
Example-based Grasp Adaptation IAOFSTECNI C OTy

by NOV 13 2008

Jiwon Kim LBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

© Jiwon Kim, MMVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author
Departmet of Electrical Engineering and Computer Science

September 9, 2007

Certified by........................
/ / Tom o~ozano-P rez

TIBCO Founders Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Theses

ARCHIVES

Example-based Grasp Adaptation

by

Jiwon Kim

Submitted to the Department of Electrical Engineering and Computer Science
on September 9, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Finding a way to provide intelligent humanoid robots with the ability to grasp
objects has been a question of great interest. Most approaches, however, assume that
objects are composed of primitive shapes such as box, sphere, and cylinder. In the
thesis, we explore an efficient and robust method to decide grasps given new objects
that are irregularly-shaped (3D polygon meshes). To solve the problem, we use an
example-based approach. We first find grasps for objects geometrically similar to
those the system has seen before. For example, if the system has been shown a cup
being grasped by the handle, it should now be able to grasp any new cup. There
are two problems to be solved in order to adapt example grasps to the new object.
First, the system should be able to retrieve objects that are geometrically similar to
the given object from the database storing previously seen objects. After collecting
objects the system knows how to grasp, it needs to adapt example grasps to new
object.

Already, there are some working algorithms for the first problem (shape retrieval).
Therefore, our main contribution is to present an algorithm that performs grasp
adaptation. Before we adapt a grasp, we first find the geometric correspondence
between a demo object and new object using probabilistic graphical model. Based
on correlation information together with the demo grasp, we generate a grasp for the
new object. To ensure that a robot can effectively grasp the object, we adjust the
position of grasp contacts until the quality of the grasp is reasonably high. In test
cases, the system successfully uses this method to find the correspondence between
objects and adapt demo grasps.

Thesis Supervisor: Tomas Lozano-Perez
Title: TIBCO Founders Professor of Computer Science and Engineering

Acknowledgments

Since I first came to MIT as an undergraduate, I have always been curious about

how it is like to think like a researcher. My curiosity would not have been satisfied

without the guidance of Prof. Tomis Lozano-P6rez. As my academic, undergraduate

research, and master's research advisor, he has been the most influential person in

my academic career. He always patiently helped me with solving various technical

problems, and I learned from him that researchers should be able to see the big picture

of what they are doing. In short, he has been an excellent advisor, and I am very

grateful that I have had such a great advisor.

I would like to acknowledge the help of Kaijen Hsiao. She first formulated the main

problem tackled in the thesis. She helped me clarify ideas, solve problems and write

the thesis. It has been a joy to be around her. Her encouragement and never-ending

energy got me to the point of writing the thesis.

Finally, I thank to Ross Glashan for his great 3D object modelling and to Hyunsoo

Kim for always listening to my ideas and presentation dry-runs. Also, my friends made

my time here very memorable. Lastly, but most importantly, my parents in Korea

made everything possible for me to get a good education while I was growing up. I

really appreciate their support while I was struggling to come to America for college

education.

Contents

1 Introduction 9

1.1 Assumptions 10

1.2 Approach 10

1.3 Contributions 11

1.4 Thesis Outline. 12

2 Related Work 13

3 Object Representation 16

3.1 Explicit Representation 16

3.2 Implicit Representation 19

4 Grasp Quality 21

5 Probabilistic Graphical Model 25

5.1 Markov Random Field 25

5.2 Probabilistic Inference 27

5.3 Loopy Belief Propagation 27

6 Global Correspondence between Objects 30

6.1 Correlated Correspondence Algorithm 31

6.2 Correspondence Based On Correlated Correspondence 32

6.2.1 Problem Definition 32

6.2.2 Algorithm 33

6.2.3 Experimental Results 40

7 Grasp Adaptation 52

7.1 Algorithm .. . 53

7.2 Experimental Result 54

7.3 Discussion 57

List of Figures

1-1 System Overview

3-1 Real-world Objects Modeled as Meshes

3-2 Surface discretization using point clouds and meshes

4-1 An Example Grasp Represented by Numbered Contact Points [28]

5-1 Markov Random Field Example

5-2 Loopy Belief Propagation Examples

6-1 An Example of Non-rigid 3D Surface Registration [1] .

6-2 Correspondence between the demo mesh and new mesh

6-3 An example of a shape context bin over log-polar space

6-4 3D shape context is very efficient for matching corners.

6-5 Preservation of Geodesic Distance

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

Parts of Two Objects

Test Objects

Correspondence Result for Eye Glasses .

Correspondence Result for Mug

Correspondence Result for Coffee Pot

Correspondence Result for Tiki Glass

Correspondence Result for Chess Pieces .

Correspondence Result for Mugs

Correspondence Result for Hats

Correspondence Result for Mugs

. 31

. 33

. 35

. 36

. 38

. 39

.. 42

. 42

.. . . . 43

. 43

. 43

. 46

.. . . . 47

.. . . . 48

.. . . . 48

6-16

6-17

6-18

6-19

6-20

Correspondence Result for Glasses 1

Correspondence Result for Glasses 2

Correspondence Result for Flasks

Correspondence Result for Chess Piece and Eyeglasses

Correspondence Result for Hat and Glass

Picture and Computer Model of Demo Grasp for Glass

Grasp Adaptation to Glass 1

Grasp Adaptation to Glass 2

Grasp Adaptation to Glass 3

Picture and Computer Model of Demo Grasp for Mug .

Initial Grasp of Grasp Adaptation (Mug)

Final Grasp of Grasp Adaptation (Mug)

7-1

7-2

7-3

7-4

7-5

7-6

7-7

49

49

50

50

51

. . . . 55

. . . . 56

. . . . 56

. . . . 57

. . . . 58

. . . . 58

. . . . 59

List of Tables

6.1 Cross Product Relations 40

6.2 Correspondence Algorithm Result 44

6.3 Correspondence Algorithm Result 45

Chapter 1

Introduction

We use our hands to manipulate objects of a wide variety of shapes, sizes and

materials. We can perform tricky tasks such as holding a cup or lifting a pen from

a table. One of the most basic manipulations is grasping objects. In order to use

objects, one must be able to pick them up first. Even though humans can easily pick

up objects by wrapping a hand around an appropriate part of the object and lifting

the object, it has been very difficult to successfully automate the process of grasping

objects using robotic hands.

One simple approach for a robot is to make a robotic hand simply wrap around

the object so that the resulting grasp has opposing contacts. As shown in Nguyen's

work on force-closure grasps [24], almost any grasp with somewhat opposing contacts

can support an object if friction is high enough. Thus, a robot can pick up objects

in this manner as long as it can wrap its fingers around an object.

Simple routines solve part of the problem, but more complex manipulations that

humans find intuitive remain difficult to reproduce with brute-force solutions. Con-

sider a situation where a robot tries to pick up a cup full of water. If the robot just

wraps its fingers around the cup and lifts, it is highly probable that the robot pours

water over the floor. We can see that the desired grasp should be adequate for the

object type (e.g. cup). We have different grasp approaches for different objects. Even

though it is desirable to find a generic solution that reproduces appropriate grasps

for all possible objects, finding such a solution seems very difficult.

For such tasks mentioned above, it is often easier to teach the robot how to grasp

some demo grasps, and imitate the demo grasps when similar objects are given as the

input. In other words, the grasp system generates a grasp for a new object based on

the demonstration grasp of a similar object. There are several stages to achieve such

a system, and the main goal of this thesis is to provide an ability to adapt a grasp of

an object to similar-looking objects.

1.1 Assumptions

Several assumptions are important to the approach taken in this thesis. These

include:

1. We have perfect knowledge of object shape.

2. A grasp can be modeled as a set of contact points.

3. The friction coefficient for contacts is set to 0.8, which is comparable to the

static coefficient of rubber on dry pavement.

1.2 Approach

A summary of the approach taken for each step in the grasp system is as follows:

1. Retrieving a similar-looking object: An algorithm that ranks objects by

similarity using geometric properties is used to pick a similar object from a

database of demonstration objects. Since there can be several candidates, if

the system fails with the first demonstration grasp, the system can try the next

candidate if needed.

2. Matching sampled points on the surfaces of objects: The system tries to

find the point-to-point correspondence between the demo object and the input

object.

3. Adapting the chosen demo grasp to a new object: The chosen demo

grasp is adapted to the input object based on correspondence information. If

desired, the system adjusts the contact points of the adapted grasp until the

quality of the resulting grasp becomes high.

The overview of the steps is provided in Figure 1-1.

Figure 1-1: System Overview

1.3 Contributions

The focus of the thesis is to build a grasp system that adapts a demo grasp to

new object with little or no human supervision. We present novel algorithms for some

stages of the adaptation process.

Global Correspondence between Objects: We take the idea of the Correlated

Correspondence algorithm (see Chapter 6), an algorithm for 3D surface registration,

and apply it to the problem of finding the point-to-point correspondence between

similar objects. The algorithm does not need markers, nor does it assume prior

knowledge about object shape. We propose a set of potentials used in constructing

the probabilistic model over all possible point-to-point correspondences between two

meshes.

Grasp Adaptation: We address the problem of adapting a grasp. We propose a

simple algorithm that transforms a demo grasp and adjusts the transformed grasp to

find a force-closure grasp. Our algorithm has certain limitations addressed in Chapter

7, and the algorithm can be improved by adding more constraints without changing

the basic framework.

1.4 Thesis Outline

Below is a summary of the rest of chapters in this thesis.

Chapter 2. Related Work: We introduce previous literature.

Chapter 3. Object Representation: We introduce and discuss the basic object

representations, including point clouds and meshes.

Chapter 4. Grasp Quality: We define a grasp and introduce a common way to

evaluate the quality of a grasp.

Chapter 5. Probabilistic Graphic Model: We introduce the basics of Markov

network. We describe in detail the Loopy Belief Propagation algorithm to perform

inference in Markov networks.

Chapter 6. Global Correspondence between Objects: We define the problem

of finding the correspondence between two similar objects. We use the Correlated

Correspondence algorithm to solve the problem and evaluate the algorithm

experimentally on several real-world datasets.

Chapter 7. Grasp Adaptation: We define the problem of grasp adaptation. We

present an algorithm based on local search to adapt a grasp and evaluate it

experimentally.

Chapter 2

Related Work

Grasp planning has been studied for a long time [19, 27, 8, 9, 18, 31]. Most

approaches deal with finding or analyzing sets of contacts on the surface of an object.

A common goal of them is to find a high quality grasp according to some quality

measure.

Even though there are many methods to achieve the goal mentioned above, the

basic approach used in the thesis is very similar to that of the work by Hsiao [9].

In her work, she assumes that the grasp system knows how to grasp some template

objects. When new object is given to the system, it retrieves the most similar object

(template) from the database, and tries to transform the template grasp to generate a

grasp for new object. The idea that a grasp for new object is synthesized by imitating

a template grasp is also used in this thesis.

Related research also includes various methods of object manipulations and move-

ments. Approaches of previous works vary in how objects of interest are represented

and how grasps and actions are represented.

Algorithms for grasp synthesis that consider complex hand kinematics typically

involve treating all or part of an object as a primitive shape (e.g. box, sphere, cylinder,

cone) for which previous grasp systems provide good grasp strategies. [29, 30, 10, 3, 9].

However, it may not be always clear how to model irregularly-shaped objects with a

given set of primitive shapes. In addition, this approach of modeling objects requires

a significant amount of works on the part of the designer. One of the goals in this

thesis is to provide grasp synthesis for irregularly-shaped objects without requiring

division of the objects into primitive shapes.

To deal with irregularly-shaped objects, the grasp system requires several algo-

rithms operating on 3-D objects. How these algorithms are used as parts of the system

is described in Chapter 1. The first of these algorithms is a shape retrieval algorithm

developed by the Princeton Shape Retrieval and Analysis Group [13]. Using Kazh-

dan's work, the system is capable of retrieving objects that are geometrically similar

to the model object. To boost matching and indexing shapes, Kazhdan decomposes a

3-D model into a collection of functions defined on concentric spheres and uses spher-

ical harmonics to discard orientation information for each one. This decomposition

yields a shape descriptor that is both orientation-invariant and descriptive.

After retrieving a similar object from the database, we adapt a demonstration

grasp for the retrieved object to the input object. To adapt a grasp, we need to know

the correspondence between parts of the retrieved object and input object. This corre-

spondence problem is reinterpreted as maximizing probabilities in the corresponding

Markov Random Field (MRF). To construct the corresponding Markov network given

two objects, I use ideas in Anguelov's work [1]. The network is constructed so that

the evaluation of an assignment computes the feature similarity of samples matched

between two objects.

In addition to the frameworks used to represent irregularly-shaped objects, there

are many different frameworks to represent grasps and actions. Each representation

has advantages and disadvantages in terms of encoding and playback [9]. Some of

popular representations include finite state automata [25, 26] and relational/contact

expression grammars [16, 33, 34]. In relational/contact expression grammars, prop-

erties such as "Moving-Up", "Moving-Down" and "Staying" are used as the values

of motion features. In a similar way, entities such as "Near" and "Far" are used

to describe the state of assembly, grasping or manipulation tasks. Alternatively, in

Pollard's work [27], a task is represented by a set of torques at contact points.

In addition to research concerning grasp synthesis, related work includes grasp-

quality measures. There are several approaches to quantify the grasp quality; these

can be grouped into two categories. One includes measures associated with the po-

sition of the contact points [8, 23]. The other includes measures associated with the

hand configuration [15, 36]. In this thesis, we do not use measures associated with

the hand configuration. For this reason, they are not discussed in this section.

Measures associated with the position of the contact points can be further divided

into three subgroups. The first subgroup of measures includes those that only consider

the algebraic properties of the grasp matrix, the mapping between the finger forces and

external forces (14]. The next subgroup includes those that are based on the evaluation

of certain geometric relations of the contact points [20, 5]. The first and second

subgroups of quality measures do not consider any limit on the magnitude of the forces

applied by the fingers. This means that in some cases the fingers may have to apply

extremely large forces to resist small perturbations. In contrast, measures of the last

subgroup consider limitations on the finger forces. One such measure was proposed

by C. Ferrari and J. Canny [8]. This measure considers grasp wrench space produced

by the fingers on the object. The quality is defined as the largest perturbation wrench

that the grasp can resist indepedently of its direction. Geometrically, the quality is

equivalent to the radius of the largest ball centered at the origin of the wrench space

and fully contained in the grasp wrench space. This measure is used in this thesis.

Chapter 3

Object Representation

Objects we use everyday are often irregularly-shaped. An example of 3D objects

is provided in Figure 3-2. One of the goals in the thesis is to provide a grasping

system that works on irregularly-shaped objects without requiring division of objects

into primitive shapes. In this chapter, we describe the basics of how 3D objects are

modeled, and introduce the type of model chosen for our system. This discussion

provides the foundation for algorithms described in later chapters.

Most practical applications approximate 3D surfaces with only a certain degree of

accuracy. Moreover, current 3D sensors only provide point samples of surfaces. We

will build discretized approximations to surfaces from the point samples. We present

two classes of tractable discretizations below: explicit and implicit representations.

Explicit representations model the surface directly. Implicit representations are in

the form of scalar fields and they have gained popularity recently [7, 17].

3.1 Explicit Representation

3D scanning is a very popular way to create 3D object data. A 3D scanner is a

device that analyzes a real-world object or environment to collect data on its shape

and possibly its appearance such as color and texture. Most current 3D scanners

provide object shape in terms of unstructured point clouds by reading samples on

surfaces. Sample readings are typically obtained by emitting light rays and measuring

(a) Real-World Objects

(b) Modeled Objects

Figure 3-1: Real-world Objects Modeled as Meshes

the time of travel from the sensor to the object and back. Each reading measures the

coordinates of points on the scanned surface. To obtain the estimates of the normal

vectors to the surface at those points, we can perform a post-processing step such as

interpolating adjacent sensor readings [21]. The coordinates of sampled points are

often called a point cloud, which is the simplest representation of the surface.

Definition 3.1.1. A point cloud is a description of the surface X as a collection

of the coordinates of surface points.

Figure 3-2 shows an example of a point cloud.

While point clouds are useful to represent raw data from 3D sensors, they provide

only partial information about the surface. Most importantly, it is not easy to retrieve

connectivity of points on the surface. To resolve this problem, we use polygon meshes.

A polygon mesh is a very popular 3D object representation in 3D computer graph-

ics. It is a collection of vertices and polygons that define the shape of a polyhedral

object. Meshes usually consist of triangles, quadrilaterals or other simple convex

polygons. They can approximate any continuous surface arbitrarily well given a fine

,","" ,- , :
"•: .

.... ..

o •.,

: I ,r 2 l. :.+ h I

.... / .

-1 .- . • °, - - .. " -

(a) A Real-World Object (A Tiki (b) Corresponding Point Cloud (c) Corresponding Mesh (2489
Glass) (2489 Points) Vertices and 4976 Faces)

Figure 3-2: Surface discretization using point clouds and meshes

enough polygon tessellation.

There are many internal representations for meshes. A common representation

is to use a list of vertices and faces. A vertex corresponds to a sample point on the

surface. Vertices are connected by edges, and faces consist of these edges.

Definition 3.1.2. A mesh Mx is a tessellation of a continuous 3D surface X into

a set of faces, or polygons. It can be represented as a collection of vertices and faces:

Mx = (Vx, Fx).

In Definition 3.1.2, Vx = (vl, v2, ' , Vm) contains the coordinates of the face

vertices. The set of faces covering the surface is denoted by Fx = (fi, f2, ... , fm).

In general, a face can contain an arbitrary number of vertices. An example of mesh

is displayed in Figure 3-2.

The normal vectors at sample points can be estimated from vertices and faces. For

example, the normal nf, at face fk with three vertices fk,1, fk,2, fk,3 can be estimated

18

7:

-Y

in the following way.

u = (fk,2 - fk,1) X (fk,3 - fk,1). (3.1)

nfk = U (3.2)

To estimate the normals to a polygon, we triangularize the polygon and estimate the

normals at triangles.

The convention regarding the order of the face vertices is that the vertices specified

in a counter-clockwise order will produce an outward pointing normal. The opposite

order flips the direction of the normal. The normal at a vertex is estimated by simply

averaging the normals of the adjacent faces.

3.2 Implicit Representation

While explicit surface representations model the surface directly, implicit repre-

sentations are in the form of scalar fields. The most popular implicit representation

is the signed distance map (SDM) [32]. In SDM, each sample encodes the distance to

the nearest point on the curve, with negative values inside the curve. SDM is typically

represented over a discrete grid and can be computed from a mesh [171. In SDM, the

isosurface containing all points for which the signed distance is zero corresponds to

the original surface.

A SDM is defined everywhere in 3D space relative to an object. This makes it

straightforward to relate SDM representations of different objects to each other. In

addition, a SDM is smooth and its smoothness facilitates smooth interpolation be-

tween objects. For these reasons, SDMs have been used for many algorithms including

a famous scanning algorithm by Curless and Levoy [7].

While using SDMs have many advantages, using them also has drawbacks. Most

importantly, the map has to be defined for the entire 3D space, which requires more

computation and memory than meshes do. In addition, since SDMs do not explicitly

model the surface, it is not straightforward to apply combinatorial algorithms to

SDMs.

For the purposes in the thesis, using meshes is a better choice. The first reason is

that the Correlated Correspondence algorithm that is introduced in Chapter 6 only

works with meshes. Second, since meshes are more popular than SDMs, it is easier

to find graphics tools based on meshes. Last, meshes require fewer computations and

less space than SDMs. For these reasons, we will use meshes throughout the rest of

the thesis.

Chapter 4

Grasp Quality

Before we discuss grasp adaptation, we first need good descriptions of grasps and

tasks, and a mechanism to evaluate grasps. In this chapter, we address these issues.

There have been many discussions on this topic and this chapter draws from previous

literature, especially, from Ferrari and Canny [8], and Pollard [28].

Grasp

This thesis uses a very simple description of a grasp. A geometric model of a

target object is given as a mesh (for the definition of mesh, see Chapter 3), and a

grasp of that object is formed by placing some number of contacts on the object. It

is assumed that all contacts are simple point contacts with friction (hard contact).

Force and Torque

Forces can be exerted on the target object through a grasp. The exerted force on

the object is normal to the contact surface. Even though we cannot apply torques at

contacts, exerted forces can induce torques around the target object center of mass.

Task

To determine the suitability of the grasp for a particular task, a description of

that task is needed. In this thesis, a task is a space of forces and torques that the

hand may be required to apply to the target object in order to perform some function.

This space of forces and torques is referred to as the task wrench space. The term

wrench refers to a combined vector of a force and a torque.

Grasp Quality Measure

A grasp quality measure is an estimate of the suitability of a grasp for the task

to be performed. That is how well the grasp can withstand the forces and torques of

the task. All grasps that are synthesized in this thesis will be evaluated according to

this measure. Before defining quality measure in detail, we need some notations.

Notation:

fi = applied force at contact i, (4.1)

T = torque at contact i, = A(fi x di), (4.2)

di = vector to object center of mass, (4.3)

A - torque to force conversion factor, (4.4)

wi = wrench at contact i = [fi T,]T , (4.5)

c = number of contacts. (4.6)

The grasp wrench space region (GS): A grasp can be characterized based on

the set of wrenches that can be applied to the target object through the contacts of

a grasp. The unit grasp wrench space region is defined as follows:

C C

GS = {w w = aiw, ai > O, ai < 1, fI = 1}. (4.7)
i=1 i=1

In other words, GS is bounded by the convex hull of the contact wrenches formed

from unit applied forces at the contacts.

The task wrench space region (TS): A task can be characterized as the space

of wrenches that must be applied to the object in order to complete the objective.

A common task people use to measure grasp quality is the simple task of countering

arbitrary disturbance forces applied to the object. If arbitrary disturbance force of any

direction can be resisted by forces and torques that can be applied through a grasp,

this grasp is called force-closure. One useful wrench space region that describes this

task is the ball-shaped region centered at the origin. A ball of radius , contains all

wrenches whose magnitudes are less than ri:

r, TSba1 = wI I W| I5 < }. (4.8)

The grasp quality measure (Q): Intuitively, the grasp quality measure is the

amount of forces and torques that the robot is capable of resisting while maintaining

the grasp. The measure used in the thesis is defined as follows:

Q = max(r) KTS e GS. (4.9)

Geometrically, this is equivalent to the size of the largest wrench space ball that fits

completely within the unit grasp wrench space. In other words, grasp quality is the

reciprocal of the amount by which GS must be scaled so that it just contains TS.

The grasp quality measure for the grasp shown in Figure 4-1 is 0.35 for task

TSball. Intuitively, this means that if a task wrench must be countered in a direction

in which the grasp is weak, the wrenches that must be applied to the object through

the contacts of the grasp are approximately three times the magnitude of that task

wrench.

v

Figure 4-1: An Example Grasp Represented by Numbered Contact Points [28]

In practice, we first need to construct GS before we compute the grasp quality.

Consider that the friction cone at contact i is approximated by a pyramid with s edges,

and the force fi can be expressed as a positive linear combination of unitary forces

fi j, j = 1, 2, ... , s, along the pyramid edges. The resultant wrench wi produced by

fi can be expressed a positive linear combination of the wrenches wij produced by

fi,j. Now, c fingers produces a resultant wrench on the object given by

C

w = aiw (4.10)
i=1

c s

- E ceiwij (4.11)
i=1 j=1

The set of possible resultant wrenches is the convex hull of the Minkowski sum of the

primitive wrenches wi,j:

GS = ConvexHull {wi,1l i,2,...i=i, . (4.12)

To compute the grasp quality, we need to find the size of the largest wrench space

ball that fits within the convex hull. This can be easily done by finding the largest

distance to a convex hull face from the origin.

Chapter 5

Probabilistic Graphical Model

Probabilistic graphical models provide a means of encoding the structure of com-

plex environments efficiently. The models are representations of the joint probability

distribution over a set of variables, and their inherent structure can be used to per-

form tasks such as reasoning and learning. In particular, we can reason about the

assignments to a large number of variables simultaneously by utilizing the theory of

graphical models.

In this chapter, we present the basics of probabilistic graphical models. We first

introduce Markov networks, which are used in our algorithms. Then we show how

we can perform probabilistic inference in a network. Last, we describe loopy belief

propagation, an algorithm that calculates conditional probabilities efficiently.

5.1 Markov Random Field

In this section, we briefly introduce undirected graphical models known as Markov

random fields or Markov networks [2]. The semantics of MRFs are similar but simpler

than Bayesian networks [2]. The graph represents dependence properties between the

variables.

For example, in Figure 5-1, since X 1 and X 2 are connected, they are dependent

on each other. In this way, connected variables are correlated. However, if X 2 and X 4

are observed, X1 and X3 get disconnected and that means that they are independent

Figure 5-1: Markov Random Field Example

given X2 and X4 . Similarly, if we remove X 1 and X3 from the graph, then X 2 and

X4 are no longer dependent.

MRFs can encode dependence structure in joint probability distributions. For the

above example, we can define a distribution as the product of non-negative potential

functions over pairs of variables that specify how the variables depend each other:

P(x=, x 2, X3, Z4) = - 12 (X1, X2)/14(Xl, X4)423(X2, X3) 34(X3, X4), (5.1)

where Z is a normalization constant. A normalization constant is required to make

distributions of all assignments sum to one. A potential function can take any non-

negative real value. In addition, it can be associated with a fully-connected group

of variables, called a clique. Definition 5.1.1 provides the formal definition of MRF

using cliques.

Definition 5.1.1. A Markov random field, or Markov network is a represen-

tation of a joint probability distribution over a set of variables X = {x, X2, . , Xn}.

The network has vertices that correspond to the variables, and encodes a set of inde-

pendence assumptions. A potential c is associated with a clique c in the graph, and

is used to define the distribution

P(X) = 2J75(XC), (5.2)
C

where Xc denotes the set of variables in the clique c, and the value Z is the normal-

ization factor, defined as

Z = c(Xc). (5.3)
X c

5.2 Probabilistic Inference

Probabilistic inference, the process of computing the posterior distribution of vari-

ables given some evidence, is a fundamental task in probabilistic graphical models. It

is shown that performing inference in Markov networks is NP-hard [6]. The difficulty

of the inference task tends to increase as the graph structure gets more complex.

For example, exact inference takes linear time for Markov networks whose underlying

graphs are trees, whereas in Markov networks with many cycles, exact inference is

intractable.

To evaluate the desired probabilities in Markov networks within a limited time, we

often have to approximate inference answers. There are many different approximation

methods. We will not review all methods in this thesis. For those who are interested in

knowing more about these methods, please read [6],[12], and [22] for Gibbs sampling,

mean field approximation, and loopy belief propagation, respectively.

Loopy Belief Propagation is an inference algorithm that is most commonly used

in AI. Loopy Belief propagation is used later in this thesis when we discuss corre-

spondence between two objects, and a brief explanation of the algorithm is provided

in the next section.

5.3 Loopy Belief Propagation

Loopy Belief Propagation(LBP) is a simple message passing algorithm. The al-

gorithm can approximate conditional probabilities in Markov networks. In case of

graphs with cycles, we should repeat iterations of passing messages until probabilities

converge.

In this section, we describe a special case of the algorithm, which can be executed

on Markov networks with single and pairwise potentials. Theoretically, this case can

cover all graphical models since all models can be converted to such Markov networks

using the method introduced in the paper by Yedidia et al. [35].

Consider a Markov network with discrete variables X 1, X 2 , - - , X, and single and

pairwise potentials <i(Xi) and bij (Xi,Xj), respectively. Our task is to evaluate the

beliefs P(Xi) for all variables.

The main idea of LBP is that variables send messages to their neighbors in the

underlying graph in order to update their beliefs. We will use mij (Xj) to denote the

message from Xi to X i . The LBP algorithm maintains an estimate of the marginal

probabilities of all variables. We call such estimate beliefs and use bi(xi) to denote

the estimate of the probability that Xi = xi. The beliefs should be normalized (i.e.

Ex bi(xi) = 1) to be used as probabilities.

The beliefs are computed from the incoming messages sent by the variable's neigh-

bors using the following update rule:

bi(xi) = li(xi) m rn-i(xi). (5.4)
jENeighbors(Xi)

In the update rule, Z denotes the normalization constant and ji(xi) denotes the single

potential associated with Xi. An example of the update rule is provided in Figure

5-2. In this case, b3(x 3) is updated using the messages from the neighbors X 1,X 2,

and X 4. Mathematically, the rule is the following:

b3(x 3) = - 3(x 3)m ~ 3 (x3)m2-- 3 (x3)m4- 3(x 3). (5.5)

The messages are also updated based on other messages. Therefore, message

update rule is recursively defined as follows:

SZ j (xjII) mkj) (5.6)
j kENeighbors(Xj)\{Xi}

(3)

m4-13(X3)

(a) Belief Update Rule (b) Message Update Rule

Figure 5-2: Loopy Belief Propagation Examples

Note that the right-hand formula excludes the message from Xi since we are

updating the message associated with Xi. In Figure 5-2, the message update rule for

m3--4 (x 4) is the following:

m 3--4(x4)= 3 (X3)44,3 (X4, X3)mi+3 ()m2-3(X 3). (5.7)

The LBP algorithm uses the above rules to estimate beliefs. Initially, all messages

and beliefs are uniform (i.e. mj _i(xi) = 1 and bi(xi) = 1). Then, we perform updates

on messages and compute new beliefs based on these message updates. We repeat this

update process until the beliefs converge. The algorithm may not converge in some

cases. Therefore, we stop updating after a predefined maximum number of iterations.

Convergence conditions are studied in the paper by Yedidia et al. [35].

Chapter 6

Global Correspondence between

Objects

In this chapter, we address the problem of finding the point-to-point correspon-

dence between the surfaces of two objects. Solving this problem is essential in devel-

oping the desired grasp system since we need to know how two objects are related in

order to adapt a grasp for one object to the other.

Finding the correspondence between vertices of two meshes is a very difficult

problem. First, there are thousands of vertices in each mesh. Since each vertex of one

mesh can map to one of thousands of vertices of other mesh, the number of possible

correspondences is very large. Second, there is no obvious way to match two objects.

Different people can have different ways to match two objects. They can argue over

what objectives should be satisfied to give a good matching.

Currently, we have not seen any particular algorithm designed to solve the problem

mentioned above. The most relevant research area is non-rigid 3D registration. Non-

rigid 3D registration is the problem of finding the point-to-point correspondences

between the surface of an object and the deformed surface of the original object. In

this case, the objective is clearer than the previous case because one surface is the

deformed version of the other, whereas the grasping system should be able to deal

with two different objects although they are mostly similar. In this chapter, we study

ideas from non-rigid 3D registration and apply them to our problem in later sections.

6.1 Correlated Correspondence Algorithm

In this section, we address the problem of non-rigid 3D registration which has

been studied for many years. Non-rigid 3D registration is the problem of finding the

point-to-point correspondence between two deforming surfaces. An example of 3D

registration is provided in Figure 6-1. In the figure, the point-to-point correspondence

is given by numbered (colored) points.

3

Figure 6-1: An Example of Non-rigid 3D Surface Registration [1]

The registration problem requires search in the space of all possible alignments

between two surfaces. Therefore, determining the best correspondence results in a

combinatorially large search problem. To make the registration problem tractable,

people have developed many algorithms. While many of them assume significant

prior knowledge about the objects, the Correlated Correspondence algorithm, devel-

oped by Anguelov [1], registers deforming surfaces in an unsupervised manner. The

algorithm produces reasonable results without prior knowledge about objects. Its

only assumption is that the surfaces do not undergo significant topology changes [1].

The algorithm is based on a probabilistic model over the set of possible point-

to-point correspondences. For each correspondence, a score is assigned to evaluate

the similarity between surface areas. Another score is given to the degree of the

deformation. To (approximately) maximize the scores of the probabilistic model, the

algorithm uses probabilistic inference introduced in Chapter 5.

In [1], it is reported that the Correlated Correspondence algorithm successfully

aligns almost all mesh pairs in the experiment. All running times of the algorithm are

less than 2 minutes. In two cases, the algorithm failed because the torso was flipped,

so the front was mapped to the back. This problem arises from ambiguities induced

by the fact that the front and back are almost identical. To resolve this problem, we

use the shape context algorithm developed by S. Belongie [4] instead of spin images

used in Anguelov's original paper. The details are discussed in the next section.

6.2 Correspondence Based On Correlated Corre-

spondence

In this section, we discuss how to find the correspondence between two objects.

The correspondence is based on all vertices of two objects and aims to correctly

align two objects and match the chunks of objects. The Correlated Correspondence

algorithm introduced in the previous section is used to find the correspondence. In

the following, we discuss the problem definition, the details of the algorithm, and

experimental results.

6.2.1 Problem Definition

The correspondence problem is to determine point-to-point correspondences be-

tween two surfaces. That is, for each vertex of one object, we find the corresponding

vertex of the other object. We assume we are given the complete surface models

of two objects. Our ultimate goal in the grasping system is to adapt a grasp for a

demonstration object to the new object, utilizing correspondence information. We

will call the mesh for the demo object demo mesh, and the mesh for new object new

mesh.

The goal is to match the corresponding parts of the two meshes. We assume that

the two meshes are reasonably similar. A matching example is provided in Figure 6-2.

Even though there are thousands of vertices for each object, only some of vertices

are drawn here for the purpose of visualization. The vertices connected by lines are

matched. Note that we have more vertices in new mesh than in demo mesh. The

reason is that by having a fine sampling of new mesh, we have a better chance to

correctly assign demo vertices.

Figure 6-2: Correspondence between the demo mesh and new mesh

The formal problem definition is the following:

Definition 6.2.1. Given the demo mesh Mx and new mesh My, finding the vertex

correspondence Cxy = {cl, c2,... ,Cmx } between two meshes is to associate each

vertex vk of the demo mesh with a vertex vy of new mesh so that the corresponding

parts of the objects are matched.

The variable ck has a discrete domain containing all vertex indices. Setting ck = i

associates the kth vertex of the demo mesh with the ith vertex of new mesh.

6.2.2 Algorithm

To find the correspondence between two objects, we utilize a probabilistic model.

The basic idea is that we give a high likelihood score to vertex assignments that

preserve the features of the demo mesh. In other words, if the feature of a set of

vertices of the demo mesh is preserved in the set of the corresponding vertices, this

assignment is preferred. This idea originates from the paper by Anguelov [1].

There are certain features to be preserved. For example, if the geodesic distance

between two vertices of the demo mesh is short, that of the corresponding vertices of

new mesh should be short, too. Similarly, if the distance is long, the corresponding

distance should be kept long. Another example of a feature to be preserved is the

local surface signature that captures the distribution of vertices in a local region

on the surface. By preserving local surface signature, we prefer to match similar-

looking parts of the surface. The complete list of the features is provided later in

this subsection. As introduced in the previous subsection, the vertex assignment

is defined by providing a complete assignment to all correspondence variables C =

(cl, ... , cm). To represent the correspondence problem as a probabilistic graphical

model, we use a pairwise Markov network (see Chapter 5). The network contains

single potentials k(Ck) that prefer assignments that match similar-looking local areas

in the two surfaces. The network also contains pairwise potentials associated with

the assignment of a vertex pair in order to conform to constraints such as preserving

geodesic distances. The resulting Markov network is a graphical model of a joint

probability distribution of the form P(C) = 1 Hlk Osingle(ck) Hk,l /pairwise(ck, C).

The objective now becomes finding C that maximizes P(C) = Ik 0jingle(Ck) 1k,l Opairwie(Ck, C)

In this way, we preserve the features of the demo vertices that are captured in single

and pairwise potentials. To find such C, we use loopy belief propagation to perform

probabilistic inference.

Choosing appropriate potentials is a crucial step in order to preserve the features

of the demo mesh effectively. In the following, we describe the potentials in detail.

Local Surface Signatures

We prefer to match similar-looking parts of both object surfaces. Therefore, we

encode a set of potentials that preserve local surface properties between the demo

mesh and new mesh. To capture the signature of local surfaces, we experimented

with spin-image features [11] and 3D shape contexts [4]. After the experiment, we

decided to use 3D shape contexts. The main reason is that spin images have trouble

with bilateral symmetry in objects such as human bodies since spin images are rota-

tionally invariant. In the original paper of the Correlated Correspondence algorithm

by Anguelov [1], he also mentions this problem. In contrast, 3D shape contexts can

capture unique surface signatures even when symmetry is present (e.g. the front and

back of a torso). For this reason, we use 3D shape context instead of spin images. In

this section, we discuss how to use 3D shape context to encode single potentials. How-

ever, 3D shape contexts can be easily replaced by other surface signatures including

spin images.

Shape context is a local surface descriptor suggested by S. Belongie and J. Malik

[4]. The descriptor considers the set of vectors originating from a point to all other

sample points on the surface. These vectors express the configuration of the entire

object relative to the reference point. Clearly, this set of m - 1 vectors is a rich

description, since as m gets large, the representation of the object becomes exact.

Storing the full set of vectors as a descriptor is inefficient since the description

is much too detailed. Instead, we compute the histogram hi over the set of m - 1

positions relative to the vertex vi,

hi(k) = #{j $ i: (vj - vi) E bin(k)}. (6.1)

In 2D, we use bins that are uniform in log-polar space. In this way, the descriptor

is more sensitive to nearby sample points than to those farther away. An example

of 2D bin is provided in Figure 6-4. In 3D, we define bins similarly with two angles

instead of one.

Figure 6-3: An example of a shape context bin over log-polar space

Consider a vertex vx of the first mesh and a vertex vY of the second mesh. The

cost of matching these two vertices is defined as the following:

1 E [hi(k) - hj(k)]2

C(vX, vIY) 2 [h(k) + hi(k) ' (6.2)
k=1

where h (k) and hj(k) denote the K-bin histogram at v x and v>Y, respectively.

Using C(vX , vY), we define single potentials:

?I(ck = i) = N(C(v , vY); 0, a), (6.3)

where N(x; f, a) is the probability density function (PDF) of the normal distribution

with the mean p and the variance a.

3D shape context is very efficient for matching corners. For vertices around cor-

ners, only bins that are in some direction are filled in. Therefore, matching corners

costs less than matching a corner vertex and a non-corner. In our experiment, the

corner vertices of two different glasses were well matched as shown in Figure 6-4.

M amI

Figure 6-4: 3D shape context is very efficient for matching corners.

Geodesic Distances

In addition to the preservation of local surface signatures, the preservation of

distances between vertices is also considered. For example, if the distance between two

vertices of the demo mesh is short, the distance between the corresponding vertices

of new mesh should be short, too. Similarly, if the distance is long, the corresponding

distance should be kept long.

There are several ways to define the distance between two points. Even though

Euclidean distance can be meaningful, it is very sensitive to deformations. If the

joint angle between two parts changes, Euclidean distances between vertices in the

two parts can change dramatically. In contrast, geodesic distance (i.e. the length of

the shortest path on the surface) does not depend on the joint angle. For this reason,

we use geodesic distance.

While local surface signature is defined for each vertex, defining geodesic distance

requires two vertices. An example of distance preservation is shown in Figure 6-5.

Even though only two pairs are highlighted in the figure, we try to preserve geodesic

distances for all pairs of vertices. We can achieve the preservation through the use of

pairwise potentials in the Markov network:

g (Ck = i, c = j) = N(dist(v, v'); dist(v' , v'), or.), (6.4)

where dist(vX , vj) denotes the geodesic distance between the vertices vx , vX. The

way this potential works is as follows: when the transformed distance is close to the

original distance, the potential value is high, and as the transformed distance deviates

from the original, the potential gets lower value.

Cross Product Relations

Preserving local surface signatures and geodesic distances is enough to find a rea-

sonable correspondence between two objects in some cases. In our experiment, we

successfully matched two objects when the number of vertices was small enough.

However, performing probabilistic inference in graphical models requires a huge num-

ber of computations when there are thousands of vertices. This is because there

are too many ways to assign vertices. Especially when there are many symmetries

present in meshes (e.g. a chair), many vertices share similar local surface signatures

and distance relations. To reduce the number of computations necessary to make the

probabilities converge, we need another potential.

- E

: -

Close E > Close

Far ,> Far

Figure 6-5: Preservation of Geodesic Distance

The potential introduced below makes one strong assumption. We assume that all

objects have their z-axis (i.e. the axis oriented vertically) aligned. What this means

is that objects have their top and bottom part defined. Imagine a cup placed on a

table. There is a common orientation of the cup with respect to the z-axis in that the

bottom part of the cup touches the table. Even though it is often the case that we

deal with two objects aligned vertically, we can remove this assumption. To do so, we

should analyze the distribution of vertex positions and then align objects accordingly

before setting up the Markov network.

We first introduce the definition of the potential and then give a simple illustration

to show how it works. Before defining the potential, we need the following definitions.

cross(v , v, v) = (V1 - x (- V), (6.5)

cross(,v n 2 , sgn(cross(v ,v,v) -), (6.6)
m#k,l

where sgn(x) is the sign function and n denotes the number of vertices. The vector

function cross(vX , vX , v) gives the cross product between the vectors starting from

vX to vX and vX, respectively. The function cross(vx , vx) gives how vertices are

located in respect to the edge connecting the vertices vX and vjX . The geometric

interpretation is the following: imagine a plane that contains the edge connecting v

and vx and is perpendicular to the xy-plane. Unless the edge is perpendicular to the
xy-plane, this plane is unique. If not unique, cross(v, vix, v X) will be zero for all vX .

Depending on which half-space vertex vX belongs to, we either add to or subtract

from cross(v , viX).

A pairwise potential is defined based on cross(vx, v7) as follows:

bc(Ck = i, cl = j) = N(cross(v , v); cross(vx , v), ac). (6.7)

For better understanding of how this potential works, we provide an illustration

here. Consider two objects in Figure 6-6. The objects are on the xy-plane. For sim-

plicity, only four vertices are drawn. The best matching in this case is the following:

c = 3, c2 =1, c3 = 2, c4= 4.

Even though we can find a reasonable correspondence only using local surface signa-

(a) Demo Mesh X (b) New Mesh Y

Figure 6-6: Parts of Two Objects

tures and geodesic distances, it does not give much information regarding how vx , vx,

and v3X should be placed. The reason is that most of geodesic distances and local

surfaces signatures for those vertices are similar. Here, the cross product relations

play an important role to differentiate vx from others. The following is the tables for

cross product relations.

cross(vkvfl 1
112 3 4

1 0 0 0
k 2 0 1 -1

3 0 -1 1
4 0 1 -1

CrOSS(V,V) 1
1 2 3 4

1 0 -1
-1 0 1
0 0 0
1 -1 0

Table 6.1: Cross Product Relations

If ci = i for all i = 1, 2, 3, 4, the potential value is calculated as follows:

I '0c(ck,cl) = N(1;0,)N(0;0, ac) ... N(-1; 1, ac)N(O;-1,ac). (6.8)
k,l

When ac is 0.4, this value is 1.8684 x 10- 22. Note that the value is very low. Let's

consider another case where cl = 3, c2 = 1, C3 = 2, c4 = 4 :

1 c(ck, cl) = N(1; 0, ac)N(0; 0, ac) ... N(-1; 1, ac)N(0; -1, ac). (6.9)
k,l

When ar is 0.4, this value is 0.9692. Note that this is very high compared to the

previous case. Therefore, it is highly probable that the belief propagation prefers the

latter assignment. In practice, we should take all vertices into account instead of only

four, but here, we consider only portions of meshes for illustration.

6.2.3 Experimental Results

In this sub-section, we discuss some experimental results of running the corre-

spondence algorithm introduced in the previous sub-section. For all experiments, the

following parameters were used.

crs~ ")1

a's - 0.03, a -- 0.3, ac = 0.4

Correspondence between Identical Objects

Here, we test the algorithm on two identical objects, which means the demo mesh

and new mesh are the same. Note that we perform subsampling before running the

algorithm. Due to the randomness of subsampling, we have two different sets of

vertices even when the original meshes are the same. To make them have the same

samples, we only perform subsampling once and then use it for both the demo and

new mesh in the first experiment. In the second experiment, we will use different

subsamples.

If two meshes and subsampled vertices are the same, the desired correspondence

is obviously the identity function (i.e. ci = i for all i). This is a very easy case

since the correspondence of form ci = i gives the highest potential for all features

and therefore, the identity correspondence is the assignment that evaluates to the

maximum probability. To make sure of this behavior, we tested the algorithm on 15

objects, where most of them are listed in Figure 3-2. We have achieved the identity

correspondence for all test cases and the belief propagation finished in 5 iterations in

all cases.

Next, we did the same experiment with different subsamples. The algorithm ran

successfully on all 15 cases even though a very small number of vertices were misplaced

because we did not have sampling fine enough to make sure that a perfect answer

always existed. Here, four selected objects are shown in Figure 6-7, and the results of

running the algorithm on them is visualized in Figure 6-8, 6-9, 6-10, and 6-11. Note

that only some selected vertices were colored for simplicity. For the details of the

number of total vertices and BP iterations, see Table 6.2.

(a) Eye Glasses

(c) Coffee Pot (d) Tiki Glass

Figure 6-7: Test Objects

(a) Demo Mesh (b) New Mesh

Figure 6-8: Correspondence Result for Eye Glasses

~A

N,

(b) Mug

(a) Demo Mesh

Figure 6-9: Correspondence Result for Mug

(a) Demo Mesh (b) New Mesh

Figure 6-10: Correspondence Result for Coffee Pot

(a) Demo Mesh (b) New Mesh

Figure 6-11: Correspondence Result for Tiki Glass

(b) New Mesh

Object # BP iterations # vertices of demo mesh # vertices of new mesh
Glasses 6 34 59
Mug 8 55 105

Coffee Pot 6 48 86
Tiki Glass 9 71 102

Table 6.2: Correspondence Algorithm Result

Correspondence under Rotation

We have performed the correspondence algorithm on two objects in which one

object is the rotated version of the other. Note that rotation here is restricted to be

centered around z-axis. Theoretically, rotation does not change any potential since

geodesic distance, local surface signatures, and cross product relations are rotation-

invariant. We have performed a similar experiment as before and confirmed that the

algorithm gave reasonable results within 10 iterations of BP. We omit the details here

because this experiment is very similar to the previous.

Correspondence between Similar Objects

Here, we test the algorithm on two similar objects. The experiment method is

the same as before. We limit the maximum number of BP iterations to 30. If the

probabilities do not converge within 30 iterations, we use the probabilities after 30

iterations to determine correspondence.

We tested the algorithm on 20 cases. It is very difficult to evaluate the results

since there is no way to quantify the quality of a correspondence. Visualization was

the only way to see if things went well.

Out of 20 test cases, only 7 cases are introduced in the thesis to save space. The

results are drawn in Figures 6-12 through 6-18, and the number of BP iterations taken

for each test case is provided in Table 6.3.

Object 1 Object 2 # BP iterations # vertices (demo) # vertices (new)
Chess Piece 1 Chess Piece 2 8 57 187

Mug 1 Mug 2 > 30 66 166
Hat 1 Hat 2 > 30 50 158

Mug 3 Mug 4 7 55 202
Glass 1 Glass 2 11 66 171
Glass 3 Glass 4 8 46 241
Flask 1 Flask 2 > 30 58 163

Table 6.3: Correspondence Algorithm Result

(a) Demo Mesh (b) New Mesh

Figure 6-12: Correspondence Result for Chess Pieces

Correspondence between Different Objects

In the previous experiment, we were not able to find a case in which the cor-

respondence algorithm resulted in a catastrophic failure. However, we still need to

know when and how it fails. The easiest way to figure out what happens when the

algorithm fails is to try to match two totally different objects.

We tried to match a chess piece and a pair of glasses. The belief propagation did

not converge in 30 iterations. The result looked very random. The correspondence is

shown in Figure 6-19. Even though matching a chess piece and glasses gives nothing

interesting, running the algorithm on two very different objects that share some geo-

metric properties can be useful. Figure 6-20 is the result of running the algorithm on

a hat and a glass. Interestingly, the algorithm converged and took only 18 iterations.

In Figure 6-20, the points are reasonably placed. The points that should be on the

(a) Demo Mesh (b) New Mesh

Figure 6-13: Correspondence Result for Mugs

bottom part are on the bottom of the glass, and the points on the body of the hat are

also matched to the points on the body of the glass. Note that the points on the bot-

tom part where they are colored as green, blue, yellow, and so on, are well-matched.

(a) Demo Mesh (Top View)

(c) Demo Mesh (Side View) (d) New Mesh (Side View)

Figure 6-14: Correspondence Result for Hats

(a) Demo Mesh (b) New Mesh

Figure 6-15: Correspondence Result for Mugs

(b) New Mesh (Top View)

(a) Demo Mesh

Figure 6-16: Correspondence Result for Glasses 1

(a) Demo Mesh (b) New Mesh

Figure 6-17: Correspondence Result for Glasses 2

(b) New Mesh

(a) Demo Mesh

Figure 6-18: Correspondence Result for Flasks

(a) Demo Mesh (b) New Mesh

Figure 6-19: Correspondence Result for Chess Piece and Eyeglasses

(b) New Mesh

(a) Demo Mesh (b) New Mesh

Figure 6-20: Correspondence Result for Hat and Glass

Chapter 7

Grasp Adaptation

We have discussed how to find the correspondence between two objects in the

previous chapter. Even though we can learn how two objects are correlated by run-

ning the correspondence algorithm, this does not directly tell how a grasp should be

transferred from one object to the other. In this chapter, we discuss how to adapt a

grasp to the new object.

Before we define the goal of grasp adaptation, we need some definitions:

1. Demo grasp is a grasp for the demonstration object (for definition of grasp, see

Chapter 4).

2. Adapted grasp is a grasp that is generated (adapted) for new object utilizing

information of demo object, new object and demo grasp.

The goal of grasp adaptation is defined as follows:

1. The adapted grasp should be located around the region of new object that

corresponds to the region of demo object in which the demo grasp is placed.

2. The quality of the adapted grasp should be reasonably high.

The first goal ensures that the adapted grasp makes sense to people. Consider a

situation in which you transfer a grasp for a cup to the other cup with the similar

geometric appearance. If the original grasp is placed around the handle of the cup,

it makes more sense to locate the adapted grasp around the handle of the other cup

than around its body.

Even though we can place the adapted grasp in a reasonable region by satisfying

the first goal, we should make sure that the quality of the grasp is reasonably high.

If the second goal is not satisfied, we can end up with a grasp that is roughly correct

in global position, but is not effective in terms of grasp quality discussed in Chapter

4. By satisfying both of the goals, we can make sure that the grasp is well adapted.

7.1 Algorithm

In this section, we propose an algorithm that finds a grasp that satisfies the goals

mentioned above. The basic idea is that we generate an initial grasp for new object

by transforming each contact point of the demo grasp using global correspondence

information. Then, we adjust the points of the initial grasp until we find a good grasp.

Here, a grasp is good if its quality is larger than e = 0.01. Note that a good grasp is

force-closure.

A contact point of the adapted grasp is one of mesh vertices of new object. This

discretization is required because our search space should be tractable. Even though

there is no such constraint on the demo grasp, it is possible that the demo grasp is

also synthesized and stored by our grasp system. Then, all contact points would be

located at the positions of mesh vertices.

In order to find a good grasp, we move the points around. For this exploration, we

use local search. Local search is an optimization algorithm that moves from solution to

solution in the search space until a local maximum is found or a time bound is elapsed.

Typically, every candidate solution has several neighbor solutions. In this thesis, the

choice of which one to move to is done by taking the one locally maximizing grasp

quality. Such heuristic is often called hill climbing. A neighbor grasp is generated

in the following way: a contact point (mesh vertex) can either stay or move to a

neighbor vertex. Obviously, at least one point has to move.

In the above, we have described the basics of the algorithm. In the following, the

steps of the algorithm are described in detail:

1. For each point contact of the demo grasp, find the closest vertex of the demo

mesh.

2. Create the initial grasp by taking the corresponding vertices of new object, and

set this grasp to the current grasp.

3. Repeat the following step until the quality of the current grasp is higher than

4. Evaluate the quality of all neighbor grasps and take the one maximizing the

quality. If its quality is worse than the current grasp, terminate the search.

Otherwise, set this grasp to the current grasp.

Under the assumption that the correspondence algorithm successfully matches two

objects, the initial grasp contacts are placed in the correct parts of the object. If there

is a good grasp that can be achieved by moving some points around, the algorithm is

likely to find it since the algorithm tries neighbors first. Because the algorithm can

continue moving to new solutions for many rounds, the algorithm might end up with a

grasp that looks very different from the demo. This is because finding a force-closure

grasp is considered more important than keeping the appearance of the demo grasp.

If keeping the demo grasp is more important, we can limit the search space to the

grasps that have similar signatures (e.g. appearance) as the demo grasp.

7.2 Experimental Result

We have run the algorithm on ten test cases, and successfully found good grasps

in eight cases. In the following, we first introduce some cases where the algorithm

succeeds, and then show a failure.

The first test case is glass. The demo grasp is shown in Figure 7-1. We ran the

algorithm to adapt this grasp to other three different glasses. The resulting grasps

are provided in Figure 7-2, 7-3, and 7-4. The algorithm found force-closure grasps

(a) Robot Hand Grasping a (b) Demo Grasp for Glass

Glass

Figure 7-1: Picture and Computer Model of Demo Grasp for Glass

after one iteration of local search in the first two cases, and in the last case, the initial

grasp was already force-closure so the final grasp is the same as the initial.

In the first case, the initial grasp quality was 0.0055, which is lower than E. After

one iteration of local search, the quality became 0.0368. Note that the contact point

on the right side moved slightly upward. In the second case, the quality value changed

from 1.52 x 10- to 0.0404. Two contact points of the initial grasp were too close, but

the algorithm enlarged the space between them in order to increase the grasp quality.

In the last case, the initial quality was 0.0328, so there was no local adjustment. In

all three cases, the algorithm found grasps that were force-closure and similar to the

demo grasp in terms of shape and location.

We have seen some successful cases above. In the following, we describe a limi-

tation of the algorithm. The demo object and grasp are shown in Figure 7-5. This

grasp is adapted to the object shown in Figure 7-6, and the initial and final grasps

are provided in Figure 7-6 and Figure 7-7, respectively. The initial and final grasp

qualities are 0.0041 and 0.0837, respectively. Even though the final grasp is force-

closure, this grasp is considered to be a failure for two reasons. First, three points are

(a) Initial Grasp (b) Final Grasp

Figure 7-2: Grasp Adaptation to Glass 1

(a) Initial Grasp (b) Final Grasp

Figure 7-3: Grasp Adaptation to Glass 2

not horizontally located whereas those of the demo are horizontally placed. Second,
because vertical positions of contact points are too low, it may be impossible for a

robot hand to reach the grasp contacts from the top of the object, whereas the demo

grasp is top grasp (see Figure 7-5). Some suggestions to make these cases work are

provided in the next section.

I ~

(a) Initial Grasp (b) Final Grasp

Figure 7-4: Grasp Adaptation to Glass 3

7.3 Discussion

In summary, the grasp adaptation algorithm was successful in 8 out of 10 cases.

In most cases, one or two iterations of local search were enough as illustrated in the

previous section. Even though the adaptation algorithm works well in general, it has

the following pitfalls. First, the final grasp can be very different from the demo grasp

if local search takes many rounds of movements. Second, since we do not consider

the robot hand kinematics, the generated grasp might not be reached in reality. This

is illustrated in the mug case of the previous section. However, it is often the case

that the final grasp is feasible since the local search starts from the transformation of

the demo grasp and the final grasp does not deviate much from the initial.

To change the behavior of the algorithm, more constraints can be added. One

simple constraint is the appearance preservation of the demo grasp. In this way, we

can ensure that the robot hand configuration used for the final grasp is the same as

that for the demo grasp. In addition to this constraint, one can also limit the search

(a) Robot Hand Grasping a (b) Original Grasp (Mug, Side (c) Original Grasp (Mug, Top
Mug View) View)

Figure 7-5: Picture and Computer Model of Demo Grasp for Mug

(a) Initial Grasp (Side View) (b) Initial Grasp (Top View)

Figure 7-6: Initial Grasp of Grasp Adaptation (Mug)

space to grasps that are kinematically feasible. This limitation may be essential to

use the grasp system in practice, but evaluating the feasibility of grasps in terms of

robot hand kinematics is beyond the scope of the thesis.

(a) Final Grasp (Side View) (b) Final Grasp (Top View)

Figure 7-7: Final Grasp of Grasp Adaptation (Mug)

Bibliography

[1] D. Anguelov. The correlated correspondence algorithm for unsupervised regis-

tration of nonrigid surfaces. In Proceedings of the Neural Information Processing

Systems (NIPS) Conference, 2004.

[2] Drago Anguelov. Learning Models of Shape from 3D Range Data. PhD thesis,

Stanford University, December 2005.

[3] G.A. Bekey, H. Liu, R. Tomovic, and W.J. Karplus. Knowledge-based control of

grasping in robot hands using heuristics from human motor skills. IEEE Trans.

Robotics and Automation, 9:709-722, 1993.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition

using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24:509-522,

2002.

[5] E. Chinellato, R.B. Fisher, A. Morales, and A.P. del Pobil. Ranking planar

grasp configurations for a three-finger hand. In Proc. IEEE ICRA 2003, pages

1133-1138, 2003.

[6] G. F. Cooper. The computational complexity of probabilistic inference using

bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.

[7] B. Curless and M. Levoy. A volumetric method of building complex models from

range images. In Proceedings of SIGGRAPH 1996, pages 303-312, 1996.

[8] C. Ferrari and J. Canny. Planning optimal grasps. In Proc. IEEE ICRA 1992,

pages 2290-2295, 1992.

[9] K. Hsiao and T. Lozano-Perez. Imitation learning of whole-body grasps. In

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2006.

[10] Z. Huang, R.Boulic, N. Magnenat Thalmann, and D. Thalmann. A multi-sensor

approach for grasping and 3d interaction. In Proceedings of Computer Graphics

International, 1995.

[11] Andrew Johnson. Spin-Images: A Representation for 3-D Surface Matching.

PhD thesis, Robotics Institute, Carnegie Mellon University, August 1997.

[12] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to

variational methods for graphical models. In the NATO Advanced Study Institute

on Learning in graphical models, pages 105-161, 1998.

[13] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical

harmonic representation of 3d shape descriptors. In Proceedings of Symposium

on Geometry Processing, pages 156-165, 2003.

[14] B. Kim, S. Oh, B. Yi, and I.H. Suh. Optimal grasping based on non-

dimensionalized performance indices. In Proc. IEEE IROS 2001, pages 949-956,

2001.

[15] C.A. Klein and B.E. Blaho. Dexterity measures for the design and control of

kinemat- ically redundant manipulator. Int. J. Robotics Research, 6(2):72-83,

1987.

[16] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Extracting

reusable task knowledge from visual observation of human performance. IEEE

Transactions on Robotics and Automation, 10(6):799-822, December 1994.

[17] Michael Leventon. Statistic models in medical image analysis. PhD thesis, Mas-

sachusetts Institute of Technology, 2000.

[18] Y. Li and N. Pollard. A shape matching algorithm for synthesizing humanlike

enveloping grasps. In Proceedings of IEEE-RAS International Conference on

Humanoid Robots, 2005.

[19] Tomis Lozano-P6rez. The design of a mechanical assembly system. Master's

thesis, Massachusetts Institute of Technology, 1976.

[20] B. Mirtich and J. Canny. Easily computable optimum grasps in 2d and 3d. In

Proc. IEEE ICRA 1994, pages 739-747, 1994.

[21] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy point cloud

data. In Proceedings of Symposium on Computational Geometry, pages 322-328,

2003.

[22] K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference:

An empirical study. In Fifteenth Conference on Uncertainty in Artificial Intelli-

gence (UAI 99), pages 467-475, 1999.

[23] Van-Duc Nguyen. Quantitative steinitzs theorem with ap- plications to multi-

fingered grasping. Discrete and Computational Geometry, 7(3):295-318, 1992.

[24] Van-Duc Nguyen. Constructing force-closure grasps. The International Journal

of Robotics Research, 7(3), June 1988.

[25] H. Ogata and T. Takahashi. Robotic assembly operation teaching in a virtual

151 environment. IEEE Transactions on Robotics and Automation, 10:391-399,

June 1994.

[26] G. Paul, M. D. Wheeler, and K. Ikeuchi. Modelling human assembly actions

from observation. In IEEE/SICE/RSJ International Conference on Multisensor

Fusion and Integration for Intelligent Systems, December, 1996.

[27] N. Pollard and J.K. Hodgins. Generalizing demonstrated manipulation tasks. In

Workshop on the Algorithmic Foundations of Robotics (WAFR '02), December

2002.

[28] N. S. Pollard. Synthesizing grasps from generalized prototypes. In Proceedings

of the IEEE International Conference on Robotics and Automation, 1996.

[29] H. Rijpkema and M. Girard. Computer animation of knowledge-based human

grasping. In Proceedings of the 18th annual conference on Computer graphics

and interactive techniques, pages 339-348, 1991.

[30] R. M. Sanso and D. Thalmann. A hand control and automatic grasping system

for synthetic actors. Comput. Graph. Forum, 13:167-177, 1994.

[31] A. Saxena and et al. Robotic grasping of novel objects. In Proceedings of the

Neural Information Processing Systems (NIPS) Conference, 2006.

[32] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Univ.

Press, 1999.

[33] J. M. Siskind. Visual event classification via force dynamics. In Proceedings of

AAAI-2000, 2000.

[34] C. Tung and A. Kak. Automatic learning of assembly tasks using a dataglove

system. In Proceedings of the International Conference on Intelligent Robots and

Systems, 1995.

[35] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation.

Technical Report TR2000-026, Mitsubishi Electric Research Laboratories, 2000.

[36] T. Yoshikawa. Manipulability of robotic mechanisms. Int. J. Robotics Research,

4(2):3-9, 1985.

