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Abstract

This thesis presents a 3.6-GHz, 500-kHz bandwidth digital AE frequency synthesizer
architecture that leverages a recently invented noise-shaping time-to-digital converter
(TDC) and an all-digital quantization noise cancellation technique to achieve excellent
in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-
analog converter (DAC) structure is proposed as an efficient interface between the
digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to
create a digitally-controlled oscillator (DCO). An asynchronous divider structure is
presented which lowers the required TDC range and avoids the divide-value-dependent
delay variation. The prototype is implemented in a 0.13-am CMOS process and its
active area occupies 0.95 mm 2 . Operating under 1.5 V, the core parts, excluding the
VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108
dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase
noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz).

In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-pm CMOS for chip-to-
chip communications is presented. By leveraging the fractional-N synthesizer tech-
nique, this architecture provides a digitally-controlled delay adjustment with a fine
resolution and infinite range. The provided delay resolution is less sensitive to the
process, voltage, and temperature variations than conventional techniques. A new
AE modulator enables a compact and low-power implementation of this architecture.
A simple bang-bang detector is used for phase detection. The prototype operates at
a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution
and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.

Thesis Supervisor: Michael H. Perrott, Ph.D.
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

As the capability of the digital calculation keeps on improving in modern sub-micron

CMOS processes, there is increasing interest in developing digital approaches to assist

or even replace the analog functions that encounter design difficulties due to the de-

grading analog device characteristics such as decreasing gmro and supply voltage, and

increasing leakage current and variation. People have demonstrated some successful

results in various digitally-assisted analog subsystems including data converters, RF

transceivers, and phase-locked loops (PLL) [6][7][8][9].

Among various digitally-assisted analog techniques, the digital PLL has especially

become a very hot research topic in the past few years after it was demonstrated to

be able to meet the stringent wireless communication specifications [9][10][11][12][13].

However, existing low-noise digital fractional-N synthesizer techniques can only achieve

about a 50-kHz loop bandwidth that may be not wide enough for some new applica-

tions [9] [12]. Therefore, the goal of this research is to achieve a low-noise fractional-N

PLL with a wider bandwidth and a mostly digital implementation [14]. Furthermore,

we apply the fractional-N PLL technique to a new application: phase control of a

high-speed clock [15].

The remainder of this chapter presents an overview of this thesis. We begin

by narrowing the focuses of the thesis. Next, the proposed techniques are briefly

discussed with implementation highlights. After that, the contributions of this thesis

are summarized. Finally, an outline of the thesis is presented.



1.1 Area of focus

Digital PLLs have recently emerged as an attractive alternative to the more traditional

analog PLL, with recent results demonstrating that digital frequency synthesizers

with GSM-level noise performance can be achieved [9] [12]. One of the key advantages

of digital PLLs over their analog counterparts is that they remove the need for large

capacitors within the loop filter by utilizing digital circuits to achieve the desired

filtering function. The resulting area savings are critical for achieving a low-cost

solution, and the overall PLL implementation is more readily scaled down in size as

new fabrication processes are utilized. Also, by avoiding analog-intensive components

such as charge pumps, a much more attractive "mostly" digital design flow is achieved.

While the benefits of a digital PLL approach are obvious to many, there remain

basic questions regarding their attainable performance. In particular, can such struc-

tures achieve low jitter comparable to analog approaches? Can a high PLL bandwidth

be achieved to more easily support wide-bandwidth modulation and fast settling?

Can traditional voltage-controlled oscillators (VCO) be efficiently leveraged in such

systems? We attempt to address the above questions in the first part of this thesis.

In the second part of this thesis, we target a digital approach to phase control of a

high-frequency clock, which is essential to chip-to-chip communications. By leverag-

ing the fractional-N PLL technique, we create a high-resolution infinite-range delay

control scheme in a digital manner. In contrast, previous works rely on analog phase

interpolators to achieve fine phase resolution, which is again undesired in modern

CMOS processes [16][17][18][19].

1.2 Proposed Digital Frequency Synthesis Tech-

nique

A digital fractional-N frequency synthesizer is presented. This synthesizer leverages a

noise-shaping time-to-digital converter (TDC) [2] [3] [20] [21] and a simple quantization

noise cancellation technique to achieve low phase noise with a wide PLL bandwidth



of 500 kHz. In contrast to previous cancellation techniques [22] [23] [24] [25] [26], the

proposed structure requires no analog components and is straightforward to imple-

ment with standard cell digital logic. With the cancellation technique enabled, the

synthesizer achieves phase noise of -132 dBc/Hz at 3 MHz offset, and an integrated

phase noise from 1 kHz to 40 MHz of 204 fs rms at 3.67 GHz.

1.2.1 Overview

Figure 1-1 shows a block diagram of the proposed synthesizer. The high-resolution

digital phase detection is performed with a multipath gated ring oscillator (GRO)

time-to-digital converter (TDC) presented in [3]. In contrast to previous digital PLL

implementations [9], the digitally-controlled oscillator (DCO) is implemented as a

conventional LC voltage-controlled oscillator (VCO) with coarse and fine varactors

that are controlled by two 10-bit, 50-MHz digital-to-analog converter (DAC) struc-

tures. Both varactors are realized as accumulated-mode devices, and an additional

four-bit MIM capacitor bank is included in the VCO to improve its tuning range. A

unique aspect of the DAC implementations is that they are passive in nature and min-

imal in their analog complexity. Another interesting component of the architecture

is an asynchronous frequency divider which avoids the divide-value delay variation at

its output [22][24][26][27].

1.2.2 Quantization Noise Cancellation

Figure 1-2 displays the quantization noise cancellation circuit, which is completely

digital in its implementation. The goal of this circuit is to remove the noise introduced

by the dithering action of the divider, which is manifested in the GRO phase error

signal u[k] as a scaled version of the accumulated third-order AE quantization noise

x[k]. Proper scaling of x[k] must be performed before subtracting it from u[k], and

the scale factor is determined by a correlation circuit composed of a digital multiplier,

an accumulator, and a first-order IIR filter. Due to the high resolution of the GRO

TDC, the correlation feedback loop can be designed to have a reasonably fast settling
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Figure 1-1: Detailed block diagram of the proposed digital AE synthesizer.

time without introducing a significant amount of additional noise into the synthesizer.

Simulations indicate that this loop settles within 10 ps.
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Figure 1-2: Simplified view of the all-digital quantization noise cancellation.
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1.2.3 Digital-to-Analog Converter

Figure 1-3 displays a simplified circuit diagram of the 10-bit, 50-MHz DAC structure

that is utilized in both the coarse and fine tuning paths. The key goals of the structure

are to achieve a monotonic 10-bit DAC structure with minimal active circuitry and

no transistor bias currents. The proposed topology essentially performs a two-step

conversion, where the first step is performed by a five-bit resistor ladder, and the

second step is performed by a five-bit zero-VT NMOS capacitor array. In step one,

the resistor ladder is used to form two voltages of value VL = M/32 - VDD and VH =

(M+1)/32 - VDD, where M ranges from 0 to 31, and VDD corresponds to the 1.5-V

supply voltage. Simultaneously, VH is connected to N unit cell capacitors, and VL to

(32-N) unit cell capacitors, where N ranges from 0 to 31. In step two, the capacitors

are first disconnected from the resistor ladder, and then connected to a common

capacitor Cload. The combination of these steps at 50 MHz achieves 10-bit resolution

as well as first-order filtering with cutoff frequency fo = 32Cu/(2rCload) . 50 MHz.

Therefore, the filtering bandwidth of each DAC is adjusted by proper selection of

the Cload capacitor value. Note that the switches are implemented with low-VT MOS

devices.

Ru X (32-M)
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Figure 1-3: Simplified schematic of the proposed DAC.



1.2.4 Divider

Figure 1-4 displays the proposed divider structure, which leverages a common asyn-

chronous divide-by-16-to-31 structure composed of cascaded divide-by-two/three stages

[5], while achieving low noise without the use of re-timing at the divider output. As

revealed by the figure, the divider structure realizes a given divide value as the ad-

dition of four values, three of which (i.e., No, N1 , and N3 ) are always constant for a

given frequency setting and one of which (i.e., N2) is controlled by the third-order AE

modulator to achieve fractional values. Due to the re-timing of the reference edge by

the flip-flop shown in the figure, only the N3 edge impacts the GRO phase detector,

so that the divide-by-16-to-31 divider is set to a constant divide value before its out-

put directly impacts the phase detector. The divider structure therefore avoids the

divide-value-dependent jitter due to the AE dithering without the use of re-timing of

the divider output

Nsd'(
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Figure 1-4: Proposed asynchronous divider structure achieving low power and jitter.



1.2.5 Loop Filter

To control both the coarse and fine varactors in the VCO, the loop filter consists

of two paths, as shown in Figure 1-5. The coarse-tuning varactor, which has a K,

value that is 16 times higher than the fine-tuning varactor, is fed by a coarse-tuning

DAC with eight times less bandwidth than the fine-tuning DAC to reduce the impact

of its thermal noise. Further, the coarse-tuning DAC is allowed to vary only when

the frequency value of the synthesizer is changed and is fixed in value during steady-

state lock conditions, such that its quantization noise is eliminated from concern.

During a frequency acquisition cycle, the fine-tuning DAC is held at its mid-point

value during the coarse tuning, and is then allowed to vary according to the Type-II

settling characteristics of the overall PLL once the coarse-tuning value is frozen. Note

that a technique similar to that in [11] is used during the coarse tuning in order to

allow the coarse-tuning DAC to quickly settle to its proper value while simultaneously

achieving a desired phase error of zero at the overall loop filter input. The overall

settling time of the synthesizer (i.e., the sum of the coarse- and fine-tuning times) is

measured to be within 20 ps for 10-ppm accuracy.

1.3 Proposed Digital Phase Control Technique

Delay-locked loops (DLL) using analog phase interpolators as phase shifters have be-

come popular because they provide reasonable phase resolution with an infinite phase

range [16][17][18][19]. However, the interpolation circuits, which are implemented in

the analog domain, must be accurately controlled to maintain the linearity of the

phase shifter. Analog DLLs constructed with such phase interpolators usually pro-

vide good jitter performance, but the relatively high analog complexity of these blocks

complicates the design of such DLLs. Therefore, we propose here a more digital DLL

architecture, as shown in Figure 1-6 [15].
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Figure 1-5: Coarse/fine tuning of the PLL output frequency.

1.3.1 Overview

The key idea behind the proposed DLL structure is to use a simple VCO instead

of a phase interpolator to achieve the phase shifting functionality within a DLL. A

VCO can be modeled as an integrator with the VCO phase being regarded as the

output. Thus, if a positive or negative rectangular pulse is fed into the VCO, the

VCO phase increases or decreases by a step at each time increment. By implementing

the VCO as a standard ring oscillator, this approach offers a very simple, relatively

digital implementation that has the ability to achieve very fine phase shifts and an

infinite phase range.

Although it is difficult to use a stand-alone VCO as a phase shifter, as explained

later, by applying feedback to the VCO in the form of a fractional-N synthesizer, as

shown in Figure 1-6, the resulting fractional-N synthesizer functions as a digitally-

controlled oscillator, with the AE modulator input being regarded as the control

signal. In this way, the phase resolution can be digitally controlled and is less sen-



sitive to the process, temperature, and voltage (PVT) variations than conventional

structures based on phase interpolators.

A key element of the proposed structure is a digital AE modulator architecture

that allows a high clock rate with a compact area and reasonable power dissipation. In

addition, the output of the bang-bang phase detector (BBPD) is fed into a saturating

integrator that allows the output of the detector to be averaged and converted from

a three-level signal to a two-level signal. The integrator output is then sampled by

a D-flip-flop (DFF) with a period of Td; the sampled signal then controls the phase

shifter.

As illustrated in Figure 1-6, only simple analog circuits are required in the pro-

posed DLL architecture, without the need for good matching between any of their

elements. The overall architecture is primarily digital and well suited for more ad-

vanced CMOS processes.

1.6 GHz

533

Figure 1-6: Proposed DLL with a synthesizer-based phase shifter.



1.3.2 Synthesizer-based Phase Shifter

Although in principle a ring oscillator can achieve the phase shifting function, it is

quite difficult to accurately control the height and width of an analog pulse as well as

to precisely set the nominal oscillation frequency of the VCO such that it is locked to

the received clock of the DLL. However, by placing the VCO within a AE fractional-N

frequency synthesizer [28][29][30][31], we can accurately control the VCO with digital

precision by feeding digital pulses to the AE modulator, as illustrated in Figure 1-

7. A phase resolution of 27r/2 n can be achieved by simply setting the number of

fractional bits in the AE modulator to n. Thus, the resolution can be accurately and

finely controlled and is independent of the PVT variations.
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Figure 1-7: Proposed synthesizer-based phase shifter.

1.3.3 AE Modulator

Instead of using a standard second-order AE modulator, we propose a more compact

and power-saving second-order modulator architecture, as shown in Figure 1-8. This

architecture consists of an U/D counter, a multi-rate first-order AE modulator, and

a differentiator. First, notice that the input to the AE is being updated at a rate

of approximately fd = 1 MHz, while the output is being updated at fre, = 533

MHz. To connect these different sample rates, the first-order AE modulator must be

progressively clocked from low to high frequencies. We achieve this goal by cascading

three first-order AE modulators with different resolutions and clock rates. By using

this approach, only a small portion of the overall AE modulator circuit operates



at the highest frequency. Thus, the power consumption and design complexity are

reduced at the expense of a slightly larger area.

q
I3MHz)
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Figure 1-8: Multi-rate implementation of the proposed AE architecture.

1.4 Contributions

This thesis demonstrates techniques for high-performance digital frequency synthesis

and phase control.

In the frequency synthesis part, we presents a 3.6-GHz low-noise, 500-kHz band-

width digital AE frequency synthesizer architecture. The primary contributions of

this part is as follows.

1. A synthesizer architecture that efficiently leverages a recently invented noise-

shaping GRO TDC [3] to achieve the phase noise of -108 dBc/Hz at 400 kHz

offset is presented. The needed peripherals for the GRO TDC are developed.

(Note that the design of the GRO TDC core is not the contribution of this

thesis.)

2. An all-digital quantization noise cancellation technique achieving the phase

noise of -150 dBc/Hz at 20 MHz offset is presented. Proposed technique does



not need any analog components and can be implemented with digital standard

cells.

3. A passive 10-bit 50-MHz digital-to-analog converter structure as an efficient

interface between the digital loop filter and conventional LC oscillator is pre-

sented.

4. A 1.5-mW asynchronous divider structure that reduces the TDC range by a

factor of four and avoids the divide-value-dependent delay variation without

the need for re-timing the divider output is presented.

5. The measured jitter integrated from 1 kHz to 40 MHz achieves 204 fs at 3.67

GHz.

In the phase control part, we propose a digitally-controlled phase shifter based on

the fractional-N synthesizer technique and demonstrate its application to a DLL for

3.2-Gb/s chip-to-chip communications. The primary contributions of this part is as

follows.

1. A fractional-N-synthesizer-based phase shifter with an 1.4-degrees-resolution

and infinite-range delay is presented. The delay provided by this phase shifter

is less sensitive to the PVT variations than that of conventional techniques using

a phase interpolator.

2. A digital AE modulator architecture that allows a 533-MHz clock rate with a

compact area and reasonable power dissipation is presented.

3. A simple bang-bang detector supporting the proposed phase shifter is presented.

1.5 Overview of Thesis

The remaining chapters in this thesis provide further analysis and implementation

details of the proposed techniques. An overview of the thesis is as follows.



In Chapter 2, we first provide sufficient background of fractional-N techniques

and then focus on the key issues involved in achieving low jitter with a high PLL

bandwidth in digital PLL structures. Here we see the need for a high-resolution TDC

as well as a quantization noise cancellation scheme.

In Chapters 3 and 4, we provide details of the supporting blocks such as the DAC

structure, which is used to control the VCO, and the low-jitter asynchronous divider.

Chapter 5 focuses on system-level issues associated with the coarse/fine-tuning

approach used to control the PLL frequency. A systematic way to design a digital

filter corresponding to the well known analog lead-lag filter is also described.

Chapter 6 presents the noise modeling of this digital synthesizer and compares the

calculated noise performance with the time-domain behavior simulation results using

CppSim. Trade-offs among the noise performance and several design parameters are

also discussed.

In Chapter 7, measured results of the digital frequency synthesizer are demon-

strated. The measured phase noise is also compared with the predicted value.

In Chapter 8, we apply the fractional-N technique to phase control of a high-speed

clock. We introduce the proposed DLL structure utilizing a digitally-controlled phase

shifter. Implementation details, including a AE modulator developed specifically for

this application, are presented, followed by the measurement results.

Finally, Chapter 9 concludes this thesis and suggests some future research direc-

tions.





Chapter 2

Proposed Techniques for Achieving

a Low-Noise and Wide-Bandwidth

Digital PLL

In this chapter, we investigate the challenges in achieving a low-noise, wide-bandwidth

digital fractional-N synthesizer. We show that the key challenges of attaining this

goal lie in developing a high-resolution time-to-digital converter (TDC) and perform-

ing cancellation of the quantization noise caused by dithering of the divider. The

proposed synthesizer architecture leverages a recently invented noise-shaping gated

ring oscillator (GRO) TDC [2][3] [14] [20][21] to achieve the desired resolution and

introduces an all-digital approach to quantization noise cancellation.

2.1 Background

One of the most important applications of a phase-locked loop (PLL) is the frequency

synthesis. When the PLL is used as a frequency synthesizer, a digital counter divides

the VCO frequency by N, and the output is compared with a clean reference frequency,

as illustrated in Figure 2-1. After the loop is locked, the divider output is synchronized

to the reference signal with the help of feedback. Therefore, VCO frequency becomes

N times the reference frequency. With this structure, we can set the value of N to



synthesize a desired frequency. This kind of PLL is called an integer-N PLL since the

constraint here is that N must be an integer value. Because of this constraint, when a

high output resolution is necessary, the reference frequency is usually limited to a low

value because it needs to be equal to the targeted channel resolution. To maintain

the stability, the PLL loop bandwidth is usually limited to less than one tenth of the

reference frequency. For instance, when an output frequency resolution of 200 kHz is

desired, the reference frequency must be equal to 200 kHz, resulting in a less than 20

kHz PLL bandwidth.
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Figure 2-1: Integer-N frequency synthesizer.

The development of AE fractional-N frequency synthesizers has successfully bro-

ken the trade-off between the frequency resolution and bandwidth in an integer-N

PLL [28][29][30][31]. In a AE fractional-N synthesizer, as illustrated in Figure 2-2, a

fractional divide ratio is realized by dithering the divide ratio among several integer

values with a AE modulator. The bit-length of the modulator can be extended to a

high value easily to achieve a very high resolution of frequency. Since the reference

frequency no longer determines the frequency resolution, a higher reference frequency

can be used to obtain more freedom in setting the PLL bandwidth. Although the

dithering action introduces a quantization noise, which is shaped to higher frequency

offsets by the AE modulator, the lowpass action of the PLL dynamic can attenuate



the shaped quantization noise.
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Figure 2-2: AE fractional-N synthesizer.

Recently, there have been two important trends in the research activities of fractional-

N PLLs. The first trend is the development of technologies to achieve a wider loop

bandwidth. The other trend is the digitalization of PLLs.

There are several advantages of using a wide loop bandwidth. First, it enables

higher data-rate modulation without the pre-emphasis [32] or two-point modulation

[9][33]. In addition, it enables greater VCO noise suppression and a shorter locking

time. However, as illustrated in Figure 2-3, a wider PLL bandwidth leads to less

quantization noise suppression. Therefore, the trade-off between the quantization

noise and PLL bandwidth usually limits the possible increase in PLL bandwidth

obtained by switching from an integer-N PLL to a fractional-N one.

The need for wider-bandwidth fractional-N synthesizers has motivated several re-

searchers to develop phase noise cancellation techniques to avoid this trade-off. These

techniques are reviewed in Section 2.4 [22] [23] [24] [25] [26]. State-of-the-art phase noise

cancellation techniques have enabled wide PLL bandwidths of 700 kHz to 1 MHz with-

out sacrificing the noise performance. However, all of these techniques heavily rely on

analog-intensive circuits, complicating design and portability over future processes.

The continuing development of deep sub-micron CMOS processes has encouraged
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Figure 2-3: A wider PLL bandwidth results in less quantization noise suppression.

interest in an all-digital PLL. An all-digital PLL enables a compact and programmable

on-chip loop filter with long time constants by leveraging the high-density digital

capability available in a deep sub-micron process, as illustrated in Figure 2-4 [9].
Such a digital PLL would result in large area savings that are critical for achieving a

low-cost solution and also avoid problems that conventional charge-pump PLLs would

encounter in the future processes, including high variation and leakage current. Unlike

an analog PLL, a digital PLL uses a TDC to perform phase detection because the

TDC provides a digital phase error signal to the loop filter. Similarly, the oscillator

needs to be controlled by the digital output of the filter. The work in [9] demonstrated

that an all-digital synthesizer can meet the GSM specification, but its bandwidth of

40 kHz is an order lower than that achievable by analog phase noise cancellation

techniques [22][23][24][25] [26]. Although two recent digital synthesizers extended the

loop bandwidths to 3 MHz and 142 kHz, respectively, they do not support high noise

performance because the former work sacrifices its out-of-band noise performance

while the latter one cannot achieve low in-band noise [10][11].

Therefore, the goal of this research is to achieve low noise, a wide bandwidth,



[[ [rel t)JUUU

pp-

JWJro JUUU

Figure 2-4: Progression from analog to digital PLL implementation.

and a digital implementation. We propose a digital fractional-N frequency synthe-

sizer that leverages a noise-shaping TDC and a simple quantization noise cancellation

technique to achieve low phase noise with a wide PLL bandwidth of 500 kHz [14].

Using this high-performance TDC, a 3.6-GHz synthesizer with <-100 dBc/Hz noise

at low frequency offsets is demonstrated. In contrast to previous cancellation tech-

niques [22] [23][24] [25] [26], the proposed structure requires no analog components and

is straightforward to implement with standard-cell digital logic. With the cancella-

tion technique enabled, the synthesizer achieves the phase noise of -132 dBc/Hz at

3 MHz offset, and an integrated phase noise from 1 kHz to 40 MHz of 204 fs rms

at 3.67 GHz. By utilizing quantization noise cancellation within a digital PLL, the

proposed technique not only widens the bandwidths of digital frequency synthesizers

without sacrificing their noise performance but also eliminates complicated analog

circuits required in a conventional phase-noise-cancellation PLL.

More details of the fractional-N frequency synthesizer can be found in the liter-

ature [28][29][30][31]. In addition, a modeling approach for an analog fractional-N

frequency synthesizer was introduced in [34]. With slight modification, the same ap-

proach was later applied to a digital PLL [35]. Note that the PLL model developed

innD R R R ii-,



in Chapters 5 and 6 is based on this approach.

2.2 Challenge of a Low-noise Wide-bandwidth Dig-

ital PLL

The challenge of achieving a low-noise wide-bandwidth digital PLL is explored in

this section. We begin by assuming that the quantization noise can be completely

cancelled because it allows us to focus on the trade-off between the TDC and VCO

noises as well as to understand the importance of the TDC resolution. Next, the

impact of the quantization noise is discussed.

Figure 2-5 provides an intuitive view of the need for the improved TDC resolution

when a high PLL bandwidth is desired. As shown in the figure, the output phase

noise of a digital synthesizer is primarily influenced by the quantization noise of the

TDC and the phase noise of the digitally-controlled oscillator (DCO), where the DCO

is realized as the combination of a digital-to-analog converter (DAC) and hybrid VCO

in our proposed system. As the figure shows, the TDC noise is lowpass-filtered by the

PLL dynamics, whereas the DCO noise is highpass-filtered. Therefore, while raising

the PLL bandwidth has the benefit of suppressing the DCO noise at low frequency

offsets, it also carries the penalty of increasing the influence of the TDC noise. As

such, the combination of a high bandwidth and low noise for the PLL demands a high-

resolution TDC. Note that G(f) in Figure 2-5 denotes the closed-loop PLL response,

which is a lowpass filter [34].

As illustrated in Figure 2-6, the TDC in [1] uses a chain of delays to create multiple

transitions and compares each transition with the VCO feedback signal to obtain a

time error signal e[k] in a discrete-value form. This action performs the continuous-

to-discrete conversion in the time domain. Similar to analog-to-digital conversion in

the voltage domain, this results in a quantization noise, whose level is determined

by the unit delay value of the TDC. If we assume that the quantization noise of the

TDC is white, then the in-band phase noise floor of the PLL (PN) for a given TDC
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resolution (Atdel) is calculated as:

PN = 10log(1/T -(27N)2 . (1/12. Atdel))(dBc/Hz) (2.1)

where T is the reference period, and N is the nominal divide value.

To provide a sense of the TDC resolution requirements, let us first consider the

example of GSM-level phase noise performance with a 20-ps TDC resolution, 3.6-

GHz output frequency, and 50-MHz reference frequency (i.e., T=1/(50 MHz), N=(3.6

GHz)/(50 MHz)). According to equation 2.1, the TDC contributes an in-band noise

of -95 dBc/Hz. In the case of a low PLL bandwidth, such as 50 kHz, as shown in

the example in Figure 2-7(a), the overall in-band noise is usually dominated by the

VCO, thus a 20-ps resolution is acceptable. However, to extend the PLL bandwidth

while achieving the low noise required by GSM, this TDC architecture with a 20-ps

resolution is not sufficient. As shown in Figure 2-7(b), GSM needs -100 dBc/Hz at

400 kHz offset referred to 3.6-GHz output frequency. When a PLL bandwidth larger

than 400 kHz is desired, the in-band noise of -95 dBc/Hz contributed by the TDC is

too high. Notice that, in this case, the VCO noise is suppressed more by the wider

loop bandwidth, so the TDC noise now becomes the dominating noise source at low

frequency offsets.

The noise analysis shown in Figure 2-5 ignores the fact that a quantization noise

is produced by dithering of the divide value in a fractional-N synthesizer. As shown

in Figure 2-3, this quantization noise is highpass-shaped due to the action of the

AE modulator, and much of it is attenuated by the lowpass filtering action of the

PLL dynamics. As shown in Figure 2-7(a), when the PLL bandwidth is narrow,

the noise associated with the third-order AE modulator is so low that it causes no

issue. However, the impact of seeking a higher PLL bandwidth is to let more of the

quantization noise through such that the high-frequency noise performance of the PLL

is adversely impacted. Following the same example given in the previous paragraph

and assuming two poles at 1.1 MHz and 3 MHz, a 500-kHz PLL bandwidth with

a third-order AE modulator results in -138 dBc/Hz output phase noise at 20 MHz
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offset, as illustrated in Figure 2-7(b), which is 12 dB higher than the required -150

dBc/Hz to meet the GSM-level noise performance (referenced to a 3.6-GHz carrier

frequency).

As illustrated in Figure 2-7(b), both the TDC and divider quantization noises

cannot meet the GSM-level requirement. To meet the GSM specification, the TDC

resolution needs to be reduced to 6 ps, as illustrated in Figure 2-7(c), which is not

trivial even with today's processes. Furthermore, we also need to perform quantiza-

tion noise cancellation to achieve at least 20 dB lower quantization noise to meet the

mask. A GRO TDC and an all-digital quantization noise cancellation approach are

introduced in Sections 2.3 and 2.5 in order to solve these two problems.

2.3 Review of the Gated Ring Oscillator TDC

For a classical TDC structure [1], the TDC resolution corresponds to an inverter

delay. An inverter delay in a 0.13-tIm process is about 35 ps, which is much larger

than the goal of the 6-ps resolution. However, an alternative approach to obtain

higher effective resolution is to pursue noise shaping of the TDC quantization noise

and leverage the fact that the TDC output is lowpass-filtered by the PLL such that

the high-frequency portion of that noise is removed.

Such noise shaping can be achieved by using a GRO topology for the TDC [2] [3],

as shown in Figure 2-8. As the figure reveals, a GRO TDC measures the phase error

between two signals by enabling a ring oscillator during the measurement window and

counting the resulting transitions that occur in the oscillator. Between measurements,

the GRO is disabled such that its internal state is kept intact. When the GRO is

enabled in the next measurement, it ideally picks up where it left off such that the

quantization error from the end of the previous measurement is directly related to

the quantization error at the beginning of the current measurement. The overall

quantization noise becomes

e[k] = q[k] - q[k - 1] (2.2)



where q[k] denotes the raw quantization error at the end of each measurement. The

first-order difference operation indicated by the above equation reveals that first-

order shaping of the quantization noise is achieved with the GRO structure. A more

subtle advantage of the GRO structure is that it also scrambles the quantization noise

of the TDC, which provides an important advantage in avoiding limit cycles in the

PLL and improving spurs [21]. Also, another subtle point is that mismatch between

delay stages is also first-order noise shaped due to the barrel-shifting action of the

transitions through the ring oscillator structure, so that excellent linearity of the TDC

can be achieved without the need for calibration [21].
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Figure 2-8: Concept of a gated ring oscillator TDC [2].

In practice, one can count transitions in all of the oscillator stages [2] rather

than just transitions in a single stage as shown in Figure 2-8. By doing so, the

raw resolution corresponds to an inverter delay, which is similar to the case for the

commonly used TDC described in [1]. Again, the advantage of the GRO TDC over

the conventional TDC is that the effective resolution is reduced well below an inverter

delay by virtue of the noise shaping that it offers.

To further improve the GRO resolution, the multipath technique of reducing the

delay per stage of a ring oscillator was applied by connecting the inputs of each

delay stage to a combination of previous delay stages [36]. As shown in Figure 2-

9, application of this technique to the GRO entails the use of multiple devices for

div(t)

I 1
,CI,·l · 3 ii



each delay element and connection of their gates to an appropriate combination of
delay stages [3]. The relative weight of each delay stage input is controlled through

appropriate sizing of its given device. In the 0.13-pm CMOS prototype presented in

this thesis, the multipath technique allows reduction of the delay per stage from 35 ps
(i.e., one inverter delay) to 6 ps, hence yielding a factor of five improvement in TDC

raw resolution. One should note that the effective resolution is further enhanced

by the noise-shaping behavior of the GRO. Additional details of the final TDC used

in this prototype synthesizer are described in [3][21]; the schematic of the multipath

GRO is redrawn in Figure 2-10 for reference.

Delay Element
EnabIe7

.

-I A.

EnableA

Raw
Resolution

A

B
C
D

Figure 2-9: Concept of a multipath gated ring oscillator TDC.

The model of the GRO can be illustrated as Figure 2-11 [35]. The phase difference

between 4Iref [k] and 4 div [k] is first calculated and then scaled to obtain the time

difference with the gain of T/27r. After being summed together with the shaped

quantization noise tq[k], the time difference is then scaled by the TDC gain 1//Atdel

to obtain e[k].

In addition to the quantization noise, there are another two noise sources from

the GRO [21]. As illustrated in Figure 2-12, the first noise is a white noise that is

about 1 ps in time. The second noise has a -10 dB/dec roll-off and is caused by the

flicker noise of the oscillator. In the end of this chapter, it is shown that this flicker

noise dominates the PLL noise at low frequency offsets.



Figure 2-10: The prototype synthesizer in this thesis uses the multipath gated ring
oscillator TDC in [3].

traw[k]

(Fref[

Figure 2-11: Model of the GRO TDC.

2.4 Review of the Previous Noise Cancellation Tech-

niques in an Analog PLL

Rather than filtering the quantization noise with a narrow PLL bandwidth, recent re-

search has demonstrated that the quantization noise in a AE fractional-N synthesizer
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Figure 2-12: GRO causes another two noises other than the quantization noise.
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Figure 2-13: Classical phase noise cancellation PLL.

can be significantly reduced through cancellation [22][23][24][25] [26]. In an analog

fractional-N synthesizer, the quantization error due to the AE modulation results in

a phase error at the phase detector output, as shown in Figure 2-13, but cancellation

is achieved by first computing the quantization error using a simple digital subtrac-

tion circuit between the AE input and output, accumulating it (to convert from a

frequency to phase signal), and then canceling it at the charge pump output through

the use of a current DAC, which is necessary because the phase detector output is

an analog signal while the quantization error is a digital signal. Unfortunately, high

levels of cancellation require the gain of the DAC to be precisely matched to the



effective gain of the charge pump. Any mismatch between these two paths leads to

residual phase noise and tones. Therefore, matching in the analog domain limits the

noise performance.

Earlier noise cancellation techniques did not try to calibrate DAC gain to match

that of the PFD [22][23]. Instead, they reserved enough margins to tolerate the

residual phase error due to the unmatched gains. As a result, the achievable noise

performance is not good enough for some applications, such as GSM. The technique in

[24] avoids the mismatch by embedding the DAC function within the PFD structure.

Recently, an adaptive calibration loop was proposed to dynamically set the DAC

gain to minimize the residual error [25]. The VCO control voltage is multiplied by

the sign of the accumulated quantization error associated with the AE modulator.

This action calculates the absolute value of the PFD output phase error and uses

it as an indicator of the mismatch amount. A feedback loop then accumulates the

absolute value of the phase error and uses the output to control the DAC gain. The

problem with this technique is that the DC value of the VCO control voltage is also

multiplied by the sign, which introduces a large amount of tones and thus needs a

low-bandwidth filter in the calibration loop to attenuate the tones [26]. The resulting

one-second settling time of the calibration loop prevents this technique from being a

practical solution for most applications.

Later, another similar technique multiplies only the AC component of the phase

error with the sign of the accumulated quantization error [26]. This invention reduces

the settling time to 35 ps, making the calibration technique more useful. However,
the need for intensive analog circuits, including an operational amplifier, a differential

loop filter, and a DAC, challenges the portability of this technique to future processes.

In contrast, we propose an all-digital correlation loop implemented only with standard

digital cells in this thesis.



2.5 Proposed Digital Noise Cancellation Technique

A digital fractional-N synthesizer can deal with the quantization noise directly in the

digital domain, and thereby avoid the need for extra analog circuits in performing

cancellation. Therefore, we propose an all-digital cancellation loop that can be imple-

mented with standard logic cells, as shown in Figure 2-14. As in the analog approach,

the quantization noise is fed into an accumulator (to convert from frequency to phase)

and then subtracted from the TDC output after being properly scaled. Unlike the

analog approach, our solution uses a digital multiplier to scale the quantization error,

and the scale factor is easily computed by a simple digital correlator (i.e., a 16-bit

digital multiplier) and accumulator circuit, as shown in Figure 2-15.

Scale Factor
t(t)

Figure 2-14: A digital PLL allows noise cancellation in the digital domain without
the need for analog components.

Again, the goal of this circuit is to remove the noise introduced by the dithering

action of the divider, which is manifested in the TDC phase error signal u[k] as a

scaled version of the accumulated AE quantization noise x[k]. Proper scaling of x[k]

must be performed before subtracting it from u[k]. The noise cancellation function

and correlation feedback loop is enabled once the PLL has settled properly. In the

beginning of the correlation process, the scale factor is set to one. Since the difference

between y[k] and u[k] remains in e[k], e[k] is highly correlated to x[k]. Therefore, the
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Figure 2-15: All-digital quantization noise cancellation: (a) simplified view of circuits,
(b) settling behavior of the scale factor.

product of e[k] and x[k] is positive (negative) when the magnitude of u[k] is larger

(smaller) than y[k]. Since the scale factor is calculated by accumulating and filtering

the correlation output, it ramps up or down, and the difference between u[k] and y[k]

decreases gradually as a result. In the case where the quantization noise is completely

cancelled, the correlation becomes zero in average because the residual noise in e[k]

is dominated by the TDC quantization noise, which is uncorrelated to the divider

quantization noise. Thus, the accumulator can hold its value at the proper scale

factor. Also, if there is some low-frequency variation in the TDC gain, this variation
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can be tracked by the correlation loop in order to keep the residual quantization noise

small.

An IIR lowpass filter with cutoff frequency of 1.1 MHz is used to further smooth

the scale factor signal. Due to the high resolution of the TDC, the correlation feedback

loop can be designed to have a reasonably fast settling time without introducing a

significant amount of additional noise into the synthesizer. In the prototype system

presented here, the loop is designed to settle in less than 10 Js without adverse effects

to the phase noise of the synthesizer.

One side benefit of the quantization noise cancellation circuit is that it can be

used to precisely track the TDC gain. In the prototype, this information is not used

since a coarse open-loop gain calibration of the PLL by hand, which is implemented

by a 12-bit digital multiplier following the GRO TDC, as shown in Figure 2-17, is

sufficient for the academic context of this work. However, future applications may

benefit from this information in the case where the TDC gain plays a critical role in

the system performance.

Similar algorithms were implemented with analog-intensive circuits before this

work [25][26]. With an all-digital implementation, analog non-idealities, such as DC

offset [26], are completely eliminated. Furthermore, compared to the previous works,

the proposed loop avoids the nonlinear sign function by multiplying the TDC phase

error with the predicted phase error. The proposed correlation loop thereby generates

fewer spurs than previous techniques and is easy to implement in the digital PLL.

Finally, another possible implementation of this noise cancellation technique is

discussed in Section 9.2.

2.6 Proposed Digital AE Fractional-N Synthesizer

As described in Section 2.2, in a wide-bandwidth digital PLL, the noise at low to

intermediate frequency offsets is limited by the resolution of the TDC, while the

noise at high frequency offsets is limited by the AE quantization noise due to the

divider dithering.



In order to achieve low noise with a wide bandwidth, we leverage the first-order

noise-shaping multipath GRO TDC, described in Section 2.3, to achieve low in-band

noise and propose an all-digital quantization noise cancellation technique, described in

Section 2.5, to achieve low out-of-band noise. By combining these two techniques, we

achieve a 500-kHz PLL bandwidth at 3.6-GHz carrier frequency with <-100 dBc/Hz

in-band phase noise as well out-of-band phase noise of -150 dBc/Hz at 20 MHz offset.

Figures 2-16 and 2-17 show a simplified and detailed block diagram of the pro-

posed synthesizer, respectively. In addition to the multipath GRO and the proposed

all-digital quantization noise cancellation circuitry, other interesting components of

the architecture include an asynchronous frequency divider that avoids the divide-

value delay variation at its output. Furthermore, in contrast to previous digital PLL

implementations [9], the DCO is implemented as a conventional LC VCO with coarse

and fine varactors that are controlled by two passive 10-bit, 50-MHz DAC structures.

To control the dual-port VCO, a dual-path digital filter (i.e., a coarse filter and a fine

filter) is proposed. We discuss these blocks in more detail in the next three chapters.

Figure 2-16: Proposed digital AE synthesizer utilizing the GRO TDC and the all-
digital noise cancellation.

Note that a 50-MHz reference clock is used in this prototype. The reference clock

is sampled by the divider output, as shown in Figure 2-17, and the resulting signal

stop triggers the rest of the system such that all blocks are synchronous to the VCO

edge. This point is discussed in more detail in Chapter 4.

Although the detailed analysis of the proposed synthesizer is deferred until Chap-
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Figure 2-17: Detailed block diagram of the proposed digital AE synthesizer.

ter 6, the predicted noise performance of the synthesizer is shown here to demonstrate

the advantages of the proposed PLL. First, Figure 2-18 illustrates the predicted phase

noise when the GRO thermal and flicker noises are ignored. It is assumed that the

GRO raw resolution is 6 ps, and the quantization noise is suppressed by 20 dB. One

should see that although the shaped GRO quantization noise rises by 20 dB per

decade, it is attenuated by the PLL loop filter at high frequency offsets. As a re-

sult, the GRO quantization noise is considerably below the VCO noise. At very low

frequency offsets, noise of the crystal oscillator becomes the dominating source.

In addition, Figure 2-19 depicts the case where the GRO thermal and flicker noises

are included. Even though the flicker noise of the GRO becomes the dominating noise

source at low frequency offsets, the overall noise performance is still excellent.

To conclude, with the GRO and the noise cancellation technique, the bandwidth

of the digital synthesizer can be extended to 500 kHz without violating the GSM

mask, as shown in Figure 2-19. The resulting overall PLL noise is dominated by the

VCO at high frequency offsets, while the low-frequency performance is limited by the

flicker noise of the GRO. Details of the noise analysis can be found in Chapter 6,

after the noise model of the proposed DAC and the coarse/fine-tuning scheme are
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Figure 2-18: Predicted PLL noise performance using a multipath GRO TDC and an

all-digital noise cancellation. (The thermal and flicker noises of the GRO are ignored.)
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2.7 Summary

There are two key challenges to extend the bandwidth of a digital fractional-N PLL.

The first challenge is the need for a high-resolution TDC since its quantization noise

becomes the dominating noise source at low frequency offsets in a wide-bandwidth

PLL. The second challenge is the need for the divider quantization noise cancellation

because a wide bandwidth also allows more quantization noise to go through.

To solve the first problem, we leverage a recently invented GRO TDC [3]. Im-

plemented in a 0.13-/im process, this TDC achieves 6-ps raw resolution using a mul-

tipath ring oscillator. Furthermore, GRO TDC improves its effective resolution by

first-order noise shaping. Therefore, we can move the TDC quantization noise to

higher frequency offsets and leverage the PLL filtering to attenuate this undesired

noise. By doing so, <-100 dBc/Hz noise is achievable within the PLL bandwidth in

a 3.6-GHz digital PLL, where the low-frequency performance is limited by the flicker

noise of the gated ring oscillator.

To solve the second problem, an all-digital quantization noise cancellation scheme

is proposed. Unlike the analog PLL, in a digital PLL, scaling of the accumulated

quantization noise can be performed purely with a digital multiplier. The scale factor

is simply set by a digital correlation circuit that consists of a multiplier, an accumu-

lator, and an IIR filter. With proper design, the correlation loop can settle within 10

ps without impacting the phase noise performance. The PLL noise at high frequency

offsets is dominated by the VCO with this technique enabled.



Chapter 3

Digital-to-Analog Converter for

VCO Control

While the time-to-digital converter (TDC) and digital noise cancellation circuits play

the key roles in achieving low noise with a high bandwidth, the digitally-controlled

oscillator (DCO) and frequency divider circuits present their own challenges in striving

for an elegant implementation of the overall digital synthesizer.

In this chapter, we introduce the proposed DCO. As mentioned earlier, we con-

sider the case of using a combination of a digital-to-analog converter (DAC) and

hybrid voltage-controlled oscillator (VCO) to implement the DCO. Hybrid VCOs,

which leverage a switched-capacitor array for frequency band selection and an analog

varactor for fine tuning, have become a popular choice in many recent phase-locked

loops (PLL) due to their ability to achieve a wide tuning range with excellent phase

noise. While there is much literature on designing such VCOs [37] [38], there has been

very little research in determining appropriate DAC structures for this application

space [11][39]. We propose an efficient passive DAC implementation that requires

minimal analog content. We also say a few words about the hybrid VCO structure

that is used as well as the modeling of the resulting DCO.



3.1 Passive Digital-to-Analog Converter

While the recent trend in digital PLLs is to create a sophisticated DCO using a

switched-capacitor network [9], it is worthwhile to note that the design effort required

to achieve good performance from such an approach may be prohibitive in many PLL

applications. Also, some applications that could benefit from the small loop filter

size of a digital PLL may be constrained to using an older technology that does not

support the fine capacitor values required for a switched-capacitor DCO.

In addition, by putting a switched-capacitor array, that needs a high-speed oper-

ation clock (for example, 600 MHz in [40]) as well as complicated dynamic-element

matching (DEM) algorithm [41], close to the VCO, it may be difficult to isolate the

VCO core from the noises and tones generated on the digital side.

In such cases, it is worthwhile to consider the combination of a DAC and VCO

for this function [11][39]. We therefore focus on the issue of achieving an efficient,

"highly-digital" DAC implementation that avoids analog blocks, such as operational

amplifiers and transistor bias networks. This also allows the use of an existing VCO

design in a digital PLL.

3.1.1 DAC Operation

A five-bit resistor-ladder DAC is used in [11] to control a VCO, but the corner fre-

quency of the RC low-pass filter following it suffers from the process variation. This

variation in filter corner frequency may overwhelm the advantage of using a digital

loop filter. Alternatively, a switched-capacitor DAC can provide a precise corner fre-

quency that can be reconfigured by changing the capacitor ratio or clock frequency

in a multi-standard application. The main idea of the proposed DAC structure is to

utilize a five-bit switched-capacitor DAC to interpolate a finer voltage between two

adjacent voltages provided from a five-bit resistor ladder.

Figure 3-1 displays a simplified circuit diagram of the proposed DAC structure,

which provides 10-bit, 50-MHz operation with a full-supply output range using a

passive circuit structure. The key idea of the proposed DAC structure is to perform



a two-step conversion process using a five-bit resistor ladder in combination with a

five-bit capacitor array. In step one, as illustrated in Figure 3-1(a), the resistor ladder

is used to form two voltages of value VL = M/32 - VDD and VH = (M+1)/32 - VDD

, where M ranges from 0 to 31, and VDD corresponds to the 1.5-V supply voltage.

Simultaneously, VH is connected to N unit cell capacitors, and VL to (32-N) unit cell

capacitors, where N ranges from 0 to 31. The values of M and N are determined by

the five MSBs and five LSBs of the 10-bit incoming data, respectively. In step two,

as illustrated in Figure 3-1(b), the capacitors are first disconnected from the resistor

ladder and then connected to a common capacitor Cload . The steady-state voltage

of the DAC output can be derived to be:

Vo = (N.VH+(32-N) - VL)

= (N. - VDD + (32 - N) - VDD)
32 32 32
N VDD

(M + M ) 3 (3.1)32 32

Therefore, the combination of these steps at 50 MHz achieves 10-bit resolution as well

as first-order filtering with cutoff frequency [42]

fo = 32C•/(27rCload) - 50MHz (3.2)

Therefore, the filtering bandwidth of each DAC can be adjusted by proper selection

of the Cload capacitor value.

3.1.2 Design Considerations and Implementation Details

Figure 3-2 illustrates the implementation details of the proposed DAC structure.

Again, the 10-bit DAC consists of a five-bit resistor ladder and a five-bit capacitor

array. There are 64 switches (S1) between the resistor ladder and the capacitor

array: half of them connect each node in the resistor ladder to VH, and the other half

connect these nodes to VL. Each clock period, two adjacent switches are turned on

to send voltages across one resistor, (M+1)/32.VDD and M/32.VDD, to VH and VL,
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Figure 3-1: DAC operation: (a) step one: the unit capacitors are charged. (b) step

two: the charges are redistributed and filtered.

respectively. The value of M is determined by the five MSBs of the 10-bit data, and

a decoder is designed to control the switches, according to the value of M.

Each unit cell in the capacitor array consists of a zero-Vt NMOS device as a

capacitor and four switches (two S2 and two S3). The first two S2 switches pick up a

voltage from VH or VL to charge the unit capacitor. According to the five LSBs of the

10-bit incoming data, a thermometer code is generated and used to decide the number

of capacitors that are charged to VH. The other two S3 switches are controlled by a

pair of non-overlapping clocks to achieve the switched-capacitor action. Compared
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Figure 3-2: Implementation details of the proposed DAC.

to Figure 3-1, although the switches of S2 in Figure 3-2 are additional, analysis in

Section 3.1.3 shows that these extra switches do not adversely impact the settling

time. The other way to implement it is to remove the S3 switch on the left side of

each unit capacitor and control the upper and lower S2 switches with DN - clk1 and

DN - clki, respectively. Although this way improves the settling time by eliminating

one switch, operating on a high-speed clock signal is usually not a good idea due to

the resulting complicated design.

The unit resistance R, and on-resistance of the switches should be designed to

be sufficiently low in value such that the top-plate voltages of the unit capacitors

can completely settle to VH and VL during step one (see Section 3.1.3). Therefore,

low-Vt MOS devices are used to implement the switches in order to minimize their

d
pF

A9A8...



on-resistance. All of the switches are composed of a low-Vt NMOS device and a low-Vt

PMOS device to reduce the on-resistance over a wide voltage range. The schematic of

the three different switches, their simulated on-resistance, and their device sizes are

shown in Figure 3-3. It becomes more clear in the next section why the on-resistance

of S2 and S3 can be relatively larger than that of S1. Note that there is a trade-off

between the value of R and the power dissipation of this DAC.
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As for the capacitor array, the unit capacitor size must be chosen to be appropri-

ately large to achieve acceptably low kT/C noise across the full range of the DAC (see

Section 3.1.4). To achieve a low area for these capacitors, zero-Vt NMOS capacitors

are used for their implementation (W/L = (6 pum)/(0.9 ym) for a 30 fF capacitor).

Standard digital logic is used to perform the necessary decoding operations for control
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of the switch settings for a given input value to the DAC.

One crucial issue for the DAC is to appropriately clock it in a manner that does

not introduce fractional spurs into the VCO. A standard clock generator is used to

produce the non-overlapping clocks to drive the switches [42], but this generator must

be driven by a clock that is synchronous to the VCO. For fractional-N synthesizers,

this means that the divider output rather than the reference input must be used as

the master clock source (i.e., the stop signal in Figure 2-17). The timing diagram of

the non-overlapping clocks is shown in Figure 3-4. Note that a sufficiently long delay

between clk and clkl is created on purpose such that the unit capacitors can begin

to be charged only after both decoder outputs are stable.

clk I I

clkl I I r
clk2 I L

Figure 3-4: Timing diagram of the non-overlapping clocks.

If designed properly, the passive DAC structure supports monotonic operation

without the need for any calibration. The key issues in design are to guarantee

adequate settling of the resistor ladder to capacitor array voltage transfer as well as to

minimize charge injection effects through proper design of the switches. For instance,

dummy devices are added in the two S3 switches to reduce the charge injection and

clock feedthrough, as shown in Figure 3-3(a). These issues are commonly understood

from the literature [43].

Unfortunately, while monotonic operation is fairly easy to achieve without calibra-

tion, the mismatch between the unit resistors and capacitors results in nonlinearity

of the DAC transfer function. Since the DAC is driven by a first-order AE modulator

to improve its effective resolution (see Figure 5-9), such nonlinearity may cause noise

folding of the AE quantization noise. Fortunately, the 10-bit resolution offered by

the passive DAC limits the magnitude of such noise folding, and the detailed be-

havioral simulation shows that mismatch with a standard deviation of 5% does not



have a significant effect on the overall noise performance of the synthesizer given the

coarse/fine-tuning method discussed later in this thesis [44].

3.1.3 Settling Time Calculation

We choose R, = 55 Q and C, = 30 fF in the implementation. We now check if

these values can support a sufficiently short settling time, given the maximum on-

resistances of the switches in Figure 3-3. First, a detailed schematic for settling time

analysis in step one is redrawn in Figure 3-5. Notice that Rw 2 counts for the two

serial switches (i.e., S2 and S3) on the left side of each unit capacitor, so its maximum

value is 2.1 kQ + 2.2 kQ = 4.3 kQ , while R,, 1 is the maximum on-resistance of S1

(i.e., 395Q ). Before applying the open-circuit time-constant analysis [45], one should

notice that the worst time constant should occur when M is around 16 since the

output resistance looking back to the resistor ladder is maximized in this case. For

simplicity, we can just approximate the output resistance of the resistor ladder to be

16R,/2 = 8R, to obtain the worst-case time constant. Since there are 32 capacitors

in the circuit, open-circuit time-constant analysis suggests

T = ZTi

- 32(8R~ + Rw 1 + Rs 2)C,

- 32(8 - 55 + 395 + 4300)30f = 4.93ns (3.3)

Although it seems that the capacitor voltages cannot settle properly within a half

period of 50 MHz (i.e., 10 ns), simulation results below show that this analysis over-

estimates the time constant.

Interestingly, by simplifying the previous circuit, we can obtain another much

smaller time constant. One can argue that the top plates of the upper N unit capac-

itors can be connected together since they have the same voltage, as illustrated in

Figure 3-6. By doing so, N of the resistors R= 2 can be considered to be in parallel,

which results in a smaller time constant. After applying the same technique to the

lower (32-N) capacitors, we can now use the open-circuit time-constant method again
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Figure 3-5: DAC schematic for time constant calculation.

to obtain

T1 = (8Rs

72 = (8Ru

+ R8, 1 + Rs, 2/N)NC, = (8R/ + Rs, 1)NC, + Rsw2C,

+ Rw 1)(32 - N)C, + R•, 2Cu

S= TI + 72

= (8R, + RWI)32C, + 2R~w2C~

= (8 55 + 395)32.30fF + 2.4300 -30fF

= 0.8ns + 0.26ns = 1.06ns (3.6)

which is much smaller than the value obtained by using equation 3.3. Thus, the

signals have (10 ns)/(1.06 ns) = 9.4 time constants to settle. One should notice that

although Rw2 is large, the time constant contributed by R8 w2 is only 0.26/1.06=25%

of the overall time constant because of the effect of the parallel resistors. Therefore,

we do not need to design extremely small on-resistances for S2 and S3. Having small

device sizes for S2 and S3 not only reduces the DAC area but also alleviates the

negative impact of the charge injection from the switches.

(3.4)

(3.5)
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Figure 3-6: Simplified schematic for time constant calculation.

We now verify the above analysis with Spectre simulation. Both circuits in Fig-

ures 3-5 and 3-6 are stimulated by a square-wave VDD to observe their transient

responses, assuming M=N=16. The first two waveforms in Figure 3-7 correspond

to capacitor voltages charged to VH in Figures 3-5 and 3-6 , respectively. As seen

here, the equivalence between both circuits is indeed true since these two waveforms

are the same. (They actually overlap each other when being plotted together.) To

further extract their time constants, the circuit in Figure 3-8 is also simulated by

setting R1=825Q , R 2=935Q , and CL=1.65pF, such that its response best matches

those of Figures 3-5 and 3-6. Therefore, we can conclude that the time constant is

approximately (825Q|1935Q)1.65ps = 0.72ns, which is even smaller than the value of

1.06 ns calculated with equation 3.6.

Another case where M=16 and N=31 is also verified, and its result is shown

in Figure 3-9. Again, V1 in Figure 3-6 overlaps Vo in Figure 3-8 when R1=825Q ,

R 2=935Q , and CL=2.lpF, indicating a time constant of (825QIl9357)2.1pF = 0.92ns

at this node. As for V2 in Figure 3-6, which has only one unit cell connected, one can

observe that its sharper transition edge is somehow different from the response of a

first-order system, but its time constant can still be claimed to be less than 0.86 ns.

(Time constant of Vo in Figure 3-8 is chosen to be (880Q2|18800)1.9pF = 0.86ns in

this simulation.)
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Figure 3-7: Simulated transient responses of Figures 3-5, 3-6, and 3-8 when M=N=16.

R1

R2 CL

Figure 3-8: Equivalent circuit to extract time constants of Figures 3-5 and 3-6.

To conclude, the time constant of 1.06 ns obtained by applying open-circuit time-

constant analysis to Figure 3-6 is sufficiently close to simulation results, and the DAC

has 9.4 time constants to settle in step one. Note that parasitic capacitors contributed

by the switches and wires are ignored in this analysis. In addition, settling time in

step two is shorter than that in step one, according to simulation results.

3.1.4 Noise Calculation

We now calculate the noise spectral density of the DAC, and the results are used in

the calculation of the overall PLL noise in Chapter 6. In order to simplify the analysis,
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Figure 3-9: Simulated transient responses of Figures 3-6 and 3-8 when M=16 and
N=31.

we first assume that all unit-capacitor cells can be merged together, as illustrated in

Figure 3-10. R,,on and Ron2 are equivalent on-resistances of the switches, whose values

can be approximated by

Ron1 = (Rs2 + Rs3)/32 + Rs1/2 + RDAC (3.7)

Ron2 = (Rs3)/32 (3.8)

where R,8 , Rs2, and R,3 are listed in Figure 3-3, and RDAC is the equivalent output

resistance of the resistor ladder. The unit capacitors C, are multiplied by 32 while

the switch on-resistances are divided by 32, since 32 unit cells are in parallel. Note

that this modification is verified with Spectre simulation later.

Ron R clkl Ron 2  clk2

IC=Cu X 32 C 2

Figure 3-10: Equivalent circuit for noise analysis.



This simplification makes noise analysis of the proposed DAC structure the same

as that of a passive switched-capacitor filter, which was derived in [46]. The complete

expression of the output noise spectral density in [46] is

2kT . 2rf
Svn(f) = A(f) sinc2

A(f) kT -rf rf 1 1 2  f•
+ (cos( )cos( ) + sin2

2 feaC ° 2s~f 4f 8 1+a 4f
1 2kT

+(• ) R on2 (3.9)1 + a 2
1

A(f) = (3.10)
1 + 2a(1 + a)(1 - cos( 2 f))

where fc is the clock rate of the filter, and a is the capacitor ratio C2/C1. Note that,

first, these two equations are independent of Ron1. In addition, the low-frequency

value of the first term is equal to 2kT/(fcC1 ), which is exactly the same as the

noise density generated by the equivalent resistance Req = 1/(fcC1) of the switched

capacitor C1. We later show that when a is reasonably large, the overall noise density

is dominated by the first term, and the double-side noise density 2kTReq can be used

as a good approximation of Sn(f) to simplify the analysis.

To demonstrate that the noise density at low frequency can be approximated as

2kT/(fcC1 ), the single-side noise density (i.e., 2S,,(f)) is plotted in Figure 3-11 using

a = 2.5, fc = 50 MHz, C1 = 1 pF, Ron2 = 2200Q/32, all of which correspond to the

fine-tuning DAC in the prototype chip. Although a is only 2.5 in this case, we can

see that the total noise is indeed dominated by the first term in equation 3.9, and

the second term only contributes 10% of the total noise at low frequency. The third

term is practically negligible since its value is only 1.1 x 10-20.

The next step is to develop a simple noise model for the behavior simulation

in Chapter 6, since equation 3.9 is unnecessarily complicated to use directly. We

propose to filter the equivalent resistor noise 2 kTReq using a first-order filter with

cutoff frequency fp = 1/(27rReqC2) and use the filtered noise as the approximated
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Figure 3-11: Calculated spectral noise density using a = 2.5, f0 = 50 MHz, C1 = 1

pF, Ro, 2 = 2200ohm/32.

DAC noise, as described with the following equation:

S,,(f) = 2kTReq 1 (3.11)
1+(-L) 2

Figure 3-12 compares the calculated value using equation 3.9, approximated value

using equation 3.11, and simulated results using the PNoise function in Spectre RF.

In this simulation, a simplified schematic of the DAC excluding the decoders in Figure

3-2 is used with M=N=16. In addition, on-resistors with their resistances listed in

Figure 3-3 are connected in series with ideal switches; ideal capacitors are used. The

result shows that the simulated value matches the calculated value very well. It also

verifies that simplifying the proposed DAC structure to a passive switched-capacitor

filter for noise analysis is reasonable.

We now investigate another case when a is much larger. Figure 3-13 illustrates the

result when a = 20. We can see that the approximated and calculated noises are very

close in this case because the second term in equation 3.9 becomes very small when

a is large. The simulation result is also reasonably close to the calculated value. In

vi 16
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Figure 3-12: Calculated, approximated, and simulated noise densities using a = 2.5,
f, = 50 MHz, C1 = 1 pF, Ro, 2 = 2200ohm/32.

addition, compared with Figure 3-12, the bandwidth of this case is reduced because

a larger C2 is used, as indicated by equation 3.2.

CNI

(11
C\

freq(Hz) x 106

Figure 3-13: Calculated, approximated, and simulated noise densities using a = 20,
f, = 50 MHz, C1 = 1 pF, Ron2 = 2200ohm/32.



To conclude, we can simplify the noise spectral density of the DAC from equation

3.9 to equation 3.11 without losing much accuracy, especially when a is large. Actu-

ally, the two cases in Figures 3-12 and 3-13 correspond to a fine-tuning DAC and a

course-tuning DAC, respectively, in the prototype synthesizer. It is shown in Chapter

6 that the thermal noise contributed by the fine-tuning DAC is considerably below

other noise sources, thus the 10% error in its noise density caused by using equation

3.11 does not have much negative impact on the accuracy of the predicted PLL noise.

3.2 Hybrid VCO

The hybrid VCO used in the prototype is a well understood structure [37] that consists

of a four-bit switched-capacitor network for initial coarse frequency tuning, and two

varactors for continuous tuning at coarse and fine levels. The coarse-tuning varactor

is added to reduce the necessary resolution of the MIM array.

---------- -I *-~ - I - -

freq.

1111

1000

SI

N MHz/V
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4-bit MIM,
Capacitor'
Array

Dual
Varactors

Figure 3-14: Schematic of the hybrid VCO.

A simplified view of the structure is shown in Figure 3-14. The four-bit switched-

capacitor network is implemented with MIM capacitors and is tuned by hand in the

prototype through a serial interface on the chip to achieve an overall VCO range of

I
I
I
I
I
I
I
I
I
I
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3.15 to 4.25 GHz (see Figure 7-4). Note that the algorithm used to set the four-bit

MIM capacitor bank is not included in this thesis.

The coarse- and fine-tuning varactors are accumulation-mode devices (i.e., a NMOS

device in a N-WELL, as illustrated in the simplified diagram in Figure 3-15 [47]), with

the coarse varactor sized to be 16 times larger than the fine varactor. Therefore, the

K, and tuning range of the coarse varactor is 16 times larger than the fine varactor.

The consequence of this difference in K, is discussed in the next chapter; the idea is

to let the coarse varactor provide a moderate frequency range during the frequency

acquisition cycle, while the fine varactor is used after the frequency settles to minimize

the noise sensitivity.

P-sub

Figure 3-15: Simplified structure of the accumulation-mode varactor.

A center-tapped differential inductor consisting of the two top metal layers in

parallel is used to achieve a peak Q factor at 3.6 GHz with a differential inductance

value of 1.6 nH, according to the design kit.

Simulated coarse and fine VCO gains are 80 MHz/V and 5 MHz/V, respectively,

when the control voltages are set around VDD/2. Because of the characteristic of the

varactors, VCO gains gradually decrease as control voltages increase (see Figures 7-5

and 7-6). Interestingly, the proposed synthesizer architecture, which utilizes both a

coarse varactor and a fine varactor, can tolerate this nonlinear gain because of the

high DAC resolution and the coarse/fine-tuning filter design. This point is explained

in more detail in Section 5.4 after the filter architecture is presented.

Instead of using the complementary topology [48][49], which consists of both a



NMOS and PMOS cross-coupled pair, the chosen VCO structure utilizes only a PMOS

cross-coupled pair to obtain a larger signal swing under a low supply voltage (1.5 V). A

PMOS cross-coupled pair rather than a NMOS one is used because of its lower flicker

noise in this process. In addition, the topology using a NMOS current source on the

bottom and the PMOS cross-coupled pair on the top is chosen, as shown in Figure

3-14. To explain that, in the topologies that place the common-mode voltage of the

VCO signals at VDD or ground [49], the signal swing is limited by the maximum IvGB I

a device can tolerate. For instance, if the topology utilizing a NMOS tail current and

a NMOS cross-coupled pair is used [49] with a supply voltage of 1.5 V and maximum

IVGBI of 1.8 V, the amplitude of the single-ended oscillation signal is limited to only

0.3 V, which degrades the phase noise. Instead, the chosen topology allows us to

place the common-mode voltage around the middle supply to achieve a higher swing

than other topologies without breaking the devices [50][51].

The switch proposed in [4] is used in the MIM capacitor array. The schematic of

ths switch (Figure 3-16) and the design considerations, described in [4], are repeated

here for convenience: "When VDIG is high, MaO is on and the whole cell is on.

Transistors Ma3 and Ma4 provide DC bias to ground for the drain and source of MaO

to ensure minimum on-resistance for MaO and thus to maximize the Q when the cell

is on. Since these two transistors are used to provide DC bias to the drain and source

of MaO when the switch is on, the minimum size is used so as not to degrade the

tuning ratio. When VDIG is low, MaO, Ma3, and Ma4 are off and the cell is off.

Since the drain and source of MaO are floating and due to large signal swing at the

VCO outputs, the drain and source of MaO can swing below ground and slightly turn

on MaO, which leads to poor Q when the cell is off. Two PMOS transistors Mal and

Ma2 are added to bias the drain and source of MaO to VP to ensure MaO is off." In

this chip, VP is connected to VDD. More details of the switch design can be found in

[4].

Inverter-based buffers are used both between the VCO and the divider and be-

tween the VCO and the output pad, as illustrated in Figure 3-17. First, the differential

VCO signals are AC coupled to two inverters with resistor feedback. By doing so,
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Figure 3-16: The switch structure in [4] is used in the four-bit MIM array.

the duty cycle of the inverted signal and its harmonic contents do not strongly de-

pend on the common-mode voltage of the VCO so that we can have more freedom

in choosing the VGS of the cross-coupled pair devices. Another inverter follows each

resistor-feedback inverter to complete the first-stage buffer. One of the differential

buffered signals is then used to drive the divider, and the other one drives a second-

stage buffer with device sizes sufficiently large to drive the 50-Q load. The VDD of

the first-stage buffers are connected to the VCO supply, but a separate VDD pad is

reserved for the second-stage buffer to prevent this buffer from disturbing the main

VCO supply because of its high current (7 mA).

To Pad
(Driving 50ohm load
from instrument)

Figure 3-17: Buffers after VCO to drive the divider and the output pad.

Voutp



3.3 DCO Model

Figure 3-18 illustrates the model of the proposed DCO. The input digital code is

first scaled by a factor of V/2B, where V and B denote the power supply voltage

and number of bits of the DAC, respectively, to convert the input digital code to a

voltage. Another scale factor of T accounts for the DT-CT conversion due to the

DAC [35]. In addition, the first-order lowpass pole created by the switched-capacitor

structure is described by its equivalent analog response, HLP,f(s). Coarse and fine

varactor gains are described by the two integration functions. Approximated noises

of the coarse and fine DAC, which are developed in Section 3.1.4, as well as the VCO

noise are also included in the model for further noise analysis in Chapter 6.

S.,,4(f) S(,,(f)4, 4

DCO-referred
Noise

s=j2nf

Figure 3-18: Model of the proposed DCO.

According to Section 3.1.4, thermal noises from the fine-tuning and coarse-tuning

DACs can be approximated as:

SV, f(f) = 2.2kTReq,f (3.12)1 + (f)2
1

(f) = 2.2kTReq,c , (3.13)()21 + f_)2
\ fpc

]

where Req,f and fp are the equivalent resistance and corner frequency of the fine-

tuning DAC, and Req,c and fpc are those of the coarse-tuning DAC. Note that a scale

factor of two is added in each equation to modify it from a double-side density into



a single-side one.

3.4 Summary

The case of using a combination of a DAC and hybrid VCO to implement the DCO is

considered. We propose an efficient 50-MHz 10-bit passive DAC that requires minimal

analog content. A first-order switched-capacitor filter is also embedded in the DAC

structure, providing a lowpass pole for the overall PLL. In addition, the hybrid VCO

used in this prototype is discussed. Finally, a noise model of the overall DCO is

provided.





Chapter 4

Asynchronous Divider

Current digital phase-locked loop (PLL) structures commonly use a synchronous di-

vider with the argument that it has excellent jitter characteristics. Unfortunately,

such structures also have relatively high power consumption due to the fact that many

elements must be clocked at the highest frequency in the system (i.e., frequency of

the voltage-controlled oscillator (VCO)) [9].

In this chapter, we propose an asynchronous divider structure that has low power

consumption while still maintaining excellent noise performance. The time-to-digital

converter (TDC) unwrapping function and offset control are also discussed in the end

of this chapter.

4.1 Asynchronous, Low-Jitter Divider

For classical analog fractional-N synthesizers, it is common to use an asynchronous

divider structure [5] due to its low power and compact layout. The low power is

achieved by operating only a small portion of the structure at the highest frequency.

As shown in Figure 4-1, application of this structure to a digital fractional-N synthe-

sizer is straightforward in principle. However, the key issue arising is that the gated

ring oscillator TDC must support a very large time range during locking since the

phase error can span the entire reference period. Because the nominal phase range

required after the PLL is locked is much smaller than the reference period (see Section



4.3), this constraint can lead to wasted power and area in the GRO to support such

a wide range that is only briefly utilized during locking. In addition, note that the

phase error seen by a detector can even be larger than 27r or become negative during

frequency acquisition, as illustrated in Figure 4-2. In order to have a well-defined

TDC measurement each reference cycle, only one reference edge and one divider edge

are desired in each period. When a phase error is larger than 27r (Figure 4-2(a)), the

divider edge is missing between two reference edges such that the TDC output is not

defined in this period. When a negative phase error follows a positive phase error

(Figure 4-2(b)), two divider edges occur in one period such that the phase error be-

tween the second divider edge and the next reference edge cannot be measured. The

reason for the latter problem is that a TDC cannot handle a negative phase error

directly. These issues make the application of a TDC to the classical fractional-N

architecture complicated in practice. Some previous works thus combined a classical

phase detector and a TDC [12], but this solution ruined the beauty of a digital PLL

structure.

Figure 4-1: Classical approach to using an asynchronous divider in a digital fractional-
N PLL.

Also, a subtle issue with asynchronous divider structures is that the delay from

input to output can shift slightly as a function of the divide value because of the vary-

ing internal-node capacitors. This leads to additional jitter when dynamically varying

- - - - - - ---- - ---- --- --- --- --- --- --- --- --- --- ---I



No Stop edges in this period !!
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GRO stop(t)

Phase Error > 2,g
(a)

Two Stop edges in this period !!

GRO start(t)

GRO stop(t)

Phase Error < 0
(b)

Figure 4-2: The GRO output is not well-defined when one reference cycle includes

(a) no stop edge (b) two stop edges.

the divide value according to a AE modulator in a fractional-N PLL [22] [24] [26] [27].

The common approach to dealing with such delay variation is to re-clock the divider

output with a register that is timed by the VCO output, but this approach is costly

in power and also opens the door to metastability problems [24]. To explain that, the

possible divider delay may vary over a wide range due to the process, voltage, and

temperature variations. When the divider output edge is too close to the VCO sam-

pling edge, the metastability issue arises, making the design of the re-timing circuit

complicated. Therefore, the goal of the proposed divider structure is to eliminate the

divide-value delay variation without a complicated re-timing circuit.

4.1.1 Divider Operation

We propose a very simple divider modification that alleviates both of the issues de-

scribed above. As shown in Figure 4-3, the proposed structure reduces the divide

value range of the core asynchronous divider such that the nominal frequency of the

core output div(t) becomes four times the reference frequency. Since four divider



edges exist within each reference period in this case, the signal div(t) cannot be used

for phase comparison directly. By using the core divider output to re-time the refer-

ence (i.e., shown as the re-timing flip-flop in the figure), the effective divider output

impacting the GRO TDC has the same frequency as the reference. In addition, it can

be guaranteed that only one stop(t) edge is allowed to occur every reference cycle such

that the TDC output is always well-defined. This re-timing technique has similarities

to a technique proposed in [9], but has the advantage of much fewer components

operating at high frequencies. By multiplexing a series of four divide values into the

divider each reference period, the effective divide value N becomes the sum of those

values (i.e., N=No+Ni+N2+N 3). Note that only one of the divide values needs to

be dithered by the AE modulator (i.e., N2 in this example), whereas the rest can

be kept at static values that are chosen according to the desired output frequency of

the synthesizer. Whenever the carrier frequency changes, the values of No, N1, and

N3 are set through a shift register together with Nsd, which contains both an integer

value and the fractional value for the AE modulator.

f%-Of%

VCO

Nsd-Q(

GRO start(t)

div(t)

GRO stop(t)

Phase Error divide-value delay variation

Figure 4-3: Proposed asynchronous divider structure achieving low power and jitter.

To explain the advantage offered by the proposed divider structure with respect

to the TDC range, consider the fact that since the re-timing flip-flop (shown in Figure
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4-3) is clocked at four times the reference frequency, the maximum time span seen

by the TDC is 1/4 the reference period rather than the full reference period. The

factor-of-four reduction in the phase range eases the dynamic range requirements of

the TDC phase detector. In the case where the actual phase error exceeds the TDC

range, it is a simple manner to keep track of the resulting cycle slips such that a net

"unwrapped" phase is computed, as described in Section 4.2. Once the PLL is locked,

such cycle slipping disappears and a TDC range of one fourth the reference period is

more than adequate to track the PLL phase error (see Section 4.3). In the prototype

presented here, the required TDC range becomes 1/(50 MHz)/4 = 5 ns, leading to

an 11-bit GRO implementation given that the raw resolution of the GRO is 6 ps.

As for the advantage offered with respect to the divider delay variation, note that

only one of the four edges of the core asynchronous divider output has an impact on

the TDC each reference period. By choosing the divide value associated with that key

TDC edge to be constant, the corresponding core divider delay from input to output

is also constant for that key edge (ignoring the thermal noise effects). Therefore, if

we simply choose the AE modulated divide value to control any of the other three

core divider edges not corresponding to the key edge that impacts the TDC, we can

avoid variation in the timing of that key edge due to the AE divide value variation.

As shown in the figure, we choose N2 to be the divide value controlled by the AE

modulator. The divider structure therefore avoids the divide-value-dependent jitter

due to the AE dithering without re-timing the divider output using the VCO edge.

Simulation results are presented in the next section to support this idea.

4.1.2 Implementation Details

The divide-by-16-to-31 divider core shown in Figure 4-4 is based on [5]. The beauty

of this topology is the simple design resulting from the modular structure. Instead

of using six divide-by-two/three stages to achieve the necessary divide-by-64-to-127

range as usual, the proposed divider uses only four stages to perform divide-by-16-to-

31 each time but needs four division cycles to complete the overall divide-by-64-to-127

action, as explained in Section 4.1.1.



Figure 4-4: Schematic of the modular divider structure.

Different from the original implementation based on the current-mode logic in

[5], the implementation of the asynchronous divider in this prototype is achieved

with the full-swing TSPC logic in order to save the chip area and power dissipation

[52]. Figures 4-5 and 4-6 illustrate the original divide-by-two/three cell in [5] and

the modified TSPC version used in this chip, respectively. The upper two latches in

Figure 4-5 are combined as a TSPC DFF, and the lower two are implemented as P-

type and N-type latches, respectively. Notice that the necessary logic functions (i.e.,

AND) are merged with the DFF or latch with the shaded devices in Figure 4-6 to

reduce the propagation delay. The resulting savings in area and power are huge since

no resistors and current sources are needed in a TSPC implementation. The average

current dissipation of the overall divider is only 1 mA in 0.13-im CMOS when the

VCO frequency is 3.6 GHz. Simulation indicates that the divider can operate up to

5 GHz. Note that this design is negative-edge triggered.

A detailed timing diagram of the core divider in Figure 4-4 is illustrated in Figure

4-7 to better understand this divider structure. First, the divide ratio is

N = 16 + CONo 20 + CON1 21 + CON2 22 + CON3 . 23  (4.1)

When N is 16 (CONs CON2 CON1 CONo=0000), each cell divides the incoming fre-

quency by two, and the action of divide-by-16 is completed at the 17th falling edge of

fi,. However, when we increase the divide value by setting CON3 CON2 CON1 CONo
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Figure 4-5: Schematic of the divide-by-two/three stage in [5].

to a value other than 0000, each cell is designed to perform divide-by-three once

within the divide-by-N cycle if its CON signal is set to one. As a result, the cells can

extend the divider output period by 20, 21, 22, and 23 VCO periods, respectively, to

achieve the goal of divide-by-N, as shown in Figure 4-7(a). Notice that Figure 4-7(a)

illustrates the case of divide-by-31. To illustrate the timing diagram for an N value

other than 31, one can simply remove regioni from Figure 4-7(a) if CONi is zero.

Each divide-by-two/three stage can perform divide-by-three only once in each

divide-by-N action because a second control signal MODi, is added in each stage, in

addition to CON. To explain that, this design allows CONi to be loaded to CON*

only when MODi is HIGH, as illustrated in Figure 4-7(b) and (c). One can see that

the MOD signal (i.e., Mi) propagates from the last stage to the first stage gradually,

so there is only one chance for every stage to perform divide-by-three when CON*

is LOW. If CONi is set to zero, the corresponding CON* keeps at HIGH, so no

divide-by-three action can occur in that stage, and regioni in Figure 4-7(a) should be

removed.

When designing a divider for a fractional-N PLL, one critical thing is how to

update the divide value every reference cycle without causing any operation error
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Figure 4-6: TSPC implementation of the divide-by-two/three stage.

[53]. With the help of Figure 4-7, it is clear that we can safely update CONj once

CON- becomes LOW since the divide-by-three action is already launched. In this

prototype, a simple control qualifier design, as shown in Figure 4-4, is achieved by

gating the incoming divide value P, [k], which is triggered by the negative edge of

fout, with a register that is triggered by the result of fi - f2 f3 fout. As illustrated

in Figure 4-7(d), the first positive qual edge does not occur until all CON* become

LOW. Thus, the divider core cannot see the updated divide value until the operation

of divide-by-N is completely launched. Notice that although there are another three

positive qual edges in Figure 4-7(d) due to this simple control qualifier design, the

operation is not ruined since P3P2P1 Po cannot change during this period.

Figure 4-8 illustrates a more detailed schematic of the overall divider architecture.
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Figure 4-7: Timing diagram of the divide-by-16-to-31 divider (a)main signals (b)MOD
signals (c)CON, (d)control qualifer.

The difference between Figures 4-8 and 4-3 explains the timing details and the way

to reset the counter that is used to control the multiplexer as well as to unwrap the

GRO output. First, since the divider is negative-edge triggered, we use the negative

node of the VCO differential signals to drive the divider (the positive node drives the

pad), and add an inverter at the divider output to let each div(t) cycle begin with

a positive edge. Again, div(t) samples the ref(t) using a re-timing flip-flop with the
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Figure 4-8: Detailed schematic of the proposed divider structure.

output labeled as refs(t). The realigned reference signal refs(t) is not only used as a

disable signal of the GRO, but it also triggers the third-order AE modulator as well

as the rest of the system (i.e., noise cancellation, loop filter, DAC). By doing so, the

whole system is synchronous to the VCO edge.

The signal div(t) also triggers a three-bit counter whose schematic is shown in

Figure 4-9. There are two outputs in this counter. One output b(t), which is the

two LSBs of a(t) and is triggered by the div(t) edge, is used to control the 4-to-

1 multiplexer such that we can sequentially choose a divide value from No to N3

every reference cycle. The other output of the counter c(t) is triggered by a reset(t)

signal that occurs only once every reference cycle. The reset(t) pulse is the result of

refs(t) -refs2(t), where refs2(t) is an inverted, sampled version of refs(t). Whenever



the reset(t) edge occurs, the instantaneous value at a(t) is loaded to c(t). This value

of c(t) indicates the number of positive div(t) edges within every reference cycle (i.e.,

the number of div(t) cycles in each refs(t) cycle). In the steady state, the value of c(t)

should always be four. However, during the initial frequency acquisition cycle, c(t)

can be five or three when the VCO frequency is too high or too low, respectively. The

timing diagram in Figure 4-8 illustrates the case when the VCO frequency is slightly

higher such that c(t) is four in the first cycle and five in the second cycle. Notice that

a(t) also increases by one at every refs(t) edge but is reset right after the reset(t)

edge occurs. The time delay between div(t) and reset(t) allows c(t) to sample the

increasing a(t) value. Resetting the value of a(t) from four or five to zero during

the divide cycle in Figure 4-8 does not impact the divider core because of the gating

function created in Figure 4-4. The value of c(t) is then used to unwrap the GRO

output phase such that an almost linear TDC transfer function can be achieved to

avoid the cycle slipping, shortening the PLL locking time. The circuit that unwraps

the GRO output is described in Section 4.2.

(two LSBs)

b(t)

c(t)001

clk

resel

Figure 4-9: A three-bit counter used to control the multiplexer and to record the
number of divider edges.

We now check the issue of the divide-value-dependent delay in an asynchronous

divider with Spectre simulation and then demonstrate how the proposed structure

improves it. First, we examine how the input-output delay changes in the core divider

(Figure 4-4) by sweeping the divide value from 16 to 31. The variable delay can be

observed in the eye-diagram of the divider output, as illustrated in Figure 4-10, and

the resulting pk-pk jitter is about 2 ps at the negative edge. This experiment verifies



that the divide-value-dependent delay indeed exists. Then, we simulate the proposed

divider (Figure 4-8) with four different setups. In each case, we select one of the four

divide values to toggle between 19 and 21 and set the other three divide values to 20.

By doing so, the effective divide value (i.e., No+N 1 +N 2 +N 3) of these four simulations

are identical, but we can see the negative impact of the divide-value-dependent delay

when N3 is dithered. As shown in Figure 4-11(c), when N3 toggles between 19 and

21, we can clearly see two different rising edges caused by two different delay values

(separate by 0.7 ps) at the re-timing flip-flop output (i.e., refs(t) in Figure 4-8). As

for the other three cases, we can only see one rising edge caused by the divide value

of 20. This result is provided here as evidence that the proposed divider structure

can avoid the divide-value-dependent delay (jitter) without requiring re-timing.

0

0

0

0
50 100 150 200 250

time(ps)

Figure 4-10: Simulated jitter of the divide-by-16-to-32 divider.

4.2 The TDC Unwrapping Function

We now continue the discussion of "unwrapping" the TDC phase. First, Figure 4-12

explains the meaning of "phase wrapping" and "phase unwrapping". In this figure,

we assume that the frequency of stop is smaller than that of start in the beginning,

. r_
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Figure 4-11: Simulated jitter of the resampled reference clock: (a)Ni toggles between
19 and 21, N2 = N 3 = NO = 20 (b)N 2 toggles between 19 and 21, N 1 = N 3 - N0o

20(c)N3 toggles between 19 and 21, N1 = N2 = No = 20 (d)No toggles between 19
and 21, N1 = N2 = N3 = 20.

so the phase error detected by the TDC (i.e., g[k] or m[k]) keeps increasing until

only three div(t) edges occur in one ref(t) cycle, as shown in Figure 4-13(a). What

happens at this point is that the TDC underestimates the phase error because it

cannot see the phase error corresponding to the fourth div(t) cycle that occurs after

the refs(t) edge. The result is that g[k] and m[k] "wrap," as illustrated in Figure

4-12. This phenomena is similar to the cycle-slipping effect in a tri-state PFD, which

leads to a much longer locking time than a linear system can achieve [53]. Therefore,

the idea is to switch in an offset unwrap[k] to eliminate the negative effect of phase

wrapping, as illustrated in Figure 4-12. With the phase unwrapping function, the net

phase error u[k] seen by the loop filter can keep increasing even if it is larger than

7r/2 (i.e., one-fourth of the reference period). In the other case where fsto, > fstart,

phase error keeps decreasing. At some point, there can be five div(t) edges occurring

in one ref(t) cycle, as shown in Figure 4-13(b). The problem now is that instead of

-A
__ • A



seeing the real phase error that is negative, TDC sees the time difference between the

ref(t) edge and the next refs(t) edge. Again, the TDC output wraps, so we need to

switch in a negative step such that the net phase error can decrease seamlessly.

~--l-----r----l---11----1---1----------------
50-MHz fstop < fstart fstop 

> 
fstart

nnr

unwrapped phase

I ,

- ,
m[k]

phase wrapping +
u wra- I

· · TL

------------------------------------------------.I

Figure 4-12: A phase unwrapping function eliminates the phase wrapping at the TDC
output.
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Figure 4-13: Timing diagram when phase wrapping occurs (a)ftop < fstart (b)fstop >
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The unwrapping function in this prototype is implemented as in Figure 4-14. The

counter output c[k] in Figure 4-9 is leveraged to indicate whether phase wrapping

occurs. As shown in Figure 4-14, this number compares with four, and their difference

is scaled and accumulated to generate unwrap [k]. Therefore, when no phase wrapping

occurs, c[k] is four and nothing is accumulated. However, when c[k] is different from

four because of phase wrapping, the deviation from four accumulates to provide an

offset value to the TDC output. A six-bit multiplier scales the deviation value before

it is accumulated such that the step unwrap[k] provides can roughly match the step

in the wrapped phase signal (i.e., m[k]). Notice that since phase wrapping can only

occur during frequency acquisition, accurate cancellation of this step is not necessary.

The scale factor is programmable through the shift register in the prototype but is

set to a fixed value during the measurement.

unwrap[k]

Figure 4-14: Implementation of the TDC unwrapping function.

4.3 TDC Offset

Since a TDC cannot handle a negative time difference directly, the average time

difference between the GRO start and stop edges needs to be biased to a certain

offset after the PLL locks, as illustrated in Figure 4-15.

On the one hand, the offset value must be large enough, such that the stop edge

never leads the start edge to guarantee a positive time difference in the steady state.

On the other hand, a small offset value reduces the duty cycle of the GRO, resulting

in lower power and noise. As shown in Figure 2-17, the offset value, which is pro-

grammable through a shift register in the prototype, is controlled by a subtractor. In

the measurement results in Chapter 7, this offset value is set to around 1.2 ns.
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Figure 4-15: The time difference between the GRO start and stop edges is biased to

an offset value in the steady state.

Figure 4-15 also explains why the divider output frequency is chosen to be about

four times the reference frequency. By doing so, the stop edge can move safely without

causing cycle slipping in the steady state. There might be insufficient margin if

the divider output frequency is higher than four times the reference frequency. On

the other hand, setting divider output frequency to be only two times the reference

frequency increases the necessary TDC range during frequency acquisition.

Notice that if direct modulation is built into the synthesizer, the deviation in

the location of the stop edge may become larger. Careful investigation with detailed

behavior simulation is necessary in that case to guarantee correct operation.

4.4 Summary

We propose an asynchronous divider structure that has low power consumption while

still maintaining excellent noise performance by avoiding the divide-value-dependent

delay in an asynchronous divider. In addition, this divider also lowers the required

TDC range by a factor of four. The TDC unwrapping function and offset control are

also discussed.



Chapter 5

PLL System Design

Although the key techniques to achieve a wide bandwidth and low noise have been

provided, there remain some questions concerning the PLL system design not yet

addressed in this thesis. Should we use a second-order or a third-order AE modulator?

What type and order of loop filter should we use? How do we design a simple but

high-performance digital filter? We answer these questions in this chapter before

moving on to the noise analysis and measurement results in the next two chapters.

5.1 System Design Using PLL Design Assistant

In this section, we use a tool, PLL Design Assistant [54] [55], to investigate the noise

performance of the proposed techniques quickly. Based on these results, details about

how to choose the AE modulator order, PLL type, and PLL order are discussed in

the next few sections.

Figure 5-1 illustrates the parameters assumed in this analysis. Key parameters

are: fref = 50 MHz, f,,, = 3.6 GHz, fo = 500 kHz, order = 2, fl/fo = 1/8. In

addition, the VCO phase noise is assumed to be -150 dBc/Hz at 20 MHz offset with

flicker corner frequency of 200 kHz. The GRO TDC noise is assumed to have a -120

dBc/Hz floor with a -10 dB/dec roll-off at low frequency offsets. Although the TDC

quantization noise is ignored in the analysis in this section, it is included in further

analysis in Chapter 6. Furthermore, a third-order AE modulator is chosen, and we



assume 10% of its quantization noise is left after the noise cancellation is performed.

Note that although a high reference frequency of 50 MHz is chosen to lower the

quantization noises of the TDC, DAC, and divider in this system, the analysis in

Section 6.2.2 and the measurement results in Section 7.3 show that the proposed

synthesizer can also utilize a lower reference frequency.

Figure 5-1: Parameters assumed in this PLL analysis.

In order to suppress the third-order shaped quantization noise, which has a 40

dB/dec roll-off at PLL output, parasitic poles need to be included in the second-

order PLL because a second-order PLL can only provide a -40 dB/dec roll-off in its

closed-loop transfer function. Note that two poles at 3 MHz are included in this

analysis. The first one is to model the switched-capacitor filter inside the fine-tuning

DAC. The second pole was added because we intended to add another RC lowpass

filter after each DAC to attenuate the clock feedthrough. However, we decided to

remove this extra filter to simplify the circuit complexity but did not modify the

parameters used in this analysis and the following design.

Figure 5-2 illustrates the corresponding phase noise. As revealed in this figure,

excellent in-band and out-of-band phase noises are achieved. Also, the integrated

jitter is 174 fs, according to the calculation of PLL Design Assistant.
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Figure 5-2: Noise analysis using PLL Design Assistant.

5.2 AE Modulator Design

When designing the AE Modulator, one should avoid the first-order modulator since

the resulting tones are usually too high to be cancelled completely. Second- or third-

order modulators are most popular nowadays since they sufficiently scramble the

quantization noise. One subtle difference between a second-order and a third-order

modulator is the needed accuracy of the noise cancellation in order to achieve the

targeted phase noise. Let us revisit the analysis in Section 5.1 but disable the noise

cancellation function by setting the S-D transfer function from 0.1*[1 -3 3 -1] to 1*[1

-3 3 -1]. Note that this scale factor (i.e., 0.1 or 1) is denoted as c in equation 6.17.

The results in Figure 5-3 reveal that the peak phase noise contributed by the quanti-

zation noise is about -120 dBc/Hz at 1-2 MHz offset before the noise cancellation is

performed. To make the quantization noise lower than the VCO intrinsic noise, we

need to suppress it by a certain amount. As illustrated in Figure 5-2, assuming a 20

dB suppression, the residual quantization noise is considerably below the VCO noise.

In other words, we can tolerate 10% of the noise left after the cancellation.

As for the case where a second-order modulator is used, the peak phase noise is -96
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Figure 5-3: Phase noise of a PLL using a third-order AE modulator without noise
cancellation.
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Figure 5-4: Phase noise of a PLL using a second-order AE modulator without noise
cancellation.

dBc/Hz at 500 kHz offset without the noise cancellation, as shown in Figure 5-4. With

only 20 dB suppression of this noise, Figure 5-5 reveals that the quantization noise
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is still too high compared to the intrinsic VCO noise. More than 26 dB quantization

noise suppression is necessary such that the residual quantization noise can be lower

than the VCO noise, as depicted in Figure 5-6. In other words, to use a second-order

modulator to reach similar noise performance as in the case where a third-order one

is used, the scale factor of the quantization noise for the noise cancellation must be

more accurate. We thus choose a third-order modulator to decrease the necessary

accuracy in the noise cancellation.
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Figure 5-5: Phase noise of a PLL using a second-order AE modulator with 20-dB

noise cancellation.

As a side point, the third-order AE modulator is implemented with the MASH

structure [53]. One critical point in designing the modulator circuit is that the num-

ber of clock delays from the quantization error to the multiplier output (delay2 in

Figure 5-7) should match that on the TDC side (delayl in Figure 5-7) such that the

corresponding errors on both paths can line up to each other before being cancelled.

Since there is some latency in the GRO TDC, extra registers, which are not shown in

Figure 5-7, are added between the accumulator and multiplier to match the delays.
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noise cancellation.

noise of a PLL using a second-order AE modulator with 26-dB

t(t)

Figure 5-7: The delays on both paths need to
quantization noise can be cancelled correctly.

be equal to each other such that the

5.3 PLL Type and Order

A Type-II PLL has several advantages over its Type-I counterpart. The integrator

in the loop filter not only further suppresses the in-band noise of the VCO, but also

avoids a nonzero phase error between the phase detector inputs in the steady state,

minimizing the necessary TDC range. We therefore design a Type-II loop in the
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steady state (i.e., the fine-tuning loop in Figure 5-9). As explained in Section 5.4,

a Type-I coarse-tuning loop is designed to improve the overall noise performance by

reducing the bandwidth of the coarse-tuning DAC.

Since a third-order AE modulator, which introduces a 40 dB/dec slope quantiza-

tion noise, has been chosen, we need a -60 dB/dec roll-off at high frequency offsets in

the PLL closed-loop transfer function to suppress this AE noise. Note that the slope

of the third-order AE noise at the PLL output is 40 dB/dec instead of 60 dB/dec

because of the integration function of the divider [34]. Instead of using a third-order

PLL to achieve the goal of -60 dB/dec roll-off, a second-order PLL with an additional

pole, which is provided by the proposed DAC, is utilized to simplify the filter design.

In addition, although the -60 dB/dec roll-off PLL closed-loop transfer function is

intended to filter the AE noise, it also attenuates the shaped GRO quantization noise

without the need for any extra cost in the hardware.

5.4 Proposed Loop Filter

Figure 5-8 provides a conceptual picture of the coarse/fine-tuning method used to

acquire phase-lock for the PLL, where we assume that the four-bit control of the

MIM capacitor array in the VCO has already been set to achieve the proper frequency

band of operation. We see that the TDC output is first filtered by a 1.1-MHz IIR

filter in order to reduce the high-frequency quantization noise of the TDC as well

as any residual quantization noise produced by the dithered divide value that is not

eliminated by the all-digital quantization noise cancellation circuit. During frequency

acquisition, the filtered TDC output is first fed into a coarse-tuning path while the

fine-tuning path is locked to its mid-range value. After the coarse-tuning path is

given a specified amount of time to settle, its value is locked in place. The filtered

TDC output is then fed into the fine-tuning path, and the digital quantization noise

cancellation is enabled. The state of the filters (i.e., reset, coarse tuning, and fine

tuning) and the amount of time assigned to each state are controlled through a shift-

register in the prototype. We discuss each of these tuning paths in more detail in the
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rest of this section.

Fine-Tuning A DA Vf(t)

e[k] 1 st-ord

1.1-MHz .Coarse-Tuning c(t)
1st-order IIR | Filter

switch

reset

.5V DD

Stepi: Step2: Step3:
reset Coarse Tuning Fine Tuning

& Noise Cancellation

Figure 5-8: Coarse/fine-tuning of the PLL output frequency.

We begin by providing further details of the simpler fine-tuning path. As shown in

Figure 5-9, this path is designed to correspond to the analog lead-lag filter topology.

A digital accumulator and feedforward gain of K 1 realize a zero of 62.5 kHz, while the

initial IIR filter and switched-capacitor network in the fine-tuning DAC realize poles

of 1.1 and 3.1 MHz, respectively. Note that the DAC bandwidth is set according

to its load capacitor, which has a value of 2.5 pF. Also, note that a first-order AE

modulator is placed between the fine-tuning loop filter and DAC in order to increase

the effective resolution of the DAC.

In contrast, the more complicated coarse-tuning path is shown in Figure 5-10. The

key challenge in designing this path is to achieve fast settling despite the fact that the

coarse-tuning DAC bandwidth must be set to a value eight times lower than the fine-

tuning DAC bandwidth. The decrease in bandwidth is achieved by increasing the load

capacitor of the coarse-tuning DAC to 20 pF (as compared to the 2.5 pF capacitance

of the fine-tuning DAC). The reason for the lower bandwidth is that the coarse-tuning
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Figure 5-9: Fine-tuning digital loop filter.

varactor K, is 16 times higher than the fine-tuning varactor (due to its 16 times larger

tuning range), so that the thermal noise of the coarse-tuning DAC needs to be more

aggressively filtered to avoid degradation of the synthesizer noise performance. Notice

that although we freeze the coarse-tuning filter in the steady state, the coarse DAC

is still operating due to its switched-capacitor structure. Therefore, the kT/C noise

of the coarse-tuning DAC still exists in the steady state.

To improve the coarse-tuning settling time, we alter the loop filter topology of

the fine-tuning path such that only the accumulator path feeds into the coarse-tuning

DAC, as shown in Figure 5-10. Since the accumulator path requires much less band-

width to operate than the feedforward path, a much lower DAC bandwidth can be

tolerated while still achieving a reasonable settling time. Of course, the feedforward

path is required to stabilize the PLL feedback loop, but this path can be implemented

by bypassing the coarse-tuning DAC and instead making use of the AE modulator

and divider circuits as shown. This technique is similar to that proposed in [11] and

has the interesting property of effectively turning the PLL feedback dynamics into a

Type-I system despite the fact that two integrators are in the open-loop system (i.e.,

the accumulator and VCO). A Type-I system has the advantage of a faster settling
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Figure 5-10: Coarse-tuning digital loop filter.

time than its Type-II counterpart, but has the disadvantage of providing less atten-

uation of the VCO noise at low frequency offsets. However, since the coarse-tuning

path is used only during initial frequency acquisition, the reduced suppression of the

VCO noise is not of concern.

Note that although a lower coarse-tuning DAC bandwidth improves the noise

performance, the coarse-tuning DAC bandwidth must still be sufficiently higher than

the targeted zero position (i.e., 62.5 kHz in this example). As illustrated in Figure

5-11, if the coarse-tuning DAC bandwidth becomes lower than the zero position, the

overall transfer function becomes unacceptable since an additional pole and zero are

introduced.

One additional benefit of reducing the coarse-tuning DAC bandwidth is that it

reduces the magnitude of the reference spur caused by clock feedthrough within the

DAC. While the fine-tuning DAC also has such clock feedthrough, its impact on the

PLL output is 16 times lower due to the lower K, of the fine-tuning varactor.

Also, note that a AE modulator is not required in the coarse-tuning path since
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Figure 5-11: The bandwidth of the coarse-tuning DAC needs to be sufficiently higher
than the targeted zero frequency.

the 10-bit resolution is more than adequate for achieving a small enough frequency

error for the fine-tuning path to stay within range. To explain that, the coarse DAC

output voltage may toggle between two adjacent levels after frequency acquisition is

completed. This voltage step results in an 117 kHz frequency step in the end of coarse

tuning (1.5V/210 -80 MHz/V = 117 kHz). To achieve more accurate frequency locking

in the steady state, the maximum offset voltage the fine-tuning DAC output needs to

provide is only 23 mV (ll117kHz/5MHz=23.4mV). Since the fine-tuning voltage stays

around VDD/2 independently of the VCO frequency, a nonlinear fine-tuning VCO

gain (Figure 7-6) does not seriously impact the PLL response over different VCO

frequencies. This is one advantage of the proposed PLL, which uses two varactors

and filters in its implementation. Although the variation of the coarse-tuning VCO

gain may change the PLL response and thus the locking time during the coarse tuning,

the locking time is usually not as much of a concern as the steady-state PLL transfer

function that determines the overall noise performance.

5.5 Calculation of the Loop Filter Parameters

This section introduces the method to determine the various parameters in the fine

and coarse filters. First, we begin from the fine-tuning filter by redrawing its equiva-

lent model as Figure 5-12. The GRO TDC and DAC models in Figures 2-11 and 3-18,

respectively, are plugged into the AE synthesizer model in [34] with all of the noise

105



sources ignored at this point. Also, the pole caused by the DAC, which is already set

to 3 MHz, can be ignored here for simplicity. The parameters which need to be deter-

mined here are K 2, C, and K 1. K 2 and K 1 are two gain factors used to determine the

overall filter gain and zero position, respectively. Note that K2 is implemented with

a multiplier following the GRO, as shown in Figure 2-17. The value of a determines

the cutoff frequency of the first-order IIR [9].

-/

TDC '--. Loop .-- " DAC
Gain Filter AY Gain DT-CT VCO

Figure 5-12: Modeling of the PLL in the fine-tuning mode for the PLL response
calculation.

The task now is to derive the approximated S-domain open-loop transfer function

of our PLL and compare it to that provided by PLL Design Assistant:

(5.1)
K 1+ "

Acalc(s) = - W
Stype 1+

where type is one or two for a Type-I and Type-II PLL, respectively, and w, and w,
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are the zero and pole frequencies. The open-loop transfer function of our PLL is:

T 1 V 2irK, 1A(s)- H(z)lz=esT *
2Ar Atdel 2B S Nnom

= T VY Kv. 1 H(z)Iz=e.T (5.2)
Atdel 2B Nnom s

1-a 1
H(z) = K2 • 1 . (Kj + 1)

1 - az -  1 - z -

1-a K 1 - Kz - 1 + 1
= K2 1- az - 1  - z- 1K (5.3)

By using the approximation of z - 1 = e-sT 1 - sT, the S-domain filter transfer

function can be approximated as

H(s) = H(z)Iz=1-sT
S 1-a Ki - Ki(1 - sT) + 1

1 - a(l - sT) sT
K2  1
=sT 1 (1 + sKiT) (5.4)

Now, we can plug equation 5.4 into equation 5.2 to obtain the final S-domain open-

loop transfer function of our PLL:

K 2  V K, 1 1 + sK 1T (5.5)A(s) = ( ) (5.5)Atde 2 N o  1 +( (2T)
1-a

The last step is to compare the opne-loop transfer function of our PLL (equation 5.5)

with the desired open-loop transfer function (equation 5.1) to obtain the following

relationships:
1 1

K T - 2 (5.6)wzT 27rfzT
2B Nnom

K2 = K - Atden (5.7)V K,
1 1

a= 1 (5.8)1 + wT 1 + 2rfT (5.8)

In addition to the five parameters that have been determined with PLL Design As-

sistant in Section 5.1(K = 8.067. 1011, f, = 62.5 kHz, f, = 1.139 MHz, Nnom - 72,
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T=1/(50 MHz)=20 ns), this prototype uses the following parameters according to

the circuit design results:

Atd,l = 6ps, V = 1.5volt, B = 10bit, Kv = 5MHz/V (5.9)

By plugging these numbers into equations 5.6, 5.7, and 5.8, we obtain the following

fine-tuning filter parameters:

KI = 127.3, K 2 = 0.0476, a = 0.8748 (5.10)

Notice that the final values used for K 1 and a in the prototype are 128 and 0.875,

respectively, to leverage the fact that a gain factor of a power of two can be easily

implemented as bit-shifting in the hardware. One should adjust the original cho-

sen parameters in PLL Design Assistant and equation 5.9 if necessary to make the

resulting K 1 and a sufficiently close to a power of two. Again, K 2 is implemented

with a 12-bit multiplier between the TDC and digital filter, as illustrated in Figure

2-17. This multiplier also provides a knob to adjust the open-loop gain in order to

compensate for the gain variations in the VCO and TDC.

TDC first-order
Gain IIR Accum.

DAC
Gain DT-CT VCO

Figure 5-13: Modeling of the PLL in the coarse-tuning mode for the PLL response
calculation.

We now analyze the modeling of the PLL in the coarse-tuning mode in order

to determine the value of the feedforward gain KE. The main difference between the
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coarse-tuning and fine-tuning filters is that the feedforward signal is fed to the divider

through the AE modulator, instead of the VCO, in the coarse-tuning one. We can

obtain a similar open-loop response because the divider also behaves as an integrator

like the VCO, as illustrated in Figure 5-13 [34]. Notice that the coarse VCO gain

K,, in this figure is chosen to be 16 times larger than the fine VCO gain, so the

accumulator gain needs to be reduced by 16 times in order to obtain the same open-

loop gain as the fine-tuning filter. Again, the gain factor of 1/16 is easily achieved by

bit-shifting (i.e., 4 and 1/64 before and after the accumulator, respectively).

As for the feedforward path gain, its S-domain transfer function can be approxi-

mated as:

-1 6-sT
Kc, 2I - Kc -C 27r1 - z - 1  1 - e -ST

e-sT 2irK
Ke- 27 s

cT -sT (5.11)
1 - (1 - sT) sT

where the approximation of z - 1 = e-sT = 1 - sT is used again. In the fine-tuning

loop, the feedforward gain from the IIR output to the divider input is:

V 2-irK, 1
K 1 .- . T

2B s T

V 2KrKv (5.12)
2B S

By making equation 5.12 equal to equation 5.11, we can obtain the following equation:

V
Kc = KI 2 -•" Kv, T (5.13)

By plugging the parameters of K1 = 128, V = 1.5, B = 10, K, = 5 MHz, T = 20 ns

into the above equation, the resulting Kc is 0.0187. The closest power of two number,

0.0156 (i.e., 1/64), is chosen and implemented as bit-shifting again.
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5.6 Summary

A third-order MASH AE modulator is used to decrease the necessary accuracy of the

quantization noise cancellation, so a second-order PLL with a parasitic pole is needed

to attenuate this AE quantization noise at high frequency offsets. A Type-II PLL

is chosen to greatly suppress the VCO in-band noise as well as to force a zero phase

error at the filter input. The fine-tuning filter is equivalent to an analog lead-lag

filter. The two necessary poles are created by a digital IIR filter (1.1 MHz) and the

first-order filtering function (3.1 MHz) embedded in the fine-tuning DAC. The zero is

set at 62.5 kHz. In addition, the feedforward signal of the coarse-tuning filter is fed

to the AE modulator, instead of the VCO as usual, so that the coarse-tuning DAC

bandwidth can be narrowed dramatically to reduce its negative impact on the overall

PLL noise. Finally, a systematic way to determine the parameters in the loop filter

is derived.
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Chapter 6

Noise Analysis and Behavior

Simulation

In this chapter, we first analyze the noise performance of the proposed digital syn-

thesizer. After the noise model is built, a short discussion on the trade-offs among

the PLL noise and several design parameters is given. Finally, we use a C++ based

simulator, CppSim, to verify the system [56].

6.1 Noise Analysis of the Proposed Digital Syn-

thesizer

In this section, we first build a complete noise model of the proposed synthesizer and

then calculate the overall PLL noise using this model.

6.1.1 PLL Noise Modeling

Figure 6-1 illustrates the modeling of the proposed digital frequency synthesizer with

the TDC and DCO models, including their various noise sources [35]. As shown in

this figure, the main noise sources in the overall system are

1. TDC quantization noise (tq[k])

2. Reference noise (¢,ef[k])
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3. Divider AE quantization noise (n[k])

4. Fine-tuning DAC quantization noise (q[k])

5. VCO phase noise (0,(t))

6. Fine-tuning and coarse-tuning DAC thermal noises (Vn,f(t) and v~,c(t))

Notice that the effect of the noise cancellation is not included in this figure but is

considered in equation 6.17.

TDC DCO
.-------------------------- ------ ------ --

Oref[

Figure 6-1: Modeling of the proposed digital synthesizer with various noise sources.

The goal here is to first derive the individual noise transfer functions, then char-

acterize the spectral noise density of each noise source, and finally calculate the PLL

output phase noise contributed from each of them. Before being able to do it in a

systematic way, we need to define several transfer functions and terms in advance.

First, the open-loop and closed-loop transfer functions are defined as [34][35]:

T 1 V Kvf 1A(f) .H(z) z=ej2rfT . HLp,f(f) f No (6.1)2-F Atde-l 2B jf N,,om

G(f) A(f) (6.2)
1 + A(f)

Since A(f) is lowpass in nature with an infinite gain at DC, G(f) has the following
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properties:

G(f) -+ 1 as f -+ 0

G(f) - 0 as f - oo (6.3)

,implying that G(f) is a lowpass filter with a low-frequency gain of one.

Next, we refer all noise sources before the loop filter (i.e., 0ref[k], tq[k], and n[k]) to

the reference input and call it "reference-referred noise." In addition, we refer all noise

sources after the loop filter (i.e., On(t), q[k], vj,f(t), and vn,c(t)) to the DCO output

and call it "DCO-referred noise." Dividing the seven noise sources into two groups,

as illustrated in Figure 6-2, allows us to calculate and understand the overall output

phase noise easily, since these two equivalent noises have very different characteristics

after being filtered by the PLL. To understand the difference, we define the noise

transfer functions from the reference-referred and DCO-referred noises to the PLL

output as following:

= T. Nno - G(f)l (6.4)
Oref

out = I1 - G(f)) (6.5)

One should see the key difference of these two equations is that although the reference-

referred noise is filtered by the lowpass filtering action of the PLL (i.e., G(f)), the

DCO-referred noise is highpass filtered by 1-G(f). In addition, the reference-referred

noise is amplified by a factor of T -Nnom, but the DCO referred-noise is not. As for

the transfer functions from each noise source to either the reference input or DCO

output, we can derive them with the help of Figures 6-3 and 6-4.

One subtle point is that the calculating of the spectral noise densities with Figures

6-2, 6-3, and 6-4 involves both discrete-time (DT) and continuous-time (CT) signals.

Therefore, the following two equations need to be applied properly [34][57]:
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Reference-referred
Noise

DCO-referred
Noise

Figure 6-2: Dividing the noise
DCO-referred noise.

Straw( ei
j2 nfT ) = ( A t d e )

12

Sr(eJ2nf)= 1 r[k]

sources into two groups: reference-referred noise and

GRO-TDC

NTF a

Reference-referred
Noise

Sref(f)

Figure 6-3: Calculation of the reference-referred noise.

case 1) CT input x(t) fed to CT filter H(f) to produce a CT output y(t):

S,(f) = H(f)12SX(f) (6.6)

case 2) DT input x[k] fed to CT filter H(f) to produce a CT output y(t):

1
S,(f) =- IH(f) j2S(ej2rfT)T (6.7)

Now with the foregoing three figures and two equations, the PLL output noise

densities contributed by various noise sources can be derived one by one in the next
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SV,,(f)

vn. (t)

I . i

r s=j27f

Sv,c(f) Vn, c
s=j2nf

Figure 6-4: Calculation of the DCO-referred noise.

section.

6.1.2 Overall Phase Noise Calculation

The goal of this section is first to calculate the amount of each noise at the PLL

output and then to plot the overall PLL noise using MATLAB. Note that the first

three noises below are DT noises such that equation 6.7 should be used; the rest of

the noises are CT noises, so equation 6.6 should be used.

A. TDC Noise

The noise due to the TDC quantization can be calculated as:

11- T -Nnom -G(f)
T

|2 2 e-j27fT 2
Straw(ej2rr fT) (6.8)

which can also be expressed as

1
Sout,traw(f) = 1 2wNoG(f 2(2sin(r fT))2 -Straw(ej 2 rfT) (6.9)

By assuming that the raw quantization noise of the TDC is white, its noise density
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can be expressed as:

Straw(ej27fT) (Atdel) 2  (6.10)
12

Therefore, we obtain the output noise contributed by the TDC quantization noise as:

Sout,traw(f) = ± 2rNnomG(f) 2(2sin(rf T)) 2 (del )2T 12 (6.11)

Recall that there are another two noise sources in the GRO in addition to the

quantization noise, as illustrated in Figure 2-12. Therefore, we need to add these

two noise components to equation 6.11. The flat noise floor in Figure 2-12 can be

described with a new parameter Atfloo,, which is 1 ps, in equation 6.12. The flicker

noise is described with the last term in this equation. It can be shown that the PLL

noise performance is limited by this flicker noise at low frequency offsets.

Sout,traw(f) = 12xomG(f ((2sin(f T))2 2 floor 2

T 12 12
+ ) (6.12)

B. Reference Noise

The reference noise is caused by not only the off-chip 50-MHz reference source but

also the buffer between the reference source and TDC. Similar to the sampling action

on the VCO side [34], a scale factor of 1/T is necessary in Figure 6-3 to convert the

CT noise density Sef(f), which is usually reported in the datasheet or measurement

results, to its DT version. The output noise because of the reference noise can be

calculated as:

Sout,ref(f) = T Nnom G(f) 2 (1 )2 . Sre(f)

= Nnom G(f)12 . Sref(f) (6.13)

The value of Sref(f) should be estimated using the measurement result of the off-chip
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reference source and the simulation result of the reference buffer. One should notice

that Sref(f) is amplified and lowpass filtered by the PLL. It indicates that an excellent

reference source and buffer design is critical to achieve a low-noise wide-bandwidth

PLL since a wide bandwidth leads to less reference noise suppression.

C. Divider AE Quantization Noise

Assuming a m-th order AE modulator is used next to the divider, noise due to

this modulator can be calculated as:

1I1 eI j2irfT
Soutr(f)T - Nom - G(f 2 om2 121 - e 2 T 2 . 1 - e - j 2 f

T 2m

T Nnoom I - e- j 27 y y I

SS, (e j 2 fr fT) (6.14)

which can be simplified as

Sout,r(f) = T|2rG(f) 12(2sin(7rfT))2(m-1) . S,(e j 2 7 f T )  (6.15)

By assuming that the raw quantization noise of the AE modulator is white, its noise

density can be expressed as:

1
S (e j2fT) (6.16)12

Therefore, we obtain the output noise contributed by the AE quantization noise as:

Sout,,(f) = 2 - T 27rG(f) 12(2sin(-rfT))2(m-1) . 1(6.17)
12

with the parameter c used to model the effect of the noise cancellation. This parameter

corresponds to the scale factor in the S-D transfer function used in the PLL Design

Assistant, as illustrated in Figure 5-1. The value of c, ranging from zero to one,

represents the amount of noise left after the noise cancellation is performed. In the

ideal case where the quantization noise is completely removed, e is zero, making

Sout,r(f) zero. As for the case in Figure 5-1, where 10% of the quantization noise is
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left, C is 0.1.

D. Fine-tuning DAC Quantization Noise

Although the 10-bit DAC alone does not contribute a quantization noise, truncat-

ing the digital filter output, which is longer than 10 bits, to 10 bits results in another

quantization noise in the system. In order to reduce this noise at low frequency offsets

as well as to avoid spurs due to this truncation, a first-order AE modulator is put

between the digital loop filter and DAC, as illustrated in Figure 5-9. The noise due

to this truncation can be calculated as:

1 V 2K
Sout,tr(f) = -I - G(f) 2 . ( .T)2 .-HLp,f(j27rf) 2  rK 2

| e- 12 j2r(ej2 fT
- e-J2 fT1 2Str(ei2~ fT) (6.18)

which can also be simplified as

Sout,tr(f) = T - 1 - G(f)12 . )2 1 v)2 (2sin(7rfT))2

2B +±(1)2 f

St, (ej27fT) (6.19)

By assuming that the truncation noise is white, its noise density can be expressed as:

1
Str(e j2fT) = (6.20)12

Therefore, we obtain the PLL output noise contributed by this AE modulated trun-

cation noise as:

Sout,tr(f) = T 11 - G(f) 2 ()2 + 1 K (2sin(r fT)) 2

2B 1+( )2 f
1

(6.21)
12

E. VCO Noise
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The PLL output noise contributed from the VCO noise can be simply calculated

1 -1G(f)l2 .S, (f) (6.22)

F. Fine-tuning and Coarse-tuning DAC Thermal Noises

The noise due to the fine-tuning and coarse-tuning thermal noises can be calcu-

lated as:

Sout,vn,f (f) = 1 - G(f) 12 ( f )2 . SVI(f )

= 1 - G(f) 12 (Kc) 2 S2 v,c(f)

(6.23)

(6.24)

where the noise spectral densities S,v,f(f) and S,,,,(f) have been derived in Chapter

3. These equations are listed below again for convenience:

= 4kTReq,f
1+ (L)2

(6.25)

(6.26)S4kTHeq,c ()2

fpc

where Req,f and fpf are the equivalent resistance and corner frequency of the fine-

tuning DAC , and Req,c and fc are those of the coarse-tuning DAC.

G. Overall Noise

Because the above noises are uncorrelated to each other, the overall noise spectral

density at the PLL output can be obtained by summing the above results:

Sout(f) = Sout,traw(f) + Sout,ref(f) + Sout,r(f) + Sout,,(f) + Souttr(f) + Sout,v,f,(f)

+ SoUt,v,c( f ) (6.27)

To observe the relative contribution of each noise component, a MATLAB script,
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which can be found online [44], is developed to plot the overall PLL noise with the

result illustrated in Figure 6-5. The parameters used in this calculation are listed

in Table 6.1. One should see that most noises are lower than the VCO phase noise

except the thermal noise from the coarse-tuning DAC and flicker noise of the GRO.

Although the overall noise is limited by the thermal noise of the coarse-tuning DAC

from 40 kHz to 600 kHz, we can still achieve excellent noise performance of -108

dBc/Hz at 400 kHz offset, which is 8 dB lower than the GSM requirement (after

being referenced to 3.6 GHz). The noise at 20 MHz offset is -150 dBc/Hz, limited

by the intrinsic phase noise of the VCO. In addition, notice that the quantization

noise from the fine-tuning DAC is so low that its folded amount because of the DAC

nonlinearity is not sufficiently high to impact the overall performance. This effect is

investigated with CppSim simulation in Section 6.3.
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Figure 6-5: Overall calculated noise using the parameters in Table 6.1
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6.2 Design Considerations

Since the noise model is built, we can now discuss the trade-offs among the phase

noise and some design parameters in this section.

6.2.1 PLL Bandwidth

The main limiting factor of the PLL bandwidth is the quantization noise of the GRO.

Because of its 20 dB/dec slope, even though a PLL can attenuate it, this noise still has

a negative impact on the overall PLL noise because extending the PLL bandwidth

allows more of it to go through. To understand this better, another noise plot is

Table 6.1: Parameters used for calculation in Figure 6-5
Parameter Value

fclk 50 MHz

Nnom 73

Atdel 6 ps

Atfloor 1 ps

Kflicker 1.2 x 10-20

Reference noise -150 dBc/Hz at 1 kHz offset

V 1.5 V

B 10 bit

C, 30 fF

C2,f 2.5 pF

C2,c 20 pF

Kf 5 MHz/V

Kvc 80 MHz/V

VCO noise -150 dBc/Hz at 20 MHz offset, 200-kHz flicker noise corner

K1  128

K2  0.0476
a 0.875

m 3

E 0.01
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illustrated in Figure 6-6, assuming a PLL bandwidth of 1 MHz. In this case, the

GRO quantization noise becomes comparable with the VCO intrinsic noise at 1-6

MHz offset, degrading the overall noise performance at high frequency offsets. We

therefore choose 500 kHz as the bandwidth in this prototype such that the overall

noise can be dominated by the intrinsic VCO noise. For applications with less strict

noise performance, a bandwidth wider than 500 kHz is of course achievable, as already

illustrated in Figure 6-6. Also, one can add another filter in the loop to attenuate the

GRO quantization noise if necessary.
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Figure 6-6: Overall calculated noise assuming a 1-MHz bandwidth.

One should notice that the divider quantization noise also becomes higher when

the bandwidth is extended to 1 MHz, although it is still lower than the VCO noise.

Actually, a 90% cancellation of this noise as assumed in Section 5.1 is not good enough

for a 1-MHz bandwidth PLL. The accuracy of this cancellation has to be around 99%,
as shown in Figure 6-6.

Another minor factor limiting the PLL bandwidth is the latency caused by the
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digital circuits between the TDC and DAC. Pipelining [58] is necessary here because

a 50-MHz clock rate is utilized. The resulting latency degrades the phase margin of

a high-bandwidth PLL, so one should include it in the phase margin calculation. To

explain this, assume that there are n clock delays in the digital path; then a gain

factor of z-" _ e- ns needs to be added to the open-loop transfer function of the

PLL (i.e., equation 6.1).

6.2.2 Reference Frequency

The implemented prototype uses a 50-MHz reference clock. However, some applica-

tions require a lower reference frequency since crystal oscillators at lower frequencies

are usually cheaper. For example, GSM usually uses a reference frequency of 13 or

26 MHz.

To understand the performance of the proposed PLL with a lower reference fre-

quency, the calculated noise with a 26-MHz clock is plotted in Figure 6-7. The

parameters used in this plot are K 1=66.2, K 2=0.092, a=0.78, and No,=138.46. All

of the other parameters are kept at the same values as those in Table 6.1.

The quantization noises of the GRO, divider, and fine-tuning DAC as well as the

thermal noises of both DACs become higher due to a lower clock rate in this case,

but only the coarse-tuning thermal noise has an impact on the overall performance,

according to Figure 6-7. The phase noise at 400 kHz offset becomes -107 dBc/Hz,

which is only 1 dB worse than the case where a 50-MHz reference clock is used. The

highest phase noise at intermediate frequency offsets is -103.2 dBc/Hz at 125 kHz

offset, compared to -104.5 dBc/Hz in Figure 6-5.

To conclude, although the proposed PLL is demonstrated with a 50-MHz clock in

this thesis, it is possible to use a lower reference frequency in the future implementa-

tion to achieve the compatible performance. Note that in Chapter 7, a measurement

result with a 30.5-MHz clock is also provided.
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Figure 6-7: Overall calculated noise with a 26-MHz reference clock.

6.2.3 Bandwidth of the Coarse-tuning DAC

As discussed in Section 5.4, a coarse-tuning loop filter, which is different from the
fine-tuning filter, is utilized, such that the bandwidth of the coarse-tuning DAC can
be lowered to around 400 kHz to reduce the impact of its thermal noise on the PLL
phase noise.

We now check the case where the bandwidth of the coarse-tuning DAC is set to 3
MHz like the fine-tuning DAC, and the result is plotted in Figure 6-8. As revealed in
this plot, the thermal noise of the coarse-tuning DAC becomes higher than the VCO
noise over a wide range. By comparing Figures 6-8 and 6-5, one can see how a lower
coarse-tuning DAC bandwidth improves the overall noise performance.
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Figure 6-8: Calculated noise when the bandwidth of the coarse-tuning DAC is set to

3 MHz.

6.2.4 Coarse-tuning VCO Gain

As shown in Figure 6-5, the thermal noise of the coarse-tuning DAC is slightly higher

than the VCO noise. To further improve the noise at 400 kHz offset, we can decrease

the coarse-tuning VCO gain, but it carries the penalty of reducing the VCO coarse-

tuning range and thereby needs a finer MIM array resolution. Figure 6-9 illustrates

the calculated noise, assuming the coarse-tuning VCO gain is 20 MHz/V. Notice that

the overall noise is now dominated by the VCO at intermediate frequencies instead

of the coarse-tuning DAC, with a factor of four reduction in the coarse-tuning range.
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Figure 6-9: Calculated noise when the coarse-tuning VCO gain is reduced to 20
MHz/V.

6.3 Behavior Simulation with CppSim

To verify the proposed synthesizer architecture in the time domain, a C++ based tool,
CppSim, is used to build the behavior model, as illustrated in Figure 6-10 [44] [56] [59].

A detailed introduction to this model is available in [44], so we only demonstrate the

important simulation results here.

First, the locking behavior of the synthesizer is checked. Figure 6-11 illustrates

the coarse-tuning and fine-tuning voltages. As described in Section 5.4, both voltages

are brought to VDD/ 2 first. The longer time the coarse-tuning voltage needs to settle

in this stage reflects the eight times lower bandwidth of the coarse-tuning DAC. From

t = 3 ps, the fine-tuning path is frozen, but the coarse-tuning path becomes enabled

to achieve frequency acquisition. A zoomed-in snapshot in Figure 6-12 reveals that

the coarse-tuning voltage settles around t = 15 ps, so we can enable the fine-tuning
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Figure 6-10: CppSim behavior model of the proposed digital synthesizer.

path and freeze the coarse-tuning code at this point to achieve phase locking. Figure

6-12 also indicates that the entire locking time (i.e., reset, coarse tuning, and fine

tuning) is around 20 ps.

The effect of the noise cancelling can also be observed through the simulation.

Figure 6-13 depicts the simulated scale factor and phase error signal (i.e., scale factor

and e[k] in Figure 2-14) with the noise cancellation enabled at t = 15 ps. After t =

15 gs, the magnitude of e[k] drops immediately, and scale factor gradually settles to

1.1 V. The settling time of the calibration loop is around 10 us.

Figure 6-14 illustrates the simulated phase noise overlapped with the calculated

noise in Figure 6-5. One can see the good agreement between the analysis and simu-
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CppSim Simulated Signals for Cell: dsynththesis, Lib: DigSynth Example, Sim: test.par
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Figure 6-11: Simulated coarse-tuning and fine-tuning voltages.

lation.

Also, the impact on the phase noise due to the variations of the unit resistors

and capacitors in the DAC is also investigated. Figure 6-15 plots ten simulation

results with a 5% standard deviation assigned to the unit resistors and capacitors in

Figure 3-2. The results show that the mismatch with a standard deviation of 5% does

not seriously affect the overall noise performance. Note that this plot looks noisier

because the number of the simulation steps is reduced by a factor of four to save the

simulation time.

6.4 Summary

We present the noise modeling of this synthesizer as well as a behavior model based

on CppSim. Based on the noise model, we discuss the trade-offs among the PLL noise

and several design parameters. In addition, the time-domain simulation result agrees
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CppSim Simulated Signals for Cell: dsynth_thesis, Lib: DigSynth_Example, Sim: test.par
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Figure 6-12: Zoomed-in coarse-tuning and fine-tuning voltages.

with the frequency-domain noise analysis quite well. The development of these two

models allows us to verify the performance of the system before the chip is actually

implemented.
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CppSim Simulated Signals for Cell: dsynth_thesis, Lib: DigSynthExample, Sim: test.par
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Chapter 7

Digital Synthesizer Measurement

This chapter demonstrates the performance of the proposed digital synthesizer, in-

cluding the area and power, noise and spur performance, and locking time. We also

compare the measured phase noise with that obtained with the frequency-domain

analysis. Comparison among this chip and other published digital synthesizers as

well as analog synthesizers utilizing noise cancellation are also given.

7.1 Area and Power Dissipation

To verify the techniques presented in this thesis, a prototype chip with its die photo

shown in Figure 7-1 is implemented in a 0.13-pm CMOS process. The chip has

a total area of 1.4x1.4 mm2 and an active area of 0.95 mm2 , of which the GRO

TDC occupies 157x252 jim 2. Each DAC occupies 240x180 jIm2 , and the loop filter

occupies 160x 190 im2 . Although the proposed synthesizer uses two DACs, the area

of the digital loop filter plus these two DACs is still less than one fourth of that of

an analog loop filter in a 730-kHz bandwidth PLL [26]. This demonstrates the main

advantage of using a digital PLL structure.

The die is bonded on the printed circuit board directly for testing (i.e., no package

is used). A photo of the evaluation board is shown in Figure 7-2. As shown in this

figure, a FPGA board, which is used to generate the control signals for the synthesizer,

is connected to the main evaluation board.
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1.4 n

Figure 7-1: The active area of the implemented 0.13-[/m digital frequency synthesizer
is 0.95 mm 2

Figure 7-2: Photo of the evaluation board.

The chip has 32 pads in total: eight of them are used for separate VDD; another

eight of them are used for grounds, but these grounds are connected together within
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the chip; the rest of the pads are used for signals. Suitable ESD circuits are allocated

to different types of pads. Table 7.1 summarizes the measured current dissipation

of the core circuits operating at the supply voltage of 1.5 V. The overall current

consumption of the core circuits is 26 mA, excluding the VCO pad buffer which

consumes 7 mA from a 1.1-V supply. Assuming a steady-state time offset of about

1.2 ns between the start and stop edges of the GRO (i.e., 4 to 5 VCO cycles), the

GRO dissipates 2.3 mA. This offset value is programmable in the prototype and is

set to a small value to both lower the average GRO power dissipation as well as its

in-band noise. A pie chart in Figure 7-3 illustrates the distribution of the total power

consumption in this chip. Note that the VDD pad used for the digital I/O buffer

consumes no power in the steady state, so its power consumption is not included in

the table or chart.

Divider

VCO

rAt

Buffer

GRO-TDC

Digital

VCO Pad Buffer

Total Power: 46.1mW

Figure 7-3: Power distribution of the chip.

7.2 VCO Gain

We first measure the DCO frequency range across different MIM capacitor values

with the results shown in Figure 7-4. The fine-tuning code of the DCO is set to 512,
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while three coarse-tuning codes (0, 512 and 1023) are swept to get a rough sense

of the frequency range that each band provides. Notice that the bank is named to

represent the number of unit MIM capacitors switched into the tank. The frequency

increases as the number of unit MIM capacitors decreases. The results show that the

DCO covers a wide frequency range from 3.15 GHz to 4.23 GHz, and the curves are

overlapped properly.
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A band7
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band3
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0 band1
x bandO

0 200 400 600 800 1000
DCO coarse-tune code

Figure 7-4: Measured frequency range of the DCO (fine-tuning code is set to 512).

In the rest of this chapter, we focus on band7 to characterize the PLL performance.

Figure 7-5 illustrates the measured coarse-tuning DCO frequencies and the extracted

Table 7.1: Measured Current Dissipation
Block Current(mA)

VCO 14.027

Digital 4.507

GRO-TDC 2.263

Reference Buffer 2.001

DAC 1.875

Divider 0.959

Total 25.63
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Figure 7-5: Measured DCO frequency at band7 and the extracted coarse-tuning ana-
log VCO gain (The fine-tuning code is set to 512).

analog coarse-tuning VCO gain (i.e., DCO gain divided by DAC gain (1.5V/2 10 ). It

can be seen that the VCO gain is about 80 MHz/V in the middle of the tuning range

but decreases as the tuning code and analog control voltage increase. Calculated

VCO gain is about 29 MHz/V when the coarse-tuning code is around 825. The best

measured phase noise in the next section is biased around this point.

Figure 7-6 shows the measured fine-tuning DCO frequencies and the extracted

analog fine-tuning VCO gain, when the coarse-tuning code is set to 825. The fine-

tuning VCO gain is about 5 MHz/V in the middle supply, which is 16 times lower

than the coarse-tuning gain as expected.

7.3 Phase Noise and Spurs

The synthesizer is first tested with a 50-MHz reference clock. Figure 7-7 illustrates

the measured open-loop phase noise of the DCO (i.e., VCO and DAC) at 3.6657 GHz

from an Agilent Signal Source Analyzer E5052A. This measurement reveals that the

DCO achieves -115 and -151 dBc/Hz phase noise at 400 kHz and 20 MHz, respectively,
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Figure 7-6: Measured DCO frequency at band7 and the extracted fine-tuning analog
VCO gain (The coarse-tuning code is set to 825).

with flicker corner around 200 kHz.

Figure 7-7: Measured DCO phase noise at 3.67 GHz
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Figure 7-8 shows the best measured closed-loop phase noise at 3.6657 GHz, where

the results are shown with and without cancellation of the quantization noise. As

the figure reveals, greater than 15 dB noise cancellation is achieved such that the

out-of-band noise is dominated by the VCO. With the noise cancellation enabled, the

in-band noise is -108 dBc/Hz at 400 kHz offset, and the out-of-band noise is -132 and

-150 dBc/Hz at 3 and 20 MHz offsets, respectively. The integrated noise from 1 kHz

to 40 MHz is 204 fs at this frequency. Since the jitter number is not usually reported

for a frequency synthesizer, we estimate the corresponding jitter of the phase noise

plot in [9], with PLL Design Assistant, and obtain a value of 1.5 ps for comparison.

Therefore, our jitter (204 fs) is more than five times better than that of [9].

,~ il ii~ •:•:: ii•iiiiiiiiiiiiji.•ii
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Figure 7-8: Measured PLL phase noise at 3.67 GHz.

We now compare the measured results to the calculated performance with the

analysis model presented in Chapter 6. Figures 7-9 and 7-10 illustrate the cases
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where the noise cancellation function is enabled and disabled, respectively. Note that

At floor and Kflicker in equation 6.12 are picked to match the measured results directly,
since these two numbers are difficult to estimate in the design phase. In addition,
in this measurement, the VCO coarse-tuning gain decreases to 29 MHz/V from the
nominal value of 80 MHz/V because a higher carrier frequency is set. Measured
results match the analysis model very well except at the intermediate frequencies. It
is possible that this extra noise is caused by digital ground and substrate noises that
couple to the VCO output through the coarse-tuning DAC.
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Figure 7-9: Comparison between the measured and calculated noises with the noise
cancellation.

We now demonstrate another case when the VCO frequency is set to 3.638 GHz.

As illustrated in Figure 7-5, the coarse-tuning VCO gain corresponding to this fre-

quency is about 80 MHz/V, as assumed in Table 6.1. The measured phase noise at

3.638 GHz is depicted in Figure 7-11 overlapped with that at 3.6657 GHz. One should
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Figure 7-10: Comparison between the measured and calculated noises without the
noise cancellation.

see that the phase noise at intermediate frequency offsets becomes higher because of

the higher coarse-tuning VCO gain and noise. This measurement is also compared

with the calculated noise in Figure 6-5, as shown in Figure 7-12.

The phase noise is also tested from 3.620 to 3.670 GHz with intervals of 1 MHz. As

illustrated in Figure 7-13, the phase noise at 400 kHz offset as well as the integrated

noise (i.e., jitter) degrade as the carrier frequency is lowered, but the overall jitter

still remains less than 300 fs for most of that frequency range. The degradation

of the phase noise comes from two possible reasons. First, the thermal noise of
the coarse-tuning DAC is amplified more as the VCO gain increases (Figure 7-5).
Second, we suspect that the switching noise of the digital circuits, which couples to
the VCO output through the common ground, is also amplified as the VCO control
voltage decreases. To explain that, in the DAC structure in Figure 3-2, the ground
is connected together with that of the digital filter. Therefore, the digital noise may
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1 20 kHz -1o6 88•-•c-/Hz
-2: 100 kHz -103.5975 dBc/Hz
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Phase Noise
in Figure 7-8 s

Figure 7-11: Measured PLL phase noise at 3.638 GHz.

couple to the resistor ladder output with a scale factor of (32- M)/32. Since a smaller

value of M is necessary to support a lower carrier frequency, the digital switching noise

begins to have a more serious impact on the PLL noise when the carrier frequency

is lower. Furthermore, the measured worst-case phase noise at 3 and 20 MHz offsets

are -131.5 and -148.5 dBc/Hz, respectively, in this frequency range.

The reference spur is measured with an Agilent Spectrum Analyzer 8595E to be

-65 dBc at 3.67 GHz, as illustrated in Figure 7-14.

Fractional spurs are also tested from 3.620 to 3.670 GHz with intervals of 1 MHz,

as illustrated in Figure 7-15. The worst-case spurs occur close to the integer boundary

and are measured to be -53 dBc at carrier frequencies of 3.649 and 3.651 GHz, -64

dBc at carrier frequencies of 3.648 and 3.652 GHz, and are less than -65 dBc at all

the other carrier frequencies. Note that the frequency offset at which the worst spur
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Figure 7-12: Comparison between the measured and calculated noises at 3.638 GHz.
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is seen is also recorded. When the carrier frequency is more than 3 MHz away from

3.65 GHz, the worst spur usually occurs around 1 MHz. It is suspected that this

spur around 1 MHz is from the FPGA and coupled to the VCO output through the

common ground on the board.

At carrier frequencies less than 1 MHz away from the integer boundary (3.65 GHz),

worst-case fractional spurs are measured to be -42 dBc at a 400 kHz offset frequency

(i.e., a carrier frequency of 3.6504 GHz with spurs at 3.6500 and 3.6508GHz), as

illustrated in Figure 7-16. In addition, snapshots of the measured spurs when the

VCO frequency is 3.651 and 3.6504 GHz are shown in Figure 7-17. Note that although

spurs shown in Figure 7-17 are slightly better than the claimed numbers (-53 and -

42 dBc), the claimed numbers are the worst numbers ever seen at these two carrier

frequencies.

18:55:15 MAY 29, 2008
/4 MKR a -49.8 MHz
REF .0 dBm AT 10 dB -65.68 dB
PEAK
LOG
10
dB/

WA SB
SC FC
CORR

MARKER a
-49.8 MHz
-65.68 dB

............

CENTER 3.6660 GHz SPAN 120.0 MHz
#RES BW 30 kHz #VBW i kHz SWP 12.0 seo

Figure 7-14: Measured reference spur when the VCO frequency is 3.67 GHz.

The phase noise performance at 3.67 GHz with a lower reference clock is also mea-

sured, as illustrated in Figure 7-18. The lowest frequency supported in the prototype

is 30.5 MHz due to a limitation on the divider range. At this reference frequency,

the PLL bandwidth scales to about 300 kHz in proportion to the reference clock,

and proper adjustment of the open-loop gain of the PLL is required to maintain the

stability. Although the in-band noise becomes higher, the phase noise at 400 kHz can
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Figure 7-15: Measured worst-case fractional spurs over a 50-MHz range with 1-MHz

increments.
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7-16: Measured worst-case fractional spurs when the carrier frequency is less
MHz away from 3.65 GHz.

still achieve -106 dBc/Hz.

Figure 7-19 reveals the phase noise performance at 4.1 GHz with a 50-MHz refer-

ence clock. The measured DCO open-loop phase noise at this frequency is -113 and
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Figure 7-17: Measured fractional spur when the VCO frequency is (a) 3.651 GHz (b)
3.6504 GHz.

-150 dBc/Hz at 400 kHz and 20 MHz offsets, respectively.

7.4 Locking Time

Finally, a settling time of 20 ps for 10-ppm accuracy is measured when a frequency

step of 20 MHz is applied to the synthesizer, as illustrated in Figure 7-20.

If the time period assigned to the coarse-tuning phase is extended on purpose,
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Figure 7-18: Measured phase noise at 3.67 GHz with a 30.5-MHz reference clock.

it can be seen that the frequency toggles between two frequencies after the coarse

tuning is completed, as illustrated in Figure 7-21, due to the insufficient resolution

and lack of a AE modulator on the coarse-tuning path. This frequency step is about

100 kHz, which is close to the calculated value in Section 5.4.

7.5 Comparison

Table 7.2 displays a comparison of the synthesizer to other recently published digital

frequency synthesizers. Note that the original reported phase noises are normalized to

3.6 GHz by adding 201og(3.6GHz/(carrier)) in this table for a fair comparison. Ac-

cording to this table, we can conclude that the proposed synthesizer achieves excellent

phase noise, especially within the loop bandwidth, as well as jitter performance.
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Figure 7-19: Measured phase noise at 4.135 GHz with a 50-MHz reference clock.
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formed.

Table 7.2: Comparison Among Published Digital Synthesizers

[9] [10] [11] [12] [13] This Work

Technology(/.m) 0.09 0.13 0.13 0.13 0.065 0.13

Reference Freq.(MHz) 26 40 185.5 26 25 50

Carrier(GHz) 0.9 2 2.2 3.6 3 3.67

Bandwidth(kHz) 40 3000 142 50 1200 500

Phase Noise(in-band) -81 -96.9 -76 -78 -100 -108

at 30kHz 400kHz 30kHz 10kHz 400kHz

Phase Noise(400kHz) -110 -96.9 -92 -116 N/A -108

Phase Noise(20MHz) -153 -135 N/A -152 N/A -150

Jitter(ps) N/A N/A N/A N/A N/A 0.2

Reference Spur(dBc) -92 N/A N/A -84 N/A -65

Fractional Spur(dBc) N/A -42 N/A under phase -45 -42

noise level

Locking Time(kps) 10 N/A N/A N/A N/A 20

Power 50.4mW 25mW 14mW 40mA 9.5mW 46.7mW

Active Area(mm2 ) 1.5 0.8 0.7 0.86 0.4 0.95

First, this table reveals that the in-band noise floor of the proposed digital syn-

thesizer is much better than other solutions because we leverage a low-noise high-

resolution GRO TDC. Phase noise at 400 kHz is 2 dB and 8 dB worse than that in

[9] and [12], respectively. Our open-loop VCO phase noise that is -115 dBc/Hz at

400 kHz offset is actually close to that of [9] and [12], but our 500-kHz bandwidth
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causes slight peaking around the loop bandwidth, resulting in a higher closed-loop

phase noise at 400 kHz offset.

As for the phase noise at 20 MHz offset, although our result only achieves -150

dBc/Hz, which is 2 and 3 dB worse than that of [9] and [12], respectively, it is clear

that the performance is limited by the intrinsic VCO noise instead of the proposed

noise cancellation technique. Therefore, this performance can be improved with a

more carefuly designed VCO. Measured results of an improved design are shown in

Section 7.6.

The integrated noise (jitter) of the proposed approach is less than 300 fs. Again,

since jitter is not usually reported for a frequency synthesizer, we estimate the jitter

of [9] to be around 1.5 ns. Therefore, the jitter of the proposed wide-bandwidth

synthesizer is about five times better than that of a narrow-bandwidth synthesizer.

In addition, although our chip is designed with a relatively higher reference fre-

quency (50 MHz) than that of other chips, it is demonstrated that the chip can also

use a 30.5-MHz reference clock, and the phase noise at 400 kHz offset degrades by

2 dB at 3.67 GHz. In this case, the in-band noise floor is still better than those in

other works. The phase noise at 20 MHz offset does not change significantly when

the reference clock is decreased.

Table 7.3 compares the performance of this chip with earlier reported analog PLL

utilizing phase noise cancellation techniques. Again, originally reported phase noise

numbers are normalized to 3.6 GHz. From this table, the noise performance of our

chip is better than others. Although the phase noise at 20 MHz offset is 5 dB better

in [24], an off-chip VCO was used in that work.

In addition, the calibration time of this work is three and 100 times better than

[26] and [25], respectively.

As mentioned earlier, the main advantage of the digital PLL is the resulting area

savings, as revealed in Table 7.3. The die area of this chip, which includes the digital

loop filter, is smaller than those in all the other works. Although the die area of [25]

is close to ours, an off-chip filter was used in that work. Note that even though the

proposed synthesizer uses two DACs, the area of the digital loop filter plus these two

150



Table 7.3: Comparison Among Published Analog Noise Cancellation Synthesizers
[22] [23] [24] [25] [26] This Work

Technology(pm) 0.18 0.18 0.18 0.18 0.18 0.13

Reference Freq.(MHz) 48 35 50 14.3 12 50

Carrier(GHz) 2.4 2.1 3.6 1.8 2.4 3.67

Bandwidth(kHz) 460 700 1000 400 730 500

Phase Noise(100kHz) N/A -100 -97.8 N/A -97.3 -106

Phase Noise(1MHz) N/A N/A N/A -111.8 N/A -120

Phase Noise(3MHz) -117.5 N/A N/A N/A -120.3 -131

Phase Noise(20MHz) N/A N/A -154.8 N/A N/A -150

On-Chip VCO? Yes Yes No Yes Yes Yes

On-Chip Filter? No Yes No No Yes Yes

Reference Spur(dBc) N/A N/A -74 -75 -53 -65

Fractional Spur(dBc) -54 -60 -45 N/A -39 -42

Locking Time(ys) N/A 7 N/A N/A N/A 20

Calibration Time(ps) None None None 1000 35 10

Power(mW) 88 28 181 29 54.5 46.7

Active Area(mm 2) N/A N/A 2.7 N/A N/A 0.95

Die Area(mm 2) 6.72 3.4 7.29 2 4.84 1.96

DACs is still only about one-fourth of the area of the analog loop filter in [26].

7.6 Improved phase noise at 20 MHz offset

As mentioned earlier, the phase noise at 20 MHz is 2-3 dB worse than the other two

works. The performance is limited by the VCO itself instead of the proposed quanti-

zation noise cancellation technique. The VCO is therefore redesigned to improve the

phase noise at high frequency offsets. Figure 7-22 shows the measured phase noise

with the new chip. Although the new chip indeed achieves -152 dBc/Hz at 20 MHz

offset, the flicker noise of the new VCO is worse, resulting in higher in-band noise

(-106 dBc/Hz at 400 kHz offset) and integrated jitter (250 fs).
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Figure 7-22: A modified chip improves phase noise at 20 MHz offset.

7.7 Summary

By combining the proposed techniques, we demonstrate a 3.6-GHz, 500-kHz band-

width digital AE frequency synthesizer architecture to achieve excellent in-band and

out-of-band phase noise. The prototype is implemented in a 0.13-pm CMOS process

and its active area occupies 0.95 mm2. Operating under 1.5-V, the core parts ex-

cluding the VCO output buffer dissipate 26 mA. Measured phase noise at 3.67 GHz

achieves -108 and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated

phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to

40 MHz).

152

Agilent BONA SiqpM 56
. . . . . . . . . . . . . . . . .



Chapter 8

Proposed Techniques for Digital

Phase Control

Although the fractional-N technique is usually only used in frequency synthesis, in this

chapter we demonstrate that there is another interesting application of this technique.

It is shown that with slight modification, the fractional-N synthesizer can provide a

digitally controlled delay and thus can serve as a phase shifter in a delay-locked loop

(DLL) for high-speed chip-to-chip communications.

8.1 Background

The application of the DLL in the high-speed data link interface has become popular

recently. In the case where the reference clock is transmitted together with the data,

as illustrated in Figure 8-1, the clock frequency is usually perfectly matched to the

data rate. However, there is usually a phase mismatch between the received clock and

data due to the different propagation delays on the printed circuit board. Therefore,

a variable delay controlled by a feedback loop is necessary to realign the clock edge

to the center of the data sequence automatically in order to minimize the bit-error

rate.

People often use an analog phase interpolator as the variable delay because it

provides an infinite delay range [16][17][18][19], which is not available in a delay-line-

153



based DLL [60]. Figure 8-1 shows an example of the implementation of an analog

phase interpolator. A quadrature generator first produces the I and Q reference clocks

that are 90 degrees apart from each other. Two differential-pair-based variable gain

amplifiers modulate the amplitudes of the I and Q clocks by adjusting the bias current

of each differential amplifier. By summing the weighted I and Q clocks, any phase

between them can be interpolated with a constant output amplitude, as shown in

the vector diagram in Figure 8-1. A phase outside the first quadrature can also be

interpolated by changing the polarity of the I and/or Q clocks in order to cover the

whole 27r range. Furthermore, since the phases of 27r + 0 and 0 can be regarded as

the same, this technique can provide an infinite phase/delay range for a DLL.

JIJJI i i

phrne

Figure 8-1: DLL with an analog phase interpolator.

Nevertheless, the magnitudes of the I and Q clocks must be accurately controlled

for a desired phase. Given the interpolated phase 0, the required amplitude of the

I and Q clocks are Icos(0)l and Isin(O)|, respectively, assuming the amplitude of the

interpolated clock is one. When the phase interpolator is controlled in an analog

way, it usually requires complicated analog circuits with good matching, which are

not always available in modern digital processes. In addition, when a linear trans-

fer function between the interpolated phase and input control signal is necessary,

compensation in the analog domain is also required [17].

To leverage the digital calculation capability provided by sub-micron processes,
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several works have demonstrated the possibility of controlling the phase interpolator

with a digital loop filter instead of an analog filter [61], as shown in Figure 8-2. In

this case, current-steering digital-to-analog converters (DAC) [62] replace the variable

current sources in Figure 8-1 but cause two problems. First, due to the finite resolu-

tion of the DACs, the phase interpolator can only generate a finite number of output

phases. Second, uniform distributed output phases require non-uniform distributed

DAC levels, which are difficult to implement. Therefore, uniform distributed DAC

levels are used instead in practice, making unequal phase steps unavoidable [61]. In a

DLL-based CDR circuit [17], a small frequency error may exist between the reference

clock and data rate such that the phase interpolator has to rotate its output phase

constantly to track that of the data. In this situation, the phase rotator needs to visit

all of the unequal phase steps, and thus its jitter performance is degraded.

J t

phase

rUJUOLVU wln r IlaO

Figure 8-2: Phase interpolator controlled by current DACs.

We propose to use a simple voltage-controlled oscillator (VCO) instead of a phase

interpolator to achieve the phase shifting functionality within a DLL [15]. By imple-

menting the VCO as a standard ring oscillator, this approach offers a very simple,

highly digital implementation that has the ability to achieve very fine phase shifts and

infinite phase range. By applying feedback to the VCO in the form of a fractional-N

synthesizer, the phase resolution can be digitally controlled and is less sensitive to

the process, temperature, and voltage (PVT) variations than conventional structures
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based on phase interpolators.

In the following section, we first provide details of the proposed DLL architecture

that includes a second-order digital AE modulator structure. This modulator struc-

ture allows a high clock rate with a low-power and compact implementation. Section

8.3 provides the circuit implementation. Finally, we present the measurement results

in Section 8.4.

8.2 Proposed DLL Architecture

The proposed DLL architecture consists of two parts: a synthesizer-based phase

shifter and a bang-bang detector, as depicted in Figure 8-3. The details of the

synthesizer-based phase shifter and the proposed AE modulator for our DLL ar-

chitecture are first explained in Section 8.2.1 and 8.2.2, respectively. In Section 8.2.3,

the proposed bang-bang architecture is described.

data(

clk(t)

retimed
data(t)

adjusted
clk(t)

Figure 8-3: Proposed DLL with a synthesizer-based phase shifter.

8.2.1 Synthesizer-based Phase Shifter

We begin by discussing the application of a VCO as a phase shifter. As shown

in Figure 8-4, a VCO can be modeled as an integrator with the VCO phase being
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regarded as the output. The input voltage Vdtr(t) is multiplied by the VCO gain K,

and integrated to become the phase oDt(t). Because of the integration function, if

a positive or negative rectangular pulse with a height of AV and a width of Tp is

fed to the VCO, the VCO phase increases or decreases by AV - k, - T, -2r at each

time increment. Through proper adjustment of these parameters, very fine phase

resolution can be achieved with an infinite phase range due to the fact that the VCO

phase range is unlimited. Within a DLL application, the phase would be appropriately

shifted to a desired value according to the control signal of the DLL. Being an ideal

phase integrator without an output limit, a VCO is a potential candidate to be a phase

shifter within a DLL, especially when it is implemented in the form of a ring oscillator,

which usually occupies smaller chip area than an LC oscillator at the expense of its

higher phase noise. However, the results of this work show that a ring oscillator can

still provide a reasonable jitter performance for high-speed data-link applications.

Besides, its wide tuning range also makes it attractive for multi-rate applications.

Tp
VctrI(t)

Vctrl M Cout(t) 0 ,
II I

,, 0 out(t) : :..Td

----------------
-- ----2,K 2/2n

-----------

------------

AV Kv*Tp , 21 = 27[/2 n

Figure 8-4: VCO-based phase shifter.

When considering the VCO as a standalone element, it is quite difficult to accu-

rately control AV, K,, and T, and to set the nominal oscillation frequency of the

VCO such that it is locked to the received clock of the DLL. However, by placing the
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VCO within a AE fractional-N frequency synthesizer, we can accurately control the

VCO with digital precision. Figure 8-5 illustrates this concept, with discrete-time im-

pulses of value of Af or -Af being fed into the AES modulator input of a fractional-N

synthesizer. The effect of the digital pulse is the same as that of the analog pulses

directly fed to the standalone VCO in Figure 8-4. However, with the help of the

feedback, the variation of AV, K,, and Tp are automatically calibrated by the PLL.

Thus, a precise phase step 2r Af -T can be provided by the synthesizer-based phase

shifter, where T is the reference period of the synthesizer, and Af is equal to AV -K,.

Notice that if Tp in Figure 8-4 is equal to T in Figure 8-5, the phase step provided

by the standalone VCO and the synthesizer-based phase shifter are equal.

Td.

clk(t)

Af
0

-Af
' -- lre

Figure 8-5: Proposed synthesizer-based phase shifter.

It is worthwhile to highlight the difference between our phase shifter and the

conventional application of the AE synthesizers with the help of Figure 8-6. In a AE

frequency synthesizer, a n-bit resolution digital input can generate a n-bit resolution

output frequency. In our application, the AE technique is used to generate a fractional

output phase instead of frequency. If a pulse with a magnitude of one is fed into the

divider, the output phase increases by 27 because one more VCO cycle must be

swallowed by the divider. By decreasing the pulse height, a finer phase step can

be obtained from the VCO. A phase resolution of 27r/2" can be achieved by simply

setting the number of fractional bits in the AE modulator to n. Thus, the resolution

can be accurately and finely controlled and is independent of the PVT variations. For

example, when an eight-bit AE modulator is used, the phase resolution is 1.4 degrees,
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which is equivalent to 1.2 ps for a 3.2-GHz clock. Compared to a phase interpolator,

both the linearity and resolution of the proposed phase shifter are improved. Notice

that the control voltage of the VCO looks like a filtered rectangular pulse. Since it

returns to a constant value in the end of each cycle, the output phase increases while

the frequency does not in the end of each cycle.

AM Frequency Synthesizer

clk(t) -o

DigitL
N+1- ...

N ---.

ncy
- - -(N+1fref

-2n
... N-frf

• Td 4
Synthesizer-based Phase Shifter

clk(t) -4

Digit
N+1---

N 6 ---2n

Figure 8-6: Comparison of the AE synthesizer and proposed phase shifter.

As with the AE synthesizer, the PLL response should be designed properly to

jointly minimize the VCO phase noise and quantization noise by adjusting the loop

bandwidth. Besides, after one pulse is applied, there should be enough time Td before

the second pulse can be applied such that the VCO phase can settle properly. To

meet the requirement, Td should be larger than reciprocal of the PLL bandwidth.

To generate the control pulses, an up/down counter and a differentiator are added

in front of the AE modulator, as illustrated in Figure 8-7. The input to the phase

shifter is a binary up/dn signal (+1/2", -1/2 n ) updated at the rate of 1/Td. The

up/dn counter, functioning as an accumulator here, integrates the up/dn signal, and

the counter output is regarded as a n-bit fractional Phase Control Word (PCW)

that determines the VCO phase. The full scale and LSB of the PCW represent one
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VCO period (2r) and the unit phase step (27r/2n), respectively. Therefore, the step

size (27/2") is determined only by the number of bits of the hardware. A divide-by-R

divider provides a clock rate of 1/Td to the up/dn counter, where 1/Td = f,,f/R.

Notice that operating the up/dn counter at a speed slower than the reference clock

by choosing a proper value of R allows the VCO phase to settle properly before the

PCW is updated again (In our final implementation: 1/Td ' 1 MHz, f,,f = 533

MHz, R=512). By differentiating the PCW at the rate of f,,f, a pulse signal with a

magnitude of 1/2" is obtained every Td and used to shift the VCO phase.

up/dn

1+1/16
-116 updn------------

up/dn

VCO Phase
------------ - ------------------------

,1/16
S0II

' Td4- -- Td+
Counter Output (PCW) --A input

Figure 8-7: Synthesizer-based phase shifter including circuits to generate control
pulses.

The proposed phase shifter can also be understood graphically with the help of

Figure 8-8. The left circle represents the PCW, the output of a four-bit up/down

counter in this example, and the right circle represents the VCO phase. The VCO

output phase is zero in the beginning in this example, and we want to shift the VCO

phase close to for instance 2r -19/64. Since the initial VCO phase is far away from the

targeted value, the phase shifter rotates the VCO phase counterclockwise step by step

each cycle by setting the up/dn signal to +1/2 n . Once the VCO phase is close to the

targeted phase, the phase shifter rotates back and forth around the targeted phase,

according to the sign of the phase error between the current VCO phase and the

targeted phase. By increasing the number of bits of the circuits, the phase step and

thus the phase error can be decreased in order to obtain less DLL jitter, as shown in
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Figure 8-9. We can minimize the phase step until the final jitter is dominated by the

VCO intrinsic jitter and AE quantization noise. The compromise of using a smaller

phase step is the longer locking time because more cycles are needed to rotate the

VCO phase to the targeted value. However, it becomes more clear in Section 8.2.2

that we can control the phase directly by setting the PCW. Therefore, a binary search

algorithm can be applied in initial locking in order to reduce the overall DLL settling

time [60]. Furthermore, a better phase detector is necessary to detect the smaller

phase error when n increases.

Up/Down Counter OutpL

1/16nnnnn
1, 101

+ Td 
U

ut (PCW) AL input

Figure 8-8: Phase-shifting operation without up/down counter overflow.

fref /F

up/dn

1/32
+ - Td *

Up/Down Counter Output VCO Phase

Figure 8-9: Improving resolution by increasing the number of bits of the hardware.

The problem encountered by the architecture in Figure 8-7 is that the up/down

counter output may overflow. The differentiator can sense this change and generate
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a large negative pulse, as shown in Figure 8-10. Due to this negative pulse, the VCO
phase rotates clockwise by 15 steps instead of keeping rotating counterclockwise by
one step. As a result, the phase shifter can provide only a phase range of 27r, instead
of an infinite phase range. Although the phases of 27r + and 0 can be regarded as the
same, the transition in the wrong direction degrades the jitter performance whenever
overflow occurs. In the case when an offset frequency exists between the reference
clock and data rate, the overflow issue is unacceptable because it occurs frequently
due to the constantly rotating VCO phase.

1/16

- Td

Up/Down Counter Output (PCW) i VCO Phase

-15/16

Figure 8-10: Phase-shifting operation with up/down counter overflow.

We can solve the problem easily by using an overflow detector to generate a pulse

of +1. By adding this pulse to the undesired negative pulse, as shown in Figure

8-11, we can get a net pulse of -1/16. Thus, the VCO phase can keep rotating

counterclockwise by one step even when overflow occurs. Since the output phase can

now keep increasing or decreasing, the phase shifter can provide an infinite phase

range as needed.

8.2.2 AE Modulator

The order of the AE modulator in Figure 8-7 must be at least two, because the

quantization noise of a first-order modulator is too large for this application. However,
we can simplify the modulator to a first-order one by exchanging the positions of the

modulator and differentiator in Figure 8-7, obtaining a new modulator architecture

as shown in Figure 8-12. The original second-order modulator can be replaced by a
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VCO out

Up/Down Counter Output 1/16 An

-* Td •

Figure 8-11: An overflow detector can remove the undesired negative pulse.

first-order one because now the first-order-shaped quantization noise is differentiated,

still resulting in a second-order-shaped noise at the output (i.e., n[k]). A first-order

modulator can be simply implemented in the form of an accumulator. Therefore, by

modifying the structure slightly, we reduce the circuit complexity without increasing

noise.

fref

up/dn

in

Quantization noise Quantization noise

Figure 8-12: Modified AE architecture with less circuit complexity.

The resulting architecture in the last paragraph is actually a special case of a

more general second-order modulator. Setting R equal to 1 and replacing the up/dn

counter with a real accumulator give us the general second-order modulator, which

accepts multi-level inputs. The central part of this modulator is a first-order AE

modulator, whose signal transfer function (STF) and noise transfer function (NTF)
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are Z - 1 and 1 - Z - 1, respectively. A digital differentiator, whose transfer function

is 1 - Z - 1, is then added after the modulator to get a cascaded NTF of (1 - Z-1) 2,

which is equivalent to that of a second-order AE modulator. However, this results

in a cascaded STF of Z-l(1 - Z- 1 ). This STF is undesirable but can be easily fixed

by adding a digital accumulator, whose transfer function is 1/(1 - Z-'), before the

first-order AE modulator, so that the overall cascaded STF becomes Z- 1. Thus, both

the STF and NTF of the proposed second-order AE modulator are the same as those

of a standard topology.

Up to now the architecture in Figure 8-12 still needs an accumulator (i.e., the

first-order modulator) running at the highest speed (i.e., f,,r). The advantage of the

proposed AE modulator is not clear until we demonstrate how this architecture can

be simplified for our DLL application by applying a multi-rate clock, as illustrated in

Figure 8-13. Notice that up/dn is being updated at a rate of approximately fd = 1

MHz while the output is being updated at fref = 533 MHz. To connect these different

sample rates, the AE modulator must be progressively clocked from low to high

frequencies. We achieve this goal by cascading three first-order AE modulators with

different resolutions and clock rates. By using this approach, the bit-number decreases

while the clock rate increases, and thus only a small portion of the overall modulator

circuit operates at the highest frequency (i.e., 533 MHz). As a result, the power

consumption and design complexity is reduced at the expense of slightly larger area.

By gradually changing the clock rate through the structure, the metastability and

synchronization problems are also avoided.

The output of the differentiator is a three-value signal (1, 0, -1), since the two-

value (1, 0) first-order modulator output is differentiated. As mentioned before, we

can solve the overflow problem by adding the overflow signals to the output. While

the overflow signals are propagated to the output, they are automatically realigned

to the main signals by D-flip-flops (DFF) in each clock domain. Even with the extra

circuits, it can be shown that the output n[k] is still a three-value signal, and thus

the divider needs only three division ratios. The differentiator in the modulator

is actually implemented as a DFF plus an encoder, as illustrated in Figure 8-14.
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Although conceptually we need an adder and a subtractor to fix the overflow issue,

as shown in Figure 8-13, they can be simplified to only two XOR gates, as illustrated

in Figure 8-14.

q
3MHz)

Figure 8-13: Multi-rate implementation of the proposed AE architecture.

O

Figure 8-14: Simple implementation of the differentiator and adders.

In designing the multi-rate, first-order AE modulator, the bit-lengths of the lower-

frequency stages are chosen to be higher than those of the higher-frequency stages in
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order to ensure that the total quantization noise is dominated by the last (highest

frequency) stage. Again, we rely on the behavior simulation with CppSim to find the

minimum bit-number as well as clock rate at each stage of the modulator without

sacrificing the worst-case jitter performance [56].

It is worthwhile to provide another point of view from which to study the pro-

posed phase shifter and modulator with the help of the synthesizer model proposed

in [34]. The proposed modulator is plugged into the synthesizer model, as shown in

Figure 8-15. To simplify the analysis, we assume here that the first-order modulator

consists of only one stage instead of a multi-rate architecture. Thus, the PCW is

first-order modulated, differentiated, and accumulated as well as filtered by the PLL

loop filter. The result is then added together with the filtered detector and VCO

noises to generate the final phase oIt(t).

One should notice that D,[k] can be expressed as a delayed version of the PCW,

with a gain factor of 2r, plus a first-order shaped quantization noise because the

effect of the differentiator is cancelled by the PLL. Since the out-of-band quantization

noise is filtered by the PLL, the VCO phase oIt(t) is therefore determined by the

PCW plus the residual quantization noise as well as the VCO noise. Its DC value of

27r PCW/2" explains why the up/dn counter output can be regarded as the Phase

Control Word.

Figure 8-15 also gives examples of the waveforms within the AE modulator with

two different PCW values. According to the waveform of D,[k], we can also see that

the phase shifter provides two phase values, zero and 27r, and a phase between them

is interpolated with a first-order AE modulation. For example, when the PCW is 64,

which is one-fourth of 256, the phase shifter outputs a phase of 2r during one-fourth

of the period and a phase of zero in the rest of the period. Through averaging, a phase

of 7r/2 is obtained. To conclude, we can also regard the proposed synthesizer-based

phase shifter as a digital phase interpolator that can interpolate a phase between zero

and 27r with a phase resolution of 27r/2".
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Figure 8-15: The synthesizer noise model and phase interpolation operation.

8.2.3 Bang-bang Detector

We leverage the bang-bang detector to compare the phases of the VCO and the

received data. Figure 8-16 shows a typical bang-bang phase detector (BBPD) and a

timing diagram to explain its operation [53]. The output of a bang-bang detector is

a high-speed three-value signal. Whenever there is a data transition, the bang-bang

detector outputs either a positive or negative pulse according to the phase difference

between the clock and data. When there is no data transition, the output remains

zero. Thus, the bang-bang detector outputs a series of positive (negative) pulses when

the data edges lead (lag) the clock edges.

Since the bang-bang detector updates its output at a rate equal to the data rate,

which is 3.2 Gb/s in our case, while we need a low-rate control signal, which is about

1 MHz in our case, to shift the VCO phase, an efficient interface is necessary between

the bang-bang detector and phase shifter. As illustrated in Figure 8-17, we feed the

bang-bang output e(t) into a saturating integrator, which allows the detector output

to be averaged and converted from a three-value signal (1,0,-1) to a two-value signal

(1,-1). For example, when the VCO edge begins to lead the data edge, i(t) keeps on

increasing and saturates to 1 after several periods. The transition region of i(t) is

reduced by the limiter whose output is then sampled by a DFF with a period of Td.
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The sampled signal up/dn that updates every Td controls the phase shifter. Notice

that the gain of the integrator should be chosen properly, since an extremely large

gain degrades the filtering function, while an extremely small gain contributes a long

delay, which may increase the limit cycle of the output phase.

retimed

data(t) Reg Reg data(t) .......--------------...........................................--------------------

clk(t) Reg Latch 
data(t)

.l~t

D-0 D 0 1 i
e(t) o0 -

Figure 8-16: Conventional bang-bang detector architecture.

retimed
data(t)

"1 Td 4
1/Td" 1MHz

Figure 8-17: Proposed bang-bang detector architecture.

8.3 Circuit Implementation

The DLL prototype is designed for a 3.2-Gb/s application with an input clock fre-

quency of 1.6 GHz. Aside from achieving fine resolution and infinite range in the

phase adjustment, the proposed DLL structure also allows us to easily multiply the
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incoming clock. As illustrated in Figure 8-3, the output clock of the DLL structure

is multiplied by the ratio N/M - we have chosen N=6 and M=3 in the prototype, so

that the input clock frequency is multiplied by two. An eight-bit AE modulator is

chosen to provide a phase resolution of 1.4 degrees, which is equivalent to 1.2 ps for

a 3.2-GHz clock. The nominal AE clock f,,ref is 533 MHz, generated from the VCO

clock after being divided by N=6. The reason to choose N=6 is to allow f,•f to be

slow enough that we can implement the AE modulator with the full-swing logic in

the 0.18-pm process we use. The VCO phase is updated at a rate of fd - 1 MHz

generated by dividing fref by 512. The bandwidth of the PLL is chosen to be 4 MHz

to jointly minimize the impact of the VCO phase noise and AE quantization noise.

The behavior of this system is verified with the CppSim behavior-level simulator [56].

Figure 8-18 shows a simplified schematic of the circuits. In order to achieve a

compact design, we use a ring oscillator similar to that proposed in [63]. A divider

based on [5] is designed to provide a divide ratio from five to seven. Besides, the

XOR phase-frequency detector (PFD) in [64] is used. Due to the limit on the speed

of this 0.18-pm process, the current-mode logic is used in the divider, XOR PFD, and

the BBPD. A differential-to-single-ended charge pump and an on-chip loop filter are

used as shown in the figure. A source follower is inserted in the loop filter to shift the

nominal voltage to the center of the VCO control range. MOS capacitors are used

in the loop filter to reduce the area. In addition, a standard bang-bang detector [53]

is used and followed by two differential-to-single-ended converters. The integrator is

composed of a current pump and a capacitor; an inverter following the integrator is

used as a limiter.

As shown in Figure 8-18, only simple analog circuits are required in the proposed

DLL architecture, without the need for good matching between any of their elements.

The overall architecture is primarily digital and well suited for more advanced CMOS

processes. All of the digital blocks are primary DFFs. The area and power could be

dramatically reduced with a more advanced process since the full-swing logic rather

than the current-mode logic could be used in the divider, PFD, and bang-bang de-

tector.
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1.6 GHz

532

Figure 8-18: Schematic of the DLL.

8.4 Results

The prototype chip is fabricated in a 0.18-Im CMOS process. The die photograph

is shown in Figure 8-19, and its active area is 600pm x 700pm. It is packaged and

mounted on a printed circuit board for measurement. The chip operates at 1.8 V,

and the DLL, excluding the input and output buffers, dissipates 55 mA.

The synthesizer is first set to an integer-N mode, and measured phase noise and

K, of the VCO are -118 dBc/Hz at 20 MHz offset and 140 MHz/V, respectively. The

measured single-ended recovered clock and data jitter under different conditions are

summarized in Table 8.1. Setting the synthesizer in the integer-N mode indicates the

intrinsic jitter performance, whereas the synthesizer is set to the fractional-N mode to

test the actual DLL performance. Note that the clock jitter increases when the data

output driver is turned on due to the coupling between the clock and data output

drivers through the shared bias circuits.

Figure 8-20 illustrates the eye-diagram of the recovered data and clock when

the input data is a 3.2-Gb/s PRBS 231 - 1 sequence, and reveals 4.8-ps singled-
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Figure 8-19: Die photo of the DLL chip.

Table 8.1: Measured Single-ended RMS Clock/Data Jitter
Testing Condition 3.2 Gb/s 3.2 Gb/s 1.6 Gb/s

231 - 1 PRBS 27 - 1 PRBS 27 - 1 PRBS
Integer-N PLL 3.4/- 3.4/- 3.1/-

with data output driver off
Integer-N PLL 4.3/30.1 4.1/30.2 4.3/4.7

with data output driver on
DLL in synchronous mode 4.8/30.5 4.7/29.8 4.7/5.2

DLL in asynchronous mode 4.8/30.0 4.6/30.7 4.6/5.0

ended clock jitter and 30-ps singled-ended data jitter. A separate differential clock

measurement reveals jitter less than 3.6 ps, which means part of the 4.8-ps single-

ended clock jitter is due to the common-mode noise. The high data jitter is due to

the intersymbol interference that is likely introduced by the BBPD and output buffer

having inadequately high bandwidth. To verify this fact, Figure 8-21 shows that the
output data jitter is reduced to 5.2 ps with a 1.6 Gb/s PRBS 2~ - 1 input sequence.
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Table 8.2: Measured Differential Clock Jitter
Testing Condition 3.2 Gb/s

231 - 1 PRBS

Integer-N PLL 2.4

with data output driver off

Integer-N PLL 3.5

with data output driver on

DLL in synchronous mode 3.7

Note that the bit-error rate of the DLL is less than 10- 12 in all of the measurements.

The DLL is also tested in the asynchronous mode by introducing a frequency offset

between the input data and clock. In this condition, the phase difference between the

data and clock increases linearly so that the DLL must constantly rotate its output

phase. As Table 8.1 reveals, the resulting jitter with a frequency offset of 3 kHz is very

close to that obtained in the synchronous mode. It implies that the successive phase

steps within 27r are very close to each other, and hence the very good linearity of the

synthesizer-based phase shifter. The bit-error rate also remains less than 10- 12 in

this measurement. Notice that the maximum frequency offset Af that the prototype

DLL can tolerate can be derived to be 3.9 kHz, which is 1.2 ppm of the 3.2-GHz/s

data rate.

8.5 Summary

A 3.2-Gb/s DLL in a 0.18-upm CMOS for chip-to-chip communications is presented.

By leveraging the fractional-N synthesizer technique, this architecture provides a

digitally-controlled phase adjustment with fine resolution and an infinite range that

is less sensitive to the PVT variations than conventional techniques. A new AE

modulator enables a compact and low-power implementation of this architecture. A

simple bang-bang detector is used for phase detection. The prototype operates at a

1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and

differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.
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(a)

(b)

Figure 8-20: Recovered eye-diagram with a 3.2-Gb/s input data (a) Single-ended data
and clock (b) differential clock.
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Figure 8-21: Recovered eye-diagram with a 1.6-Gb/s input data.
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Chapter 9

Conclusion

This chapter starts with a thesis summary, leading to the discussion of possible future

research.

9.1 Thesis Summary

This thesis has proposed techniques aimed at extending the bandwidth of digital

fractional-N synthesizers. In contrast to the more traditional analog filter imple-

mentation that is area-consuming, a digital frequency synthesizer achieves a low-cost

solution by leveraging the high density of modern CMOS processes to implement the

necessary filtering function in a digital way. Extending the PLL bandwidth enables

a higher-data-rate phase/frequency modulation without the need for pre-emphasis or

two-point modulation. Other advantages of having a wider-bandwidth include higher

suppression of VCO thermal/flicker noise, which potentially leads to a much lower

integrated jitter, and a shorter PLL settling time without the need for dynamically

adjusting the PLL bandwidth.

We demonstrate that there are two key challenges to extend the bandwidth of a

digital fractional-N PLL. The first challenge is the need for a high-resolution TDC

since its quantization noise becomes the dominating noise source at low frequency

offsets in a wide-bandwidth PLL after VCO noise is highly suppressed. The second

challenge is the need for the divider quantization noise cancellation because a wide

175



bandwidth also allows more quantization noise to go through.

To solve the first problem, we leverage a recently invented GRO TDC [3]. Imple-

mented in a 0.13-tim process, this TDC achieves 6-ps raw resolution using a multi-

path ring oscillator. Furthermore, GRO TDC improves its effective resolution by

first-order noise-shaping. Therefore, we can move the TDC quantization noise to

higher frequencies and leverage PLL filtering to attenuate this undesired noise. By

doing so, <-100 dBc/Hz phase noise within the bandwidth has been demonstrated in

a 3.6-GHz digital PLL, where the low-frequency performance is limited by the flicker

noise of the gated ring oscillator.

To solve the second problem, we have proposed an all-digital quantization noise

cancellation scheme. Although the idea is borrowed from an analog PLL, implement-

ing the noise cancellation in a digital PLL turns out to be much simpler. Unlike the

analog PLL, in a digital PLL, scaling of the accumulated quantization noise can be

performed purely with a digital multiplier since a DAC is no longer necessary in the

digital implementation. The scale factor is simply set by a digital correlation circuit

that consists of a multiplier, an accumulator, and an IIR filter in contrast to the need

for operational amplifiers and analog integrators in previous works. With proper

design, the correlation loop can settle in 10 ps without impacting the phase noise

performance. This locking time is shorter than the 35 [s reported in the previous

work [26]. The results show that the proposed noise cancellation technique achieves at

least 15 dB of noise suppression. This amount is sufficient to reduce the quantization

noise below the VCO intrinsic noise level, which is -150 dBc/Hz at 20 MHz offset in

this implementation, when a third-order MASH modulator is used.

While the TDC and digital noise cancellation circuits play the key roles in achiev-

ing low noise with a high bandwidth, the DCO and frequency divider circuits present

their own challenges in striving for an elegant implementation of the overall digital

synthesizer. As mentioned earlier, we consider the case of using a combination of a

DAC and hybrid VCO to implement the DCO. We have proposed an efficient passive

DAC implementation that requires minimal analog content. As for the divider, cur-

rent digital PLL structures commonly use a synchronous structure with the argument
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that it has excellent jitter characteristics. Unfortunately, such structures also have

relatively high power consumption due to the fact that many elements must be clocked

at the highest frequency in the system (i.e., the VCO frequency). Instead, we have

proposed an asynchronous divider structure that has low power consumption while

still maintaining excellent noise performance by avoiding the divide-value-dependent

delay in an asynchronous divider. In addition, this divider also lowers the required

TDC range by a factor of four. We also say a few words about the hybrid VCO

structure that is used.

A Type-II second-order PLL is used with a third-order AE modulator. A coarse/fine

tuning scheme is applied. The fine-tuning filter is equivalent to an analog lead-lag

filter. The first pole is created by a digital IIR filter. Another pole provided by the

fine-tuning DAC helps to suppress the AE noise at high frequency offsets. In addition,

the feedforward signal of the coarse-tuning filter is fed to the AE modulator instead

of the VCO so that the coarse-tuning DAC bandwidth can be narrowed dramatically

to reduce its negative impact on the overall PLL noise. Furthermore, a systematic

way to determine the loop filter parameters is derived.

We also present the noise modeling of this synthesizer as well as a behavior model

based on CppSim. The development of these two models allows us to verify the

performance of the proposed system before the chip is implemented.

By combining the proposed techniques, we demonstrate a 3.6-GHz, 500-kHz band-

width digital AE frequency synthesizer architecture that achieves excellent in-band

and out-of-band phase noise. The prototype is implemented in a 0.13-[m CMOS

process and its active area occupies 0.95 mm2 . Operating under 1.5 V, the core parts

excluding the VCO output buffer dissipate 26 mA. Measured phase noise at 3.67 GHz

achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz offsets, respectively.

Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from

1 kHz to 40 MHz).

In addition, a 3.2-Gb/s DLL in 0.18-Lm CMOS for chip-to-chip communications is

also presented. By leveraging the fractional-N synthesizer technique, this architecture

provides a digitally-controlled phase adjustment with fine resolution and an infinite
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range. The provided delay is less sensitive to the PVT variations than conventional

techniques. A new AE modulator enables a compact and low-power implementation

of this architecture. A simple bang-bang detector is used for phase detection. The

prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA.

The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps,

respectively.

To conclude, a summary of the contributions of this thesis is as follows.

1. A 3.6-GHz low-noise, 500-kHz bandwidth digital AE frequency synthesizer ar-

chitecture that achieves <-100 dBc/Hz in-band phase noise is presented. Its

integrated jitter from 1 kHz to 40 MHz achieves 204 fs at 3.67 GHz. The

bandwidth and jitter are ten times and five times better than those in [9], re-

spectively.

2. An all-digital quantization noise cancellation technique achieving phase noise

of -150 dBc/Hz at 20 MHz offset is presented. The proposed technique does

not need any analog components and can be implemented with digital standard

cells. Settling time of the calibration loop is three times better than that in

[26].

3. A passive 10-bit 50-MHz digital-to-analog converter structure is used as an

efficient interface between the digital loop filter and a conventional LC oscillator.

4. A 1.5-mW asynchronous divider structure is designed to reduce the TDC range

by a factor of four as well as to avoid the divide-value-dependent delay variation

without the need for re-timing the divider output.

5. A digitally-controlled phase shifter based on the fractional-N technique is in-

troduced. It achieves a 1.4-degrees-resolution infinite-range delay that is less

sensitive to the PVT variations. Its application to a DLL for 3.2-Gb/s chip-to-

chip communications is demonstrated.

6. A digital AE modulator architecture and a bang-bang detector that efficiently

support the proposed phase shifter are presented.
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9.2 Future Research

Although the proposed synthesizer demonstrates excellent noise performance, there

are still a few things that can be improved in the future.

In the current implementation, the noise at 20 MHz offset is -150 dBc/Hz. Al-

though it is 2-3 dB higher than the state-of-the-art performance [9][12], it is very

clear that our noise at high frequency offsets is limited by the VCO itself instead of

the proposed synthesizer structure. Therefore, it is very possible to improve it with

a more careful VCO design (see Section 7.6). Reducing the VCO power dissipation

is also very attractive because the VCO dominates the power consumption of the

prototype.

Also, more noise at intermediate frequency offsets is observed than expected.

It is suspected that the source of it is digital switching noise that couples to the

VCO through the coarse-tuning DAC. Putting more bypass capacitors in the analog

components should be able to improve it.

The prototype synthesizer also exhibits larger fractional spurs than desired. Al-

though ideally less fractional spur should occur when a high-order modulator is used,

spurs can still be generated through intermodulation between VCO output frequency

and harmonics of the 50-MHz reference. We suspect that the intermodulation oc-

curs due to coupling through ground or power supply since improvement in spurs is

observed when power supplies of the reference and VCO output buffers are reduced.

As for the reference spur, one of the sources is the clock feedthrough inside the

proposed DAC. One option to improve this is to have another RC lowpass filter fol-

lowing each DAC. In principle, having a pole at 5 MHz should attenuate the reference

spur by 20 dB.

If a more complete solution is desired, a method to set the four-bit MIM capacitor

array should be investigated. In addition, an easy method for correctly adjusting the

open-loop gain must be pursued.

The digital circuits, including the loop filter and noise cancellation, consumes 6.8

mW in the prototype. This power is not optimized in the design phase and should
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receive more attention in the future implementation.

Furthermore, there are two modified architectures worth pursuing:

(1) An alternative potential way to implement the digital noise cancellation is

illustrated in Figure 9-1. Instead of scaling the quantization noise as shown in Figure

2-14, the TDC output is scaled in this architecture. Therefore, the TDC output is

automatically normalized to the VCO period, so the TDC gain calibration is self-

achieved. One potential problem of this architecture is that the open-loop gain now

becomes proportional to the scale factor. Therefore, since the scale factor may slightly

fluctuate around the average value in the steady state, the open-loop gain changes and

may have some negative impact on the phase noise performance. One way to avoid

this problem is to narrow the bandwidth of the correlation circuit, but it results in a

longer calibration time. The other way is to freeze the scale factor once the calibration

is done. However, it is not feasible for the case where the synthesizer needs to be

active all the time because TDC gain may change due to the voltage and temperature

variations. In this kind of application, the correlation function therefore needs to be

turned on and off frequently.

Scale Factor

:(t)

Figure 9-1: The other potential implementation of the digital noise cancellation.

(2) A problem of the proposed PLL architecture is that it may suffer from thermal

drift for the case where the PLL needs to operate continuously. To explain that, since

the coarse-tuning DAC is frozen in steady state, and the fine-tuning varactor only
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provides a small tuning range (K,=5MHz/V), if the VCO frequency drifts due to the

temperature or supply voltage change, the PLL may lose locked. To avoid this issue,

another interesting PLL architecture is illustrated in Figure 9-2. The filter is split

into two parts: an integration path and a feed-forward path. The integration path

is fed to the coarse-tuning varactor; the feed-forward path is fed to the fine-tuning

varactor. Since the coarse-tuning varactor can provide a wider frequency range, the

PLL has a smaller chance to lose lock even with a serious drift in the VCO frequency.

Note that a AE modulator is needed before the coarse-tuning varactor since the

integration path keeps on operating in this case. The challenge of this architecture

is the requirement of a linear VCO tuning curve because the control voltages of the

coarse and fine tuning varactors can be different. The fine-tuning voltage should be

biased at VDD/ 2 , but the coarse-tuning voltage needs to cover the whole supply range.

Therefore, if the VCO gain is not linear over the whole supply range, the integration

and feed-forward gains become functions of the control voltages, making the PLL

transfer function difficult to control.

Dual-path Filter and DAC

Ist-ord

3ut(t)

Figure 9-2: A dual-path PLL architecture.

As for the proposed DLL, it will be very interesting to implement this solution

in a more advanced process, such as 45-nm CMOS. It is expected that the area and

power can be dramatically reduced compared to the prototype chip. Also, many of the

digital PLL techniques can be applied to the proposed phase shifter to achieve a more

digital implementation. For instance, the proposed phase shifter can be implemented

in the form of an all-digital PLL, and it is also possible to replace the bang-bang
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detector with a TDC.
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