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ABSTRACT

As the need for higher data rates to end users increases, new technologies are required. Passive
optical networks promise a vast improvement over previous methods, but they require amplifiers
which can quickly adapt to changing input power levels. This thesis proposes two methods for
addressing this problem, which are implementable in pure CMOS. Advanced modeling
techniques allow for improvements on previous analog designs, resulting in a 50x improvement
in signal acquisition time to 20ns. A novel digital design reduces this acquisition time even
further. Results were verified using behavioral and component-level simulators
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Chapter 1: Introduction

As the need for higher data rates continues to increase, new technologies need to be

developed. While phone lines at one point were sufficient, the proliferation of online media

sharing has forced the use of cleaner and more reliable data lines, such as broadband cable and

satellite links. However, these networks have their own issues, such as high deployment and

operation costs, as well as having bandwidth limitations that cannot sustain the growing need for

high data transfer rates.

To address these issues, there is a trend towards connecting fiber optic lines, which have

already been widely deployed as the backbone of the Internet, directly to the end user. Called

FTTP (Fiber To The Premises) or FTTH (Fiber To The Home), these networks promise very

high data rates, but at the expense of complex data reception and transmission. Primitive

versions of these networks are already deployed, such as Verizon's FiOS service, and we can

expect to see PONs (Passive Optical Networks) become the dominant high speed connection

over the next 10 years.

One of the primary limitations in deploying such networks is creating low-cost,

high-speed optical modems that can be installed for every end user. The challenges these

modems face are different from the ones faced by the previously installed optical links, and

therefore new designs are required. To understand these issues, a basic understanding of optical

links is required.
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1.1 Background Information

The basic structure of an optical link is shown in Figure 1-1.

Transmitter Receiver
........ ....... ............. .......... .

Transmit Path D
MUX Optical Fi CDR Demux

TRA TIA LAC

.................................................

Tx Ckxck

Figure 1-1: Classical Optical Link

To send data over a fiber optic link, the transmitter first serializes the input data bytes into

a bit stream. After this, the phototransmitter outputs a light pulse if the data bit was a '1', and

does nothing if the data bit was a '0'. The light is guided by the fiber to the receiver, which is

more complicated. First the optical signal is converted into a low-level current by the input

photodiode, and this current is converted into a low-level voltage by the transimpedance

amplifier (TIA). Converting this low-level (~10mV [1]) voltage signal to acceptable digital

levels (1.2V in current technology), requires amplification by more than 40dB, which is

accomplished by the limit amplifier (LA). After achieving acceptable voltage levels, a digital

clock and data recovery block (CDR) can extract the original bit stream and recover the original

data. In order to function properly, the jitter, or time difference between when a clock edge is

expected and when it occurs, must be very small.

The primary difference between a classical optical network and a PON is that a PON is an

Ethernet. This means that, rather than one transmitter and one receiver per optical fiber, there

- 14 -



are many transmitters and receivers, as is shown in Figure 1-2.

Modem 1

Modem 2

R

0

Modem 3

R

Figure 1-2: A Typical Passive Optical
Network

In this network, there are 3 optical modems with full transmit and receive capability attached to

one optical fiber. This new configuration presents new challenges to the limit amplifier, and

addressing these new challenges will be the subject of this thesis.

1.2 Limit Amplifier Design Considerations

The major issue the limit amplifier must address is the varying input amplitudes and

offsets it must be able to accept while still performing correctly. These differing amplitudes and

- 15 -



offsets arise from the varying power levels of received optical signals. If no photons are being

received by the photodiode in Figure 1-1, no current flows through it, and the transimpedance

amplifier outputs a baseline "dark level." If photons are being received, current flows through

the photodiode, and the transimpedance amplifier outputs a voltage that diverges, in one

direction or the other, from the dark level. How far the output diverges depends on the number

of photons received, and this in turn depends on the power of the transmitting light emitting

diode, the distance the photons have traveled, and impurities in the optical fiber. This leads to a

situation like that in Figure 1-3.

Modem 1

Modem 2

RX

U.

0

Modem 3

Figure 1-3: Typical PON Functionality
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In this case, modem 2 and 3 are close together, and modem I is far away. The power of

the signal sent from modem 1 is attenuated as it travels down the fiber, arriving at modem 3 with

much less power than the signal sent from modem 2. The resulting waveform is reproduced in

Figure 1-4.

d
tF

w
Figure 1-4: Received Power Levels

The question then becomes around which point to amplify the signal. If the signal is amplified

about the finely dashed line, in order to correctly amplify the low power signal, the resulting

waveform is shown in Figure 1-5.
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Figure 1-5: Correct Amplification for Low Power Signal

As can be seen here, the low power signal is correctly amplified. The high power signal,

however, is distorted and more sensitive to noise. This will lead to significant jitter issues, which

will cause the overall system to fail. The other option is to amplify the signal about the coarsely

dashed line, the result of which is shown in Figure 1-6.
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Figure 1-6: Correct Amplification for High Power
Signal

In this case, the high power signal is not distorted. The low power signal, however, is

completely annihilated, which is not acceptable either.

Given this, a good limit amplifier must be able to correctly determine about which level

to amplify the signal. It must perform this accurately, otherwise the signal will become distorted

and the jitter of the system will be too high. It must also perform this quickly, as in an Ethernet

the speed at which the system can switch between receivers is limited by the time it takes for the

receiver to adjust to a difference in offset level. Chapter 2 looks into previous approaches to

solving this problem.
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Chapter 2: Previous Work

As was discussed in the previous chapter, a limit amplifier in a passive optical network

must quickly adjust to changes in offset voltage. As classical optical systems have been

deployed for over a decade, limit amplifiers with automatic offset correction are not new. The

difficulty in going from a classical optical network to a more advanced passive optical network is

that, in a PON, the receiver must switch between many different sources. Classical systems

require as much as 1ms [2] of offset correction time, which is acceptable if the offset correction

is only run once at startup. If, however, the offset correction must be run every time another

modem wishes to transmit, this could lead to unacceptable latencies in the network. Of course,

accuracy is also required, as the jitter requirements on many of these systems are stringent. In

this chapter, three previously employed topologies are considered, all of which will point the

way to a much faster system.

2.1 Classical Offset Correction

The most basic of offset correction techniques, and one that is employed frequently in

backbone one to one optical links, is to drive the mean of a signal to zero. This is accomplished

by a system such as the one shown in Figure 2-1.

- 20 -



A(s)

TS+1

Figure 2-1: Classical Limit Amplifier

In this configuration, rather than choosing an appropriate level, a moving average is subtracted

from the input, and the result is then amplified about zero. This will guarantee that for any input

voltage amplitude and offset, the output is correct.

The main disadvantage with this scheme is that there is an inherent trade off between

jitter and offset correction time. For example, if a process were attempting to find the average of

a sequence of numbers that could either be a one or a zero, and averaging was done over the past

100 numbers, each successive bit received could only change the output by a maximum of 1%.

However, the system would have to wait for the first 100 numbers to come in to form a correct

average. To reduce the time required, the system could do an average on only 4 numbers;

however, this would mean each successive bit could change the output by up to 25%.

This phenomenon can also be seen in Figures 2-2 and 2-3.
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0 0.2 014 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) X 10-8

Figure 2-2: Slow Moving Average

2 -

16

1.4

1.2

0.8

0.6

0,4

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) X 10

Figure 2-3: Fast Moving Average

In these figures, the trade off between average accuracy and average speed becomes clear. In

Figure 2-2, the average attains its final value more slowly but does not waver as much as the

average in Figure 2-3. Because this average will directly affect jitter, as is explained in [3],

aggressive jitter requirements dictate a very slow average, making offset correction, or

compensation, times up to ims [2]. Another means of correcting for offset is therefore required.

2.2 Peak Detector Offset Correction

If, as is the case with many transimpedance amplifiers, fully differential signals are

available, a new method of detecting and correcting for offset becomes available. In this case,

the maximum value the non-inverting output attains is

v in.mx = + vanp (2.1),

where v., is the offset voltage and vampi is the amplitude of the waveform. The maximum value
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the inverting input attains is then

vin =-v +vampI (2.2),

implying that their difference is

V -V 2vos (2.3).

This is represented in Figure 2-4.

LJ J L. Ui

6 1 10
Time f > i0a ltio Bsx 10

Calculation Based on Peak Detection

Much of the jitter in the system from section 2.1 was caused by inter-symbol-interference

(ISI), in which the value of the output during one symbol period is directly affected by the

symbols the preceded it. Peak detection avoids this issue, as the speed at which the peak detector

acquires the maximum of the signal is largely decoupled with how much a non-peak value

affects the output. This is demonstrated in Figure 2-5.
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2 - - - - - - - - --- - - - - - -- - - - --- - - - - - -- - - - -

1.8 - -

1.6 -
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1.2 -

;M 1

> 0.8

0.6 -

0.4 -

0.2 -

0 - - -- - - - - -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) x 108

Figure 2-5: Input / Output Relationship of a Peak Detector

With this, the offset can be quickly corrected with a system, such as that from [4]. A

representation of such a system is shown in Figure 2-6.

V in+Pea k
Vs.l+ Detector

Peak
Detector

Figure 2-6: Peak Detection Based Offset Correction

This system, too, has issues. Peak detectors are most commonly implemented as shown in
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Figure 2-7.

Figure 2-7: A Bipolar Peak
Detector

Because bipolar processes are considerably expensive, the question then becomes whether a

similar concept can be used in pure CMOS technology.

2.3 CMOS Peak Detector Offset Correction

As presented in [5], it is possible to use peak detector offset correction in a pure CMOS

process. This is primarily due to an improved CMOS peak detector topology developed in that

work, which is reproduced in Figure 2-8.
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Vin+ M, M2  Vin-

vout+ vout.

C1 C2
M3 M4

I bias

Figure 2-8: An Improved CMOS Peak Detector

The exact functionality of this circuit becomes a major focus of this thesis, and is discussed in

section 3.2.3. The basic principle is that the circuit contains two source followers formed by M,

C1 and M2 C2 . These source followers can be switched on and off depending on whether M 3 or

M 4 is carrying Ibias. For example, if vi,+ is greater than vin-, then vin+ is at its peak and therefore

should be sampled onto C1. Therefore, M3 will steal all of Ibias, causing M 4 to switch off and C2

to hold its value. If vin- is greater than vin+, the situation is reversed.

In order to ensure that this happens, there must be a significant difference in voltage

between vin+ and vin-, which is not the case at the input to the system. Therefore, a more complex
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topology, such as the one in Figure 2-9, is required.

Integrator Analog Mux

select & Vpeak+

Select
Logic 4  Vpa

Integrator Analog Mux 4k

Vpeak 1+ Vpeak2+ Vek3+
Peak I- Peak Peak

Detector Vpeaki Detector Vpeai2 Detector Vpeak3

In Av A A Out

Vos

Figure 2-9: System from [5] (Figure from [5])

In this case, a multistage amplifier with multiple peak detectors is employed. A large

enough voltage differential is required in order to make the circuit from Figure 2-8 function. If,

however, the output voltage from the amplifier saturates, this will introduce nonlinear dynamics

into the loop. Therefore, the largest non-saturated pair of outputs must be selected by the analog

multiplexer (mux). Because the peak detector dynamics are nonlinear, a loop compensator must

be employed, which in the case of this system is an integrator. However, if a constant gain

integrator were used, the loop gain could depend on which peak detector was selected.

-27-



Therefore, the integrator is a variable gain integrator, with its gain being set by the number of

amplifier stages in the loop.

This compensation scheme has been successful in reducing offset compensation times to

less than 1 [ts, while still retaining good jitter performance in CMOS. While this is a three orders

of magnitude improvement over the system in 2.1, it is still not enough. Many PONs call for the

ability to connect up to 256 optical modems to one optical fiber. If each transmission takes 1 ps

for offset correction, and latency is to be kept under lms, this means that 25% of the available

time for data transmission is taken up by offset correction times. A new goal of 20ns has

therefore been set by the industry. Of course, the limit amplifier is not the only element in the

receiver from section 1.1, and therefore cannot consume the entirety of this budget. The goal of

this thesis will thus be to reduce the compensation time to less than 20ns.

The question that comes to mind is whether any of the previously presented systems can

be modified to meet this goal. The system from section 2.1 clearly cannot, as the trade off

between jitter and speed is a mathematical certainty. The system from section 2.2 could, but

implementations would rely on expensive BiCMOS processes. To understand whether the

system from section 2.3 could be modified to meet this goal requires a greater understanding of

the circuits it employs. Therefore, the next chapter will develop accurate models of those

circuits, with the aim of redesigning the system to meet the more aggressive goal for offset

compensation time.
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Chapter 3: Analog System Modeling

While the system described in section 2.3 was a vast improvement over previous efforts,

newer PONs require offset correction times of less than 20ns to achieve acceptable latencies in

the overall network. Given the cost of fabricating test systems, accurate models are required to

aid in the design of aggressive analog systems. Component-level simulators, while accurate,

require immense numbers of computations, and therefore behavioral-level simulation is required.

In this chapter, highly accurate behavioral-level models are developed for complex

analog systems and compared to component-level simulations to test their validity. These

models will then be used in chapter 4 to develop a system meeting the desired 20ns settling time.

3.1 Motivation for CPPSIM

While component-level simulators such as SPICE and SPECTRE have become

exceptionally accurate, they have done this by increasing the complexity of the algorithms they

use, causing them to be relatively time consuming. Due to the high level of complexity of the

system in question, transistor-level simulations of the entire circuit could take hours or even days

to complete. This, along with the fact that many of the transistors are coupled together into

highly-linear blocks, points towards a higher level of simulation being required.

Behavioral-level simulators, such as CPPSIM, fulfill that role. Simple blocks, such as the

integrator, can be modeled by a single multiply-accumulate function. More complex blocks,

such as the saturating amplifiers and peak detectors, may require more complex computations.
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If, however, they can be accurately modeled by even one hundred intelligent computations, there

will be a significant improvement in simulation speed. The process then becomes to partition the

overall system into subsystems, develop a computational model for them, and check that the

response of the computational model is very close to the response of the transistor-level model

for relevant inputs.

These models can then be altered to observe the effects of changing system-level

parameters without having to redesign low-level components. For example, in a transistor-level

model, placing arbitrary poles and zeros in the loop compensator would require an altered

op-amp for each configuration desired. However, in a behavioral-level simulator it would only

require adding a "pole" or "zero" block to the overall loop. CPPSIM was chosen as the

behavioral-level simulator due to its large preexisting library, the ease of designing

computational models in C++, and the fact that the previous system from section 2.3 was

modeled using the same software. For more information see

http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html.

3.2 System Block Modeling

As was discussed in section 3.1, accurate computational models of the subsystems are

required to form an accurate behavioral-level model. In this section, accurate behavioral-level

models are developed for the major components of the system in 2.3: the amplifier, the loop

compensator, and the peak detector. While the models developed in [5] are accurate for the

amplifier and loop compensator, the peak detector model is significantly more complex than a

-30-



simple low frequency pole. Special attention to the large signal and small signal performance

points towards a more complex and accurate model.

3.2.1 Amplifier Modeling

Much of the amplifier design for this work is borrowed from [5] and is detailed in section

4 of that work. At the core of the amplifier is the structure shown in Figure 3-1.

R, R2

Vout. Vout

Vin+ - M M2  Vin-

Ibias

Figure 3-1: A resistively Loaded Fully
Differential Amplifier
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This is a standard resistively loaded fully differential amplifier, having a dominant pole at

1 1
and a high frequency zero at R An important feature of the limit amplifier is

RCL RCgs

that at least the final amplifier must saturate, and therefore the model must include some way of

representing this. Due to how the loop functions, however, this modeling does not need to be

exceptionally accurate. As is described in sections 2.3 and 3.2.2, the loop rejects any saturated

signals, and therefore accurate modeling would be wasted computation, as the results would not

be used. Of course, the noise produced by the transistors and resistors cannot be neglected.

Rather than insert noise into each stage of the amplifier, the total noise is input referred. This

allows one to quickly see the overall effect of improving the noise performance of individual

components. The final model is included in the tutorial available online at

http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html.

3.2.2 Loop Compensator Modeling

The loop compensation in this system is highly complex and nonlinear; however, its

function can be easily described by a behavioral-level model. The system as a whole is shown in

Figure 3-2.
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Integrator Analog Mux

slect & Vek
Select
Logic Vpeak-

-- Integratr J4-- Analog Mux

Vpeak1+ Vpeak2+ Vpeak3+

Peak Peak Peak
Detector Vpeak1- Detector Vpeak2 Detector Ypeak3-

In A A Av Out

Vos

Figure 3-2: System from Section 2.3 (Figure from [5])

To review from section 2.3, the output of each peak detector is fed into an analog multiplexer.

The signal that is output from that multiplexer is the largest pair of input signals for which

neither one is saturated. The resulting differential signal is then fed into a number of integrators,

the number of which is determined by which peak detector output was selected, and then it is

added to the input signal to cancel the offset. The purpose of using multiple integrators is to

maintain constant loop gain, regardless of which peak detector is selected.

Realizing this, instead of modeling every component of this highly complicated loop

filter individually, the same results can be achieved by breaking the filter down into three less

complicated blocks. Of course this is not how the final solution would be implemented, but
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rather a model that simplifies simulating and modifying the design. The first block that must be

implemented is the selector, a module already available in CPPSIM. The selected output, rather

than being fed into a variable gain integrator, forms the input to a variable gain block with no

dynamics. The resulting signal is then fed into a constant gain loop compensator, as is shown in

Figure 3-3.

Vpeak1+

Vpeak1~

V +qk2V,,i+

peak2

V +

VpeaI(7

Figure 3-3: Simplified Model of System from Section 2.3

With this modification, the designer can arbitrarily choose the linear compensator from any of

the already available modules in CPPSIM or create his own with relative ease, without changing

the accuracy of the simulation.
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3.2.3 Peak Detector Modeling

While [5] contained accurate models for the amplifier and loop compensator, it used a

low frequency pole to model the action of the peak detector. This section details the complexity

of its operation, and develops an accurate behavioral-level model based on the intuitive

functioning of the circuit.

At the core of the design is the improved CMOS peak detector, shown in Figure 3-4.

Vout+ Vor

C1  C2
M3 M4 --

Fbias

Figure 3-4: Improved CMOS Peak Detector
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This peak detector functions by sampling whichever input, vin+ or Vin-, is higher and holding the

other at its previous value. For example, if vin+ is higher than Vin-, then M 3 will steal all of lbias,

and M, and C1 will form a source follower. At the same time, M 4 will be cut off, and therefore

C2 will hold its voltage. The situation becomes reversed when vin- is higher than Vin+ In this

case, M2 and C2 form a source follower, while, Ci holds its previously stored value.

The dynamics of the system are slightly more complicated. The source follower has

dynamics governed by the small signal model shown in Figure 3-5.

Vin

Vgs Cgs 9mVgs

C,

Figure 3-5: Small Signal Model

gmn
The speed at which the source follower achieves its final value is governed by the C ratio

of the transistor and load capacitor. Due to the high data rate, this time constant can be smaller

than a symbol period and can therefore significantly affect the performance of the system.

Furthermore, the switching of sampling and holding is not instantaneous. For example,

there will be a period of time when vi,+ is still higher than vi,- but is lower than its peak value.
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During this period, the source follower will still try to track the input signal, and will (if the

transition is reasonably sharp) slew. This is demonstrated in Figure 3-6.
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Figure 3-6: Peak Detector Response

This implies two things. First, an accurate model must take into account the transition period,

and second, the jitter of the peak detector still depends on the 'bias ratio. The effects ofC

this will be discussed in further detail in section 4.1.

The final model for the peak detector is available in the tutorial online at

http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html, and is included as pseudo code

below:
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if(vin+ > vin-) {
vout+ = source follower(vin+);
vout- = capacitive coupling(vin-);

if(vin- > vin+) {
vout+ = capacitive coupling(vin+);
vout- = source follower(vin-);

In this case, the source follower model must account for finite slew rate and gain, as well

as the direct capacitive coupling provided by Cgs and C1. While this does not model the system

completely, simulations show that it provides a nearly perfect representation of the peak

detector's response, as is detailed in section 3.3.

Furthermore, many of the errors this simplification introduces cancel each other out. For

example, while M 3 and M 4 do not completely switch when vin+ is equal to Vin-, the amount by

which M3 should be "less on" during a transition from vin+ being high to both signals being equal

is about the same amount by which M3 should be "more on" while vi,- goes from being equal to

vi,+ to being high, as is shown in Figure 3-7.

Approximation

Actual

Figure 3-7: Straight Line
Approximation

- 38 -



In this figure, the hatched areas above and below the straight line approximation have equal

areas, indicating that the integral of the error introduced by the straight line approximation is

zero. Because these transitions are so fast, the non-integral error is out of band and therefore

does not affect the overall functioning of the circuit.

Thus a highly accurate model for the improved CMOS peak detector has been developed.

A wide variety of component nonidealities, such as capacitive coupling and finite gain, have

been taken into account. While this is not an exact model, the next section will show that it is

acceptably accurate over the range of inputs it will experience while employed in the overall

system.

3.3 Device-Level Modeling

Accuracy of these models was confirmed via testing in SPECTRE, using design

parameters provided for IBM's 0.13pm process. Given the accuracy with which the limit

amplifier and loop compensator were modeled in [5], verification of these components was not

necessary. Given identical inputs, simulations in SPECTRE and CPPSIM show similar outputs,

which can be made nearly identical by tweaking modeling parameters in CPPSIM.

Shown in Figure 3-8 is a comparison between the responses of the device-level model

and the behavioral model when given a 1.25GHz input square wave.
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Figure 3-8: Response of Both Simulators to a 1.25GHz Square Wave

This figure shows similar behavior in both models given an input wave that changes as quickly

as a 2.5Gbps input signal could possibly change. Figure 3-9 shows the response of both models

to a slow input waveform, which gives a much clearer representation of exactly what happens

cycle to cycle in the peak detector.
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Figure 3-9: Response of Both Simulators to a 25MHz Square Wave

To achieve such close results, the slew rate and the location of the dominant pole were

extracted from the component-level simulation and used in the behavioral-level simulation.

Thankfully, the slew rate is exceptionally close to CL , and the location of the dominant pole

to . This allows designs to be easily modified without having to check the exact slew
nkTCL

rate or dominant pole location after each minute change in parameters.
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In this chapter, accurate models for the primary system components from section 2.3 have

been developed. A complete overhaul of the peak detector model has led to near perfect

agreement between device and behavioral-level simulations. While these models are

significantly more complex than the simple linear models proposed by [5], the improved

accuracy will allow for more aggressive systems to be designed, while the nature of behavioral

simulators will keep the time required to run these simulations at a minimum.
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Chapter 4: Analog System Design

In this chapter, a design capable of 20ns offset correction time, with only 2.30ps RMS

jitter in response to a 1OmV input, will be presented. This will be accomplished by modifying

the system from [5] to use a more aggressive compensation scheme as well as a more highly

tuned peak detector. Linear models will be developed for the system to aid in design, while

behavioral models will be employed to simulate the system more accurately.

4.1 Peak Detector Design

The performance of the peak detector directly affects the performance of the system as a

whole, and therefore careful attention must be paid to its design. If the peak detector is too

slow, compensating the system for 20ns offset correction time will be impossible. However, if

the peak detector is too fast, the system may produce unreasonably high jitter. This section

focuses on attaining an acceptable balance.

As was discussed in section 3.2.3, the peak detector (shown in Figure 4-1) has highly

complex dynamics.
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Figure 4-1: Improved CMOS Peak Detector

Because M3 and M4 do not switch instantaneously, and because the input signals do not transition

between their high and low voltages in a step-like fashion, output of the peak detector will slew

bias
downward with a slope of C during the transition. It might seem from this that the

improved CMOS peak detector struggles from the same problem faced by the CMOS source

follower, in that there is a trade off between fast performance and low droop. This trade off is

improved, however, in that the new design only droops at that high rate during transitions,

whereas the traditional design droops throughout the entire period in which the input signal is

low.
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'M bias

This, however, does mean that we want to have the largest C to C ratio

possible, meaning that M, and M2 should be in weak inversion. Unless some slew rate limiter is

introduced, the best ratio that can be achieved is

1 gm
2 -r C I gM I q-rr - ~ m q (4.1).

Ibias 2 Tr Ibias 2r nkT
C

Measured results indicate this number is close to 5.5 in 0.13pm CMOS; however, it is a fixed

number regardless of changes to Ibia, or C. Because this number directly influences the

fundamental figure of merit of the limit amplifier, if it were improved, a better limit amplifier

could be designed. However, most slew rate limiters rely on components that are not available in

a CMOS process. Furthermore, the performance of the system was not limited by the peak

detector. For these reasons, the peak detector topology was left as-is.

What this trade off does mean is that the pole introduced by the peak detector should not

be used as the dominant pole, as then the jitter associated with slewing would be in-band. This

has two implications: first, a linear model of the peak detector must be ascertained, and second,

the peak detector should be as fast as possible, such that it does not negatively affect the

performance of the loop. As the linear model will only be used as a rough basis for a design, it

does not need to be as accurate as the behavioral model.

Because the dominant pole of the peak detector will always be much slower than the data

rate, one could use a single pole to model the system. However, the incoming data will consist

of zeros and ones according to a random pattern, and the peak detector / sample hold will not
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always be in its sample phase. If the peak detector receives an average of half ones and half

zeros, the source follower will be in the signal path about half the time, which is analogous to a

sample and hold that is half as fast being in the signal path the whole time.

This, however, has some other issues. Over small periods of time, on the order of a few

tens of time constants, the peak detector could receive significantly more ones or significantly

more zeros, as there will only be 2.5 symbols per nanosecond at a data rate of 2.5Gbps. This

could mean one peak detector would be on for more or less than exactly half the time, leading to

a different average pole location. Therefore, the model must take into account the possibility of

a data-dependent moving pole. This is represented in Figure 4-2, in which possible pole

locations are traced out.

Bode Diagram

2C2
S40

10 0 10 10-

Frequency (rad/sec)

Figure 4-2: Variability of Pole Location in the Improved CMOS Peak Detector
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Of course, the representation above is not entirely accurate. An important aspect of the

peak detector is that there are two signal paths, one of which samples while the other holds its

previous value. If one path is sampling less than expected, it will adjust to offset slower than

expected, bringing its pole in closer to the j-o axis. The other path, however, will be sampling

more than expected and thus pushing its pole away from the j-o axis. Therefore, the model

shown in Figure 4-3 is more accurate.

1

T., s+

Figure 4-3: More Accurate Linear Model

In this model, the "fast" path (the one containing rf) acts to correct the "slow" path. Therefore,

the bode plots more closely resemble those in Figure 4-4.
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Figure 4-4: Bode Plot of Improved Linear Model

As this implies, the more one path is favored over another, the stronger a doublet will exist in the

transfer function. This is to be expected, since if one path of the peak detector were holding, the

loop would be able to "mostly" settle. However, the loop would need to wait for the slow path to

reach its final value before it could completely eliminate any offset.

Thankfully, complete settling may not be required. Because the limit amplifier will

saturate, correcting the offset exactly is not necessary. Furthermore, as more symbols are

received, the probability of receiving many more ones than zeros becomes vanishingly small.

Finally, the preamble used by a PON may very well include an alternating series, making such
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issues moot. Therefore, loop designs must only reflect the case in which rf and T, are equal, as

other loops will remain stable but have an unavoidable long tail settling produced by the very

visible doublet in Figure 4-4.

Given these constraints, the peak detector pole should be placed at as low a frequency as

will be allowed by the overall loop compensation. It cannot, however, be the dominant

compensation in the system. This indicates an optimal speed - fast enough so as not to degrade

loop performance, but no faster. The pole introduced by the peak detector in this design is at

120MHz, which does not degrade jitter performance, but allows for 20ns settling times. As was

discussed earlier, this indicates that loop compensation schemes must adjust for a dominant pole

location of 60MHz, and such compensation schemes will be discussed in the next section.

4.2 Loop Design

In this section, three linear compensation schemes are presented: the single pole

overdamped compensation scheme used in [5], a single pole aggressive configuration, and a

lag-lead advanced compensation scheme. The advantages of each configuration are discussed,

with attention paid to the variability of pole and zero locations due to process variation. In all

designs, a constant loop gain of 80dB with a non-dominant pole location of 60MHz is assumed.

This results in an optimal configuration of a dominant pole at 4KHz, with a compensating zero at

50MHz.
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4.2.1 Overdamped Loop Compensation

A good starting point is the compensation scheme used in [5]. The loop compensation

used in this work is an integrator; however, as no physical component has infinite DC gain, a

more accurate model is a 1st order low-pass filter with high DC gain. The design uses a 40dB

amplifier with a pole at 100Hz, producing the bode and step responses shown in Figure 4-5.

Bode Noeru
--- - ..-- -- ..- ---. - - - , -

I*5

.' 10' 130 ~ i i
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Figure 4-5: Bode and Step

Step Response
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Response of System from [5]

Because the compensation approach used here is highly conservative, the result is a very stable,

but very slow, step response. This is desirable if compensation time is not a primary concern, as

varying pole locations cannot drive the system into an unstable configuration. However, it

comes nowhere close to meeting the desired 20ns settling time, and therefore another

compensation scheme is required.
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4.2.2 Aggressive Loop Compensation

The question is whether or not a less conservative compensation scheme can achieve

significantly faster responses, while still maintaining loop stability and low jitter. Linear control

theory states that to achieve the fastest possible step response, the loop should be critically

damped. Of course, a good design must be robust to process variation. While good layout

techniques can eliminate much of this variation, allowing for ±25% mobility in all pole and zero

locations is necessary to ensure the final product will function. Therefore, plots in this section

will reflect all possible process corners a design may encounter. Shown in Figure 4-6 are the

step responses of the aggressively compensated loop, in which a pole at 1KHz is used.

Step Response
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Figure 4-6: Step Response of the Aggressively Compensated Loop
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In this case, some of the possible pole locations lead to exceedingly fast offset correction;

however, others can take unacceptably long. This type of design could be useful if fabrication

processes become more controlled, or if post fabrication testing can eliminate those chips that are

unsuitable for 20ns offset correction times. To keep cost low in current processes, however,

another method of loop compensation is required.

4.2.3 Advanced Loop Compensation

Advanced loop compensation in the form of lag-lead compensation produces the results

required. With a pole at 4KHz and a zero at 50MHz, step responses such as those in Figure 4-7

are produced.

Step Response
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0 0 5 1 1.5 2 2.5 3 35 4 4.5
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Figure 4-7: Lag-Lead Compensation Example
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While the doublet produced by these parameters is still highly visible, the overall settling

time achieved is much faster. Despite highly variable pole and zero locations, all process corners

settle to within 2% in 20ns. With this, a final design that can be verified in behavioral-level

simulations has been generated, and in the next section it will be verified that it produces the

desired results.

4.3 Behavioral-Level Modeling

In this section, the designs from section 4.2 will be tested using a behavioral-level

simulator. Given the peak detector's nonlinear nature, as was discussed in section 3.2.3, these

simulations are necessary to verify that the chosen compensation scheme will in fact work.

Results similar to those from section 4.2 are observed, verifying the use of linear models to

describe the system. These simulations indicate 20ns settling time is possible, with the dominant

source of jitter being the noise injected by the amplifier.

To fairly judge the performance of each topology, one must consider the jitter injected by

each component individually. Therefore, the results presented in this section reflect the

performance of a totally noiseless system, and therefore are not achievable results. The total

jitter in the final system will be discussed in section 4.4.

4.3.1 Overdamped Loop Compensation

In the overdamped case, the behavioral simulator produces results very similar to those of
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the linear model. This is to be expected, as in the overdamped case the non-dominant pole

barely asserts any influence on the overall transfer function. The results from the behavioral

simulator very closely resemble those from the system implemented in [5], which if nothing else,

offers assurances that the model is functioning accurately. These results are represented in

Figure 4-8, which has 11 Ifs RMS jitter.
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Figure 4-8: Behavioral Response to Overdamped Loop

4.3.2 Aggressive Loop Compensation

In the aggressive case, the results from the behavioral simulator diverge slightly from the

results of the linear model. This may be in part due to the dynamics of the peak detector
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weighing in more heavily on the loop dynamics. Shown in Figure 4-9 is the step response of the

behavioral model, which has 41 fs of RMS jitter. These simulations clearly show a simple

dominant pole compensation technique is not sufficient for 20ns settling times.
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Figure 4-9: Behavioral Response to Aggressive Loop

4.3.3 Advanced Loop Compensation

The advanced loop compensation meets the desired settling time of 20ns. Typical

responses of process corners are shown in Figure 4-10, which have an average 626fs RMS jitter.
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Figure 4-10: Behavioral Response to Advanced Loop

While the response is certainly not linear, the loop does acquire the correct offset voltage within

the time allotted. There is considerable variability in the output voltage, which is due to the trade

off between peak detector speed and jitter discussed in section 4.1. Because the loop is so

aggressively compensated, the peak detector dynamics do affect the performance of the loop, and

the result is a varying output waveform. Thankfully these variations are small enough so as not

to affect the performance of the circuit.
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4.4 Results

Because jitter, like noise, can be modeled as a random white process, it adds as

jitter (total) \I jitter' + jitter' (4.2).

Therefore, the only efficient method to reduce jitter is to reduce the largest source, rather than

attempting to optimize every other element in the circuit. Despite being well-designed, the jitter

from the amplifier from [5] alone contributes 2.23ps of RMS jitter to the output, which accounts

for almost the entirety of jitter found in [6]. This implies that, despite the exceptionally

aggressive loop compensation employed in 4.3.3, the steady state performance of the limit

amplifier has not degraded appreciably. Running the behavioral simulation and including the

noise from the amplifier and peak detector, the RMS jitter only increases to 2.30ps, indicating

that equation (4.2) is indeed correct.

With this, a complete design for an analog system to correct offsets in less than 20ns has

been proposed and simulated. The accuracy of the simulations has been confirmed by

comparing results to those from component-level simulators, as well as from previous tests in

silicon. While not all component nonidealities have been included, care has been taken that

these do not affect the performance of the system in any significant way. Therefore, the system

described should function as planned when implemented.
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Chapter 5: Digital System Overview

While the previous two chapters developed an analog system capable of 20ns

offset cancellation, the resulting system was heavily dependent on sensitive analog circuitry.

This can be seen in the varying step responses of the system based on 25% variation in pole and

zero location. Therefore, this chapter develops a digital system capable of instantaneous offset

correction, with the downside of degrading the functionality of the clock and data recovery unit.

Several possible topologies are discussed, and a more detailed design of one of these is presented

in chapter 6.

5.1 Basic CDR Structure

To understand how a discrete time digital limit amplifier can replace a continuous time

analog limit amplifier, a good understanding of the clock and data recovery (CDR) unit is

required. This is due to the fact that, in an optical receiver, the CDR is the only system block

that uses the output of the limit amplifier, and therefore it dictates the requirements placed on the

limit amplifier.

At the core of every CDR is a phase-locked loop (PLL), which has the basic structure

shown in Figure 5-1.
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Phase
Detector Oscillator H

Figure 5-1: Basic Phase-Locked Loop Structure

The phase detector does as its name implies - detects the difference in phase between the input

and output waveform of the PLL. This difference is fed through some (possibly nonlinear) loop

compensator, which in turn controls the frequency of the output oscillator. If designed correctly,

the loop will drive the difference in phase between the two waveforms towards zero, thus

"locking" the two waveforms to have identical frequency and phase. With this, the CDR can

recover the original clock and data, as is shown in figure 5-2.
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Sample on Falling Edge

Data

Recovered
Clock

Synchronize Rising Edge
Figure 5-2: Recovering Data from a Bit Stream

Designing loops to quickly acquire and accurately hold onto the clock frequency and

phase used to encode the data stream is an active area of research. Therefore, a limit amplifier

designed in a vacuum must accurately amplify the entire input waveform, as the exact nature of

what the CDR requires may vary from design to design. It may be of use, however, to

understand some of the more commonly used phase detectors, as that is the part of the CDR

which must interact with the limit amplifier.

5.2 Common Phase Detectors

When choosing an appropriate phase detector for such a system, there are several

constraints. First, the input signals are digital, and therefore phase detectors that rely on analog
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computations should be avoided. Second, during any clock cycle a transition may or may not

occur, and that transition may be rising or falling, as is shown in Figure 5-3.

Rising Edge No Edge Falling Edge

Data

Recovered

Figure 5-3: Issues Faced by the PLL

These requirements are satisfied by two of the most commonly used phase detectors in

communication systems: the Hogge detector and the Alexander (bang-bang) detector. These

phase detectors are shown in Figure 5-4.
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Figure 5-4: Two Commonly Used Phase Detectors (Figure from [7])

Each phase detector has its own advantages, and a good limit amplifier should be able to support

either of them, or even another topology, if need be. Both designs do, however, share a common

trait: they both latch the input signal based on the recovered clock. Because of this, the value

output by the limit amplifier is only relevant at twice the clock frequency. Furthermore, the

exact value is not relevant, only whether value transmitted was "high" or "low." Both of these

facts point towards a discrete-time digital implementation of the limit amplifier.

5.3 Digital Limit Amplifier Topologies

Given the new constraints on the limit amplifier - a small input signal, a digital output

signal, and a clock indicating when the output must be computed - it becomes clear that a good

implementation will use clocked comparators. Clocked comparators consume relatively little
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power, require very little area, and are exceptionally fast. The question then becomes what

signals to compare, and this section deals with that issue.

5.3.1 Fully Differential Topology

The most basic comparator topology is shown in Figure 5-5.

VIn V in+a C out
V.-in

cik
Figure 5-5: Differential Structure

In this case, the fully differential input signal is fed straight into a comparator which determines

which is higher, vin+ or vin-. In the system from 2.3, the peak detector functions by sampling the

higher of the two signals: vin+ or vin-. However, once it is known which of the two is higher, the

bit has already been determined. The difficulty is that fully differential signals without any

offset correction look like those in Figure 5-6, which if fed directly into a comparator would

cause metastability issues.
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Figure 5-6: Fully Differential

Time
Signal with Zero Offset Correction

5.3.2 Averaging Topology

Another possible technique, using a single ended transimpedance amplifier, relies on

comparing a signal to its average, as shown in Figure 5-7.

V.

W Ts+1

clk
Figure 5-7: Averaging Structure
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With this, if the signal is above its average, the bit is a one, and a zero if below. This topology,

however, suffers from the same issues as the analog system in section 2.1. If a slow moving

average is used, the compensation time will be long. A fast moving average will not add jitter,

as the output will be latched according to the recovered clock, not the data; however, a fast

moving average could lead to bit errors, if the computed average strays too far from its true

value.

5.3.3 Delay Line Topology

A third technique involves comparing the current value of the signal to a previous value

of the signal, as shown in figure 5-8.

Vin Dout

clk
Figure 5-8: Delay Line Structure

In this case, the delay element is an analog system that simply outputs the value of the input

during the last clock cycle. Such a system could be implemented by two alternating sample and

holds, but the exact details are not important at this stage in the design. In this configuration, if a

comparator detects a signal that is greater now than during the last clock cycle, it is a one, and a
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signal that is less than during the last clock cycle is a zero. If the comparator cannot decide (the

two are very close to equal), then the previous bit value is used. This leads to a system requiring

zero compensation time; however, it still faces issues. A missed transition will cause not one but

as many as 31 bit errors, which may be unacceptable. Furthermore, the delay elements must be

accurate, and careful designs are therefore required.

5.3.4 Flash Topology

As clocked comparators become cheaper and smaller, it becomes feasible to place

hundreds on a single chip, while still consuming little power and area. With this in mind, one

could simply perform a flash analog to digital conversion on the input signal, and significant

changes in the thermometer code output by the flash would be interpreted as changes in the

digital signal level.

Of course, component nonidealities, specifically comparator offset, could cause

significant issues for any of these designs. Most classical low-power low-area comparators have

inherent offsets ranging from a few to hundreds of millivolts, which, when the signals in

question can be only five to ten millivolts, can cause difficulties. Section 5.4 deals with these

issues.
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5.4 Comparator Offset

One of the key issues preventing many of the schemes presented in section 5.3 from

being useful is the relative inaccuracy of comparators. While advanced comparator designs

could fix this, they generally rely on sensitive analog circuitry and expensive trimming

techniques. Another option is, instead of relying on a single, accurate comparator, using a group

of standard comparators. Figure 5-9 provides an example.
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Figure 5-9: Averaged Transfer Functions
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In this figure, 1, 16, 81, and 256 comparators, with offset voltages having a variance of

IV and a mean of OV, are summed together, and the transfer function between input voltage and

number of comparators outputting a high is plotted. On each graph 25 possible transfer functions

are plotted, to show the variance inherent in these transfer functions. The important feature in

these graphs is that the variance of the transfer function becomes significantly smaller as the

number of comparators increases.

In the case of section 5.3.3, the delay line topology comparator, rather than using a single

comparator, a bank of N of them could be used. If the signal has not changed between one clock

cycle and the next, roughly half of the comparators should have high outputs and the other half

should have low outputs. If a transition from low to high occurs, a statistically significant

number of them should output a high. Likewise, if a high to low transition occurs, a statistically

significant number of comparators should output a low.

Therefore, rather than relying on a single high accuracy comparator, a design can simply

employ a large number of lower accuracy comparators and use digital logic to discern bit

transitions. The exact digital logic can be any of a number of methods, some of which will be

discussed in section 6.4. The important fact here is that it is possible to use a large number of

somewhat inaccurate comparators instead of a single highly accurate one.

5.5 Effects on the CDR

Given the techniques of section 5.3, it is possible to have zero offset correction time limit

amplifiers. However, this advantage is not without costs. Because the limit amplifier is now
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inside the phase locked loop in the CDR, rather than before it, the amount of time it takes the

comparators and digital logic to make bit decisions introduces in-loop delay. If this delay is too

large, the result can be that it takes longer for the PLL to acquire the transmitted clock than if a

separate, non-zero compensation time stage had been used instead. Therefore, care must be

taken in any design to ensure these delays are kept to acceptably small values.

This chapter has developed several possible topologies for a digital limit amplifier and

discussed their merits and disadvantages. While the next chapter will develop a complete design,

this chapter has demonstrated that a discrete time digital limit amplifier is possible. Though the

analog system developed in chapters 3 and 4 meets the desired 20ns offset cancellation time,

these designs improve upon that by incorporating the advantages of digital electronics: less

sensitivity to process variation, fewer power and area requirements, and increased noise

robustness.
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Chapter 6: Example Digital Design

This chapter will develop a complete design of a digital limit amplifier and demonstrate

the validity of the principles proposed in chapter 5. There are several choices to be made: what

topology from section 5.3 to use, how to design the individual circuit components, and how to

program the digital logic. These choices must be informed by the constraints put forth by section

5.5, in that the overall time required to compute whether the bit received was a one or a zero

must be kept to a minimum. The resulting design will ascertain the value of the received bit in

less than one clock cycle plus two gate delays.

6.1 Topology Considerations

The design presented here is a modified version of the delay line topology presented in

section 5.3.3, and it has two advantages over the flash topology in section 5.3.4. First, it uses

many fewer comparators, which means it will require less area and power. Second, the digital

control logic, discussed further in section 6.4, is much less complex. This reduces the time

required for each computation and helps avoid the issues discussed in section 5.5. The overall

topology is presented in Figure 6-1.
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In this figure, six sample and holds operate on 3 different phases, (pi, 9p2, and (p3. During

(pi, the sample and holds (S/H) marked with 9p sample, while the rest hold. Additionally, the

comparator bank marked with (pi will perform its comparisons during this phase. The function of

the circuit during (P2 and p3 is analogous. To avoid metastability issues, the comparator banks

are not simply multiple clocked comparators, but multiple clocked comparators with built in

offsets, as is shown in Figure 6-2.
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Figure 6-2: Topology of One Bank of Comparators

By having two sets of comparators in each bank, determining whether or not a signal

transition has occurred becomes significantly faster and easier. Because close comparisons take

the longest to complete, avoiding these will decrease the delay associated with the topology.

Furthermore, the behavior of comparators when the two input signals are very close together is

unpredictable. Therefore, the top set of comparators has a built in offset that aids it in detecting

positive going transitions, while the bottom set has an offset that aids it in detecting negative

going transitions.
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The digital logic can therefore select which comparator bank currently has a valid output,

and if the top set of comparators from that bank indicates a positive transition has occurred, set

its output to be a one. Likewise, if the bottom set of comparators from the valid bank indicates a

negative transition has occurred, the comparator can output a zero. If neither set indicates a

transition has occurred, the output of the digital control logic does not change.

6.2 Sample / Hold Design

One of the unfortunate aspects of this design is that it requires several analog sample and

holds in order to function. Thankfully, the accuracy requirements of these sample and holds is

made less stringent by the use of comparators. This is because, during a comparison, one of two

things can be true. In the first case, the two voltages that must be compared are very different,

and therefore the comparator will not have difficulty judging which is greater. In the second

case, the two voltages are very close, in which case any nonlinearities or offsets introduced by

the sample and hold can be ignored, as long as every sample and hold injects the same

nonlinearities and offsets. Therefore, accuracy is not a primary concern in designing these

analog components.

There is, however, a stringent speed requirement on the sample and holds. Because each

sample and hold must settle to its final value within a fraction of a symbol period, a passive

topology, such as the one shown in Figure 6-3, is required.
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Figure 6-3: Standard CMOS
Sample/Hold Circuit

In this configuration, the MOSFET functions as a switch, and the voltage is stored on the

capacitor. The speed of the sample and hold is governed by the RdS,OnCL time constant.

Therefore, a wide FET and a small capacitor will result in a fast time constant. Of course,

accuracy will suffer as the capacitor becomes smaller and the MOSFET larger, as charge

injection from the parasitic Cgs will introduce offsets. However, as was discussed previously, as

long as these offsets are deterministic, they can be ignored. In the final design, the input

capacitance of the comparator proved to be enough, and therefore the sample and hold was

simply a MOSFET switch.

6.3 Comparator Design

At the core of any of these topologies is a bank of somewhat accurate comparators, and

therefore some attention must be paid to the comparators' design. Because the more accurate an
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individual comparator is, the fewer are needed to achieve a desired overall accuracy,

comparators with a small range in offset voltages will be preferred. However, ultra-accurate

comparators often require sensitive analog circuits and expensive trimming procedures, and will

therefore be avoided.

The most basic comparator structure is shown in Figure 6-4.

compare

Figure 6-4: Basic CMOS Comparator

This design has several advantages: it is exceedingly small and power efficient, as it only bums

power during comparisons, and the small number of transistors allows for low parasitics and

extremely fast comparison times. The issue, however, is the high variance seen in its offset
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voltage.

By running a Monte-Carlo analysis and examining the voltage difference at which the

comparator flips given variations in doping, line width, and other parameters, an estimate of the

variance of the offset voltage can be obtained. The results from doing this are presented in

Figure 6-5.
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Figure 6-5: Offset Voltage Range of Simple CMOS
Comparator

Given this variance, the design would require an incredible number of comparators to reliably

obtain the correct result. Another design is therefore required.

The topology in Figure 6-6 is a commonly used low-offset design which still retains good

speed with a small number of transistors.
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Figure 6-6: Low Offset CMOS Comparator

Given this topology, Monte-Carlo simulations predict variances that are orders of magnitude

lower, as is shown in Figure 6-7.
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Figure 6-7: Offset Voltage Range of Improved CMOS
Comparator

- 77 -



Thankfully, the variance is incredibly low, allowing the digital logic to be incredibly simple.

As an additional note, these simulations include the effects of the previous sample hold,

which explains the non-zero mean of both topologies. This offset is due to the comparison being

performed before one of the sampling gates is completely closed, thus one of the inputs has not

had as much switching charge injected. As can be seen from these simulations, however, this

has little effect on the ability of the circuit to function.

The design also calls for known offsets being injected in order to avoid metastability

issues. Rather than using complex circuitry to achieve this, simply changing the sizes of the

transistors such that one half of the comparator has wider transistors than the other will produce

the same effect. The amount of offset required is a function of the minimum input amplitude the

comparator will see. One final note - this comparator does have a limited common mode range.

In .13ptm CMOS, if either input varies outside of approximately 100mV of half of full scale

(1.2V) then the comparator's output becomes erratic. Therefore, there is a maximum amplitude

for which this topology can function.

6.4 Digital Logic Design

The question that remains is how many comparators are necessary and how to use those

comparators to ascertain the correct output voltage. The primary concern here is optimizing the

circuit to obtain the correct digital level as fast as possible, as delays will negatively affect the

PLL in which this circuit will be placed. Of course, accuracy cannot be sacrificed for speed, as

one mistake can lead to as many as 31 bit errors, and therefore care must be taken that the
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probability of such errors is negligible.

In order to function at a reasonable speed, a comparator needs a large enough input

voltage differential. Because comparators have a pole in the right-half plane, the equation

governing their output voltage is

VOU,=v,__eT (6.1).

Therefore, the time required to settle to appropriate digital levels is

T ln V dig (6.2).
Vt=0

For example, if a 500ptV input signal is to reach 1.2V, 7.8 time constants are required. A 5mV

signal, however, will only require 5.5 time constants. Because each phase will only last 200ps,

and time constants of 50ps are reasonable, there is a tight bound on the minimum input signal. In

.13 m CMOS, it became impossible to meet this stringent time requirement. Therefore a four

phased system, with four comparator banks, is necessary. This allows each bank two phases, or

400ps, to perform the comparison.

If the goal of the system is to have a minimum input sensitivity of 5mV, this places

stringent boundaries on how much comparator variance is acceptable. To perform a "correct"

comparison within the time allotted, a minimum input differential, including offset, of 2mV is

required. If 2.5mV of offset is injected into this system in order to correct for metastability

issues as presented in section 6.1, this implies that random comparator offsets greater than

500pV in magnitude are unacceptable. As an offset of 500pV is only 2.5 standard deviations

from the mean, this implies that 2.5% of all comparators will have unacceptable offsets, a failure
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rate that is unacceptable. A method of correcting this is therefore required

A simple, fast, and efficient method of correcting for these errors is a simple majority

voting system. If M mistakes must be corrected, then the number of comparators necessary is

N=2M+1 (6.3).

The probability of the system not functioning then becomes

P(failure)( l) (6.4),

which can be made arbitrarily small. In this design, M=2 was chosen, reducing the probability of

an error to 1 in 65,000. This value for M was chosen to balance the large number of transistors

required to implement large voting schemes, which is discussed below.

The physical logic required to implement a majority voting scheme is simple and fast,

translating to two gate delays. In the case of M = 1, where A, B, and C represent the outputs of

the three comparators, the logic becomes

(A -B) + (A -C) +(B-C) (6.5),

which, in an inverting logic system, is most easily implemented as

( A+E )( AC )- E C )(6.6).

To obtain the inverse of the comparator outputs, the design can use the complimentary output

rather than requiring an additional inverter. These equations are extensible to M error

topologies, which require

(2M+ 1)(2M)!

(M+1)(M!)2 (6.7)
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M+1 input NOR gates and one NAND gate with the same number of inputs as the number of

M+1 input NORs (as computed by equation 6.7). While this number grows very quickly, for all

M the longest signal path is two gates, which reduces the delay the system introduces.

Of course, if a less aggressive minimum signal is required, it can be achieved without

digital logic. Therefore, the careful design of previous stages can greatly improve the

performance of the limit amplifier and the CDR. What such designs should aim for is the subject

of the next section.

6.5 Input Requirements

One notable aspect of this design is that it will not function at all for input signals below

its stated minimum acceptable input range. This is unlike the analog system from chapter 4, in

which the minimum acceptable signal is largely governed by the noise of the system. Therefore,

careful consideration must be paid to the smallest signal the transimpedance amplifier might

possibly output.

For example, the optimum offset voltage for a 5mV signal is 2.5mV. This system will

require digital correction, as discussed in the previous section. If a 10mV signal is received by

the same system, it will function as expected, but with the same performance as a 5mV input

signal. Were the system to be redesigned for a minimum input amplitude of lOmV, the offset

injected would be 5mV. There would be no need for digital correction, as the probability of an

error in such a system would be negligible. If, however, this system were to receive a 5mV input

signal, the offset would completely overwhelm the input waveform, which would be completely
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lost. Therefore, the minimum signal must be an absolute minimum, but as large as possible so as

to achieve maximum performance.

Another design consideration is the kickback produced by the sample and holds. The

output of the transimpedance amplifier is tied to many sample and holds, which will be switching

from sampling to holding at twice the data frequency. If the output impedance of the

transimpedance amplifier is too large, the switching charge injection can significantly influence

the input voltage seen by the system. Thankfully, system symmetry partially reduces this

problem. During any phase, an equal number of sample and holds are transitioning from their

sample phase to their hold phase as are transitioning from their hold phase to their sample phase.

While this cancellation is not perfect, it does reduce the requirements on the output impedance of

the TIA.

With this, a complete design of an all-digital limit amplifier has been described. The

requirements it places on the transimpedance amplifier have been discussed, as well as its effect

on the clock and data recovery. A complete model that verifies the functionality of this design is

available at http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html, again simulated in

CPPSIM. However, because the techniques used to design this amplifier are digital, the

mathematics included in this chapter provide clear evidence of the design's ability to function.
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Chapter 7: Conclusions

In this thesis, two designs for a low power, high speed, CMOS limit amplifier have been

proposed. The analog system improves on the system presented in [5] to provide faster settling

times while retaining similar jitter performance. Simple and accurate models for system

components are described, which will aid designers in constructing functioning parts. A new, all

digital architecture has also been proposed, which will greatly reduce the power and area

consumed by the limit amplifier while reducing the offset compensation time to zero.

Results have been provided by two powerful simulation tools - CPPSIM and SPECTRE.

SPECTRE has proven effective at providing accurate simulations at the circuit level, the results

of which can guide the models employed by CPPSIM. For systems much to large to simulate on

the transistor level, CPPSIM has proven useful. Together, they have pointed the way to

functional designs, simply waiting to be implemented.

7.1 Contributions

The major contribution of this thesis is the development of an all digital limit amplifier.

Previous designs have treated the limit amplifier and the clock and data recovery as separate

units, which significantly increases the work the limit amplifier must perform. By recognizing

the minimum requirements on the amplifier, a significantly more efficient design can be

implemented. Several possible topologies have been discussed, and a complete design proposed

and examined.
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A second contribution is the accurate modeling of analog systems. While linear models

can provide excellent design guidelines, and circuit-level simulators can produce nearly exact

results, something in between is needed. Behavioral-level simulators fill this role; however, in

order to function, they require carefully crafted models. With these models, more aggressive

systems can be designed with a greater degree of certainty. This thesis develops accurate models

for a CMOS peak detection based limit amplifier as in [5], and uses these models to push the

design further than envisioned by the original author.

7.2 Future Research

While accurate models have reduced the differences seen between simulation and testing,

these differences have not disappeared entirely. Silicon verification is therefore required, but

unfortunately was not possible in the time frame of this thesis. While many of the simulations

were done in 0.13pm CMOS, both designs will benefit from more aggressive processes. Though

the use of a more aggressive process may require slight design modifications, the methods laid

out in this thesis should provide excellent guidelines for anyone who wishes to fabricate an

actual system.

Another interesting follow-up would be to find the exact theoretical limits of both of

these systems, given design parameters. The difficulty with this type of analysis is that so much

of the performance depends on blocks other than those in the system. Jitter in the analog system

depends almost entirely on the output amplitude of the transimpedance amplifier, while the

number of comparators required by the digital design depends on how finely controlled the
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fabrication process is.

If the reader is interested in improving on either design, complete simulations are posted

at http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html.
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