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Abstract

Functional magnetic resonance imaging (fMRI) is an imaging technology which is
primarily used to perform brain activation studies by measuring neural activity in
the brain. It is an interesting question whether patterns of activity in the brain as
measured by fMRI can be used to predict the cognitive state of a subject. Researchers
successfully employed a discriminative approach by training classifiers on fMRI data
to predict the mental state of a subject from distributed activation patterns in the
brain. In this thesis, we investigate the utility of feature selection methods in improv-
ing the prediction accuracy of classifiers trained on functional neuroimaging data.

We explore the use of classification methods in the context of an event related func-
tional neuroimaging experiment where participants viewed images of scenes and pre-
dicted whether they would remember each scene in a post-scan recognition-memory
test. We view the application of our tool to this memory encoding task as a step
toward the development of tools that will enhance human learning. We train sup-
port vector machines on functional data to predict participants' performance in the
recognition test and compare the classifier's performance with participants' subjective
predictions. We show that the classifier achieves better than random predictions and
the average accuracy is close to that of the subject's own prediction.

Our classification method consists of feature extraction, feature selection and clas-
sification parts. We employ a feature extraction method based on the general linear
model. We use the t-test and an SVM-based feature ranking method for feature se-
lection. We train a weighted linear support vector machine, which imposes different
penalties for misclassification of samples in different groups. We validate our tool on
a simple motor task where we demonstrate an average prediction accuracy of over
90%. We show that feature selection significantly improves the classification accuracy
compared to training the classifier on all features. In addition, the comparison of the
results between the motor and the memory encoding task indicates that the classifier
performance depends significantly on the complexity of the mental process of interest.

Thesis Supervisor: Polina Golland
Title: Associate Professor
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Chapter 1

Introduction

Functional magnetic resonance imaging (fMRI) is an imaging technology which is

primarily used to perform brain activation studies by measuring blood oxygen level

dependent signal, which serves as an indicator of neural activity in the brain [25].

Univariate techniques, such as generalized linear model (GLM) [20], are traditionally

used to identify neural correlates in fMRI data. Recently, the neuroscience com-

munity has been focusing on the thought-provoking problem of whether patterns of

activity in the brain as measured by fMRI can be used to predict the cognitive state

of a subject. Researchers successfully employed a multivariate discriminative ap-

proach by training classifiers on fMRI data to predict the mental states of a subject

from distributed activation patterns in the brain [19]. It is an interesting question

whether the prediction accuracy of these classification methods can be improved using

feature selection methods. In this work, we employ feature selection methods with

classification algorithms and apply these methods to a challenging memory encoding

experiment.

Predicting the outcome of a memory encoding task is a noteworthy problem, as

an important part of human learning is to evaluate whether information has been

successfully committed to memory. Humans with superior judgments of learning are

shown to perform better in learning tasks [16]. A superior judgment of learning al-

lows the allocation of cognitive sources so that information that has been sufficiently

learned is no longer studied. Recent functional neuroimaging studies identified brain



regions correlated with actual and predicted memory encoding using univariate anal-

ysis techniques[40]. In this thesis, we adopt the discriminative approach to predicting

successful encoding from functional neuroimaging data. We view this work as a step

toward the development of tools that will enhance human learning. One of the pos-

sible applications is human-machine interfaces which employ a feedback mechanism

to ensure successful acquisition of skills in critical applications.

In this thesis, we explore the use of classification methods in the context of an

event related functional neuroimaging experiment where participants viewed images

of scenes and predicted whether they would remember each scene in a post-scan

recognition-memory test. We train support vector machines on functional data to

predict participants' performance in the recognition test and compare the classifier's

performance with participants' subjective predictions. We show that the classifier

achieves better than random predictions and the average accuracy is close to that of

the subject's own prediction.

Our classification method consists of feature extraction, feature selection and clas-

sification parts. We employ a feature extraction method based on the general linear

model [43]. We use the t-test [34] and a support vector machine (SVM) based feature

ranking method [32] for feature selection and compare their accuracy on our data set.

As in our data sets, the class sizes are unbalanced by a factor of about three-to-one,

we train a weighted linear SVM, which imposes different penalties for misclassification

of samples in different groups.

In our experiments, we use two data sets, where we validate our method on a

simple motor task and evaluate it on the more challenging memory encoding task.

In the motor task experiment we demonstrate a highly accurate average prediction

accuracy of over 90%. We also provide experimental evidence that feature selection

significantly improves the classification accuracy compared to training the classifier

on all features. In the memory encoding task experiments we explored the challeng-

ing nature of the experiment by varying different components of the system: training

strategy, size of the training set, the amount of smoothing and the feature selection

method. We show that the classification accuracy can be increased by training the



classifier on reliable examples determined using the subject's predictions. We observe

that smoothing increases the consistency of selected features without significantly af-

fecting the classification accuracy. We also show that multivariate feature selection

does not significantly improve on univariate feature selection. In addition, the com-

parison of the results between the motor and the memory encoding task indicates that

the classifier performance depends significantly on the complexity of the experimental

design and the mental process of interest.

The contributions of this thesis include:

* The use of classification algorithms in predicting mental states from functional

neuroimaging data. Experimental results on a challenging memory encoding

task.

* An investigation of the utility of feature selection methods in fMRI pattern

recognition problems.

* A discussion on practical issues arising in training a classifier on fMRI data,

e.g. unbalanced data sets, the amount of smoothing, choosing feature selection

parameters and whether subjects' responses should be used to find a reliable

subset of training examples.

This thesis is organized as follows. In the following chapter we provide a short

background on fMRI and review previous work. In Chapter 3 we present our approach

to the pattern based classification of fMRI data. We explain the methods used for

feature extraction, classification, feature selection and the experimental evaluation

setup. In Chapter 4 we describe our data sets and present the experimental results on

the memory encoding and the motor tasks. We conclude our thesis with a discussion

of our experimental results and point to future research directions in Chapter 5.





Chapter 2

Background

2.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is an imaging technology which is

primarily used to perform brain activation studies by measuring neural activity [25].

For a more comprehensive introduction to fMRI we refer the readers to [37]. fMRI is a

popular imaging tool in neuroimaging experiments as it does not involve radiation, is

non-invasive, has high spatial resolution and is relatively easy to use. In neuroscience,

fMRI has been an important tool for the investigation of functional areas that govern

different mental processes, including memory formation, language, pain, learning and

emotion [6, 7].

fMRI measures the magnetic properties of blood in the brain with respect to a

control baseline. The magnetic properties of blood depends on the degree of oxy-

genation level: haemoglobin is diamagnetic when oxygenated but paramagnetic when

deoxygenated. In the brain, the degree of oxygenation level in the blood depends on

the neural activity. fMRI measures this blood oxygen level dependent (BOLD) signal

and this BOLD signal serves as an indicator of neural activity.

Relative to other brain imaging techniques, fMRI has a high spatial resolution on

the order of several millimeters. In our experiments, the scanner produces data on

a lattice of size 64 x 64 x 32 with a uniform spacing of size 3 x 3 x 4 mm. We call

a single data point in this uniformly spaced lattice a voxel. Usually, a voxel has a



volume on the order of tens of cubic millimeters and a three dimensional lattice has

tens of thousands of voxels. Typically, a voxel contains tens of thousands of neurons.

Therefore, the observed signal shows the average activation in a spatial neighborhood

rather than the individual neural activations.

The temporal resolution of fMRI is limited by the slow BOLD signal. In our

experiments we obtain a three dimensional image every two seconds. The BOLD

signal is smeared over several seconds. The temporal response of the BOLD signal

shows a momentary decrease immediately after neural activity increases. This is

followed by an increase up to a peak around six seconds. The signal then falls back

to a baseline and usually undershootes it around twelve seconds after the increase

in neural activity. Nevertheless, resolution levels on the order of milliseconds can be

achieved if the relative timing of events are to be distinguished [42].

fMRI measures the secondary physiological correlates of neural activity through

BOLD signal. When comparing across individuals it is not possible to quantitatively

measure whether the differences are of neural or physiological origin. However, fMRI

has been validated in many experiments. fMRI signals are shown to be directly

proportional to average neuronal activations and are observed to be in agreement

with electroencephalographic (EEG) signals [36].

2.2 fMRI Analysis

Statistical Parametric Mapping (SPM) [20] is the widely used method for assess-

ing statistical significance of neural correlates in the brain. SPM is a voxel-based

univariate approach based on the Generalized Linear Model [43].

As SPM is a voxel based analysis, it relies on the assumption that the data from a

particular voxel correspond to the same physical location. Subject motion during the

scan accounts for an important part of the unwanted variance in voxel time series.

Therefore, in a step called realignment, each successive scan of a subject is spatially

registered to usually the first or the average scan, using a rigid body transformation

model. Frequently a group of subjects is scanned in a study to find common brain



activation across multiple human subjects. The variance in the size and the shape

of the brain distorts voxel-wise correspondence. Therefore, in a pre-processing step

called spatial normalization [3], the brain scans are spatially matched to a standard

anatomical template image usually using an affine or a non-rigid deformation model.

Even single-subject analysis involves a spatial normalization step in order to report of

neural correlates in a standard reference frame. After spatial normalization step the

data is resampled using mostly linear interpolation in a common lattice, producing

same number and size of voxels across different subjects. The last pre-processing step

involves smoothing, where the data is smoothed using a Gaussian kernel to decrease

the effect of inter-subject variation of the anatomical regions in the brain.

SPM based analysis produces voxel values which are, under the null hypothe-

sis, distributed according to a known probability density function. Very commonly,

including our work, the distribution is assumed to be Student's T distribution produc-

ing SPM maps called T-maps. The common use of SPM based analysis stems from

the simplicity of using a univariate statistical test at a voxel level. The analysis is

based on the generalized linear model which we explain more in detail in Section 3.1.

Briefly, the data is modeled as consisting of components of interest, confound effects

and an error term. The general linear model expresses the observed signal as a linear

combination of components of interest, confound effect and an easy to manipulate

error term. Using this simple model, the T-map can be seen as a map of voxel based

statistics of the estimate of component of interest divided by the estimate of noise.

2.3 Classification of fMRI data

The most commonly used fMRI analysis methods, including SPMs, are univariate

methods aimed at localizing the voxels related to the cognitive variables of interest.

Recently, there has been a growing interest in characterizing the distributed activa-

tion patterns associated with cognitive states of the brain. Researchers have adopted

multivariate discriminative approach to fMRI data analysis in order the decode the

information represented in patterns of activity in the brain. Pattern recognition algo-



rithms are shown as a method to examine fMRI data beyond searching for individual

voxels matching a pre-specified pattern of activation. These methods can also be used

to predict cognitive states of brain from distributed patterns of activation. For an in

depth overview of the pattern based classification approach to fMRI analysis we refer

the readers to review papers [35, 19].

The common approach to multi-variate analysis is to train classifiers to predict

the cognitive state of a subject from the spatial brain activation pattern at that

moment[12, 50]. Classification methods have been successfully applied to fMRI ex-

periments on visual [18, 35, 39, 11, 10], motor [24] and cognitive [28, 14] tasks. Haxby

et al. [18] show that each category is associated with a distinct pattern of activity

in the ventral temporal cortex, where subjects viewed faces, houses and object cate-

gories. Classification methods have also been applied to experiments where subject's

cognitive state cannot be inferred from simple inspection of the stimulus, e.g., which of

the three categories the subject is thinking about during a memory retrieval task [27]

and whether the subject is lying about the identity of a playing card [13]. An interest-

ing question is how well classifiers can perform on different tasks. Strother et al. [26]

show that the prediction accuracy decreases as the complexity of the experimental

task increases.

Functional MRI classification is a challenging task due to high dimensionality

of fMRI data, noisy measurements, small number of available training samples and

correlated examples. This classification problem goes beyond the setting in most

machine learning problems where there are usually more examples than features and

examples are drawn independently from an underlying distribution. Furthermore,

the experimental design poses additional difficulties for the classification tasks. For

instance, in our experiments we are particularly interested in predicting successful

memory encoding from fMRI data. Besides the complex neural circuitry underlying

a memory encoding process, it is challenging to design an experiment in which the

remember-forget labels of presented images are obtained objectively, i.e., without

subjective evaluation by the participants. Therefore, in the special case of the memory

encoding experiment the classifier also has to cope with noise in training labels.



One way to address these problems lies in the choice of the classifier. Most fMRI

classification studies use linear classifiers [18, 27, 35, 39, 28, 17, 14, 24, 11, 10, 13].

Linear classification methods find the hidden label of a new example by the weighted

sum of the individual voxels. However, the nonlinear interactions between the voxels

are not taken into account. Nonlinear classifiers address this problem and are em-

ployed in a variety of studies [10, 13, 22, 21]. However, fMRI classification studies have

not found a significant advantage of using nonlinear classifiers versus linear ones [10].

One of the possible reasons is that the use of a complex model is not justified in a

small dataset and large feature space setting, as the model tends to overfit the data.

To approach the problems associated with high dimensionality of the fMRI data,

there has been an emphasis on feature selection and dimensionality reduction tech-

niques. The motivation behind feature selection is to remove the most uninformative

voxels with the aim of increasing classifier performance. For a broad overview of

feature selection methods we refer the readers to [8]. Most of the fMRI classification

studies use either a feature selection or dimensionality reduction method [19, 8]. One

approach to feature selection is to restrict the analysis to anatomical regions of inter-

est [18, 22]. Another approach is to compute univariate statistics to rank the features

according to their discriminative power between the conditions of interest [44, 27, 17].

The repeatability of features can also be used as a criterion, i.e. whether a feature is

consistently selected across different runs of the dataset [45]. A problem associated

with univariate feature selection methods is that informative voxels can be discarded

as the interaction between the voxels are not considered. Multivariate feature selec-

tion methods evaluate the information content of subsets of features by considering

the relationships between the features. However, such methods work in a large search

space of all possible combinations of features making them computationally infeasi-

ble. This problem is addressed by heuristic selection techniques, e.g., scoring a voxel

by training a classifier in a local neighborhood [23] or by adding one feature at a time

to the feature set [22].

In our work, we explore the use of classification methods in the context of an

event related functional neuroimaging experiment where participants viewed images



of scenes and predicted whether they would remember each scene in a post-scan

recognition-memory test. We train support vector machines on functional data to

predict participants' performance in the recognition test and compared the classifier's

performance with participants' subjective predictions. We show that the classifier

achieves better than random predictions and the average accuracy is close to that of

the subject's own prediction.



Chapter 3

Methods

Here we describe the computational steps of the analysis, including feature extrac-

tion, classification and feature selection. We first present the GLM-based feature

extraction method, which increases the classification accuracy by extracting the sig-

nal related to experimental conditions. We continue by reviewing support vector

machines and presenting the equations for training a weighted linear support vec-

tor machine. Afterwards, we review previous work in feature selection and present

two feature selection methods: a univariate method based on the t-statistic and a

multivariate method based on SVM. In the last section of this chapter, we describe

the experimental evaluation procedure we employed to assess the effectiveness of the

classification system.

3.1 Feature Extraction

Let y(v) be the fMRI signal of Nt time points measured at a spatial location v, X

be the matrix of regressors, P(v) be the coefficients for regressors in the columns of

X. and N, be the total number of stimulus onsets. The general linear model [20]

explains y(v) in terms of a linear combination of regression variables /(v):

y(v) = X3(v) + e, (3.1)



where e is i.i.d. white Gaussian noise. The matrix X is called the design matrix and

contains both the desired effect and the confounds. The effects of interests correspond

to the first N, columns of X and is obtained by convolving the hemodynamic response

function with a reference vector which indicates the onset of a particular stimulus.

We use a commonly used standard hemodynamic response function which resembles

a gamma function peaking around five seconds [30]. The remaining columns of X

consist of nuisance regressors and account for the confound effects. These include

linear detrending parameters which are intended to remove artifacts due to signal

drift in fMRI. We also include motion regressors which account for the variation

caused by the subject movement between slice acquisitions. These motion regressors

are the rigid body transformation parameters estimated in the realignment step of

data pre-processing.

The solution is obtained by the maximum likelihood estimate

/(v) = X(XTX)-lXTy(v) (3.2)

which also corresponds to the least-squares solution. We obtain a GLM-beta map by

combining i'th elements of /(v) over all spatial locations v into a vector /i, which

represents the spatial distribution of activations for the i'th stimulus. Oi contains Nv

elements, one for each voxel in the original fMRI scan. We use this GLM-beta map

Oi as input to the classifier.

3.2 Weighted SVM

Support vector machine (SVM) as introduced by Vapnik [52] is a machine learn-

ing algorithm to solve classification problems. An SVM classifier finds a hyperplane

maximizing the margin between positive and negative examples while simultaneously

minimizing misclassification errors in the training set. SVM classifiers generalize well

and has been observed to outperform other classification methods in practical prob-

lems. Theoretical arguments based on VC-dimension has been made to explain its



generalization ability [52]. The motivation behind maximizing the margin between

the example classes is that the classifier will generalize well if both classes are max-

imally distant from the separating hyperplane. Usually, SVMs are explained using

geometrical arguments. A margin is defined as the distance from the examples to

a linear separating hyperplane and the problem is formalized as maximizing the ge-

ometrical margin [5]. In this thesis, we derive SVMs as an instance of a general

regularization framework known as Tikhonov regularization [29].

Let M be the number of examples (xl, yl) ... , (XM, YM) where xi E R n and yi E

{1, -1}. A general regularization framework for classification problems can be given

as
M

min V(f(xi), Yi) + 1A I 112  (3.3)
i=1

where V is a loss function for penalizing misclassifications in the training set, A is a

regularization parameter to trade off between small norm classification functions and

the loss in the training set. Ilfll is the norm measured in a Reproducing Kernel

Hilbert Space [2] defined by a positive definite kernel function K.

In this formulation different learning algorithms can be obtained with different

choices of V. The classical SVM [52] can be obtained by choosing V to be the hinge

loss function

V(f(x), y) - (1 - yf(x))+, (3.4)

where (k)+ -- max(k, 0).

Hinge loss function makes the classifier pay a linear penalty when yf(x) is less than

one. This penalty will lead to a reasonable classifier since to avoid a high penalty,

f (xi) should be a large and positive number when yi = 1 and it should be a large and

negative number when yi = -1. To obtain the classical formulation of SVM, we move

the constant A in the regularization equation (3.3) to the first term in the equation



and replace the function V with the hinge loss function.

M

min C (1- yif(xz))+ + -1f 1K (3.5)
i=1

The hinge loss function is a nonlinear function making the minimization problem

difficult to deal with directly. If we introduce slack variables (i we can obtain an

easier minimization problem with linear constraints

M

min C 2i + IfK (3.6)
i=1

subject to: yif (xi) > 1 -i i = ... , M

(i > 0 i = 1, ... ,M.

By the Representer Theorem [48] the solution f* can be shown to have the form

M

f*(x) = E ciK(x, xi) (3.7)
i=1

where K(x, xi) is the inner product between the vectors x and xi in the Reproducing

Kernel Hilbert Space [2] defined by the positive definite kernel function K. In the

standard SVM formulation a bias term b, which is not subject to regularization, is

added to f* to give the form of the solution

M

f*(x) = E ciK(x, xi) + b. (3.8)
i=1

In order to find f* it is sufficient to find the coefficients ci and the bias term b. Sub-

stituting the expression for f* into the SVM optimization problem in equation (3.6)

and defining Kij = K(xi, xj), we obtain a quadratic programming problem with linear



constraints:

M

min C E i + cTKc (3.9)
c*,b*,* 2

i=1

M

subject to: yi E cjK(xi, xj) > 1 - •i 1,...: M
j=1

> 0 i= 1...M.

The solution to the previous equation can be obtained by using standard quadratic

programming solvers. However, this equation has a dense inequality structure. There-

fore, usually the dual of this quadratic programming problem solved. The dual prob-

lem is also a quadratic problem, however it has a simple set of box constraints and is

easier to solve. We omit the derivation of the dual problem and direct the interested

readers to the tutorial [5]. In a method called Sequential Minimal Optimization [46],

a fast solution to the dual problem can be obtained by solving subproblems consisting

of two examples, each of which can be solved analytically. In our experiments we use

an SVM package based on this principle [9].

As we work with unbalanced data sets, it is desirable to impose different penalties

for misclassification of samples in different groups. Using a penalty term C+ for the

positive class, and C_ for the negative class the SVM problem can be modified to

give
M M

min EC (1- f(xi)) + C-_ (1 + f(xi))+ + - fl . (3.10)
yi=1 yi=-1

Since our data sets contain small number of examples and high dimensional fea-

tures we use a linear kernel SVM in order to avoid overfitting the training dataset.

The linear kernel K(x, xi) = xTxi leads to a discriminative function of the form

f*(x) = wTx + b. (3.11)

Substituting this expression for f in equation (3.6) and combining with different

class weights in equation (3.10) we obtain the equations for the weighted SVM with



linear kernel [15].

M 
M

min C+ + C_ ( + 1w w (3.12)
w*,b*,(* 2

yi=l yi=-1

subject to: yi(wTxi + b) > 1- i= 1,...,

i Ž 0 i= 1....M.

The resulting classifier predicts the hidden label of a new example x based on the

sign of (w*Tx + b*).

3.3 Feature Selection

The performance of a classifier depends significantly on the number of available ex-

amples, number of features and complexity of the classifier. A typical fMRI dataset

contains far more features than the examples. In our dataset number of features are

on the order of tens of thousands while the number of training examples are on the

order of hundreds. Furthermore, many of the features may be irrelevant however they

are still included in the dataset because of the lack of sufficient knowledge about the

information content of voxels. The high dimensionality of the features in an fMRI

dataset makes the classification task a difficult problem because of an effect called

the curse of dimensionality [4]. In other words the number of training examples re-

quired to estimate the parameters of a function grows exponentially with the number

of features. The number of parameters of the classifier increases as the number of

features increases. As a result, the accuracy of the estimated parameters decrease,

which usually leads to poor classification performance.

The main motivation for using feature selection is to improve the classification

accuracy by reducing the size of the feature set. The goal is to find a subset of features

that leads to best classification performance. Irrelevant and redundant features in a

dataset may decrease the classification performance as the classifier can easily overfit

the data. The removal of these irrelevant features results in a smaller size dataset



which usually yields better classification accuracy than the original dataset. In other

words, feature selection is a dimensionality reduction technique aimed at improving

the classification accuracy. However, in contrast to other dimensionality reduction

techniques, e.g. principle component analysis (PCA) [38], feature selection does not

modify the input variables. Therefore, the resulting feature set is easy to interpret.

In addition, the classifier runs faster as the size of the dataset is reduced.

A feature selection algorithm searches the space of all possible subsets of features

to find the informative ones. However, an exhaustive search is intractable as the

number of possible feature subsets grows exponentially in the number of features.

Therefore, feature selection algorithms employ heuristics to search for informative

subsets. Depending on the search heuristics, feature selection methods can be cat-

egorized into three broad categories: filter methods, wrapper methods and embedded

methods. For an in depth analysis and categorization of feature selection methods we

refer the readers to [31, 41, 47].

Filter methods for feature selection use intrinsic properties of data to rank the

relevance of features. These methods compute a relevance score for each feature. A

subset is selected by sorting the features and removing the features scoring below a

threshold. The resulting subset of features are used as an input to a classifier. In

filter methods, the relevance scores do not depend on the classifier. Therefore, this

feature selection method can be combined with any classification algorithm.

Most of the filter methods are univariate where a relevance score is computed

based on information from individual features. This results in methods which are

fast and scale well with high dimensional datasets. Some of the most commonly used

examples for univariate filter methods for features selection are the t-test, Wilcoxon

rank sum and random permutation [49].

One of the main drawbacks of univariate feature selection methods is that the

feature dependencies are not modeled since the methods are based on statistical tests

on individual features. Multivariate feature selection methods address this problem

by incorporating feature correlations into feature ranking methods. One example

of multivariate feature selection method is the Correlation-based Feature Selection



(CFS) [33], which gives higher scores to features highly correlated with the class and

uncorrelated with each other. In CFS, feature dependencies are modeled with first

order correlations and the method weights features by these correlations.

In wrapper methods the feature selection is performed in interaction with the

classifier. Wrapper methods improve the filter methods by considering the interaction

between the feature selection and the classification. A classifier is trained on a subset

of features and the accuracy of the classifier is evaluated usually in a cross-validation

setting. To search for the best subset of features a search algorithm is wrapped around

the classification model. In contrast to the filter methods, in wrapper methods the

resulting subset of features is dependent on the classification model. This approach

offers benefits because it takes into account the classification model and models the

dependencies between the features. In wrapper methods, the two main heuristics

used to search for the best subset of features are the sequential and the randomized

approaches.

In sequential algorithms [1], the search starts either with all features or an empty

sets and at each step of the algorithm one feature is added or removed from the

working set. In sequential backward elimination, the search starts with all features

and features are removed one-by-one. At each step of the algorithm, the feature

which decreases the classification performance least is removed from the working set.

The classification performance of a set of features is evaluated by employing a cross-

validation procedure. Similarly, in sequential forward selection the search starts with

an empty feature set and at each step the feature increasing the classification accuracy

the most in combination with previously selected features is added to the working set

of features.

In randomized search algorithms, the search starts from a random subset of fea-

tures and continues by randomized updates of the feature set. Search methods based

on simulated annealing and hill climbing are used in randomized feature selection

methods. Another randomized approach [51] is based on genetic algorithm aiming to

alleviate the local maxima problem of hill climbing methods. Instead of working with

one feature set, a population of subset of features is maintained. This population of



1. Split the training dataset into n subsets
2. Let ci be the threshold corresponding to number of features i = (1,... N,).
3. Loop over i's

a. Apply the threshold ci and evaluate leave-one-out cross-validation
accuracy by training and testing a linear SVM.

3. Choose the best threshold cmax, which corresponds to maximum cross-
validation accuracy

Figure 3-1: Threshold selection procedure used for feature selection based on the
t-statistics.

solutions is modified stochastically to obtain a final solution which satisfies a fitness

measure.

In the third type of feature selection category, embedded methods, feature selection

methods directly use the parameters of classifier rather than using the classifier as

a black box to estimate the classification accuracy. Generally, an objective function

consisting of two competing terms is optimized. A data-fitness term is maximized

while the number of features are minimized [31]. Because of the close interaction

with the classifier embedded methods are computationally less demanding than the

wrapper methods.

In our experiments we employ two different feature selection strategies and com-

pare their performances. The first method ranks the features according to their

t-statistics. This method lies somewhere in between filter and wrapper methods,

as we use a statistical test on individual features and find the threshold through

cross-validation. The second feature selection method we use is an embedded feature

selection method based on SVM's. We explain these methods more in detail in the

following sections.



3.3.1 Feature Selection based on t-statistics

Let L = {11, ... , lNs} be a vector denoting the class label of each stimulus, 4 E {1, -1}.

The t-statistic t(v) for voxel v,

t(v) = Al (v) - IL 1 (v) (3.13)
/_) + ±' 21(v) (

nl n-1

is a function of nz(v), ,l(v) and a2 (v), l = -1, 1. nzi(v) is the number of stimuli with

label 1. [j(v) and oa2(v) are, respectively, the mean and the variance of the components

of 3(v) corresponding to stimuli with label 1. A threshold is applied to the t-statistic

to obtain an informative subset of coefficients that we denote P. An important point

in this feature selection step is how to choose the threshold. A fixed threshold across

all subjects can be used; however, the value of the threshold has a significant effect

on the classification accuracy. A low threshold will select too many features including

the noisy ones and a high threshold will possibly discard informative features. In

both cases, the threshold will have a negative effect on the classification accuracy.

We aim to choose a threshold value which maximizes the classification accuracy. To

achieve this we estimate the classification accuracy corresponding to a particular value

of threshold by employing a cross-validation procedure within the training set. We

evaluate a range of threshold values and choose the threshold value corresponding

to maximum cross-validation accuracy. Figure 3-1 summarizes the procedure for

selecting the threshold.

3.3.2 SVM-based Feature Selection

Guyon et al. [32] propose a feature selection method called SVM recursive feature

elimination (SVM-RFE). The method is based on the observation that the weights

of a linear kernel SVM classifier can be used as a feature ranking method. The

authors propose a multivariate feature selection algorithm which employs a sequential

backward elimination method. At each step of the algorithm a linear kernel SVM as

in equation (3.11) is trained on the training set and the square of the linear decision



1. Initialize the feature set to all features V = {1,..., N,}
2. Let Nmax be the number of features corresponding to maximum cross-

validation accuracy within the training set
3. Repeat until there are Nmax features left in V

a. Train the linear SVM in equation (3.12) with features in V
b. Rank the features in V according to the weights of the linear classifier

in equation (3.11): weight, = wi

c. Remove the feature with the lowest weight from the feature set.

Figure 3-2: The procedure for the SVM-based feature selection.

boundary coefficients w? are used to rank the features. After each iteration the least

discriminative feature is removed. After removal of each feature the feature ranks

are updated. The authors of this algorithm [32] show that re-training the SVM after

each iteration increases the accuracy of the feature selection algorithm. In figure 3-2

we briefly summarize this algorithm. To find the number of features to be included

in the final feature set we employ a cross-validation procedure within the training set

similar to the procedure in figure 3-1.

3.4 Evaluation Methods

To evaluate the performance of our training scheme we construct the ROC curves. We

also identify the point on the ROC curve that corresponds to the smallest probability

of error. We report the classification accuracy of that point, which we call min-error

classification accuracy.

We employ a cross-validation scheme to train and test the classifier. In all of the

experiments, each subject participated in five runs of the experiment. We hold out

one of the functional runs, train the classifier on the remaining runs and test it on

the hold-out run. We obtain the ROC curves by training the SVM classifier using

varying weights for the class penalties C+ and C_ in equation (3.12) and averaging

the testing accuracy across runs. The values of C+ and C_ are equally spaced on a log

scale where the ratio of penalties vary between 10-i and 105. To choose the threshold



value in the feature selection step we further divide the training set into five folds.

We evaluate a range of threshold values and select the threshold value corresponding

to maximum cross-validation accuracy within the training set.

To visualize the voxels selected by the feature selection algorithm and to evaluate

the consistency of selected features we compute feature overlap maps. To create a

feature overlap map, we perform feature selection on each functional run and com-

pute how often each voxel was included across all runs, essentially quantifying the

overlap among features selected for each run. We show feature overlap maps for the

experiments and investigate whether the repeatability of features affects the classifi-

cation accuracy. To compare between feature overlap maps we show histograms of

the consistently included voxels. In histograms we plot the number of voxels included

in 100%, 80% and 60% of the functional runs.

We use two data sets in our experiments, where we validate our method on a simple

motor task and evaluate it on the more challenging memory encoding task. In the

motor task experiments, we demonstrate the benefit of feature selection by comparing

our method to a setting where we train the linear classifier described in Section (3.2)

on all features. We compare the ROC curves and the min-error classification accuracy

of both settings.

For memory encoding experiments, we have two labels for each stimulus avail-

able to us: the actual remember-forget labels and the subject's prediction of the

performance. We evaluate the accuracy of the classifier by comparing it to subject's

prediction accuracy. We explore the memory encoding data set by varying different

components of the system: training strategy, size of the training set, the amount of

smoothing and the feature selection method.

In the first memory encoding experiment, we employ three different training strate-

gies which aim to explore the challenging nature of the experiment. The first strategy

corresponds to the standard training setup. We perform feature selection on the train-

ing set only, train the classifier on all samples in the training set and evaluate the

accuracy on the test set. The second strategy restricts the training set to samples

where the subject's prediction is correct. One of the main challenges in our experimen-



tal design is to obtain correct labels for the samples as we rely on subject's response

for the actual memory encoding. With the second setup we aim to improve reliability

of training samples by requiring the predicted and the actual labels to agree. For the

third strategy, we perform feature selection using both the training and test sets while

still training the classifier on samples in the training set. This setup is impractical

since in real applications we do not have access to test data. However, it serves as an

indicator of the best accuracy we could hope to achieve.

In the second set of experiments we analyze the effect of the training set size on

the classification performance by plotting learning curves. We obtain a learning curve

by training the classifier on varying size of the training set where we control the size of

the training set by randomly sampling examples from the dataset. After performing

hundred repetitions we obtain an average accuracy, which is computed as a mean of

the prediction rate on the positive and the negative examples.

In the next experiment on the memory encoding task, we investigate the effect of

spatial smoothing on the classification accuracy. We construct the ROC curves and

the feature overlap maps corresponding to the settings where we spatially smooth the

data and skip spatial smoothing in the pre-processing step.

In the last experiment we compare the performance of three different feature selec-

tion methods. We use univariate feature selection method based on t-test explained

in section (3.3.1) as the first feature selection method. For the second feature se-

lection method we use the SVM-based multi-variate method which is explained in

section (3.3.2). For the memory encoding task we were provided with a ROI map

which the neuroscientists acquired by combining the results of three different popu-

lation studies. As the third feature selection method we use this ROI map which we

call an expert map.





Chapter 4

Experimental Evaluation

4.1 fMRI Experiments and Data

fMRI scans were acquired using a 3T Siemens scanner. Functional images were ac-

quired using T2-weighted imaging (repetition time=2s, echo time=30s, 64 x 64 x 32

voxels, 3mm in-plane resolution, 4mm slice thickness). 1,500 MR-images were col-

lected in five functional runs, each run 10 minutes long. Statistical Parametric Map-

ping (SPM5) [20] was used to perform motion correction using 6-parameter rigid body

registration of images to the mean intensity image and smoothing with a Gaussian

filter (FWHM=8mm) to decrease the effects of motion artifacts and scanner noise.

In the memory encoding task, 10 participants with normal visual acuity were

scanned. Five hundred pictures of indoor and outdoor scenes were used and randomly

divided into ten lists of 50 pictures. Five lists were presented during the scan and

the subjects were scanned in five functional runs as they studied 50 pictures in each

run. Each picture was presented for three seconds with a nine second rest interval

and participants were instructed to memorize the scenes for a later memory test. For

each picture, participants predicted whether they would remember or forget it, by

pressing a response button. Following the scan participants were given a recognition

test where all 500 pictures were presented, including the 250 images not shown before.

The participants judged whether they had seen the picture during the scan. In our

classification experiments, we used participants' responses in the recognition test to



derive the binary labels and their predictions during the scan as a benchmark for our

classifier.

In the motor task, another 10 subjects were scanned, using the same setup and

acquisition parameters as in the memory encoding task with the only difference that

the subject's prediction was acquired using two buttons. Subjects were instructed to

press the left button using their left hand if they thought they would remember the

presented picture and press the right button using their right hand otherwise. In the

motor task experiments, we use this data set to train the classifier to predict which

hand was used to press the button.

4.2 Motor Task

We first evaluate the method on the motor task and then present the results for the

memory encoding experiment. Figure 4-1 shows the ROC curves for the motor task

for each subject in the study. Blue curves correspond to the setting where we train the

classifier using the univariate feature selection method described in Section (3.3.1).

We note that ROC curves are close to ideal, achieving high positive detection rates

at relatively small false alarm rates. The ROC curves corresponding to training the

classifier on all features are shown in red. Red curves are consistently lower than

the blue curves which clearly indicates that performing feature selection increases the

classification performance.

In figure 4-1 we identify the point on the ROC curve that corresponds to the

smallest probability of error and we highlight that point in circles for each subject.

In figure 4-2(a) we report the classification accuracy of these points, which we call

min-error classification accuracy. We observe that the classifier achieves highly accu-

rate results, the min-error classification accuracy is over 90% for the majority of the

subjects. This is in agreement with previously reported results for motor tasks [24].

To demonstrate the benefit of feature selection, figure 4-2(b) shows the histogram of

the difference in the min-error classification accuracy between using feature selection

and training the classifier on all features. We observe for the majority of the runs
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Figure 4-1: ROC curves for the motor task for 10 subjects. Red curves correspond to
training the classifier on all features. Blue curves correspond to training the classifier
using feature selection. Circles show the operating points corresponding to min-error
classification accuracy.

1• 20 3• 40 5 6*3 70 60' 9 10

---------------------

PF



100
95

> 90U

85

u 80

h 75

L. 70

!65

60
55

50

1 2 3 4 5 6 7 8 9 10

Subject

(a) Min-error accuracy

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Percentage difference
(b) Histogram of the increase in classification accuracy

Figure 4-2: (a) Min-error classification accuracy for the motor task for 10 subjects. (b)
The histogram of the increase in classification accuracy when using feature selection.
The horizontal axis shows the percentage difference in the min-error classification
accuracy between using feature selection and training the classifier on all features.
The area under the curve equals to the total number of functional runs in the data
set, five runs for 10 subjects.

N Train on all
Features

* Train using
Feature Selection

V
L

1



(a) Best performing subject

(b) Worst performing subject

x
0

E
z zzjzi7flhI

Worst
performing
subject

n Best
performing
subject

100 80

Percentage overlap across functional runs

(c) Histogram of the consistently included voxels

Figure 4-3: Feature overlap maps for the best (a) and the worst (b) performing
subjects for the motor task. For all five functional runs feature selection is performed
on each run. The color indicates the number of runs in which a voxel was selected.
I)ark red color shows the voxels selected only in one run and white color displays
voxels selected in all runs. The histogram (c) shows the number of consistent voxels
for the best (dark-gray) and the worst (light-gray) performing subjects. The number
of voxels included in 100%, 80% and 60% of the functional runs are shown.
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feature selection significantly improves the classification accuracy.

The feature overlap maps in figure 4-3 shed light on the success of using feature

selection in this setting. The feature overlap maps show that the most consistently

included features reside mostly in the motor cortex. This is in accordance with our

previous knowledge that the motor cortex area of the brain is heavily involved in this

motor task. The increase in the classification accuracy when we use feature selection

can be explained by the removal of noisy voxels which would otherwise degrade the

performance of the classifier.

An interesting question is whether the consistency of included features is affecting

the classification accuracy. The comparison of feature overlap maps for the best

performing and the worst performing subject in figure 4-3(c) indicates that there is

less repeatability of features in the case of the worst performing subject. This is to

be expected as a decrease in the signal to noise ratio in the observed signal leads

to less consistent voxels across runs. We also note that although the motor cortical

regions are consistently included across runs, for both subjects in the figure 4-3 the

majority of features are colored in red, indicating a low volume of overlap across runs.

However, the classifier still achieves accurate results which can be explained by the

redundancy of these features.

4.3 Memory Task

In the first memory encoding experiment, we compare the performance of three differ-

ent training strategies. We show the ROC curves in figure 4-4 for all three strategies

for training a classifier described in Sec 3.4. The first strategy (blue) corresponds

to the standard setting where we perform feature selection on the training set only,

train the classifier on all samples in the training set and evaluate the accuracy on the

test set. We note that the ROC curves of the classifier are better than random and

are close but lower than the subject's own predictions. For the second strategy (red),

we restrict the training set to examples correctly predicted by the subject while still

testing the classifier on all examples. With this setting we aim to improve the reliabil-
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Figure 4-5: Min-error classification accuracy for the memory task for 10 subjects.

ity of training samples by requiring the predicted and the actual labels to agree. We

note that the curves improve slightly and are closer to subject's own predictions. For

the third strategy (green), we perform feature selection using both the training and

the test sets while still training the classifier on examples in the training set. As ex-

pected, the ROC curves are much higher, even surpassing subject's own predictions.

However, we note that even in this impractical setting where we use the test set for

feature selection, the ROC curves are far from perfect, indicating the high level of

noise present in the observations and the labels. We expect that the inclusion of test

set in feature selection results in a strong bias in the test prediction results. However,

we note that if the training and the test sets are less redundant with high overlap

of selected features, the prediction accuracy of this impractical setting gets closer to

the first two strategies. This explains why the gap between the green and the other

curves decreases as we go down in figure 4-4.

Figure 4-5 shows the min-error classification accuracy for the memory encoding

task. A statistical comparison between the min-error accuracy of the first (blue)

and second (red) strategy reveals a significant difference (single-sided, paired T-test,

P < 0.05). This observation confirms that the samples whose labels are correctly pre-

__ _IM I

-

I
·!

..... .....t ... .

-



(a) Best performing subject

(b) Worst performing subject

OIUU

A 700

X 600
o
> 500

*a-

o 400

. 300

E 200
Z 100 o IMI~gi

100 80 60

Percentage overlap across functional runs

(c) Histogram of the consistently included voxels
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dicted by the subject indeed provide more reliable samples for training the classifier.

Although the ROC curves were mostly below the subject's prediction, the min-error

accuracy of the classifier is very close to, and sometimes better than the subject's

own predictions. We note that the highly uneven frequencies of the two labels sig-

nificantly affect the min-error classification accuracy. In our data set, the class sizes

are unbalanced by a factor of about three-to-one as subjects remember pictures more

often than they forget them. As a result, the operating points that correspond to

min-error accuracy for the classifier occur at higher false alarm rates than those of

subject's predictions. The classifier is more biased toward predicting the "remember"

class, which increases the min-error accuracy by weighting the high false alarm rate

with the relatively low probability of the "forget" class. In addition, we observe that

the ratio of class penalties C+ to C_ in equation (3.12) at these operating points ap-

proximately corresponds to the ratio of number of examples in the two experimental

conditions.

The feature maps in figure 4-6 provide an insight into the performance of the

classifier in the memory encoding experiment. Figure 4-6 shows these feature overlap

maps for the subject with the best ROC curves and the subject with the worst ROC

curves. We note that most included voxels for the worst subject only appear in one

of the runs and almost uniformly spread across the whole brain indicating high level

of noise in the data. Such unreliable features and noisy activation patterns lead to

poor generalization performance of the classifier. On the other hand, the map for

the best subject includes contiguous regions that are present in most of the runs. We

observe a consistent spatial activation pattern across runs. The histogram in figure 4-

6 supports our visual inspection of the feature overlap maps. The histogram shows

that the feature overlap map corresponding to the best performing subject contains

more consistent features which explains the relatively high accuracy of the classifier.

A valid to question to ask is why in the memory encoding task the classifier fails

to achieve as high prediction accuracy as in the motor task. If we compare the feature

overlap maps of memory encoding task in figure 4-6 to the maps of the motor task

in figure 4-3, we observe that the memory encoding task does not have as highly



consistent features as the features residing in motor cortex area of the brain in the

motor task. A comparison of the histograms in figure 4-6(c) and in figure 4-3(c) shows

that the number of consistent voxels in the motor task surpasses that of the memory

task, especially the number of voxels included in more than 80% of the runs. These

observations indicate that the complexity of the experimental design and the mental

process of interest significantly affect the classification performance.

4.3.1 Effects of the Training Set Size

In the second memory encoding task experiment we analyzed the effect of the size of

the training set on the classification accuracy. Figure 4-7 shows the learning curves

for all subjects. Ideally, we would like to see learning curves which are steep and

leveling off at higher proportions of the training set. For subjects performing well

on the experiments (subject 9&10) we observe that as more examples are included

in the training set the accuracy of the classifier first increases and then levels off.

The increase in the accuracy indicates that the estimation of the decision boundary

gets more accurate as more examples are included in training. The learning curve

levels off at higher training set sizes, which serves as an indicator of the amount of

information available in the data set. Even if more examples were included in the

data set the performance of the classifier would not improve significantly. For most

of the subjects we observe that the learning curves are slightly increasing and the

curves do not level off. This indicates that obtaining larger data set would improve

the classification accuracy. Another interesting point is that the variation of the

learning curves increase as we include more examples in the training set. This is to

be expected as more examples are included in the training set, the size of the test set

decreases, therefore the estimate of the test accuracy gets poorer.

4.3.2 Effects of Spatial Smoothing

In the third experiment on the memory encoding task, we investigate the effect of

spatial smoothing on the classification accuracy. Figure 4-8 shows the ROC curves
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(a) Smoothing

(b) Not smoothing

Figure 4-9: Feature overlap maps corresponding to smoothed data (a) and not
smoothed data (b) for the best performing subject for the memory task.



and the feature overlap maps corresponding to smoothing and not smoothing the data.

When we inspect the ROC curves we note that both blue (smoothing) and red (not

smoothing) curves closely follow each other. The classification accuracy does not

seem to be affected by smoothing. However, when we look at the feature overlap

maps in figure 4-8(b) we observe that the features selected are significantly affected

by smoothing. If we smooth the data selected features look spatially consistent. If

we do not smooth the data the feature overlap maps look like salt and pepper type

of noise. However, the noisiness of the feature overlap maps in case of not smoothing

the data does not lead to poor accuracy, indicating that some of the consistently

included voxels are highly informative. We also note that the consistent features in

4-8(b) spatially correspond to the consistent regions in 4-8(a) where the extent of

the regions in 4-8(b) is much smaller. This is to be expected as smoothing averages

the signal in neighboring voxels.

4.3.3 Feature Selection Effects

In our last experiment on the memory encoding task, we explore the utility of different

feature selection methods. Figure 4-10 shows the results of using three different

feature selection methods: t-test (blue), SVM-based (red) and an expert map provided

by neuroscientists (green). From the ROC curves in figure 4-10 we note that all

three feature selection methods performs comparably well. We do not observe any

significant difference between the univariate t-test and the multivariate SVM-based

feature selection. The feature selection method based on the expert map seems to

perform slightly better than the two other methods. This expert map summarizes

the results of three different population studies on memory encoding and serves as

a reliable feature selection mask. When we investigate the min-error accuracy in

figure 4-11 we observe that the performance of all methods are very close to each

other where the expert map does slightly better than the other two methods.

Figure 4-12 shows the feature overlap maps for the three feature selection strate-

gies. The expert map on the bottom highlights significant areas in subcortical regions

and prefrontal cortex, which are involved in memory encoding and attention [40]. The
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Figure 4-10: ROC curves for different feature selection methods for the memory task.
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Figure 4-11: Min-error classification accuracy for different feature selection methods
for the memory task.

regions are smooth and continuous as this map is obtained using a larger collection of

data sets. If we compare the feature overlap map of the t-test to the expert map, we

observe that some part of the prefrontal cortex is included in the feature set, however

the subcortical regions are mostly missing. This happens because the feature selection

based on the t-test is performed using only single subject data whereas the expert map

is obtained on a population of subjects. We also note that some voxels in the visual

cortex are included in the feature overlap map of the t-test while they are not included

in the expert map. The memory encoding experiment involves the presentation of

pictures which leads to the inclusion of these voxels due to high activity in the visual

cortex. The feature overlap map corresponding to SVM-based feature selection shows

less consistent features than the t-test. However, the consistent features, especially

in the prefrontal cortex, spatially correspond to the features included in the t-test.

The feature overlap map of the SVM-based feature selection hardly corresponds to

the features included in the expert map. However, the classification accuracy of the

method is very close to the t-test. Considering that the features are highly corre-

lated because of smoothing, neighboring voxels can be removed without significantly
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(a) Feature selection based on the t-statistics

(b) SVM-based feature selection

(c) Expert Map

Figure 4-12: Feature overlap maps for different feature selection methods: t-test (a),
SVM-based feature selection (b) and expert map (c). A fixed threshold was applied
to the expert map.



affecting the classification accuracy. This suggests that in case of SVM-based feature

selection relatively few number of consistent features leads to a comparable accuracy.

4.4 Summary

In the motor task experiments, we validated our method by demonstrating an average

prediction accuracy of over 90%. We compared feature selection to training the

classifier on all features and showed that feature selection significantly improves the

classification accuracy by removing redundant features. Through the inspection of

feature overlap maps we observed that consistent features across runs lead to higher

prediction rates.

In the memory encoding task experiments we explored the challenging nature of

the experiment by varying different components of the system: training strategy, size

of the training set, the amount of smoothing and the feature selection method. In the

training strategy experiments, we showed that the classifier achieves a classification

performance close to subject's own predictions. We showed that the classification

accuracy can be increased by training the classifier on reliable examples determined

using the subject's predictions. Even if we included the test in the feature selection

step we could not achieve perfect classification accuracy. Essentially, we highlighted

the challenging nature of the experiment.

In the experiments where we investigated the effect of the training size on the

classification accuracy, we observed that increasing the size of the training set im-

proves the classification accuracy, indicating the utility of large data sets. However,

in some cases including more examples does not significantly improve the classifica-

tion accuracy, which again points to the difficulty of the memory encoding problem.

In the smoothing experiments, we noted that smoothing increases the consistency of

selected features without significantly affecting the classification accuracy. We exper-

imented with univariate and multivariate feature selection methods. Although, the

multivariate feature selection method based on the SVM results in a different set of

features than the univariate method, we did not notice any significant difference in



the performance of both methods.



Chapter 5

Conclusion

In this thesis, we trained classifiers on fMRI data to predict the cognitive state of a

subject from distributed activation patterns in the brain. We investigated the utility

of feature selection methods in improving the prediction accuracy of classifiers.

We used a classification method consisting of feature extraction, feature selection

and classification parts. We employed a general linear model for feature extraction to

reliably estimate the signal related to experimental conditions. We used univariate

and multivariate feature selection methods to decrease the dimensionality of the data

and to increase the classification accuracy. We trained a weighted linear support

vector machine, which imposes different penalties for misclassification of samples in

different groups.

We evaluated our method on two different experimental settings: a memory en-

coding task and a motor task. We validated our tool on the simple motor task where

we demonstrated an average prediction accuracy of over 90%. We observed that

feature selection significantly helps to improve the classifier's prediction accuracy.

We evaluated our method on a memory encoding task where participants viewed

images of scenes and predicted whether they would remember each in a post-scan

recognition-memory test. We used participants' subjective prediction about learning

as a benchmark for our classifier. We showed that the classifier achieves better than

random predictions and its average prediction accuracy is close to the subject's own

prediction performance.



In addition, the comparison of the results between the motor and the memory

encoding task indicates that the classifier performance depends significantly on the

complexity of the experimental design and the mental process of interest. Our ex-

periments indicate that the complexity of the experimental design and the mental

process of interest significantly affects the classification performance.

We also discussed practical issues arising in training a classifier on fMRI data.

We handled unbalanced data sets by using an SVM classifier which imposes different

penalties for misclassification of samples in different groups. To find the number of

features used in classification we maximized the cross-validation accuracy within the

training set. In the memory encoding task we used subjects' responses in order to

obtain a reliable subset of training examples.

In conclusion, in this thesis we applied machine learning methods, such as pattern

recognition algorithms and feature selection methods, to the prediction of cognitive

states from distributed activation patterns in the brain and explored the utility of

these methods in the context of two event related functional neuroimaging experi-

ments.

Our results indicate that the classification accuracy depends significantly on the

experimental paradigm. This observation should inform the design of future memory

encoding experiments by emphasizing the importance of acquiring reliable labels. We

view the integration of data from multiple subjects both in feature selection and

classifier training as a promising direction for future reserch.
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