, in experiments attempting to measure
responses to sounds that evoke small changes in fMRI signal, especially in the auditory midbrain
or thalamus, or when one interested in individual variability rather than group averages, gating
may prove extremely beneficial.
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1 Introduction

In the early years of functional neuroimaging, fMRI studies focused mainly on task-

related activity of the cerebral cortex, in large part because detection of sub-cortical activation,

especially in the brainstem, was unreliable. The difficulty in imaging sub-cortical nuclei arises

from a combination of their small size (on the order of a single voxel at the typical in-plane

resolution of fMRI- 3mm2), motion of the brainstem due to its proximity to large blood vessels,

and flow of surrounding cerebrospinal fluid (Poncelet et al., 1992). In addition, imaging auditory

nuclei in general was problematic because of the saturating effect of acoustic scanner noise on

neural activity in the auditory system and the resulting suppression of fMRI activation from

sound stimuli (Hall et al., 2000; Elliot et al., 1999; Bandettini et al., 1998; Ulmer et al., 1998a;

1998b; Ravicz et al., 2000; 2001). The effects of scanner noise have been mitigated using

"sparse" or clustered imaging paradigms (Edmister et al., 1999; Hall et al., 1999) in which image

volumes are acquired in a brief cluster with a long silent period between clusters. The effects of

brainstem motion on detecting activation in brainstem centers have been mitigated by

synchronizing image acquisitions to a particular phase of the subject's cardiac cycle ("cardiac

gating") instead of acquiring images at fixed intervals (Guimaraes et al., 1998). The original

study which proposed this technique was performed at 1.5-Tesla field strength and demonstrated

that cardiac gating could determine whether or not one is able to detect activation in the auditory

midbrain (i.e., the inferior colliculus). Since its introduction, this method has been used in many

studies of the small auditory nuclei of the brainstem (e.g. Harms and Melcher, 2002; Melcher et

al., 2000; Devlin et al., 2006; Griffiths et al., 2001; Backes and van Dijk, 2002) as well as

brainstem nuclei in other sensory pathways (Zhang et al., 2006; Mainero et al., 2007; Dubois and



Cohen, 2000). However, recent studies performed at higher field strengths have readily

measured brainstem activation without using cardiac gating or any other method to reduce image

signal variability caused by brainstem motion (Budd et al., 2003; Kovacs et al., 2006; personal

observations of the authors). These observations raise the following questions: Does cardiac

gating significantly improve the detection of subcortical activation when used with current fMRI

methods? If so, under what circumstances is the benefit sufficient to warrant the additional

experimental and post-processing complexity that cardiac gating entails?

The present study reexamined the effect of cardiac gating on activation detection in a

study design similar to that of Guimaraes et al. (1998). We directly compared activation

measured using cardiac gating with activation measured using a fixed interval (TR) between

image clusters (not the case with gating because heart rate varies over time). However, our study

also differed from Guimaraes et al. (1998) in several important ways. First, images were

acquired at 3-Tesla instead of 1.5 Tesla. Second, we imaged several auditory nuclei from

cochlear nucleus through auditory cortex while mitigating scanner noise using clustered volume

acquisitions. Third, in the gated condition, we synchronized image acquisitions to the oxygen

concentration (SpO2) in the fingertip as a simpler alternative to the electrocardiogram (ECG).

We recognized that triggering from the more-sluggish SpO2 signal might lead to less consistent

triggering with respect to cardiac phase, and thus compromise any benefits from gating. We

assessed whether this was the case by collecting ECG- as well as SpO2-gated data in some

experiments. Finally, as it has never been quantitatively examined, we measured the delay

between the peak of the ECG and SpO2 waveforms..



The results of the present study demonstrate that cardiac gating via the SpO2 signal

improves detection of sound-evoked activation in auditory midbrain and thalamus. We use the

data to suggest guidelines for deciding if gating is worthwhile in a given experimental context.

2 Methods

Ten subjects participated in these experiments. Nine were imaged once, and one twice,

for a total of 11 imaging sessions. All subjects had normal hearing ( 25 dB HL or less at all

standard audiometric frequencies from 250 Hz to 8 kHz) and no tinnitus. No subject reported a

history of neurological illness. Approval for the experiments was granted by the Institutional

Review Boards at the Massachusetts Eye and Ear Infirmary, Massachusetts Institute of

Technology, and the Massachusetts General Hospital. Written informed consent was obtained

prior to participation.

2.1 Acoustic Stimulation

Broadband noise (0-10 kHz) was presented binaurally at 50dB SL (referenced to the

monaural threshold for each ear) via insert piezo-electric headphones with noise-reducing foam

earplugs. Detection threshold was measured in the scanner room while no images were being

acquired. The patient cooling fan was off during threshold measurement and during functional

imaging. The scanner coolant pump was left on for technical reasons in all but two subjects.

Stimuli were presented in a block paradigm with constant length "sound on" epochs (32 sec) but

variable length "sound off' epochs (30 - 38 sec) such that the timing of image acquisition

relative to the stimulus was staggered by -2 seconds across "on" epochs. The staggered sampling

enabled synthesis of image signal time courses with 2-second resolution despite the original,



long (i.e., -8 second) inter-image interval (Belin et al. 1999; Harms et al. 2005). In each imaging

session, the same amount of imaging time was devoted to each study condition: ungated, SpO2-

gated and, for the three experiments employing it, ECG-gated. Participants were asked to keep

as still as possible and to listen

2.2 Imaging

Image data were collected using a 3-Tesla Siemens TIM Trio and 12-channel head coil

(Matrix). Participants were placed head-first supine into the scanner and immobilized using

padding placed on either side of the head.

Contiguous sagittal images of the whole head were acquired and used to select a volume

comprising 10 slices for functional imaging. In 8 out of 11 imaging sessions, the slices were

oriented parallel to a plane intersecting the inferior colliculi and cochlear nuclei (identified as

described in Hawley et al., 2005). In the 3 remaining experiments, the slices were parallel to a

plane intersecting the inferior colliculi and posterior Heschl's gyri. In all but one case, the

orienting slice (containing IC and CN or IC and HG) was the second from most posterior (most

posterior in remaining case). In all cases, the auditory pathway from CN through MGB was

contained in slices 2 - 4 (numbered from posterior to anterior beginning with "1").

Figure 1 shows the functional imaging paradigm. Functional imaging used blood-

oxygenation level-dependent (BOLD) contrast (in-plane resolution = 3.1 x 3.1 mm2; slice

thickness = 6 mm; distance factor = 33%; FoV = 200 x 200 mm2 ; flip angle = 900; echo time =

30ms). Images of the 10-slice volume were acquired in a brief cluster (600 ms) every 8

(ungated) or approximately 8 (gated) seconds. were acquired with a repetition time (TR) of 8

seconds for ungated-TR runs and approximately 8 seconds (7.5 seconds + 1 heartbeat) for gated-



TR runs with clustered volume acquisitions (Edmister et al. 1999, Hall et al. 1999) with a cluster

length of 600ms. Thirty-five image clusters were acquired for all 10 slices of interest during one

ungated-TR run, while approximately 35 (due to the variability in TR) image clusters were

acquired in one gated-TR run.

For gated-TR runs, image acquisition began immediately after a peak in either the pulse

oximeter or ECG R-wave was detected. In three experiments comparing ECG and SpO2 gating,

the ECG and SpO2 signals were measured during the ungated runs using an INVIVO Magnitude

3150M (Intermagnetics General Corporation, Latham, NY) in order to quantify the delay

between the two signals and examine how that delay might effect the derived detection benefit

from cardiac gating.

2.3 Detecting Activation

Images were corrected for subject motion using the Statistical Parametric Mapping

software package (SPM2; Friston et al., 1995), co-registered to the first functional images of the

session, and corrected for linear and quadratic drift in signal intensity within a run on a voxel-

wise basis. T1 correction was applied to each gated run (Guimaraes et al., 1998) although, as

expected, it had little effect on image signal because of the long TR used in the current study.

Images were normalized such that the time-averaged signal intensity had the same value across

runs in order to eliminate artificial intensity discontinuities. All data for a single condition

(ungated, SpO2-gated, ECG-gated) were concatenated, forming a single data set used for all

further analyses. Activation was detected using a student's t-test (on a voxel-wise basis)

between images while the stimulus was on and those acquired while the stimulus was off. A



voxel was considered activated if the resulting p-value was below 0.01 (uncorrected for multiple

comparisons).

2.4 Region of Interest Analysis

The following regions-of-interest (ROIs) were defined as in Hawley et al. (2005) and

Harms and Melcher (2002): cochlear nucleus, superior olivary complex, inferior colliculus,

medial geniculate body. Three ROIs were also defined on the superior temporal plane: Heschl's

gyrus (HG), planum temporale (PT) and planum polare (PP). The HG ROI comprised the first

Heschl's when there were two. Areas medial to Heschl's gyrus were assigned to PP and those

lateral to HG, including a second Heshl's gyrus if there was one, was assigned to the PT ROI.

Similar patterns of results for sub-cortical structures were obtained for two separate ROI

analyses.

2.5 Quantifying Activation

The following were quantified for each condition (ungated, SpO2 gated, ECG gated)

based on the logical OR of active voxels (p < 0.01) within each ROI: (1) the average T-statistic,

(2) the average percent signal change in voxel intensity between the "on" and "off' conditions,

(3) the average standard deviation in signal intensity during the "on" condition, and (4) the

average standard deviation in signal intensity during the "off' condition. These quantities were

also assessed for the active voxels in the different conditions individually. To assess the effects

of cardiac gating upon these four measures, we used non-parametric sign and signed-rank tests

and defined statistical significance as p < (c = 0.05).



3 Results

In both the ungated and SpO2 gated conditions, activation from the sound stimulus was

routinely detected in the following auditory centers: cochlear nucleus, superior olivary complex,

medial geniculate body, Heschl's gyrus, planum temporale, and planum polare. Figure 2 shows

activation maps for both ungated and gated conditions chosen because any change in T-statistic

between the ungated and gated conditions was near the mean across subjects.

Figures 3 and 4 and Table 1 summarize the difference between the ungated and SpO2 gated

conditions for every subject and brain structure. The analyzed voxels in each ROI were the same

for the ungated and gated conditions and comprised the OR of active voxels during the two

conditions. All structures showed a significant reduction in image noise during both sound on

and off periods, as assessed by signal standard deviation [p < 0.05 for signed-rank test (one

asterisk) or both signed-rank and sign tests (two asterisks)]. The reduction is apparent by eye in

the time courses of Figures 5 and 6, particularly for the inferior colliculus. In the inferior

colliculus, gating produced a significant increase in T score, a measure of signal detectability.

The T score in MGB showed an increasing trend (p < 0.1), while the remainder of the structures

showed no difference in T scores between the gated and ungated conditions. There was no

difference in percent signal change between ungated and gated conditions in any structure. An

alternative analysis in which the relevant measures for each condition were calculated based on

the active voxels for that condition yielded an essentially identical pattern of results: a reduction

in standard deviation with gating for all structures, a significant increase in T score for the

inferior colliculus with gating, and a trend toward increased T score in MGB.



In three experiments, the efficacy of gating with the SpO2 signal was directly compared

with that of gating with the ECG. T-scores were always highest (and signal variability lowest)

when using the SpO2, followed by the ECG and ungated conditions, respectively. This may be

due to the fact that gating with the SpO2 or EG signals places the first images in different phases

of the cardiac cycle. As seen in Figure 7, the peak of the SpO2 signal is delayed by about 400

ms relative to the R wave of the ECG.

4 Discussion

When used in conjunction with current auditory neuroimaging methods, cardiac

gating significantly increased T-scores in the inferior colliculus and tended to increase it in MGB

and HG??. In the structures which received a benefit from cardiac gating, the benefit resulted

from reduced signal variability in both the "on" and "off' conditions with no corresponding

change in percent signal change. T score, and thus the detectability of activation was never

reduced by gating.

Because previous studies comparing ungated and gated image acquisition used the ECG

signal, we wondered whether using the SpO2 signal would adversely affect our results.

However, gating with the SpO2 signal yielded higher T-scores and lower signal variability than

gating with the ECG. This is likely due to the fact that the SpO2 signal is delayed by about 400

ms relative the ECG, putting the first images acquired in a relatively stable phase of the cardiac

cycle (Poncelet et al., 1992). The downside of gating with the SpO2 is that image acquisition

later in the volume might have fell beyond the next cardiac cycle, and thus were not truly gated.



Some of these images included the anterior portions of auditory cortex, and this may have biased

our results in these structures towards not showing any benefit from gating.

The fact that we observed a detection benefit from gating in some structures but not

others may be due to such factors as direction of brainstem and cortical movement (e.g. through-

plane vs. in-plane) or flow of oxygenated or deoxygenated blood in vessels (e.g. posterior

cerebral artery, middle cerebral artery) adjacent to auditory nuclei.

4.1 When to use Cardiac Gating

Although cardiac gating requires some minimal experimental complexity when compared

with traditional ungated acquisitions, the technique may prove especially beneficial under certain

experimental conditions (e.g. if one wishes to examine the neural response to events that produce

small changes in BOLD signal or is interested in individual subject or patient variability). To

gain some quantitative intuition for this, we artificially reduced the percent signal change

between the noise-on and noise-off conditions for both the ungated and gated paradigms in each

subject (IC) and determined at what percent signal change we could no longer detect activation

at the 0.01 level. As seen in Figure 8, the percent signal change at which activation could still be

detected was always lower when cardiac gating was used (mean minimum percent signal,

ungated = 0.40 + 0.11; gated = 0.29 ± 0.09). These signal changes are comparable to those

evoked by low-sound-level, low-bandwidth, or low-rate stimuli (Sigalovsky and Melcher, 2006;

Hawley et al., 2005; Harms and Melcher, 2002). Gating may therefore provide more reliable

measures of neural activation in psychophysical detection or discrimination experiments as well

as when one is interested in describing individual or patient variability to sounds that elicit just-

detectable activation.



4.2 Comparison with Previous Imaging Studies of Cardiac Gating

Guimaraes et al. (1998), using a 1.5 Tesla scanner and acquiring data from a single slice

intersecting both the inferior colliculi and Heschl's gyri with a short TR of either 2s (ungated) or

-2s (gated) using the ECG for triggering with a 400ms delay between trigger and acquisition,

showed that under those experimental conditions, cardiac gating was a determining factor of

whether activation was detected in the inferior colliculi of some subjects. Cardiac gating also

increased the significance of fMRI activation in the auditory cortex. However, while increased

activation in the brainstem was a result of a reduction in signal variability, increased activation in

the auditory cortex was a result of larger percent signal changes. We replicated the first result

under different imaging conditions [3-Tesla scanner, long TR (ungated TR = 8s; gated TR _-

8s)], pulse-ox triggering with no delay between the trigger and the start of image acquisition,

multi-slice clustered-volume acquisitions] while also expanding on it by showing increased

activation in both the inferior colliculi and the medial geniculate bodies resulting from reductions

in signal variability. While we did observe some reductions in signal variability in the cochlear

nuclei and superior olivary complexes, gating did not increase activation in these structures due

to a corresponding tendency of gating to reduce the percent signal change. That we observed the

largest variability reductions in brainstem structures (IC and MGB) and less reduction in the

cochlear nuclei, superior olivary complexes, and auditory cortices strengthens Guimaraes et al.'s

and others' (Zhang et al., 2006; Malinen et al., 2006) conclusion that gating improves activation

detection in the brainstem by mitigating the noise associated with pulsatile motion caused by

semi-periodic blood flow and also indicates that cardiac gating, when performed correctly, still



provides a substantial benefit in detecting activation in subcortical auditory structures with

present auditory fMRI methods.

Malinen et al. (2006), using a pulse-oximeter with a 300ms delay between trigger and

start of acquisition, showed more reliable activation detection in secondary somatosensory cortex

by using cardiac gating. This improvement was the result of reduced signal variability in the

regions of interest with no corresponding differences in percent signal change. Malinen et al.'s

(2006) slice selection did not cover primary sensory cortex. It is unclear why they observed

detection benefits in cortical regions and we did not even though signal variability in these

regions was reduced in both their study and ours.

4.3 Mechanisms behind Reduced Variability in Cortical ROIs

Contrary to the brainstem, it is still unclear why gating might result in reduced signal

variability in cortical regions. It could be that motion of the cortex (Poncelet et al., 1992), even

in regions with largely homogenous hemodynamic responses to stimulation, results in increased

signal variability throughout the brain. The largest variability would be expected in regions

containing larger arteries. That we observed the largest variability reductions in the brainstem,

adjacent to the posterior cerebral arteries and a smaller but still significant reduction in Heschl's

gyrus, adjacent to the middle cerebral artery, supports this idea. Another possibility is that blood

flow, even in the absence of associated pulsatile motion, is a source of signal variability on the

short time scales between different phases of cardiac activity (Kriiger and Glover, 2001). If this

were true, we would again expect to see variability reductions throughout the brain by cardiac

gating. Our findings tend to support both ideas, and we cannot dissociate between them with our

data. In addition, it has been shown that physiological noise, including fluctuations in cerebral



metabolism, blood flow, blood volume, and quasiperiodic cardiac and respiratory fluctuations (1)

dominate image noise at 3 Tesla (Kriiger and Glover, 2001), suggesting that the best avenue for

reducing signal variability is by methods targeting physiological noise, like cardiac gating and/or

retrospective correction (Le and Hu, 1996; Glover et al., 2000) for both the cardiac and

respiratory cycles.

4.4 Cardiac Gating vs. other Noise-reduction Methods

Zhang et al. (2006) directly compared fMRI activation between runs with and without

using cardiac gating in the detection of activation in the trigeminal nuclei of the brainstem.

Zhang et al. (2006) used the peak of the R-wave in the ECG to trigger scans in several different

acquisition paradigms including ungated with a TR of 3s, gated with a TR of 3 heartbeats with

and without TI correction, gated with a TR of 9 heartbeats and no TI correction, and a dual-echo

acquisition for T2* mapping to eliminate the effects of TR variability on signal recovery. They

found cardiac gating to be beneficial in that it improved the detection hit rate in all structures of

interest by reducing signal variability. The largest hit rate, however, was obtained using a

variant of a multi-echo, single-shot sequence (Wiggins and Norris, 1998; Speck and Hennig,

1998; Posse et al., 1999; Schulte et al. 2001) which maps T2* on a voxel-wise basis. Such a

sequence is advantageous because it eliminates (1) variability associated with signal drift over

long imaging sessions, (2) inter-subject and regional T2* differences, and (3) the need to correct

for TI-related variability associated with a variable TR. Indeed, Posse et al. (1999) reported

improved functional contrast in the visual cortex using this sequence. The disadvantage of this

technique lies in the time it takes to acquire images at multiple echo-times. If one wants to be

sure that all slices of interest are truly cardiac gated, placed in a motion- and blood-flow-stable



phase of the cardiac cycle, less slices can be obtained with multi-echo sequences than with

conventional BOLD fMRI. In addition, for auditory fMRI, longer image acquisitions, and more

echoes, produce more acoustic noise which might contaminate the measurement of the stimulus-

related hemodynamic response. Nonetheless, it would be interesting to use a multi-echo

sequence with current auditory fMRI methods to compare its efficacy in detecting auditory

activation in the brainstem and elsewhere.

5 Conclusion

With current auditory fMRI methods including clustered volume acquisitions, long

repetition time, and high field strength, recent studies have obtained reliable subcortical

activation in auditory structures without using cardiac gating while others (e.g. Thompson et al.,

2006; Sigalovsky and Melcher., 2006; Griffiths et al., 2001; Rinne et al., 2007) have assumed

that cardiac gating is a beneficial methodological modification without which detection of

activation in subcortical auditory nuclei might not be possible. Many have also assumed that if a

study is not concerned with subcortical structures, then gating is not necessary (e.g. Gutschalk et

al., 2007; Wilson et al., 2007; Hall et al., 2005). It does seem that cardiac gating provides a

benefit in detecting hemo-dynamic activation in the auditory brainstem and thalamus, and

possibly the cortex.. Gating would be particularly useful for situations in which the contrast-to-

noise ratio is inherently low and/or when one is interested in the variability of auditory activation

across individual subjects, particularly for such clinical conditions as schizophrenia or tinnitus.
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Table 1. Summary of effects of cardiac gating and TI-correction.

Cochlear Nucleus
Ungated
Gated-Corrected

Superior Olivary Complex
Ungated
Gated-Corrected

Inferior Colliculus
Ungated
Gated-Corrected

Medial Geniculate Body
Ungated
Gated-Corrected

Heschl's Gyrus
Ungated
Gated-Corrected

Planum Temporale
Ungated
Gated-Corrected

Planum Polare
Ungated
Gated-Corrected

T-statistic Percent Signal Standard Standard
Change Deviation Deviation

Noise On Noise Off

2.9 ± 0.89
3.2 + 1.1
p = 0 .3 8

3.6 ± 0.81
3.2 ± 1.4
p = 0 .34

3.3 ± 1.3
5.5 ± 1.7
p = 0.000080

2.6 ± 1.2
3.4 ± 1.2
p = 0 . 10

4.9 ± 1.5
5.3 ± 1.6
p = 0 .2 0

4.1 1.8
4.1 ±1.5
p = 0.90

4.4 ± 2.1
4.61 ± 1.9
p = 0.65

0.87 ± 0.39
0.74 ± 0.22
p = 0 .22

0.71 ± 0.29
0.56 ± 0.28
p = 0.077

0.83 ± 0.37
0.91 ± 0.23
p = 0.092

0.79 ± 0.36
0.79 ± 0.33
p= 1

1.1 ± 0.40
1.1 ± 0.30
p = 0.46

1.2 ± 0.53
1.1 ± 0.56
p = 0.26

1.0 ± 0.61
0.92 ± 0.44
p = 0.29

15.2 ± 5.5
12.5 ± 4.3
p = 0.048

11.6 ± 6.8
9.0 + 3.1
p = 0.0049

14.9 ± 6.0
8.7 ± 3.4
p = 0.000060

18.0 ± 7.9
12.2 ± 4.5
p = 0.00073

11.6 ± 3.8
10.0 ± 3.3
p = 0 .00 13

15.1 ± 5.4
13.7 ± 4.3
p = 0 .00 38

11.7 ± 4.3
10.4 ± 3.6
p = 0.0065

15.2 ± 4.7
11.8 ± 3.0
p = 0.00024

10.8 ± 6.1
8.6 ± 2.0
p = 0 .0 16

15.3 ± 5.2
9.0 ± 2.6
p = 0.000060

17.2 ± 7.2
12.0 ± 4.6
p = 0.00024

12.2 ± 3.6
10.5 ± 3.5
p = 0.00025

15.9 ± 5.0
14.2 ± 4.8
p = 0 .00 19

12.6 ± 4.1
10.8 ± 4.1
p = 0 .0 15



FIGURE CAPTIONS

Figure 1. Acquisition paradigm showing schematic R-wave peaks and the imposed delay (D)

between the peak of the R-wave and the start of the image acquisition.

Figure 2. Activation maps from representative subjects chosen because they were around the

median in the benefit obtained by cardiac gating. The color code represents level of statistical

significance (see text).

Figure 3. Comparisons of (1) T-statistic, (2) percent signal change, (3) signal variability while

the stimulus was on and (4) signal variability while the stimulus was off between ungated and

gated-corrected acquisition paradigms for all subcortical ROIs. Single and double asterisks

indicate significant differences between ungated and gated-corrected conditions for signed-rank

and both sign and signed-rank tests, respectively.

Figure 4. Same as figure 3, but for cortical ROIs.

Figure 5. Comparisons of the scatter plots of percent signal change between ungated and gated-

corrected conditions for all subcortical ROIs. The gray area in each panel indicates the period

during which the stimulus was on.

Figure 6. Same as figure 5, but for cortical ROIs.

Figure 7. Delay between ECG (solid lines) and SpO2 (dotted lines) signals. The left panel

shows raw traces of both signals for each of the three subjects. The right panel shows a scatter

plot of the delay between the peak of the R-wave and the peak of the SpO2. The mean ± s.d. of

the delay is shown in the upper right corner of the right panel.

Figure 8. Simulated minimum percent signal changes (for IC activation detection at the 0.01

level) in each of 8 subjects for both fixed and gated conditions.
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