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Abstract

Graphical models provide compact representations of complex probability distribu-
tions of many random variables through a collection of potential functions defined on
small subsets of these variables. This representation is defined with respect to a graph
in which nodes represent random variables and edges represent the interactions among
those random variables. Graphical models provide a powerful and flexible approach to
many problems in science and engineering, but also present serious challenges owing
to the intractability of optimal inference and estimation over general graphs. In this
thesis, we consider convex optimization methods to address two central problems that
commonly arise for graphical models.

First, we consider the problem of determining the most probable configuration—also
known as the maximum a posteriori (MAP) estimate—of all variables in a graphical
model, conditioned on (possibly noisy) measurements of some variables. This general
problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain
a tractable dual problem. This involves using the Lagrangian decomposition technique
to break up an intractable graph into tractable subgraphs, such as small “blocks” of
nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algo-
rithm that minimizes the Lagrangian dual function by block coordinate descent. This
results in an iterative marginal-matching procedure that enforces consistency among
the subgraphs using an adaptation of the well-known iterative scaling algorithm. This
approach is developed both for discrete variable and Gaussian graphical models. In dis-
crete models, we also introduce a deterministic annealing procedure, which introduces a
temperature parameter to define a smoothed dual function and then gradually reduces
the temperature to recover the (non-differentiable) Lagrangian dual. When strong du-
ality holds, we recover the optimal MAP estimate. We show that this occurs for a
broad class of “convex decomposable” Gaussian graphical models, which generalizes
the “pairwise normalizable” condition known to be important for iterative estimation
in Gaussian models. In certain “frustrated” discrete models a duality gap can occur
using simple versions of our approach. We consider methods that adaptively enhance
the dual formulation, by including more complex subgraphs, so as to reduce the duality
gap. In many cases we are able to eliminate the duality gap and obtain the optimal
MAP estimate in a tractable manner. We also propose a heuristic method to obtain
approximate solutions in cases where there is a duality gap.



Second, we consider the problem of learning a graphical model (both the graph
and its potential functions) from sample data. We propose the maximum entropy
relaxation (MER) method, which is the convex optimization problem of selecting the
least informative (maximum entropy) model over an exponential family of graphical
models subject to constraints that small subsets of variables should have marginal
distributions that are close to the distribution of sample data. We use relative entropy to
measure the divergence between marginal probability distributions. We find that MER
leads naturally to selection of sparse graphical models. To identify this sparse graph
efficiently, we use a “bootstrap” method that constructs the MER solution by solving
a sequence of tractable subproblems defined over thin graphs, including new edges at
each step to correct for large marginal divergences that violate the MER constraint.
The MER problem on each of these subgraphs is efficiently solved using the primal-
dual interior point method (implemented so as to take advantage of efficient inference
methods for thin graphical models). We also consider a dual formulation of MER
that minimizes a convex function of the potentials of the graphical model. This MER
dual problem can be interpreted as a robust version of maximum-likelihood parameter
estimation, where the MER constraints specify the uncertainty in the sufficient statistics
of the model. This also corresponds to a regularized maximum-likelihood approach, in
which an information-geometric regularization term favors selection of sparse potential

representations. We develop a relaxed version of the iterative scaling method to solve
this MER dual problem.
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Chapter 1

Introduction

B 1.1 Motivation and Overview

Graphical models [43,60,145,185] are probabilistic models for complex systems of ran-
dom variables where the joint probability distribution of all variables is compactly
specified by a set of interactions among variables. In the case of undirected graphical
models, which we also refer to as Markov random fields (MRFs), each interaction is
specified by a potential function, defined on a subset of the variables, that provides a
relative measure of compatibility between the different joint configurations of these vari-
ables. The structure of the model thus defines a graph, each variable is identified with
a node of the graph and interactions between variables define edges of the graph. In
some cases, the probability model actually represents some naturally occurring random
process. In others, we seek to optimize some objective function, which may be then
be interpreted as finding the ground state of the Gibbs distribution [90] based on this
objective function. Models of this form arise in many fields of science and engineering;:

e statistical physics [129,195,229],

e signal processing [16, 19, 83,130, 207],

e image processing [28, 88, 149, 222, 223],

e medical imaging and tomography [84,176],

e geophysics and remote sensing [55,112,126,197],

e circuit layout design [12,148,151],

e communication and coding theory [85,153,179], and

e distributed estimation in sensor networks [44,51, 66,113,162, 189, 224].

However, the utility of these models in practical applications is often limited by the
fact that optimal inference and optimization within this model class is generally in-
tractable for large problems with many variables [10,58]. As a result, there has been
an intense, ongoing effort in recent years to develop tractable yet principled approaches
to approzimate inference within this rich class of models.

11
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In this thesis, we focus on two central problems that arise for graphical models.
First, we consider the problem of mazimum a posteriori (MAP) estimation. That is,
given a graphical model defined on a set of variables, and possibly partial observa-
tions (e.g., noisy measurements) of subsets of these variables, we seek a joint estimate
of all unknown variables that maximizes the conditional joint probability of the esti-
mate given the observations. In general, this problem is NP-hard to solve exactly in
models with discrete (e.g., binary valued) variables. We develop a Lagrangian relaz-
ation (LR) method [22,80,89] that decomposes the problem into tractable subproblems
defined on smaller or more tractable subgraphs. This general approach of splitting an
intractable problem into tractable subproblems, by introducing copies of some variables
and relaxing equality constraints between these copies, is also known as Lagrangian de-
composition [48,100,159] (we use these terms interchangeably in this thesis). In many
cases our graphical decomposition approach leads to the optimal MAP estimate, in
which case one says that strong duality holds. However, because the general problem is
NP-hard, we must expect to also encounter cases where there is a a duality gap and the
optimal MAP estimate cannot be obtained. We also propose a simple heuristic method
to obtain approzimate solutions in this case.

The second problem we consider is that of model selection [41,106], that is, of select-
ing both the graph structure and a corresponding set of potential functions to obtain a
good fit to sample data. Our approach to this problem of learning a graphical model
from sample data is also useful if one instead seeks to thin a graphical model, that is, to
adaptively select a simpler graphical model that still provides a good approximation to
a more complex model. While early work on these problems has focused on primarily
on greedy combinatorial approaches to select the graph structure [67,177,199], we fo-
cus instead on a convex optimization approach to simultaneously learn both the graph
and its potentials. The main idea is to relax the well-known maximum entropy mod-
eling approach [59,97,117,177] to obtain a regularized maximum entropy method, one
that implicitly favors sparser graphical models. This involves introducing constraints
on the marginal distributions of the model, that they should be close to the empirical
marginals (from sample data or a more complex model that we wish to thin) as mea-
sured by relative entropy [59] (also known as Kullback-Leibler divergence [142,143]). We
also derive a dual version of this problem which leads naturally to a relaxed versions
of the iterative scaling algorithm [62,114, 186, 199], often used for learning graphical
models with a fixed graph structure.

A key idea common to both of these approaches is seeking convex relazations of
intractable problems [37]. In the case of Lagrangian relaxation for discrete graphical
models, a non-convex integer programming problem is relaxed to the convex Lagrangian
dual problem. In maximum entropy relaxation, the non-convex problem of selecting a
graph is relaxed to convex optimization over a denser graph (e.g., the complete graph)
but with a regularization method to enforce sparsity in the potentials on this denser
graph, thereby selecting a sparse subgraph.
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B 1.2 Related Work

Before discussing our methods and contributions further, we give a brief account of
relevant work on tractable inference and learning methods for graphical models and of
approximate methods for intractable models. A more detailed discussion of many of
these approaches is given in the background (see Chapter 2).

H 1.2.1 MAP Estimation

Dynamic Programming and Combinatorial Optimization

There are several classes of graphical models for which inference is tractable, either
to compute the marginal distributions of individual variables or the MAP estimate.
In graphs with low tree-width [6,31,32], one can exactly compute either marginals or
the so-called max-marginals to obtain the MAP estimate. These approaches involve
variable elimination steps that either sum or maximize over individual variables to
obtain marginals. In the case of maximizing (to solve the MAP problem), this method
is a generalization of well-known dynamic programming methods such as the Viterbi
algorithm [16,19,83,207]. In order to apply this tree-structured inference procedure to
general graphs, one converts the graph to a tree using the concept of junction trees [146].
Roughly speaking, this involves grouping nodes together to define an equivalent Markov
tree representation of the model. The tree-width is determined by how many nodes must
be grouped together in this procedure. In the class of bounded tree-widths graphs,
the computational complexity of this procedure grows linearly in the number of nodes.
However, its complexity is exponential in the tree-width and it is therefore only tractable
for thin graphs, that is, for graphs with low tree-width.

However, for special classes or problems it is still possible to solve the MAP prob-
lem exactly even if the graph is not thin. We mention only a few well-known exam-
ples. First, there are a number of well-studied combinatorial and network optimization
problems that have efficient solutions [42,171], including: the max-cut/min-flow prob-
lem [82], maximum-weight matching in bipartite graphs [73], and minimum-weight per-
fect matching in planar graphs [57,165]. Several connections have been found between
such network optimization problems and MAP estimation in graphical models. For
example, the ferromagnetic Ising model can be solved exactly using a max-flow/min-
cut reformulation of the problem [11,98]. This is a binary variable graphical model,
with node states +1 and —1, in which all interactions are pairwise and where the pair-
wise potentials prefer configurations in which adjacent variables are assigned the same
value. Similarly, zero-field Ising models defined on planar graphs can be solved exactly
as a minimum-weight perfect matching problem [29,87,172,203]. In this case, pairwise
potentials may also be anti-ferromagnetic so as to prefer configurations in which ad-
jacent nodes have opposite states. But the model is required to have zero-field, which
essentially means that every configuration and its negation (with all nodes assigned
opposite values) are equally likely. MAP estimation in the general Ising model can
be reformulated as a max-cut problem [12,13]. Although it is not tractable to solve
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max-cut in general graphs, Barahona and Mahjoub have proposed a heuristic cutting-
plane method based on the odd cycle inequalities [13]. In planar graphs, this leads to
an optimal solution of the max-cut problem and therefore solves the zero-field planar
Ising model. Other connections to network optimization have emerged. For instance,
a number of works have recently appeared using linear-programming relaxations of the
MAP estimation problem [50, 76,133,211, 219]. In earlier work on binary quadratic
programming (34, 36, 103], it was found that the value of this linear program (LP) can
be computed using max-flow/min-cut techniques. In cases where solution of the LP
leads to an integral solution, the correct MAP estimate is obtained. Otherwise, there
is an integrality gap and the value of the LP provides an upper-bound on the value of
the MAP problem. Other approaches use LP methods in conjunction with the branch
and bound procedure, and often succeed in identifying the MAP estimate [196]. How-
ever, the number of steps required to reach an optimal solution may be exponential in
problem size in the worst-case.

Many methods have appeared in the graphical modeling literature aimed at solv-
ing (at least approximately) the MAP estimation problem. This problem is closely
related to that of computing marginal distributions of the model. The sum-product
algorithm [85], also known as belief propagation (BP) [175], is an iterative message-
passing algorithm for computing approximate marginal distributions of each variable
in a graphical model. It is based on an exact inference method for trees, which in-
volves passing messages along the edges of the tree. Each node fuses messages, from all
but one its neighbors, and then propagates this information to the excluded neighbor
based on the edge potential linking the two nodes. In loopy graphs, this procedure
does not always converge to a fixed-point and may give inaccurate marginals when it
does converge. Nonetheless, it has yielded good results in many practical applications.
Another form of belief propagation, the maz-product algorithm, may be regarded as
approximating the “zero-temperature” marginals of a graphical model, which encode
the distribution of a variable over the set of MAP estimates, and is closely related to
dynamic programming methods such as the Viterbi algorithm. Convergence of max-
product tends to be less robust than the sum-product algorithm. Also, if max-product
does converge it may still give an incorrect MAP estimate. However, this estimate does
at least satisfy a certain local-optimality condition with respect to induced subtrees of
the graph [218].

More recent work has focused on convex forms of belief propagation [219,226], start-
ing with the work of Martin Wainwright [211,212] on approximation methods based on
convex decompositions of a graphical model into a set of more tractable models defined
on spanning trees (see also earlier work on fractional belief propagation [221]). Max-
product forms of these methods, such as tree-reweighted max-product (TRMP) [211],
aim to minimize a convex function that is an upper-bound on the MAP value. This cor-
responds to a linear-programming dual [25] of previously considered LP relaxations of
MAP estimation, either based on an outer-bound approximation of the marginal poly-
tope [50,133] or the standard linearization method [216] (see also [103]). The advantage
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of such dual methods is that they provide efficient solution methods based on BP-like
distributed message-passing algorithms (see [226] for an empirical comparison between
message-passing approaches and traditional approaches to solve linear programs). How-
ever, because belief propagation does not always converge, there is growing interest in
other convergent iterative methods to solve these dual formulations using coordinate-
descent methods. This includes our own work presented in this thesis and in our earlier
paper [125], based on the Lagrangian decomposition formulation, as well as other recent
work [93,134] that also used coordinate-descent approaches. Also, Tom Werner recently
published a paper [220] reviewing earlier work [140, 192], not previously published in
English, on the maz-sum diffusion algorithm. All of these methods lead to similar
style update rules but are not precisely equivalent because they use different param-
eterizations such that coordinate-descent in these different parameterization does not
lead to equivalent algorithms. One difficulty encountered in such coordinate-descent
approaches, when applied to a non-differentiable objective (such as the dual functions
that arise in these formulations), may get stuck at a non-minimum fixed point of the
algorithm [134,191]. One proposal to address this problem has been to use instead
a low-temperature version of the convex sum-product algorithm [219]. Although this
approach is very reasonable insofar as it “smoothes” the objective function, the issue
of convergence (and rate of convergence) of this algorithmic approach has not been
resolved. For instance, it is known that even convex versions of BP do not necessarily
converge. Using sufficient damping of message updates may help, but it seems unlikely
to be very efficient at low temperatures. Our approach uses a temperature anneal-
ing idea to overcome this difficulty in conjunction with a coordinate-descent method.
However, our approach is deterministic, and should not be confused with randomized
algorithms such as simulated annealing [88]. In this regard, our approach is in the
same spirit as several methods developed in the neural network literature for solving
combinatorial optimization problems [95,139,178].

While this thesis was in preparation, several other papers have appeared, in ad-
dition to our publication [125], that independently propose Lagrangian decomposition
approaches to MAP estimation in graphical models [137,230]. Also, we recently dis-
covered earlier work of Storvik and Dahl on this topic [200]. All of these methods only
consider decompositions that are equivalent to the simplest pairwise relaxation in our
method.! Also, all of these papers minimize the dual function using subgradient meth-
ods, a standard approach from the integer programming literature, which often suffers
from slow convergence to the minimum of the dual function (in the worst case, the rate
of convergence is sublinear).

Gaussian Inference

We are also interested in the problem of MAP estimation in large-scale Gaussian graph-
ical models, also known as Gauss-Markov random fields (GMRFs) [144, 185,199]. For

! Although [200] considers a decomposition of a 2D grid in vertical and horizontal chains, this is
actually equivalent to the pairwise relaxation.
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GMRF models, MAP estimation reduces to minimizing a convex, quadratic objective
function based on a sparse, symmetric positive-definite matrix, the information ma-
triz of the model. Equivalently, the optimal solution of this minimization problem can
be obtained by solving a linear system of equations based on the information matrix.
This solution can be computed directly by Gaussian elimination [96], which has cubic
computational complexity in the general case. For GMRFs, the graphical structure
of the model is determined by the fill-pattern (sparsity) of the information matrix.
This enables solution methods using sparse elimination procedures, such as the nested
dissection procedure for computing a sparse Cholesky factorization of the information
matrix, which results in computational complexity that is cubic in the tree-width of the
graph (rather than the total number of variables) [182,185]. While this is a tremendous
improvement for sufficiently thin models, it is still unsatisfactory for many applications
where Gauss-Markov random fields occur with very large tree-width, such as in 2-D
models commonly used for image processing and remote sensing (where tree-widths of
1,000 or more are common) or in 3-D models used for tomography or remote sensing
(where tree-widths of 100 x 100 = 10,000 are common). In such applications, it is im-
practical to use direct factorization methods and it becomes preferable instead to use
iterative methods that obtain approximate solutions with computational complexity
(per iteration) that scales linearly in problem size. For instance, one might use classical
iterative methods such as the Gauss-Jacobi or Gauss-Seidel iterations [206]. The em-
bedded trees algorithm [201) and its variants [45,47,66] were developed to accelerate the
convergence of iterative methods. These are iterative methods that use a sequence of
preconditioners, based on embedded trees or other tractable subgraphs, to update the
estimate based on the residual error at each iteration.

Another approach is to use the Gaussian form of belief propagation [124,157,217].
It has been shown [217] that if Gaussian BP converges then it recovers the correct
MAP estimate, which, for GMRFs, is equivalent to computing the mean value of each
variable. In addition to computing these means, Gaussian belief propagation also com-
putes approximate variances of each variable. Recent work on the walk-sum view of
inference in Gaussian graphical models [47, 124, 157] has shown that a wide range of
iterative methods may be viewed as computing walk-sums and, for the class of walk-
summable models, these iterative methods are guaranteed to converge to the correct
MAP estimate. In other work, a recursive divide and conquer approach to approxi-
mate inference in GMRFs has been proposed using a combination of nested dissection,
Gaussian elimination and model thinning operations [118,126]. This approach leads to
improved variance estimates and rapid convergence to the correct means when used as
a preconditioner. Another method for computing approximate variances was developed
in [155,156]. This approach relies upon fast linear solvers and a low-rank approximation
to the identity matrix. Then, the covariance matrix, which is equal to the inverse of
the information matrix, is approximated by solving a small number of linear systems.
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H 1.2.2 Learning Graphical Models

Parameter Fitting

For a fixed graph structure, learning a graphical model involves selecting the potential
functions of the model to obtain the best fit of the overall probability distribution to
observed sample data of the model variables. The standard method is to maximize the
likelihood of the sample data as a function of the model parameters [81, 174], which
specify the potential representation of the graphical model. If there are no hidden
variables, that is, if the sample data consists of complete observations of all variables
in the graphical model, then this may be posed as a convex optimization problem in an
exponential family model (e.g., the Gibbs representation of a discrete variable model)
and solved using standard convex optimization methods [24,37]. However, computing
the likelihood, or its gradient, is just as as difficult as inference, that is, computing
marginal distributions of the model. For this reason, maximum-likelihood modeling
is only tractable for models for which exact inference is tractable. Otherwise, one
must resort to approximate learning, based on approximate inference or Monte-Carlo
methods to estimate marginal distributions of the model.

The iterative scaling algorithm, also known as iterative proportional fitting, is one
common approach to learning graphical models [62,114,186,199]. This procedure iter-
atively adjusts the potentials of the graphical model by multiplying each potential (in
the product representation of the graphical model) by the ratio of the empirical dis-
tribution of the corresponding variables (obtained from sample data) divided by their
marginal distribution in the current estimate of the model (computing by some inference
method). This has a geometric interpretation, within the information geometric view
of the exponential family, as computing the minimum relative-entropy projection onto
the set of models that are consistent with the data. The iterative scaling procedure
performs a sequence of such projections, where each projection imposes consistency
with the data for a subset of nodes. By iterating over all subsets of interacting nodes,
this sequence of projections converges to the desired projection onto the intersection of
the feasible sets of all constraint.

This approach can be extended to learn hidden-variable models, where not all vari-
able of the model are observed. If there are hidden variables, then the maximum-
likelihood problem generally becomes non-convex and may exhibit multiple local min-
ima. The ezpectation-mazimization algorithm [68] is an iterative two-step procedure.
At each iteration of the algorithm: (1) The E-step determines a concave lower-bound
of the log-likelihood function that is tight for the current model estimate. This involves
inference calculations to compute marginal distributions of hidden variables and their
coupling to adjacent variables. (2) The M-step maximizes this lower-bound to obtain
the next set of model parameters. This procedure is then repeated for this new set of
model parameters and continues until a fixed point of the algorithm is reached. This
method is guaranteed to monotonically increase the log-likelihood and to converge to
a local maximum. The maximization step can be solved using the same inference and
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convex optimization methods as are used to solve the maximum-likelihood problem
when there are no hidden variables.

Structure Learning

Often, we may not know the correct graph structure to use for modeling some collection
of random variables. Then, it is natural to seek a good graph structure based on sample
data. Here, one is faced with the problem of over-fitting. That is, if we allow a very
complex graph (with many edges and associated potential functions), this tends to over-
fit the sample data, leading to poor generalization performance when we compare the
learned model to new sample data. Thus, one must find ways to regularize the model
selection to penalize overly complex models. Another concern is that denser graphical
models tend to be less tractable for inference calculations, providing further motivation
for seeking less complex graphs.

One approach is to add a penalty term to the maximum log-likelihood objec-
tive which explicitly favors low-parameter models, as in the Akaike information cri-
teria [2,174] which uses the £p-norm of the parameter vector as a measure of model
complexity. In the Gibbs representation of a graphical model, where the model pa-
rameters correspond to interactions between variables, this is essentially equivalent to
favoring sparse graphs. However, the ¢y-regularized problem is non-convex and generally
intractable to solve for large numbers of variables. Nonetheless, a number of incremen-
tal greedy feature selection methods have been developed which aim to approximately
solve this model selection problem [64,67,69,199).

Another approach is instead to restrict oneself to some specified set of low-complexity
graphs. This approach is also combinatorial in nature and cannot generally be solved
exactly by a tractable method. One exception, however, is the case of finding the best
tree. This can be formulated as a maximum-weight spanning tree problem that can be
solved exactly using a greedy method [56]. Unfortunately, the generalization to finding
maximum-likelihood bounded tree-width graphs is NP-complete and one must again
resort to approximation methods [131].

Recently, several methods have appeared that use ¢;-regularization to favor sparser
graphical models [9,147,214]. This may be viewed as a convex proxy for £p-regularization.
A dual interpretation of such methods is provided by the regularized maximum entropy
method [72]. In particular, ¢;-regularized maximum-likelihood is the dual problem
associated with finding the maximum entropy distribution over the set of probabil-
ity distributions where the expected values of the sufficient statistics of the model are
close to the sample average in the £, distance metric. This may also be viewed as
robust mazimum-likelihood estimation [9], which allows for uncertainty of the empirical
moments. It is noteworthy that relaxing the parameter estimation in this way auto-
matically leads to selection of sparse graphical models obtained by solving a convex
optimization problem. This is also a critical feature in our approach.
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B 1.3 Contributions

B 1.3.1 Lagrangian Relaxation for MAP Estimation

We develop a general Lagrangian relaxation (LR) approach to MAP estimation based
on the idea of decomposing an intractable graphical model into a collection of tractable
sub-models (e.g., defined on small subgraphs or on thin subgraphs such as trees), and
study the conditions for strong duality to hold in this relaxation. For discrete variable
models, we develop an algorithmic approach for solving the resulting dual problem based
of a finite-temperature smoothing technique (using a deterministic annealing procedure
to gradually reduce the temperature) and the iterative scaling algorithm to minimize a
smoothed version of the dual function at each temperature. Additionally, we develop
heuristic methods to either (i) enhance the relaxation to include additional structure so
as to reduce or eliminate the duality gap, or (ii) provide approximate solutions in cases
where it is not tractable to eliminate the duality gap.

While our work clearly has many parallels and connections to prior and ongoing
work, there are a number of important innovative aspects in our approach that we now
emphasize:

1. Formally relating various decomposition strategies to the classical concept of La-
grangian relaxation serves both to unify and simplify this body of work. For
instance, it shows that several recently developed optimality conditions from this
literature [93,211] can all be viewed as instances of the well-known property of
Lagrangian relaxation [22] that, when there exists a set of Lagrange multipliers
such that all relaxed constraints are satisfied in the optimal solution of the dual
problem, then there is no duality gap and the optimal primal solution is obtained.

2. Introducing, in an appropriate way, the finite-temperature relaxation method to
“smooth” the non-smooth Lagrangian dual function leads to a very simple class of
convergent, distributed algorithms that can successfully solve the dual problem.
This involves also gradually reducing the temperature, which may be interpreted
as an interior-point method for solving the primal version of linear-programming
relaxation where entropy is used as a barrier function. The role of entropy as a
barrier function function has also been noted in the variational interpretation of
convex forms of belief propagation [219]. This is also similar to entropic regular-
ization methods for solving min-max and linear programming problems [70, 150].
Although derived from different principles, the entropic regularization method
leads to algorithms that are similar to an augmented Lagrange multiplier method
due to Bertsekas [22].

3. This finite-temperature approach leads to a surprising connection to the classical
iterative scaling procedure, typically used to fit a graphical model to data. We
show that an appropriate version of the iterative scaling method is equivalent
to block coordinate-descent [24] on our smoothed version of the Lagrangian dual
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function. This leads to a simple message-passing algorithm that solves the dual
problem in a distributed, iterative fashion. Each descent step involves passing
messages between overlapping subgraphs to force the marginal distribution of
shared nodes to be equivalent in each subgraph.

. An added benefit of the deterministic annealing strategy is that it offers new pos-

sibilities to obtain approximate solutions in cases where, in the zero-temperature
limit, there is a duality gap and the optimal dual decomposition becomes totally
uninformative. We present a simple, heuristic approach for binary models that,
at each temperature, assigns each variable to maximize its marginal distribution
(output by the marginal matching procedure). This estimate is used to seed a
greedy “bit-flipping” algorithm to obtain an improved estimate. Then, over all
temperatures, we select the best estimate. The simple method has demonstrated
remarkable performance on a wide range of problems.

. Finally, while other work (with the notable exception of recent work of Sontag et

al) has focused mainly on the simplest possible pairwise relaxations (or equivalent
tree-based relaxations), we are finding that in many hard problems it is critical
to introduce higher-order structure of the model to obtain strong duality. This
extension is very straight-forward in our approach, both theoretically and in prac-
tice. Moreover, we are finding that a simple heuristic method, based on looking
for frustrated cycles in a graphical representation of the resulting optimal dual
decomposition and adding these cycles into the decomposition, usually leads to
strong duality in the applications that we consider.

. Similar to recent work [198], that builds on earlier work of Barahona [13], we

develop an adaptive method to enhance our Lagrangian relaxation formulation
by including additional subgraphs in the relaxation. This method is developed
for binary variable models and is based on the idea of examining if the set of
MAP estimates on each component of the relaxed graphical model are consistent
in that there exists a global configuration which simultaneously is optimal on
each subgraph. Although this condition is generally difficult to verify, we suggest
an approach that only checks this consistency among the set of pairwise edges.
In the case of zero-field Ising models, this reduces to checking for inconsistent
cycles in which there are an odd number of edges on which the two-node MAP
estimates all have opposite states and where the remaining edges of the cycle have
MAP estimates that always have the same state value. This is consistent with
the results of Barahona, which also checks for inconsistent cycles, although in a
different sense. Qur method is based on the fact that testing for strong duality can
be viewed as a constraint satisfaction problem and the 2-SAT problem is tractable
to solve using linear-time algorithms [7].

. We also generalize the decomposition method and iterative scaling algorithm to

a certain class of Gaussian graphical models [67,145,185,199]. Specifically, we
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consider Gaussian models that can be decomposed into a set of positive-definite
quadratic functions defined on small subsets of variables. This condition gen-
eralizes the pairwise-normalizability condition, where the objective decomposes
into pairwise positive-definite quadratic functions, that is a sufficient condition
for convergence of a wide range of iterative estimations methods that submit to a
walk-sum interpretation [45,47,124,157]. It is straight-forward to implement our
LR approach on this broader class of models, and we demonstrate that our iter-
ative scaling method converges and that strong duality holds so that the correct
MAP estimate is obtained. We also show that the solution of the LR problems
also leads to a set of upper-bounds on the variance of each variable (conditioned
on any observations).

8. Finally, we use the Gaussian model to demonstrate a more general form of LR, and
of the iterative scaling algorithm, which allows us to formulate and solve a richer
class of multiscale relaxations of the MAP problem. In the Gaussian case, this
multiscale approach helps to accelerate the rate of convergence of our distributed,
iterative optimization algorithms that we use to solve the dual problem. We also
expect that this perspective will lead to new relaxations of the MAP problem for
discrete problems.

H 1.3.2 Maximum Entropy Relaxation for Learning Graphical Models

Based on the well-known maximum entropy principle [59,97,117,177] and its inter-
pretation as information projection in the exponential family of statistical models
[3,5,15,53,74,166], we propose a new relazed version of the maximum entropy modeling
paradigm. In this relaxed problem, which we refer to as mazimum entropy relazation
(MER), the usual linear constraints on the moments of a distribution (the expected
value of a specified set of features) are replaced by convex non-linear constraints based
on relative entropy between the marginal distributions of subsets of variables and their
empirical distributions obtained from sample data. Importantly, this provides a convez
optimization approach to learning both the model parameters and the graph structure.
The main features and innovative aspects of our approach are now summarized:

1. We develop an efficient primal-dual interior point method [37] for solution of the
(primal) MER problem that exploits chordal embedding and the sparse Fisher
information matriz in chordal graphs. This uses similar ideas as in several recent
approaches to efficiently compute the information projection to a graphical model
[64], including our own work in [126]. However, our approach here is developed
also for discrete graphical models (e.g., binary variable models) and solves a more
general class of relaxed maximum-entropy problems.

2. We derive a dual form of MER and show that this is a regularized version of
the maximum-likelihood criterion, where graphical sparsity is enforced through



22 CHAPTER 1. INTRODUCTION

an information-regularization function. We note that while our relaxation ap-
proach has some parallels to recent works on regularized maximum entropy [72]
and /;-regularization methods to obtain sparse graphical models [9,147,214], our
approach is distinguished by the fact that it is entirely information-theoretic
in nature, with both the objective and the constraints being based on natural
information-theoretic measures.

3. A consequence of our information-theoretic formulation is that the MER solution
is invariant to reparameterizations of the exponential family model. That is,
while the solution certainly does depend on the choice of exponential family, it
does not depend on which of many possible parameterizations of this family we
might happen to use. This is not the case for any of the regularization methods
that have been considered previously. We consider this an essential property, since
the best choice of model should not change due to simply re-parameterizing the
model.

4. Finally, we develop a relazed iterative scaling approach to solve MER using a
simple local update procedure. We show that this procedure performs block
coordinate-descent in the MER dual problem. This results in a simple modifica-
tion of the classical iterative scaling algorithm, one which automatically thins the
graphical model.

B 1.4 Organization

Chapter 2: Background

We begin by presenting an overview of the relevant literature on graphical models, ex-
ponential families and variational principles related to inference and learning in these
models. We then specialize the recursive inference method to the MAP estimation
problem, and review other approaches to MAP estimation from the combinatorial opti-
mization literature. Finally, we summarize the iterative scaling algorithm for learning
graphical models and recent work on learning a good graph structure from sample data.

Chapter 3: Discrete Lagrangian Relaxation

In the first chapter on Lagrangian relaxation, we focus on the important case of graph-
ical models with discrete (e.g., binary valued) variables. We develop our general ap-
proach for decomposing intractable graphical models, solving the dual problem and
adaptively enhancing the formulation in cases in which there is a duality gap. We
present examples involving the so-called “frustrated” Ising model from statistical physics.

Chapter 4: Gaussian Lagrangian Relaxation

In this chapter, we present the Gaussian version of Lagrangian relaxation and the
appropriate information-form of the iterative scaling procedure. Here, we also present
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a multiscale version of Lagrangian relaxation, with the aim of accelerating convergence
of the iterative scaling algorithm in large GMRFs with long-range correlations. We
demonstrate these methods on some examples using the thin-plate and thin-membrane
models commonly used in image processing are remote-sensing applications.

Chapter 5: Maximum Entropy Relaxation

Lastly, we present the maximum entropy relaxation framework for learning graphical
models. We handle both discrete and Gaussian models in this chapter, and present
both primal and dual forms of MER. A simulation study is presented to analyze the
ability of MER to recover the graphical structure of a model from sample data.

Chapter 6: Conclusion

In closing, we summarize our research and propose possible directions for further re-
search and development that are suggested by this work.
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INTRODUCTION




Chapter 2

Background

H 2.1 Preamble

In this chapter, we provide some background on graphical models and relevant methods
of inference, optimization and learning. The chapter is organized as follows: Section
2.2 reviews basic definitions of graph theory, introduces graphical models and Gibbs
distributions, and discusses their interpretation as Markov models; Section 2.8 sum-
marizes some useful facts about exponential families, the maximum entropy princi-
ple, Gibbs variational principle and information geometry; Section 2.4.1 reviews stan-
dard approaches to exact inference in tractable graphical models and the approximate
method of loopy belief propagation; Section 2.5 discusses variants of these methods for
MAP estimation in graphical models, and other approaches based on classical combi-
natorial optimization techniques; Section 2.6 discusses inference and MAP estimation
in Gaussian graphical models; and Section 2.7 summarizes some standard approaches
to learning graphical models.

Notational Conventions

We presume the reader is familiar with basic set theory, probability theory and vector
calculus. We remind the reader of some standard notations below.

We use standard set-theoretic notation: A U B is the union of two sets, AN B is
the intersection, A \ B is the set difference. Let § denote the empty set. The set of
real numbers is denoted by R. We say that the set A contains its elements a € A, and
includes its subsets B C A. We write A C B to indicate that A is a proper subset of B
(A C B and A # B). Given two sets X and Y we write X®Y for the Cartesian product
set {(z,y)|z € X and y € Y}. Also, X" denotes the set of all n-tuples drawn from X
and we write X4 for the set of all maps from A to X. We write 24 £ {0,1}4 to denote
the set of all subsets of A and write (%) to denote the set of all k-element subsets of A.

Given a probability distribution P(z) > 0 of a discrete random variable z € X, which
satisfies > .x P(z) = 1, we define the ezpected value of a function f(z) as Ep[f] £
> zex P(z)f(x). For continuous variables, P(z) > 0 represents a probability density,
which satisfies [ P(z)dz = 1, and we define Ep[f] £ [ P(z)f(z)dz. Given the joint
distribution P(z,y) of two random variables, the marginal distribution of x is defined
by P(z) = 3, P(z,y) for discrete variables and by P(x) = [ P(x,y)dy for continuous

25
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Figure 2.1. Drawings of several graphs. (a) chain, (b) hierarchical tree, (c) irregular tree, (d) planar
graph, (e) square lattice (also planar), (f) cubic lattice. In (a), we explicitly label the vertices V =
{1,2,3,4,5,6}. The edges of this graph are G = { {1,2}, {2,3}, {3.4}, {4,5}, {5,6} }.

variables. The conditional distribution of z given y is defined P(z|y) = P(z,y)/P(y)
for all y such that P(y) > 0.

We may define a matrix A to have matrix elements a;; by writing A = (a;;). Given
a function f(6) = f(6s,...,04) of parameters 6, we define the gradient of f as Vf(6) =

(%?). The Hessian of f is defined as the matrix of second derivatives: V2f(8) =

(%gl) Given a vector map A : R? — R?, we define the Jacobian as OA(6) = ( )

Aset X CR%is conver if e+ (1 —NyeXforallz,yc Xand 0< A < 1. Afunctlo
f:X = Ris conver if f(Az+ (1 - X)) < Af(z)+ (1= X)f(y). It is strictly convex if
FOz+(1-N) <Af(z)+ (1 -AN)f(y) forallz#yand 0 < A < 1.
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Figure 2.2. Drawings of several hypergraphs (using the factor graph representation). (a) a 3rd-
order chain, (b) irregular 3rd-order edges and singleton edges, (c) irregular hypergraph, (d) hierarchical
hypergraph having 3rd-order edges between levels, pairwise edges within each level and singleton edges
at the bottom level. In (a), we explicitly label the vertices V = {1, 2, 3,4, 5,6}. The edges of this graph
are G = { {1,2,3}, {2,3,4}, {3.4,5}, {4,5.6} }

W 2.2 Introduction to Graphical Models

M 2.2.1 Graphs and Hypergraphs

Although we do not require very much graph theory, the language of graphs is essential
to the thesis. We give a brief, informal review of the necessary definitions here, mainly
to establish conventions used throughout the thesis. Readers who are unfamiliar with
these concepts may wish to consult the references [20,33,105]. A graph is defined by a
set of vertices v € V' (also called the nodes of the graph) and by a set of edges E € G
defined as subsets (e.g., pairs) of vertices.! Edges are often defined as unordered?
pairs of vertices {u,v} € G. Such pairwise graphs G C (‘2/) are drawn using circle
nodes to denote vertices and lines drawn between these nodes to denote edges. Several
such drawings of pairwise graphs are shown in Figure 3.3. We also allow more general
definitions of graphs G C 2"\ 0, also known as hypergraphs [20], for which edges (also
called hyperedges) may be defined as any subset of one or more vertices. To display
such a generalized graph, it is often convenient to represent it using diagrams such as

'We deviate somewhat from standard notation G = (V,£) where G denotes the graph and £ denotes
the edge set of the graph. We instead use G to denote both the graph and its edge set, as the vertex
set V should be apparent from context.

2This definition is for undirected graphs. It is also common to define directed graphs, with edges
defined as ordered pairs (u,v) € G. A directed edge (u,v) is drawn as an arrow pointing from node u
to node v. We focus mainly on undirected graphs in this thesis.
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seen in Figure 2.2. In these diagrams, each circle again represents a vertex v € V of
the graph but we now use square markers to denote each edge E € G. The structure
of G is encoded by drawing lines connecting each edge E € G to each of its vertices
v € E. There is one such connection for each pair (v, E) € V x G such that v € F.
Such representations are called factor graphs in the graphical modeling and coding
literatures [85,153].

(Generalized) Graph Convention Unless otherwise stated, when we refer to a graph G
or an edge E € G, then it should be understood that G may be a generalized graph (a
hypergraph) and £ may be any subset of one or more edges (a hyperedge). This includes
the usual definition of pairwise graphs as a special case, and most of our examples and
illustrations do use pairwise graphs to illustrate the basic ideas. Allowing G to possibly
be a hypergraph in general allows us to express the general case without having to always
use the more cumbersome terminology of “hyergraph” and “hyperedge” throughout the
thesis. If it is essential that a given graph is actually a pairwise graph, then we explicitly
say so. We occasionally remind the reader of this convention by referring to G as a
“(generalized) graph”.

We now define some basic graphical concepts. Note, although these definition are
often presented for pairwise graphs, the definitions given here also apply for generalized
graphs (unless otherwise noted). A subgraph of G is defined by a subset of vertices
Vsub C V and a subset of edges Gy, C G such that each edge is included in the vertex
set (we also say that G is a supergraph of Ggyp). Unless otherwise stated, the vertex set
is defined by the union of the edges of the subgraph. The induced subgraph G4 based
on vertices A C V is defined as the set of all edges of G that contain only vertices in
A. A clique is a completely connected subset of nodes, that is, a set C C V such that
each pair of nodes u,v € C are connected by an edge, that is, u,v € E for some E € G.
A path of length £ is a sequence of nodes (vy, ...,vy) and edges (E1, ..., Ey) such that
no node or edge is repeated (except possibly v = vy) and consecutive nodes (vg, Vg+1)
are contained in their corresponding edge Ej. This path connects nodes v and vp. If
vp = vp we say that the path is closed. A graph is connected if any two nodes may be
connected by a path. The connected components of a graph are its maximal connected
subgraphs. A cycle is a subgraph formed from the nodes and edges of a closed path. A
tree is a connected, pairwise graph that does not contain any cycles (see Figures 3.3(a),
(b) and (c)). A pairwise graph is planar if it can be drawn in the plane without any
two edges intersecting (see Figures 3.3(d) and (e)).

Some additional definitions are presented as needed in later sections. Graph sep-
arators are defined in Section 2.2.3. Chordal graphs and junction trees are discussed
in Section 2.4.1. Also, several canonical graphical problems (max-cut, max-flow/min-
cut, maximum-weight independent sets and maximum perfect matching), which arise
in connection with MAP estimation, are briefly discussed in Section 2.5.
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B 2.2.2 Graphical Factorization and Gibbs Distribution

Let = (1,...,25) € X" be a collection of variables where each variable ranges over
the set X.3 For example, a binary variable model is given by X = {0, 1} and a continuous
variable model has X = R. We define a graphical model [43, 60, 145] as a probability
model defined by a (generalized) graph G with vertices V = {1,...,n}, identified with

variables x1, ..., z,, and probability distributions of the form
1
Plz) = —— ’LﬁE(LEE) (2.1)
@ =7 11

where each ¥z : X¥ — R is a non-negative function of variables 2 = (z,,v € E)
and Z(v) is a normalization constant.* We call the individual functions vz the factors
of the model. In the factor graph representation (Figure 2.2), each circle node v € V
represents a variable z, and each square node F € G represents one of the factors ¢g.

For strictly positive models (P(z) > 0 for all z) the probability distribution may
be equivalently described as a Gibbs distribution of statistical physics [90,129,173,195],
expressed as

1
P(z) = exp {6 Z fE(mE)} (2.2)
where f(z) =Y 5 fe(zg) is the energy function (or Hamiltonian) and the individual
terms fg(zg) are called potential functions (or simply potentials) of the model.> The
parameter 3 > 0 is the inverse temperature of the Gibbs distribution and

Z(f,8)2 > exp {B > fE<:cE)} (2.3)

reXn EcgG

is the partition function, which serves to normalize the probability distribution. Evi-
dently, the probability distributions defined by (2.1) and (2.2) are equivalent if we take
Ye(zp) = exp{fe(zg)} (and B = 1). In statistical physics, the free energy is defined
as F(8,8) £ 87 'log Z(f, B), which (for 8 = 1) is also called the log-partition function
in the graphical modeling literature. Later, in Section 2.3.2, we discuss the relation
of this quantity to Gibbs free energy . The temperature T = 3~! may be viewed as a
parameter that, for a fixed energy function f(z), controls the level of randomness of

3More generally, each variable may have a different range of values X; such that z € X; Xz - - - @ Xo.

“We use the notational convention that whenever we define a function of variables z = (z,,v € V)
in terms of functions defined on subsets S C V of these variables, we use zs = (z,,v € S) to denote a
subset of the variables = (z and x4 are not independent variables). Likewise, fa(za) + fg(zg) should
be regarded as a function of the variables zaup. If S £ A N B is non-empty, then the variables zg are
shared by fa and fB.

S5For notational convenience, our definition of energy and potential functions are negated versions
of what is normally used in physics (the definition of the Gibbs distribution normally includes a minus
sign in the exponent).
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Figure 2.3. Example of a graph separator S (the filled nodes). Also, S separates the node sets A and
B (there is no path from A to B that does not pass through S). The Markov property implies that z
and =g are conditionally independent given zs, that is, P(z4,zs|zs) = P(zalzs)P(zs|Ts).

the Gibbs distribution. At high temperatures, the Gibbs distribution becomes approx-
imately uniformly distributed over all configurations z € X". At low temperatures, the
probability distribution becomes concentrated on just those configurations z € X™ for
which f(z) is close to the maximum value f* £ max f.

We emphasize that the precise choice of potential functions that give rise to a
specific distribution P(z) is not unique. Many different choices of individual potential
functions lead to exactly the same probability distribution. There are two reasons for
this degeneracy. First, due to the normalization of P(z), we may add any constant to
the energy f(z) and it does not change P(z). Moreover, for a fixed energy function
f(z) there are many ways it can be split into a set of potentials f(z) = )" gpcg fE(2).
For instance if two edges A, B € G share nodes S = AN B # () then we may add an
arbitrary function A(zg) to one potential f)(z4) = fa(za) + Mzs) and subtract this
same function from the other potential fz(zB) = fe(zB) — M(zs), and it leaves the
overall potential unchanged because i + fp = (fa+A) + (fB = A) = fa+ fB. Such
changes of representation do not effect the overall distribution and are sometimes called
reparameterizations of the model [210].

B 2.2.3 Markov Property: Separators and Conditional Independence

A graphical model satisfies a certain set of conditional independence relations with
respect to its graph. A subset of vertices S C V is said to be a separator of the graph
G if removing these nodes (and all edges that contain any of these nodes) disconnects
some part of the graph (such that the number of connected components is increased).
Also, we say that S separates two vertex sets A, B C V if there is no path connecting A
and B that does not pass through S. These definitions are illustrated in Figure 2.3. A
probability distribution P(z) is said to be Markov with respect to G if for all (S, A, B),
where S separates A from B, it holds that z 4 and xp are conditionally independent given
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zg, that is, if P(x4,zplzs) = P(xa|zs)P(zp|zs). It is simple to verify this property
for a graphical model defined on G. Hence, graphical models are also called Markov
models or Markov random fields (MRFs). For a set of vertices A C V, let A denote
the set of nodes not included in A that are linked to A by some edge. This is called the
Markov blanket of A, as the Markov property implies P(za|zy\a) = P(z4|zs4).

The Hammersley-Clifford theorem [40,99,104] states that essentially all probability
distributions that are Markov with respect to a graph may be represented as a Gibbs
distribution defined on this graph. That is, if P(z) > 0 for all z € X" and P(z) is
Markov on G, then there exists some set of potential functions defined on the cliques
of G such that P(z) can be represented as a Gibbs distribution (2.2). In fact, we may
explicitly construct such a potential specification from the conditional distributions of
P(z) as follows: Given P(x), we recursively define potential functions on every subset
of nodes A C V, based on the conditional probability distribution P(z4|zy\4) and all
potentials defined on proper subsets of A:

fa(za) =log P(zalzy\a =0) = > fa(zs) (2.4)
BCA

Here, we have assumed that 0 € X (but any other element of X could have been chosen
instead) and write zy\ 4 = 0 to indicate 2, = 0 for all v € A. In this construction, we
have defined potentials on every subset of nodes (not just the edges or cliques of G).
However, it can be shown [40] that if P is Markov on G and E is not a clique of G then
the conditional independence property implies that f4(z4) = 0 for all z4 € X4. Thus,
dropping these zero potentials, we actually obtain a compact representation in terms of
potential functions defined only on the cliques of G. Then, taking A =V in (2.4) and
solving for P(x) gives:

P(z)=exp{ > folzeo) (2.5)

CeC(G)

This defines a graphical model with respect to the generalized graph defined by C(G), the
set of all cliques of G. Also, this particular set of potentials satisfy Z(f) = 1. We again
remark that this representation is not unique, many equivalent potential representations
are possible. In particular, we may group potentials together such that only mazimal
cliques (i.e., cliques not contained by a larger clique) are used in this representation.
Another interesting point to note is that the potential specification of a Markov model
on G is determined by the conditional specification over G [71], that is, by a consistent
set of conditional probability distributions P(zg|zsg) for all E € G. Moreover, it is
trivial to recover these conditional distributions from any set of potential functions, so
that the two specifications are essentially equivalent. Later, in Section 2.3.1, we find
that marginal specifications, defined to be any set of consistent marginal distributions,
P(zg) for all E € G, play an equally important complementary role in the theory of
graphical models.
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B 2.3 Exponential Family Models and Variational Principles

We also consider parameterized families of graphical models in the form of an ezponen-
tial family [15,52,74]:
P(z;6) = exp{6” ¢(z) — ©(6)}. (2.6)

Here, ¢ : X® — R? are the features used to define the family (also called sufficient
statistics) and ®(6) is the cumulant generating function of the family, which serves
to normalize the distribution (analogous to the log-partition function in the previous
section). In discrete models, we have

(0) =log 3 exp{07¢(2)} (2.7)

reXn

In continuous models, ®(6) is defined by an integral rather than a sum. We define
O = {0 € RY®(6) < oo}, the set of all § such that ®(f) is well-defined so that we may
define a normalized probability model. For instance, ®(f) might diverge in discrete
models with infinitely many states X = {0,1,2,...} or in continuous variable models
X = R. In discrete models with finitely many states, such as binary variable models,
we always have © = R%. In general, © is a convex, open set in R

The exponential family F, based on a set of features ¢, is defined as the set of
all normalizable probability distributions of this form F = {Py|6 € ©}. Note that
different choices of features may lead to the same family of probability distributions.
For example, for any invertible d X d matrix A, the features ¢’ = A¢ provide another
representation of the same family. We say that a set of features is minimal if the
the family cannot be represented using fewer features. This is equivalent to requiring
that no feature can be expressed as a linear combination (plus a constant) of the other
features for all z € XV. Then, there is a one-to-one correspondence between parameters
f € © and probability distributions Py € F.

For a given set of features, the moments of a probability distribution P are defined
to be the expected value of the features n = Ep[¢] € R%. We let M = {n =Ep[¢],P €
F} denote the set of moments generated by the family F. The set of all realizable
moments, generated by arbitrary distributions P (not restricted to F) is equal to the
closure M, defined as the set of all limit points of M. The boundary &M £ M \ M
corresponds to degenerate probability distributions that encode hard constraints (e.g.,
discrete distributions with P(z) = 0 for some z). Such degenerate distributions are
not contained in the exponential family representation because there is no (finite) 6
that realizes these distributions. We generally assume that we are working with non-
degenerate distributions to avoid this technicality.

As in [213], we consider exponential families that define graphical models by using
features that only depend on subsets of variables. We use «, 8 € Z to index features of
the model, such that the entire feature vector is ¢ = (¢q,a € T). Also, let E, denote
the subset of variables that are used to define ¢q, i-6. ¢o(T) = ¢a(zE,) = ¢a(Ta). Thus,
we obtain a parametric family of graphical models defined on the graph G = Uy E, with
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energy function f(z) =3 fa(za) =D, Oota(Ta).8

Discrete Models

A Boltzmann machine [4] is a binary variable model, where each variable may take on
values in X = {0,1}. The energy function of the model is

flz;0) = Z Oedp(rE) (2.8)

Eeg

with features defined by products of variables:

¢p(zE) = [] 2o- (2.9)

veE

In this case; there is a one-to-one correspondence between features and edges, so we
have Z = G. The moments are given by probabilities ng = Epl¢g] = P({z|z, =
1for all v € E}). Thus, each feature ¢g acts as an indicator for the event that all
nodes v € F are set to z, = 1 and ng is the probability of this event. Most commonly,
such models are defined using only node potentials f;(z;) = 6;z; and pairwise potentials
fij(@i,2;) = bi;2;x;. However, we allow arbitrary interactions among the variables so
that the model could in principle represent an arbitrary function of X" (up to an
irrelevant additive constant).

The Ising model [10,129] is defined similarly, except that the allowed states are
labeled X = {-1,+1} = {—, +}. In statistical physics, each node represents a particle
with an internal “spin” variable that is in either an “up” (+) or “down” (—) state. The
choice of which binary encoding we use (Boltzmann versus Ising) is not too important,
as one can easily convert between these two representations. However, it does change
the interpretation of § and n parameters. For example, in the Ising model we have
ni = Pi(+)— Fi(—) and ny; = Pyj(++) + Pyj(——) — Bij(+—) — P;j(—+). The generalized
Ising model (including interactions on larger subsets) is well-suited for describing parity-
check codes, since g expresses the bias favoring [[,cpzv = +1 over [[cpzy = —1.
We stress that both parameterizations are minimal and general enough to represent an
arbitrary potential function.

Next, we consider the general g-state discrete models with X = {0,...,¢ — 1}. In
this case, it is sometimes convenient to use an over-parameterized representation of the
model [210, 213], which means that the feature set is non-minimal and the mapping
from 6 to probability distributions P € F is many-to-one. We may encode an arbitrary
potential function fg(zg) as follows. For each configuration Zz € XF of the variables
in F, define one feature to be the indicator function for the event zg = Zg:

i _ 1, zg=17g
¢E’zE(xE) - { 0, otherwise (2.10)

6 Although this representation might define multiple potentials per edge, we may also group these
together by edge: f(z) = }_pcg fe() With fe(2E) = 32,5, 5 fa(zE).
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In terms of these features we can parameterize the potential function fr(zg) by simply
enumerating all of its values:

fE(E) =) 05::08,:5(E) (2.11)

Thus, indexing features by o = (E, Zg), we obtain an exponential family representation
f(x) = Y g fe(ze) = Y 40a0a(zs). Of course, this is no more than a change of
notation. If we instead rewrite 0p . as Og(zg), then f(z) = > p0r(zg). Thus the
parameters 6 correspond directly to the potential specification of the model.

Similarly, the moment parameters specify the edge-wise marginal distributions of
the model: ng(zg) = P(zg). We refer to the set of all edge-wise marginal distributions
{Pe(zg),E € G} as the marginal specification of a graphical model. A marginal spec-
ification {Pg(zg),E € G} is realizable if there exists a joint distribution P(z) which
has these marginals. The set of all such realizable marginal specifications defines the
marginal polytope. In the exponential family representation, this is precisely the set
of realizable moments M. In the case of the over-parameterized representation, the
marginal on edge E is directly specified by the moments ng(zg). Using the minimal
representations of the binary variable models (Ising or Boltzmann), the marginal P(zg)
is determined by the subset of moment parameters 7 £ (ng,E' C E), that is, the
set of all moments of variables within edge E.

Lastly, we remark that the “over-parameterized” representation is not strictly nec-
essary. It is simple to obtain a minimal representation by setting g(zg) = 0 for all
configurations zg where any of the variables z,, for v € E, are set to a particular value
(for instance, let g(x) = 0 if z, = 0 for any v € E). The remaining free parameters
then provide a minimal representation of the exponential family. In the case ¢ = 2,
this recovers the Boltzmann parameterization. However, for pedagogical purposes, it is
often simpler to discuss the over-parameterized representation.

Gaussian Model

Finally, we consider Gaussian graphical models [67,157,185,199,201,217]. In this case
we have X = R, and consider probability density functions of the form:

P(z) = exp{—%wTJx +hTz — ®(h, J)} (2.12)

where J € R™*" is a symmetric positive definite matrix, called the information matriz,
and h € R™ is the potential vector. It is straight-forward to check that the mean of z is
given by u £ Ep[z] = J 'k and the covariance of z is K £ Ep[(z — p)(z —p)T] = J L.
The constant ®(k,J) = log [ exp{—3zTJz + hTz}dz serves to normalize the density
and may be calculated as :

®(h,J) = % {—logdet J + T J71h + nlog 2r} (2.13)
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The fill-pattern of the matrix J defines the graphical structure of the model: {u,v} € G
if and only if J;; # 0. The Gaussian analog of the Hammersley-Clifford theorem states
that the class of Gaussian models that are Markov with respect to G is equivalent to
the above family with J;; = 0 for all {i,j} ¢ G [199)].

It is apparent how to translate this into an exponential family representation [67,
199]. We define linear features ¢,(z) = z, and quadratic features ¢, ,(z) = z2 for all
nodes v € V and interaction terms ¢, ,(z) = z,z, for all edges {u,v} € G. The index
set S of these features may be defined as S =V U {(v,v),v € V}U{(u,v) € G}. Then,
components of h and J map to to components of § = (6, € S):

by = hy
o =~
Ouw = —Juw
This definition of 6 ensures that §7¢(z) = —327Jz + hTz. The moment parameters

n = (Na,« € S) are similarly related to the mean p and covariance matrix K:

T = Hy
Ty = Kv,v
Tuw = Ku,'u

Thus, this gives the exponential family representation of the Gaussian model.

B 2.3.1 Maximum Entropy Principle

There is a one-to-one correspondence between elements of the set € M and probability
distributions P, € F. This is shown by the mazimum entropy principle [59,97,117,177).

Let
1

H(P)=—-Epllog P(z)] = Ep |log —— 2.14
(P) = ~Erlog P(o)] = B 105 (214)
denote the entropy of probability distribution P(z). Entropy is a measure of uncertainty
in the information theory of coding and communication [59, 86, 193]. Consider the

following optimization problem:

H( )é{ maximize H(P) (2.15)

subject to Ep[¢] =7

That is, among the set of all probability distributions (not restricted to F), we seek the
maximum entropy distribution (the least informative probability model) that is consis-
tent with a specified set of moment constraints. Typically, when learning a model from
sample data, the moments 7 are given by empirical averages. The maximum entropy
principle states that the solution to this problem (when it exists and is strictly posi-
tive)” is an exponential family distribution based on features ¢ and with parameters 6

"The maximum entropy problem might fail to have an exponential family solution in one of two
ways: (1) if 7 is not realizable by any probability distribution then the problem is infeasible, (2) if the
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chosen to satisfy the condition Eg[¢] = 7 (note that we use Eg to denote expectation
with respect to the probability distribution Py). This can be derived from the perspec-
tive of Lagrangian duality [59], where the § parameters arise as Lagrange multipliers
associated with the moment constraints. This analysis also shows that the maximum
value of the entropy is given by H(n) = ®(8)+nT0, indicating a connection between the
functions H(7n) and ®(#). Also, simple gradient analysis shows that selecting 6 to realize
the empirical moments is equivalent to mazimum-likelihood estimation. This shows a
fundamental duality between the maximum entropy modeling and maximum-likelihood
parameter estimation in exponential families.

Because entropy is a concave function of P, there is a unique probability distribution
P, € F that solves the maximum entropy problem for each n € M. If the features ¢
are minimal, then there is also a unique @ corresponding to each n € M. Then,
there is a one-to-one correspondence between the 7 and € parameterizations of the
exponential family. We denote the forward mapping from 6 to n by A : © —» M,
and (for minimal representations) the inverse mapping by A~!. The forward mapping
n = A(6) corresponds to directly computing the moments of a specified distribution (by
summation or integration) and also requires calculation of the normalization constants
®(0). We refer to this as the inference problem (discussed further in Section 2.4.1).
Also, a simple calculation verifies the following moment generating property of ®(6):

L) = Eolel = 216

Thus, A(f) = V®(6) and we see that inference is closely linked to computation of ®(8).
The inverse calculation 8§ = A~1(n) does not generally have a direct solution method,
and must usually be solved using iterative methods. We refer to this as the learning
problem (discussed further in Section 2.7).

B 2.3.2 Convex Duality and Gibbs Variational Principle

The maximum entropy principle indicates a fundamental duality between the free-
energy function ®(0) and the entropy function H(n). This duality is shown using
Fenchel’s convex-conjugate transform [77,78,180,181] and is known to physicists in the
form of Gibbs variational principle [90,116,195].

The convez-conjugate of a function f(x) is the function f* defined by

f*(y) £ max{z"y - f(z)}. (2.17).

The function f* is a convex function, as it is the maximum over a set of linear functions
of y. From this definition, we have Fenchel’s inequality: f(z) + f*(y) — ¥y > 0 for
all z,y, Fenchel duality, f** = f, holds if and only if f is convex and closed®. For

moments 7 correspond to a boundary point of M then the value of the maximum entropy problem is
well-defined, but there is no exponential family distribution that achieves the maximum. In the latter
case there exists a sequence P*) € F with moments 7*) — n and where H(P®)) — H(n).

8A function f is closed if the sub-level set {z|f(z) < h} is closed for all h.
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o ’,"’ —f(z*)
—g(y*)

Figure 2.4. Illustration of the Fenchel-Legendre transform for a pair of convex functions: f(z) =
(z—1) —logz (z > 0) and g(y) = —log(1—1y) (¥ < 1). These are convex-conjugates, that is,
9(y) = f*(y) and f(z) = g*(z). It holds that f(z) + g(y) = zy for all (z,y) such that y = é%(fz (or,
equivalently, z = %}2).

a convex and differentiable function f, the convex-conjugate is given by the Legendre
transform [17,18]:
fy) = [-'BT?J - f(x)]z=v—1f(y) (2.18)

where V~1f denotes the inverse gradient map of f. That is, for a strictly convex,
differentiable function f(z) one may define V~!f(y) to denote the unique value of z
such that y = Vf(z). An example of a pair of single-parameter convex-conjugate
functions is shown in Figure 2.4.

Applying this transform to the convex, differentiable function ®(6), and recalling the
moment generating property V®(6) = Eg[¢] = A(f), we see that the convex-conjugate
function ®* is defined over the set of moments 7 € M of the exponential family.® For
n € M and 6 = V~1&(n) = A~1(n), the entropy is given by H(n) = —Pp{6Té(z) —
®(0)} = 6Tn — &(n) = —®*(n). This shows the following duality principle:

Proposition 2.3.1 (Duality between ®() and H(n)). The functions ®(0) and
—H(n) are convez-conjugate functions. Thus, we have the duality relations:

2(6) = max{H(n) + 170} (2.19)
and
H(n) = min{®(6) — 76} (2:20)

The mazimum in (2.19) is uniquely obtained by n = A(8). Likewise, the minimum in
(2.20) is uniquely obtained by § = A=1(n). Also, we have (by Fenchel’s inequality)

d(n,8) £ ®(0) —H(n) —1n"6>0 (2:21)

°If n € M, the Fenchel transform is unbounded below and we define ®*(n) = —oo.




38 CHAPTER 2. BACKGROUND

for all n, 8, where equality holds if and only if n = A(9).

In fact, this duality principle is essentially equivalent to Gibbs variational principle
in statistical mechanics [90,116,195]. Given a potential function f(z) and a probability
distribution P(x), we define Gibbs free energy (also known as the variational free energy)
as a function of P (for a fixed energy function f) as the expected value of the energy,
with respect to P, plus the entropy of P scaled by temperature:

Faivws(P, B) = Ep[f] + B H(P). (2.22)

This is a concave function of P and is bounded above by the free-energy F(f, 5), the
log-partition function scaled by temperature:

Faivos(P,8) < F(f,8) £ 8 og > _ exp{Af()}, (2.23)

Moreover, the upper-bound is uniquely achieved by the Gibbs distribution based on
f(z). Hence, Gibbs distribution arises as the solution of the variational problem of
maximizing Gibbs free energy for a given energy function. Rather than viewing Gibbs
free energy as a function of P, we may restrict it to P € F and rewrite it as a function
of the moments 1 = Ep|@], such that Ep[f] = §7n, and the entropy H(n):

Faivbs(n, 8) = 0T+ B~ H(n) (2.24)

Note that BFaibs(n, 3) = (86)Tn + H(n) is essentially the same quantity as appears
in (2.19) except that 6 is scaled by 5. Hence, by convex-duality, the maximum of
Faivbs(n, 8) (over n € M) is given by the free energy F(6,3) = 71®(86). Such
variational principles have come to play an important role in recent work on the devel-
opment of approzimate inference methods for graphical models [213,227]. This generally
involves introducing some tractable approximation to the set M and the entropy H (7).
We review one such connection further in Section 2.4.2.

B 2.3.3 Information Geometry

We give a brief tour of some interesting results of information geometry, which provides
a geometric view of the space of probability distributions based on relative entropy and
the Fisher information metric [5,53,62, 74,81, 166].

Information Divergence

The relative entropy [59] (also known as Kullback-Leibler divergence [142,143]) between
two probability distributions P and () is defined as

elf

This is commonly used as a measure of contrast between probability distributions,
and plays a fundamental role in coding theory, hypothesis testing and large-deviations

D(P,Q)=Ep [log (2.25)
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2(0)
du(n2,m)

n "

(2) TR (b) o

Figure 2.5. Illustration of dual interpretations of Kullback-Leibler divergence as Bregman distance
based on either H(n) or ®(6). The example shown corresponds to a single-variable Boltzmann model
(a Bernoulli random variable). (a) Bregman distance da(n2;m) in moment coordinates n based on
entropy H(n) = —(nlogn + (1 —n)log(l — n)) (defined for 0 < 5 < 1. (b) Bregman distance ds(82;61)
based on the log-partition function ®(8) = log(1 + °).

theory [59]. Consider the relative entropy D(FP,, Py) between two exponential family
distributions with (respectively) moments 1 and parameters 8. It is easily verified that

D(Py, Py) = —H(Py)+ Ep[—log Py(z)]
= —H(n) +Ey[®(8) - 7 $()]
= —H(n)+o06) -6y (2.26)
Note, the last expression is equivalent to the d(n,f) from (2.21). Thus, the information

inequality D(P, Q) > 0 [59] follows from Fenchel’s inequality. From this relation, we
obtain the following formulas for computing derivatives of relative entropy:

ad(n,9)

o0 = Aa(e) — Na

«a

3d(77a 0) _ -1 _

N S UR 1)

Relative entropy may also be interpreted as the Bregman distance [17,39] based
on a convex (or concave) function. To show this, we first express relative entropy as a
function of the n parameters in both arguments. Let dg(n;n') 2 d(n, A~1(x)) = d(n, 8")
(the reason for the subscript H will be explained). Using the Legendre transform
®(¢') = H(n') + 7’76 we obtain:

du(n,n) = —H(n)+®(0)—n"¢
= —Hm)+H@)+0T0 —n)
= —H(m)+{H®)+VH®) (n—n)} (2.28)

The final expression for dg(n,n’) shows that it is equal to the amount by which the
approximation H(n) = H(n') + VH(n')T(n — ') ~ H(n), the first-order Taylor-series
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expansion of H(n) about 7/, over-estimates H (7). This quantity is non-negative because
H(n) is a concave function (see Figure 2.5(a)). Thus, dg(n,7’) is a measure of how far 7
is from 7’ relative to the the curvature of the function H(n). This defines the Bregman
distance of a concave function.

In a similar manner, we may express the relative entropy as a function of § param-
eters in both distributions, and find that this is equal to the Bregman distance based
of the convex function ®(6) (see Figure 2.5(b)):

d<I>(670,) = D(P0'7P0)
&) - {®#) + Vo) T(6-6')} (2.29)

Thus, Kullback-Leibler divergence can be thought of as the Bregman distance based
on either H(n) or ®(#). These two interpretations are consistent due to the duality of
H(n) and ®(0). For two distributions P; and Ps it holds:

D(Pl, Pz) = d(m, 02) = dH(nl,nz) = dq>(02, 01). (2.30)

Note that the order of the arguments is reversed between dy and dg.

Information Projections

Given an exponential family F, there are two types of information projections one may
define based on minimizing relative entropy. Each projection defines a different notion
of a flat submanifold of the exponential family. Let S C R? be an affine subspace, that
is, S = {x € R% Az = b} for some A € R¥*? and b € R?%. An e-flat submanifold of F is
a non-empty subset 7' C F with parameters § € ©' = SN ©. Analogously, an m-flat
submanifold is defined by a non-empty, affine subspace in the moment parameterization.
The m-projection of a probability distribution P, € F to an e-flat submanifold S is
defined by the solution to the minimum relative entropy problem:

min d(, 6) = min{®(0) — "6} — H(n) (2:31)

We illustrate the m-projection problem in Figure 2.6. Similarly, the e-projection of Py
to an m-flat submanifold S’ is defined by:

min d(n,0) = — max {H 6Tn} + @8 2.32

Jnin, d(n, 0) = — max {H(n) +6"n} + &() - (2.32)
Note that both problems correspond to convex optimization problems minimizing con-
vex functions over affine sets. These two optimization problems are quite similar to
those defining the convex-conjugate relation between ®(6) and —H(n). In fact, there
is a duality principle relating these two types of information projections. Let us say
that an e-flat submanifold ©' is orthogonal to an m-flat submanifold M’ if it holds that
(ne —m)T (62 — 6;) = 0 for all §;,05 € © and m1,7m2 € M’. This simply means that the

coordinate representations, respectively in 6 and 7 coordinates, lie in orthogonal affine
subspaces of R,
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6=A"(n) K
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Figure 2.6. Illustration of the m-projection problem. The two figures (on the left and right) are respec-
tively drawn in 8 and 7 coordinates with their respective coordinate-axes (61,...,64) and (n1,...,74)
being aligned. Note that ©’ is flat in the §-space, M’ is flat in 7-space and these are orthogonal
subspaces. In this example, M’ is also a one-dimensional m-flat manifold, called an m-geodesic. The
m-projection of 7 to the e-flat submanifold ©’ is determined by the condition that % — 7 is orthogonal
to ©', where § € © and # = A(f). This can be obtained by following the orthogonal m-geodesic M
until it intersects the image of ©’ in moment coordinates. Alternatively, it can be found by varying
over ©' until the condition 7 € M’ is satisfied.

Proposition 2.3.2 (Duality of e-projection and m-projection). Let o LM
be orthogonal submanifolds. Suppose that 77 = A(8) for € M and 0 € ©. Then, the
following conditions are equivalent:

e Intersection: it € M’ and 6 € ©. In other words, the corresponding probability
distribution P lies in the intersection of these two manifolds:

Pe{P,neM}n{P,6€0}.

o M-Projection: d(n,6*) < d(n,0) for alln € M’ and 0 € ©'. In other words, 0 is
the solution of the m-projection problem (2.31).

e E-Projection: d(7,0) < d(n,8) for alln € M' and 6 € ©'. In other words, 7 is
the solution of the e-projection problem (2.32).

e Pythagoras Relation: d(n,0) = d(n,0*) + d(n*,0) for alln e M’ and § € ©'.

Using this duality principle, we may reformulate one type of information projection
as a dual information projection. For example, the m-projection of P, to an e-flat
submanifold ©' is equivalently specified as the e-projection of any element # € ©’ to
an m-flat submanifold M’ containing 1 which is orthogonal to ©’. This idea plays
an important role in the information geometric interpretation of the iterative scaling
algorithm, discussed later in Section 2.7. Note that, following the terminology of Amari
[3], the projection to an e-flat manifold is called an m-projection. This convention may
seem a bit backwards at first. However, it may be justified by the following observation.
Let M’ denote the straight line through n which is orthogonal to ©' (as shown in
Figure 2.6). This is the minimal m-flat submanifold that satisfies the conditions of
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the preceding proposition. Such one-dimensional submanifolds are called m-geodesics.
Then, according to Proposition 2.3.2, the m-projection is determined by the point at
which this m-geodesic intersects the e-flat submanifold. Thus, we may obtain the m-
projection by following a straight line through 7 that is orthogonal to ©' until we reach
the point n* on this line that intersects A(©’).

Fisher Information

For a parametric family of probability distributions F, with parameters £ € Z, the
Fisher information matriz is defined by:

G(€) = E¢ [Velog P(z; )V log P(z;¢)] (2.33)

This quantity plays an essential role in estimation theory and statistics [59] as well as
in exponential families and information geometry [5]. In the exponential family, the
Fisher information with respect to the 6 parameters is given by the covariance matrix
of the feature vector ¢:

G(8) = Eq [(¢(z) — A6))(é(z) — A6))"] (2.34)

This same covariance appears as the Hessian matrix V2®(8) of the cumulant-generating
function ®(6) or, equivalently, the Jacobian matrix dA(8) of the change of variables from

8 to n = A(6) = VI(6):
_(8%8(0)\ _ [8A4(6)
G(0) = (_aaaaaﬂ) - ( = ) (2.35)

Let G*(n) denote the Fisher information with respect to the 7 parameters. (Here,
we add a star to avoid confusion with G(#). Elsewhere we may drop the star if it is
unambiguous.) Using the chain rule, we can relate this to the corresponding Fisher
information G(#) computed for § = A~1(n):

\ 0 09
G'n) = 5,605,

- (%) on (3)’
= GO)GH)GH)!

= GO (2.36)
Thus, the Fisher information of the two parameterizations are inversely related to one
another. Note that G*(n) = G(6)~! also equals the Jacobian JA~1(n) of the inverse

mapping A~1(n). Furthermore, because ®(#) and —H(n) are convex-conjugate func-
tions, the Hessian of —H (n) is equal to the inverse of its conjugate. Hence,

- (328)
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Recalling the expression d(n,8) for relative entropy, we see Fisher information also
appears as the Hessian of relative entropy in either argument:

2
Go) = (3 d(n, 9)>
00,003
2
) = (G (237

Onadng
Thus, we can already see that Fisher information inevitably plays an important role in
variational approaches to inference and learning.

In fact, Fisher information may be used to define a Riemannian metric for statisti-
cal manifold of probability distributions [5]. Although a complete explanation of this
perspective is beyond the scope of this background review, we can partially explain the
significance of this statement. Given the Fisher information matrix G(£) at a point &
of the parametric model, one can define an inner-product operator at £ with respect to
small perturbations (differentials) A& away from & by

(A&, Abo)e £ ALTG(E)AE, (2.38)

An important feature of this metric is that it is invariant to smooth reparameterizations
of the family. That is, given a second parameterization £, related to the first by a
smooth bijective map p: £ — &', it holds that

G (o(€) = (%—?)T G(e) (5g—<§>) (2:30)

where G'(¢') denotes the Fisher information in the & parameterization. This implies
that (A&1, Abe)e = (AL}, A&y)e for appropriately transformed differentials A’ = g—gA{ .
Thus, the condition (A, Ag) = 0 defines a notion of orthogonality in the space of prob-
ability distributions that is independent of the specific choice of parameterization. In
the case of exponential families, with dual parameterizations 6 and 7, this notion of
orthogonality is consistent with the one given earlier between e-flat and m-flat subman-
ifolds. This follows from the fact that G(n) = G(6)™! and G(8) is also the Jacobian
matrix that describes the change of variables from 6 to 7, that is, G(6) = dA(f) and
G(n) = OA~Y(n). Then, it is easily verified that

(A0, Ab2)g = (Am, Ana)y = Ant Aby (2.40)

where An, = G(6)A6; (k = 1,2). The third representation, as the inner-product
between dual perturbations An and A8, shows that an e-flat submanifold is orthogonal
to an m-flat submanifold (with respect to the Fisher information metric) if an only if
their respective coordinate representations in ©' and M’ lie in orthogonal subspaces.
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H 2.4 Inference Algorithms for Graphical Models

In this section we review a number of inference algorithms, the aim of which is to
calculate (at least approximately) the marginal distributions of a graphical model. That
is, given the potential representation of the graphical model, we wish to calculate the
marginal distributions

P(z;) = % > 1 veCe) = % > exp{z fE(wE)} (2.41)

zy\; EEG Ty\; Ecg

for each 7 € V where the sum is over all other variables except for z; and the parti-
tion function Z is a normalization constant. We may also wish to calculate marginal
distributions for each edge E € G. The problem of computing marginals is essentially
equivalent to that of computing the partition function itself:

zZ=Y ][] ves)=>_exp {Z fE(a:E)} (2.42)
T E

z EegG

Direct calculation of this sum becomes intractable in larger models as the number of
terms grows as |X|™ where n is the number of variables. For instance, in binary variable
models (e.g., X = {0,1}) direct computations are feasible with present technology only
up to about n = 40 nodes. For larger graphical models, commonly involving hundreds
or thousands of nodes, such brute-force computations are simply not possible.

For models defined on thin (low tree-width) graphs, it becomes possible to compute
these sums recursively in a nested manner such that the total complexity scales linearly
with n (but exponentially with the tree-width of the graph). We review these methods
in Section 2.4.1. However, for non-thin graphs, even these recursive methods become
intractable. Approximate inference methods, such as the iterative belief propagation
algorithm, have been developed to provide a tractable approach to inference in graphical
models where exact methods are intractable. We discuss belief propagation, its variants
and the variational interpretation of such methods in Section 2.4.2.

B 2.4.1 Recursive Inference Algorithms

We begin by discussing recursive inference in the simplest case of Markov chains and
Markov trees and then discuss a general method using junction trees. Although we
derive these methods from the perspective of variable elimination (also known as dec-
imation), we also present the resulting message-passing form of these algorithms. In
fact, this message-passing approach is the precursor of the iterative belief propagation
algorithm, to be discussed later in Section 2.4.2.

Markov Chains

To begin with, let’s consider the simple case of a Markov chain. This is a graphical
model in which the nodes are linearly ordered V = {1,...,n} and potential functions
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are defined between consecutive nodes. That is, the edges of G are {1,2},{2,3},...,{n—
1,n}, as seen in Figure 2.7, and we consider the representation

T) o H Y,t+1(Tt; Te1)- (2.43)
t=1

For notational simplicity, we assume that any node factors are absorbed into these
pairwise factors. Then, the Markov property implies that, conditioned on z;, the “past”
variables {z,,v < t} are independent of “future” variables {z,,v > t}.}° Now we may
evaluate the partition function Z by summing over one variable at at time, in order, a
procedure that is known as variable elimination. By nesting the sum in this manner,
we obtain a tractable calculation:

Z = Z ZH?/)ttﬂ l’t,xt+1)

1 t=1
= ZZwazn 1,%n) Z¢23 2, 3) 27,!112(351’3'32
= Z Z Y(Tn-1,Tn) Z¢23 2, T3) ph1-2(%2)
= > Y $(Tn-1,2n) - p2-3(z3)

= Z ,un—l—m(l'n) (2-44)

Here, each step of variable elimination has the effect of deleting node ¢ and the edge
{t,t + 1} but also creates an addition factor at the next node that we denote by
pt—st+1(Z¢41). This results in a graphical model with one less node that has the same
partition function Z and marginal distributions (on the remaining nodes) as the original
model. These induced factors y;—¢+1 may also be regarded as node-to-node “messages”
being passed along the chain in a “forward sweep”, as illustrated in Figure 2.7(a). Each
message is calculated from the preceding message and the corresponding edge potential
according to the rule:

ptt1(Te41) = Z Vi 1+1(Tt, Te1) prt—1-¢(T1) (2.45)

Tt

OMarkov chains are often described using a causal representation defined by pairwise factors
(zs,z141) = P(xey1]|z:) and an initial node factor 41(x1) = P(z1). In our discussion, we allow
arbitrary factorizations that respect the graph structure (this causal representation is included as a
special case).
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Figure 2.7. Illustration of forward-backward algorithm on a Markov chain. (a) The forward sweep
passes messages from left to right. Each node receives a message from its predecessor before sending
a message to is successor. (b) The backward pass is identical except that messages are passed from
right to left. Note that the two passes do not interact. (c) Combining messages from the forward and
backward sweeps, we obtain the marginal distribution at each node. Thus, the two-pass message passing
algorithm produces the same results as performing variable elimination separately for each node.

Once the last message is computed, we may also compute the partition function Z =
an Pn—1—n(Zn) and the marginal distribution of the last node, given by

P(z,) = —;",U'n—l —>n($n)- (2‘46)

In a similar fashion, we can perform a “backward sweep” on the chain to compute
the marginal distribution at the first node, simply by reversing the elimination order
and passing messages in the reverse direction down the chain as seen in Figure 2.7(b).
For that matter, we can calculate the marginal at any intermediate node by passing
messages from both ends of the chain towards the desired node as seen in Figure 2.7(c).
Importantly, the messages computed in this variable elimination procedure are identical
to those computed in the forward and backward sweeps. Hence, by a simple two-pass
algorithm we obtain all messages (two per edge, one in either direction) necessary to
compute the marginal distributions of all variables in the chain according to:

R RPN e N (2.47)

Thus, by exploiting the simple structure of the Markov chain, we reduce the complexity
of inference from exponential to linear in n.
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Figure 2.8. Illustration of upward-downward algorithm on a Markov tree. (a) In the upward pass,
each node receives messages from all of its children before sending a message to its parent. For instance,
ftu—r is computed from py—y and pw—u. (b) In the downward pass, each node receives messages from
its parent before sending messages to its children. The downward sweep is performed after the upward
sweep. (c) The set of messages involved in the computation of the marginal distribution at node wv.
Note, these are the same set of messages that would have been produced if we had selected v to be the
root node and performed variable elimination to compute P(z,). This figure also illustrates that the
downward messages depend upon upward messages. For instance, pu—o is computed from gy, and

Mr—u-

Markov Trees

This idea easily generalizes to the case of Markov trees, that is, graphical models with
pairwise interaction defined over the edges of a tree. Viewing this as a variable elimi-
nation procedure, the algorithm proceeds by eliminating one node at a time. At each
step, the next node eliminated must be a leaf in the remaining subtree, that is, a node
with only one remaining neighbor. The general rule for eliminating variable z,, after
all but one of its neighbors v € Ou have been eliminated, is:

,Ufu—’v(xv) = Zwuv(xmxv) H /J"w—vu(xu) (248)

weu\v

This may also be envisioned as a two-pass message-passing algorithm on the tree.
First, we pick some node r € V and consider this to be the root node of the tree as
seen in Figure 2.8. Then, we perform an “upward” pass on this tree (relative to the
root), starting from the leaves of the tree and passing messages in the upwards direction
(towards the root node). This upward sweep is depicted in Figure 2.8(a). In this upward
sweep, each node waits until it receives messages from all of its children before passing
a message up to its parent node. The partition function and marginal distribution at
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the root node are computed once the root node is reached. The remaining marginals
are determined by performing a reverse downward sweep, as depicted in Figure 2.8(b).
In this downward sweep, each node waits until it receives a message from its parent
before passing messages to it children. Note, as seen in Figure 2.8(c), the downward
message to a given child also takes into account upwards messages from the siblings of
that child. Once all messages have been computed, the partition function of the model
Z can be computed from any node by fusing all messages to this node (from both the
upward and downward sweep) and computing the normalization constant:

Z =" T] ruolzv)- (2.49)

Ty UESV

Note that this must give the same value at each node as it represents the result of
variable elimination to compute Z using different elimination orders. The marginal
distribution of each node is then given by:

P(zy) :% H Py (Zo), (2.50)

u€dv

As depicted in Figure 2.8(c), this is again equivalent to variable elimination. Hence,
by computing exactly two messages per edge, we are able to calculate all the messages
throughout the tree and obtain both the partition function and marginal distributions
with linear complexity in the number of nodes.

Junction Trees and Chordal Graphs

The recursive inference method can be generalized beyond simple Markov chains and
trees. The basic idea is to map a Markov model defined on a loopy graph to an equivalent
tree-structured model obtained by aggregating together sets of nodes of the loopy graph
to define node variables in the tree model. However, complexity of inference in this new
tree model then depends on how many nodes we must group together in order to obtain
such an equivalent Markov tree representation. To make these ideas precise, we must
introduce some additional definitions from graph theory. This discussion is based on
inference methods developed in the graphical modeling literature [43, 60, 145, 146], al-
though many results concerning variable elimination and junctions trees were developed
earlier in the linear algebra literature [182]. We also note that this general approach is
broadly similar to methods developed in the literature on multiscale modeling of 2-D
Markov random fields using quad-trees (see the survey paper [222]).

Definitions A graph G is chordal if every cycle of four or more nodes is cut by a
chord (that is, an edge between two non-consecutive nodes of the cycle). For example,
the graph seen in Figure 2.9(a) is not chordal because it contains the chordless cycle
(1,2,5,4,1). The graph seen in Figure 2.9(b), however, is chordal. For instance, the
cycle (1,2,5,4,1) is now cut by the chord (2,4). A junction tree of a graph G is a tree
with vertices defined as the set of maximal cliques C(G) of the graph G that satisfies the
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Figure 2.9. Illustration of a junction tree of a graph. {a) A 3x3 grid with vertices V = {1,...,9}. This
graph is not chordal, it contains a chord-free four-cycle (1,2,5,4,1). (b) A chordal super-graph of this
grid. The additional edges are the dashed lines. It can be verified that this graph is chordal by checking
that (1,3,7,9,4,6,2,8,5) is a perfect elimination order. (c) A junction tree of the chordal graph. The
nodes (circles) of this tree represent maximal cliques of the chordal graph. The edges (squares) of the
tree represent separators of the graph obtained by taking the intersection of the adjacent cliques. It is
verified that this is a junction tree by checking that each pair of nodes satisfies the running intersection
property.

following running-intersection property: for every pair of cliques A, B € C(G) it holds
that their intersection A N B is included in every other clique C along the path from
A to B in the junction tree. We also define the separators S(G) as the intersections
of adjacent cliques in the junction tree, one for each edge of the junction tree. For
example, a junction tree of the graph seen in Figure 2.9(b) is displayed in Figure 2.9(c).
The round markers denote nodes of the junction tree (cliques of G) and the square
markers denote edges of the junction tree (separators of G). One can check that the
running-intersection property holds. For instance, the intersection of cliques {1,2,4}
and {4,7,8} is {4} and this is included in clique {2,4,5,8}, which is the only clique
along the path from {1,2,4} to {4,7,8}. A perfect elimination order of a graph G with
vertices V = {1,...,n} is a permutation 7 of the vertices such that we may eliminate
vertices in the order (7(1),n(2),...,7(n)) and at each step ¢, when we eliminate vertex
7(t), it holds that the remaining neighbors dn(t) NV of n(t) form a clique in the
induced subgraph G (;41),...,x(n)}- In other words, every pair of neighbors of 7(t) at
the time that 7(¢) is eliminated are linked by an edge in G. For example, the graph
seen in Figure 2.9(b) has the perfect elimination order = = (1,3,7,9,4,6,2,8,5). These
various concepts are closely inter-related, as shown by the following fundamental graph-
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theoretic result:

Proposition 2.4.1. All of the following conditions on G are equivalent:

1. The graph G is chordal.
2. There exists a junction tree based on the mazimal cliques of G.
3. There exists a perfect elimination order for G.

The tree-width of a chordal graph G is defined as the size of its largest cliques minus
one (so that trees have tree-width one). This definition is extended to non-chordal
graphs by defining tree-width as the minimum tree-width of any chordal supergraph.
Hence, both graphs (a) and (b) in Figure 2.9 have tree-width three. An implication of
Proposition 2.4.1 is that a chordal supergraph of a graph G can be obtained from any
elimination order. One simply eliminates vertices in the specified order, adding addi-
tional fill edges at each step, between any two neighbors of the node being eliminated
that are not already connected by an edge. This then ensures that in the augmented
graph, the specified elimination order is a perfect elimination order and the augmented
graph is therefore chordal. Of course, some elimination orders are better than others.
Ideally, one might seek to minimize the number of fill edges or the tree-width of the
resulting graph. In general, finding such optimal elimination orders in NP-hard [225].
Nonetheless, a number of useful heuristic methods have been developed that work well
in practice [6,21,31,183]. In particular, in planar graphs it is tractable to find elimina-
tion orders that result in O(n'/2) tree-width graphs [152]. Once an elimination order is
determined, it is simple to build a corresponding junction tree (see [43]). An example
of this procedure is shown in Figure 2.10, where we illustrate several different chordal
super-graphs and corresponding junction trees of an eight-node cycle graph produced
by different elimination orders.

The relevance of these graphical concepts to inference can be seen from two per-
spectives. First, given a junction tree of a chordal super-graph of G we obtain a Markov
tree representation of P(z) by defining variables z¢ at each node C of the junction
tree. This node variable of the junction tree is identified with the correspond sub-
set of variables (z,,v € C) of the graphical model defined on G. Each edge factor
Yr(xzg) on G is absorbed into a clique factor ¥c(z¢) of the junction tree model. Note,
however, that each variable x, of the original model may now be duplicated in mul-
tiple nodes on the junction tree. To ensure consistency among these duplicates, we
introduce pairwise consistency constraints on each edge of the junction tree, defining
pairwise factors ¢4 g(z4,zp) for each edge (A, B) of the junction tree to encode the
constraint that z 4 and zg should be equal on the subset of variables zg = x4np. Thus,
YaB(za,z) = 11if x4 and zp are consistent and 14 (x4, zB) = 0 otherwise. Note
that the running-intersection property is essential in order to ensure that these local
consistency constraints imply global consistency among all duplicates of each variable
in the junction tree. Given this Markov tree representation, we can perform a two-
pass message-passing algorithm to compute the partition function of the model and
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Figure 2.10. Illustration of construction of a junction tree for single-cycle graph with eight nodes.
(a) The octagon graph, which is not chordal. In (b), (c) and (d) we show the chordal supergraphs and
junction trees resulting from several elimination orders: (b) (1,2,3,4,5,6,7,8,9), (c) (1,2,8,3,7,4,6,5)
and (d) (1,3,5,7,2,6,4,8). The chordal supergraph (with additional fill edges displayed as dashed
lines) is shown on the left. The resulting junction tree is shown on the right. In all three cases, the

tree-width is two.
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the marginal distributions on all cliques of the graph (corresponding to nodes of the
junction tree). Messages are passed along the edges of the junction tree in a manner
consistent with variable elimination:

pa-p(zB) = Z¢A B@a,ze)a(za) [ pe—a(za)
CedA\B

= Z¢A(wA) I He—alza) (2.51)

TA\B CecdA\B

Here, 0A denotes the set of cligues in the junction tree that are adjacent to clique A.
Note that the pairwise consistency constraint, encoded by 14 g, results in the the sum
over z4 being reduced to a sum over z 4, g. This message passing procedure starts at
the leaves of the junction tree and continues until all messages (two for each edge of
the junction tree, one in either direction) have been calculated. Once this is done, the
partition function can be computed from any node as

Z= Zl//c zc) H pa-c(zc) (2.52)

AeoC

and the clique marginals are obtained as:

Po(zc) = %%(wc) [T ra-clac). (2.53)
Aedc

The computational complexity of this procedure is bounded by O(n|X|*) where w is the
tree-width of the graph and n is the number of nodes (the linear dependence on n arises
as the number of maximal cliques of a chordal graph is bounded by n). Thus, inference
is tractable for the class of thin graphs, that is, for graphs where the tree-width is not
too large.

Another perspective on inference and tree-width is seen by considering the variable
elimination method in a loopy graph. As we have already seen, variable elimination is
tractable in trees, because there exists elimination orders that do not result in any fill
edges. The effect of variable elimination can then be captured entirely by node-to-node
messages. We can also perform variable elimination in loopy graphical models, using
an arbitrary elimination order. But variable elimination is then complicated by the
fact that, when we eliminate a node that has multiple neighbors (at the time that it is
eliminated), this induces a new factor (or message) that couples all of these remaining
neighbors so as to faithfully capture the influence of the eliminated node between these
neighbors. In this manner, adding fill edges to represent this induced coupling of nodes,
the sparsity of the graph is gradually lost such that further variable elimination steps
may become intractable. Hence, the apparent sparsity of a graph can conceal the true
computational complexity of inference via variable elimination. For this reason, it is
natural to consider what class of graphs admit low-fill elimination orders. According
to Proposition 2.4.1, this is precisely the class of low tree-width graphs. Thus, the
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computational complexity of inference via recursive methods is fundamentally linked to
the tree-width of the graph.

As a corollary of Proposition 2.4.1, we also have that any graphical model defined
on a chordal graph G can be factored directly in terms of its marginal distributions
defined on the cliques and separators of this chordal graph:

_ [oec(g) Folze)
Hs@s(g) Ps(zs)

P(z) (2.54)

This is called the junction tree factorization, as it represents a generalization of the
usual factorization of a Markov tree model. We will see that this representation has
important consequences both in the context of inference algorithms and for learning.
Note that a graphical model defined on a non-chordal graph G can also be put into
this form provided we first add edges to G so as to create a chordal supergraph. Then,
we can express P(z) in terms of marginals on cliques and separators of that chordal
super-graph. However, this representation is usually only useful for thin graphs.

While this greatly extends the class of models that can be handled using exact
inference methods, there are still many graphical models that arise in practice that fall
well outside of this class. For instance, in image processing applications it is common
to consider models defined on w X w lattice with nearest-neighbor connections. The
tree-width of this graph is O(w), resulting in recursive inference methods requiring
O(X|") computational complexity. Hence, we cannot use these exact methods for even
a moderately sized 100 x 100 images. This motivates the development of approximate
inference methods such as discussed in the next section.

B 2.4.2 Belief Propagation and Variational Methods

In the preceding development we described exact inference on trees from the point
of view of variable elimination and message-passing. This suggests a simple heuristic
approach to approzimate inference in graphs with loops, which was first introduced by
Pearl [175] and is commonly known as belief propagation. Here, we focus on the special
case of models defined on pairwise graphs with the pairwise factorization

P(z) o H Yuv(Tu, Ty)- (2.55)
{u,v}eg

One may also incorporate node potentials v, (z,) into this discussion, but for notational
brevity we assume these have already been absorbed into the pairwise potentials.

The Algorithm The basic idea is to myopically view each node of the graph and its
local neighborhood as though it were part of a tree and to apply the tree-based message-
passing rules within each such local neighborhood. In graphs with cycles, however,
there is no longer a natural order in which messages should be computed. Instead, we
initialize a complete set of messages (two messages per edge, one in either direction),
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e.g., setting these to the uninformative values p,gz,,(xv) = 1 for all z,, and then we
iteratively update these messages according to the equation:

'Efi};)(xv) = Z"/’uv(wu,xv) H ug)_,u(xu (2.56)

wedu\v

This is also known as the sum-product algorithm. We write p.Ef)_,,, to denote the value of
the message passed from node u to v, along edge {u,v} € G, at step t of the algorithm.
Note, however, that the procedure is memoryless in that only the last message from
u to v is stored at any given time. We present the version of the algorithm where all
messages at step t+1 are computed “in parallel” based on the preceding set of messages
at step t. Other “serial” methods are also possible, in which messages are updated
sequentially, one at a time. The presence of cycles in the graph creates feedback effects
due to messages propagating around cycles. Thus, in loopy graphs, the method does
not generally reach a fixed point in a finite number of steps. Hence, we now perform
belief propagation iteratively in the hope that it is converging to a stable fixed-point of
the belief propagation equations, and then terminate the procedure once the differences
between consecutive sets of message becomes sufficiently small. If this procedure does
converge, then we may estimate the marginal distributions based on these fixed point
messages. At step ¢, this yields the marginal estimates:

P® (zy) = 7 t) H uu_,v(mv) (2.57)

v u€dv

where Z, ® is a normalization constant. In trees, these belief propagation equations
are equivalent to steps of variable elimination and the procedure converges in a finite
number of steps, yielding the correct marginal distributions. But in loopy graphs (that
is, a graph containing cycles), it may or may not converge, and may yield inaccurate
marginals when it does converge. Nonetheless, many examples have been found in non-
trivial applications where belief propagation often provides good approximations to the
correct marginals distributions.

The Computation Tree To understand how belief propagation works, it is helpful to
consider its interpretation as inference on the computation tree. The basic idea here
is to describe an equivalent tree-structured model such that the marginal distributions
computed by belief propagation correspond to marginals of the tree model. To be
precise, the marginal distribution P®(z,), of node v at step ¢ of belief propagation,
is equivalent to the marginal distribution at the root of the ¢-step computation tree
centered at node v. As seen if Figure 2.11, this tree is formed by exploring all t-step
paths of the graph G, starting from node v, and “unrolling” any loops of the graph to
build the tree. That is, whenever the next step of a path creates a closed circuit in G,
we must add a duplicate node in the computation tree. The structure of this tree then
exactly mirrors the structure of the belief propagation algorithm. In particular, provided



Sec. 2.4. Inference Algorithms for Graphical Models 55

@ !
2 3
0—0—o0
mrar 7
—O0— (2)
] by RARRA
07—08—09 Pt ooc! Q00000 0000
(@) (b) 591739791339 703509

Figure 2.11. Illustration of the computation tree interpretation of belief propagation. (a) The original
graph G on which we perform belief propagation. (b) The four-step computation tree rooted at node 1.
The marginal at the root node of the computation tree is equal to the marginal estimate produced by
iterative belief propagation after four iterations. Intuitively, iterative belief propagation is equivalent
to performing an upwards pass on this tree.

we copy node and edge factors from G to the corresponding nodes and edges of the
computation tree, the marginal distribution at the root of the computation tree is then
identical to the estimate computed by belief propagation. Indeed, belief propagation
may be thought of as performing the “upward sweep” algorithm on this computation
tree. This discussion focuses on the case of the parallel version of belief propagation.
However, the idea can be generalized to arbitrary message schedules (see [157]).

It has been shown [202] that convergence of belief propagation is equivalent to the
computation tree being well-defined in a certain sense. If the marginal distribution
at the root node of the computation tree becomes insensitive to arbitrary boundary
conditions as the tree grows, a condition known as Dobrushin’s condition in the statis-
tical mechanics literature, then the infinite computation tree is well-posed (in the sense
that their exists a unique Gibbs measure on the infinite computation tree). While this
result is of fundamental theoretical importance, it is difficult to check. One simple suf-
ficient condition, known as Simon’s condition, is given in [202]. More recent work [163],
building upon [113], has developed tighter sufficient conditions based on the spectral
radius of a certain matrix, representing the message-passing dynamics of iterative belief
propagation on the loopy graph, being less than one.

Variational Interpretation Further insight into belief propagation is provided by its vari-
ational interpretation as minimizing the Bethe free energy [227,228]. Let us define a
set of pseudo-marginals n € M(g) over a pairwise graph G to be any collection of node
and edge marginal distributions, 7;(z;) for i € V' and n;;(z;, z;) for {i,j} € G, such that
each marginal is a valid probability distribution and edge marginals are consistent with
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node marginals. That is, M(G) is defined by the set of constraints:

mi(zi) > 0and » mi(z:) =1 (2.58)
Zi
nij (i, ) > 0 and Y myj(wi, z5) = 1 (2.59)
Z,Z4
> mij(@i, z5) = my(=5) (2.60)
T4

The set M(G) is also called the local marginal polytope. It should be noted that these
conditions are not in general sufficient to ensure that there exists a distribution P(z)
having this collection of marginal distributions. The set of all such realizable marginal
specifications is called the marginal polytope and denoted M(G). We note that this is
precisely the set of realizable moments in the over-parameterized representation of the
exponential family of discrete Markov models defined on G. In general, it is intractable
to exactly characterize the marginal polytope, as the number of faces of this polytope
generally grows exponentially with n. Because any realizable set of marginal distribu-
tions must satisfy those consistency constraints defining the pseudo-marginal polytope,
we have that M(G) € M(G). In other words, the pseudo-marginal polytope provides
an outer bound on the (intractable) marginal polytope.

Now, given any pseudo-marginal specification n € M(g) and potential specification

f@) =) bi(zi) + ) 0i(wi, z5), (261)
i ij
we define the Bethe free energy by
FBethe(n) = "7T9 — HBethe(n) (2.62)
where
770 =D m(@)bs(x:) + > Y (i, w5)0:5(wi, 75) (2.63)
i xy ij Zi,Tj
and

Hpetne(n) = Y _(1—deg@)H(m)+ Y H(n)

i€V {i,j}€G
= Y Hm)— > Ing) (2.64)
i€V {i,j}eg

where H(7;) and H(n;;) denote the marginal entropy of a node or edge and I(n;;) =
H(ni;) — H(m;) — H(n;) is the mutual information between z; and x; with distribu-
tion 7;;. The motivation for the definition of free energy is that, in graphical models
defined on trees, Hpetne(n) is then equal to the entropy H(n) (and the local marginal
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polytope M(G) is also equal to the marginal polytope M(G)). Also, for a realizable set
of marginals, we note that n76 as defined above is then equal to the expected value of
the energy f(z) with respect to any P(z) having the marginals specified by 5. Thus,
in trees, the Bethe free energy is equivalent to Gibbs free energy and, by Gibbs vari-
ational principle, exact inference in trees is therefore equivalent to maximizing Bethe
free energy. This then motivates using Bethe free energy more generally, effectively
disregarding the fact that G is a loopy graph and taking Hpene(7) as an approxima-
tion to the intractable entropy function H (7). This leads to the following variational
formulation for approximate inference in loopy graphs:

maximize fBethe (17) = 77T9 - HBethe("'I)

subject to 7 € M(G) (2.65)

It should be emphasized, however, that while Gibbs variational problem is a convex
problem (maximizing a concave function over a convex set), the approximate entropy
Hpgethe may no longer be a concave functions of 7. Hence, Bethe free energy Fgeihe is
not necessarily concave and so there may exist multiple local maxima.

In the break-through work of Yedidia et al [227,228], it was shown that this vari-
ational formulation of approximate inference is in fact closely related to belief propa-
gation. Essentially, the messages of belief propagation are simply related to a set of
Lagrange multipliers arising in a dual version of (2.65) obtained by relaxing the con-
straints that pairwise marginals are consistent with node marginals. Then, the belief
propagation fixed-point equations are derived from the Karush-Kuhn-Tucker conditions.
In later work [107], this connection was further strengthened to show that any stable
fixed-point of belief propagation is a local minima of the Bethe free energy. It is not
necessarily the case that there exist any such stable fixed points, that these are unique if
they do exist nor that belief propagation converges to such a fixed point if there is one.
But there are now sufficient conditions for existence and uniqueness of fixed-points,
related to convexity of the Bethe free energy and to the corresponding saddle-point
problem being convex-concave [108].

Variants of Belief Propagation There are a number a ways in which this basic belief
propagation algorithm may be extended. One approach is to allow for higher-order
potentials between nodes which leads a version of belief propagation for factor graphs
[85]. In the factor-graph form of belief propagation, there are two types of messages:
messages for variable nodes to factor nodes and vice versa. Also, a number of methods
have been proposed to account for short loops of the graph by considering block versions
of belief propagation. This general approach is known as generalized belief propagation
[228]. It also has a variational interpretation of minimizing the Kikuchi free energy,
based on an entropy approximation using larger “blocks” of more than two nodes. This
entropy approximation is constructed by first summing marginal entropies of a specified
set of blocks. Then, to correct for the fact that intersections of these blocks are over-
counted, the entropy of subsets of nodes contained in the intersections of larger blocks
are added or subtracted as needed in order to obtain an approximation that does not
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“over-count” any nodes. This leads to a set of fixed-point equations which aim to
minimize the Kikuchi free energy and involves passing messages on the region graph.
The nodes of the region graph represent blocks in the Kikuchi approximation, and edges
are added that link blocks to sub-blocks.

Other methods attempt to address the problem of convergence of belief propagation.
Several method have introduced double-loop algorithms that are guaranteed to converge
to a local minimum of the Bethe or Kikuchi free energy [109,231]. However, this does not
address the problem of multiple local minima or improving the accuracy of marginal
estimates. More recently, there have been a variety of approaches which introduce
fractional [221] or convez [212,219] versions of belief propagation. This approach began
with the ground-breaking work of Martin Wainwright based upon convex combinations
of trees [212]. The main advantage of convex approaches is that they provide a convex
free energy and thus ensure a unique solution. This typically (but not always) leads
to convergence in the resulting message-passing algorithms, and can sometimes also
provide better marginal estimates. However, for models where belief propagation is
well-conditioned, it can often provide more accurate marginal estimates than in the
“convexified” versions of the algorithm.

B 2.5 MAP Estimation and Combinatorial Optimization

In this section we consider the problem of finding z € X" to maximize the probability
P(z) oc exp f(x) = exp)_peg fE(zE). In applications, problems of this form often arise
where we instead seek to maximize the conditional probability P(z|y) «x P(y|z)P(z)
given some set of (possibly stochastic) observations yx = (x(zg,) on subsets of vari-
ables Ex C V. The problem of maximizing P(x|y) with respect to z is known as
mazimum o posteriori (MAP) estimation. The effect of conditioning on measurements
that are conditionally independent given z is to multiply the prior distribution P(z)
by additional factors [], P(yk|zEg,) corresponding to likelihood functions of individual
measurements. Thus, conditioning on these measurement has the effect of creating ad-
ditional potentials on edges Ey € G. However, to simplify notation, we omit explicit
reference to these measurements y in the sequel (assuming that the likelihood functions
of any measurements have already been incorporated into the energy function), but we
still refer to the generic problem of maximizing f(z) as MAP estimation. For discrete
models, this is an integer programming problem, which is an NP-hard optimization
problem.!! However, there are certain subclasses of this problem which are tractable
to solve. Moreover, there are a variety of heuristic methods which may solve many in-
stances of the problem, but can also fail to provide any solution in other cases. Finally,
it may also be of interest to seek near-optimal solutions in cases for which a provably
optimal solution cannot be easily obtained. In this section we review some tractable

1This means that, assuming a fundamental hypothesis of complexity theory (P # NP), there is no
algorithm that can solve every instance of the problem for arbitrary n with computational complexity
that grows polynomially in 7.
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model classes and heuristic methods which aim to solve the general problem.

M 2.5.1 The Viterbi and Max-Product Algorithms

The Viterbi algorithm [83,207], a form of dynamic programming [19], is similar to
the recursive inference methods we described earlier for computation of the partition
function in Markov chains. Rather than computing Z by summing over all z € X",
we instead compute f* £ max f(x) by maximizing over all z € X™. Again, the ideas
of variable elimination (now maximizing over a single variable at a time) and message-
passing are essential to efficiently compute the maximum via the recursive calculation:

f* = n.%:ax o Ir;:?x {f1,2($1, 972) + -+ fn—l,n(fcn—la xn)}
= max {fn_l,n(wn-l, Zp)+ -+ max {fz,s(wz, z3) + max f12(z1, 302)} e }

= max {fn—l,n(xn_1, Tp)+ -+ max {fo,3(x2, 23) + y1m2(z2)} - - }

= n;ax {fa—1n(@n-1,2n) + - -+ + 723(z3) }

= MAXYn-1-m (zn) (2.66)

This defines a message-passing algorithm, with messages {y,—,} computed according
to the following rule:

Yert+1(Te41) = H}t?x{ft,t+1(wta Tir1) + Ye—1-t () } (2.67)

At the last elimination step, we obtain f* = max,, Yp—1—n(Zn). We can also define a
set of backward messages and use this to compute maz-sum marginals at each node:

F(zy) 2 max (@) = Y1)t (2t) + V41—t (1) (2.68)

If there is a unique MAP estimate z* € argmax f, then it is simple to obtain z* from
the max-sum marginals, it is given by z; = arg max f; for all ¢. Otherwise, we may
pick an z* € argmax f at random as follows. In this case, we also need to compute the
following edge-wise max-sum marginals:

frani(@n o) 2 max  f(z)
v\ {t,t+1}

= fr4+1(Zt, Tea1) + Ve—1)-2(Tt) + Vr2)— t4+1) (Ze41)

We first select 2] € argmax fl (at random) and then select the remaining variables
sequentially to maximize the edge marginals. That is, given x} we randomly select
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xy,; subject to the constraint (zf,z},,) € argmax ft,t+1- Due to the definition of max-
marginals, there is always an z}, ; that satisfies this constraint. The resulting estimate
must then maximize f(z).

Analogous to our discussion in Section 2.4.1, these recursive message-passing algo-
rithms extend to Markov trees and to junction trees of loopy graphs. This leads to
calculation of max-marginals of each node and edge of the Markov tree or of each clique
in the junction tree representation, from which one may solve the MAP estimation
problem using a similar method as described above for chains. This also implies that,
analogous to the junction tree factorization, the energy function of a graphical model
can be expressed in terms of the max-marginals over the cliques and separators arising
in the junction tree representation:

f@)= ) folze)— Y fs(xs) (2.69)

CeC(G) Ses(G)

However, junction tree methods are only tractable for the class of thin graphs, with
computational complexity growing exponentially in the tree-width of the graph. This
motivates the development of approximate methods to deal with non-thin graphs.

The Max-Product Algorithm

Analogous to the sum-product form of iterative belief propagation (Section 2.4.2), it-
erative versions of the Viterbi algorithm for non-thin, loopy graphs have also been
developed. This approach is most commonly presented in the form of the maz-product
algorithm [218], but we also describe the maz-sum form of the algorithm that is similar
to the Viterbi algorithm.

In the max-product algorithm, we define messages fi,,—., over the edges of the graph
and then iteratively update these messages according to the rule:

max { Yuy(Tu, To) H frw—u(Tu) (2.70)

fry—o(To) =
Zu—y 2 wedu\v

where Z,_,, is a normalization constant.!? Note that this is all but identical to the sum-
product form of belief propagation (2.56), except the sum over z, is now replaced by
the maximum over z,. This procedure is equivalent to one defined in the log-domain,
with messages defined by v,—.y(%y) = log fiy—y(Zy) and with the factors ¢y (2y, Ty)
replaced by potential functions fy,(Zy,Zy) = 10g Yuy(Zy, Zy). This leads to the maz-
sum message-passing algorithm:

7u—>v(mv) = H;ax .fu,'u(xu, mv) + Z 'Yu—w(xu) +log Zy—y (2-71)
* wedu\v

2In the context of the max-product algorithm, one might also define the normalization constant so
that the maximum value of the messages are scaled to one.
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In this form of the algorithm, the constant log Z,_,, may instead by chosen so that
max Yy (2Zy) = 0. Again, these iterative algorithms may or may not converge. If they
do converge, then we can obtain approximate max-marginals by combining messages
at each node and use these to derive an approximate MAP estimate. In the max-sum
form of the algorithm, we sum messages at each node to obtain the max-marginals:®

fv(xv) = Z Yu—rv (ZTv) (2.72)

uE

An estimate £ is then obtained by selecting each component to maximize the corre-
sponding max-marginal: %, = arg max fv (assuming their is a unique maximum at each
node). However, even when this procedure does converge (and yields an unambiguous
estimate) this may still not be an optimal MAP estimate. But it has been shown [218]
that this estimate is a local mazimum in the following sense: f(£) > f(z) for all z that
differ from # only on a subset of nodes A C V such that there are no cycles in the
induced subgraph G4. In other words, the estimate & cannot be improved by changing
variables on any subset of nodes whose induced subgraph is a tree. In particular, this
does imply that if G is either a tree or contains at most one cycle, then the estimate %
is optimal (it is actually a MAP estimate).

The Zero-Temperature Limit of Inference

We digress for a moment to consider a connection between the sum-product and max-
product forms of belief propagation. Earlier, in Section 2.2.2, we commented that the
Gibbs distribution becomes concentrated on the set of MAP estimates as the temper-
ature approaches zero. This suggests that, in the limit of zero-temperature, inference
becomes equivalent to MAP estimation. To strengthen this analogy, we show that the
sum-product algorithm (reformulated in the log-domain), applied to a Gibbs distribu-
tion with variable temperature 3!, reduces to the max-sum algorithm in the limit as
the temperature approaches zero.

We begin by showing that calculation of the free energy (the log-partition function
scaled by the temperature) reduces to the value of the MAP problem. More precisely,
we consider the free energy function:

Fp(f) =8 log Y _ exp{Bf(x)} (2.73)

This is a smooth, convex function of the potential specification of the model and may be
considered as a smooth approximation to the max-function Fax(f) £ max, f(z) [37].
This perspective is justified by the following result:

13Note, however, that it is no longer meaningful to interpret these as literally being estimates of the
corresponding max-marginals of the energy function f(x) defined on the graph G. Instead, these corre-
spond (up to an additive constant) to max-marginals over the computation tree of G. Moreover, because
the computation tree is growing, these max-sum marginals are typically divergent. Hence, we instead
define convergence in terms of the exponentiated max-marginals p(z,) = exp f,(,) corresponding to
max-product marginals.
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Proposition 2.5.1. The function Fg is strictly greater than Fmax for all f and > 0.
Also, Fp is monotonically decreasing with 3 and converges uniformly to Fmax as 8 — oo.

Proof. We rewrite the free energy as

Fo(f) = Frax(f) + 67 log Y _ exp{B(f(2) — Funax(f))}- (2.74)

The sum is greater than one, because at least one z satisfies f(z) = Fmax(f) and
the other terms are positive. Therefore, the log of the sum is greater than zero and
F > Fmax. Also, the sum is bounded above by |X|” because f(z) — f* < 0 for all
z. Hence, F < Fmax + B 'nlog|X|. As 71 — 0 the upper-bound converges to the
lower-bound and F therefore converges to Fnax. Moreover, the difference between the
upper and lower bound is 8~ 1nlog|X|, which is independent of f. Thus, F5 converges
uniformly to Fpax. Monotonicity is shown by noting that %— is equal to the entropy
of the Gibbs distribution (which is positive) scaled by —32. O
Now, we use this result to relate the sum-product and max-product forms of infer-
ence. Let us reparameterize the sum-product messages in terms of the log-messages:

¥E) o (z0) £ B log pf), () (2.75)
@

where -~ is the sum-product messages computed with respect to the Gibbs distribu-
tion:

P(z) cexp{ B Z Su(Tu, Tv) (2.76)

{u,v}eG
Note that the effect of varying the temperature is to scale the potential functions by 3,
which essentially means that we replace each potential f, , by 8f.» (or, equivalently,

replace v, by 1/)5,1,) in the sum-product algorithm. In terms of these log-messages,
belief propagation has the form:

¥Po(@o) = B log Y _exp B | fun(@w o) + D Ay () (2.77)

wedu\v

Note that this has the same “log-sum-exp” form as in the free energy. Applying Propo-
sition 2.5.1, we have:

ﬁl_lflrolo%(ﬁ—)»v(xv) 2 'Yz(zo—o»)v(xv) = max fuv(Tu, T0) + Z z(uogzu(-”’u) (2.78)
“ weu\v

Thus, the zero-temperature limit 5 — oo of these log-messages are essentially equivalent
to the messages computed by the max-sum algorithm (the log-form of max-product).
We also define the “soft-max” marginals:

P (@o) = Y AP (20, B). (2.79)

u€dv
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These soft-max marginals are upper-bounds on max-sum marginals and converge to
max-sum marginals at zero temperature. Hence, the max-sum algorithm is essentially
equivalent to a zero-temperature version of the sum-product algorithm and there is in
fact a smooth family of inference algorithms between sum-product and max-product
parameterized by the temperature parameter.

B 2.5.2 LP Relaxation of MAP Estimation

Next, we consider linear-programming (LP) approaches to MAP estimation. Recall
that, by Gibbs variational principle, we may express exact inference at finite tempera-
tures as maximizing a concave function over the marginal polytope.

maximize 6Tn+ B~ H(n)

Folf) = { subject to 7 € M(G) (2.80)

In the previous section, we noted that Fg(f) converges to f* = max f in the zero-
temperature limit. The weight placed on the entropy term is going to zero in this limit
and we are left with the following ezact formulation of MAP estimation:

. T
f* ={ maximize 677 (2.81)

subject to 7 € M(G)

This is a linear program (LP), optimizing a linear objective function over a polytope.
It is equivalent to the integer programming problem, f* = max{#T¢(z)|z € X"},
because the marginal polytope M(G) is, by definition, equal to the convex hull of the
set {¢(x)|x € XV} and every x € X" corresponds to a vertex of M(G). Typically there
is a unique solution n*, which is then a vertex of the marginal polytope. Such n* place
all of the probability on a single configuration z* € X", this being the MAP estimate.
Thus, z* can be derived from the marginals by z}, = arg max n,(zy).

Pseudo-Marginal LP Relaxation

However, as mentioned in Section 2.4.2, it is generally intractable to represent the
marginal polytope exactly because the number of faces of this polytope generally grows
exponentially with the number of variables n. Hence, it is not tractable to solve this
exact LP formulation of MAP estimation directly. Instead, we may solve a relaxed
version of this LP, where the intractable marginal polytope M(G) is replaced by the
tractable local marginal polytope M(G). This then gives a tractable LP which provides
an upper-bound on the value of the MAP problem. However, as illustrated in Figure
2.12, this may or may not lead to an optimal MAP estimate z*. If the solution n* of the
relaxed LP still corresponds to a vertex of the marginal polytope M(G), as depicted
in Figure 2.12(a), then this is also an optimal solution of the exact LP and we recover
the MAP solution. But if the solution n* corresponds to a vertex of the local polytope
M(G) that is outside of the marginal polytope M(G), as depicted in Figure 2.12(b),
then n* must contain some fractional values (between zero and one) and we cannot
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(a) 5 (b)

Figure 2.12. Notional illustration of LP relaxation of MAP estimation. The marginal polytope
M(G) (the solid blue polygon) is contained within the pseudo-marginal polytope M(G) (the dashed
red polygon). (a) For some choices of 8, the optimal vertex over M(G) is also a vertex of M(G),
corresponding to a probability distribution that assigns all of its probability to a single configuration
z*, this being the optimal MAP estimate. In this case, n* is integral and the optimal z* is obtained.
(b) Other choices of 6 lead to an integrality gap. Then, the optimal vertex n* of M(G) is outside of the
true marginal polytope M(G) and ™ must contain some fractional values.

recover the MAP estimate. This is called an integrality gap. Optimality can be verified
by checking if n* is integral, or, equivalently, if each node’s marginal n; has a unique
maximum. In the case of an integrality gap, at least one node’s marginal exhibits “ties”,
that is, multiple maxima.

Message-Passing Approaches to LP Relaxation

We briefly review a number of message-passing algorithms that may be viewed as dual
approaches to solving LP relaxations of MAP estimation.

To begin with, we comment that the max-product algorithm itself may be viewed as
attempting to solve this LP, based on the variational interpretation of belief propagation
and that max-product is the zero-temperature form of belief propagation. Recent work
[187,188] provides some support for this view, at least for special classes of problems.
However, there are some difficulties with this point of view in general. First, max-
product is not guaranteed to converge. Second, even if max-product does converge, and
yields an unambiguous estimate, it is not guaranteed to be optimal. This is seemingly
inconsistent with the property of the relaxed LP formulation that integral solutions are
optimal. One hypothesis to explain this discrepancy is that failure of max-product to
find optimal solutions upon convergence may be linked to non-convexity of the Bethe
free energy. This explanation is consistent with the fact that, in trees and graphs with
a single cycle, Bethe free energy is convex and max-product does then give optimal
solutions in these graphs if it converges.

This motivates considering zero-temperature versions of convex belief propagation
such as the tree-reweighted max-product algorithm [211] or low-temperature versions
of convex belief propagation [219]. If such a method converges and yields an integral
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solution, then it is optimal. However, convergence of these algorithms is not guaran-
teed and they may yield non-integral solutions if they do converge. There has been
closely related work on convergent message-passing algorithms, such as the convergent
form of TRMP introduced by Kolmogorov [134, 135], a coordinate-descent version of
max-product [93] and earlier work on the max-sum diffusion method [140,191,192] (re-
cently reviewed in [220]). All of these approaches may be viewed as coordinate descent
methods associated with certain dual functions that provide upper-bounds on the value
of the LP relaxation (although, using different formulations and parameterizations,
the resulting methods are similar but not quite equivalent). However, because these
dual functions are piecewise-linear functions, which are non-differentiable, coordinate-
descent can actually fail to minimize these dual function, that is, it may converge to
a non-minimal fixed point. This is a fundamental problem with the zero-temperature
approach, and may also be related to why max-product is not necessarily optimal when
it does converge.

We also mention that there have been a number of earlier works relating to linear
dual approaches to MAP estimation that are not being reviewed here. In particular,
there has been much work on binary quadratic optimization in the optimization re-
search literature [34-36,103]. Although these methods are expressed in very different
forms and are solved using different methods, they often lead to the same fundamen-
tal optimization problem. For instance, the methods just cited are equivalent to the
local marginal polytope relaxation in the case of binary variable models with pairwise
interactions.

H 2.5.3 Combinatorial Optimization Methods

In this section we briefly discuss some special cases where the MAP estimation problem
reduces to a tractable problem in the network optimization literature. These methods
are also linear programming approaches, although the emphasis here is on graphical
formulations that have special-purpose solution techniques.

Max-Cut

We discuss the max-cut formulation of MAP estimation in binary variable models,
and review the work on cutting-plane methods for solving this problem [12,13,198].
Throughout this section we consider pairwise graphs G.

A cut of the graph G is a subset of its edges defined by K = {{u,v} € Glu €
Vi,v € Va} for some bipartition of the vertices V = V; U Vs (where V; and V, are
disjoint). For example, a cut of the graph seen in Figure 2.13(a) is shown in (b).
Given edge weights wg for all E € G, which may be positive or negative, the maz-cut
problem is to find the maximum-weight cut of the graph where the weight of a cut is
defined w(K) = Y pcx we. In the case of planar graphs, cuts may be equivalently
described as follows. Recall that a planar graph is one that may be drawn in the
plane without any intersecting edges. This drawing then divides the plane into a set
of disjoint regions separated by the edges of the graph. These regions are called the
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Figure 2.13. Illustration of a cut in a planar graph G and its dual graph G*. (a) The planar graph
G. (b) A cut shown both as a bi-partition of the node set (white and black nodes) and as a set of cut
edges (the ones intersecting the closed dotted contours). (c) The dual graph G* in which each node
(displayed as a diamond) corresponds to a face of the planar graph and each edge connects adjacent
faces. To simplify the diagram of G*, we have split the outer face into smaller faces by adding fictitious
edges in G connecting each node around the perimeter of the graph to an imaginary point at infinity.
(d) The set of cycles in G* (shown in bold) corresponding to the cut of G seen in (b).

faces of the planar graph. The dual graph G* is the graph whose nodes are identified
with the faces of G and with pairwise edges connecting adjacent faces. An example
of a planar graph and its dual graph are seen in Figure 2.13(c). Note that there is a
one-to-one correspondence between edges E € G and corresponding edges of the dual
graph E* € G*. The dual edge E* is the one that crosses £ when we superimpose G* on
G as in Figure 2.13(c). There is also a one-to-one correspondence between cuts in the
graph G and even-degree subgraphs of G*, that is, subgraphs of G* in which every node
has even degree (equivalently, subgraphs formed as a union of edge-disjoint cycles). For
example, in Figure 2.13(d) we show the even-degree subgraph corresponding to the cut
seen in (b). Thus, in planar graphs, max-cut is equivalent to finding the maximum-
weight even-degree subgraph of the dual graph, where the weight of each dual edge
E* € G* is equal to the weight of the edge F € G that it cuts.

Consider MAP estimation for the zero-field Ising model, which has binary variables
zy € {—1,+1} and energy function:

Y. Gz (2.82)

{u,v}eg

The edge parameters 6,, may be positive or negative. In principle, the assumption of
zero-field (6, = 0 for all v € V') does not result in any loss of generality. As illustrated in
Figure 2.14, a general Ising model can be mapped to a zero-field model with one extra
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Figure 2.14. Illustration of method to convert a general Ising model into an equivalent zero-field Ising
model with one auxiliary node. (a) The non-zero field Ising model on a 3 x 3 grid with node potentials
8; and edge potentials 6;;. (b) A zero-field model in which we have added an auxiliary node zo which
is linked to each of the original variable nodes by edges {0,v} for all v € {1,...,n}. The weights of
these edges are defined 6p,, = 6.

variable such that solving this augmented model is equivalent to solving the general
Ising model.'* Every assignment x € X" determines a cut:

K(z) = K(—z) = {{u,v} € G|zyz, = —1}. (2.83)

The energy f(z) = f(—=x) is related to this cut K(z) by:

= Y 65— Y 6g=)» 65-2 Y 0z (2.84)

E¢K(x) EeK(x) Eeg EeK(z)

Then, MAP estimation is equivalent to finding the maximum-weight cut, with edge-
weights defined w(E) = —0g.

The max-cut problem may be formulated as an LP as follows. For each edge {u,v}
we define an edge variable y,, € {0,1} that is equal to one if E € K. Then, we have
the continuous LP relaxation of max-cut:

maximize wly (2.85)
subject to y € K(G)

where y € RI9 is a vector of (continuous) edge variables and K(G) denotes the cut
polytope, the convex hull of the set of valid cut vectors (i.e., where each element of y
is either zero or one). This is an ezact LP for the max-cut problem. However, it is
generally intractable to characterize the cut polytope exactly. One simple relaxation of
max-cut is only to constrain yg € [0, 1]. Tighter approximations to the cut polytope are
obtained using the odd cycle inequalities [13]. Although it is not tractable to enumerate
all of these constraints explicitly (e.g., in the simplex method) it is possible to implement
an efficient cutting plane method [13]. This is an efficient method to check for violated

The augmented model includes an auxiliary variable zo and corresponding node 0 € V. We also
include extra edges, {0,v} € G for all v € V \ 0, and corresponding edge potentials #,zoz,. Then,
the maximum value f* is the same for both problems, and each pair of MAP estimates, (1,z*) and
(=1, —z"), of the augmented model corresponds to a MAP estimate z* of the original model.
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Figure 2.15. Illustration of procedure to obtain a triangular planar graph. (a) A planar graph. (b)
We obtain a triangular version of this graph by adding edges to split each internal face into a set of
triangles (faces with three sides). The weights on the new edges are set to zero. (c) The dual graph (we
also split the outer face into triangles). Observe that all nodes of the dual graph are of degree three.

cycle inequalities, so that one may solve a series of tractable LPs by adding violated
inequalities until there are no more violated constraints. In general, this approach is
not guaranteed to converge to an integral solution. But, in the class of planar graphs,
it has been shown that these odd-cycle inequalities provide a tight representation of
the marginal polytope, so that it is tractable to solve max-cut in planar graphs (and,
hence, MAP estimation in the zero-field Ising model on planar graphs is also tractable).
For non-planar graphs, this cutting-plane method may or may not succeed in fully
eliminating the integrality gap.

Maximum-Weight Perfect Matching in Planar Graphs

We discuss another method to solve the zero-field Ising model (or max-cut) on planar
graphs by reduction to mazimum-weight perfect matching [29,102,172,203,204]. This
shows a connection to work in the statistical mechanics literature on tractable methods
for computing the partition function of the so-called dimer model and the zero-field
Ising model on planar graphs [79, 87,128, 132]. This formulation is also interesting
because it can be solved directly using a Gaussian elimination method with complexity
O(n®/?) [164,165].

We assume that zero-weight edges have been added to the planar graph G such
that each face of G is now a triangle (that is, a face bounded by three edges). This
procedure is shown in Figure 2.15(a) and (b). Now, all nodes of the dual graph G*
have degree three as seen in Figure 2.15(c). A number of works have shown that either
max-cut or the zero-field planar Ising model can be solved by reduction to a matching
problem (29, 102,204]. We follow [172,203], which employs a graphical method due to
Kasteleyn [132] to reduce the problem to a maximum-weight perfect-matching problem
defined on an auxiliary graph Gj, based on the planar dual graph G*. The auxiliary
graph Gj is obtained from the dual graph G* by expanding each node of G* into a
fully-connected cluster of four nodes as seen in Figure 2.16(a). Each of the incoming
edges is linked to a separate node within this cluster and the weights on these edges are
copied from G*. The weights on the new edges within each cluster are set to zero. Now,
it can be seen that there is a simple correspondence between (i) valid cuts in G, (ii)
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Figure 2.16. Illustration of construction of Kastelyn’s graph G% from a planar dual graph G*. We
assume the G is a triangular, planar graph such that each node of G* has degree three. (a) Each vertex
of G* (on the left) is replaced by a Kasteleyn cluster G (the four nodes on the right). This ensures
that even-degree subgraphs of G* map to perfect matchings in Gx. (b) If an even-subgraph of G* does
not include any edges incident to this node, it corresponds to a perfect matching in G with two edges
inside the cluster and no edges leaving the cluster, (¢) If an even-subgraph in G* includes two edges
incident to this node, it corresponds to a perfect matching in Gx with two edges leaving the cluster and
one edge inside the cluster. Thus, every perfect matching of G has an even number of edges leaving
each cluster and therefore corresponds to an even-degree subgraph of G*.

even-degree subgraphs (unions of edge-disjoint cycles) of G* and (iii) perfect matchings
of Gk, that is, any subset of edges M C G such that every node of G has exactly
one of its edges in M. The correspondence between (ii) and (iii) is demonstrated in
Figure 2.16(b) and (c). Thus, the problem of finding a maximum-weight cut of G is
reduced to one of finding the maximum-weight perfect matching in the graph Gj,. This
latter problem can be solved directly with @(n%?2) computation using the Gaussian
elimination method of [165]. There are also iterative solution methods, based on the
alternating paths method of Edmonds [57, 73], for perfect matching in general (non-
planar) graphs. However, the reduction of MAP estimation to perfect matching only
works for the zero-field planar Ising model.

Max-Flow/Min-Cut

As a final topic concerning combinatorial optimization methods, we review the max-
flow/min-cut approach to MAP estimation in binary variable models.

The maz-flow problem is defined on a directed graph with edge set G C V x V, and
with non-negative edge capacities wg > 0 for all E € G. Furthermore, two special nodes
s,t € V are designated as the source and sink of the graph. We assume that there is one
feedback edge (t,s) € G with infinite capacity wys = oco. Then, the maz-flow problem
is defined as follows. We define a flow variable yg € [0, wg] on each edge of the graph.
Note that the flow across the edge is restricted by the edge capacity. We also require
conservation of flow at each node, such that the total flow into a vertex is equal to the
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Figure 2.17. Illustration of min-cut/max-flow formulation of MAP estimation in binary models. (a)
An Ising model with node potentials 8, = £h (h > 0) and edge potentials y.. (b) Auxiliary graph
with two extra nodes s and t. Node s is connected to all nodes that had positive node potentials. Node
t is connected to all nodes that had negative node potentials. The weight of the each new edge is set to
the absolute value of the node potential. (c) The minimum-weight cut between s and ¢ (dotted edges)
also determines the MAP configuration. After cutting edges, nodes in the same component as s (the
red subgraph) are set to +1 and those in the same component as t (the blue subgraph) are set to —1.

total flow out of the vertex. The net flow through the network is then equal to flow y;
across the feedback edge (t,s). Then, we seek the maximum flow. The continuous LP
relaxation of this problem is:

maximize Y
subject to yg € [0,wg] forall E€§

Z(u,v)eg Y = E(v,w)eg Yuw for all v € V U {s,t}.

There are efficient, polynomial-time algorithms to solve the max-flow problem exactly
in a finite number of steps [42,171]. These methods are based on efficient algorithms
to find augmenting paths from the source to the sink. The min-cut problem on this
graph (not including the feedback edge) is defined as the minimum-weight cut of the
graph such that the source and sink nodes are separated by the cut. This also can
be formulated as an LP. Clearly, for any cut between s and ¢, the weight of the cut
provides an upper-bound on the value of the any flow from s to t. In fact, the value of
the minimum cut is equal to the maximum flow [82], so that max-flow algorithms can
be used to solve this min-cut problem.

We now describe a min-cut formulation of MAP estimation in the ferromagnetic
Ising model [98]. That is, we seek to maximize the energy function:

flz) = Zeﬂi + Z 0ij iz (2.86)

eV {1.7}eg

with respect to binary variables z; € {—1,+1}. It is required that the edge parameters
0;; are positive for all {7, j} € G. However, the node parameters #; may be positive or
negative. This is equivalent to solving the min-cut problem in an auxiliary graph based
on G. This auxiliary graph is based on vertices V' U{s,t}. There are three types of edges
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in this graph: (i) for each edge {i,j} € G, we define two directed edges, (3, ) and (j, 1),
with symmetric edge weights w;; = w;; = 6;5, (ii) for each positive node parameter
6; > 0, we define an edge (s,%) with edge weight ws; = 6;, and (iii) for each negative
node parameter 6; < 0, we define an edge (%,t) with weight w;; = —6;. For example,
the Ising model seen in Figure 2.17(a) may be solved as the min-cut problem shown
in (b). Once the min-cut problem is solved, this determines a partitioning of the node
set into two sets V. and V_, which respectively include nodes s and ¢, for example, the
red and blue nodes seen in Figure 2.17(c). The MAP estimate is then given by setting
z;=+1forallie V, and z; = —1forallie V_.

This method may be extended to solve a more general class of Markov random fields
(with non-binary variables) if the model is defined by convex or submodular potentials
[115,136]. Also, there are a number of recently developed heuristic approaches, based
on max-flow/min-cut methods, aimed at obtaining approximate solutions in the general
case [38,138]. It is interesting to note that max-flow problems also arise as dual problems
of MAP estimation [103].

M 2.6 Inference in Gaussian Graphical Models

In this section we review a number of inference algorithms in Gaussian graphical models
and also discuss the recently developed walk-sum view of Gaussian inference.

B 2.6.1 The Information Form and Markov Structure

The moment representation of a Gaussian distribution is defined in terms of the mean
vector £ = E{z} and covariance matriz K = E{(z — £)(z — £)T}. In terms of these
parameters, the Gaussian distribution is defined

Pl@) exp{—%(:z; _$)TK Yz — 2)}. (2.87)

Here, K is a symmetric positive definite matrix (K > 0).15 We also consider the
information form defined by

P(z) = exp{—%:z:TJ:B + Wl — &(h, J)} (2.88)

where J > 0 is the information matriz and h the potential vector. The normalization
constant ®(h, J) is given by

®(h,J) = % {—logdet J + RTJlh 4+ nlog 2} (2.89)

15More generally, one may also consider degenerate Gaussian distributions in which the covariance
matrix is only positive semi-definite (K > 0), which corresponds to the random vector z being con-
strained to an affine subspace (e.g., defined by Az = b) and being Gaussian distributed within this
subspace. We focus on the non-degenerate case in the thesis.
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Comparing these two forms, we see that they are equivalent, being related by:

K = J! (2.90)
& = Jlh (2.91)

Gauss-Markov Structure

Let r;; denote the partial correlation coefficient [145] between variables z; and z;,
defined as:
A cov(zi, Tj|Ty\i5)

\/ var (zi|zy\i; ) var (z;|zyvyi;)

In other words, r;; represents the correlation coefficient between z; and z; with respect
to the conditional distribution P(z;, z;|zy\;;), where zy\;; denotes the set of all of
variables except for z; and z;. A simple calculation shows that these coefficients are
simply related to the information matrix [145]:

Tij

(2.92)

Proposition 2.6.1. For a Gaussian distribution with information matriz J the partial
correlation coefficients are given by

e Ji
U T

Proof. It is simple to check that the conditional covariance of (z;, z;), after condi-

tioning on zy\;;, is
-1
Joo T 1 Jii  —=Jes
K' & ( wory ) = —( 4 Y ) 2.94

where A = J;Jij — J% Then, the correlation coefficient of this covariance matrix is
given by

(2.93)

oo Ky ATy =y
= - = :
? \/KgiK;.j VATLT)(ATN) Ty

(2.95)

O
As a consequence of this result, we see that the Markov structure of a Gaussian

distribution is directly linked to the fill-pattern of the information matrix (see also
[199]):

Proposition 2.6.2. Let G be a pairwise graph. Then, a Gaussien distribution with
information matriz J is Markov with respect to G if and only if J;; = 0 for all {i,j} € G.

Thus, the graph G(J) £ {{4,5}|Jij # 0} describes the Markov structure of the
Gaussian model with information matrix J. Also, the family of all Gauss-Markov
models defined on G is represented by the set of all symmetric positive-definite matrices
J that satisfy sparsity constraints: J;; = 0 for all {7, 5} ¢ G.
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Gaussian Elimination and The Schur Complement

Given the information form (h, J), let us define the marginal information form (ha,J4),
on variables A = V'\ B, by:

Ja = Jaa—Jap(Jsp) 'Jpa
ilA = hA—JA,B(JB,B)—lhB (2.96)

The matrix J, is known as the Schur complement of J with respect to the submatrix
Jp,p [110]. The marginal information form represents the result of eliminating the
variables xp in the system of equations Jx = h to obtain the reduced set of equations
Jaza = h A To see this, write Jx = h as the system of equations:

Jaaza+Japre = ha (2.97)
JB,aTA+JJpBTB = hB (2.98)

To eliminate variables z from (2.97), we multiply both sides of (2.98) by Ja 5(Js.8)" 1,
which gives

JA,B(JB,B)_IJB,AIBA +JaBTB = JA,B(JB,B)—lhB- (2.99)
Then, we subtract (2.99) from (2.97) to obtain the result:
[Jaa- JA,B(JB,B)_IJB,Al-TA = lhA ~ JA,B(JB,B)_lhBl (2.100)
Ja i

Thus, solving Jaza = hy for z4 gives us part of the solution to Jx = h, that is, it
gives us £ 4. In practice, this reduction is accomplished using the well-known Gaussian
elimination procedure [96], which essentially involves iterative application of (2.96) to
eliminate the variables (z,,v € B) one at a time.

By a similar argument, with respect to the matrix equation JK = I, we can
also see that [JA,A - JA,B(JB,B)"ljB,A]KA’A = IA,A and hence Kaa = [JA,A —
Ja.B(Jp,B) tJp.a)7!. Thus, we have demonstrated the following result:

Proposition 2.6.3. Let K = J~! and 2 = J~'h. Then, it holds that Ka 4 = (Ja) ™!
and T4 = (jA)_lhA with J4 and hy defined by (2.96).

In other words, (h,J4) represents the information form of the marginal statistics
(Z4,K4,4). Because the marginals of a Gaussian distribution are also Gaussian, it is
implied that variable elimination by integration reduces to Gaussian elimination:

P(za) & /P(:EA,acB)da:B X exp {——%xﬂjA:cA + fzixA} (2.101)

It is also simple to verify that variable elimination by maximization (such as in the
max-sum algorithm) likewise reduces to Gaussian elimination:

max {-32"Jz + W'z} = 12 Jaza + hhza (2.102)
B



74 CHAPTER 2. BACKGROUND

This is shown by computing the gradient with respect to zp, setting this gradient to
zero and solving for zp, which gives g = —(Jp,g)}(hg + JB,AT4). Substituting
this for zp in the objective function, we obtain (2.102). Thus, inference in Gaussian
graphical models (in either the sum-product or max-sum sense) reduces to Gaussian
elimination calculations.

However, consistent with our earlier discussion of recursive inference methods (Sec-
tion 2.4.1), one can see that variable elimination in Gaussian graphical models generally
results in fill edges, due to the matrix inverse in (2.96) being a full matrix so as to create
new pairwise interactions between neighbors of an eliminated node. This results in the
computational complexity of inference being cubic in the tree-width of the graph.

B 2.6.2 Gaussian Inference Algorithms
Junction Tree Algorithm

We now specify an efficient version of the junction tree recursive inference procedure
for Gaussian graphical models. The upward sweep of this procedure is equivalent to
Gaussian elimination but the downward sweep performs a recursive back-substitution
procedure. This form of the algorithm is more efficient than using Gaussian elimination
in both sweeps, and more closely follows standard methods developed in the linear alge-
bra literature for solving sparse linear systems (e.g., by sparse Cholesky factorization,
using Gaussian elimination, followed by back-substitution).

Let 7 be a junction tree of the chordal graph G (see Section 2.4.1). In this section,
we use 7 to denote a node of this junction tree, and write C., to denote the corresponding
clique of G. We obtain a directed version of 7 by selecting an arbitrary node to be the
root of the tree and then orienting edges to point away from the root. In this directed
tree, let m(7y) denote the parent of node . Let Sy = C, N Cr(y) denote the separator
associated with edge ((7),7) of the junction tree. Also, we define R, £ C,, \ Cr(y) 8t
each node. At the root node, Sy =@ and R, = C,,.

Now, we specify our two-sweep recursive inference procedure. The input to this
procedure is the potential vector h and the sparse matrix J, which is defined over a
chordal graph G with junction tree 7. The output of this procedure is the mean vector
(MAP estimate) £ and a sparse matrix K, defined over the same chordal graph G, which
then stores a subset of elements of the matrix inverse K = J~!, that is, it only stores
those diagonal elements of J~! and off-diagonal elements corresponding to edges of G.

Upward Sweep For each node 7 of the junction tree, starting from the leaves of the
tree and working upwards, we perform the following computations in the order shown:

Qy = (r.r)"

Ay = =QyJr,s,

hs, < hg + AghR,y

Js,, s, + Js,,R, Ay (2.103)

,

JIs.,8,
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This upward pass performs Gaussian elimination in J. In each step, the subvector of h
and principle sub-matrix of J indexed by S, are overwritten. We denote this operation
by “—” in the last two lines of (2.103). Note, that this “update” of those submatrices
serves to propagate information up the tree as the procedure progresses, by virtue of
the parent node m(7y) subsequently accessing these submatrices corresponding to the
shared variables S, = Cy N Cpr(,). Also, the matrices Ay and Q,, computed at each
node of the junction tree in this upward sweep, must be stored as they are used again
in the subsequent downward sweep. These matrices specify the conditional probability
distribution P(zg,|zs,), via an auto-regressive model:

TR, = AyTs, + W,y (2.104)

where w, ~ N(0, Q). This model is used in the downward sweep to propagate moments
(means and covariances) back down the tree.

Downward Sweep For each node v of the junction tree, starting from the root node
and working down the tree, we perform the following calculations in the order shown:
Zr, «— A,is, (2.105)

KR"NS‘Y - A’YKS%S'V

Ks,r, — (Kgr,s,)"
Kr,r, — Kr,s,AT+Q, (2.106)

Note that in this back-substitution form of Gaussian inference, the upward sweep op-
erates on the information form (h, J) whereas the downward sweep is in terms of the
moment parameterization (£, K). Each step of the downward sweep uses the auto-
regressive model specified by (A, @), constructed during the preceding upward sweep,
to efficiently propagate clique moments back down the tree. That is, once the moments
(¢c,, Kc,,c,) have been set, this is sufficient to predict the moments at all of the
children of « in the junction tree, thereby implementing the downward propagation
of moments. In traditional back-substitution methods [96], only the first line of these
calculations is performed, as this suffices to compute the solution . The additional cal-
culations compute the desired elements of the covariance matrix K. We also note that
no additional matrix inverse calculations are required in the downward sweep. For this
reason, the back-substitution method is somewhat more efficient than using Gaussian
elimination.!6

Once the downward sweep is completed, the vector  is equal to J~1h and the ma-
trix K now stores a sparse subset of the elements of the inverse matrix J !, including all
diagonal elements and those off-diagonal entries corresponding to edges of the chordal
graph G. This subset of elements determines the moment parameters 7 in the expo-
nential family of Gaussian graphical models defined on G. Thus, we have specified an
efficient algorithm to implement the mapping A : # — n for Gaussian graphical models.

16We also comment that, in the computer code for this downward sweep, one may actually write the
outputs £ and K to the same data structure that initially stored the inputs h and J so as to make
efficient use of memory.
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Gaussian Belief Propagation

We describe a parametric form of iterative belief propagation in Gaussian graphical
models. The Gaussian distribution may be factored into node and edge factors based
on its information form:

P(x) (S8 H 1/)1)(-771)) H wuv(xuywv) (2.107)

veV {u,v}eg

with

(z) = exp{—%waﬁ+hvmv}
Yuw(Tu, Ty) = exp{—JuvTuly} (2.108)

We specify functional messages i, —,(Z,) on the edges of the graph as

1
Uy (Zy) X exp{—iAJu_,vmf, + Ahyy Ty} (2.109)

In practical terms, it is the parameters (Ahy—y, AJy—) of these functions that actually
serve as messages in Gaussian belief propagation. We initially set these parameters to
zero, Ahy_, = 0 and AJ,_,, = 0, corresponding to uninformative initial messages
Pu—sv(Zy) =1 for all z,,.

Now, we perform iterative belief propagation (in either the sum-product or max-
product sense) using the factorization (2.108) based on the information form. This
reduces to the following operations in terms of the message parameters. To calculate
the message from node u to v, given the other messages into node u, we first combine
messages at node v with the node factor v,. In terms of information parameters, this
becomes:

hiw = hut Y Ahyy
wedu\v

Jow = Juut Y, Adyw (2.110)

wEu\v

Then, multiplying by %, and integrating (or maximizing!) over z,, the message
pu—v(Zy) has parameters:

Abyy = —Tpu(Jure) b
AJU—>’U == '—‘Jv’u(ju\v)_lJu’v (2-111)

Equivalently, this procedure may also be viewed as performing Gaussian elimination
with respect to the information form defined on the computation tree of the graph.l”

71n fact, this latter perspective suggests that Gaussian belief propagation might also be useful for
solving more general linear systems of equations (e.g., non-symmetric or indefinite systems), even though
this no longer corresponds to a probabilistic inference procedure. Here, however, we focus only on the
symmetric, positive-definite case (corresponding to inference in a Gaussian graphical model).
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One may also view Gaussian belief propagation as being parameterized by the infor-
mation parameters (hy\y; Ju\v), Which specify the conditional distribution P(zy|z, = 0).
This latter representation can be expressed in terms of the moment parameters:

:%u\v & (ju\v)_lilu\v
Ku\v £ (Ju\'v)_l (2'112)

In this representation, the Gaussian belief propagation equations are:

Ku\v = (Ju,u_ Z Ju,wI(w\qu,u)_1

wedu\v
ju\v = Ku\v(hu“' Z Ju,wiw\u) (2.113)
wEdu\v

Some may prefer this representation as it is expressed in terms of the familiar moment
representation of Gaussian messages. However, these various forms are equivalent, being
related by a simple change of variables.

In any case, estimates of the marginal distribution at each node are ultimately
obtained by combining all of the messages to a node. In the information form, this
results in adding messages:

hy = hy+ Z Ahy oy
u€dv

Jo = Jopt D AJu (2.114)

u€dv

The final estimates of marginal moments are then given by:

Kv,v = (jv,v)_l
2, = K’u,vﬁv (2.115)

As is well-known, if Gaussian belief propagation converges, then the mean estimates Z,
are correct [217]. This then solves the MAP estimation problem in Gaussian models.
However, the variance estimates are generally incorrect in loopy graphs, but may still
provide a useful approximation. A sufficient condition for convergence of Gaussian
belief propagation is given in [217] that is equivalent to the information matrix J being
diagonally dominant, that is, Ji > 3°;; |Ji;| for all 4. Generalizations of this condition
are developed in later work [124,157], which we describe further in Section 2.6.3.

Iterative Methods and Embedded Trees

We briefly discuss linear methods for iterative solution of Jx = h where J is a sparse
matrix [96,206]. These methods are based on a preconditioner M ~!, which is a linear
operator that approximates multiplication by J~! and is easy to compute; more pre-
cisely, there is a fast algorithm for solving Mz = b for z given b. Then, starting from
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any initial guess (9, the method proceeds by computing a sequence of estimates £()
according to the equation:

j;(8+1) :2(3) + M—l(h - Ji-(s)) (2116)

M7 (h + Kz(®)) (2.117)

> I

In the second line we define K £ M — J (it should also be tractable to apply KX to a
vector). For instance, the classical Gauss-Jacobi method [96] chooses M = Diag(J), the
diagonal part of J, so that it is tractable to multiply by M~ (because M is a diagonal
matrix) or by K = M — J (because K is a sparse matrix).

This procedure may be viewed as an iterative correction strategy. At each step, we
seek to improve the previous estimate based on the residual error h(8) £ A — J£(). The
exact estimation error e®) £ J=1p — £(8) = J=14(5) solves the defect equation: Je(® =
R, We compute an approximate correction by instead solving Mé(®) = A(s), adding
&8) = M~1h(®) to the previous estimate to obtain £(6+1), Using the same preconditioner
at every iteration, this defines a linear system that converges if p(M 1K) < 1.18 If
the method does converge, it then yields the correct solution (any fixed point of the
algorihtm has zero residual error). One may also use non-stationary cyclic iterations
that iteratively cycle over a set of preconditioners M;,..., M. Then, the method
converges if p(M; Ky --- Mi K1) < 1 where K5 = M; — J.

The embedded trees (ET) algorithm [201], and related methods [45, 66], were de-
veloped to take advantage of fast algorithms for solving Jz = h when G(J) is a tree
(or some other thin subgraph for which exact inference is fast). In such thin models,
there are efficient solution techniques with linear complexity in the number of variables
(for example, sparse Cholesky factorization followed by back-substitution [96]). This
suggests the use of iterative methods for solving problems on sparse loopy graphs using
preconditioners based on spanning trees of the graph. That is, given an embedded tree
T C G, one defines the preconditioner M to be equal to J on the diagonal and on
off-diagonal entries corresponding to edges of the tree. The remaining elements of M
are set to zero. It was also proposed [201] to use cyclic iterations based on a collection
of embedded trees that collectively cover all edges of the graph. It was found that
such methods were often able to rapidly solve large, sparse linear systems and that the
performance of these methods is competitive with more standard methods such as the
conjugate gradients algorithm.

B 2.6.3 Walk-Sum View of Gaussian Inference

We briefly summarize our work on the walk-sum view of Gaussian inference, done in
collaboration with D. Malioutov [124,157] and V. Chandrasekaran [45,47].

18We let p(A) denotes the spectral radius of the matrix A, which is the maximum of the absolute
values of the eigenvalues of A [110].
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Definition of Walk-Sums

The main idea, introduced in [122], is to express inference (e.g., computation of means
and variances) as computing walk-sums in the Gaussian graphical model, that is, com-
puting weighted sums of walks in the graph, where a walk is defined to be any sequence

of vertices (wo,...,wg) such that {ws_1,ws} € G for s = 1,...,¢. This paradigm is
based on the Neumann series for the inverse of the matrix J =1 — R,
(I-R'=I+R+R*+R*+..., (2.118)

which is a generalization of the geometric series and holds if p(R) < 1. We also note
that this series is closely linked to the Gauss-Jacobi method.

Here, we assume that J is rescaled to have unit-diagonal (J,, = 1 for all v € V).
Then, R = I — J is zero-diagonal (R,, = 0 for all v) and has the partial correlation
coefficient r,, as its off-diagonal elements. Thus, R is sparse according to G and powers
of the matrix R simply accumulate sums over walks in G, that is, (Re Juv 18 @ sum over all
¢-step walks in G from nodes u to v, with the weight of a walk w = (wo, ..., w;) defined
as the product of edge-weights ¢(w) = Hﬁ;}) Tuswss1- Lhis suggests the following formal
interpretation of inference in Gaussian graphical models:

Kpw = Y ¢w) (2.119)
By = Y huo(w) (2.120)

The walk-sum in the first line is taken over the set of all walks that begin at node
v and end at node v. In particular, variances K,, correspond to the sum over all
self-return walks of at node v, that is, walks that begin and end at v. The walk-sum
in the second line is taken over the set of all walks which end at node v, where we
multiply the weight of each walk by hy,, the value of ~ at the starting point of the
walk. It is important to note that, because walks may revisit nodes multiple times,
there are infinitely many walks in each of these sums (in connected graphs). Hence,
walk-sums may fail to converge, and convergence may depend upon the order in which
walks are included in the sum. We recall from basic analysis [184] that the value of a
series ) po ; ai is invariant to reordering of its terms if and only if the series converges
absolutely, that is, if and only if ), |ax| converges. Hence, we say that a Gaussian
graphical model is walk-summable if the walk-sum for K, converges absolutely for all
u,v € V. As it turns out, the condition p(R) < 1 is necessary but not sufficient for
this walk-summable property to hold. Instead, we need the following more restrictive
condition:

Proposition 2.6.4 (Walk-Summability). All of the following conditions are equiv-
alent:

o The model J = I — R is walk-summable, that is, the formal walk-sums defined in
(2.119) are well-defined (converge absolutely).
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o The spectral radius condition p(|R|) < 1, where |R| denotes the matriz of absolute
values of elemen