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Abstract
Millimeter wave transmission lines are integral components for many important applica-
tions like nuclear fusion and NMR spectroscopy. In low loss corrugated transmission
lines propagating the HE,1 mode with a high waveguide radius to wavelength ratio (a/X),
the transmission line loss is predominantly a result of mode conversion in components
such as miter bends. The theory for determining losses in miter bends though is only
approximate, and is based instead on the problem of the loss across a diameter-length gap
between two waveguide sections. Through simulation, we verified that the existing
analytic theory of this gap loss is correct; however, our simulations could not verify the
assumption that the miter bend loss is half the loss in the gap. We also considered the
problem of higher order modes (HOMs) mixed with an HE11 input entering the miter
bend. Using a numerical technique, we found that the loss through the miter bend is
dependent on both the amplitude of the HOM content as well as its phase relative to the
phase of the HE11 mode. While the overall loss averaged across all phases remains the
same with increasing HOM content, the power that fails to traverse the gap tends to
increase, and it is this power that appears as very high order modes that will cause
heating around the miter bend. For the ITER transmission line, the loss based on gap
theory is 0.027 dB and, using a coherent technique, we measured a loss of 0.05 + 0.02 dB
with a vector network analyzer (VNA). We also set out to measure the mode conversion
caused by a miter bend by using a 3-axis scanner system to measure the field patterns
within the ITER waveguide. Due to the presence of higher order modes output by the
HE I launcher, definitive results on the mode conversion attributed to the miter bend
could not be obtained. Using a phase retrieval code, we were able to calculate the mode
purity of the launcher output and found it to be 98 + 0.5 %. Future work will concentrate
on reducing this HOM content to enable measurements of the miter bend mode conver-
sion.

Thesis Supervisor: Richard J. Temkin
Title: Senior Research Scientist, Department of Physics
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Chapter 1

Introduction

At one time, the term "transmission line" would evoke no other image in one's mind

beyond the massive system of cables supplying electric power to homes and businesses

around the world. While these are still arguably the most common transmission lines,

new technologies are constantly being developed that require some sort of system to

transmit power from one location to another. There are a variety of ways to accomplish

this task, and the implementation differs greatly based on the frequency of the transmitted

power.

For direct current (DC) or low frequency AC applications like electric power trans-

mission, which operates at 50 or 60 Hz depending on the country, simple conducting

wires suffice for transmission lines. At higher frequencies, the conduction loss from

standard metal wire is much larger; therefore it is preferable to use an alternative like

coaxial cable. Coaxial cables are particularly applicable in the radio frequency (rf) range

up to a few GHz for applications such as television signals (which are typically a few

hundred MHz). In other fields, the maximum data rate that can be transmitted across the

transmission line is paramount. In these cases, fiber optics, which generally transmit a

modulated signal in the visible spectrum (several hundred THz), are usually the system of

choice.

Thus far there has been no discussion of the microwave region of the electromag-

netic spectrum which includes frequencies from approximately 300 MHz to 300 GHz.

The upper portion of this frequency range is also often referred to as the millimeter waves

region since wavelengths are on the scale of a few millimeters. Transmission of micro-

waves is usually accomplished by means of waveguides that, as the name would indicate,

guide electromagnetic waves within metallic or dielectric walls.



While we have known for a while of the benefits to using microwaves for various

applications, a lack of appropriate sources in the frequency range has left many of these

unexplored thus far. The most common source is the magnetron, which can be found in

any household microwave oven; however other sources are required to explore other

portions of the microwave spectrum at higher power levels. One such source is the

gyrotron, and research is constantly ongoing to push the output power and efficiency

higher for higher frequencies. There are many important applications in the microwave

frequency spectrum that require millimeter wave transmission lines and a brief descrip-

tion of a few of these applications follows.

1.1 Applications of Millimeter Wave Transmission Lines

1.1.1 Nuclear Fusion - Electron Cyclotron Heating

One major application for millimeter wave transmission lines, and perhaps one of the

most important, is nuclear fusion. In this day and age, with increasing worries about

global warming as a result of carbon emissions and the depletion of resources currently

used for energy production, nuclear fusion provides a bright alternative that does not

produce any unwanted carbon or radioactive byproducts and utilizes resources for which

there is an abundance. Though this all sounds well and good, the technology is not yet a

reality in terms of producing a commercially viable energy producing reactor due to the

engineering and physics challenges that still face the scientific community. This is where

the project now known simply as ITER comes in, as it attempts to bridge the gap between

a final commercial reactor and the current state of fusion research. A conceptual design

of the ITER tokamak is shown in Figure 1-1. The ITER project is an international

collaboration between the United States, Europe, China, Japan, South Korea, Russia, and

India. Each ITER member is responsible for supplying certain components and support-

ing ITER-relevant research efforts. In fact, much of the work in this thesis was in support

of the US ITER team, who are responsible for supplying many of the transmission lines

that will be required on ITER.



Figure 1-1: Proposed design for the ITER tokamak [1]

A nuclear fusion reaction involves the fusing of two small nuclei and results in a
heavier atom along with neutrons, protons, and energy, depending on the initial atoms. In
ITER, the reaction of choice will fuse two hydrogen isotopes, deuterium and tritium,
resulting in a helium atom, a neutron, and a large amount of energy. The difficulty in
harnessing sufficient power from this reaction stems from the fact that, at standard
temperature and pressure, the reaction is extremely rare. In order to increase the energy
output, it is necessary to increase the collision frequency between the reactants, which
can be accomplished by raising the temperature. This though is no easy task, since the
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ignition point, where the energy resulting from reactions is sufficient to maintain the

temperature, is in the realm of 100 million degrees Celsius. At such high temperatures,

the normally gaseous reactants exist as a plasma, a state of matter in which the electrons

are no longer bound to the nuclei.

Clearly, given the temperatures involved, plasma confinement is very important.

Luckily, this is made easier by the characteristics of the plasma since both species, the

ions and electrons, can be manipulated with electric and magnetic fields. There are

several proposed devices to confine the plasma, like the stellarator or inertial confinement

(ICF) based devices; however for ITER, the scientists and engineers based their design on

what is arguably the most popular and promising device: the tokamak. The tokamak, first

conceived in Russia during the 1950s, is a toroidal structure that confines the plasma

using a series of magnetic field coils around various cross-sections of the torus as well as

poloidal field coils to ensure the plasma remains well confined.

As mentioned previously, incredibly high temperatures are required for a fusion

plasma to attain ignition. In order for the plasma to reach such temperatures, a vast

amount of external heating is necessary. There are several ways to heat a plasma, each of

varying technological difficulty. One of the easiest ways to heat a plasma is Ohmic

heating. Ohmic heating simply involves inducing a current through the plasma which

results in heating due to the plasma's resistance. Ohmic heating however can not provide

a complete solution to the heating problem since the plasma resistivity decreases with

increased plasma temperature, and it is therefore ineffective beyond temperatures of

about 10 million degrees Celsius. Several auxiliary heating methods have been consid-

ered, such as neutral beam heating and ion cyclotron heating (ICH), however technical

challenges of each method have prevented them from being feasible options at this time

and have led to electron cyclotron heating (ECH) becoming the method of choice.

Electron cyclotron heating transfers energy to the plasma by means of cyclotron

damping, a mechanism sometimes referred to as collisionless damping. Cyclotron

damping involves the absorption of an electromagnetic wave's energy when the wave's

frequency is approximately equal to a resonant frequency of the particle. In the case of

ECH, the frequency of interest is the electron cyclotron frequency, which is defined as:



eB
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(1.1)

where e is the charge of an electron, me is the mass of an electron, B is the external

1
magnetic field strength, and y = . For ITER, this frequency is 170 GHz.
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Figure 1-2: Diagram of the design for the ITER electron cyclotron heating (ECH) system [2]

In order to reach ignition, auxiliary power levels on the scale of tens of megawatts

will be required. At one time, ECH did not appear very promising due to the lack of

available sources; however intense research in the gyrotron field has indicated that such

sources are now a reality. Various gyrotrons have demonstrated power outputs on the

order of 1 MW at 170 GHz with pulse lengths on the scale of minutes, pushing ever

closer to the design specifications laid out by the ITER team for the ECH system. The

ECH system on ITER currently calls for 24 1 MW gyrotrons, which should supply 20

MW of 170 GHz power to the plasma [3]. This is where the millimeter wave transmis-

sion lines come in since all the power must be transmitted from the gyrotrons to the

tokamak, which will be housed in a separate building. Figure 1-2 contains a diagram



showing the gyrotrons and transmission lines for the proposed ITER ECH system. The

ITER team has designed a transmission line that should minimize losses; however the

lack of a complete theoretical understanding of all transmission line components, along

with imperfections in gyrotron output beams and the high power levels involved create

some uncertainty.

Determining the losses to be expected in the transmission line is an important task to

ensure that the system meets ITER design specifications. As mentioned previously,

theoretical estimation of the line losses can be a difficult and imprecise task. In addition,

the size of the transmission line components relative to the wavelength of the power is

extremely large, making it impossible to solve the complete problem using most available

numerical simulation codes; therefore experimental testing of the transmission line

components is a necessary step to assure the ITER design team that the ECH system will

perform as expected. Several of the measurements to follow in this thesis will use this

ITER ECH prototype transmission line.

1.1.2 Plasma Diagnostics - Electron Cyclotron Emission

In the previous section, the ITER project was introduced along with the basic principles

of nuclear fusion. What have not been discussed thus far are the goals for ITER. The

first objective for ITER is to demonstrate a fusion plasma that reaches ignition. Another

way to state this objective is for the reactor to have a Q greater than one, meaning that the

energy output surpasses the energy input. This represents an important step in proving

the feasibility of a future commercial fusion reactor. The second objective for ITER is to

advance the knowledge in the field of plasma physics. It is this second objective that will

actually command the majority of ITER's run time.

When ITER is eventually constructed, it will not simply consist of walls, confine-

ment systems, and heating systems; it will also consist of a number of plasma diagnostics.

These plasma diagnostics are systems that are installed outside and within the tokamak's

vacuum chamber which have the ability to measure things like the temperature or density

profiles of the plasma. These profiles are very important to the scientists trying to learn

more about plasma behavior and the various instabilities that can arise during operation.



Within the plasma, the electrons move in a helical trajectory, spiraling around the

magnetic field lines with an angular frequency equivalent to the electron cyclotron

frequency, defined by Eqn (1.1). In the tokamak's toroidal configuration, the magnetic

field is not constant throughout the entire cross-section, varying along the path from the

inner wall to the outer wall. This variation in the magnetic field strength means that the

electron cyclotron frequency will also have a radial dependence. In the previous section,

electron cyclotron heating was discussed in which the electrons absorb energy at the

electron cyclotron frequency; however it should also be noted that electrons emit radia-

tion at this frequency, as well as its harmonics. This is known as electron cyclotron

emission (ECE), and plasma diagnostics can be designed to take advantage of this

phenomenon.

Figure 1-3: Typical electron cyclotron emission (ECE) diagnostic setup [4]

If a plasma is optically thick at the frequency of interest, meaning that nearly all the

energy of an electromagnetic wave that passes through is absorbed, the plasma will

radiate as a black-body source. For such a plasma, the intensity of the black-body

emission will depend only on the electron temperature [5]. ECE diagnostics are founded

on these aforementioned principles. A high directivity antenna receives the ECE micro-

wave radiation along a narrow line of sight that is generally chosen perpendicular to the

magnetic field lines. This power is coupled into a millimeter wave transmission which

transmits the power to a frequency resolving system. This final system will then decom-

pose the received power spectrum, of varying intensity across a frequency band, into a



physical result indicating the electron temperature profile along the cross-section. Thus

far, ECE diagnostics have proven to be an effective tool for retrieving electron tempera-

ture profiles [6].
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Figure 1-4: Schematic and photos of a 460 GHz gyrotron for nuclear magnetic resonance (NMR)

applications [7]

1.1.3 Spectroscopy - Nuclear Magnetic Resonance

In section 1.1.1, the gyrotron was introduced as a millimeter wave source capable of

producing MW outputs. Here, we explore another important application of the gyrotron:

nuclear magnetic resonance (NMR) spectroscopy.

NMR spectroscopy is an important tool to those in the chemistry, biological science,

and medical fields. NMR takes advantage of the quantum mechanical property of spin,

meaning that the nucleus has a non-zero magnetic moment. Commonly, NMR systems

take advantage of nuclei with a spin of one half such as protons ( H). In this case, the

nucleus can take on a spin state of either ½/2 or -1/2. The NMR signal is proportional to the

difference in the population between the N+ spins occupying the low energy level and the

N_ spins occupying the high energy level. In thermal equilibrium, the relative population

of the two states is given by NJN+ = exp(JE/kBT), where kB is the Boltzmann constant, T



is the temperature, and the energy difference between the two states is AE = hyBNMR

with h being Planck's constant, yp is the proton gyromagnetic ratio, and BNMR the applied

magnetic field. Even for a large magnetic field, the small energy difference results in a

weak polarization P = (N+ - N_)/(N+ + N_) = tanh(AE/2kBT), on the order of a fraction of a

percent. On the other hand, electron paramagnetic resonance (EPR), which takes advan-

tage of the spin property of electrons, can exhibit a polarization on the order of a few

percent under the same conditions. This property can be exploited by using a technique

known as dynamic nuclear polarization (DNP) to enhance the signal-to-noise ratio of

NMR experiments.

12.7mm

2.7 mmI

kveguide

'lunger Iris
Movable
Plunger

RF Leads

IJw Wa

Fixed P

Sample

Figure 1-5: Left - Probe used for DNP in liquids and solids [8], Right - Zoomed out view of another

DNP probe showing millimeter wave transmission lines, (1) - Stator, (2) - Sample, (3) - Waveguide

bend, (4) - Inner conductor, (5) - Outer conductor [9]

DNP involves transferring the large polarization of the electron spins to the nuclear

spins by irradiating the sample with electromagnetic waves at a frequency around the

~~1_~11 __·_ _ ~_~~~~_



electron Larmor frequency. Theoretically, signal enhancement on the order of ,,e/p -

660, where ye is the electron gyromagnetic ratio, is possible [10]. Generally, NMR setups

use high magnetic field strengths, > 5T, thus sources in the 100s of GHz are required.

These sources should be able to produce tens of watts of power since the signal en-

hancement scales with power [11 ], and should have pulse lengths sufficient for a near

complete transfer of polarization [12]. The gyrotron is an excellent source to fulfill the

above requirements and one of these devices for NMR applications is shown in Figure

1-4. The gyrotron though is no small device, and it also requires a powerful magnet of its

own, therefore the source and the sample must be some distance away from one another

and thus a millimeter wave transmission line is required to transmit the power.

1.1.4 Radar

Radar is another important application that necessitates the use of microwave transmis-

sion lines

While the concept of radar had been around for a while, it wasn't until the World

War 2 era where it truly came into prominence and emerged as one of the most important

technologies of its time. The concept of radar is fairly simple: transmit electromagnetic

waves into free space, and if an object is in range, then the waves will be reflected back

and can be detected by a receiver. The ability to detect various objects using radar is

strongly dependant on the frequency of the source, or more intuitively it's dependant on

the wavelength of the electromagnetic waves. Due to the numerous applications for radar

systems (weather, air traffic control, defense, etc.), there is a demand for radar systems at

rf frequencies right through to millimeter wave frequencies. Transmission lines are again

an integral part of a radar system. These transmission lines should have very low loss to

retain a high signal to noise ratio of the detected signals, which are often quite small.

They also must ensure the integrity of any incoming signal, since most radar systems are

quite sensitive, and any abnormality introduced by such transmission lines could easily

be misinterpreted.



1.2 Thesis Outline

This thesis presents a body of work covering theory and experiments pertaining to

millimeter wave transmission lines.

Chapter 2 covers the theory of transmission line losses, beginning with the basic

electromagnetic principles involved in dealing with waveguides, and continuing into a

discussion of how losses are calculated in a real transmission line system. In chapter 3,

numerical simulations of transmission line components are compared with the transmis-

sion line theory discussed in the previous chapter. Chapter 4 provides a theoretical look

into a problem that has not previously received much consideration: an impure

waveguide mode at the input of transmission line components. This problem is solved

numerically and using established analytical expressions, and is followed by a discussion

of the consequences the results.

The next two chapters are dedicated to experimental work. Chapter 5 considers two

methods for measuring losses in transmission lines and the results for two separate

transmission lines are presented. Chapter 6 approaches the loss measurement from a

different perspective, instead determining the mode content within the transmission line.

Mode content measurements for the ITER ECH prototype transmission line are pre-

sented.

Finally, Chapter 7 summarizes the work within this thesis, presenting conclusions on

the results and a discussion of future work that can be done.



Chapter 2

Theory of Millimeter Wave Transmission
Line Losses

In Chapter 1, there was a brief discussion about the different types of transmission lines

that are applicable for various application frequencies. For the region of the electromag-

netic spectrum known as millimeter waves, transmission lines typically consist of

waveguide. Thus, before discussing the losses in such transmission line systems, it is

necessary to cover the basic electromagnetic principles involved in dealing with

waveguides.

2.1 Propagation in Waveguides

2.1.1 Electromagnetic Basics

The basis for anything and everything in electromagnetics is Maxwell's equations and

the constitutive relations:

Vx = -D+J (2.1)a
a-

Vx E -- B (2.2)

V- = p (2.3)

V B=O (2.4)

D = E (2.5)

B =4 H (2.6)



where H is the magnetic field strength, D is the electric displacement, J is the electric

current density, E is the electric field strength, B is the magnetic flux density, and p is the

electric charge density. Each of the above listed terms may carry both a spatial and time

dependence. The permittivity e and the permeability p are simply positive constants for

free space and basic isotropic media. These are the only cases that will require considera-

tion in this thesis.

In general, for most practical applications, the fields are time harmonic, and can be

written in the form E(r,t) = Re{•(r)e -J ' , where E(r) can be a complex quantity.

This simplifies theoretical analysis using Maxwell's equations by allowing the time

derivatives to be replaced by -jw.

Another important equation, which can be obtained from simple manipulation of

Maxwell's equations, is the wave equation for E :

(V2 +c2 pe  = 0 (2.7)

for the time harmonic case in a source-free region. The simplest solution to the wave

equation is of the form: [13]

E = iE, cos(kz - cot) (2.8)

By introducing this solution to the wave equation, a very important equation known as

the dispersion relation is obtained:

k 2 = CO2 eC (2.9)

This equation relates the frequency of the wave to k, known as the wavenumber or the

spatial frequency. k is actually a vector, called the wave vector, that indicates the

direction of propagation of the wave.

2.1.2 Boundary Conditions and Waveguide Modes

When there exists a boundary between two different media, a set of equations relating the

normal and tangential components of the electric and magnetic fields within the two

media are used:



SX ! -x2)= 0 (2.10)

~x A - 2)= js (2.11)

-(B , -B 2)= 0 (2.12)

' -0 - f2)= Ps (2.13)

These boundary conditions are particularly useful when considering waveguide problems.

Waveguide is commonly a rectangular or cylindrical structure that allows power to

propagate in one direction while metallic or dielectric walls confine the wave in the other

directions. Therefore, solving for the fields within a waveguide is more or less a matter

of satisfying the boundary conditions at the walls.

There is one other key principle to take note of before solving waveguide problems,

and that is superposition. Using superposition, the complete problem can be separated

into two simpler cases where there is only one field, magnetic or electric, with a compo-

nent in the longitudinal direction (in the direction of propagation). When all electric

fields are transverse to the direction of propagation, and thus the longitudinal component

is zero, the fields are referred to as transverse electric (TE). When the longitudinal

component of the magnetic field is zero and thus all magnetic fields are transverse to the

direction of propagation, the fields are referred to as transverse magnetic (TM).

To illustrate propagation in a waveguide, the mathematically simpler case of a me-

tallic rectangular waveguide is considered first. For a guided wave propagating in the 2

direction, the z dependence of the fields will be of the form e±' jk, where k, is the z

component of the wave vector. This allows for the substitution of all z derivatives with

jkz. After separating out the transverse components, denoted by the subscript t, of all

field vectors, Eqns (2.1) and (2.2) are written as: [13]

(V, + ijk, )x (f-, +t. )=-jo(_EP, +Et) (2.14)

(Vt + ijk) x (c, +, )=jo wo( , +e ,) (2.15)

and the corresponding wave equations can be obtained:



(V +2 we -k ) =0 (2.16)

(V + p2/e- k)Hz =0 (2.17)

For TM fields, Hz = 0, and the fields are determined by the solution of Eqn (2.16), while

for TE fields, Ez = 0, and the fields are determined by the solution of Eqn (2.17).

As seen in Eqn (2.8), the solution to the wave equation is sinusoidal, however now

taking into account the geometry of the waveguide, there will be a sinusoidal dependence

in both transverse directions, ^ and 5 . The exact nature of the solution is obtained after

considering the boundary conditions.

Since the metallic walls can be approximated as a perfect conductor, the electric field

outside the waveguide must be zero, which requires that the tangential electric field

within the waveguide along the walls must be zero as well. Therefore, if we define a

coordinate system such that the two sides of the waveguide span (0,a) and (0,b) respec-

tively, the TM field solution is:

E, = ekz sinkxxsin ky (2.18)

The tangential electric and magnetic field components can be derived from this solution

using Eqns (2.14) and (2.15). However, this solution is not yet complete since the

boundary condition at x = a and y = b must also be satisfied, which imposes the following

conditions:

kxa = mlr (2.19)

kyb = nr (2.20)

where m and n are positive integers. A similar solution for the TE fields can be obtained

with the same conditions applying.

The conditions in Eqns (2.19) and (2.20) indicate that there are multiple solutions.

Each independent combination of m and n is known as a mode of the waveguide. For

example, the TM14 mode will have 1 maximum in the x direction and a total of 4 maxima

or minima in the y direction. It should be noted that the assignment of x and y is arbi-

trary, however the convention is that the first number corresponds to the side which is

longer. The lowest order TM mode is the TMI1 mode since from Eqn (2.18), neither m



nor n can be zero, otherwise E, would be identically zero. For TE fields, m or n can be

zero, and the lowest order mode is the TE10 mode.

As introduced in the previous section, there is a dispersion relation associated with

the solution to the wave equation, shown in Eqn (2.9). The wavenumber k can be repre-

sented by its components such that k2 = k2 + k + kZ and the guidance condition for the

waveguide can be established:

kZ = Jco2/0eo - (mrla)2 -(mr/b) 2  (2.21)

This guidance condition determines whether or not a particular mode can propagate in a

waveguide of dimensions a x b at a frequency o. If co2'poeo < (m7r a)2 + (r / b)2 , then

k, will be imaginary, and from Eqn (2.18) it is apparent that the electric field will attenu-

ate exponentially in the direction of propagation. This is known as cutoff. Thus for a

given waveguide, each mode will have a corresponding cutoff frequency, below which

the mode will not be able to propagate through the waveguide.

This concept of waveguide modes is integral in handling waveguide problems since,

in real systems, it is highly preferable to be able to treat the fields as a summation of

modes rather than dealing with the field functions within the coordinate system.

2.1.3 Cylindrical Waveguide

The derivation of the modes of a circular cylindrical waveguide is essentially the same as

that for a rectangular waveguide, however cylindrical coordinates are used instead. The

solution to the wave equation in cylindrical coordinates is comprised of the product of a

Bessel function and a sinusoid. For the TM case, this solution is: [13]

Ez = e jzJ(kp)cosmtp (2.22)

and the dispersion relation is:



k2 -+ kp = co2 (pe

The boundary condition for cylindrical waveguide requires that the tangential electric

field, Ez and E,, be zero at the walls, ie: at p = a, the waveguide radius. This boundary

condition is satisfied when J. (kpa)= 0, requiring that:

k, = Xmn /la (2.24)

where Xmn, is the nth root of the Bessel function of the mth order, such that Jm (X.m) = 0.

TM, TE,

"TM,

Modes 1-15

TM,
Modes -----
Modes 16-30

Figure 2-1: First 30 modes in a circular cylindrical waveguide [14]

Unlike with rectangular waveguides, the boundary condition for TE modes in cylindrical

waveguide differs from that for the TM modes. The TE boundary condition requires

(2.23)

T"1•

1~
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U

TMI



that J'm (kR)= 0, relying instead on the derivative of the Bessel function and its corre-

sponding set of zeros, X'm,. The best way to find the zeros of the Bessel functions and

their derivatives is to simply look the values up in one of the readily available tables. A

quick perusal of these tables shows that X1, is the smallest number, meaning that the

lowest order mode in a cylindrical waveguide is the TE 11 mode. The field pattern of the

30 lowest order modes in a cylindrical waveguide can be seen in Figure 2-1.

2.1.4 Wall Losses

Thus far, it has been assumed that the waveguide walls are perfectly conducting; how-

ever, in reality, metallic walls will have a large, but finite, conductivity. In order for this

to be a factor, we must introduce one concept key to waveguide propagation that has not

been discussed to this point, and that is the concept of surface currents along the walls of

the waveguide.

The presence of surface currents is derived from the boundary conditions. Consider-

ing a parallel plate waveguide with conducting walls, there will be a surface current such

that:

i, = x Hwa,, (2.25)

When the walls have a finite conductivity, there exists a finite tangential electric field at

the walls (for a perfect conductor, this is identically zero):

Ewait =  , x Hw (2.26)
V Jo

where the conductivity a is assumed to be large. There is therefore a time-average

Poynting power density flow into the conductor [13]:

P = Re - twa x *att )=wa, 2 (2.27)

The result of this is an exponential attenuation in the power propagating through the line,
which is typically measured in dB/m or dB/km.

We can also consider the wall losses in another, perhaps more intuitive way. If we

consider the modes of a rectangular waveguide, each is simply a sinusoidal function, in



order to satisfy the boundary conditions. The sin and cos functions can each be decom-

posed into a pair of complex exponentials. Rather than viewing the fields inside the

waveguide as a propagating mode, we can instead consider the fields as a sum of plane

waves, one of which is propagating in the forward direction, and another of which is

propagating in the reverse direction. Based on the propagation constant of the mode,

these plane waves are incident on the walls of the waveguide at a particular angle. In the

case where the walls are perfectly conducting, the plane wave encounters a lossless

bounce; however, if the walls have a finite conductivity, then each bounce will have an

associated loss.

This wall loss is often referred to as Ohmic loss since it is a result of the non-zero re-

sistance, i.e. finite conductivity, of the waveguide walls. In a typical cylindrical

waveguide, the Ohmic loss is a factor of the mode being used and the waveguide radius.

Typically, this Ohmic loss is minimized by selecting a mode whose electric field is

minimal along the waveguide walls and one that is far from cutoff with a shallow bounce

angle. If the radius is increased, then the distance between bounces also increases and

thus the Ohmic loss is reduced.

2.1.5 Corrugated Waveguide

Thus far, only smooth-wall metallic waveguide has been covered, however often times,

other types of waveguide are preferred, such as waveguide with dielectric walls or

metallic waveguide with corrugated walls. A corrugated waveguide is a smooth wall

waveguide with periodic slots of a particular depth and width. Thus along the direction

of propagation, the waveguide walls essentially appear to be a square wave. The radius

of the waveguide is taken to be the inner radius, i.e. the top surface of the ridges between

the slots.

In a corrugated waveguide whose diameter 2a is large compared to the wavelength L

and whose corrugation period P is small compared to 1, the wall begins to look like a

surface with an anisotropic reactance:



Z, =E,P /H =0 (2.28)

ZZ = -EZ /H, j • (w/P)tankd j Z (2.29)

where w is the corrugation width, d is the corrugation depth, and the free space propaga-

tion constant is k = 27r/2 [15]. With this non-zero wall reactance, modes propagating in

the waveguide will generally require both a TM and TE component; that is to say that a

wave propagating in the z direction requires both Ez and H,. The exceptions to this are

the TEo0 modes who have neither E, nor H,, and thus are unaffected by the wall reac-

tance, and TMo, modes which can still exist without an H. component.

To characterize the modes that propagate within a corrugated waveguide, we intro-

duce a parameter dn reflecting the ratio of the TE and TM components present within the

mode of the corrugated guide and requiring E, = 0 from Eqn (2.28):

pJ, (X,)
d. = x.J(X.) p  0 (2.30)

d. = 1, (TEon) (2.31)

Jo (x,)
d. = ,) (TMn) (2.32)

which must also satisfy the boundary condition from Eqn (2.29), therefore:

I--d [1- (X,/ ka)2]+ X 0, p 0 (2.33)
d. pkaZ

1 X2
- + n = 0, (TMon) (2.34)
dn kaZ

and as previously indicated, the TEon modes are unaffected by this requirement.

The above equations parallel a dispersion relation for the roots X, [15]. Starting with

a mode in a smooth wall waveguide, Z can be varied to determine the deviation of the

roots X, from the roots in the smooth wall waveguide Xno:



SL- (X- /ka)2.p2kaZ
X n = Xno _ n 0  2 , (TEpn) (2.35)Xno no - 2

kaZ
X n = XnO , (TMpn) (2.36)

Xno

For the case of TEpI and TM01 modes, the roots become imaginary as Z increases and

thus become surface waves within the corrugated waveguide and thus are not supported

for normal propagation.

As discussed before, TEo, modes are unaffected by the change in wall reactance,

therefore all of these modes are supported in a corrugated guide and have the same

propagation constant.

For all other modes, we consider the limit as Z approaches infinity, and the assump-

tion that X, is much smaller than ka; therefore, d2  1 and we have for p # 0:

Jp+1 (X, )

- 1-(XI/ka)2  1p1X (2.37)d, J,+(X,) (2.37)
1+

Jp- l(X,)

The modes that satisfy this equation are called hybrid modes since they have both longi-

tudinal electric and magnetic field components. For dm, -1, the modes are labeled HE,

and for d, = +1, the modes are labeled EH, and are defined as follows:

J,_, (X,) )= 0, (HEpn) (2.38)

Jp+1 (Xn,)= 0, (EHpn) (2.39)

These are defined such that TM smooth wall waveguide modes result in HE corrugated

waveguide modes, while TE smooth wall waveguide modes result in EH corrugated

waveguide modes.



Corrugated waveguide also supports the propagation of TMon modes for n t 1, how-

ever unlike in the TEo, case, the wall reactance has an effect on the roots, and TMon

modes end up sharing the same root as TEo(n-.) modes:

J (X )= -J (X, ); 0 (2.40)

Reviewing the table of Bessel roots, the lowest order mode in a corrugated

waveguide is shown to be the HE11 mode. The advantage of using corrugated

waveguides is the lower loss associated with them. The HE, mode in corrugated

waveguide exhibits significantly less loss than the mode with the lowest loss in smooth

wall waveguide which is the TEol mode. The HE,, mode can be thought of approxi-

mately as a mode mix containing 85% TE I and 15% TM 11[16].

On top of being able to propagate a lower loss mode than smooth wall waveguide,

corrugated waveguide also has many engineering possibilities with regards to the line

itself. The surface in a corrugated waveguide that contributes the most attenuation is the

front face of the ridges, which means that the reactance could be further reduced if the

corrugations were rounded [17]. Another possibility for corrugated waveguide is to

explore periodic loading, i.e. inserting dielectric or ferrimagnetic material in the slots

[18].

2.2 Losses in Transmission Lines

The design of transmission line systems for real world applications is subject to a number

of considerations. While the frequency is likely already specified by the particular

application; the size, shape, and type of waveguide, as well as the mode, can be chosen to

accommodate the design requirements. Also, real transmission lines are rarely just a long

straight section of waveguide. Due to space limitations, components such as miter bends,
i.e. 900 bends, are often required. Other specifications on the line may require the use of

polarizers and other components.



In general, when it comes to setting up a transmission line, there is a tradeoff be-

tween two primary options and the choice is dependant on the application. One option is

to use fundamental waveguide, meaning that the size of the waveguide is selected such

that only one mode can propagate at the frequency of interest. In fundamental guide,

there is no concern with mode conversion and the waveguide can change direction freely

without any distortion of the signal. The downfall with using fundamental waveguide is

that the Ohmic loss will be quite large; therefore when power loss is a concern or if

dealing with a high power application, an alternative is required. This alternative is the

use of large, overmoded waveguide. As previously mentioned, the HE,1 mode in corru-

gated waveguides exhibits the lowest loss. Therefore when maximum transmission is

desired or when worries of line heating arise due to the amount of power being transmit-

ted, the ideal choice is a very large overmoded waveguide [19] propagating a hybrid

mode [20]. The downfall of using large overmoded transmission lines is that there can be

substantial mode conversion introduced by imperfections of the line or by various trans-

mission line components. In the context of the work in this thesis, we are interested in

transmission lines for high power applications such as ITER's ECH system, therefore

only the losses in large overmoded transmission line systems will be discussed.

The ITER ECH line is designed to have minimal losses, therefore it is constructed

with corrugated waveguide propagating the HE 11 mode. The 63.5 mm diameter guide is

highly overmoded, with a/1 - 18 for the 170 GHz power being transmitted. For most

applications, there is no possibility of constructing a transmission line purely from

straight sections of waveguide, thus components like miter bends that change the direc-

tion of propagation are often necessary. If an overmoded transmission line consisted only

of sections of straight waveguide and quasi-optic waveguide miter bends with mirrors,

the loss in the straight sections is negligible if the transmission line is constructed with

sufficiently small tilt, offset and sag errors [21], and thus the mode conversion loss due to

diffraction in the miter bend is the primary source of loss in the transmission line. This is

illustrated in Table 2.1 where two separate loss estimates are shown for the ITER ECH

transmission line.

Since standard miter bends can have relatively high losses, several efforts have been

undertaken to reduce the losses of miter bends by either altering them or by considering



other components. Gradual waveguide bends may seem like an enticing option due to the

significantly reduced mode conversion loss, however the required length of such a bend

to significantly decrease the loss renders them impractical for large overmoded

waveguide [22]. Another way of reducing the loss in miter bends that has been floating

around for years is the use of phase correcting mirrors [23], however there are a number

of concerns with how such components would function in a real system. Despite these

efforts, the latest design of the ITER ECH system still calls for the use of standard miter

bends, though the possibility of implementing improved miter bends still remains. Since

the miter bends are the largest source of loss in the transmission line, a major part of

determining the overall loss in a transmission line boils down to evaluating the loss in the

miter bends, therefore it is important to have a theory allowing for calculation of this loss.

ITER
Losses MIT Estimate

DDD 5.2

MOU loss 0.22 dB -

Injection loss

Coupling loss, Tilt, Offset 0.035 dB 0.116 dB

Intrinsic loss

Miter bends 0.248 dB 0.19 dB

Polarizers 0.044 dB 0.066 dB

Extrinsic loss

WG Sag 0.078 dB 0.039 dB

WG Tilt/Offset 0.036 dB

Other loss 0.025 dB 0.043 dB

Total loss 0.65 dB (14%) 0.49 dB (11%)

Loss without MOU loss 0.43 dB (10%) 0.49 dB (11%)

Table 2.1: Table of estimated losses for the ITER ECH transmission line [24]



2.3 Loss Theory for Miter Bends

As established in the previous section, the miter bend is a major source of losses in

transmission lines. Due to the geometry of the miter bend, solving for the fields and the

losses in a miter bend is no trivial task. As a result, current miter bend loss estimates are

derived from a simpler geometry that omits much of the asymmetry present in the miter

bend problem.

The first work done to derive an expression for the mode conversion loss in a miter

bend was based on a geometry involving the crossing of two waveguides, also equivalent

to joining two miter bends back-to-back along their mirror planes [25]. The approach

taken was to reduce the three dimensional boundary value problem to a couple of two

dimensional ones. The result was obtained by assuming a TEol input into one arm of the

structure and then calculating the power in each TEon mode in the arm directly opposite

the input. A two dimensional waveguide cross was also considered for non-900 bends

[26], which was elaborated on further for the 900 case [27] and again for the rectangular

geometry [28]. The mode conversion loss was derived using a combination of diffraction

theory in open systems and ordinary waveguide wave theory. The nature of this loss was

also discussed later, asserting that half of the lost power is transmitted in the form of a

broad spectrum of low-order unwanted spurious modes, while one quarter travels back-

ward in the form of several high-order spurious waves close to cutoff, and an equal

fraction goes forward in the form of similar modes [29]. The result of these works agreed

reasonably well with experimental results [30], though it is the later work of Doane and

Moeller [31] that improved on the previous theoretical results and is the current standard

for estimating miter bend losses. The details of this theory now follow.

The theory work in [31] takes a slightly different approach than the other works

listed above. While in the majority of the other cases, a smooth wall TEol waveguide

cross was considered, this later work considers a geometry of a simple gap between two

sections of corrugated waveguide designed for propagating the HE 1 mode. Figure 2-2

shows how this gap geometry resembles that of a miter bend. While the theory can be

done for a gap of any length, it is clear that for the miter bend, we need only consider the



case for a gap length L = 2a, where a is the miter bend waveguide radius. Because of the

geometry under consideration in this theory, we herein refer to this work as gap theory.

"_ 2a a

Fl II
Figure 2-2: Comparison between the miter bend geometry and the waveguide gap geometry

Assuming a HElm mode propagating in the first waveguide, the linear polarized field at

the aperture will be:

E= A. Jo(X.r /a)
E- . aJ,=( ) (2.41)J aJ, (X,

where A. is the amplitude and R. is the normalized propagation constant:

R - -(Xm / ka)2  (2.42)k

with k being the free space propagation constant, and X. the Bessel roots such that

Jo (Xm) = 0 .

The fields in the gap between waveguides can be written as:

E = jA(y)Jo (yr)e-jF dy (2.43)
0

and the field at the aperture of the second waveguide is decomposed into HE1n modes:

B Jo(Xra) e-jkR( 2a) (2.44)
SaJ (X,(2.44)

We recognize that to solve this problem, we simply equate Eqn (2.43) to Eqn (2.41) for

z = 0 and to Eqn (2.44) for z = 2a. The first equality can be solved by considering the

form of the Hankel transform to solve for the amplitudes A(y). The coefficients B, can



then be solved in terms of A(y) using the second equality. Thus the scattering coefficients

Snm, the ratio of the amplitude Bn at the output to the amplitude A, at the input, can be

obtained, which, assuming that ka is large compared to Xn and x = ya, can be written as:

S B = 2XX 2 2dx (2.45)Snm -- AB -2 -mR,, xJ (x)exp[i2a(xZ -X))/(2ka2)]dx (2.45)
Am Rm m (x 2 - X2)(x 2 - X2)

This integral can only be evaluated numerically; however, in [31], an approximate

evaluation was obtained to provide a simple expression for determining the loss across

the gap. The mode conversion loss is the difference in the power in the first waveguide,

assumed to be unity, and the power in the input mode within the second waveguide. The

mode conversion loss in a gap is:

(a)-3/2
0.06762I (2.46)

where X1 = 2.405 for the HE 11 mode and 3.832 for the TEol mode. Thus, we have a

relatively simple equation to determine the loss of a miter bend which only depends on

the mode being propagated and the size of the waveguide relative to the frequency of the

power.

What has not been discussed thus far is how this result determines the mode conver-

sion losses in the miter bend. While similar, there are some obvious discrepancies

between the two geometries. The generally accepted argument for comparing the losses

in the waveguide gap to the losses in the miter bend goes as follows: if one were to

imagine the walls of the waveguide continuing into the gap region to the location of the

miter bend mirror, then diffraction would be eliminated in one of two planes, and thus the

losses should be divided by a factor of two. Thus the loss in a miter bend is:

0 6 -3/2
0.496 a (2.47)

for the TEo1 mode, and:

0.196(-3/ (2.48)

for the HEI1 mode.



There is also the issue of how the mode converted power is distributed. By evaluat-

ing the mode content in the second waveguide in higher order HE1n modes using Eqn

(2.45), the results roughly agree with previous assertions that one half of the diffracted

power should be in low order modes.

While agreement has been reasonable between the gap theory, the previous theory

work, and experimental results [32], we must still acknowledge that these theories do

have some shortcomings. None of the work thus far has considered asymmetric modes

nor have situations been considered where all the power must be accounted for either in

higher order modes at the output or reflected power at the input, therefore assessments of

the mode distribution should be looked upon with a degree of skepticism. Even the total

mode conversion loss values may not be perfectly correct since accurate measurements of

such small losses at microwave frequencies are no easy task, thus it is difficult to attribute

differences of 10, 20 or 30% between theory and experiment to problems within the

theory.



Chapter 3

Numerical Simulation of Transmission
Line Losses

In Chapter 2, the handling of how losses are calculated in a complete transmission line

system was discussed and it was revealed that miter bends are a major contributor to the

system's overall loss. A theory for calculating the losses in a miter bend was also pre-

sented. This theory has proven to agree reasonably well with experimental results;

however the agreement is rarely perfect. While the burden of doubt is often placed on

problems with experimental setups or difficulties in obtaining accurate measurements, it

is not unreasonable to conceive that there are issues with the theory itself. The gap

theory is widely accepted, though it requires that several assumptions are made to relate

the result to that for an actual miter bend and it never truly considers the asymmetries

present in the miter bend geometry.

Since it is not necessarily realistic to obtain a full analytic solution to the miter bend

geometry and results based on gap theory may not be completely accurate, one option for

obtaining a solution to the full miter bend problem is to use a numerical simulation code.

One such code that is designed for the simulation of high frequency structures is Ansoft's

HFSS.

HFSS is a finite element method code with a built-in eigenmode matrix solver. This

means that the code can solve for the structure's modes and then return results in a

scattering matrix that outlines transmission, reflection, and mode conversion coefficients,

which is particularly useful for the study of waveguides. The accuracy of HFSS solutions

depends on the size of the tetrahedral mesh with respect to the wavelength at the fre-

quency being solved for. If the tetrahedra are too large, then the solution will not

converge adequately. However, the number of tetrahedra is directly proportional to the



necessary computing resources to solve the problem, which can limit the ability to solve a

problem that has a very large volume relative to the wavelength of interest.

For very low values of a/2, the miter bend geometry can be solved with HFSS using

a standard computer having only 2 GB of RAM, however our goal is to be able to deter-

mine the losses for larger overmoded miter bends such as those needed for ITER, a/1 -

18, for which the resource demands are far too great. In order to obtain a loss estimate

for the ITER miter bends, an alternative approach is required.

While the accuracy of the gap theory is not guaranteed, it is also not necessarily in-

correct. Therefore, one way to obtain a proper loss estimate for ITER miter bends is to

validate the gap theory itself or to make any necessary improvements. Validating the gap

theory involves two main tasks: verifying that the analytical expression for loss across a

waveguide gap is correct and verifying that the assumptions relating the result in a gap to

the loss in a miter bend are correct.

3.1 Simulating the Waveguide Gap Problem

When using simulations to solve a problem, it is important to simplify the problem as

much as possible.

The first aspect to take note of is that the ITER miter bends are corrugated and

propagate the HE, 1 mode. This creates a problem since the HFSS eigenmode solver only

considers TE and TM modes, even if the corrugated waveguide is modeled correctly. In

order to get around this problem, a smooth wall waveguide propagating the TEol mode

can be considered instead. The gap theory is equally valid for the TEo1 smooth wall

waveguide case and the HEI corrugated waveguide since both modes retain the same

symmetry. The only difference is the change in the value of the Bessel zero, and the

applicability of both cases is covered in [31]. A comparison of the field patterns for both

modes is shown in Figure 3-1. The symmetry shared by each mode is apparent.



Figure 3-1: Comparison of the field patterns for the HE,, mode (left) and the TEo0 mode (right)

The next issue to tackle is the size of the problem. It was previously mentioned how

the miter bend is too large to solve even for moderate values of a/A; however, the

waveguide gap geometry is actually larger than the miter bend. The advantage of simu-

lating the waveguide gap instead of the miter bend is that the gap problem has an axial

symmetry about the center of the waveguide. While the miter bend can only be divided

in half to retain the integrity of the initial problem, it is only necessary to simulate a small

wedge of the gap geometry. This means that the volume of the gap problem can be

reduced substantially so that higher values of a/1 can be simulated. The specifics of the

TEo0 1 waveguide gap model are discussed next.

3.1.1 Modeling the TEo0 Gap

To obtain the simulation results in the scattering matrix form with HFSS, the driven

modal solution is used, and waveport excitations are selected at the input and output

apertures of the geometry. Waveports also allow the user to define the input in terms of

the structure's modes to obtain plots of the electric fields within the structure. To account

for the aforementioned axial symmetry, perfect E symmetry boundaries are used on the

two sides of the wedge. When the electric field is normal to this symmetry plane, the



symmetry boundary assumes that the fields are mirrored across the boundary and thus no

information is lost by only considering the given geometry.

Since it is the mode conversion loss that is of concern, rather than the Ohmic loss,

the waveguide walls can be modeled using a perfect E boundary, which behaves like a

perfect conductor. This allows for further simplification of the problem by neglecting the

Ohmic loss.

The biggest difficulty in modeling the gap problem is developing a way to model the

gap region itself, where the waves can propagate into free space. HFSS provides users

with a radiation boundary that is supposed to absorb all fields incident upon it, and thus

have zero reflection; however such a boundary is not perfect. If the radiation boundary is

placed directly in line with the waveguide walls, it will still tend to somewhat confine the

waves as if the conductor continued through the gap, rather than allowing the fields to

expand as if in free space. In order to avoid such issues, the radiation boundary should be

a small distance, on the order of a wavelength, away from the waveguide edge. At the

same time, a larger radiation region means a larger volume that HFSS must solve and

thus the required computing resources increase. Therefore, in order to minimize the

resource requirements, a conical region is used to account for the fact that the expansion

of the fields requires a larger radiation region towards the output side of the gap. The

HFSS model to simulate the gap problem is shown in Figure 3-2.

When using HFSS, it is very important to parameterize the problem. Rather than us-

ing fixed dimensions, dimensions are entered as functions of a variable such as a, the

waveguide radius, or 1, the wavelength. This allows the user to simply adjust the pa-

rameters and the model geometry will update itself accordingly for the new values, and it

is especially useful in the case of the waveguide gap simulations since we are interested

in solutions at different values of a/A.
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Figure 3-2: Diagram showing the geometry used to simulate the TEol waveguide gap

3.1.2 TEol Gap Results

To simulate the waveguide gap at a particular value of a/2, the values of a or 2 individu-

ally are irrelevant and the simulation results are unaffected provided that the ratio is the

same. For consistency, the frequency was kept fixed at the ITER ECH value of 170 GHz

with a corresponding wavelength of approximately 1.76 mm. The waveguide radius was

then adjusted accordingly for a range of a/A values.
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Figure 3-3: Plot of electric field magnitudes for the waveguide gap geometry with al/ of 7

Figure 3-3 shows the magnitude of the fields within the gap model. The first thing we

observe in the plot is the expansion of the fields as they propagate across the gap. In the

gap geometry, it is this expansion that is the cause of the mode conversion. At the end of

the first waveguide section, the fields are well confined within the waveguide radius. As

the TEo1 mode enters the gap, the mode is no longer confined by the waveguide's bound-

ary conditions and there is some expansion out into free space. At the input of the second

waveguide section, the field pattern is still similar to that of a pure TEo1 mode, but it now

has a tail with non-zero field magnitudes extending past the waveguide walls in the radial

direction. As a result, some power will be lost, leaking out into the radiation boundary,

which is noticeable in Figure 3-3. In these gap simulations, the waveguide is given a

finite thickness; therefore, a small amount of power will also be reflected back towards

the first waveguide due to the leading face of the waveguide. The rest of the power

couples into the second waveguide where we also expect some further deformation of the

field pattern due to diffraction along the edge of the waveguide.

The result is that the majority of the power reaches the output of the second

waveguide section, though no longer as a pure TEo1 mode. The amount of power in the



TE01 mode at the output is plotted in Figure 3-4 for several values of a/1, assuming unity

input of a pure TEol mode. The theory curve that is plotted against the simulation result

is the analytical expression from [31 ] which, for the TEol mode, is:

1-0.9925 a2 (3.1)

The agreement between theory and simulation is quite good, showing that the gap theory

correctly determines how much power in the input mode will transmit across the gap. It

can be argued that the agreement is not great for low values of a/A; however, this is not

unexpected since the gap theory is simplified on the assumption that a/A is large com-

pared with the Bessel roots, and this assumption is weaker for low values of a/A. We see

that as a/1 increases, the power in the TEol mode at the output increases, which is due to a

reduction in both the power lost into the gap as well as power lost to mode conversion.

This result illustrates why large overmoded transmission lines are a popular option.
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Figure 3-4: Transmission of the TE01 mode across a smooth wall waveguide gap
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Figure 3-5: Percentage of power in high order modes (>TEos) plus power radiating out of the gap

with respect to the total TEol power lost

While the gap theory does seem to accurately predict the overall loss in TEol power, there

still remains the issue of determining how the lost power is allocated. When estimating

miter bend losses based on gap theory, the assumption is that half of the diffracted power

is in low order modes, and then half of the remaining power is in higher order modes,

with the rest of the power being reflected towards the input port. This is not entirely

verifiable with the gap problem since the symmetry of the gap structure means that only

TEon modes are considered. In addition, the power that radiates out of the gap would not

be able to do so in a miter bend; however, it could be assumed that, in the miter bend

geometry, this power would be either reflected to the input port or found in high order

modes at the output port. These assumptions are roughly verified by the result in Figure

3-5, where it can be seen that approximately half of the lost TE01 power appears as mode

conversion to high order modes and the other half appears as lower order modes, TE02-
TEos, at the output. Figure 3-6 and Figure 3-7 look more closely at how the power is

distributed into higher order modes at the output. We first notice that the concept of

cutoff is quite apparent in each figure. As the waveguide radius increases, more modes

nn
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Figure 3-7: Mode conversion to high order modes across the waveguide gap
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fall within the waveguide's cutoff. We also can see in the figures that the mode conver-

sion to a particular higher order mode peaks right around that mode's cutoff. This is an

interesting result, however for higher order modes, these peaked values are still less than

the mode conversion to the relatively lower order modes. We see that only the lowest

order modes, TE02 through TE04, have as much as -20 dB mode conversion (1% power).

We can conclude that the theoretical expression for the loss across the gap is accu-

rate and that the assumptions for the distribution of lost power are reasonable. However,

in order to determine the actual nature of the mode conversion within the miter bend, the

full problem should be solved.

3.2 Simulating the Smooth Wall Miter Bend

In order to properly make sense of the results of the waveguide gap simulations, we must

also simulate the miter bend itself to view how the gap results correlate with the results

for the miter bend at each a/1. So while the excessive demand on computing resources

prevents simulation of ITER sized miter bends, if the relationship between gap results

and miter bend results can be determined at lower a/2, then perhaps the expected result

for large a/A can be inferred.

3.2.1 Modeling the TEo0 Miter Bend

The miter bend is actually an easier problem to model than the waveguide gap. The

whole structure consists of waveguide therefore there is no need to include anything like

radiation boundaries. Similar to the waveguide gap, waveports are used at the two ends

of the miter bend so that simulation results are obtained in the proper form.

As previously mentioned, the waveguide gap has an axial symmetry, however only

one proper symmetry plane that is normal to the wave propagation exists for the miter

bend. The miter bend can then be split in half vertically and a perfect E symmetry plane

is inserted along this face. In the case of the waveguide gap, all modes except TEon

modes would violate the symmetry therefore only TEo, modes were considered in the



simulations. In the case of the miter bend, the fields of all TE and TM modes satisfy the

symmetry condition, with the exception of TM0, modes. Similarly, if a perfect H sym-

metry plane was chosen instead, then all TE and TM modes with the exception of TEon

modes would satisfy the symmetry condition. This is due to the orthogonality between

the two sets of modes since one could interchange the magnetic and electric fields of a

TEon mode and obtain a TMon mode. As a result, there is identically zero mode conver-

sion to TMon modes for a miter bend with a TE01 input, which was verified by simulating

a full miter bend. Another difference when solving the full miter bend is that there are

two orthogonal versions of most waveguide modes, essentially each TE or TM mode

appears twice where the second version is the same mode after undergoing a 900 rotation.

However, simulations of the full miter bend showed that there was only mode conversion

to one of each mode pair. Therefore, it is only necessary to simulate the half miter bend

geometry in order to retain all the information that could be obtained from simulating the

full miter bend.

3.2.2 TEol Miter Bend Simulation Difficulties

It was already known that the increased volume of the miter bend geometry compared to

that of the waveguide gap wedge would be a limiting factor to the values of a/) that could

be simulated with proper convergence. Therefore, there was no surprise when simula-

tions would not converge adequately for a/A of about 4-5. However, it turned out that

computing resources were not the limiting factor for TEo0 miter bend simulations using

HFSS.

For both the waveguide gap and miter bend simulations, the driven modal solution is

desired in order to obtain the results in scattering matrix form, requiring the use of

waveports at each end of the structure. What has not been discussed thus far is the

limitation of these waveport excitations. HFSS has a built-in cap on the number of

modes that are considered by waveports, which is 25 for HFSS v10. Initially, HFSS v1I

was supposed to increase this number to 99; however, this change was omitted in the

final release, and the cap on waveport modes remains 25.



As previously mentioned, the waveguide gap problem only considers TEon modes

due to the symmetry; therefore, even for a1/ values of 10, the structure still has only

about 15 eigenmodes, i.e. TEol-TEo,15. In the case of the miter bend, all TE and TM

modes with the exception of TMon modes are considered, and for a/2 values as low as

about 1.7, the mode limit on waveports is already reached. To put this into perspective,

the 3rd lowest order TEon mode, TEo3, is the 29th lowest order mode overall in circular

waveguide, though this list includes 3 TMon modes as well.
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Figure 3-8: Magnitude of S21 (TEol transmission) for two separate cases: all modes considered (a/k -

1.5) in blue, mode limit exceeded (a/.% - 2.2) in red

While it is clear that the mode limit is reached in miter bend simulations, the ques-

tion remains as to whether or not it will hamper the ability to obtain accurate results for

higher values of a/2. It could easily be argued that the mode conversion to the high order

modes is quite small, and therefore the effect of omitting the majority of these high order

modes is negligible. However, it turns out that this is not in fact the case. For low al/,

where simulation results converge nicely and where relatively few modes are omitted, we

find that the results are quite unreliable. Even though the simulation converges on a

-------------------------- ------------------------------



solution, it doesn't necessarily mean that it is converging on the correct solution. This

effect was discovered when simulations were run in which the length of the miter bend's

arms were varied. Figure 3-8 shows the results of these simulations. For a value of a1/

where there are fewer than 25 eigenmodes, the S21 magnitude (equivalent to the square

root of the transmitted TE01 power) remains relatively unchanged. On the other hand, for

a value of a/k where the waveport limitation forces the exclusion of modes within cutoff,

we see that the S2 1 value can change quite a bit. With this variation of several percent, it

makes it nearly impossible to draw any real conclusions with respect to the gap theory

and the losses for an ITER sized miter bend. Nevertheless, results at low a/A can still

gain some information about the nature of the mode conversion in miter bends.

Figure 3-9: Electric field magnitude plot for the TEo0 miter bend geometry with a/2 of 1.5

3.2.3 TEo1 Miter Bend Results

As mentioned before, for a/A greater than about 1.7, modes will be excluded and there-

fore the results cannot be accepted with any form of certainty. Thus the only TEo1 miter

bend results that will be covered are for a/1 = 1.5. A plot of the electric field magnitude

within this half miter bend structure is shown in Figure 3-9. The problem with such a

low value of a/1 is that there is significant mode conversion loss, which explains why the

..

"

-x"

;;
;I
i·-

*:

_~



TEo1 mode is very difficult to distinguish in the arms and at the output port. Neverthe-

less, the TE01 mode is still dominant and that is the mode which the pattern most

resembles. Table 3.1 shows the simulation results in more detail. The TE01 transmission

is fairly close to the estimate based on the gap theory where we recall that the miter bend

loss using gap theory is simply half the loss calculated for the gap, which is shown in Eqn

(3.1). The table also shows the modes to which there is the most mode conversion,

namely the TE02, TE22, and TE21 modes. This is a logical result since these are the lowest

order modes that are most similar to the TEol mode. It should be noted that the rest of the

power was distributed more or less evenly in forward propagating and reflected modes,

with approximately 0.3-0.4% power in each mode.

% Power at Output Port

Simulated 73.2
TEol Transmission

Gap Theory 72.4

TEo2  6.6

Mode Converted Power TE22  4.5

TE21  2.5

Table 3.1: Transmission and mode conversion in the TEo, miter bend with a/I of 1.5

There was one other very interesting result that came out of the TEo, miter bend simula-

tions. The modes of circular waveguide can be divided in to two types: modes with an

even azimuthal mode number (TEon, TE2n, TE4n, etc.), and modes with an odd azimuthal

mode number (TEIn, TE3n, TEs5 , etc.). We found that when a mode with an even azi-

muthal mode number is input to the miter bend, the amount of power in any of the modes

with an odd azimuthal mode number is exactly the same at both the input port and the

output port. The same applies to all the modes with an even azimuthal mode number

when a mode with an odd azimuthal mode number is input. Thus for a TEol input, if we

see 0.36% power in the TE13 mode at the output, then we will see exactly 0.36% power in

the TE13 mode at the input port. This behavior is a result of the symmetry of the miter

bend, likely due to the boundary condition at the miter bend mirror. If the angle of the



bend was changed from 900 to 800 or 1000, then we would not see equal power in each

mode at both apertures.

Therefore, even though the ability to do meaningful simulations of the TEo0 miter

bend is severely limited, some results providing information on the distribution of the

mode converted power could still be obtained. There still remains one other option to

derive some miter bend loss results using HFSS simulations, and that is to solve the HE 11

corrugated miter bend.

3.3 HE11 Miter Bend

Simulating the HE11 miter bend is a little more difficult than the TEo0 case. While a little

more involved than a simple smooth wall miter bend, modeling the corrugated waveguide

bend is still fairly straightforward. The main difficulty stems from the aforementioned

fact that waveports won't solve for the hybrid modes within the corrugated geometry,

requiring an alternate approach to excite the waveguide. The best solution to this prob-

lem is to use a Gaussian beam excitation. The correlation between the HE 11 mode and a

Gaussian beam is approximately 98%, thus the results should be similar. However,

without waveports, the apertures of the miter bend must be defined to absorb all incident

fields. Radiation boundaries were used for the TEo0 gap problem, however for this

application, the reflection could be problematic. HFSS provides another type of bound-

ary which minimizes reflections even more than the radiation boundary, and that is the

perfectly matched layer (PML). Another advantage of this Gaussian beam + PML

approach is that it is less demanding on computing resources, thus better convergence can

be achieved for higher values of a/A compared to simulations using waveports.

When it comes to the results of simulating the corrugated miter bend, we must real-

ize that they are only really useful on a qualitative level. The simulations are excellent

for giving us an idea of what the field distribution looks like inside the miter bend, shown

in Figure 3-10, however there is no easy way to deduce any quantitative results. While it

is possible to use a mathematical code to convert the field profiles at the input and output

of the bend to a distribution of modes, there is simply too much doubt about the accuracy

of the fields to make any realistic assessment. Ignoring any inaccuracy that may be



introduced by the PMLs, the Gaussian beam excitation alone introduces an uncertainty of

a couple percent.

Figure 3-10: Electric field magnitude within the HE11 miter bend geometry with a/l of 4

3.4 Summary

We have verified that the analytic expression for the loss across a gap is accurate by

simulating a smooth wall waveguide gap with a TEo0 input. The distribution of the lost

TEol power across the gap is divided approximately evenly between power in relatively

low order modes and power radiating out from the gap region. Due to limitations of the

electromagnetic code, HFSS, the relevance of the gap result to the miter bend could not

be verified. Nevertheless, some information was gained as to the nature of the mode

conversion in TEo1 miter bends via simulation, showing that most mode converted power

will appear in relatively low order modes that are symmetric or at least very similar to the

input mode. While corrugated miter bend simulations may not be effective at putting

numbers to the losses and mode conversion, they are useful to get an idea of the electric

field distribution within the miter bend geometry with a HE 1 input.



Chapter 4

Losses in a Miter Bend with an Impure
Input Mode

It has been mentioned several times that miter bends are major contributors to the overall

losses in millimeter wave transmission lines. The gap theory for calculating mode

conversion losses in miter bends was presented along with the results of HFSS simula-

tions to verify the loss across a gap and to learn more about the nature of mode

conversion in miter bends. While having such results is great, it fails to reflect the actual

problem in the context of a real application. As is the case with nearly all theories, many

problems that arise in real systems are simply omitted. Typically, things like impossibly

small tolerances on fabrication, uneven temperature distributions, or material impurities

can cause experimental results to diverge, sometimes significantly, from the theoretical

predictions. In the case of miter bend losses there are also a number of factors that must

be taken into consideration.

For a big project like ITER, an effort has been made to account for as many of these

unpredictable factors as possible. The loss estimate shown in Chapter 2 for the ITER

ECH system includes several losses that are not inherent to the components themselves,

labeled as extrinsic loss. For example, mismatching of the apertures of the transmission

line sections by even a few microns would introduce a loss that would not exist if the

system was constructed absolutely perfectly. Perfect construction though is quite

unlikely, and thus loss estimates for the transmission line include a small loss due to the

tilt and offset of waveguide sections. Even something like the curvature of miter bend

mirrors caused by focused heat dissipation resulting from Ohmic losses was something

eventually put up for discussion by the ITER team. Though despite the care given to

assessing all possibilities, there are invariably going to be aspects that get overlooked.



One glaring issue that has not received much consideration at all is the concept of how

the losses in the miter bend could change if the input mode is not a pure HE 1 mode.

The lack of attention to considering the effect of higher order modes (HOMs) at the

input of a miter bend is not exclusive to ITER as no rigorous analysis has been shown

anywhere trying to demonstrate any possible effects or to discount the need to consider

the HOM content. Now, it should be mentioned that the above statement is not entirely

true. A 16%/84% mixture of HE12 and HE I has been considered for some time, since it

is a good approximation of the TEMoo mode which can propagate through a miter bend

with virtually no loss [33], however a complete formulation of the aforementioned

problem has yet to be completed. This is despite the fact that it is known that a Gaussian

beam from a gyrotron injected into a corrugated wave guide will exhibit a minimum of

about 2 % HOM generation [34]. More realistically, the HOM content is often several

percent, and can even exceed 10 %. As such, we will explore the effect of HOMs at the

miter bend by using a numerical approach and by considering previously established

analytical expressions.

4.1 Determining the Effect of HOMs on Miter Bend Losses

through Numerical Simulation

In the previous chapter, when a numerical approach was needed, a commercial electro-

magnetic solver like HFSS was chosen. In this case, we are not particularly concerned

with obtaining the complete solution that includes all asymmetric modes, i.e. it is suffi-

cient to solve the problem in the context of other theoretical work pertaining to miter

bend losses, and commercial solvers are typically quite slow to go along with the other

downfalls discussed in Chapter 3, thus an alternative is desired. As a result, we opted to

use an in-house code, developed by Michael Shapiro, to solve the mathematical formula-

tion of this problem.



Formulation of the Numerical Code

To solve this problem, the numerical code should take an input in the form of a mode mix

of a dominant HE 1 mode combined with some amount of a parasitic higher order mode

(HOM) such as HE12 . We must recognize that it is not purely the amplitude of the modes

that is important, since their phases also need to be considered. This task can be simpli-

fied by combining the two phases into one parameter indicating the phase of the HE 12

mode relative to the phase of the HE,1 mode. This mode mix must then be propagated

through a miter bend-like geometry. The list of such geometries includes the full miter

bend, the waveguide gap, and the waveguide cross; however for this application we

consider a different geometry. We introduce a geometry herein referred to as the im-

proved gap. This improved gap geometry retains the main properties of the gap, in that

we only consider the symmetric HEin modes, however the waveguide walls continue into

the gap region. In Figure 4-1 we can see that the improved gap geometry is essentially

equivalent to removing the mirror of the miter bend and rotating one of the miter bend

arms by 900. Thus the loss measured across the improved gap is the same as the mode

conversion loss in the miter bend and there is no need to divide the loss by two like we

would in the case of the simple gap. Therefore, the improved gap geometry eliminates

the need for another assumption that may or may not be correct across the whole range of

sizes, frequencies, modes, and types of waveguide.

Figure 4-1: A - Top view of a miter bend, B - Improved gap geometry
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We now consider the formulation of the problem for this numerical code. For these

calculations, we consider the specific case of a parasitic HE1 2 mode, though we recognize

that any mode could be selected.

We begin by writing the fields for the mode mixture:

E(r)= CiJo(l r + C2 Jo(•2 r exp(jpl) , r<a (4.1)

where C, is the amplitude of the HE, 1 mode, C2 is the amplitude of the HE1 2 mode and

(12 is the relative phase. The Bessel function zeros are v, = 2.405 and v2 = 5.520. We

recognize that both modes are axially symmetric, therefore there is only an r dependence,

and that the fields are confined within a waveguide of radius a, thus E(r) = 0 for r > a.

The above fields are expressed in complex form, and for the purpose of calculations, it is

preferable to express the fields as a real amplitude and phase:

c,2 j. C1 222 2V2A(x, y) = jC2J i r + 2CIJ ( rJC2JO ( r COSPl2 )+ CJ( r (4.2)aa a a

C2 0  ( 2 r sin V12

((x,y) = arctan (4.3)

CýJO(!1-r)+C2jO !2-r COSVl2

where r = x 2 + and A(x,y) = 0 for r > a.

The above array of amplitudes is placed within a larger square area with sides L. We

can imagine this square zone as being a large metal box which now has a hole in the

center where the above fields are contained. The fields within the metal region of this

square will always be zero.

It is now convenient to represent the fields as a series of modes within this square

box:

A(x,y)ei(xy) = "D psin sin q(4.4)

where the coefficients Dpq are determined by applying a Fast Fourier Transform (FFT) to

the fields.



Now we must consider how to propagate the fields from one end of the improved

gap to the other. It is clear in Figure 4-1B that the waveguide walls are varying from

cross-section to cross-section while crossing the gap. We therefore split the gap region

into a finite number of steps and propagate the fields one step at a time. Figure 4-2

illustrates how the waveguide boundary changes as the gap region is crossed. We see that

as the gap region is first entered, there is a small region on the side that is no longer

confined by the waveguide. As we proceed further into the gap, this slot grows bigger

and bigger until the halfway point where we could perceive a situation analogous to the

waveguide cross in that there is a waveguide cutting through perpendicular to the direc-

tion of propagation. After the halfway point, the slot grows smaller until it is once again

non-existent at the far end of the improved gap.

k

Figure 4-2: Variation in the boundary while crossing the improved gap

As previously mentioned, the fields within the metal region of the cross-section must

be identically zero. This will be the case for each cross-section; however we note that the

fields will be allowed to have a non-zero magnitude within the slots on the sides.

Let us now explore how the fields are propagated at each step. The propagation dis-

tance for each step will be Az = 2a / N, with N being the total number of steps to cross

the gap region. Recall that the fields are represented as a series of modes of the square

M* I)

M* M* M*



cavity, shown in Eqn (4.4). The propagation constant for each mode is therefore defined

as:

kzpq = k2  (4.5)

where k= olc.

We now propagate these fields by one step:

Aej = D sin( ) sin( exp(jkz, Az) (4.6)

This field solution though is not complete since there is still the outstanding condi-

tion stating that the fields must be zero within the metallic region. To account for this,

we must first take the inverse FFT of the series of modes, returning to the domain of an

array of field amplitudes and phases. We declare a new function Ae'¶1) whose fields

have been truncated according to the aforementioned criterion. The loss due to truncation

from propagating across the first step is:

Af 2dxdy - JAIdxdy
T 2 ( (4.7)

A()dxdy
We then take Ae - l0) and as was the case with our initial function, we represent it as

a series of modes of the square box by taking the FFT. This function is then propagated

to the next cross-section where we take the inverse FFT, truncate the fields and calculate

the loss once again. This process is repeated step-by-step until the whole improved gap

region has been traversed and we obtain a final function A(x,y)eij'(x'Y)(N). This final

function is then decomposed into a series of HE,. modes.

The result of each simulation can be broken down into three components: HE,1

transmission, output power appearing in higher order modes, and a truncation loss that is
N

defined as TGAP = Tn.
n=1



4.1.2 Results

We now look at the results obtained using the numerical code that has been described.

When running the code, we supply the ratio of the parasitic HOM content and this mode

mixture will be solved across the entire range of relative phases. For all simulations, we

consider the case of the ITER miter bends with a = 31.75 mm at 170 GHz. Figure 4-3

shows the HE11 output for an input mode mixture containing 3 % HE12 . This figure

illustrates the dependence of the HE,1 content of the output on the relative phase of the

parasitic mode. We see that the amount of HE 11 power varies sinusoidally with the

relative phase. In Figure 4-4, we see how much HE1I power is lost, i.e. HE11 power in -

HE 11 power out, as a function of the amount of parasitic mode content. We see in the

figure that as the parasitic mode content increases, the loss can diverge more and more

from the value given a pure input mode, both above it and below it; however, it is impor-

tant to notice that the average value still remains approximately the same.
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Figure 4-3: HE,1 power at the output vs. the relative phase between the dominant HE,, mode and the

parasitic HE1 2 mode for an input containing 3 % HE12.
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Figure 4-4: Power lost from the HEu mode at fixed relative phases as a function of the percentage of

parasitic mode content at the input assuming a 1 MW input power

4.2 Analysis of Mode Mix Input Using Scattering Matrix

Coefficients

The numerical simulations of the improved gap have demonstrated a new methodology

for determining the losses in a miter bend. However, it is important to be able to bench-

mark the above results to ensure that they agree reasonably well with the gap theory, as

we should not expect any serious deviation except for the factor of two that relates the

losses in the two geometries. Therefore, using the analytical expression for the scattering

matrix coefficients from [31], we can perform a similar analysis for miter bends with a

parasitic HOM at the input; however, in this case, we are once again considering the

simple gap geometry. If the agreement between numerical and analytical results is good,

this analytical approach can then be used to elaborate on the results of the previous



section since it is much easier to account for different amplitudes, phases, and modes

with an analytical formula.

When solving using the scattering matrix coefficients, the problem is formulated in

the same way as it was for the numerical code using Eqn (4.1); however in this case, we

are not concerned with any field values. Thus, in solving the problem, we only need to

determine the various amplitudes of the individual eigenmodes at the output as a function

of the input amplitudes. If we assume an input of the form:

F1 = A I', + A 2 y,2 e (4.8)

where VI and V2 are the eigenfunctions representing the HE, 1 and HE 12 modes respec-

tively and (p is the relative phase of the second mode with respect to the first. The output

will then be:

F2 = (SnAI + Sn2A2eJ 'n (4.9)

where the scattering coefficient S,,, representing the coupling between y/m at the input

with ,. at the output for the simple gap geometry, is defined as [31]:

S X 1-(X / ka) 2 j xJ( (x)expj2a(x2 )/(2ka2)'dx (4.10)
S2-(XX/ka) 2 0 (X2 -X)(x2 -X)

with Xm and Xn being the respective Bessel zeros.

Solving the integral in Eqn (4.10) is no simple task. In order to obtain the scattering

matrix, it was necessary to use a mathematical solver, such as Maple, that has the ability

to perform numerical integration. Once this was complete, we could enter the scattering

matrix of complex constants into MATLAB and use Eqn (4.9) to solve the problem of a

dominant HE 1 mode with a parasitic HE12 mode propagating across the simple gap.

Figure 4-5 plots the magnitude of the scattering coefficients for HE, 1 and HE 12 inputs for

the first 20 output modes. Based on the result, we should expect to see the most mode

conversion to the HE16 mode.
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Figure 4-5: Scattering coefficients to mode HE,. at the output for the HE11 and HE12 input modes

4.2.1 Comparison of Numerical Simulation and Analytical

Approaches

To benchmark the numerical simulation results, we recreate the result of Figure 4-3 using

the scattering coefficients, and plot both results in Figure 4-6. We first must recognize

that while it seems like there is a large deviation between the results, this is not actually

the case since we are considering two different geometries. Since the analytical formula

is for the simple gap and not the improved gap, we expect the loss to be doubled. In both

cases, the input HE11 power is 0.97, therefore if we consider the values at 00 phase, the

simulation shows a loss of (0.97-0.9689) = 0.11% total power, while the analytical

formula indicates a loss of (0.97-0.9668)/2 = 0.16% total power. While there may be a



small deviation in the loss numbers in the simulation, we see though that the trends are

preserved quite accurately. In the scope of this problem of considering the effects of an

input with a parasitic HOM, it is the trending that is most important, and the simulation

code has good agreement with the analytical formula in this regard.
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Figure 4-6: Comparison of the result of the numerical simulation and analytical formula for 3 %

HOM content at the input

4.2.2 Results and Discussion

Since the trends will be the same in the case of the numerical simulations and the analytic

formula, we can introduce some new results that are more easily generated using the



scattering coefficients. As was the case with the numerical code, we solve for the ITER

miter bends with a = 31.75 mm and a frequency of 170 GHz.
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Figure 4-7: Dependence of the HE11 transmission on the amplitude and relative phase of a parasitic

HE12 mode

We can summarize the overall effect of the parasitic HOM at the input by the results

in Figure 4-7. We observe that the amplitude of a HOM essentially determines the size

of an error bar that could be put on loss of the miter bend, with the actual value depend-

ing on the relative phase. We also must realize that even a small amount of HOM content

can have a fairly significant effect on the loss in the miter bend. For example, consider-

ing the case of 2 % HE12 at the input, if the relative phase is such that the loss is

maximized, the miter bend would have a mode conversion loss that is 46 % larger than

the loss assuming a pure HEll input. This result will obviously have consequences.

First, this has a major impact on bridging the gap between experiment and theory.

Depending on the situation, the result of considering HOM inputs can be either good

news or bad news. In situations where there is a discrepancy between theory and experi-



ment, the presence of some HOM content in the transmission line can actually serve as a

possible explanation for why experimental measurements do not match theoretical

estimates. On the other hand, if there is good agreement between experiment and theory,

the HOM content introduces uncertainty as to what the true expected theoretical value is,

meaning that the measured value could simply be matching an incorrect theoretical value.

We also expect that such a result has an impact on the design of millimeter wave trans-

mission lines since the uncertainty in the miter bend loss will be reflected in the total loss

estimate and possibly higher losses could also result in more heating of the transmission

line.

In addition to simply analyzing the transmission and loss of the dominant mode, we

can also consider how the power is lost. In the gap geometry, lost HE,1 power can appear

either as HOM content at the output or in power that fails to traverse the gap. In a miter

bend, this latter term generates power in very high order modes that are absorbed just

upstream or downstream from the bend. In Figure 4-8, we see how the power that fails to

traverse the gap is affected by the amount of HOM content at the input. Again, there is a

range of possible values and the curves that are plotted correspond to the relative phases

that result in the maximum and minimum transmission. Unlike the case of the HE 11 loss,

we see that the average power failing to traverse the gap does not remain constant and

instead increases with increasing parasitic HOM content at the input. This result also has

major consequences on the design of transmission lines with respect to heat dissipation.

As previously mentioned, this high order mode power will cause significant heating in

the region around the miter bend. This result proves that it is not acceptable to simply

assume a pure mode since given any HOM content at the input, we now expect there on

average to be more heating. When it comes to accounting for heating, it is much more

advisable to design a system around the worst-case scenario. Here we see that for as little

as 4 % HOM content at the input, the power being absorbed into the line could as much

as double. If this were not taken into consideration and proper safety margins were not

built into the line to account for heating, then this excess power could have quite a

serious effect if it were sufficient to result in sag or deformation of the line in any way.
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4.3 Summary

A new technique for determining the losses of miter bends was introduced. This numeri-

cal code considers an improved gap geometry which is more similar to an actual miter

bend compared with standard gap theory.

This numerical code, in addition to the analytical scattering coefficients from stan-

dard gap theory, was used to determine the effect of having an input mode to a miter bend

consisting of a dominant mode and a parasitic higher order mode (HOM). We found that

the transmission through the miter bend was a strong function of both the amplitude of

the parasitic HOM as well as its phase relative to the phase of the dominant mode. While



the average transmission of the dominant mode remains unchanged with increased HOM

content, the possible values of the loss can diverge more and more from the expected

value, a result that introduces uncertainty into the validity of any experimental measure-

ment. At the same time, when the parasitic HOM content at the input increases, the

power in very high order modes will increase on average, which will result in more

heating around the miter bend. The effects of parasitic HOMs should therefore be taken

into consideration in the design of millimeter wave transmission lines.



Chapter 5

Measurement of Miter Bend Losses

Up until now, there has been much discussion about the nature of losses in transmission

lines. The miter bend has been established as a major contributor of the overall loss in

transmission line systems, and the theory of losses in miter bends has been considered

from several different perspectives. Many interesting theoretical results about miter bend

losses have been presented, however despite all this progress, there still remains no

absolute, unequivocal theory for the exact amount of loss in a miter bend and the nature

of such losses. In these types of situations, when the theory can only be considered

approximate, experimental results can prove to be a very effective tool. Even the rough-

est of measurements can generally at least confirm that a theoretical prediction is in the

correct ballpark, while a very careful and precise experimental campaign can go a long

way in proving or disproving any theoretical work.

With this in mind, we consider the ITER project. Being such a large and costly in-

ternational collaboration, it puts a lot of pressure on each of the individual engineering

teams assigned to their respective systems. When one team's system depends on the

output of another's for example, it is important that this system adheres to the guidelines

and specifications laid out in the design. The transmission lines for ITER's ECH system

are a perfect example since they are fed power from the gyrotrons that are the responsi-

bility of a separate engineering team. The effect of higher order modes (HOMs) in the

transmission line was considered in the previous chapter, with the result being that they

have the possibility to drastically increase the loss. So while there is a specification on

the quality of the gyrotron beams, this is a factor that is out of the control of the team

responsible for the transmission lines, thus introducing some uncertainty.



At the same time, the transmission line team has its own set of specifications. Ac-

cording to the ITER Detailed Design Document Section 5.2, the transmission loss from

the gyrotron sources to the plasma, which includes the transmission lines and the ECH

launcher, is limited to 17 %. In Chapter 2, the losses of the transmission line alone were

shown, and were already quite close to this imposed limit. As such, it is very important

that the loss in every component be kept to a minimum. In addition, with relatively little

margin for error, the loss of each component should be known with great precision. We

need to look no further than the miter bends to illustrate this point. If the gap theory is

underestimating the loss by as little as 0.5 % per miter bend, the transmission line could

already be over the limit. If that were the case, it would be imperative that the design

team know so that a redesign of the transmission line could take place. Therefore, it is

very important that experiments are undertaken to precisely measure the losses in these

components and ensure that all theoretical predictions are correct.

While it may sound relatively straightforward, it is no simple task to measure the

losses in the ITER transmission lines. First, there are only so many options with regards

to equipment for measurements at millimeter wave frequencies. Secondly, even though

we have been constantly referring to the miter bends as high loss components, this is only

relative to the other transmission line components. For such large, overmoded waveguide,

the loss per miter bend is actually quite small, making it increasingly hard to obtain an

extremely accurate result.

One way to measure the losses of transmission line components is to do so using

high power sources [35]. Such measurements allow for several other ways of measuring

the loss; however, due to the source, there is doubt as to the purity of the input mode and

this is also generally a long and laborious campaign. As a result, we will discuss a couple

of cold test (low power) techniques for measuring low loss transmission line components.

We will first consider the case of a smaller test transmission line to illustrate these

techniques before tackling the measurement of the prototype ITER ECH transmission

line.



5.1 Low Power Measurement of Transmission Line Losses

The following section is adapted from a 2008 paper submitted to the International

Journal of Infrared and Millimeter Waves by S.T. Han et al. with contributions from the

author of this thesis.

We now introduce two techniques for low power testing of transmission line compo-

nents: a coherent technique using a vector network analyzer (VNA) and an incoherent

technique using a radiometer. The losses were measured in two separate transmission

lines: the prototype ITER ECH 170 GHz transmission line which has previously been

discussed in this thesis, and a smaller 140 GHz corrugated transmission line which is

used for a spectroscopy application, built by Thomas Keating. The reason for introduc-

ing this second "test" transmission line is that, as established in Chapter 2, the loss in a

miter bend is dependant on the value of a/A for the particular transmission line, thus the

test line is a good way of proving the effectiveness of the measurement techniques before

tackling the measurement of the extremely small loss of the ITER transmission line.

5.2 Measurement of 140 GHz Transmission Line

5.2.1 Coherent Technique

We first consider the coherent technique. For this measurement, and for any subsequent

measurement using a VNA, we use an Agilent E8363B PNA. For this 140 GHz trans-

mission line, we attach WR8 (90-147 GHz) millimeter wave extension heads from

Oleson Microwave Labs which launch a TE10 mode in the rectangular waveguide.

For the experimental setup, we begin by attaching corrugated horns and rectangular

to circular waveguide adapters at the two millimeter wave heads in order to launch an

HE 11 mode in the corrugated waveguide at the transmitter and convert back to the TElo

rectangular mode at the receiver. We next insert two hollow dielectric waveguides

between the tapered horns and the corrugated waveguides to damp the unwanted higher

order modes that are also generated at the HE,1 mode launchers and tapers. The hollow



dielectric waveguides are tubes made from G10 and have an inner diameter of 12.7 mm,

a thickness of 2 cm, and are each 10 cm long. If the loss in the tube wall is large enough

for the tube to be considered infinite in radial extent, then the Gaussian-like mode in the

hollow dielectric waveguide will be identical to that in the attached corrugated waveguide

[19]. The baseline setup also consists of 1.5 m of straight corrugated waveguide and a

miter bend.

To determine the loss, a device under test (DUT) is inserted and the DUT loss can be

determined by calculating the difference between the loss in the total system and the loss

of the baseline system. The experimental setup for this measurement is shown in Figure

5-1. The DUT consists of 3 miter bends and 1.7 m of straight corrugated waveguide.

Figure 5-1: Experimental setup for the coherent technique using a VNA. Device under test (DUT) is

shown between A and B

The loss measured for the DUT was 0.9 dB at 140 GHz, shown in Figure 5-2. This

measurement was reproducible within ± 0.2 dB. The loss per miter bend is therefore 0.3

dB and counting both systematic and random error the error bar on the loss of each miter

bend is ± 0.1 dB.
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Figure 5-2: Loss for DUT consisting of 3 miter bends measured using the coherent technique

5.2.2 Incoherent Technique

We next consider an incoherent technique using a radiometer. The radiometer is used to

measure the transmission losses of incoherent thermal radiation, or equivalently the

increase in radiometer noise temperature when a transmission line is inserted into the

radiometer field of view of a black body of known temperature.

The radiometer consists of a 137 GHz local oscillator and intermediate frequency

amplifiers of 2 GHz bandwidth, thus allowing for measurement of radiation from a black
body between 135 and 139 GHz. In this experiment, the black body is a liquid-nitrogen

cooled 30mm thick eccosorb sheet [36].

A corrugated horn provides an HE11 mode field-of-view that was coupled to the
transmission line diameter by a hollow acrylic conical transition. A chopper and lock-in



amplifier allow for stable phase sensitive detection of the change in measured receiver

noise temperature which is proportional to the insertion loss of the DUT. The experimen-

tal setup for this technique is shown in Figure 5-3.
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Figure 5-3: Schematic of the experimental setup for the incoherent technique using a radiometer

The loss is determined by comparing the detected voltage with and without the DUT over

the frequency range. The result using the incoherent technique here indicated a loss per

miter bend of 0.22 + 0.1 dB, agreeing relatively well with the loss measured using the

coherent technique. The transmission line has an a/1 value of -3 which, according to the

gap theory, should have a loss of 0.17 dB per miter bend. The measured losses were

slightly higher; however the theory value is within the error bars of the measurements.

5.3 Loss Measurement of ITER Transmission Line

Compared to the test line, the losses in the ITER line will be significantly smaller since

the 63.5 mm diameter 170 GHz line has an a/A of -18, corresponding to a theoretical loss

of only 0.027 dB. With such a small expected loss, the experimental equipment must be

very precise to be able to measure it. At the outset, both techniques were considered,
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however the BWO which was to be used for the incoherent technique proved to be too

unstable for the precision that is required to make this measurement, therefore we only

consider the results of the coherent technique for the ITER transmission line.

For this measurement at 170 GHz, a set of WR5 (140-220 GHz) millimeter wave ex-

tension heads from Oleson Microwave Labs are used in conjunction with the VNA. The

approach to measuring the loss will be the same here: measure a baseline system, insert a

DUT and determine the differential loss.

Figure 5-4: Experimental setup for the loss measurement of the 170 GHz ITER transmission line

using a VNA

For the ITER waveguide, the baseline setup consists of a series of tapers, adapters

and a phase shifting waveguide to convert the fundamental mode in the WR5 rectangular

waveguide into an HE11 mode in 20.32 mm diameter circular corrugated waveguide as

well as a dielectric filter to suppress higher order modes. The experimental setup is

shown in Figure 5-4 where the DUT consisting of 2 miter bends, 3 sections of straight

corrugated waveguide each 1 m long, and 2 corrugated uptaper sections going from 20.32

mm diameter to 63.5 mm diameter is inserted between points A and B. Initially, the



measured loss of the DUT, shown in Figure 5-5, appeared to be much too large; however,

we then considered that there was possibly additional loss by atmospheric effects caused

by the high water absorption nearby in frequency at 183.3 GHz. After accounting for this

extra factor, the loss per miter bend was determined to be 0.05 + 0.02 dB. While this loss

agrees reasonably well with gap theory value of 0.027 dB, as was the case with the test

transmission line, the loss is higher than the theoretical prediction.
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Figure 5-5: Measured loss of the DUT for the 170 GHz ITER ECH transmission line

5.4 Summary

Two distinct techniques have been presented for measuring the loss in millimeter wave

transmission line components. For the same device under test, both techniques yielded

very similar results. In all three cases, which included measurements using both tech-

niques as well as measurements on two separate transmission lines, the loss per miter

bend was found to be larger than the theoretical prediction offered by the gap theory;

however due to some uncertainty in the measurements, it is difficult to say definitively



whether the difference can be attributed to a deviation in the experiment or an incorrect

prediction from the theory.



Chapter 6

Measurement of Mode Conversion in
ITER Miter Bends

In the previous chapter, a couple of techniques for measuring the loss through a millime-

ter wave transmission line were discussed. While these techniques can yield some very

valuable results, there is at least one piece of information that cannot be obtained from

the methods, and that is information about the mode content. Whenever a gap geometry

has been considered, the lost power either fails to traverse the gap or appears as higher

order modes (HOMs) at the output. In the case of the miter bend, when we neglect the

tiny Ohmic loss, the power must be accounted for in higher order modes at the output or

as very high order modes at either the output or the input. In order to delve into this

problem, a new approach is required.

6.1 Preliminary Measurement

Before beginning a full blown measurement campaign, it was first advisable to run

some preliminary measurements and to determine the feasibility of such measurements.

The goal is to measure the mode pattern of the transmission line before and after a miter

bend to see if there is any noticeable deformation of the field pattern, indicating that some

mode conversion took place in the bend. To do such a measurement, we take the setup

used for VNA measurement of the ITER ECH transmission line described in the previous

chapter and remove the second set of tapers and filters, thus leaving an open ended 63.5

mm diameter at the receiving end. We can now attach a receiving antenna to the receiv-

ing head of the VNA so that we are only measuring the fields at a very specific location.



To act as the receiving antenna, we use a piece of cut waveguide, i.e. a simple straight

waveguide section without a flange.
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Figure 6-1: Results of preliminary 1-D scans of the field pattern within the ITER transmission line

comparing the pattern for the launcher alone with the pattern for the launcher and a miter bend

Since this is a preliminary measurement, with all adjustments being done by hand, it

is sufficient to simply scan along the central axis of the waveguide to see a cross-section

of the field pattern. If there is any visible mode conversion, it should be able to be seen

on these 1-D cross-sections. Thus the head was positioned accordingly and was moved

in 5 mm increments across the aperture of the waveguide. At every point the VNA

measurement was recorded for a few frequencies, providing us with the field profile. The

results of these preliminary scans, with and without a miter bend, are shown in Figure

6-1. We see that there is a noticeable difference between the two results, particularly

when considering the figures on the right which show the differential between measure-

ment and the Jo Bessel, i.e. a pure HE,1 mode. The data for the launcher appears to just

have some random measurement noise, which is expected, but still matches well with the

HE,1 field pattern; however the field pattern after the miter bend has a noticeable dip

below the HE,1 value in the center and is larger along the edges. Figure 6-2 shows the

---------



amplitude of the HE,1 and HE12 modes plotted on a linear scale. If we apply the result

shown in this figure to the results of Figure 6-1, then the mode conversion that is seen in

the presence of the miter bend could be consistent with a small amount of HE 12 mode

content that is out of phase with the HE11 mode, i.e. its amplitude is negative at the center

of the waveguide.
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Figure 6-2: Amplitude of a HE11 and HE12 mode along the central axis of a 63.5 mm diameter

waveguide on a linear scale with the power in each mode normalized

These preliminary results are quite promising so we will therefore pursue much more

accurate and rigorous measurements of the mode content of the ITER transmission lines.



6.2 Constructing the Experiment

The first step to this measurement campaign involves setting up the required equipment

to perform the measurements. We recognize that in order to accurately and correctly

determine the mode content in the transmission line we will require full 2-D scans of the

waveguide aperture.

In order to be able to do these measurements with good precision, repeatability, and

speed, a scanning system is needed. Since no such scanner was already available, the

first task was to obtain the parts and construct the system. The scanner parts were

purchased from Velmex, Inc. and consisted of the following:

* 3 BiSlide Assemblies, each containing a screw and carriage assembly allow-

ing for motion along an axis

* 3 step motors, which, along with the pitch of the screw, allows for motion as

precise as 6 microns per step

* VXM Motor controller which allows for manual motor control as well as

control via a computer interface

Using the supplied joints and brackets, the assemblies were connected together al-

lowing for scanning along all three axes. As was the case for the preliminary

measurement, the VNA will be used to measure the data, thus we construct a special plate

that allows us to mount the receiving head of the VNA on to the vertical axis of the

scanner. The constructed scanner system along with the VNA is shown in Figure 6-3.

This figure shows the setup for another application for which we used the scanner:

measurement of a gyrotron's internal mode converter.

In Chapter 4, it was mentioned that the gyrotrons output a Gaussian beam when dis-

cussing the issue of higher order modes in the ITER transmission lines. The internal

mode converter serves to convert the power from the gyrotron's mode of operation in the

cavity, in this case a TE22,6 mode, into a (hopefully) perfect Gaussian beam. This though

is no easy task, so the scanner is an excellent tool in measuring an accurate profile of the

output beam and determining if it is elliptical or has significant sidelobes to validate the

design of the mode converter. While these measurements produced interesting results,

they are not pertinent to the rest of the matter contained in this thesis and are omitted.



Figure 6-3: Experimental setup of the 3-axis scanning system, shown for the measurement of a

gyrotron internal mode converter

The final component of the setup, and arguably most important, is the computer interface.

Using a program such as LabView, we are able to interface with both the motor controller

and the VNA. The interface of the LabView code which was developed for the scanner

is shown in Figure 6-4. The interface allows all necessary VNA options to be set on the

computer, such as the number of sweep points, the frequency range being measured by

the VNA, the parameter and type of measurement to be performed (Sll/S 21 and

Phase/Magnitude), as well as the discrete frequencies of interest to the user. The scan

parameters such as the distance between each step in the measurement plane and the

number of measurement planes can also be set. When run, the code will move the motors

step-by-step through the measurement grid defined by the user's settings. At each point,

the VNA data is accessed, and the measurement at each user-selected frequency is written



to a file. This output file is formatted such that it is easily read by a program like

MATLAB for the purpose of data analysis.

Figure 6-4: Interface of the LabView code developed for the 3-axis scanner system

6.3 Evaluating Measurement Accuracy

When approaching the measurement of the ITER waveguide, there are a number of things

that we must take into consideration to ensure that all data being taken is valid.

Most importantly, we must consider any inherent inaccuracies in the VNA measure-

ments. We recognize that unlike the measurements outlined in Chapter 5, calibration of

the VNA is not a factor here. Since we are only concerned with determining the mode



content, each data point is only considered relative to other data points on the same

measurement plane. The power measured for any plane can simply be normalized in

order to make all measurements consistent. However, to ensure the integrity of the data,

we must know whether or not there is a significant drift in the VNA data over the time

frame of a single measurement plane. Figure 6-5 shows how the measured magnitude

and phase values of the VNA vary over the course of 85 minutes with a data point being

recorded every second. Over this time frame, the magnitude drifted approximately 0.02

dB while the phase drifted approximately 10. An average 50 x 50 measurement using the

scanner code takes approximately 25 minutes to run, thus any drift would be one third of

the aforementioned values and is negligible. The results of Figure 6-5 are also useful in

demonstrating the accuracy of a VNA measurement since we can see a small fluctuation

in the measured values over a very short time frame. From the figure, we determine that

this fluctuation is ± 0.025 dB for magnitude measurements and + 0.20 for phase meas-

urements.

Magnitude Phase

t (minutes)

Figure 6-5: Measurement of the drift in VNA data

We must also consider that when the scanner system moves around the grid, the cables

connecting the receiver head and the VNA body are being contorted, which could possi-

bly introduce some uncertainty. In Figure 6-6, we see that the VNA measurements are

quite repeatable in spite of the fact that the cables were contorted between each meas-

urement.
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Figure 6-6: Repeatability of VNA measurement

A final issue to consider is how the VNA measurements are affected during a 2-D scan

by the physical surroundings. When doing ITER measurements, we want to make sure

that we do not have any issue with power reflecting off various surfaces and introducing

unnecessary error into the results. As a result, we place a large eccosorb sheet around the

cut waveguide attached to the receiver head to prevent any reflections from the metallic

face of the VNA receiver as well as a small pyramidal piece to cover the flange of the

waveguide. We can then measure S11 of the system to determine if there is any change to

the amount of reflection as we scan across the entire measurement plane. Figure 6-7

shows the side view of the 2-D surface plot representing the S,1 values measured as the

scanner moves from location-to location in the measurement plane. While there is a

variation of about 0.6 dB in the measured Sil, this is actually incredibly small, since even

if the scanner is static at the aperture of the ITER waveguide, there is an inherent fluctua-

tion of the same order. However, the real reason we know that this small fluctuation is

not due to the scanner system is that there is no pattern to the variation in SI. If there

was an effect due to the scanner, we would expect to see a peak when the cut waveguide,



which is the only metal surface facing the ITER waveguide, was at or around the center

of the ITER waveguide where the field intensity is peaked; however, we see no such

effect.
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Figure 6-7: Measured change in S11 over the course of a full 2-D scan

We can conclude therefore that these measurements should provide accurate data and we

do not necessitate any changes to the experimental setup.

6.4 Measuring the ITER Waveguide

While certain aspects of the setup have been touched upon, we summarize here the

specifics of the setup for this measurement. We begin with the 170 GHz Oleson millime-

ter wave VNA transmitting head which is connected to a series of phase shifting

OM%
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waveguide and uptapers which were described in the previous chapter whose purpose is

to generate an HEli mode in the 63.5 mm diameter corrugated waveguide. For the

purpose of these measurements, we refer to aforementioned structure as the launcher.

Following the launcher, we attach the ITER transmission line components which may

include straight sections of waveguide, miter bends, or a combination of several of each.

The launcher and transmission line are fixed to an optical table with the open end of the

transmission line extending out past one side of the table. The 3-axis scanner is fixed to a

separate table and is placed in front of the open end of the transmission line. The receiv-

ing millimeter wave VNA head is mounted to the vertical axis of the scanner. A small

cut waveguide antenna is attached to the receiver to ensure that we are only measuring

the intensity at a particular location. In order to minimize the reflection of power off of

the scanner and back into the transmission line, we place eccosorb around the cut

waveguide. For each measurement, we manually step the scanner motors so that we are

measuring as near as possible to the center of the transmission. This is done more for the

purpose of minimizing the size of the measurement plane, since when analyzing the data,

routines can be developed to center the data more accurately.

We understand that when it comes to these measurements, there are a number of pos-

sibilities for the combinations of transmission line components that can be used and their

order. For completeness, it is important that we explore many possibilities, therefore

after the launcher we could have: nothing, one meter of straight waveguide, one meter of

straight guide followed by a miter bend, a miter bend only, a miter bend followed by one

meter of straight waveguide, and so on. We also consider that we have the ability to

obtain data in several planes, therefore we could measure as near as possible to the

aperture of the waveguide and again after the fields have propagated a distance out from

this location.

While figures for each setup could be shown, this would be far too cumbersome, so

in this section, only a few representative data plots will be shown, and analysis compar-

ing the various setups will be pursued in the following section.

Figure 6-8 shows a representative plot of the magnitude taken after the launcher sec-

tion. On the logarithmic scale, the shape matches up quite well with the HEli mode. We

see that the magnitude goes to zero at the edge of the waveguide, approximately ± 30



mm, which is to be expected since the corrugated waveguide only sees the metallic face

corresponding to the thickness of the ITER transmission line directly in front of it. We

do see an interesting halo effect around the edge of the waveguide which is likely a result

of diffraction along the edge. While this is interesting, in the context of determining the

mode content of the transmission line, we are only concerned with the data within the

walls of the ITER waveguide, thus we can simply truncate the noise that is seen outside

of the waveguide diameter.
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Figure 6-8: Surface plot in dB for a 2-D scan taken at the aperture of the launcher section

A 2-D phase measurement taken at the output of the launcher is shown in Figure 6-9. In
the case of the phase measurement, there are a couple of things that we observe. First, we
see that outside of the waveguide radius, the noise has a random phase which we are
again not particularly concerned with since we will truncate all data outside the
waveguide walls. Second, we notice that that the phase is slanted linearly in one direc-
tion. While it is flat, which is what we want to see, the slope makes it difficult to obtain
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useful data. The origin of this slope in the phase measurement is simply a factor of the

alignment between the waveguide aperture and the scanner. If the plane of motion of the

scanner is perfectly parallel with the aperture of the waveguide, then we would expect a

flat slope. However, in our case, the scanner is at an angle, which is very small but still

non-zero, meaning that at one end of the waveguide, we are actually measuring slightly

closer or further away than the measurement taken at the opposite end of the waveguide.

Since we know that propagation over a distance has a corresponding phase advance, the

effect of the misalignment is explained. As a result, the phase data is not particularly

useful if this error is too great since it is very hard to determine the actual flat phase

value; however, the phase measurements can definitely be used to verify the alignment.

For the majority of the analysis, we will only consider the amplitude of the measured

fields.
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Figure 6-9: Surface plot of the 2-D phase measurement after the launcher section



6.5 Analysis of Measurements

In order to extract meaningful information from the types of results shown in the

previous section, we must employ several data analysis routines. As such, several

MATLAB routines were created for this analysis to interpolate, shift, and normalize data

and to convert all measurements to a more meaningful linear scale. By running these

routines, comparisons can be drawn between the different measurements, even if the

power levels measured in each case are different.

Position (mm)

Figure 6-10: Comparison of the cross-sections of the measured field pattern at the output of the

launcher compared to a pure HE11 mode pattern
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Figure 6-11: Output of the launcher with and without the dielectric filter

As a first order of business, we are interested in seeing if the launcher is outputting a

pure HE11 mode. Figure 6-10 shows a comparison between the output of the launcher

and the HE11 mode and we can see that there is a noticeable difference. We see that the

mode pattern appears to be squeezed near the center, which could indicate the presence of

a higher order mode, or perhaps it could also be an artifact caused by the filter. There-

fore, we next look to see the difference in the field pattern if the dielectric filter is

included or not to see if it is filtering the higher order modes as expected. In Figure 6-11,
we see that when the filter is removed, there are a lot of fluctuations in the field pattern

with respect to the HE,1 mode pattern, which would tend to indicate that there is some

higher order mode content that the filter removes. At the same time, we still see a larger

peak at the center when the filter is included. This is not necessarily an artifact of the



filter, since we must take into consideration that by removing the filter, we have changed

the length of the system, and thus we expect the phasing to be different.

To further expand on this, we consider the case of adding a section or two of

waveguide after the launcher. When multiple modes propagate in the waveguide, we

recognize that the propagation constant of each mode is different, meaning that the

relative phase between the two modes changes as the mode mix propagates.

E
,, 0.6

0.4

0.2

-40 -30 -20 -10 0 10

Position (mm)
20 30 40 50

Figure 6-12: Cross-section of the launcher output with varying lengths of waveguide added

Essentially, Figure 6-12 shows how the phasing of the mode mix changes as it propagates

down the waveguide. The straight sections of waveguide should not be introducing any

mode conversion or other loss. As a result, we can discount the argument that the field

pattern at the output of the launcher without any waveguide is caused by anything other

than some amount of higher order modes. By only looking at the output with zero or one
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meter of waveguide, one could possibly draw the conclusion that the waveguide was

acting as a filter of sorts for the higher order mode contact since the field pattern after 1

m of waveguide looks a lot more like the HE 11 mode; however it is obvious in the meas-

urement after 2 m of waveguide that the higher order mode content is still present.

One way to approximate this higher order mode content is to simply plot various

mode mixtures and to see what percentage is necessary to obtain results similar to those

seen in the scans. To obtain a peaking at the center on the order of 10 %, we found that

the measurement data could be consistent with as little as about 0.5 % HE 12 mode con-

tent; however, that is assuming that the phasing is perfect to generate the pattern and that

no other higher order modes are present. Realistic initial estimates indicated that such a

pattern was likely consistent with over 1 % high order mode content, which could even

be upwards of 3 %. A more rigorous effort to determine this mode content will be

outlined in the following section.

The problem with this high order mode content output by the launcher is that it es-

sentially eliminates the possibility of doing any form of differential analysis to determine

the mode conversion caused by the miter bend. To be able to proceed with these meas-

urements, we must reduce or come close to eliminating the high order modes. One way

to do so is to simply increase the length of the dielectric filter. While this will reduce the

dynamic range of the measurements since the HE 11 mode will also be partially damped,

the high order modes will be damped much more severely. This is currently something

that we are pursuing.

While the presence of high order modes at the output of the launcher prevents us

from obtaining quantitative results on the mode content, we can still look qualitatively at

the effect of the miter bend. Figure 6-13 again appears to show that there is noticeable

mode conversion being introduced by the miter bend, especially considering that it is

plotted on the dB scale; however, this may also again simply be a result of the relative

phase of the HOM content. While it is possible to develop a technique to very accurately

obtain the mode content both before and after a miter bend, we still have to remember

that high order modes at the miter bend's input do have a serious impact on the mode

conversion through the miter bend, as was discussed in Chapter 4. Therefore, even with

those results, it would still be a difficult to claim a loss figure for the miter bend.
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Figure 6-13: Comparison of the output of the launcher with 1 m of straight waveguide and the

launcher with a miter bend

6.6 Mode Content Analysis

The ultimate goal of these measurements is to be able to determine the mode conversion

caused by the miter bend. As discussed in the previous section, the higher order mode

content already present in the line before inserting any miter bend prevents us from

obtaining an accurate final solution to that problem. Nonetheless, we can still attempt to

determine the mode content of the line as this will be an important part that needs to be

solved when we pursue a complete solution to the problem.

There are several ways we can approach the problem of decomposing the measured

intensities into the mode content ranging from iterative techniques to simply employing a

brute force approach to the problem. We consider the latter first.
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One relatively simple way to attack this problem is by taking a few modes, and solv-

ing across a range of different combinations to find which one best fits the given data, i.e.

a brute force approach. There are a few problems with this approach. First of all, we

must recognize that it is not simply the magnitude of the various modes that determines

the measured field pattern, it is also the phases of each mode, thus for every mode we

must sweep across two variables. The main problem is the computational time required.

Even if as few as three modes are considered across a handful of magnitudes and phases,

the number of computations required quickly jumps up, taking upwards of one minute. If

we introduced 100 new amplitude and phase combinations for a fourth mode, then the

required time would be well over an hour, and the problem quickly becomes unsolvable

in a reasonable time frame. If we limit the number of modes, we encounter a problem

similar to the problem with the TEo1 miter bend simulations in that we will fail to con-

verge on a single correct solution. This issue is actually already well documented in [37].

Essentially, in these situations, there exist several combinations of eigenmodes that will

produce similar matches to the given field pattern, and it is impossible to distinguish

which is correct without having more information. As a result, we must consider a

method that takes into consideration the phase information of the measured data.

Even if we are unable to obtain viable phase data to accompany field profile meas-

urements, we can use a phase retrieval code to extract this information from amplitude

measurements in multiple planes. In the case of the ITER measurements, we have

measured the output directly after launcher and after one and two meters of straight

waveguide, therefore we will apply the phase retrieval code to this data to obtain the

phase and determine the mode content being launched.



We have two arrays of measured amplitudes A, (x, y) and A2(x,y) representing the

values at plane 1 and at plane 2 respectively, which are separated by a distance L. We

assume an initial flat phase of zero at the first measurement plane, i.e. P, (x, y) = 0. We

recognize that the data at each plane can be written as a sum of eigenmodes m,,, such

that:

A(x, y)eJ (x ''y) = C,, exp( jOmn.)m (x, y) (6.1)
m,n

where the constants Cmn are determined by:

SA(x, y)eJ'(xY) .,mn (x, y)dxdy
Cmn= (6.2)J V/. (x, y)dxdy

For the assumed zero initial phase, we have 0mn= 0 . We begin by determining a first

set of coefficients Cmn,,) for the first plane. We can then propagate the fields at the first

plane to the second plane. Therefore:

A2 (x, y)exp(j 2 (x, y)) = C exp(jOm ) exp(jfmn L),,n (x, y) (6.3)
mn

where A will always represent the projected amplitudes and im,, is the propagation

constant of eigenmode Vm,,. We now replace the projected amplitude at the second plane

with the measured amplitude, though we retain the projected phase, and solve for the

series of eigenmodes and the set of constants:

Az (x, y) exp(j 2 (x, y)) = C( exp( f.mnL)y, (x, y) exp(j6O)) (6.4)
mn

S() A2 (x, y) exp(jpq2 (x, y))Vmn (x, y)dxdy
C) exp(j, eL) exp(J O) )d

V., (x, y)dxdy
(6.5)

We now propagate the above fields back to the first plane, resulting in an amplitude

A, (x, y) and a new non-zero phase pi1(x,y). The same process as described above is then

repeated: replace the projected amplitude with the measured amplitude, use the measured

amplitude and the projected phase to solve for the coefficients Cm,, and n,,, then propa-

gate the newly calculated fields back to the other plane. The iterative nature of this phase



retrieval code is clear. After each iteration, we calculate the value of a convergence

parameter, which we choose to be:

A = [Aeasured - Arojected ]2 dxdy (6.6)

Once this convergence parameter drops below the requirement established at the out-

set, we can determine that the calculated phase at each plane is accurate and we can use

this complete set of information to determine the mode content.

Using the technique that has just been described, we evaluated the mode content

from the launcher in the ITER waveguide. Using the data from 2-D scans right after the

launcher, after 1 meter of waveguide and after 2 meters of waveguide, we were able to

determine the mode content shown in Table 6.1. Depending on the measurement planes

that we considered, there was a small variation; therefore we estimate that there is

approximately 2 + 0.5 % HOM content.

Mode Power Phase

HE11  98.01% 00

HE31  0.14% 880

HE22  0.31% 2630

HE13  0.24% 3320

HE14  0.24% 2690

Table 6.1: Calculated mode content of the output of the launcher used for measurement of the

prototype ITER ECH transmission line

We can test this calculated mode content by plotting the fields and comparing the result

with the measurements of the ITER transmission line. This comparison is plotted in

Figure 6-14, and the agreement is quite good.
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Figure 6-14: Comparison of the retrieved mode content using the iterative code (blue circles) and the

data measured using the scanner system (red squares)

6.7 Summary

Preliminary 1-D scans of the field profile of the ITER transmission line with and without

a miter bend showed good promise that the mode conversion could be measured. As a

result, we constructed a 3-axis scanning system that would enable the measurement of

full 2-D field profiles. Testing of this system showed that we can obtain very accurate

and repeatable results.

Field profiles for the transmission line were measured for a variety of configurations

of waveguide lengths and with and without miter bends. After developing the analysis

tools to review this data, we quickly found that the high order mode content output by the

launcher was much higher than anticipated. Because of this higher order mode content,

100



we can not make a definitive assessment of the mode conversion resulting from the miter

bends, and a new longer filter was proposed to eliminate this higher order mode content.

Nevertheless, we worked to develop methods to extract the mode content from the

measurement data. By employing an iterative phase retrieval code, we were able to

generate a solution that provided a field profile which agreed reasonably well with the

experimental data.
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Chapter 7

Conclusion

7.1 Summary

This work has covered a broad range of topics with regards to the applications, theory,

and experimental measurement of millimeter wave transmission lines. Millimeter wave

transmission lines are an integral component in a number of important applications

ranging from nuclear fusion to spectroscopy to radar.

Unlike their lower frequency counterparts, the core of the millimeter wave transmis-

sion line is the structure known as a waveguide. Typically made out of metal, these

waveguides confine the fields within in a particular distribution that satisfies the bound-

ary condition known as a mode. These modes propagate down the waveguide and

encounter an Ohmic loss proportional to the square of the field along the walls.

Waveguides can come in all sorts of shapes and sizes, from rectangular to circular, and

when low loss is desired, waveguide with corrugated walls is preferred. Corrugated

waveguides propagate hybrid modes, having both longitudinal magnetic and electric

fields, such as the HEI1 mode, which exhibits the lowest loss. In transmission lines, to

reduce losses, it is advisable to use waveguide with a high radius to wavelength ratio

(a/X) for the frequency of the application. In these cases, the Ohmic losses are negligible

in comparison with the mode conversion loss of transmission line components such as the

miter bend. The loss in a miter bend is calculated from a theory that approximates the

miter bend geometry as a simple gap one diameter in length between two waveguides.

The loss of the gap is twice the loss in the miter bend since continuing the waveguide

walls to the location of the miter bend's mirror would effectively eliminate diffraction in

one of two planes.
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While the gap theory is widely accepted, there is no arguing that it requires several

assumptions. To determine its validity, we first explored via numerical simulation if the

analytical theory for the gap loss was correct. HFSS simulations of the waveguide gap

showed excellent agreement with theory; however, it is relating this gap loss to the loss in

a miter bend that is the biggest point of contention in the theory. Due to limitations of the

simulation code, it was impossible to obtain conclusive results for the miter bend geome-

try, though simulation at low a/X did agree reasonably well with the assertion of gap

theory that the loss in the miter bend is half that of the gap. We also found that mode

conversion favored the low order modes that shared symmetry with the input mode and

that due to the symmetry of the 900 bend, for a mode with an even azimuthal mode

number, modes with odd azimuthal mode number will have exactly the same amount of

power propagating forward through the output and reflecting back through the input.

We next considered the problem of what happens when the input mode at a miter

bend is actually a mix between a dominant HE1I mode and a parasitic higher order mode

(HOM). Using a new numerical technique that considers an improved gap geometry

which involves the continuation of the waveguide walls into the gap to where the mirror

would be located, we were able to show that the mode conversion loss in the miter bend

is strongly dependent on the amplitude and the relative phase of the parasitic HOM.

Even for a couple of percent of HOM content at the input, if the relative phase of the

parasitic mode is a particular value, the mode conversion loss could increase by about 50

%; though the average across all phases does remain about the same regardless of the

amount of HOM content. On the other hand, the loss into the gap, which corresponds to

very high order modes that will be absorbed into the transmission line near the miter

bends, will increase on average with higher proportions of HOM content.

We also explored several techniques for measuring the loss in millimeter wave

transmission line components. We first introduced a coherent technique using a VNA

and an incoherent technique using a radiometer to measure the loss in a miter bend, with

the measured losses being 0.3 + 0.1 dB and 0.22 ± 0.1 dB respectively for a line whose

theoretical loss is 0.17 dB. We next measured the ITER transmission line, whose pre-

dicted loss is 0.027 dB, and found the loss to be 0.05 ± 0.02 dB using the VNA
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technique. While all results showed relatively good agreement, it is still noticeable that

all measurements showed losses greater than those predicted by gap theory.

We next considered measuring the mode content of the ITER transmission line. To

accomplish this, we constructed an experimental setup consisting of a 3-axis scanner, a

VNA, and a LabView code. The 2-D field profiles measured using this setup are very

accurate and repeatable. Upon analyzing the results of various measurements of the HE,1

mode launcher and different combinations of waveguide sections and miter bends, we

found that even without any miter bends, there was a significant amount of higher order

modes within the line. Due to this HOM content, it is not possible at this time to deter-

mine with proper certainty the actual mode conversion caused by a miter bend. However,

using a phase retrieval code, we were able to calculate that the HOM content of the

launcher sections, including a small dielectric filter, is on the order of 2 %. In order to

decrease the HOM content, we will implement a longer filter that will further damp all

HOMs.

7.2 Future Work

There are a couple of areas in which work can continue on this project.

With regards to the miter bend simulations, if HFSS increases the mode limit on

waveports (which was supposed to happen when the latest version was released earlier

this year), then new simulations can be run for some larger values of a/k. This could

definitely help provide some more insight on the relationship between the loss in the gap

and the loss in a miter bend.

The rest of the work that we could pursue pertains to the experiments. When the

new filter is obtained, a new series of scanner measurements can be taken with the hope

that the launcher output will be very close to a pure HEI mode. If this is the case, then

the mode conversion in the miter bend should be possible to determine.

It would also be advisable to reconsider some of the original loss measurements.

The new filter could also yield an improvement in these measurements; however there is

also another factor that may improve these results. When setting up the scanner experi-

ment, we purchased longer VNA cables. The length of the VNA cables was actually a
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limiting factor in the original loss measurements and prevented the 20.32 mm - 63.5 mm

tapers from being included in the baseline measurement. Thus, any loss that these

components may have introduced is also included in the DUT loss which is attributed

purely to the miter bends.
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