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Abstract

Large-scale simulations of solvated molecules that treat the solvent explicitly are very
computationally expensive, and as a result work has been done on modifying the
potentials to treat solvent implicitly. Implicit solvation is well-known in Brownian
Dynamics of dilute solutions, but offers promise to speed up many other types of
molecular simulations as well, including studies of proteins and colloids where the local
density can vary considerably. This work examines implicit solvent potentials within a
more general coarse-graining framework. While a pairwise potential between solute sites
is relatively simple and ubiquitous, an additional parameterization based on the local
solute concentration has the possibility to increase the accuracy of the simulations with
only a marginal increase in computational cost. In this thesis we describe a method in
which the radial distribution function (RDF) and excess chemical potential of solute
insertion (y') for a system of Lennard-Jones particles are first measured in a fully
explicit, all-particle simulation, and then reproduced across a range of solute particle
densities in an implicit solvent simulation. The resulting potentials are density-
dependent, implicit solvent (DDIS) potentials.

We then test the transferability of DDIS potentials to mixtures and systems of chains
without additional optimization. We find that RDF transferability to mixtures is very
good and RDF errors in systems of chains increase linearly with chain length. Excess
chemical potential transferability is good for mixtures at low solute concentration, chains,
and chains of mixed composition; at higher solute concentrations in mixtures, chemical
potential transferability fails due to the unique property of DDIS potentials that inserting
a single particle changes the densities of all neighboring particles. Based these results,
we demonstrate that DDIS potentials derived for pure solutes can be used effectively in



the study of many important systems including those involving mixtures, chains and
chains of mixed composition.

Finally, the DDIS potentials are used to examine the self-assembly of a model surfactant
system. We demonstrate that the coarse-grained DDIS potentials generated by this
method accurately predict the trends in critical micelle concentration (CMC) for two
surfactant types, but that the absolute values of the predicted CMC are an order of
magnitude higher than previously established estimates for the same surfactants using
atomistic simulations. Additionally, the micelles formed are less densely packed than the
corresponding all-atom micelles, leading to a larger average aggregation number. By
examining a series of simulations of increasing molecular complexity, we identify the
source of this error with the transferability of the DDIS potentials. The results suggest
that deriving the DDIS potentials directly from simulations of chain molecules in solvent
could improve the ability of such potentials to reproduce surfactant properties accurately.

The method for deriving DDIS potentials is extremely general and can be applied to
study a variety of solvated systems of any chemical complexity. For example, the results
of this work can be extended to study problems in protein folding, drug uptake in micellar
systems, and biological membranes.

Thesis Supervisor: Gregory C. Rutledge
Title: Lammot du Pont Professor Professor of Chemical Engineering

Thesis Supervisor: Kenneth J. Beers
Title: St. Laurent Career Development Visiting Assistant Professor of Chemical
Engineering
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1 Introduction

1.1 MOTIVATION AND OBJECTIVES

A common class of molecular simulations involves a small number of solute molecules in

a large bath of solvent (typically water). Examples systems include proteins, surfactants,

bilayers, and other biological structures. Despite the continuing increase in

computational power, the simulation of this class of systems remains computationally

intractable. The fundamental limitation is the presence of the solvent, which represents

more than 99% of the particles, and a comparable fraction of the computational load.

Molecular simulations of theses systems (including Monte Carlo and Molecular

Dynamics) represent an inefficient investment of computational resources because we are

generally not interested in the details of the solvent behavior, but its presence is necessary

to correctly predict the behavior of the more interesting solute. Therefore, we can realize

large benefits by developing models in which the solvent is not simulated explicitly, but

instead treat its effect by modifying the solute particle interactions. Such models are

referred to as implicit solvent models.

The aim of this dissertation is to implement an implicit solvent model through the process

of coarse-graining (CG). Here, coarse-graining refers to any general algorithm in which

the computational load of a molecular simulation is reduced by a corresponding reduction

in the degrees of freedom (i.e. particles) of the simulation. The novelty of our CG

technique is that it represents an inversion of the traditional CG process. Whereas



previous approaches have emphasized the optimization algorithm and subsequently

applied the technique to various systems, we first choose a motivating example and

design a CG methodology specifically tuned to the needs of that example. In addition to

the inversion, our approach also naturally broadens the scope of the traditional CG

procedure to include considerations outside the specific optimization algorithm.

The specific application we select is the aggregation of surfactant molecules into

micelles. Surfactants are an ideal model molecule with which to study the effectiveness

of coarse-graining techniques because they produce complex solution behavior from

simple molecular structures. In addition, surfactants have a long history of experimental,

theoretical, and simulation study to draw upon.

Surfactant solutions contain solute heterogeneities that persist over a long time scale. For

that reason, we seek an implicit solvent potential that is responsive to the local

environment by parameterizing the potential by the instantaneous local density of solute

particles. Given its dependence on the solute density, we call such potentials density

dependent, implicit solvent (DDIS) potentials.

The specific objectives of this thesis are to:

* Develop a coarse-graining methodology to generate DDIS potentials from all-

atom simulations of monomeric solute in solvent.

* Examine the transferability of the generated DDIS potentials to other state

points without the use of further optimization.



* Evaluate the performance of the DDIS potentials to predict thermodynamic

properties of surfactant solutions, including critical micelle concentration.

1.2 BACKGROUND

1.2.1 Coarse-Graining

Coarse-graining refers to any general algorithm in which the computational load of a

molecular simulation is reduced by a corresponding reduction in the degrees of freedom

(i.e. particles) of the simulation. Such a general definition allows for a wide variety of

techniques to be classified as coarse-graining. For the purposes of this work, we can

classify coarse-graining techniques into two broad classes: non-algorithmic coarse-

graining and algorithmic (or systematic) coarse-graining.

Non-algorithmic coarse-graining refers to any technique in which a reduced

representation of the system is made in an intuitive fashion, or without an underlying all-

atom simulation. Common examples of non-algorithmic CG models are Kremer-Grest

bead-spring polymer simulations 84 and Dissipative Particle Dynamics (DPD)8 5. In both

cases, a simple nonbonded interaction potential is chosen to qualitatively reproduce a

desired system behavior. However, the results of these simulations are not directly

comparable to an all-atom simulation.

In systematic coarse-graining, by contrast, one seeks to create a reduced model of a

molecular system that matches some properties of an underlying all-atom simulation. A



systematic coarse-graining scheme usually involves a short simulation in which every

particle is explicitly included, which is used to generate descriptive "data" about the exact

system. This simulation is followed by a matching procedure in which the coarse-grained

potential is created and applied to a reduced number of particles to reproduce the data of

the underlying all-particle simulation. In this thesis, we focus exclusively on issues

related to systematic coarse-graining; that is, CG systems explicitly related to an

underlying all-atom simulation.

An excellent body of work already exists in the field of systematic coarse-grained

molecular simulation. This work spans a range of techniques and applications. Various

types of data have been used for CG potential fitting, including forces'1 7, reversible

works , radial distribution functions9 12 (RDFs), and experimental results13 15

Additionally, a wide variety of fitting procedures have been proposed, including simplex

optimization1 6-2 1, radial distribution function inversion22-31, wavelet transform 32' 33, and

semi-grand canonical Monte Carlo13 . We review here some of the main contributions to

the field.

Gregory Voth's group has proposed a fitting method that minimizes the difference

between the aggregate force acting on the atoms comprising a coarse-grained interaction

site, and the measured force in the coarse-grained simulation -6. The process begins with

a short all-atom simulation in which the force vector acting on each atom is registered at

every time step. The all-atom to coarse-grained particle mapping is then defined, at

which point the modeler can identify the total force acting on each coarse-grained



particle. From this aggregated force data, a linear regression is performed that

determines the interparticle potential that minimizes the error between measured and fit

force.

Alexander Lyubartsev and coworkers have proposed an algorithm by which a radial

distribution function (RDF) generated from an all-atom simulation is reproduced in a

corresponding coarse-grained simulation27-3 . The algorithm is a modification of the

original process described by Schommers22,23. The premise of the RDF-matching method

is predicated on Henderson's Theorem 33, which guarantees the existence of a unique

pairwise potential for any given RDF, but Lyubartsev's method does not necessarily

solve for this exact potential. Instead, he relies on an iterative procedure in which an

initial guess of the coarse-grained potential is refined by successive simulations. Despite

this limitation, it has been argued that Lyubartsev's method is likely to converge to the

optimum result in many common cases34

The Muller-Plathe 1' 5 20 fitting method also derives its CG potentials from RDFs.

However, while the potentials generated from the Lyubartsev method are of arbitrary

shape, the Muller-Plathe potentials are fit to a predefined functional form. The

parameters of this functional form are generated through an iterative simplex

optimization. For a small number of unknown parameters, this method is quite effective,

but the computational load increases rapidly with increasing model complexity.



Kremer 76-79 and Faller 80 -83 have developed CG polymer models in which the nonbonded

interactions are fit to RDFs. Kremer's approach is to use a Lennard-Jones type potential

and to manually adjust the exponents of the potential to best reproduce the RDF. These

approaches are not explicitly systematic CG methods, as they rely on manual adjustment

of the parameters and other considerations (e.g. group contribution theory) to set the

parameters.

An open issues is that the methods described above do not generate the same CG

potential given the same system. For example, RDF matching and force matching can

produce fundamentally different results for identical coarse-grained representations of a

system. Therefore, in the absence of any other information, neither method can be

considered a demonstrably correct coarse-graining approach. Indeed the choice of fitting

data set might be situation specific, and might incorporate variables outside those

mentioned above.

1.2.2 Transferability of Coarse-Grained Potentials

The value of a coarse-grained potential is determined in large part by its utility, or

"transferability", to situations outside of the one to which it was fit, because

transferability is the only way that the upfront cost of performing the fit can be recouped.

As suggested by Johnson et al.44, transferability can be classified as one of two types:

"observable transferability", and "state point transferability". Observable transferability

(called "representability" by Johnson et al) refers to the ability of a CG potential that is fit

to one set of simulation observables to reproduce accurately another set of simulation



observables. State point transferability, by contrast, refers to ability of a CG potential

that is fit at one thermodynamic state point (temperature, density, system size, and

composition) to predict the same observables at other thermodynamic state points. Both

types of transferability have been previously addressed in the literature.

Lyubartsev45 examined the observable transferability of a CG potential for lipid

molecules in water. The potential utilized RDF matching, and was subsequently shown

to reproduce reasonably well the density profile of a lipid bilayer. Noid et al.5 showed

that for isotropic, homogeneous materials a force-matched potential will also reproduce

the system RDF. Frequently, however, CG algorithms are used to simulate systems on

time scales that are inaccessible via all-atom simulation. In these cases, demonstrating

observable transferability is impossible, since the all-atom simulation cannot be

performed for purposes of comparison. Further, theoretical study by Louis4 6

demonstrated that observable transferability breaks down even in simple cases; for

example, he showed that potentials fit to system RDFs do not reproduce system energy,

and vice-versa. As a result, he suggested that only more complex potential forms,

incorporating density dependence or many-body interactions, might overcome these

representability problems.

State point transferability has been studied many times as well. Henderson's seminal

theoretical work33 indicates that the pairwise potential that generates a given RDF is

unique to within an additive constant for systems with only pairwise interactions.

However, the RDF of a system depends on the state point; it does not follow that the



potential obtained by RDF inversion at one state point will generate the correct RDF at

other state points. Recent simulations of polymers47 by this approach have exhibited

limited state-point transferability of such potentials.

The study of transferability is key to generating good CG strategies, and the recent

literature indicates that CG schemes frequently break down when applied to properties or

state points far from the point of fit. Increasing the robustness of CG potentials can only

be accomplished by intelligent trial and error.

1.2.3 Implicit Solvent Models

Implicit solvent models are those in which the explicit treatment of solvent-solvent and

solvent-solute interactions is replaced by a modified solute-solute interaction potential

designed to capture some of the solvent-mediated behavior. Typically, the solvent is

assumed to be much smaller, and to equilibrate much faster, than the solute. These

models have received a great deal of interest in recent years, from arenas including

proteins48, surfactants 74, membranes49, tissues 1o and macromolecules11' '51 . Because

many of the systems of interest are solvent rich, the implicit solvent formulation offers

the possibility to improve greatly the efficiency of computer simulations of such systems,

because it permits a vast reduction in the number of degrees of freedom.

Simulation in the absence of a solvent (generally water) has previously been achieved by

the addition of a "solvation free energy" term to the energy model, which is derived from

an underlying physical theory to reduce or eliminate the need for optimization. Two



previous approaches to the implicit solvent problem bear special mention. The solvent-

accessible surface area (SASA) model52 adds its solvation free energy term based on the

surface area of the solute exposed to solvent. The SASA model requires the computation

of a surface area for the solute molecule(s) at each time step during a molecular dynamics

simulation, greatly increasing the computational cost. Although theoretically motivated,

SASA does not guarantee the matching of properties between all-atom and implicit

solvent simulations.

A second approach is the Effective Energy Function (EEF)53 of Lazaridis et al., in which

the implicit water effects are treated as a perturbation to the existing all-atom pairwise

potential between solute sites. An attractive perturbation is added for hydrophobic

effects and a repulsive perturbation for hydrophilic effects, with the parameters fit such

that the free energy change produced in transferring a solute particle from a fully solvent-

exposed location to a location deeply buried within a solute-rich environment matches the

experimentally derived free energy of transfer. Though computationally simple, the

perturbation introduced by the EEF model necessarily changes the internal structure of

solute-rich regions of the simulation (as measured by the radial distribution function),

such that the density of hydrophobic regions of the simulation is significantly higher than

intended, with the first peak of the RDF shifted to shorter distance than that observed in

an equivalent all-atom simulation.

In this work, we examine the process of creating an implicit solvent potential within the

coarse-graining framework. In many coarse-graining applications, a small number of



particles or degrees of freedom are combined and represented by a new, "coarse-grain"

particle with fewer degrees of freedom. A coarse-grained, implicit solvent model

achieves a similar reduction in degrees of freedom by eliminating some number of

particles (the "solvent") while retaining others (the "solute") in unaltered form, except for

the requisite correction to the solute interaction potential to reflect solvent-mediated

interaction. Thus, implicit solvent models can be considered a special case of the CG

framework described above.

1.2.4 Surfactant Solutions: Theory and Simulations

The design choices made in the modified CG approach described above are system

dependent. The four key questions lose meaning without a specific application with

which to refer. We selected simulations of surfactant systems to further study our CG

framework.

Surfactant molecules are composed of a hydrophilic head group that is soluble in water

and a hydrophobic tail group that is not. At sufficient concentration in solution,

surfactant molecules will spontaneously aggregate into structures known as micelles, in

which hydrophilic head groups surround and shield the hydrophobic tail groups from the

solvent.

Theoretical approaches 54,55 treat micellization as arising from a set of competing free

energy effects. The transfer of hydrophobic tails from melt to solution promotes micelle

formation, but is offset by a surface energy penalty and the loss of surfactant translational



entropy. These competing effects create a well-defined free energy minimum as a

function of aggregation number, so that the resulting micelles are of nearly uniform size.

The concentration at which surfactant molecules spontaneously form micelles is referred

to as the critical micelle concentration, or CMC, and in theoretical treatments is directly

related to the aforementioned free energy considerations. Both the CMC and the average

aggregation number are important properties that characterize the self-assembling nature

of surfactants and for which we desire efficient, predictive capabilities.

The literature on particle-based surfactant simulations contains a diverse set of particle

representation approaches 56-7 5, which can be grouped according to two key design

decisions: the level of detail used to describe the surfactant molecule itself, and explicit

or implicit treatement of the solvent. Explicit solvent simulations56-72 are

computationally burdensome because of the low value of experimentally measured

CMC's (10-6-1 0 -2 M). At these concentrations, a significant majority of the simulation

cell is composed of the relatively uninteresting solvent. As a result, the direct

measurement of the CMC by explicit solvent simulations is impractical, even for very

coarse-grained surfactant and solvent representations. Instead, the CMC and aggregation

number distribution are generally determined indirectly, through the use of free energy

simulations63,67,68,72

By reducing the number of particles represented, and thus also the computational burden,

implicit solvent simulations of surfactant systems allow investigation of much longer

time and length scales. By this approach, Lazaridis et al.74 studied the formation of



dodecylphosphocholine (DPC) micelles using the Effective Energy Function (EEF 1)

implicit solvent model. The simulated CMC was close to the reported experimental

value. Von Gottberg et al.75 studied A2B2 surfactants in implicit solvent using stochastic

dynamics (SD), in which each surfactant bead was intended to represent a Kuhn segment

(approximately ten methylene groups) of a polymer chain. They successfully simulated a

fully equilibrated micelle size distribution at multiple surfactant concentrations, from

which they were able to determine the system CMC.

The literature on the molecular simulation of surfactants suggests that implicit solvent

simulations allow the measurement of thermodynamic properties including CMC and

average aggregation number. Therefore, creating an implicit solvent energy model via

coarse-graining could be quite advantageous. Properties of interest could be measured

with little computational burden and the results would have a clear correspondence to an

underlying all-atom energy model that is presumed to be a more accurate representation

of the system.

1.3 OUTLINE OF A NEW COARSE-GRAINING APPROACH

Our coarse-graining methodology is a four-step process. Each step answers a key

question:

1) What property or properties does one seek to conserve during the coarse-graining

process?

2) What is the potential form that can sufficiently capture the property or properties

of interest?



3) Once a potential form has been selected, how does one optimize the potential to

reproduce the properties of interest?

4) How transferable is the resulting CG potential to other properties and state points?

Question 1 begins as a hypothesis, which can be validated or invalidated by the results of

the coarse-graining. In other words, it is a testable hypothesis. An iterative process in

which increasingly complex functional forms are tested until an adequate reproduction of

the observables is achieved answers questions 2 and 3. Question 4 is an empirical test of

the potential's capability and the assumptions that went into the CG process. Following

the four-step process generates information with which the modeler can modify their

original hypothesis and thus systematically improve the quality of their CG potential.

This framework is described by the flow sheet given in Figure 1-1. Note that there are

multiple feedback loops, which allow one to repeatedly revisit all relevant design

decisions.

In essence, we approach the coarse-graining problem as a more general statistical

inversion problem, in which the input parameters of a model (in this case, a molecular

simulation model) are tuned so as to reproduce a desired set of observable properties. In

the special case of CG simulation, the observables are taken directly from an underlying

all-atom simulation, but the actual fitting algorithm could just as easily be chosen to

reproduce experimental measurements, simulations previously reported in the literature,

or even the intuitions of the modeler. The success or failure of such coarse-grained

potentials is measured empirically by its ability to accurately reproduce the properties



that the user expresses interest in. In fact, the set of observables used to train a coarse-

grained potential might be very successful in predicting some properties of a molecular

simulation but an abject failure in others.

The inversion framework is common in the development of all-atom potentials. For

example, J. Ilja Siepmann'S 35-43 group at the University of Minnesota has created the

TraPPE (Transferable Potentials for Phase Equilibria) potential for the prediction of

liquid phase properties. As a result of iterative study and improvement, their research has

indicated that reproducing the vapor-liquid equilibrium curve for a given molecule

produces a robust potential that accurately reproduces many other system properties

including solubilities, structure factors, and self-diffusion coefficients.

1.4 THESIS OVERVIEW

The objective of this thesis is to propose a coarse-graining framework that is robust,

flexible, and extensible. We invert the traditional conception of coarse-graining in

molecular simulations by first selecting a motivating application, and designing a CG

methodology around that application. As a motivating example, we investigate the

behavior of the new framework within the problem of surfactant simulation.

Chapter 2 addresses the fundamental design choices we made in creating a coarse-

grained, implicit solvent simulation. These design choices included the matching

parameters and form of potential, and were made with the terminal application of

surfactant simulation in mind. Chapter 3 addresses the state-point transferability of the



corresponding CG potentials to more complex systems, including solute mixtures, chains,

and surfactant-like systems. Chapter 4 builds on all our previous work to investigate the

behavior of surfactant solutions using our CG potentials. Finally, Chapter 5 summarizes

our findings, and suggests future avenues of research that could add accuracy and

computational efficiency to the model.
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Figure 1-1: Flow Diagram for our modified coarse-graining technique. Multiple

feedback loops allow for rigorous iterative improvement at all steps of the process.
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2 A Novel Algorithm for Creating Coarse-Grained, Density

Dependent Implicit Solvent Models

2.1 INTRODUCTION

Implicit solvent models are those in which the explicit treatment of solvent-solvent and

solvent-solute interactions is replaced by a modified solute-solute interaction potential

designed to capture some of the solvent-mediated behavior. Typically, the solvent is

assumed to be much smaller, and to equilibrate much faster, than the solute. These

models have received a great deal of interest in recent years, from arenas including

proteins', surfactants2, membranes 3, tissues4 and macromolecules 5-7. Because many of

the systems of interest are solvent rich, the implicit solvent formulation offers the

possibility to improve greatly the efficiency of computer simulations of such systems,

because it permits a vast reduction in the number of degrees of freedom.

Here, we examine the process of creating an implicit solvent potential within the coarse-

graining framework8. In coarse-graining, one seeks to create a reduced model of a

molecular system that matches some properties of an underlying all-atom simulation. A

coarse-graining scheme usually involves a short simulation in which every particle is

explicitly included, which is used to generate descriptive "data" about the exact system.

This simulation is followed by a matching procedure in which the coarse-grained

potential is created and applied to a reduced number of particles to reproduce the data of

the underlying all-particle simulation. In many coarse-graining applications, a small



number of particles or degrees of freedom are combined and represented by a new,

"coarse-grain" particle with fewer degrees of freedom. A coarse-grained, implicit solvent

model achieves a similar reduction in degrees of freedom by eliminating some number of

particles (the "solvent") while retaining others (the "solute") in unaltered form, except for

the requisite correction to the solute interaction potential to reflect solvent-mediated

interaction. The resulting coarse-grain interaction potential is a potential of mean force

between solute particles that serves to preserve the solution structure. Reproducing the

full thermodynamic behavior of the all-particle simulation, however, requires some

additional accounting for the lost solvent-solvent interactions. In contrast to the

traditional assumptions of Brownian dynamics that allow one to treat the solvent

implicitly as a heat bath, the coarse-graining method is inherently a fitting process that

seeks to optimize a trade-off between accuracy and computational efficiency through a

reduction of degrees of freedom between interacting particles.

To explain our approach here, we begin with three basic questions that have guided this

work:

1) What property or properties does one seek to conserve during the coarse-graining

process to maximize the utility of the resulting potential?

2) What is the simplest possible potential form that can sufficiently capture the

property or properties of interest?

3) Once a potential form has been selected, how does one optimize the potential to

reproduce the properties of interest?



Coarse-graining studies have traditionally been concerned primarily with the last

question, with much of the excellent work thus far focused on reproducing the forces of

an underlying all-particle simulation9 '1", or on replicating the radial distribution

function"-17. Although both approaches are reasonable, neither is a demonstrably

complete description of the system, and the appropriateness of one or the other may be

situation specific.

In contrast to coarse-graining, the implicit solvent literature has typically focused on the

first two questions. Simulation in the absence of a solvent (generally water) is achieved

by the addition of a "solvation free energy" term to the energy model, which is derived

from an underlying physical theory to reduce or eliminate the need for optimization.

Two previous approaches to the implicit solvent problem bear special mention. The

solvent-accessible surface area (SASA) model'8 adds its solvation free energy term based

on the surface area of the solute exposed to solvent. The SASA model requires the

computation of a surface area for the solute molecule(s) at each time step during a

molecular dynamics simulation, greatly increasing the computational cost. Although

theoretically motivated, SASA does not guarantee the matching of properties between all-

atom and implicit solvent simulations.

A second approach is the Effective Energy Function (EEF) 19 of Lazaridis et al., in which

the implicit water effects are treated as a perturbation to the existing all-atom pairwise

potential between solute sites. An attractive perturbation is added for hydrophobic

effects and a repulsive perturbation for hydrophilic effects, with the parameters fit such



that the free energy change produced in transferring a solute particle from a fully solvent-

exposed location to a location deeply buried within a solute-rich environment matches the

experimentally derived free energy of transfer. Though computationally simple, the

perturbation introduced by the EEF model necessarily changes the internal structure of

solute-rich regions of the simulation (as measured by the radial distribution function),

such that the density of hydrophobic regions of the simulation is significantly higher than

intended, with the first peak of the RDF shifted to shorter distance than that observed in

an equivalent all-atom simulation.

In this chapter, we develop a coarse-grained, implicit solvent potential with explicit

consideration of each of the three basic questions stated above. Sections II, III, and IV of

this chapter deal with each of the three questions in turn. Section V describes the

computational methodology. In Section VI, we apply the coarse-graining method to a

simple system in which the solute and solvent are identical Lennard-Jones (LJ) particles.

2.2 CONSERVED PROPERTIES

To address the question of which properties to conserve in moving from an all-atom to

implicit solvent simulation, we first consider the types of systems in which we are

interested. One of these is the protein folding problem, wherein a protein's minimum

energy conformation depends in large part on the pattern of hydrophobic and hydrophilic

amino acids along the chain. This relative hydrophobicity of amino acids is defined in an

implicit solvent model through the free energy of transfer of a solute particle from a fully

solvent-exposed environment to a fully screened environment. Additionally, the packing



density of solute particles is important. If the free energy of transfer of a hydrophobic

group is correctly reproduced in the implicit solvent model, but the density of a cluster of

these hydrophobic groups is too high, the resulting packing may result in unrealistic

intramolecular strain, or in the shielding or exposure of apolar groups. The radial

distribution function serves as a proxy for these structural characteristics.

Another class of system of interest is that in which surfactant solutions undergo micelle

formation. Blankschtein's model20 of micelle formation shows that the critical micelle

concentration and average micelle size depend not only on the free energy of transfer of

the hydrophobic tail groups, but also on the surface tension between tail and water (which

depends both on free energy considerations and solute density considerations) and the

packing density of both heads and tails.

Motivated by these examples, we suggest that a good implicit solvent model for such

problems should replicate both the free energy of transfer of solute groups and the radial

distribution function of solute particles (especially at high concentrations). The quantities

are general to all molecular simulations and measurable in a computationally reasonable

amount of time. Approaches that address only one of these factors in describing protein

folding or micellization are likely to be incomplete.

2.3 COARSE-GRAINED POTENTIAL FORM

Having identified the radial distribution function and the free energy of transfer as the

most important properties to capture, we next turn to the question of the form of



interaction model required to replicate these properties. We note that the answer to this

question is inherently subjective, since the quality of reproduction desired by the model

builder determines the complexity of the model required. In the case of implicit

solvation, the form of this potential can be derived from the N-particle partition function,

ZN, in a straightforward way, as follows:

ZN =fdrN exp[-PV(rN)] (1)

where V(r") is the exact interaction energy, which depends explicitly on the locations of

all N particles. Dividing the particles into n solute and N-n solvent and integrating over

the solvent degrees of freedom, this partition function becomes:

ZN f dr" ,n dr ute exp [-_V(r so )]
SCso dr exp-V EFF solute

where VFF is an effective potential of mean force between solute particles that includes

solute-solvent interactions, and CsoIv is a constant that arises from solvent-solvent

interactions. Rewriting Cov=exp[-/63n], the partition function becomes:

ZN, = fdr" exp [- + V EFF( (3)
V i=1 j=1



Here, the "solute" subscript has been dropped for ease of notation. Pairwise potentials

have been assumed, and i andj index the n solute particles. For sufficiently simply

systems with pair-wise interactions only, Henderson's theorem guarantees the existence

of a unique pairwise potential to within an additive constant for a given radial distribution

function (RDF). Thus, a constant can be added to the potential of mean force between

explicit solute particles in order to account for the missing solvent-solvent interactions in

a mean field sense, without altering the RDF produced. Although Mu is often set to zero in

many effective potentials, it is apparent that a nonzero It is necessary to reproduce the

free energy of transfer or excess chemical potential. This is because VEFF alone fails to

capture the total energy of the excluded solute-solvent and solvent-solvent interactions.

As another straightforward illustration of this fact, consider the extreme situation of

insertion of a solute particle into a bath of solvent particles at infinite dilution. In the all-

atom simulation, this insertion produces a non-zero excess chemical potential. In the

implicit solvent simulation, however, there are no particles with which the solute atom

can interact, and the measured excess chemical potential of a pairwise potential in the

absence of the self-interaction constant would necessarily be zero. Setting I=Pex in this

case can provide the necessary match of excess chemical potential. According to

Henderson's theorem, introduction of the additive constant y corrects the energy but does

not alter the structure of the fluid associated with VEFF.

In general, the effective potential form proposed here is a function of the thermodynamic

state point, due to the integration over solvent particle positions taken in Eq (2). This is

supported on both theoretical 16 and emprical5 grounds. As such, both the one-body (M)



and two-body (JEFF) terms may depend on the temperature T, total particle number N,

total particle density p, and solute particle density ps. For the present study, we focus on

parameterization as a function of the solute particle density ps, which we believe to be

most relevant to the problems of protein folding and micellization. In the results section,

we also investigate the limits of transferability of such potentials to other state points

defined by small changes in N, T, and p.

Thus, we arrive at the final form of the potential:

1 IV"(r(4)
Ei = 1(ps,i) + VEFF ijpSi) (4)

where Ei is the effective energy of particle i, VEFF is a pairwise potential between solute

particles that is explicitly a function of solute particle density in the vicinity of particle i,

ps,i, and y is a "self-interaction" term (also a function of solute particle density). The

inclusion of a density-dependent self-interaction energy makes this potential similar in

form to the Embedded Atom Method23 . In this chapter, we consider two estimates of the

solute particle density. The first is the global average density of solute particles, which

we denote PG, and the second is the instantaneous local density of solute particles, which

we denote pL; both pG and pL are referred to collectively as ps where the subscript "S"

stands for solute. Finally, p without subscript refers to the state point density,

considering all particles (solute and solvent).



2.4 POTENTIAL PARAMETERIZATION

2.4.1 Metrics

For all of the results reported below, we define three metrics by which to assess the

accuracy of the implicit solvent potentials to replicate the all-atom systems. The first of

these is the local average number of solute particles, NL, within the interaction radius,rc:

rc

N, = Gf g(r,PG)4rr2dr. (5)
0

The second metric is the local energy per particle, defined as:

rc

EL = pGfV(r)g(r;pG)4.7r2dr (6)
0

where pG is the global average density of solute particles in the simulation, V(r) is the

exact interaction potential, and g(r,pG) is the coarse-grained solute-solute RDF, which

may be density-dependent. We expect an accuracy of better than 1% error in both NL and

EL. EL provides a measure of the error in g(r,pG), compared to the exact g(r) for the

explicit system, in units of energy for comparison to yueX(pG), described next. As a third

metric, we also computed ,ex(pG), the excess chemical potential, using standard

procedures as described below. For this metric, we expect an error of no more than 0.05

kBT, or -2%, which is comparable to the typical experimental error 21. This accuracy

should hold across a wide range of solute particle densities.



2.4.2 Global Density Dependent Potentials

In the global density-dependent formulation, both terms in Eq. (4) are parameterized on

the bulk density PG of solute particles in the simulation cell. Each particle in the

simulation interacts through the same potential. Because the self-interaction potential

does not impact the radial distribution function of the resulting simulation, the creation of

the global density dependent potential can be broken down into two separate steps, one of

which is used to match the radial distribution function and the other to match the excess

chemical potential.

In the first step, the pairwise portion of the potential, VEFF(r,pG), is generated using the

iterative method proposed first by Schommers1 ',12 . Successive approximations of the

potential are created using the update rule:

V,i+(r,pG) = V;(r,) - kb ( gAG(r')) (7)

where V, represents the estimate of VEFF(r,pG) at iteration i, and gi(r) the RDF generated

by Vi. Schommers' method is expected to converge for initial V1 that is close to

EFF'(r,pG), but convergence is slow for poor initial guesses. This is only one of a number

of update methods that have been proposed to solve the RDF inversion problem7 '13' 17.

For the lowest density simulation, we begin with the Boltzmann inversion of the RDF as

a trial function Vi:

V,(r,pG) = -kbTln(gTARGET(r,pG)) (8)



For subsequent higher density systems, the converged solution of the next lower density

is used as the initial guess. Schommers' iterative procedure is followed until the error

function

f jg(r,pG)- TARGET.(r,pG)dr

errori  0 r (9)

f gTARGET (r,pG )dr
0

decreases to within a specified tolerance of 0.3%. This fit is much closer than is needed

to achieve a 1% error in the local particle number or per-particle energy.

The second step in the fitting method is to calculate the self-interaction energy, P(PG),

that correctly reproduces the excess chemical potential, f(pG). The complexity that

arises in free energy calculations in a density-dependent potential is shown in Figure 2-1.

For an all-particle potential (Figure 2-1(a)), ,It is measured using a free energy method

such as thermodynamic integration24'25 or the acceptance ratio method25' 26, which

measures the energy difference, AF 1, between a reference particle that interacts with the

surrounding medium in one case, and one that acts as a phantom (non-interacting)

particle in the second case. In an implicit solvent, density-dependent potential (Figure 2-

1(b)), however, the insertion of a reference particle changes the density of the system and

thereby introduces a secondary free energy effect, AF 2(ps), such that:

#ex" = -(WF + AF2) (10)



AF2(ps) is the energy change associated with changing between energy models at the

initial density (ps=n/V) and the final density (ps=(n-1)/V):

AF2(ps = = AF2(Ps) + AF2,2 (11)

where AF 2,1(ps) and AF2,2(ps) are the one-body and two-body contributions, respectively,

and are given by:

AF2•i( S = = (n -1) n 1) - n (12)

AF,2 (PS = = fg Ps) VEFF ( Vr, 4(FF ] r2dr,) (13)

In the above discussion, we have used the density notation ps to indicate that the analysis

is relevant to both the global and local solute density cases. Combining Eqs. (10), (11),

(12), and (13) yields an equation for u(pG=n/V):

(n) pG ex2,2 n-I + (14)

For an Nparticle system, there are N such equations (for n=1..N). We set y(pG=0) =

e"x(pG=O). For values of n where AFl(pG=n/V) and VEFF(r,pG=n/V) are not measured,

they are approximated by linear interpolation from the nearest known values.



If a suitable target RDF and excess chemical potential exist, one can also perform the

fitting algorithm described for solute particle densities exceeding the total particle

density: that is, the implied density of solvent particles is negative. Although physically

unrealistic for systems parameterized on global density, these results are important for the

local density parameterization described next, since the local density of solute particles

will frequently exceed the average total particle density through temporary fluctuations

when PG is sufficiently close to p.

2.4.3 Local Density Dependent Potentials

Most solute/solvent systems of interest exhibit a heterogeneous distribution of particles,

with local areas of solute concentration or depletion. Such heterogeneities may be

instantaneous, in the case of thermal fluctuations, or long-lived, as in the cases of

micellization or phase separation. In these cases, the global density does not represent

the local environment that a solute particle experiences at a given point in time. It has

been suggested that improved transferability might result from using local density-

dependent potentials27. Once again, if we consider solute density as a proxy for the

number of missing solvent-solvent and solute-solvent interactions, the instantaneous local

density is intuitively a more appropriate proxy than the ensemble-averaged global

density.

In the local density dependent formulation, the potential that any particular particle

experiences at any given time is dependent on the density of solute particles within a



cutoff radius, rD. Thus, the potential experienced by a particle is a dynamic property. The

local density dependent potential then has two required components: (i) the two body

interaction potential vEFF(r,pL), which we have implemented as a two-dimensional array

specified at regularly spaced intervals of r and PL, the instantaneous local density, and (ii)

the self-interaction energy, M(PL), which we have implemented as a one-dimensional

array at regularly spaced intervals of PL. Values of vFF and y that are intermediate to the

specified points are determined by linear interpolation. Interactions between particles that

experience different local densities are evaluated as the average of the interaction

computed at each density.

In this chapter, the cutoff radius for counting particles within the local density

approximation, rD, is set equal to the potential cutoff, rc. Since the local density is a

proxy for missing solvent interactions, it is logical to consider the relevant local density

as the density within the range of potential interaction. This choice should be most

accurate for systems where the variations in local (solute) density occur over distances

that are large compared to the range of the interaction potential itself. We experimented

with three methods for determining local density: equal weighting of every particle

within the cutoff radius, a linear decay in particle weighting with inter-particle spacing,

and a quadratic decay in particle weighting with inter-particle spacing. The behavior of

the system under all three assumptions was essentially the same, and so all results are

reported here using the linear weighting method.



As with the global density dependent case, we break the problem of potential fitting into

two steps: first fitting the pairwise potential, and then fitting the self-interaction term.

Two factors must be considered with regard to fitting local density dependent potentials:

first, Henderson's theory assures an optimal solution to the global density dependent

fitting problem, with a unique pairwise potential reproducing the desired RDF and a

unique self-interaction energy reproducing the excess chemical potential (both of these

properties are ensemble averaged). The local density dependent case, by contrast, offers

no such guarantees, since the potential is required to reproduce RDFs and excess

chemical potentials across a range of simulations at varying global densities. As such,

the quality of fit deteriorates somewhat in return for a better representation of density

fluctuations. Second, a rich literature exists on the topic of fitting global density

dependent potentials; it therefore makes sense to treat the local density fitting as a

transformation of the existing global density solution. With the preceding in mind, the

approach followed here is to use the set of previously determined global density

potentials, obtained over a range of solute densities, to obtain a first approximation to the

local density potential. To fit the pairwise potential, we first note that the radial

distribution function (RDF) of a system at global solute density pG can be expanded as

follows:

pg(r,p ) = LP(p,,)p,,g(r, pL,) (15)



where P(pLi) is the probability of observing local density PLi, and g(r,pL,i) is the radial

distribution function about particles that experience an instantaneous local density pL,i.

g(r,pLi) can then be expanded in powers of the density11 as:

g(r, pL,) =exp _ L, y(r, pL,) (16)
S k, T

with

y(r,pL,i) = 1 + p,,ia(r) + PL b(r) + ... (17)

The coefficients of Eq. (17) are cluster integrals of the effective potential". Inserting Eq.

(16) into Eq. (15) results in:

p~g(r,p) = P(PLG)PL, exp - kIEr, PL y(r,Pi) (18)

Schommers" states that y(r,ps) is only mildly dependent on the potential, since vEFF(r,ps)

plays the role of an integral quantity in y(r,ps). Therefore, we assume that y(r,pG)

y(r,pLi) when PL,i =PG. For a set of m simulations at m distinct pG values, this generates a

set of m equations for each inter-particle separation r, with the local density dependent

potentials as the only unknown values. These linear equations can be solved once the

global density-dependent potentials are known. Eq. (18) gives a simple framework to



derive appropriate local density dependent potentials once the equivalent global

potentials are known. Although the y-equivalence assumption may introduce a small

source of error in estimating the optimum local potential, in our experience the ability to

avoid a computationally expensive optimization of the local pairwise potential makes this

trade-off worthwhile. Additionally, we demonstrate below that the magnitude of the

introduced error is small enough to be considered inconsequential.

The second part of the fitting process is choosing appropriate values for the self-

interaction constants Mu(pL). For a large value of the density cut-off radius, the

distribution of local densities P(pL) is tightly peaked around PG, and one can again

assume that a direct transfer of global values to local values, i.e. P(pL)=G(pG) when

PL=PG, offers a reasonable first estimate.

In our experience, this initial guess offers an acceptable approximation of the RDF, with

differences in per-particle energy (Eq. (6)) between the global and local density models

of -0.3% and differences in local solute number NL (Eq. (5)) of -0.2%; the

approximation for Iet is not as good (errors up to 0.11 kBT, or 5%). Additionally, the

RDF is less sensitive to changes in pu(pL) than yýe is. Therefore, we use an iterative

procedure to determine the set of u(pL)'s that reproduce the simulated P,"(pG)'s over a

range of PG.

The contributions to bUx can be separated into those that explicitly depend on I'(pL) and

those that do not. From the global density theory, the only term in Eq. (10) with explicit



reference to M is the AF2,1(PS) term. We assume that the other terms in the equation

remain unchanged under changes in M, and produce an update equation of the form:

AF 2 ,1 (pL NEW = AF2 L(POLD + AAF2 (pL)

AAF,,(p,) = MpEASUREDG PL RGETPG =PL)

(19)

(20)

Plugging Eq. (12) into Eq. (19) leads to the following update for M:

Ap n n- n-1• 1 xn(P nj
P MEASURED PG GET G = - (21)V n V n V V

where AM(pL) is the step change to take in U(PL). We solve the equation series by setting

AM(pL=O) to 0 and solving by substitution for all larger values of pL. For values of n

where #'eEASURED(G) is not known, it is approximated by linear interpolation from the

nearest known values. In our experience, the update AM suggested by Eq. (21) is too

large, and so this value is scaled by a factor a to improve convergence:

M(PL) = M(PL ) + aAM(pL)

For the system studied here, a=0.5 worked effectively.

(22)



2.5 SIMULATION PROTOCOL

2.5.1 All Atom Simulations

All atom simulations using the bare LJ potential were performed using GROMACS

(Version 3.3)28 in the NVT ensemble with periodic boundary conditions. We employed a

total of 4 x 106 time steps with step size of 2fs, for a total of 8 ns of simulation.

Trajectories were printed every 2 ps, and used to generate simulated RDFs. Temperature

was controlled with a Berendsen thermostat. A typical 1000-particle simulation required

approximately 2 hours on a 2.80GHz Intel Xeon CPU.

Excess chemical potentials were calculated by inserting a single Lennard Jones particle

into the simulation cell using thermodynamic integration (TI) 24,25; the standard

GROMACS X switching function was used to integrate between an initial state in which

the test particle interactions with the remaining system were switched off and a final state

in which the test particle interactions were fully enabled. Switching was applied to

nonbonded interactions only, with soft core interactions to avoid singularities and using a

soft core interaction parameter a=0.51. A total of 31 X values were used (X = [0.00 0.03

0.07 0.10 .... 0.93 0.97 1.00]). Each simulation employed 4 x 105 time steps with step

size of 2 fs, for a total of 800 ps of simulation. This simulation length was chosen

because the estimated uncertainty in the chemical potentials was estimated to be 0.04 kBT

or less for all simulations. Free energy simulations were performed in parallel, each

requiring on the order of one hour on a 2.80GHz Intel Xeon CPU.



2.5.2 Global Density Dependent Simulations

Simulation protocol for the global density-dependent, implicit solvent simulations was

identical to that of the all atom simulations, with the exception of the potential used.

Custom coarse-grained potentials were implemented using the GROMACS table option.

2.5.3 Local Density Dependent Simulations

The local density dependent case requires a form of the energy model that is not readily

available in common molecular dynamics codes. As a result, we used instead a Monte

Carlo (MC) code of our own design. Data was generated via Monte Carlo in the NVT

ensemble using periodic boundary conditions. We employed a total of 4 x 108 translation

moves of single particles, with a maximum step size of 0.4o. Trajectories were printed

every 4 x 104 moves and used to generate simulation RDFs. Because the movement of a

single particle affects the local density (and, by extension, the effective potential) of a

large number of particles, a naive MC energy calculation would be prohibitively

expensive. To avoid recalculating the local density of every particle at every time step,

the density of non-moving particles was updated every N moves using the multiple time

step Monte Carlo algorithm 29. A typical 1000-particle simulation required approximately

40 hours on a 2.80GHz Intel Xeon CPU. The longer simulation time is a function of both

the local density dependence and the switch from MD to MC. To compare the global and

local density dependent simulation times, we also performed a set of MC simulations

using the global density dependent potential. The local density dependent simulation

period is only about 50% longer than an equivalent, global density dependent MC

simulation.



Excess chemical potentials were calculated by inserting a single LJ particle into the

simulation cell using the Bennett Acceptance Ratio (BAR) method2 6. Two X values were

used (X = [0.00,1.00]) with an initial state comprising a non-interacting test particle and a

final state having a fully interacting test particle. Prior to performing the local density

simulations, the BAR method was validated by comparing the chemical potential

measurements obtained by TI and BAR. Results were within 0.05E for all densities.

2.5.4 External Field Simulations

To demonstrate the effect of density variations under the global and local density

approximations, and to mimic micellization using the simple LJ system used here, some

simulations were performed in the presence of an external field that acts only on solute

particles. The simulation methodology is identical to the local density case, with the

exception of the additional external potential. This potential is implemented as a point

particle in the center of the simulation cell, which attracts solute particle and repels

solvent particles. The interaction of the solute particles with the point particle is identical

in the all-atom and implicit solvent simulations.

2.6 RESULTS AND DISCUSSION

2.6.1 All-atom Simulation

The system considered in this work consists of a bath of N identical particles, interacting

via the Lennard-Jones (LJ) potential, at constant volume and temperature. The system is



coarse-grained by arbitrarily selecting a fraction Xs=n/N of the particles to be "solute",

and the remainder "solvent". Such a system offers a number of simplifications for testing

purposes. The main one is that, for a given N, V,T, the solute-solute radial distribution

function and excess chemical potential are independent of the degree of coarse-graining,

or fraction of particles designated as solute, Xs, and equal to that of the conventional N-

particle LJ system. As such, we require only one simulation to generate statistics for the

explicit, all-particle system, and the results of this simulation are generally applicable

across the entire range of Xs=(0, 1]. The specification of a system in which the system

RDF is independent of density makes this equivalent to an ISO-g(2 ) procesS30

The test system used in this work is described in Table 2-1, and is known to be in the

liquid region of the Lennard-Jones phase diagram31. A * denotes a quantity defined in

reduced units, where p* = po3, P = kBT/e, and rc* = rc/r.

A base simulation at the given N, p*,T* was used to generate the radial distribution

function and excess chemical potential. The coarse-graining schemes described in this

chapter are used to fit the potential across a range of solute fractions from 0.1 to 1.2 in

increments of 0.1. The excess chemical potential of the simulation is -2.34 (in units of E)

and the RDF is given in Figure 2-2.

2.6.2 Global Density Dependent Potentials

The maximum number of iterations required to solve for any potential was 14, with the

average number being 9.6. The maximum error, as defined by Eq. (9) was 0.3%.



For perspective, Figure 2-2 shows the RDF generated for the solved potential VEFF at

Xs=O. 1 compared to the target RDF. The results are so close as to be indistinguishable.

The agreement for other values ofXs is equally good. The average per-particle energy

error and local density error are on the order of 0.1%.

The resulting pairwise potentials are given in Figure 2-3. The location of the minimum in

energy remains relatively constant across all global solute densities, pG=Xsp. At low

densities there is a local maximum at -1.7 rthat gradually disappears as the solute

particle density is increased. The form of the pairwise potential as a function of Xs

illustrates clearly how the effective potential transitions smoothly from a potential of

mean force at low concentrations to a Lennard-Jones-like potential at high

concentrations. At Xs=1.00, we recover the LJ potential, as expected.

The results for M(PG) are shown in Figure 2-4. At low densities (Xs<0.7), the value of the

self-interaction term is very close to M", reflecting the fact that the change in chemical

potential due to pairwise interactions at these densities is very close to zero. /-(pG)

captures this missing free energy change. At a density equal to the total particle density,

the self-interaction term is not exactly zero, as it is in the Lennard-Jones potential. This

is a peculiar feature of the density dependent framework; upon deletion of a solute

particle from a simulation of n explicit solute particles and N-n implicit solvent particles,

the potential behaves as though the resulting system consists of n-1 solute particles and

N-n+l implicit solvent particles. In effect, the deletion of one solute particle leads to the

insertion of one implicit solvent particle.



2.6.3 Pairwise potential transferability to other state points

As discussed previously, the coarse-grained potentials described here are dependent on

thermodynamic state and are not generally transferable to other system densities,

temperatures, or sizes. Frequently, this limitation is unimportant in implicit solvent

simulations because one is mainly interested in changes of solute composition at fixed

total density. Nevertheless, in this section we address the limits of transferability of the

effective potential obtained at one state point (NI,p 1,7Ti) and applied to another state point

(N2 ,P,2,T 2). To do so, we compared the RDFs of all-particle simulations with those of

coarse-grained simulations for different values of T*, p*, and N, using the effective

potential derived for the state point given by Table 2-1 with Xs=0. 1. This concentration

was chosen because the effective potential at that point is most dissimilar from the LJ

potential.

Figure 2-5 shows the RDF generated at Xs=0. 10 across a range of temperatures using the

effective potential generated at T*- 1.53. These results are compared to the all-particle

simulation RDFs. At temperatures lower than the fitting temperature, shown in Figures

5(a) and 5(b), the RDFs generated by the effective potential are more sharply peaked than

the target RDFs, while at temperatures higher than the fitting temperature, Figures 5(c)

and 5(d), the RDFs are less sharply peaked. However, the location of the first peak of the

RDF remains at the correct inter-particle distance across the entire temperature range.

Table 2-2 lists the error in the average per-particle energy as a function of temperature

change. For the lowest temperature simulation (T*=0.83), the average per-particle energy



error is approximately 5%. This state point is in the two-phase region of the LJ phase

diagram 31. At all other temperatures, the magnitude of the error is less than 3%, with

errors of 1% for temperature changes of 10%.

Figure 2-6 compares all-atom and coarse-grained simulation results at different densities.

As with the temperature variation experiments, the location of the first peak of the RDF

remains correct. Table 2-3 demonstrates that changes in the density of up to 10% have

less than a 1% impact on the per-particle energy.

Within the current system, then, it appears that a temperature or density change of up to

10% introduces at most a 1% error in the average per-particle energy.

Finally, we find that an increase in the number of particles (at constant total density, p)

by a factor of ten only introduces a 0.8% error in the per-particle energy. For this system,

it appears that the correct effective potential is insensitive to system size. For

inhomogeneous systems, especially those containing a phase boundary, one cannot

assume system size independence.

The error in Mex introduced by transferring the effective potential to another state point is

more significant. Figure 2-7 compares the excess chemical potential for Xs=1.00 and

Xs=0. 10 with the true all-particle value, as a function of system temperature. The results

for Xs= 1.00 match well with the target values for all of the single phase systems, but the

results for Xs=0. 10 do not match well for T#TFIT. This is because Mte values at low solute



density (high level of coarse graining) are determined almost entirely by the self-

interaction constant, which was assumed to depend only on the density of explicit solute

particles. The results are similar for transferring the effective potential from one system

density to another.

2.6.4 Local Density Dependent Potentials

For the special case with identical solute and solvent particles, the solution of Eq. (18)

under the y-equivalence assumption requires that the local pairwise potential be identical

to the global pairwise potential at an equivalent density, that is vEFF(r,pL)= VEFF(r,pG)

when pL=cG.

For y(pL), we use as an initial guess M(pL)= G(pc) when pL=pG. After three iterations, the

value of Mx at each simulated density is identical to the value determined from the all-

particle simulation to within the specified tolerance of t0.07E. The measured profile of

iex with solute particle density using the initial guess and after convergence is shown in

Figure 2-8. Clearly, the initial approximation yields a very good result, with all values

within ±0.12E of the target excess chemical potential.

Table 2-4 lists the errors in per-particle energy and local solute number for the coarse-

grain simulations, and demonstrates that all these values are below the specified tolerance

of 1%. Figure 2-9 compares the RDF's obtained using coarse graining with the local

density parameterization and the all-particle simulations for the worst case scenario



(Xs=l.00). Even for this example, the local density RDF and all-particle RDF are very

nearly indistinguishable.

The results in Figures 8 and 9 indicate that the local density representation is comparable

in accuracy to the global density representation. This is due in large part to the selection

of a large cutoff radius, rD. Setting rD= rc=5ureduces the fluctuations in local density so

that the distribution of local densities P(pL) is tightly peaked around pG for the

homogeneous systems studies here. For every solute density utilized here, we measured

the standard deviation in pL as a function of PG. In every case, the standard deviation is

less than 5% of the total particle density. In the limit that rD approaches the size of the

simulation cell, the local density approximation reduces exactly to the global density

approach.

Reducing rD renders the y equivalence assumption less accurate, such that vEFF(r,pL) is

not longer well approximated by EFF(r,pG), and may require that vEFF be re-optimized

for the particular choice of rD. To illustrate this, we repeated the simulations with

vEFF(r,pL)=VEFF(rp,G) but rD reduced from 5Soto 2u. Table 2-4 and Figure 2-10 display

the results. The accuracy in all three metrics is considerably worse.

Further evidence of the equivalence of the global and local formulations for rD=5c comes

from simulations of model transfer to other temperatures. Just as we did with the global

results, we performed simulations to measure both RDF and excess chemical potential at

temperatures other than the fitting temperature. These simulations used the same



temperature values as were used to study the transferability of the global potentials, with

Xs=0. 10. Though results are not included here for the sake of space, the local results

were identical to the global results within our specified limits of accuracy at all

temperatures.

2.6.5 External Field Simulations

While the local and global density approximations are found to be similar in the

aforementioned cases, where solute particles are homogeneously distributed throughout

the system, the global density approximation is expected to bread down for situations

where the solute and solvent are distinct components and are inhomogeneously

distributed through the system. Such inhomogeneous distributions are common, for

example, in phase separation and in surfactant systems, where aggregation into micelles

creates stable areas of high solute concentration. In such cases, the global density is not

representative of the environment of the majority of solute particles.

To demonstrate the advantage of the local density approximation in this case, we

replicate the aggregation of solute into a micelle for the system studied here by the

addition of a point particle attractor in the center of the simulation cell. The point particle

attracts solute particles with potential OA:

r < 5a

-5) 2 - for 5o < r 10a (23)

> lOa

a (r)=



and repels solvent particles with potential OB:

0 for r > 5or
B(r)-1  for=r>5u (24)

The strength of these potentials was chosen such that the density of solute near the center

of the cell approached the total particle density, i.e. pLmp in the vicinity of the point

attractor, and pL%-0 for locations far from the attractor.

An all-atom simulation of 1000 solute particles and 9000 solvent particles (Xs=O. 1) was

performed, followed by implicit solvent simulations using either the local density

potential or the global density potential determined earlier for Xs=0. 1. No additional

fitting was performed in this step, as we were attempting to assess the relative

transferability of the two density dependent approaches.

The superiority of the local density approach is hinted at in Figure 2-11, where the solute

particle fraction is plotted as a function of distance from the point attractor. The local

density dependent solute profile is much closer to the target profile than the global

density dependent profile, with average errors (defined by Eq. (9)) of 3% and 20%

respectively. Additionally, we measured ~C" for solute particle insertion, obtaining an all-

atom value of -4.93±0.08 (units of e). The global potential returned -4.57.0.02, while the

local density model yielded -4.92_+0.02, which is identical to the all-atom value within

simulation uncertainty. Thus, it appears that the local density approach is more amenable



to the study of heterogeneous systems. Further application of the local density approach

to study micellar systems will be the subject of a future report.

2.7 CONCLUSION

In this chapter, we have defined a framework to create coarse-grained potentials for use

in implicit solvent simulations in three steps: defining the goals of coarse-graining in

terms of the desired conserved quantities, suggesting a potential that can achieve those

goals, and only then defining a potential optimization scheme. In doing so, we have

demonstrated the need for implicit solvent potentials to include a density dependence in

order to capture fully the behavior at both low and high solute concentrations, especially

in heterogeneous systems. The pairwise portion of the density dependent potential

behaves as a potential of mean force at low concentrations and converges toward the bare

Lennard-Jones potential at high concentrations, with a smooth transition in the

intermediate ranges. Additionally, a "self-interaction" energy is required if one wishes to

fit both the radial distribution function (RDF) and excess chemical potential (ue)

simultaneously.

The resulting potentials are independent of system size, but are in general functions of

both temperature and density. However, for the system studied here, it appears that the

pairwise portion of the potential may be used for temperature and density changes of up

to 10% without violating acceptable standards of accuracy. The excess chemical

potential is more sensitive to changes in state, and thus the self-interaction constant needs

to be updated more frequently than the pairwise potential.



We have demonstrated that one may parameterize the potential based either on a global

density dependence (i.e. the average solute particle density of the simulation), or on a

local density dependence that varies in space and time. For sufficiently large cut-offs in

the definition of local density, the results of a global density dependent fitting method

(such as that described by Lyubartsev 13 or Schommers 1) can be used as an initial guess

for the appropriate local density potential and, depending on the desired accuracy of the

potential, can be used without alteration. If greater accuracy is desired in the local

density potential, the proposed iterative procedure improves results in only a few

iterations.

We note briefly that the use of solute particle density as the parameterization variable is

only one possibility. One could equally well parameterize the potential based on solvent

density. The difference in these two approaches would manifest itself in calculation of

the excess chemical potential. Under parameterization based on solute particle density,

the insertion (deletion) of a solute particle leads to the deletion (insertion) of an implicit

solvent particle. Essentially, the potential treats solute particle insertion as equivalent to

a particle swap, rather than a particle insertion. By contrast, a parameterization based on

implicit solvent particle density would treat a solute particle insertion as a true insertion,

since the density of implicit solvent particles would remain unchanged by the insertion of

a solute particle. The difference in assumption would lead to changes in the self-

interaction energy, but both parameterizations are internally self-consistent. The relative

advantages or disadvantages of these alternate approaches is unclear at this point, and we

simply note that either form can be fit using the optimization schemes described above.



The utility of a local density dependence is limited in systems with a homogeneous

distribution of solute particles because the distribution of instantaneous local densities is

tightly clustered around the average global density. However, for systems of

heterogeneous solute distribution we expect the local density approach to offer superior

performance. This is indeed observed in the system with externally applied potential and

indicates the potential utility of the local density approach for a number of physically

important systems.
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Figure 2-1: Comparison of free energy changes upon particle removal in the (a) all-

particle and (b) implicit solvent, density-dependent cases. The density-dependent

potential introduces a secondary free energy change due to the change in energy models

associated with a change in global average solute density of the system.
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Figure 2-2: Comparison of the RDF generated using the converged potential for Xs=O. 1

(open circles) and the target RDF (solid line).
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Figure 2-3: Pairwise potentials that reproduce the target RDF across a range of global

solute densities, PG. Bare Lennard-Jones potential shown for comparison as dark solid

line (a) solute densities below the total particle density (--, Xs=O.10; ---, Xs=0.40; ---,

Xs=0.70; ----, Xs=0.9 0) (b) solute densities above the total particle density (-, Xs=1.10;

.. , Xs=1.20)
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Figure 2-4: Self-interaction energy, Pu(pG) for p*=0.55,T*=1.35
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Figure 2-5: Comparison of measured (open circles) and target (solid line) radial

distribution functions at Xs=O. 10 for reduced temperatures (a) T*=0.83 (b) T*= 1.08 (c)

T*= 1.58 (d) T*= 1.83. (a) and (b) are below the fitting temperature, (c) and (d) above.
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Figure 2-6: Comparison of measured (open circles) and target (solid line) radial

distribution functions at Xs=0.10 for system volumes (a) V/Vo=0.90 (b) V/Vo=0.95 (c)

V/Vo=1.05 (d) V/Vo=1.10. (a) and (b) are more dense than the fitting density, (c) and (d)

less dense.
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Figure 2-7: Excess chemical potential as a function of system temperature. (Circles, all-

particle simulation results; squares, Xs=1.00; crosses, Xs=0. 10)
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Figure 2-8: Comparison of simulated M# values with target value as a function of pG

(Circles, original simulation using global density values; squares, after optimization; solid

line, all-particle simulation; dashed lines, desired simulation accuracy)
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Figure 2-9: Comparison of simulated RDF with worst fit (Xs=1.00) (open circles) and the

all-particle RDF (solid line).
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Figure 2-10: Comparison of simulated CP values with the exact value for the all-particle

simulation as a function of PG for rD=2 c (Circles, simulation data; solid line, all-particle

simulation; dashed lines indicate an error of 0.06e)
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Figure 2-11: Solute fraction as a function of distance from center of the box (-, all-

atom; ---, local density approach; ---, global density approach)



Property

E = ESolute-Solute = ESolute-Solvent = ESolvent-

Solvent

U =USolute-Solute = Solute-Solute -

Solute-Solute

T* (reduced temperature)

p* (reduced total particle density)

N (number of particles)

re* (cut-off radius)

xS

Table 2-1: Test system properties.

Value

1

1

1.35

0.55

1000

5

[0.1,0.2...,1]



T* (T*-T*fjd/

T*fit

0.83 -39%

1.08 -20%

1.22 -10%

1.49 +10%

1.58 +17%

1.83 +36%

Local solute number

error (%)

+8.0%

+0.3%

+0.1%

+0.1%

+0.2%

+0.2%

Per-particle energy

error (%)

+5.0%

-2.8%

-1.3%

+1.3%

+2.0%

+3.0%

Table 2-2: Transferability of the original effective potential, as measured by the error in

the per-particle energy with changing temperature.



Local solute number error

(%)

+0.1%

±0.1%

+0.2%

+0.3%

Per-particle energy error (%)

-0.2%

+0.1%

+0.5%

+0.9%

Table 2-3: Transferability of the original effective potential, as measured by the error in

the per-particle energy with changing density.

V/Vo

0.90

0.95

1.05

1.10



Case rD=5.0c Case rD= 2 .0a

pc!p Local solute number Per-particle energy Local solute number Per-particle energy

error (%) error (%) error (%) error (%)

0.10 +0.1% -0.0% +0.4% +1.9%

0.20 +0.1% +0.4% +0.3% +2.9%

0.30 +0.1% -0.6% +0.3% +2.6%

0.40 +0.2% -0.3% +0.4% +2.3%

0.50 +0.2% +0.5% +0.2% +0.6%

0.60 +0.1% +0.3% +0.2% -0.2%

0.70 +0.2% +0.2% +0.2% -1.2%

0.80 +0.1% +0.2% +0.2% -1.2%

0.90 +0.2% +0.5% +0.2% -1.0%

1.00 +0.3% +0.6% +0.2% -0.4%

Table 2-4: Errors produced by use of a local density dependent potential. For the case

rD= rc=5a, errors are below the specified tolerance of 1%. However, a smaller cutoff

radius rD= 2or introduces significant errors in the per-particle energy.



3 Evaluating the Transferability of Coarse-Grained, Density

Dependent Implicit Solvent Models to Mixtures and Chains

3.1 INTRODUCTION

Coarse-graining techniques have received growing interest as methods to extend the time

and length scales of molecular simulations. In its most essential form, a coarse-graining

algorithm is a statistical fitting process that systematically reduces the number of degrees

of freedom from that of an all-atom simulation. This reduction is achieved either by

aggregating multiple atomic coordinates into a single coarse-grained (CG) particle or by

the deletion of particles, as in an implicit solvent simulation. A coarse-graining scheme

usually starts with a short simulation in which every particle is explicitly included; this is

used to generate descriptive "data" about the exact system. This simulation is followed

by a matching procedure in which the coarse-grained potential is created and applied to a

system involving a reduced number of particles to reproduce the data of the underlying

all-particle simulation. Various types of data have been used for CG potential fitting,

including forces -7, reversible works, radial distribution functions 9 12 (RDFs), and

experimental results"3 15 . Additionally, a wide variety of fitting procedures have been

proposed, including simplex optimization1 6-21, radial distribution function inversion22-31

wavelet transform32' 33 , and semi-grand canonical Monte Carlo13.

The value of a coarse-grained potential is determined in large part by its utility, or

"transferability", to situations outside of the one to which it was fit, because



transferability is the only way that the upfront cost of performing the fit can be recouped.

As suggested by Johnson et al. 34, transferability can be classified as one of two types:

"observable transferability", and "state point transferability". Observable transferability

(called "representability" by Johnson et al) refers to the ability of a CG potential that is fit

to one set of simulation observables to reproduce accurately another set of simulation

observables. State point transferability, by contrast, refers to ability of a CG potential

that is fit at one thermodynamic state point (temperature, density, system size, and

composition) to predict the same observables at other thermodynamic state points. Both

types of transferability have been previously addressed in the literature.

Lyubartsev 35 examined the observable transferability of a CG potential for lipid

molecules in water. The potential utilized RDF matching, and was subsequently shown

to reproduce reasonably well the density profile of a lipid bilayer. Noid et al.6 showed

that for isotropic, homogeneous materials a force-matched potential will also reproduce

the system RDF. Frequently, however, CG algorithms are used to simulate systems on

time scales that are inaccessible via all-atom simulation3 . In these cases, demonstrating

observable transferability is impossible, since the all-atom simulation cannot be

performed for purposes of comparison. Further, theoretical study by Louis36

demonstrated that observable transferability breaks down even in simple cases; for

example, he showed that potentials fit to system RDFs do not reproduce system energy,

and vice-versa. As a result, he suggested that only more complex potential forms,

incorporating density dependence or many-body interactions, may overcome these

representability problems. Indeed, Merabia and Pagonabarraga 37 have demonstrated that



density dependent potentials avoid some theoretical representability problems. In

previous work38 we demonstrated that a coarse-grained implicit solvent potential

containing density dependent one-body and two-body interactions can replicate both the

system RDF and a measure of system energy across a range of solute concentrations.

State point transferability has been studied many times as well. Henderson's 39 seminal

theoretical work indicates that the pairwise potential that generates a given RDF is unique

to within an additive constant for systems with only pairwise interactions. However, the

RDF of a system depends on the state point; it does not follow that the potential obtained

by RDF inversion at one state point will generate the correct RDF at other state points.

Recent simulations of polymers40 by this approach have exhibited limited state-point

transferability of such potentials. Louis36 has suggested that state point transferability

may be improved in systems containing a local density dependence, since these systems

contain an extra parameter based on the local environment that a CG particle experiences.

It is worth noting that improving one type of transferability is no guarantee of improving

the other.

This chapter examines the state point transferability of the density-dependent implicit

solvent (DDIS) potentials reported in Chapter 2 (This work is also published in Reference

38). There, the relative merits of density-dependent potentials parameterized on either

the local or global solute density were explored; in this chapter, we focus primarily on the

local density-dependent implicit solvent potential, abbreviated as DDIS unless noted

otherwise. The fitting process used in generating the DDIS potentials guarantees the



transferability across a range of solute concentrations. This chapter examines their

performance in other situations. Specifically, it examines transferability to two other

cases - mixtures involving more than one type of solute particle and solutes comprising

chains particles - in implicit solvent. These cases are of particular relevance for the study

of surfactants, because transferability would imply that one need parameterize CG

potentials only for the head and tail solute particles individually, thereby greatly

extending their utility. Therefore, we examine here the limits of transferability of density

dependent potentials for these cases.

3.2 THEORY

3.2.1 Density Notation Conventions

In this chapter, Ps refers to the total density of solute particles, where the subscript "S"

stands for solute, and may include contributions from different solute types. pA, PB, and

pc, respectively, are the densities of A, B, and C-type solute particles only. Finally, p

without subscript refers to the state point density, considering all particles (solute and

solvent). A superscript L indicates that the density is the local density of solute particles;

otherwise, the density refers to the global average density.

3.2.2 DDIS Potential Review

In Chapter 2, we proposed a density-dependent, implicit solvent (DDIS) potential with

the form



E, = p + VEFF ( ',1={,•Mjp,,) (I)

where Ei is the effective energy of particle i, VEFF is a pairwise potential between solute

particles that is an explicit function of solute particle density in the vicinity of particle i,

P.fi, and M is a "self-interaction" term that is also a function of solute particle density.

We also proposed a method to fit such potentials, such that the solute-solute RDF and

solute excess chemical potential, MAex, are reproduced across all solution compositions.

We present here only a brief sketch of the solution algorithm. For further details, the

reader is referred to Chapter 2.38

The algorithm first involves generating pairwise potentials as a function of the global

solute density by performing RDF-inversion 22 for a number of solute compositions.

Assuming that the distribution of local densities is centered about the global density in

these first simulations, the RDF-inversion potential obtained for a given global solute

density can then be taken as representative of the potential to be applied for a particle that

experiences a comparable local solute density, regardless of the actual global density of

the system in which the particle is found. Once the pairwise potentials are determined, an

iterative procedure is used to determine the self-interaction as a function of local solute

density such that the solute excess chemical potential is reproduced across all

compositions. The method does not guarantee fit to an arbitrary accuracy.

The measure of error in the RDF is given by the solute-solute energy, defined as:



rc
EL,, = PAf VAA(r)g (r,A pA )4nr2dr (2)

0

where pA is the density of solute type A, VAA is the exact interaction potential between A

particles, and gAA is the A-A RDF. The difference between EL for a coarse-grained

system and that for the all-atom simulation provides a measure of the error in g(r,pA,pB),

relative to the exact g(r,pA,pB,p) for the explicit system, in units of energy. The error in

the excess chemical potential, MAex, is the difference (in units of ez, the Lennard-Jones

parameter of the solvent) between the target (all-atom) and measured (coarse-grain)

values. In this text, both error measurements are presented in terms of the standard error

over all simulations. Additionally, we supply figures where appropriate comparing the

all-atom and coarse-grained chemical potentials and RDFs, as these offer an intuitive

sense of the closeness of fit.

3.2.3 Mixing Rule

Simulations of solute particle types A and B in solvent Z require a mixing rule to govern

A-B interactions. We propose here a simple yet physically intuitive mixing rule for the

two-body portion of the DDIS potential, which has the benefit of requiring no additional

simulation. The one-body portion of the potential is left unmodified. There are certainly

more complex mixing rules that one could propose; some of these choices are discussed

in Appendix A. We begin by decomposing the A-A coarse-grained potential, V'FF, into

two terms:



SEFF(r L =EFF r ;LVEF AA ; p (3)
SO A  A

where VA is the all-atom potential, and AVAF incorporates all modifications to the all-

atom potential. A similar equation can be written for the B-type solute. We then assume

that the modification of the A-B potential upon coarse-graining follows a simple mixing

rule, such that

VVsr A + A;P L BFF (ri/J;pr ) (4)
B ;p =VL - + + (4)

" AB AB 2 -CA cB

where PL is the local solute density comprising both A and B, and VAB is the A-B all-

atom potential. Whereas in the single solute system, V FF and the one-body term are

both parameterized on the local density of A particles, in the combined system both are

now assumed to be parameterized based on the total solute density psL . Equation (4)

includes explicit reference to VAB, and therefore does not assume a particular mixing rule

for the all-atom potential.

3.2.4 Limits of Transferability

Even if the mixing rules presented above were to produce the correct RDFs for every

system composition, this does not in general guarantee the transferability with respect to

the excess chemical potential. To see this, we extend the analytical framework of

Chapter 2, demonstrated in Figure 3-1, to mixtures of two solute particles. Here, the



excess chemical potential of particle type A in an implicit solvent simulation with global

solute densities pA and PB (ps=PA+pB), is given by:

4AA(PA PB) = B 1.A (PA, PB )+ F2A (PA ,PB ) (5)

where AFl is the free energy change associated with pairwise interactions between the

inserted particle(s) and the system,

AF2,A(PA ,PB)= A(pL= pS)+ (nA - 1) d + n +
dnA 2 nnA (6)

(hA 1)2[AA(ps )]+ (na 1)n [AB(pL)]+ -- [BB(p)]

n = nA B, and

AA(PL -J 6dVAAF(r, ps )4r 2d (7)AA P = Ps A f gA (r, PAp I B)

Here, as in Chapter 2, Equations (6) and (7) create a linkage between the excess chemical

potential, a global property of the system depending on the global solute density, and the

implicit solvent potential, which depends on the local solute density. We do so by

assuming that the distribution of local solute densities is tightly peaked around the global

solute density. This assumption generally holds for a large cut-off radius for the

calculation of the local density and for solute particles that disperse fully in the solvent.



For systems with an uneven distribution of solute particles (for example, in micellar

systems), this assumption can be relaxed by measuring the average local solute density

for a given global solute density.

The excess chemical potentials calculated by particle insertion for both the all-atom and

coarse-grained potentials contain free energy contributions associated with the pairwise

interactions between the inserted solute particle and the other particles in the system

(denoted AFI' and AF1, respectively, in Figure 3-1). The correction term, Equation (6), is

unique to the DDIS framework, and arises because insertion of a solute particle changes

the density (and hence energetic interactions) of the system. This small change in solute

density introduces a differential change in the interactions between existing particles in

the system, which nonetheless produces a significant impact on the excess chemical

potential for high solute densities. Because Equation (6) has a dependence on lBeX(ps),

transferability cannot be assured, since the A potential was fit without knowledge of B-

type particles.

There are, however, situations in which transferability with respect to Ax can be

expected, as will be discussed next. These special cases cover a large number of relevant

simulations.

3.2.5 Special Cases

Transferability with respect to excess chemical potential is more likely for solutions at

low total solute concentration. Equation (6) for AF2,A shows that as nB becomes small,



those terms involving B-type particles will vanish. As these terms vanish, MAex depends

only on terms involving A particles. Since these are the conditions under which the A

potential was fit, yAex should be accurately reproduced. A similar argument can be made

for B-type particles.

A second special case arises when A-type and B-type particles are inserted

simultaneously, in proportion to their existing ratios in the system. The most common

example of such a system is insertion of an AiBj chain into a system of identical chains.

We assume here that the free energies of insertion are additive. In that case, the average

chemical potential of each inserted particle is:

Sex A aex B ex (8)
n n

where nA and nB are the number of A-type and B-type particles in the system,

respectively, and n = nA + nB. By analogy to Equation (5)-(7), Equation (8) can be written

as:

ex =nA F1,A (PAPB ) + -AF (pAps) + n AF2 ,A (PAP ) + -B-AF 2B(PA,ps B) (9)
n n n n

with

AF a(PA = (IA ) + (nA 1B + A(PBs) P) + (na -1)n B AB( + I BB\
(10n n

(10)



and

AF2,B(p,p,)= MB(ps) + (n, - B ) + nA ] + BB(n) + (nB - 1) ABI nA AA n

(11)

If we assume first that AA(n/V) and BB(n/V) are not greatly different from their pure

component values, and second that AB(n/V) is an average of AA(n/V) and BB(n/V), then

Equations (9)-(11) can be simplified to

ex = A A (PA8) + " AFB (A ) +n n

n (n 2 V

The bracketed terms in Equation (12) are simply the correction terms derived for pure

solute system, AF2,A(PS) and AF2,B(pS). Therefore, in this special case, the average excess

chemical potential will be correct.

3.2.6 Solute Enhancement Ratio

One way to characterize the local environment is to calculate the local number of solute

particles, <NL>, defined as:



Rc
<NL > s f g(r;ps)4R r 2d r  (13)

0

We define the solute enhancement ratio as the number of solute particles within a sphere

of radius R, divided by the average number of particles in such a volume. A ratio near

1.0 indicates that the local solute environment is very similar to the global average

environment. We find this metric particularly useful in the discussion of chain

molecules.

3.3 SIMULATION PROTOCOL

Simulation protocols for all-atom and coarse-grained simulations of monomeric solute

are given in Chapter 2. As in that paper, all simulation were carried out in the NVT

ensemble at T*=kBT/Ez=l.35 and p*=-pz3=0.55, where ez and az are the Lennard-Jones

parameters of the solvent Z. Each simulation consisted of 1000 total particles. The

cutoff radius for interactions was set to 5az unless otherwise indicated.

All-atom simulations of chains were carried out in the same manner as the monomeric

all-atom simulations, with the exception of intramolecular degrees of freedom for the

chain simulations. Bond lengths and angles were held fixed at the minimum energy

values using the LINCS41 algorithm, while torsion angles were allowed to rotate freely.

Chains of length two and four were simulated.



Implicit solvent simulations were carried out in the same manner as the monomeric

density dependent, implicit solvent simulations. Nearest bonded neighbor particles were

included in the calculation of local density. In addition to the chain translation moves

used for monomeric simulations, simulations of dimers included rigid body rotation

moves as well, in the proportion 80% translation:20% rotation. For tetramers, we also

included rotation moves about individual bonds, in the proportion 50% translation:20%

rigid body rotation:30% bond rotation. Simulations of monomeric solutes were

equilibrated for 104 cycles, followed by sampling for 3 x 104 cycles. Sampling of dimers

was performed for twice as many cycles, or 6 x 104, and chains of length four or longer

were sampled for 1.2 x 105 MC cycles. Free energy sampling was performed every two

MC cycles, which was sufficient to generate statistically independent samples, as

determined by the autocorrelation function of the measured free energy. RDF sampling

was performed every 100 MC cycles.

3.4 RESULTS AND DISCUSSION

3.4.1 Particle Types Used in this chapter

In the all-atom simulations described in this chapter, particles interact via the truncated

and shifted Lennard-Jones potential, where the potential between particles i andj is

described by:

VrTS(r>;E RciUR)Rc'y) = (14)1i 101 rij > Rc,j



with

1(rjj;EjjG)= 4 (ll- I  (- (15)

where ey and ay are the Lennard-Jones parameters for ij interactions. Equations (14) and

(15) allow for the possibility of different cut-off radii (RcY.) for interaction between

different particle types. e and values of unlike particles are governed by Lorentz-

Berthelot mixing rules.

In Chapter 2, we examined the behavior of a single solute type (hereafter referred to as

"A") in solvent ("Z") at reduced temperature and density T*=- 1.35 and p*=-0.55. Because

the A-type particles were identical to the solvent Z, the behavior of A-Z mixtures was

.identical for all compositions of A. For the work presented here, we find it useful to

introduce two additional solute types, which display "solvent-philic" and "solvent-

phobic" behavior, respectively.

A solute's relative preference for the solvent can be measured by the free energy of

transfer, AGs(Z--S), defined as the free energy change associated with transferring a

single solute particle from a bath of solvent particles Z to a bath of solute particles S.

The free energy of transfer can be calculated from the excess chemical potential of solute

particles:



A-S (Z _3-- 1 -= ,Ssx P0 (16)AS _=O (16)

By varying particle eii's and Rcy's, we created a "solvent-philic" particle (type B) and a

"solvent-phobic" particle (type C), with interaction parameters given in Table 3-1. Solute

type B is distinguished by its reduced Es of 0.5, compared to ez of 1.0. Solute type C

interacts with the solvent Z via a reduced cutoff radius of 1.84rz, with C-C and Z-Z

interactions maintaining the usual 5.0az cutoff.

Table 3-1 shows the solute enhancement ratio for all three types of solute particles at

ps/p=-0.5. The specific Eii's and Rc.ý's used were selected such that B-type and C-type

solute enhancement ratios were close to 1.0 for all compositions. This indicates that both

solute types, while expressing relative preference for like or unlike interactions, are

completely miscible in solvent at all compositions, and validates the use of Equations (6)-

(7).

3.4.2 DDIS Potentials

Chapter 2 previously reported the DDIS potential for the coarse-graining of A-type

particles in solvent Z, where the A and Z particles were identical. Here, we followed the

same fitting procedures to produce DDIS potentials for B-type and C-type particles in the

same solvent Z. Figure 3-2 shows the fitted values of the excess chemical potential

compared to the all-atom simulations. Figure 3-3 shows the worst fit RDFs for each

system. In general, the accuracy of fit achieved for the B-type particles is comparable to



the results for A-type particles reported in Chapter 2, and both are superior to that

obtained for the C-type potentials. The standard error in P"x for B-type particles was

0.04ez, versus 0.11 ez for C-type particles. Similarly, the EL standard error for B-type

particles was 0.005ez, versus 0.06ez for C-type particles. The worst case RDFs for the B-

type and C-type particles are shown in Figure 3-3. The lower quality of fit attained for

the C-type particles is perhaps because of the large discrepancy in cut-off radii between

like and unlike particles. In both cases, however, the visual examination suggests the fit

is quite good.

Figure 3-4 compares the two-body portion of the coarse-grained potentials for the A-type,

B-type, and C-type potentials at a local density of pL/p=0.5. All three potentials display

the same general form, with a secondary local maximum in the potential. The "solvent-

philic" B-type particles show a shallower attractive well when compared to the A-type

particles, while the "solvent-phobic" C particles have a deeper well. This is consistent

with the form of the pairwise implicit solvent potentials used in the Effective Energy

Function42.

Figure 3-5 shows the one-body portion of the DDIS potential for A,- B-, and C-type

particles. As with the two-body portion, all the potentials share certain general

characteristics. As solute density goes to zero, the value of the one-body term approaches

s"(Ps/p=O). The profile is relatively flat for low solute densities, before rising rapidly as

the solute fraction approaches 1.



3.4.3 Mixtures

We investigated the behavior of A/B and A/C mixtures in implicit solvent Z. The

analysis of this system is simplified by the fact that the A and Z particles are identical,

which means that the system can be expressed solely as a function of pB for the A/B

system, and of pc for the A/C systems. Considering A/X/Z systems, where X=B or C, is

equivalent to considering A/X systems with partially coarse-grained A.

In this chapter we performed simulations in increments of 10% in solute concentration.

As a result, there were 55 possible combinations of A/X/Z mixtures. To reduce

computational time, we simulated only a representative fraction of these systems. That

subset consisted of systems in which the total solute density, ps, was 20%, 50%, or 90%

of the total particle density, and constitutes 13 of the 55 mixture fractions possible.

Additionally, we measured only MeX(PA,px) (and not CAeX(PA,PX)) for each system, to

further reduce computational time.

The ability of the DDIS potential to reproduce the all-atom RDF's for both systems was

very good. For the A/B/Z mixtures, the standard errors in EL were EL,M=O0.013 ez and

ELBB=O.OO5ez, which compare favorably with the pure-component errors of

EL,A=O.015EZ and EL,BB=O.OO5EZ. In other words, the RDF accuracy of the coarse-

grained mixtures is comparable to the accuracy of the coarse-grained pure systems.

Results were similar for the A/C/Z mixtures. Here, the standard errors were

EL,AA=0.010ez and ELcc=0.06ez, compared to the pure component errors of EL.~=0.015ez

and EL,Cc=0.06EZ. Figure 3-6 shows the worst reproductions of all-atom RDFs by the



DDIS potentials for the A/B/Z and A/C/Z potentials, which demonstrates visually the

similarity of RDFs.

Figure 3-7 examines the transferability with respect to excess chemical potential for the

A/B/Z and A/C/Z mixtures at the three total solute concentrations. As expected, the

transferability with respect to excess chemical potential is not as good as that with respect

to the RDF, for the reasons laid out in the theory section. The standard error in

BSeX(pA,pB) for the A/B/Z system is 0.47ez, and the standard error in MCeX(pA,pB) for the

A/C/Z system is 0.63ez, which are both substantially higher than the pure-component

errors of 0.04ez and 0.11 ez. Nevertheless, the performance of the DDIS potentials at low

solute concentration is quite good. The chemical potential errors for ps/p=0.2 are 0.01 ez

and 0.21 ez, which are comparable to the error in the pure component systems.

3.4.4 Chains

To study the transferability of DDIS potentials to systems of chains, we examined the

behavior of dimers and tetramers of A, B, and C solutes in solvent Z. These simulations

were performed over a range of solute densities from ps/p=[O. 1,1.0] in increments of 0.1,

which were the same solute densities at which the potential was fit. Bond lengths were

held fixed at 1.22az, which is equal to the average separation between particles in the

monomeric simulations. We selected this bond length so that the total local density of

particles (solute and solvent) remained close to the fitting density. For shorter chain

lengths, total local density was higher than in the monomeric case. Angles were held

fixed at 112 degrees. Errors in Mex were measured on a per-particle basis for chain



simulations, to permit comparison to the errors measured in monomeric solute

simulations.

We first examined the all-atom and DDIS errors in EL for monomers, dimers and

tetramers of A, B, and C. These results are summarized in Table 3-2. For all three

particle types, the errors in the reproduction of all-atom RDFs increased with increasing

chain length. It appears that, for the systems studied here, each doubling of the chain

length results in an approximate doubling in the error of EL, although the progression is

not entirely smooth. For example, the accuracy appears nearly equal for dimers and

tetramers of B. Figure 3-8 shows the worst case reproductions of all-atom RDFs by the

DDIS potentials for tetramers for each particle type. At the tetramer level, one can begin

to see visual disagreement between the all-atom and coarse-grained RDFs. In general,

the locations of the peaks in the RDF remain correct. Errors arise in maxima and minima

of g(r) that are systematically too high or too low.

Figure 3-9 compares the all-atom and DDIS results for "ex per particle for monomers,

dimers and tetramers of A, B, and C. The standard errors are given in Table 3-3. For all

particle types, the errors increased with increasing chain length. As is the case in

mixtures, chemical potential transferability is better at low solute concentrations. The

reason that transferability breaks down at higher solute concentrations is related to the

two-body correction factor, Equation (7), which contains the solute-solute RDF. As

chain length increases, the solute-solute RDF becomes less similar to the RDF at the



fitting conditions, and as a result transferability degrades. At low solute densities, the

influence of the two-body correction is smaller, and M' transferability is better.

In Chapter 2, we demonstrated that a potential with local density dependence performed

better in reproducing the RDF behavior of a system with solute aggregation than did a

potential with a global density dependence. We hypothesized that this was because the

local density dependence permitted the potential to be responsive to local variations in

the environment around the solute at every time point of the simulation. In this chapter,

we tested if this result was applicable to other systems with solute aggregation, namely

dimers and tetramers of C-type solute in solvent Z. As discussed previously, C-type

particles are completely miscible in solvent Z in the monomer state. However, longer

chains of C-type particles aggregate substantially. At ps/p=0.5, the solute enhancement

ratio for monomers is 1.01, indicating a nearly homogeneous dispersion. For dimers, the

solute enhancement ratio rises to 1.09, and to 1.21 for tetramers. This solute

enhancement cannot be attributed to the presence of solute particles held in close

proximity by bonding, as chains of A-type particles do not experience an equivalent

increase in solution enhancement ratio. Instead, the local composition is more

concentrated in solute than is the system in which the coarse-graining was performed due

to chain aggregation. Aggregation is expected because increasing the chain length

reduces molecular entropy, and thus the driving force for solute particle dispersion in

solution.
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Figure 3-10 compares the performance of the local DDIS potential of C-type solutes

dispersed in Z to the equivalent global density-dependent potential. The global potential

was tuned to fit the RDF of monomeric solute particles at a given solute density, and then

tested on chains at the same solute density. The local potential shows superior RDF

transferability when compared with the global potential. The slope of the standard error

line as a function of chain length is smaller for the local potential, and for tetramers the

absolute value of the error is smaller than for the global potential.

Figure 3-11 examines the all-atom RDF at a given solute density, and compares the

results to those obtained using the local and global potentials. The results demonstrate

that the global density-dependent potential does not correctly capture the solute

aggregation effect. The value of g(r) is systematically too high for all r. For the

composition shown in Figure 3-11, the all-atom ratio is 1.47, and the local potential

yields a ratio of 1.43. By contrast, the global potential yields a solute enhancement ratio

of 1.76.

3.4.5 Chains of Mixed Composition

Finally, we examined a system of chains of mixed composition. This system invokes a

combination of mixture and chain transferability. The surfactants studied here are A1B1

molecules in solvent Z. The bond length is set to 1.22rz, as in the foregoing section on

chains, and is held constant throughout the simulation.
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Transferability with respect to tex was quite effective, with a standard error in M" of

0.13ez, as shown in Figure 3-12. This value is substantially below the errors found in

mixtures of monomeric A and B (0.47ez) and validates our predictions from the

theoretical section. The RDF transferability is also good, with standard errors in EL,AA

and EL,BB Of 0.012ez and 0.008ez, respectively. These results are comparable to the

standard error at the state point of fit.

3.5 CONCLUSION

In this chapter, we developed coarse-grained DDIS potentials for pure solute particles,

and investigated their transferability to mixtures and chains. For mixtures, transferability

with respect to the solute-solute RDF is very good. For the mixture systems studied in

this chapter, the RDF standard errors were equal to those at the state point of fitting,

indicating no loss of accuracy. The transferability with respect to ftx in mixtures is good

for low solute concentrations, but at high solute concentrations the transferability breaks

down. This breakdown is due to the unique nature of the DDIS potential, in which

particle insertion causes a change in local density for some fraction of the existing system

particles. The parameters of the DDIS potential are carefully tuned to account for this

energy change at the state point of fitting. At other compositions, the energy change is

different; as a consequence, the predictions of excess chemical potential are less accurate.

For the systems of chains studied, we found that errors in RDF fitting increased linearly

with chain length. Increasing chain length was also associated with increases in the ex

error. Additionally, we find that the local DDIS potential produced superior RDF
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transferability when compared to comparable global density-dependent implicit solvent

potentials for a chain system with solute aggregation. The most likely reason for this

improved transferability is that the local density dependence captures solute enhancement

effects more accurately than the global potential. Finally, we found that chains of mixed

composition had Mex transferability that was superior to mixtures of monomers of

equivalent composition. This is because the simultaneous insertion of both particle types

removes the biases inherent in mixed systems.

The transferability characteristics described in this chapter indicate that DDIS potentials

can function effectively for a wide variety of systems, including mixed composition chain

molecules at low concentrations. Given these results, we feel confident in suggesting that

the potentials would be useful in the simulation of surfactant systems. We intend to

report results for such systems in the near future.

3.6 APPENDIX

The performance of the basic mixing rule described in this chapter is generally good.

The lone exception is in its performance with respect to Mex in systems of mixtures. We

discuss here a more complex mixing rule that can improve transferability of potentials.

Equations (5)-(7) provide a framework to predict the excess chemical potential,

MAeX(PA,PB), based on the self-interaction energies, MtA and MB. Therefore, Equations (5)-

(7) can be used to optimize the values of the self-interaction energies based on any

number of parameterizations. Here, we show that MA(pAL, PBL) and MB(pAL ,pBL ) can be
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parameterized as a two-dimensional function of both PAL and pBL. To do so, we propose

adding a cubic correction term to the pure component one-body terms, so that

SA(Pa,p = purep + ) + gub (pL, p) (Al)

with

cub (PAL,p)= c1 PAL P + C 2  (P) 2 + L C4(pA)
3 + CL () 2p L(p2)

2 
C+ .(. 3C

(A2)

A similar equation can be written for the B•'s. If values of lexA, MexB , AF1,A, and AF;,B can

be measured or estimated across as range of densities (pA,PB); then the resulting system of

18 unknowns can then be optimized without the use of additional molecular simulations.

We elected to use a cubic correction instead of the simpler quadratic because

optimization over Equations (5)-(7) indicated a slightly superior fit with the cubic

correction. However, quadratic correction would likely provide adequate results in many

cases.

We examined the performance of this new algorithm in A/B/Z mixtures, and compared

the results to the original mixing rule. A subset of the results is shown in Figure 3-Al. It

indicates that the two-dimensional density dependence improves transferability

substantially. The standard error with respect to eP is 0.18 ez for the 13 points studied,

compared to 0.4 7 ez for the original mixing rule.
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Figure 3-1: Comparison of free energy changes upon particle insertion in the (a) all-

particle and (b) density-dependent, implicit solvent cases. The density-dependent

potential introduces a secondary free energy change due to the change in energy models

associated with a change in global average solute density of the system.
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Figure 3-2: Comparison of excess chemical potential in all-atom (solid line) and coarse-

grained (circles) simulations. Left: B-type particles in solvent Z. Right: C-type particles

in solvent Z. The dashed lines demarcate errors of 0.06EZ, and are provided as a guide to

compare the relative errors between the two coarse-grained potentials.
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Figure 3-3: Comparison of worst-fit solute RDF in all-atom (solid line) and coarse-

grained (circles) simulations. Left: B-type particles in solvent Z. Right: C-type particles

in solvent Z.
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Figure 3-4: Coarse-grained two-body term for local solute density ps/p=0.5 (-A,--

B,...C)
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Figure 3-5: Coarse-grained one-body term as a function of local solute density (Circles:

A-type particles, Squares: B-type particles, Crosses: C-type particles)
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Figure 3-6: Worst case RDF reproduction for mixtures. Left Side: A/B/Z mixture, Right

Size: A/C/Z mixture (Solid Line - all-atom results; Circles -DDIS results).
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Figure 3-7: Comparison of coarse-grained and all-atom excess chemical potential for

mixtures, broken down by total solute density, ps. Left Side: UBex(pA,pB) in A/B/Z

mixtures. Right Side: Mc"e(pA,PC) in A/C/Z mixtures. (Solid Line - All-atom values;

Circles - ps/p=0.2 ; Squares - ps/p=0.5 ; Crosses - ps/p=0.9 ).
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Figure 3-8: Worst case RDF reproduction for tetramers of solute particles (a) A-type, (b)

B-type, (c) C-type. (Solid Line - All-atom; Circles - DDIS results).
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Figure 3-9: Comparison of coarse-grained and all-atom excess chemical potential for

monomers, dimers, and tetramers as a function of solute density, ps. (a) A-type, (b) B-

type, (c) C-type. (Solid Line - All-atom; Circles - Monomers; Squares - Dimers;

Crosses - Tetramers).
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Figure 3-10: EL standard error (units of EZ) as a function of chain length for local DDIS

and global density-dependent potentials. (Circles - Local potential; Squares - Global

potential).
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Figure 3-11: Comparison of C-C particle RDFs for all-atom, local potential, and global

potential for C-type tetramers in solvent Z at pc/p=0.2 (Solid Line - all-atom; Circles -

global potential; Squares - local potential).
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Figure 3-12: All-atom (solid line) and coarse-grained (circles) ty(ps) for AIB1 molecule.
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Figure 3-13: Comparison of measured lexB(PA,PB) transferability with and without

mixture correction function for ps/p=0.9. Results indicate that parameterizing the self-

interaction energy on the density of both particle types improves transferability, and that

allowing the pure-component values to vary improves transferability even more (Straight

line - All-atom values; Squares - original mixing rule; Circles - modified mixing rule).
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Particle Type eii aii Ro/au (Like) Rc/ai (Unlike) AGs(Z-S) <NL>/<NL>A

A 1.0 1.0 5.0 5.0 0.0 1.00

B 0.5 1.0 5.0 5.0 1.29+0.05ez 1.00

C 1.0 1.0 5.0 1.84 -2.71-0.08Fz 1.01

Table 3-1: Parameters for solute types used in this chapter. B-type solute is "solvent-

philic", as indicated by the positive free energy of transfer. C-type is "solvent-phobic",

as indicated by a negative free energy of transfer.
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ELIEz N=I N=2 N=4

A 0.015 0.04 0.06

B 0.005 0.010 0.011

C 0.06 0.14 0.28

Table 3-2: Values of EL for systems of monomers (N=1), dimers (N=2), and tetramers

(N=4) for chains of A, B, and C type solute particles.
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P/Xez N=I N=2 N=4

A 0.04 0.19 0.27

B 0.04 0.06 0.11

C 0.09 0.13 0.23

Table 3-3: Values of M" for systems of monomers (N=1), dimers (N=2), and tetramers

(N=4) for chains of A, B, and C type solute particles.
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4 Simulation of Surfactant Systems using Coarse-Grained,

Density Dependent Implicit Solvent Models

4.1 INTRODUCTION

A surfactant molecule is composed of a head group that is compatible with the

surrounding solvent, for example water, and a tail group that is not. Above a critical

concentration in solution, the surfactant molecules spontaneously aggregate into

structures known as micelles, in which the head groups surround and shield the tail

groups from the solvent.

Theoretical approaches1-2 treat micellization as arising from a set of competing free

energy effects. The transfer of hydrophobic tails from melt to solution promotes micelle

formation, but is offset by a surface energy penalty and the loss of surfactant translational

entropy. These competing effects create a well-defined free energy minimum as a

function of aggregation number, so that the resulting micelles are of nearly uniform size.

The concentration at which surfactant molecules spontaneously form micelles is referred

to as the critical micelle concentration, or CMC, and in theoretical treatments is directly

related to the aforementioned free energy considerations. Both the CMC and the average

aggregation number are important properties that characterize the self-assembling nature

of surfactants and for which we desire efficient, predictive capabilities.
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The literature on particle-based surfactant simulations contains a diverse set of particle

representation approaches3-22, which can be grouped according to two key design

decisions: the level of detail used to describe the surfactant molecule itself, and explicit

or implicit treatment of the solvent. Explicit solvent simulations3- 19 are computationally

burdensome because of the low value of experimentally measured CMC's (10- 6- 10-2 M).

At these concentrations, a significant majority of the simulation cell is composed of the

relatively uninteresting solvent. As a result, the direct measurement of the CMC by

explicit solvent simulations is impractical, even for very coarse-grained surfactant and

solvent representations. Instead, the CMC and aggregation number distribution are

generally determined indirectly, through the use of free energy simulations 10' 14' 15' 18

By reducing the number of particles represented, and thus also the computational burden,

implicit solvent simulations of surfactant systems allow investigation of much longer

time and length scales. By this approach, Lazaridis et al.2 1 studied the formation of

dodecylphosphocholine (DPC) micelles using the Effective Energy Function 23 (EEF 1)

implicit solvent model. The simulated CMC was close to the reported experimental

value. Von Gottberg et al.22 studied A2B2 surfactants in implicit solvent using stochastic

dynamics (SD), in which each surfactant bead was intended to represent a Kuhn segment

(approximately ten methylene groups) of a polymer chain. They successfully simulated a

fully equilibrated micelle size distribution at multiple surfactant concentrations, from

which they were able to determine the system CMC.
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In this paper, we employ our previously developed coarse-graining algorithm to generate

density-dependent, implicit solvent (DDIS) potentials 24' 25 for a model surfactant and test

their ability to describe surfactant aggregation. The DDIS potentials are specifically

derived to reproduce the chemical potentials and radial distribution functions (RDFs) of

an underlying all-atom simulation. The advantage of creating an implicit solvent energy

model via coarse-graining is that the results have a clear correspondence to an underlying

all-atom energy model that is presumed to be a more accurate representation of the

system.

To investigate the applicability of DDIS potentials to surfactant systems, we create and

test such potentials for a model surfactant in a Lennard-Jones solvent. The model is a

derivation of Smit's 11- 13 well-known surfactant model, for which Pool and Bolhuis

recently estimated the CMC and aggregation number distribution by means of free energy

calculations 18. As in previous chapters, we derive the DDIS potentials from simulations

of monomeric solutes in explicit solvent. Our potentials are not derived from mixtures of

solute types nor chain simulations. We made this decision because it represents the

simplest set of simulations from which to derive DDIS potentials, and allows us to

establish a "baseline" transferability for the DDIS potentials against which alternative

derivation simulations might be tested. We use the results of these previous works to test

the accuracy and transferability of our DDIS potentials to this surfactant model.
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4.2 THEORY

4.2.1 Density Notation Conventions

In this work, ps refers to the total density of solute particles, where the subscript "S"

stands for solute, and may include contributions from different solute types. p is the

density of type I solute particles only. {p} refers to the set of pi that includes every

particle type in the system. Finally, p without subscript refers to the state point density,

considering all particles (solute and solvent) explicitly. A superscript L indicates that the

density is the local density of solute particles; otherwise, the density refers to the global

average density.

Particles of different size contribute to the density in proportion to their volume, which is

consistent with the Effective Energy Function23 implicit solvent model. This convention

is chosen because each solute particle reduces the local solvent density roughly in

proportion to its volume. Thus, the solute density in a specified volume V is

Ps = I- ri  (1)
SV- =1 w

where N is the number of solute particles in the specified volume, oa is the Lennard-Jones

radius for particle i, and ow is the Lennard-Jones radius of the solvent.
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4.2.2 DDIS Potential Review

In Chapter 2, we proposed a density-dependent, implicit solvent (DDIS) potential with

the form

E = (pi)+ VF(r,pi) (2)

where Ei is the effective energy of particle i, VEFF is a pairwise potential between I- and

J-type solute particles that is an explicit function of solute particle density in the vicinity

of particle i, P,4i, and y is a "self-interaction" term that is also a function of solute

particle density. The first term serves to capture the effects of solute-solvent and solvent-

solvent ineractions in a mean field approximation, while the second term represents

solute-solute interactions that are mediated by solvent. The dependence of both terms on

local density allows the potential to be cognizant of the greater or lesser influence of

solvent in the different regions of a system that is inhomogeneous on the solute length

scale, such as that which arises in a system of surfactants that self-assemble into micelles.

We also proposed a method to derive such potentials from simulations of solute type I in

solvent. This fitting was performed such that the solute-solute RDF and solute excess

chemical potential, MFI, are reproduced across all solution compositions. For details of

this fitting procedure, the reader is referred to Chapter 2. The information is also

available in Ref. 24.
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Mixtures of multiple particle types are treated by a simple mixing rule in which like

particle interactions are unmodified, but the local density used is the total local solute

density. DDIS interactions between dissimilar particles are derived from the interactions

between pairs of identical particles through the equation

VEFF( r iL f AVIEFF(r/,;p) AVEFF( ;) (3)

'Sj k,r 2  E, e)

where eIj and aoj are the Lennard-Jones parameters for I-J interactions, Vjj(r) is the I-J

all-atom potential, and

AVEFF r )= V r VEFF r
Si ;Ps = ") ;Ps (4)

Chapter 3 discusses the mixing rule and its applicability further, and is also available in

Ref. 25.

4.2.3 Simulation Metrics

The measure of error in the RDF is given by the solute-solute energy, defined as:

rC
ELIJ = p•pj f Vu (r)g, (r,{ p}) 4.rr 2dr (5)

0
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where pi is the density of solute type I, VNj is the exact interaction potential between I-

and J-type particles, and gzJ is the I-J RDF. The difference between EL for a coarse-

grained system and that for the all-atom simulation provides a measure of the error in

g(r, {p}), relative to the exact g(r, {p}, p) for the explicit, all-atom system, in units of

energy. The error in the excess chemical potential of particle type I, fex, is the difference

(in units of Ew, the Lennard-Jones parameter of the solvent) between the target (all-atom)

and measured (coarse-grain) values. In this text, both error measurements are presented

in terms of the standard error over all simulations. Additionally, we supply figures where

appropriate comparing the all-atom and coarse-grained chemical potentials and RDFs, as

these offer an intuitive sense of the closeness of fit.

A solute's relative affinity for the solvent can be measured by the free energy of transfer,

AG(W--I), defined as the free energy change associated with transferring a single solute

particle from a bath of solvent particles W to a bath of solute particles I. The free energy

of transfer can be calculated from the excess chemical potential of solute particles:

AG, (W -. I) = ex PI = 1) P_ =e (6)

We characterize the local solute environment by calculating the local number of solute

particles, <NL>, defined as:

Rc

< NL >= , f g(r;p, )4,ar 2dr (7)
0
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We define the solute enhancement ratio as the number of solute particles within a sphere

of radius Rc divided by the average number of particles in such a volume. A value less

than one indicates a local depletion in solute density, while a value greater than one

indicates a local enhancement. A value near 1.0 indicates that the local solute

environment is very similar to the global average environment.

4.2.4 Surfactant Theory

Statistical thermodynamic theories of micelle formation attempt to estimate the critical

micelle concentration based on the free energy of micelle formation. The law of mass

action',2 says that the mole fraction of micelles of size n, X,, is given by:

X, = (X)" exp[-Pngmic(n)] (8)

where XI is the mole fraction of free surfactant (i.e. surfactants not bound in a micellar

state) and gmic(n) is the free energy of transferring a surfactant molecule from solution to

a micelle of size n. Equation (8) assumes that the translational entropy of surfactants in

free solution can be equated to that of an ideal gas, and the equation is generally valid for

spherical micelles at low concentrations 22. The critical micelle concentration, XCMC,

represents the free surfactant concentration at which significant micellar aggregation

occurs, and can be expressed in free energy terms as:
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Xcc = exp[IgMc (n *)] (9)

where n* is the most probable aggregation number. In contrast to statistical

thermodynamic theories, molecular simulation can be used to measure the CMC directly,

and the mole fraction of free surfactant can then be used to estimate the free energy of

micelle formation.

Israelachvili et al.2 6 have suggested that the shape adopted by a micelle depends on the

value of the dimensionless packing parameter, v/aol , where v is the volume of the

solvent-phobic tail, ao is the head-group area, and Ic is the length of a fully extended

surfactant molecule. Micelles in which the value of the packing parameter is less than

1/3 generally adopt a spherical configuration, while those in which the packing parameter

is greater than 1/3 but less than 1/2 adopt an extended, cylindrical shape in which the

micelle can grow indefinitely along one dimension. In general, Israelachvili's theory

predicts that, for a given head group, increasing the length of a surfactant molecule's tail

group tends to promote the transition from spherical to cylindrical micelle growth

because the tail volume v grows more quickly than the length lc. In addition, increasing

the volume of the surfactant tail group (or equivalently, decreasing the packing density of

the tail group) while keeping chain length constant also tends to promote cylindrical

micelle growth.
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4.3 SIMULATION PROTOCOL

4.3.1 All-Atom Model

The underlying all-atom model described by Smit11 -13 is composed of three basic particle

types: head, tail, and solvent particles, which are hereafter referred to as H, T, and W

respectively. These particles interact via the truncated and shifted Lennard-Jones

potential, where the potential between particles i andj is described by:

V1i(r;Eu )=jo (Vrj-;E-0,0a)- VJ (Rc, ;Eoija) r( 1 Rc, (0)
0 r > Rc,ij

with

12 6
VL r;;ei,) = 4E or i (11)

where Ej and ay are the Lennard-Jones parameters for ij interactions. e and a values of

dissimilar particles are governed by Lorentz-Berthelot mixing rules. Lennard-Jones

parameters for all three particle types are given in Table 1. Equations (10) and (11) allow

for the possibility of different cut-off radii (Rc,) for interactions between different

particle types. (Rciy/ia)=2.5 for W-W, H-W, and T-T interactions, and (Rc.,/rij)=21/6 for

T-W, H-H, and H-T interactions. These values were chosen to give the H particles a

"solvent-philic" behavior, and the T particles a "solvent-phobic" behavior. As indicated

in Table 1, AGH(W---H) is positive for H-type particles, indicating that H-type particles
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prefer a solvent environment relative to one composed of other H-type particles.

Conversely, AG7(W-T) is negative for T-type particles.

Table 1 shows the solute enhancement ratio for all three types of solute particles at

pz/p=0.5 . These results indicate that H-type particles experience a local depletion of

other H-type particles, while T-type particles experience a substantial local enhancement

of other T-type particles. The local depletion of H-type particles arises because the

radius of H-type particles (2wr) creates a large excluded volume. As a result, the total

density within the cutoff radius (5crw) is less than the average solute density.

Surfactant molecules are composed of a single H-type particle connected to multiple T-

type particles in a linear fashion, denoted H1TM, where M is the number of T-type

particles that form the tail. Bonded interactions between I- and J-type particles are

governed by a harmonic potential:

Vbond (rij , kbond (i - eqJ 2  (12)

where kbon=5000e/cw2 is the harmonic spring constant, and req,j=O-ri is the equilibrium

bond length. The bonded interaction applies only to nearest neighbor particles in the

surfactant chain.
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4.3.2 Simulation Details

Simulation protocols for all-atom and coarse-grained simulations of monomeric solute

are given in Chapter 2. Monomeric solute simulations were carried out in the NVT

ensemble at T*=-kBT/Ew=1.0 and p*=-pw 3=0.60, where Ew and or are the Lennard-Jones

parameters of the solvent W.

All-atom simulations of surfactant molecules were carried out in the same manner as the

monomeric all-atom simulations, and implicit solvent simulations of surfactants were

carried out in the same manner as the monomeric DDIS simulations. Nearest bonded

neighbor particles were included in the calculation of local density. In addition to the

atom-level translation moves used for monomeric simulations, simulations of surfactants

included rigid body chain translation moves, rigid body chain rotation moves, and

rotation about individual bonds. The proportion of these moves was 20% atom

translation:60% chain translation: 10% chain rotation: 10% bond rotation. Simulations

were equilibrated for 104 cycles, followed by sampling for 4 x 105 cycles. Free energy

sampling was performed every two MC cycles, which was sufficient to generate

statistically independent samples, as determined by the autocorrelation function of the

measured free energy. RDF sampling was performed every 100 MC cycles.

Micelle aggregation number was measured by a clustering algorithm. Surfactant chains

were designated as clustered if the distance between their centers of mass was less than

1.5 aT, where or is the Lennard-Jones radius for tail particles.
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4.4 RESULTS AND DISCUSSION

4.4.1 DDIS Potentials

DDIS potentials were generated for H- and T-type particles in implicit solvent W as

described previously 24'25. Figure 4-1 demonstrates the ability of the H-H and T-T DDIS

potentials to reproduce the excess chemical potential of the equivalent all-atom

simulations across a range of solute densities. The standard error in ftex for H-type

particles is 0.06e, versus 0.33e for T-type particles. The larger relative error in the

solvent-phobic T-type fitting is consistent with our previous work25.

Figure 4-2 shows the worst-case reproductions of the all-atom RDFs by the DDIS

potentials for the H-type and T-type potentials. As with the excess chemical potential,

the level of reproduction obtained for the H-type potential is much better than for the T-

type potential. The standard errors in EL were EL,H=O.O 1e and EL,7= 2 .3 E. The T-type

DDIS potential appears to produce a level of solute aggregation that is too low relative to

the all-atom potential. While the solute enhancement ratio of the all-atom and DDIS

potentials is nearly identical in the case of H-type particles (0.90 and 0.92, respectively),

they differ tremendously in the case of T-type particles (2.5 and 1.3, respectively). The

RDFs generated by the DDIS potential contain first and second peaks at the same radii as

the corresponding RDFs generated by the all-atom potential. However, in the case of T-

type particles, these peaks are strongly attenuated.

The failure of the T-type DDIS potential to reproduce the all-atom RDF may be related to

the small system size used in the fitting process. For the smallest system size (100 T-type
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particles in 900 implicit W) a droplet of T particles forms with a radius smaller than the

density cutoff of Srw. Subsequent tests on a bilayer of T particles revealed more accurate

reproduction of the RDF for the same fitted potential. Furthermore, the quality of RDF

reproduction improves as the T particle density increases. Figure 4-3 compares the RDFs

of T-type particle in implicit solvent particles for pr/p=O. 1, 0.5 and 1.0. As the number

of T-type particles in the simulation increases, so too does the degree of agreement

between the all-atom and DDIS RDFs. Figure 4-3 also demonstrates that the DDIS

potential predicts correctly that the magnitude of the first peak increases as solute density

decreases, as is observed in the all-atom results. However, this increase is attenuated in

the DDIS potential.

Figure 4-4 compares the two-body portion of the coarse-grained potentials for the H-type

and T-type potentials at a local density of pl//p=0.2. At short distances, the "solvent-

philic" H-type particles experience a repulsive potential where the attractive well would

typically reside. The shape of the H-type potential is reminiscent of the class of

potentials referred to as "Hard Core/Soft Shoulder" (HCSS) interactions2728. However,

the system behavior generated by the repulsive soft shoulder in this potential differs from

that of previous HCSS studies. There, the potential was used at low temperatures, and

the repulsive plateau promoted local particle aggregation. In this work, the soft shoulder

models the first neighbor shell of implicit solvent, and actually encourages local particle

depletion.
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In contrast to the H-type particles, the T-type particles experience an attractive well

deeper than the all-atom Lennard-Jones potential, which is responsible for increasing

solute aggregation as the density of T-type particles decreases. These trends are

consistent with Chapter 3.

Figure 4-5 shows the one-body portion of the DDIS potential for H- and T-type particles.

As solute density goes to zero, the value of the one-body term approaches Yuf(pi/p=O).

The profile is relatively flat for low solute densities, changing rapidly as the solute

fraction approaches 1. The one-body term increases for H-type particles as density

increases, indicating that it is energetically unfavorable to achieve high local densities. In

contrast, the one-body term for T-type particles decreases, further promoting aggregation.

4.4.2 Surfactant Results

We performed multiple simulations of 216 surfactant molecules across a range of

densities. These simulations demonstrate the true benefit of the implicit solvent

approach, since the equivalent all-atom simulation is not computationally feasible. From

these simulations, we attempt to determine the system CMC and average micelle

aggregation number. Pool and Bohuis' s estimated the CMC's for H1T4 and H 1T5

surfactants using of semi-grand canonical simulations and found values of 5x 10-6 0w 3,

and 6x 10-7 a 3, respectively. These results are given in Table 2. Due to the presence of

explicit solvent, Pool and Bolhuis were not able to directly observe these values, but

required a thermodynamic framework to evaluate the results. Given the differences in

simulation type, direct comparison of their results and ours is not possible, but the results

provide reasonable guidelines.
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Figure 4-6 shows the number density of free surfactant molecules, pl, as a function of the

total number density of surfactants, ps. The solid black line is the 450 line corresponding

to no aggregation. As Figure 4-6 demonstrates, the free surfactant density initially

increases along the 450 line, but deviates from it as total surfactant density is increased.

This deviation indicates the formation of micellar aggregates. The presence of micelles

can be visually confirmed, as is shown in Figure 4-7. The decrease in pl above a certain

Ps level is consistent with the findings of von Gottberg et al.22, who demonstrate that

such a decrease is due to excluded volume effects.

To calculate critical micelle concentration, we follow the convention of von Gottberg et

al.22, who define the CMC as the maximum free surfactant concentration across all

simulations. The values obtained for H 1T4 and H 1T5 surfactants by this method are 2x 10-

4 aw 3, and 1.9x10-5 o -w 3, as shown in Table 2. These CMC values are 20-30 times greater

than the values reported by Pool and Bolhuis. We attribute the discrepancy to the

approximate nature of the fitting conditions used to generate the DDIS potentials, which

did not explicitly include either chains or mixtures. Nevertheless, Table 2 shows that,

while the absolute magnitudes of the CMCs obtained using the DDIS potentials are too

high, the ratio of CMCs for HIT 4 and HtT 5 is correct. Thus, even under these conditions,

the DDIS potentials have utility for comparative CMC prediction.

Figure 4-8 shows the HIT 4 micelle size distribution for a total surfactant number density

of 3x 10-4 r 3.The profile shows that a large fraction of the surfactant exists as free
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surfactant, with the secondary maximum indicating the presence of stable micellar

structures. We calculate the average aggregation number as the number weighted

average of all aggregates of size two or larger. For the H1T4 surfactant system, the

average aggregation number is 26, which is larger than the size of -20 reported by Pool

and Bolhuis. This finding implies a looser packing of aggregates using the DDIS

potential than with the corresponding all-atom potential. We will examine this point

further in the next section.

For HIT 5 surfactants, the DDIS potential produces cylindrical, or "worm-like", micelles.

The polydisperse distribution of cylindrical micelles makes estimation of the average

aggregation number difficult. By contrast, Pool and Bolhuis report that the all-atom

potential creates spherical micelles. This finding is also consistent with the formation of

less densely packed micellar aggregates. The micelle theory of Ischreavelli 26 states that

increasing the volume of a surfactant chain for a constant length and headgroup area will

promote formation of cylindrical aggregates. Thus, the transition to cylindrical growth of

the H1T5 surfactants using the DDIS potential is consistent with the finding that the

potential produces higher volume (lower density) micellar structures.

4.4.3 Analysis of Transferability

Having demonstrated that the DDIS potentials capture micelle formation at least

qualitatively, we now explore the reasons that the DDIS potential failed to reproduce the

underlying all-atom potential quantitatively. To do so, we consider a few special cases

that are intermediate between the systems used to derive the DDIS potentials and the
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micellar systems to which they are ultimately applied here. We compare the behavior of

the systems using both the all-atom and DDIS potentials.

First, we examine the behavior of monomeric H/T/W mixtures using the DDIS potentials.

Figure 4-9 shows the reproductions of all-atom RDFs by the DDIS potentials for

mixtures of H and T-type particles at total solute density ps/p=0.3. Visually, the

agreement is quite good. This is true even for the T-T RDF, for which good matching

was not achieved at the state point of fitting. The error in EL for the H-H, H-T, and T-T

interactions were 0.01e, 0.02e, and 0.09e respectively. The middle panel, displaying the

H-T RDF, indicates that the mixing rule used here is effective despite its simplicity and

lack of additional fitting.

The values of pe obtained from the DDIS potential do not match the corresponding all-

atom values, however. The Mx values from the all-atom simulation are -4.00±0.02e and

0.77±0.02e for H-type and T-type particles, respectively. The DDIS values, by contrast,

are -2.38±0.02e and 2.18±0.02e. In Chapter 3, we suggested that the quantity MHe+4r ex

should be the same in both simulations, since the ratio of H-type to T-type particles is

1:4. However, the simulations differ in this quantity by over 7e. The reason for this

discrepancy is attributed to an unusual feature of the Smit potential: H-T interactions in

the Smit model have a different cutoff radius from both the H-H and T-T interactions.

The analysis of transfereability of DDIS potentials presented previously in Chapter 3

assumed implicitly that the H-H and T-T RDFs would be largely unaffected when

moving from pure component to mixture simulations. It further assumed that the H-T
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RDF would be intermediate in shape to the H-H and T-T RDFs. In the Smit system,

neither of these assumptions is true, and as a result, the chemical potential assumptions

do not hold. These issues could likely be ameliorated using a more traditional interaction

model.

We next performed simulations of single micellar aggregates, in both all-atom and

implicit solvent form. We used a simulation cell of twenty H1T4 surfactant molecules, for

a chain number density of 5x10 -3 OW3, three orders of magnitude above the CMC reported

by Pool 18 . The all-atom simulation also included 3418 explicit W particles, for a total

molecule number density of 0.6ow3 .

The RDFs for H-H, H-T, and T-T interactions are given in Figure 4-10. Visual

examination reveals that the density dependent implicit solvent model reproduces the

underlying all-atom simulation. The energy error for the H-H, H-T, and T-T RDFs are

0.08e, 0.08E, and 0.18e respectively. These errors, though small, are significantly higher

than the errors in mixtures of monomers. Additionally, the DDIS potentials have solute

enhancement ratios significantly lower than the corresponding all-atom simulations, as

shown in Table 3, indicating a less densely packed micelle than the corresponding all-

atom simulation. These results confirm that the packing of a micellar aggregate of the

size 20 is less dense using the DDIS potential than the corresponding all-atom potential.

This result may arise from the weaker aggregation found in fitting the T-type potentials,

and borne out by Figure 4-3. We note that the DDIS potential is sufficient to maintain

the micellar aggregate as a coherent object despite the lack of explicit solvent particles
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applying an external force. However, it appears that adding molecular connectivity

contributes to a decrease in the RDF transferability.

We also measured #x for surfactant molecule insertion in both the all-atom and DDIS

cases. The ~ex measured here represents the weighted average excess chemical potential

of a surfactant molecule added to either the micellar aggregate or the surrounding free

solution. For the all-atom case, we measured ex=3.28±0.05e, while the DDIS case

yielded 6.25+0.02E, a difference of approximately 3E. This discrepancy is smaller than

that that seen in the monomeric mixture simulations. Thus, the transferability of 'ex does

not degrade upon the addition of molecular connectivity. This finding is consistent with

the findings of Chapter 3, which showed that chain molecules at low density

demonstrated good excess chemical potential transferability.

4.5 CONCLUSIONS

In this work, we have created coarse-grained, density dependent implicit solvent (DDIS)

potentials based on underlying all-atom simulations of a truncated and shifted Lennard-

Jones model that has previously been shown to demonstrate micellization behavior 11-13

Coarse-grained potentials were generated as we have previously outlined 24' 25 . Potentials

were fit to simulations of monomeric (i.e. single repeat units) solute particles in solvent,

without explicit consideration of mixtures as inputs to the process. These simple fitting

simulations were used to test the transferability of DDIS potentials for simulation

environments far from the state point of fitting.
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We performed large simulations of surfactant solutions at solute densities near the CMC.

The ratio of CMCs between H1T4 and H 1T5 surfactants was the same as estimated by

Pool and Bolhuis18, indicating the utility of the DDIS potentials for comparative CMC

studies. However, the measured DDIS CMCs were higher than the all-atom estimates by

at least an order of magnitude. We attribute the discrepancy to the approximate nature of

the fitting conditions used to generate the DDIS potentials, which did not explicitly

include either chains or mixtures The average aggregation number generated by the DDIS

potential was larger than the value estimated by free energy methods for both H 1T4 and

H1T5 surfactants. Additionally, H1T5 surfactant solutions displayed cylindrical micelle

growth behavior using the DDIS potential, while Pool and Bolhuis predicted spherical

micelle growth. These results indicate a less dense packing of the micelles using the

DDIS potential compared to the all-atom results.

To further analyze the transferability, we performed a series of simulations with the

resulting DDIS potentials that progressed from more to less similar to the state point of

fitting. We first simulated monomeric mixtures of solute particles resulted in

reproduction of the RDF with accuracy comparable to that at the state point of fitting. By

contrast, the accuracy of reproduction in M" of the mixture was not as good. This

degradation in accuracy can be attributed to the treatment of cutoff lengths in the Smit

model, where H-T interactions are fundamentally different than the H-H and T-T

interactions. We then simulated an HIT 4 surfactant system at a concentration well above

the CMC, which revealed that the DDIS potential produced a micellar aggregate of lower

density than the corresponding all-atom simulation, and an excess chemical potential too
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high by approximately 3e. These results indicate that a loss in RDF transferability occurs

upon the creation of molecular connectivity, but that the correcspoinding loss in the

accuracy of reproduction in Mex is small. This is consistent with the findings of our

previous work2 5.

The design choice of fitting DDIS potentials to monomeric solute data is evaluated here

as a baseline with which to compare alternate fitting simulations. It appears that

transferability degrades by degree as simulations become less similar to the original

fitting simulations. A significant loss of reproduction occurs in the transition from

monomeric particles to chain molecules. In addition, the marginal cost of fitting DDIS

potentials to simulations of pure chains in solvent is negligible. This is because fitting to

chain data does not introduce any of the combinatorial issues introduced by fitting to

mixture data. Based on these facts, a potential fruitful area of future research may be to

fit DDIS potentials to systems of chains, rather than systems of monomers. This choice

would also be consistent with the Effective Energy Function23 , which is fit to data on

short chain molecules.
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Particle eii a AG W-I) <NL>/<NL > L

Type

H 1.0 2.0 13.6±0.1lw 0.95

T 1.0 1.0 -7.04±0.05Ew 1.41

W 1.0 1.0 0 1.00

Table 4-1: Key parameters for all-atom particle types. H-type particles are "solvent-

philic", as indicated by the positive free energy of transfer. T-type are "solvent-phobic",

as indicated by a negative free energy of transfer and high solute enhancement ratio.
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CMC ( -3)  NAGG

Simulation H1 T4 HIT5  CMC HI1T4 HITs

Ratio

All-Atom 5 x 10-  6 x10 7  0.12 -20 -30

DDIS 1.9x10-4 2.0x 10-5 0.11 26 Cylindrical

Table 4-2: Behavior of HIT 4 and H1 T5 solutions using the all-atom and DDIS potentials.
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Interaction Type SER AA SER DDIS

H-H 3.4 3.2

H-T 6.2 5.6

T-T 9.5 8.5

Table 4-3: Solute enhancement ratios (SERs) for interactions in single micellar

aggregate simulations. "AA" denotes all-atom simulation, "DDIS" density dependent

implicit solvent.
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Figure 4-1: Comparison of excess chemical potential in all-atom (solid line) and coarse-

grained (circles) simulations. Left: H-type particles in solvent W. Right: T-type particles

in solvent W.
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Figure 4-2: Comparison of worst-case fits of solute RDF in all-atom (solid line) and

coarse-grained (circles) simulations. Left: H-type particles in solvent W at pH=0.2 .

Right: T-type particles in solvent W at pT=0.1.
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Figure 4-3: Comparison of RDFs in all-atom (solid line) and coarse-grained (circles)

simulations. (a): pT/p=O.1. (b): pT/p=0.5 (c): PT/p=1.0.
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Figure 4-4: Coarse-grained two-body term for local solute density pL /p=0.2 (-H,--T).

The dark line shows the T-type Lennard-Jones interaction for comparison.
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Figure 4-5: Coarse-grained one-body term as a function of local solute density (Circles:

H, Squares: T)
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Figure 4-6: Free surfactant density (circles) as a function of total surfactant density. Solid

line is the 450 line corresponding to a condition of no micellar aggregates. Left: H1T4;

Right: H1T5.
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Figure 4-7: Simulation snapshot of 216 H1T4 surfactant molecules in implicit solvent

showing the formation of micellar aggregates. H-type particles are black, T-type particles

are grey.
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Figure 4-8: Micelle aggregation number distribution for H1T4 surfactants.

158



14

0

rio s

0O 1 2 3 4 5rIosS

Figure 4-9: Comparison of all-atom (solid lines) and implicit solvent (circles) RDFs in a

1:4 H:T mixture at ps/p=0.3. (a): H-H RDF; (b) H-T RDF; (c) T-T RDF.
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Figure 4-10: Comparison of all-atom (solid lines) and implicit solvent (circles) RDFs for

a single micelle composed of 20 HIT 4 surfactants in 3418 solvent molecules W. (a): H-H

RDF; (b) H-T RDF; (c) T-T RDF.
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5 Conclusions and Future Directions

5.1 CONCLUSIONS

This thesis has studied the issue of coarse-grained molecular simulation within the

specific application of surfactant systems. We have focused on utilizing CG techniques

to create an implicit solvent model between solute particles. This thesis has succeeded in

accomplishing each of the three objectives given in the introduction. These objective are

considered here in turn:

Develop a coarse-graining methodology to generate DDIS potentials from all-

atom simulations of monomeric solute in solvent.

Chapter 2 introduced a CG methodology to create DDIS potentials that reproduced both

the solute-solute radial distribution function (RDF), and the excess chemical potential

(#") of solute particle insertion. These properties were chosen for two reasons: 1) they

are identified as having relevance in statistical thermodynamic models of micelle

formation, and 2) they are general to all molecular simulations and measurable in a

computationally reasonable amount of time. Approaches that address only one of these

factors in describing micellization are likely to be incomplete. If a CG model only

matches the excess chemical potential while ignoring the RDF, for example, it will likely

incorrectly predict the solute packing density and therefore the average micelle

aggregation number. By contrast, if a CG model only matches the RDF while ignoring
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the excess chemical potential, the free energy driving force for micellization will likely

be incorrect, and the value of the CMC will be incorrect.

We demonstrated that a DDIS potential could reproduce both properties simultaneously

with the following functional form:

L + IVEFF(r L

where Ei is the effective energy of particle i, VIj F F is a pairwise potential between I- and

J-type solute particles that is an explicit function of the solute particle density in the

vicinity of particle i, pi, and y is a "self-interaction" term that is also a function of

solute particle density. The first term serves to capture the effects of solute-solvent and

solvent-solvent interactions in a mean field approximation, while the second term

represents solute-solute interactions that are mediated by solvent.

Although we investigated parameterizing the energy function by both the global and local

solute density, we suggest that a parameterization based on local solute density is likely

to be more effective in systems with high solute heterogeneity. The dependence of both

terms on local density allows the potential to be cognizant of the greater or lesser

influence of solvent in the different regions of a system that are inhomogeneous on the

solute length scale, such as that which arises in a system of surfactants that self-assemble

into micelles.
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* Examine the transferability of the generated DDIS potentials to other state

points without the use of further optimization.

In Chapter 3, we derived our coarse-grained DDIS potentials from simulations of pure

solute particles, and investigated their transferability to mixtures and chains. The key

findings here were that the transferability of behavior was quite effective at low

concentrations for mixtures, chains, and chains of mixed composition. One of the biggest

successes that paved the way for surfactant simulation was that the DDIS potentials

predicted that chains of solvent-phobic particles would aggregate in solution, even though

the monomers of the solvent-phobic particles did not. Additionally, we found that the

local DDIS potential produced superior RDF transferability when compared to an

analogous global density-dependent implicit solvent potential for the same system. The

DDIS potential demonstrated a behavior quite different from the behavior of the system

from which it was derived, while the globally density dependent potential did not. The

most likely reason for this improved transferability is that the local density dependence

captures solute enhancement effects more accurately than the global potential.

* Evaluate the performance of the DDIS potentials to predict thermodynamic

properties of surfactant solutions, including critical micelle concentration.

In Chapter 4, we created coarse-grained, DDIS potentials based on underlying all-atom

simulations of a truncated and shifted Lennard-Jones model (the "Smit model") that has

previously been shown to demonstrate micellization behavior. Potentials were fit to

simulations of monomeric (i.e. single repeat units) solute particles in solvent, and no
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solute mixtures were used as fitting inputs. These simple fitting simulations were used

because we wished to establish the transferability of DDIS potentials to simulation

environments far from the state point of fitting.

The DDIS potentials were able to accurately predict the trends in critical micelle

concentration (CMC) for two surfactant types, meaning that the DDIS potentials could

have utility for comparative CMC studies. However, the absolute values of the predicted

CMC were an order of magnitude higher than previously established estimates for the

same surfactants using atomistic simulations. Additionally, the formed micelles were

less densely packed than the corresponding all-atom micelles, leading to a larger average

aggregation number. In sum, the performance of the DDIS potentials can be considered a

success, given the simplicity of the simulations from which they were derived. However,

the accuracy did not meet the standards we came to expect from Chapter 3.

To further investigate the transferability of the DDIS potentials, we performed a series of

simulations that progressed from more to less similar to the state point of fitting.

Mixture Simulations: We first simulated monomeric mixtures of solute particles, which

resulted in RDF reproduction accuracy at least equal to the state point of fitting. By

contrast, the yux reproduction accuracy of the mixture simulations was quite poor. This

poor reproduction can be attributed to the highly non-ideal nature of the Smit model,

where H-T interactions are fundamentally different than the H-H and T-T interactions.

We expect that for more traditional mixing rules, the DDIS potentials would provide

164



more reliable property reproduction, as is consistent with the results of Chapter 3. Thus,

a large part of the misbehavior of the DDIS potentials can be attributed to a quirk of the

Smit potential.

Single Micelle Simulations: We then simulated an H1T4 surfactant system at a

concentration well above the CMC. The measured yx' of the chain system was actually

closer to the all-atom value than it was in the mixture simulations. We therefore

conclude that the transferability of uex does not degrade upon the addition of molecular

connectivity. This finding is consistent with the findings of Chapter 3, which showed

that chain molecules at low density demonstrated good excess chemical potential

transferability. By contrast, the RDF reproduction in the single micelle simulations was

considerably worse than in the chain simulations. This is also consistent with Chapter 3,

in which we demonstrated that adding molecular connectivity reduced RDF reproduction

for systems of Lennard-Jones particles.

The results of these simpler simulations demonstrate that the discrepancy between the all-

atom and CG behavior in surfactant solutions can be attributed to two factors:

1. Improper reproduction of u"e in mixtures, caused by the unique nature of the Smit

model.

2. Improper reproduction of the RDF in chains. This weakness could perhaps be

ameliorated in future research by deriving DDIS potentials directly from

simulations of solute chains in solvent, rather than the current practice of solute

monomers in solvent.
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5.2 FUTURE RESEARCH

While I feel this thesis has made significant strides towards a method for creating DDIS

potentials, there are numerous avenues for continued research. Broadly, these ideas can

be categorized into topics relating to methodology and topics relating to applications. We

consider both in turn:

5.2.1 Methodological Improvements

* The design choice of fitting DDIS potentials to monomeric solute data was

evaluated as a baseline with which to compare alternate fitting simulations. It

appears that transferability degrades by degree as simulations become less similar

to the original fitting simulations. A significant loss of reproduction occurs in the

transition from monomeric particles to chain molecules. In addition, the marginal

cost of fitting DDIS potentials to simulations of pure chains in solvent is

negligible. This is because fitting to chain data does not introduce any of the

combinatorial issues introduced by fitting to mixture data. Based on these facts, a

potential fruitful area of future research may be to fit DDIS potentials to chain,

rather than monomeric, data. This choice would also be consistent with the

Effective Energy Function, which is fit to data on short chain molecules.

* Examining the shape of the density function at more depth. Particles within the

cutoff radius, rD, contribute to the local density through some weighting function

w(rD). In Chapter 2, we examined a constant weighting (w(rD)=1), a linear
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weighting (w(rD)=l -rrD), and a quadratic weighting (w(rD)=(1 -rrD)2). In that

Chapter, we found little difference in the behavior of Monte Carlo simulations to

the choice of weighting function. However, those simulations represented a

special case of identical solute and solvent particles. It is likely that the choice of

weighting function will impact the transferability of the derived DDIS potential to

other state points. Whether there exists an optimum weighting that is applicable

to all state points, or is rather situation dependent, is still unknown.

* Examining the effect of bonded interactions in more depth. In all our simulations,

we kept the bonded interactions unchanged between all-atom and CG simulations.

For nearest-neighbor bonds, this is a good approximation. The length scale of

interaction is too short, and the strength of interaction too strong, to be

significantly affected by the solvent environment. However, the local solvent

environment could certainly affect bonded interactions beyond nearest neighbor

(angle and dihedral interactions). Although the all-atom potentials utilized in this

model contained no angle or dihedral terms, an optimized CG potential might. As

with the non-bonded potential, we would anticipate that the bonded potentials

would be density dependent.

* Related to the bonded interaction effects, further research should be done to

investigate the optimum density weighting for bonded particles in the local

environment. In our work, we assumed that the density weighting for bonded

particles was identical to that of non-bonded particles. This assumption may well

prove to be too simplistic.
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* Finally, I believe the power of DDIS potentials for surfactant simulation will truly

become apparent when they are incorporated into a Molecular Dynamics (MD) or

Brownian Dynamics (BD) code. For this work, we utilized Monte Carlo (MC)

simulation because I had previously created MC software that I was comfortable

modifying as necessary. However, MC is not the ideal computational tool for

DDIS potentials. The reason for this is that the MC move of a single particle

causes changes in the local density of a very large number of neighboring

particles. As a result, the calculation of energy for each time step can be

computationally intensive relative to a density independent potential. By contrast,

the coordinates of every particle change at every time step in MD and BD. As

such, the computational load of DDIS potentials is fixed at twice a comparable

density independent potential. This scaling arises from the fact that the DDIS

potential requires two pairwise interaction loops: one to calculate the local density

of each particle, and one to calculate the energy of each particle. In addition to

the energy calculation issue, MC simulation of surfactant simulations also suffers

from a sampling issue. The transfer of surfactants into and out of micellar

structures is very slow in MC, because the micelle structure is highly

energetically favorable. As a result, it is very difficult to generate an equilibrated

aggregation number distribution from MC. By contrast, the random force of BD

allows for more rapid transfer of surfactant molecules, and could further speed

computation. BD simulations are also of interest from a theoretical standpoint, as

the random force itself should be considered density dependent in a completely

general formulation of the problem.
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5.2.2 Applications

In designing the DDIS protocol described in the thesis, I very deliberately made design

decisions that allowed for the eventual simulation of chemical complex systems. The key

point is that the DDIS potentials are derived from simulations of a single solute type in

solvent. In Chapter 3, we show that these "pure solute" potentials are transferable to

solute mixtures using a very simple mixing rule. This setup is advantageous, in that

simulating an n component system n DDIS potentials rather than the n(n-1)/2 that would

be required in the completely general case.

Given the relatively robust transferability demonstrated by the DDIS potentials, one

could consider creating a large number of DDIS potentials relating to commonly

simulated solutes. These DDIS potentials could be derived once, and subsequently used

in a wide variety of chemical environments, much as all-atom potentials GROMOS,

TraPPE, and AMBER are used today. With a suitable library, DDIS potentials could be

used to study any solvated system in which local heterogeneity occurs and solvent

constitutes a large fraction of the system. In addition to surfactant simulations, DDIS

potentials could be used to study:

Protein folding. The minimum energy configuration of a protein is determined by

the pattern of hydrophilic and hydrophobic charge groups along the chain, which

produce local ordering. The DDIS potential method is perfect for dealing with the

wide range of solute densities experienced by different amino acids.
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* Predicting the solubility of drug compounds. There is active research into the

uptake of drug molecules into micellar structures. A thermodynamic equilibrium

partitions the drug compounds between the solvent and micelle core. Once again,

we see a situation in which the solute (the drug molecule) experiences a wide

range of local density environments.

* Simulate lipid bilayers and other common biological systems. The formation of

different biological structures is driven by the interplay of free energy (Y") and

packing effects (RDF).

* Crystallization studies. Many polymers form crystalline and semi-crystalline

phases in solution. The behavior of these systems would be in many ways

analogous to surfactant systems in that they contain small aggregates of high local

density.
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Appendix A Ab initio study of the binding strength of

POSS-cation complexes

(Note: Portions of this work were published in E.C. Allen and K.J. Beers, Polymer 46,

569 (2004). As it does not fit with the main thrust of this thesis, I include it here in the

appendix)

A.1 INTRODUCTION

Polyhedral oligomeric silsesquioxane (POSS) is a "cage-shaped" molecule comprised of

a silicon and oxygen core (Figure A-la) of chemical formula R8Si 8012 . The R groups can

be short oligomeric units or long polymer chains, and are varied to affect POSS

solubility/dispersion in polymer matrices1 .

Among its applications, POSS has emerged as viable filler in high-performance

nanocomposites2. POSS-polymer nanocomposites show increased toughness vs. the

unfilled polymer.3 In addition, POSS-PEO based polymer electrolytes have been

developed4, with the POSS molecule acting as an inhibitor to PEO crystallization.

The four oxygen atoms on a single "face" of the POSS cage structurally resembles a

crown ether molecule (Figure A-lb), and introduces the possibility that the POSS

molecule, like crown ether, may contain an electron rich free center that attracts and

binds cations5. The first motivation to investigate these binding phenomena is obvious:

to study the role of POSS in POSS-PEO polymer electrolytes. The second, less obvious,
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motivation is to introduce the possibility of reducing POSS agglomeration issues through

the introduction of electrostatically-bound surfactants.

In both cases, an estimate of the magnitude of this binding strength is important to

establish the feasibility of POSS-cation complex formation within polymeric media. If

the binding energies are more than a few kT, one expects POSS-cation binding to persist

with little regard to the surrounding environment.

The existence of POSS-metal ion complexes is not in question. Baker et al. generated

POSS/Na + ions in the gas phase through electrospray ionization (ESI) and matrix-assisted

laser adsorption/ionization (MALDI)6,7. A molecular mechanics study by the same group

predicted conformations in which the attached Na+ ion resides just outside a face of the

POSS cage, attached by electrostatic interactions with the four nearest oxygens. They did

not, however, present an estimate of the strength of this binding.

This paper comprises a feasibility study of POSS binding to Li+ and other cations through

the use of ab initio quantum chemical calculations, with particular focus on the questions:

1) Is a POSS-cation complex strongly energetically favorable, and what is the

magnitude of the binding strength of their interaction?

2) Is the presence of such complexes identifiable by IR?

3) Can cations be passed among POSS molecules?
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A.2 METHODOLOGY

This paper makes use of the GAUSSIAN98 TM program, using both the semi-empirical

UFF potential and DFT. Initial geometries were generated by molecular mechanics

optimization using the UFF potential. The initial structure was further optimized via

DFT calculations using the BLYP functional and the 6-311 g(d) basis set. The 6-311 g(d)

basis set was chosen because it generated energies within -5 kT of those obtained with

larger basis sets (Table A-i) that are significantly more computationally intensive to use.

Binding energies in vacuo were defined as E = - [E(POSS-cation complex) - E(POSS) -

E(Li+)].

Geometry optimization of the POSS-cation complex requires an initial guess of the cation

location with respect to the POSS molecule. Multiple trial cation positions were studied,

including the interior of the cage. For the case of unsubstituted POSS and Li+, the

minimum energy conformation finds the lithium ion located outside the cage, equidistant

from the four oxygen atoms that define a single face (Figure A-2). Baker et al. predict a

similar cation location for POSS-Na+ through AMBER force field MD7. Therefore,

subsequent calculations involving different cations or substituted POSS molecules

utilized an initial cation position consistent with these findings.

When simulating corner ligand-substituted POSS with R = C6H5 (e.g. Figure A-5), the R

group (excluding the first carbon attached to Si) was modeled using the UFF force field,

and the total energy computed via the ONIOM method.
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The calculations that follow are presented without regard to entropic contributions to the

free energy. In general, these entropy considerations will tend to decrease the Li+

preference to bind to the POSS molecule. An order of magnitude estimate of the entropic

effects can be generated by noting that, in the absence of Li+ enthalpic preference to the

polymer or POSS molecule, the fractionf of Li + bound to the POSS molecule should be

approximately equal to the POSS volume fraction (-5%). From statistical mechanics, the

entropy difference is then approximately:

TAS - -log{f} = 3.0 kT (1)

Therefore, if the Li÷ enthalpic preference for POSS is >> 3 kT, the entropic contributions

can be considered negligible.

A.3 RESULTS AND DISCUSSION

The effect of basis set size on binding energy calculations was first investigated on the

unsubstituted POSS molecule and a single Li". As shown in Table A-i, the binding

energy in the limit of the very large basis set 6-31 lg+(2d,p) converges to -78 kT. For

subsequent calculations, we elected to use the 6-311 g(d) basis set, since it provides

accuracy of ±5 kT at far less computational cost.

Clearly, BLYP-DFT predicts a significant POSS-Li÷ binding energy. Whether such an

affinity is expected to persist within a polymer matrix depends upon the predicted

polymer-cation interaction. For example, polyethylene oxide is quite effective at binding

lithium ions, due to the documented ability of PEO to donate five or six coordinating

oxygen to each ion. Johansson et al., using quantum chemical calculations, estimate the
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PEO-Li÷ binding strength at -250 kT7 . In such a system, one expects negligible POSS-

Li÷ complex formation at low POSS volume fractions.

By contrast, polystyrene (PS) is a relatively non-polar polymer. Using the Onsager

reaction field model 9 to estimate the impact of the polystyrene solvent (dielectric constant

E = 2.5), simulation of POSS-Li÷ produces results nearly identical to those achieved in

vacuo.

The minimum energy conformation places the Li+ outside the POSS cage, equidistant

from the four O atoms that define a face (Figure A-2). A profile of the system energy

versus Li÷/ POSS face center distance (defined as the plane created by the four oxygen

atoms) provides an energy profile. This energy profile is included as Figure A-3. Note

that Figure A-3 indicates a large (-30 kT) energy barrier to Li÷ migration to the POSS

cage center, and that the local minimum inside the cage is significantly disfavored

compared to that external to the face.

The strength of the POSS/Li ÷ binding significantly distorts the POSS structure, drawing

the Li+-adjacent oxygen atoms closer together than in the unbound state. Oxygen atoms

on opposite sides of the same face are separated by 3.88 A in the unbound state, but for

those nearest the Li÷, this value decreases to 3.62 A.

This deformation of the POSS molecule breaks the symmetry present in the native

structure, and has a significant affects the IR spectrum. Figure A-4 shows estimates of
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the IR spectrum for native POSS and the POSS-Li+ complex obtained from normal mode

analysis. The results indicate the presence of a new peak in the bound state at 1000 cm-1,

that corresponds to Si-O bond stretching. Figure A-4 was generated by assuming that the

calculated IR peaks would be somewhat diffuse. Each peak was assumed to be normally

distributed about the calculated value, with a standard deviation of 20 cm-1 .

Now that the feasibility of POSS/Li+ binding has been established, we investigate the

effects of structural modifications of the POSS or cation. The results from all systems

studied are provided in Table A-2 and discussed in turn below.

A.3.1 Addition of cyclohexyl side chains

In polymer/POSS systems of interest, the terminal hydrogen atoms are replaced with an

organic group to facilitate dispersion in the polymer matrix. One of the most common

ligands is the cyclohexyl group. As described in the methodology section, this binding

energy calculation was performed via the ONIOM method. The results indicate that the

presence of the cyclohexyl side chains increases the binding strength from 80 kT to 110

kT.

A.3.2 Presence of a Cl' counterion

Since lithium is invariably added to any polymer system as a salt, an anion must be

present for each lithium cation. However, depending on the solvating abilities of the

polymer matrix, the lithium and corresponding anion may or may not dissociate. POSS
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association with LiCl in vacuo therefore provides a "worst case scenario" for binding.

The effect of the C1- counterion is to reduce the binding energy (defined as E = [E(POSS)

+ E(LiC1) - E(POSS/LiC1 complex)]) to -21 kT, a still significant amount.

A.3.3 Replace Li+ with CH 3NH3+

CH3NH3+ was chosen as a model ion to represent potential surfactant molecules. While

Li÷ binding is of potential interest for applications in polymer electrolytes, the ability of

POSS to bind with cations opens another avenue to POSS modification in addition to

corner ligand substitution. In particular, association with cationic surfactants might help

to impede POSS aggregation, which occurs at volume fractions of more than a few

percent and that generally degrades the nanocomposite properties. The binding of energy

of CH 3NH3+ with an unsubstituted POSS molecule was calculated as -25 kT, suggesting

that such modification is possible.

A.3.4 Feasibility of Lithium transfer between two POSS molecules

As a final line of questioning, we consider the feasibility of cation transfer from one

POSS molecule to another. One hypothetical transport mechanism is that the cation

"jumps the gap" between two POSS molecules as they come in close contact (Figure A-

5).

To test this hypothesis, we first minimized a system of two POSS molecules with an

intermediate lithium ion. The initial guess structure contained the two POSS molecules
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aligned so that the cyclohexyl groups abutted. In the optimized structure, by contrast, the

POSS molecules are aligned by 45 degrees to each other, to allow sterically a closer

approach of the POSS faces. We then performed a series of single energy calculations in

which the position of the lithium ion was moved from one POSS molecule to the other

while the positions of all other atoms remained constant. The transfer barrier calculated

by this method is -80 kT, implying a very low likelihood of lithium transfer. It should be

noted, however, that the method described here does not allow for favorable changes in

POSS conformation during ion transfer that may result in a lower barrier. Further study

using a cheaper energy model is needed to investigate these effects.

A.4 SUMMARY

BLYP-DFT Calculations of POSS molecule binding to various cations indicate that the

strength of this association is quite substantial. In the case of POSS-Li÷ complex

formation, the strength of binding is estimated at room temperature as -78 kT in vacuo,

with negligible change due to the presence of a polystyrene solvent. Even in the most

unfavorable circumstances (i.e. anion Cl remaining tightly bound to Li), the strength of

binding remains -20 kT. Further, binding was demonstrated for the surfactant-like

cation, CH3NH3+, indicating a possible mechanism by which to reduce POSS

agglomeration in polymer nanocomposites.
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BASIS SET Binding Energy (kT)

3-21g

6-311g

6-311g (d)

6311 g (d,p)

6-311 g+(d)

6-311 g+(d,p)

6-311 g+(2d,p)

137

100

85

85

79

79

78

Table A-1: Energy Convergence with Respect to Basis Set
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POSS Terminal Groups Cation Counterion Predicted Binding Energy (kT)
H Li None 78

C6H5 Li None 120
H Li C1 21
H CH3NH3 None 25

Table A-2: Summary of Binding Energies for all systems studied
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Figure A-1: Structural similarity of the POSS molecule to crown ether. (a) POSS (b)
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Figure A-2: GAUSSIAN98 output - POSS-Li+ Complex
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Figure A-3: POSS/Li+ Energy as a function of lithium position. The energy minimum is

achieved approximately 1 angstrom away from the POSS cage face
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Figure A-4: Predicted IR Spectrum of POSS (solid) and POSS/Li+ (dotted). DFT

calculations predict the presence of an additional IR peak at -1000cm -'
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Figure A-5: Structure of two POSS molecules joined by attractive force of a single

lithium ion. Results predicted by energy minimization in GAUSSIAN98.
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Appendix B Algorithms

B.1 INTRODUCTION

This section provides some details regarding the calculation of density-dependent,

implicit solvent (DDIS) potentials. Included are algorithms to calculate local density and

system energy. For clarity, we follow the pseudo-code conventions of Frenkel and

Smit's book (Daan Frenkel and Berend Smith, Understanding Molecular Simulation,

Academic Press, 2002) in this section.

B.2 CALCULATE LOCAL DENSITY

The calculation of the local density around each particle must be performed prior to the

calculation of the system energy. This is because the system energy is explicitly

dependent on the instantaneous local density.

Algorithm B-1: Calculate Local Density
subroutine calc localdensity
do i=1, npart-1

do j=i+l,npart
xr = x(i) - x(j)
if (xr. gt. hbox) then

xr = xr - box
else if (xr. It. -hbox) then

xr = xr + box
endif
if (abs(xr) . It . rD) then

density(i) += w(xr)
density(j) += w(xr)

endif
enddo

enddo

;xr is particle distance
;correct for PBCs

;rD is density cutoff radius
;w(xr) is weighting function
;for density
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B.3 CALCULATE SYSTEM ENERGY

The system energy is the sum of each individual particle's energy. A key point is that, in

the case that particles A and B interact in a pairwise fashion, the energy attributed to

particle A is based on the interparticle interaction at the local density ofparticle A.

Similarly, the energy attributed to particle B is based on the interparticle interaction at the

local density ofparticle B. This allows particles A and B to interact even if their local

densities are widely divergent.

Algorithm B-2: Calculate System Energy
subroutine calc system energy

do i=1, npart
E(i) = 0

enddo

do i=1, npart
E(i) += mu(density(i))

enddo

do i=1, npart-1
do j=i+l,npart

xr = x(i) - x(j)
if (xr. gt. hbox) then

xr = xr - box
else if (xr. It. -hbox) then

xr = xr + box
endif
if (abs(xr) . It . rC) then

E(i) += 0.5*vEFF(xR,density(i))
E(j) += 0.5*vEFF(xR,density(j))

Endif
enddo

enddo

E system = sum i(E(i))

;E(i) is energy of particle i
;Initially set to zero.

;mu is the one-body term of
;the energy, and is a
;function of the local
;density.

;xr is particle distance
;correct for PBCs

;rD is density cutoff radius
;vEFF is the pairwise
;potential between atoms
;i and j.

;Total System Energy
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