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Abstract

Automated unit tests are essential for the construction of reliable software, but writing
them can be tedious. If the goal of test generation is to create a lasting unit test suite

(and not just to optimize execution of system tests), it is essential that generated
tests can be understood by the developers that will be running them, so that they
can tell the difference between real and spurious failures. amock is a system which
automatically generates human-readable JUnit regression tests that use mock objects
to simulate the behavior of individual objects dynamically observed during a system
test execution.
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Chapter 1

Introduction

1.1 Motivation

Automated testing is essential for the construction of reliable software. Computer

systems are complex enough that even small changes can have far-reaching conse-

quences. Both macroscopic system tests and microscopic unit tests are required to

ensure both that changes do not affect the overall operation of the system and that

internal interfaces continue to function as expected. However, writing tests can be

one of the most tedious parts of the software development process. While most soft-

ware engineers recognize the importance of automated testing, many projects fail to

achieve a desirable level of testing.

Unit tests complement system tests; a suite with both unit and system tests has

advantages over one with just system tests. If a developer changes one small part of

a program, the unit tests for just that part may run faster than an entire system test.

System test failures often only reveal whether or not the test passed; when a system

test starts to fail, it is often difficult to find which subsystem the error originated in.

Unit tests are more focused, and so when a unit test fails, it is generally easier to

tell which module or even method is responsible for the failure. Finally, unit tests

enable testing the internal logic of programs which deal with complex resources such

as databases, network connections, or graphical user interfaces without needing to set

up the resource.



Unfortunately, writing unit tests can be tedious, especially when you are retroac-

tively adding them to a legacy project. It is relatively easy to write a few system tests

for a working program - simply run the program with some specified input and check

that the output is as expected. Writing unit tests is much more time-consuming, since

a program typically has a very large number of individual units (classes, methods,

etc.) that would profit from independent unit testing. Writing tests while writing the

program itself, perhaps via test-driven development [4], makes this much easier. But

given a large legacy system without any unit tests, the task of writing unit tests by

hand for every module can be daunting.

Because writing tests is important but tedious, the possibility of automating any

part of the test creation process is very attractive. Many different approaches to

automatic test generation have been studied. One common method is capture-

replay[27]. Here, a developer runs the program in a special mode which captures

the inputs and outputs to the program; the system later replays the program with

the recorded inputs, checking that the outputs and other behavior are the same.

Capture-replay is commonly used for system testing of programs with graphical user

interfaces: the system captures and replays the mouse clicks. Unfortunately, these

capture-replay tools generally create fragile and obscure tests; they generally can only

interact with the external user interface of the program, and only verify externally-

visible results. Thus they can generally only create system tests, not unit tests.

A test factoring [35, 13] system generates an entire suite of unit tests from a single

system test execution. The key insight of test factoring is that a system test (which is

easier to create than an exhaustive suite of unit tests) exercises the units of a program

in a "typical" way. Test factoring extends the idea of capture-replay to three phases:

capture, factor, and replay. A test factoring system first runs a capture phase on a

system test (or any execution); instead of just recording the externally visible inputs

and outputs, amock instruments the running program to record much of its internal

interactions. The second phase is the factoring phase: amock slices a single recorded

trace of the entire system into many descriptions of the interaction of single units

with their environments. Finally, the replay phase runs all of the generated tests



separately; it only runs code in the unit being tested, relying on the description of

the expected interactions to skip executing the rest of the system.

We have designed and implemented a new test factoring system for Java, named

amock. amock differs from previous capture-factor-replay systems in that the replay

phase contains no custom infrastructure: the factored tests are ordinary Java code

that uses the JUnit unit testing framework [23, 5] and the jMock mock object gen-

eration library [22, 17]. Any developer who is familiar with jMock can read and

understand the generated unit test suite. Developers can incorporate these generated

tests directly into their test suites as unit regression tests.

If the goal of test generation is to create a lasting unit test suite (and not just to

optimize execution of system tests), it is essential that generated tests can be under-

stood by the developers that will be running them, so that they can tell the difference

between real and spurious failures. Many automated test generation systems (includ-

ing amock!) generate tests that are too brittle: they are tightly bound to a specific

implementation. That is, the conditions verified by brittle tests are overconstrained;

semantically irrelevant changes to the tested code can cause spurious test failures.

However, a test that is too brittle might still be salvageable if the developer can fix

it by hand, perhaps by relaxing an expected output constraint. Because the tests

generated by amock use the standard JUnit and jMock testing framework, amock's

tests can be comprehended by developers with no special knowledge of amock itself. If

amock generates a test with expectations that are too constrained, the developer can

edit it to relax the expectation and allow it to correctly pass. amock's generated tests

are thus more comprehensible and malleable than those of previous test factoring

systems [35, 13].

1.2 Overview of test factoring technique

Test factoring with amock consists of three phases:

* Capture: A developer runs a system test with the amock instrumentation

agent loaded into their JVM. The instrumentation writes a trace of method



calls, field accesses, and other events that occur during the execution. This

phase is described in Section 3.1.

* Factor: The developer chooses which object from the trace to test and runs

the amock test factorizer on the trace. The factorizer produces a JUnit test

simulating the effect of the system test on the chosen object. The tested object

is isolated from the rest of the system through the use of mock objects; mock

objects are described in detail in Chapter 2. The factorizer is implemented as

a simple state machine that makes a single pass over the trace. This phase is

described in Section 3.2.

* Replay: The developer compiles the generated JUnit tests and adds it to the

project's JUnit test suite. This phase is described in Section 3.3.

A single trace can be factored into many unit tests, one for each object in the

trace.

1.3 Example

We show an example of amock in action. We would like to create unit tests for the

library shown in Figure 1-1. We already have a system test, shown in Figure 1-2.

The system test creates a cookie jar, loads it with some cookies, creates a cookie

monster, and tells the cookie monster to eat all the cookies in the jar. We write the

specification shown in Figure 1-3, and run it by typing "rake bakery".

Capture phase

The build system first runs the BakerySystemTest test using amock's instrumentation

agent, by executing "java -j avaagent : amock. j ar=--tracef ile=trace BakerySystemTest" 1

This creates a trace of the system test execution in the file trace; this file logs every

method call and field access during the execution.

'Some details of the trace generation are glossed over here; it is described in more detail in Section
3.1.



1 public class CookieMonster {
2 public int eatAllCookies(CookieJar jar) {
3 int cookiesEaten = 0;
4 for (Cookie k = jar .getACookie();
5 k != null;
6 k= jar . getACookie()) {

7 k. eat ();
8 cookiesEaten++;

9 }
10 return cookiesEaten;
11 }
12 }
13 public class CookieJar {
14 private List<Cookie> myCookies;
15 public Cookie getACookie() {
16 if (myCookies . isEmpty()) {

17 return null;

18 } else {
19 return myCookies. remove (0);
20 }
21 )
22 }

Figure 1-1: A library lacking a unit test suite.

1 public class BakerySystemTest {
2 public static void main(String[] args) {
3 CookieJar j = new CookieJar();

4 Cookie oatmeal = new OatmealCookie();
5 j .add(oatmeal);
6 loadMoreCookies (j) ;

7 assertThat(new CookieMonster(). eatAllCookies (j),
8 is(2));

9 }
10 private static void loadMoreCookies(CookieJar j) {
11 j .add(new ChocolateCookie());
12 )
13 }

Figure 1-2: A system test for the library in Figure 1-1.

1 require 'amock_tasks' # defines amock_test declaration.
2 amocktest (:bakery) do lal

3 a.system_test = 'edu.mit.csail.pag.amock.subjects.Bakery'
4

5 a.unittest('cookiemonster') do lul
6 u.package = 'edu.mit.csail.pag.amock.subjects.bakery'

7 u.tested_class = "CookieMonster"

8 end
9

10 a. unit.test('cookiejar') do Iul
11 u.package = 'edu.mit. csail .pag.amock.subjects .bakery'
12 u.tested_class = "CookieJar"
13 end

14 end

Figure 1-3: A specification for generating two unit tests from the system test in Figure
1-2 (as a Ruby Rakefile [32]).



Factor phase

The build system then runs the amock factorizing processor twice on the trace file:

once specifying the CookieMonster as the class to generate unit tests for, and once

specifying the CookieJar 2 . The first execution produces the test shown in Figure

1-4; the second produces the test shown in Figure 1-5.

The CookieMonster test (Figure 1-4) creates a new CookieMonster and tells it to

eat all the cookies in a "mocked" cookie jar (in the assertion on line 39), and verifies

that the method returns 2. Instead of actually running the code in CookieJar,

the mocked CookieJar specifies exactly how the jar should act: when the cookie

monster tries to get a cookie from the mocked jar, it will first return mockCookie,

then mockCookiel, and finally null. Note also that the CookieMonster test does

not need to know about the precise implementations of the Cookie interface that it

is dealing with (OatmealCookie and ChocolateCookie in the system test); the mock

objects in lines 15 and 16 are just mocking Cookie. The test also specifies (in lines

24 and 31) that the cookie monster must call eat on both cookies.

The CookieJar test (Figure 1-5) represents the same system test, but from the

jar's point of view. The existence of the CookieMonster is irrelevant to this test.

From the perspective of the jar, all that happened during the system test was that

two cookies were added to it and then removed again. None of the methods invoked

on the jar called out to the mocked objects, so no expectations need to be set up.

Thus we see that amock factors out the interaction of each individual object with its

environment during the test.

Let us imagine that in a future version of the library, an optimization to CookieMonster

changes its behavior to take all of the cookies out of the jar before eating any of them.

This will cause the test in Figure 1-4 to fail, because it explicitly specifies that the

expected methods have to occur in the order specified. However, the developer can

fix this easily: just remove the inSequence calls in lines 25 and 32. Thus, amock's

generated tests can be repaired instead of just scrapped when they are too brittle.

2 Again, some internal stages are glossed over; the factorization process is described in Section
3.2.



1 // Generated by amock.
2 package edu.mit. csail.pag.amock.subjects.bakery;
3

4 import edu.mit. csail .pag .amock.jmock. Expectations;
5 import edu.mit. csail.pag. amock.jmock. MockObjectTestCase;
6 import static org . hamcrest . MatcherAssert . assertThat;
7 import static org. hamcrest . core . Is . is;
8
9 public class AutoCookieMonsterTest extends MockObjectTestCase {

10 public void testCookieEating() throws Throwable {
11 // Set up primary object.
12 final CookieMonster testedCookieMonster = new CookieMonster();
13

14 // Set up expectations and run the test.
15 final Cookie mockCookie = mock(Cookie. class);
16 final Cookie mockCookiel = mock(Cookie. class);
17 final CookieJar mockCookieJar = mock(CookieJar. class);
18

19 verifyThenCheck(new Expectations() {{
20 one (mockCookieJar) .getACookie();
21 inSequence (s) ;
22 will (returnValue (mockCookie)) ;
23

24 one (mockCookie) . eat();
25 inSequence(s);
26

27 one (mockCookieJar) . getACookie();
28 inSequence(s);
29 will (returnValue (mockCookiel)) ;
30

31 one (mockCookiel) . eat() ;
32 inSequence(s);
33
34 one (mockCookieJar) . getACookie();
35 inSequence (s);
36 will (returnValue (null));
37 }});
38

39 assertThat (testedCookieMonster . eatAllCookies (mockCookieJar) ,
40 is (2)
41 );
42
43 )

Figure 1-4: An automatically generated test for the CookieMonster object from the
system test in Figure 1-2. The test uses the jMock library, described in Chapter 2.



1 // Generated by amock.
2 package edu.mit.csail.pag.amock.subjects.bakery;
3

4 import edu.mit.csail .pag.amock.jmock. Capture;
5 import edu.mit.csail . pag.amock.jmock. MockObjectTestCase;
6 import java.lang.Object;
7 import static org . hamcrest. MatcherAssert . assertThat;
8 import static org.hamcrest.core. Is .is;
9 import static org. hamcrest.core. IsNull. nullValue;

10
11 public class AutoCookieJarTest extends MockObjectTestCase {
12 public void testCookieEating() throws Throwable {
13 // Set up primary object.
14 final CookieJar testedCookieJar = new CookieJar();
15

16 // Set up expectations and run the test.
17 final Cookie mockCookie = mock(Cookie. class);
18

19 testedCookieJar .add(mockCookie);
20

21 final Cookie mockCookiel = mock(Cookie. class);
22

23 testedCookieJar .add(mockCookiel);
24

25

26 assertThat (testedCookieJar . getACookie () ,
27 is ((Cookie) mockCookie)
28 );
29

30

31 assertThat (testedCookieJar. getACookie () ,
32 is ((Cookie) mockCookiel)
33 );
34

35

36 assertThat (testedCookieJar. getACookie () ,
37 is (nullValue())
38 );
39
40 }

Figure 1-5: An automatically generated test for the CookieJar object from the system
test in Figure 1-2. The test uses the jMock library, described in Chapter 2.



1.4 Contributions

This thesis presents the following contributions:

* A new approach to test factoring that produces human-readable JUnit tests

* amock: An implementation of this approach

* Case studies showing the applicability of amock to real-world projects

* smock: An extension to the jMock library allowing developers to mock static

methods

1.5 Thesis outline

The rest of this thesis is structured as follows.

Chapter 2 gives background on writing unit tests that use behavior verification

with the library jMock. These tests are what amock creates; this chapter explains

why one would write behavior-based tests and how jMock helps in doing so. Chapter

3 describes the overall architecture and implementation of amock: how it captures

a system test and factors it into unit tests. We also describe conceptual and imple-

mentation limitations of amock. Chapter 4 motivates and describes several heuristics

that improve the quality of amock's output.

While creating amock, we discovered that the tests it generates were not as well

isolated from the environment as they would have been if jMock allowed developers

to mock static method calls. Chapter 5 describes a modest extension to jMock called

smock, which can be used (completely independently of amock) to mock static method

calls during jMock tests.

Chapter 6 describes case studies of real-world programs for which amock can gen-

erate test suites. Our examples include several programs that are often considered

difficult to test, such as GUI programs and network clients. Chapter 7 describes

the results of efficiency, robustness, and sensitivity experiments performed on amock.



Finally, Chapter 8 describes future work, gives an overview of related work, and

summarizes the contributions of this thesis.



Chapter 2

Background: Behavior-based

testing with jMock

amock creates behavior-based unit tests that use the jMock library [17, 22] to iso-

late the tested class from its environment. Section 2.1 describes state and behavior

verification for unit tests and the concept of mock objects for behavior verification.

Section 2.2 demonstrates how to write tests using jMock.

2.1 Testing state and behavior

Unit tests complement system tests by focusing on smaller modules than the entire

system. In an object-oriented environment, a unit test generally tests just one class

or method; we refer to the specific objects instantiated by the test whose behavior is

verified as the "system under test" or SUT[28]. A typical unit test consists of four

phases:

1. Set up the test fixture.

2. Exercise the SUT: call the methods that are being tested on the SUT, checking

return values along the way.

3. Verify that the expected outcome has occurred.



4. Tear down the test fixture.

The test fixture consists of the SUT itself as well as all other objects that it needs

to collaborate with during the test. The other objects can be "real" implementations

of their type from the project itself, but often, complex resources such as databases

or network connections are replaced with test doubles that allow the tests to be

run without needing to set up real instances of the resources. These doubles can

be simpler implementations of the same interface (such as an in-memory database

instead of an on-disk one) or new objects created solely for the test suite. Most

modern programming environments provide a standard framework for creating unit

tests, such as Java's JUnit [5], which gives Java developers a common framework for

writing and running unit tests.

Unit tests can decide whether or not they should pass using state verification

or behavior verification [15]. State-based tests call the methods that are being

tested on the SUT, and then examine the SUT and other fixture objects to ensure

that they are in the expected state. State verification ignores the interactions of the

tested methods with their environment during their execution, as long as the program

does not crash: tests using state-based verification just check that at the end of the

day, the world is in the right state.

Behavior verification allows tests to ensure that the "communication" between

objects is as expected. The primary elements of an object-oriented program are the

objects and the messages they pass to each other by calling methods on each other.

Behavior verification monitors these messages to verify that the correct messages are

passed. Instead of focusing on the state of objects after a tested method is called,

behavior-based tests pay attention to the method calls made by the tested method.

To see the difference between state-based and behavior-based tests, consider test-

ing a banking system's transfer operation: a method, transfer, which withdraws

money from one account and deposits it into a second account. A state-based test, as

shown in Figure 2-1, would set up two accounts with a given amount of money, call

transfer, and verify that the balances of both accounts have changed by the correct

amount. A behavior-based test would set up two accounts, run transfer, and check



1 public class PortfolioTest extends TestCase {
2 public static void testTransfer() {
3 // Set up fixtures.

4 Account from = new CheckingAccount(40);
5 Account to = new CheckingAccount(150);
6

7 // Set up tested object.
8 Portfolio portfolio = new Portfolio (from, to);
9

1o // Call a method and check its return value.
11 assertTrue( portfolio . transfer(from , to , 20));
12

13 // Check the state of the fixtures to make sure they 're what
14 // is expected.
15 assertThat (from. getBalance() , is (20));
16 assertThat(to. getBalance () , is (170));
17 }
1s }

Figure 2-1: A JUnit unit test using state verification.

that the withdraw and deposit methods are called on the accounts with the correct

amount of money.

It is possible to create behavior-based tests using manually-written stubs, but it

is rather laborious. Figure 2-2 shows how this could be accomplished for the bank

account example. In order to write just one test, the developer needed to define two

stub classes which implement all of the Account methods and painstakingly check

that the right methods are called up them by the transfer method. Manual stubs

for behavior verification become even more complicated to write as the sequence of

expectations grows.

A mock object generation library allows a developer to write behavior-based tests

without having to manually track the expected method calls in lengthy stubs. Using a

library such as jMock [17, 22], the developer can create mock objects that implement

a given interface or subclass a given class and use the jMock API to concisely describe

the expected method sequence. Figure 2-3 tests the same property as Figure 2-2, but

with much less code and no need to define custom Account implementations. The

test first creates two mock objects (from and to). The checking blockI defines

two expectations: a deposit call on from and a withdraw call on to, both with

IjMock consists of an underlying API for defining expectations and a syntactic sugar layer for
describing them. The sugar layer includes unusual constructs such as the double-{ block seen on line
13 of Figure 2-3: the expectations are actually being defined inside the initializer of an anonymous
subclass of Expectations.



1 public interface Account {
2 public void deposit (Money m);
3 public void withdraw(Money m);
4}
5

6 public class PortfolioTest extends TestCase {
7 static class InteractionBasedDepositAccountStub implements Account {
8 private boolean gotExpectedDeposit = false;
9

10 public void deposit(Money m) {
11 assertFalse (" deposit -called -more-than-once" , gotExpectedDeposit);
12

13 assertThat (m, equals (20));
14 gotExpectedDeposit = true;

15 }
16

17 public void withdraw(Money m) {
18 fail (" unexpected-methodcall -'withdraw "');
19 }
20

21 public void assertSatisfied() {
22 assertTrue ("deposit -not.-called" , gotExpectedDeposit);
23 }
24

25

26 static class InteractionBasedWithdrawAccountStub implements Account {
27 // [ implementation elided ]
28 }
29

30 public static void testTransfer() {
31 InteractionBasedWithdrawAccountStub from
32 = new InteractionBasedWithdrawAccountStub ();
33 InteractionBasedDepositAccountStub to
34 = new InteractionBasedDepositAccountStub () ;
35

36 Portfolio portfolio = new Portfolio (from, to);
37

38 portfolio . transfer (from, to, 20);
39 from. assertSatisfied ();
40 to. assertSatisfied();
41 )
42 }

Figure 2-2: A behavior-based JUnit test using manually-written stubs instead of mock
objects.



1 public interface Account {
2 public void deposit(Money m);
3 public void withdraw(Money m);

4}
5
6 public class PortfolioTest extends MockObjectTestCase {
7 public static void testTransfer() {
8 Account from = mock(Account. class);
9 Account to = mock(Account .class);

10

11 Portfolio portfolio = new Portfolio(from, to);
12

13 checking (new Expectations () {{
14 one (from) . withdraw (20);
15 one (to). deposit (20);
16

17

18 portfolio . transfer (from, to, 20);

19 )
20 )

Figure 2-3: A behavior-based JUnit test equivalent to Figure 2-2, using jMock instead
of custom stubs.

20 as the sole argument. The "one" indicates that each method call is expected

exactly one time. Finally, the test runs the tested method transfer itself. When the

implementation of transfer calls withdraw and deposit on the mock objects, jMock

checks that the argument is 20, throwing an exception otherwise. jMock complains

if an unexpected call is made on a mock object, and at the end of the test method

automatically checks that all expectations have been satisfied. It is much easier and

clearer to define a behavior-based test using jMock than by hand.

State-based tests require the use of a concrete implementation of the fixture ob-

jects, whether a standard implementation or a stub. The state-based test in Figure

2-1 relies on the correct operation of both Portfolio and CheckingAccount. If the

test fails, the bug could potentially be in either class. Additionally, the test could

erroneously pass because of a pair of defects in the two classes which cancel each other

out; and it could pass even if the transfer method also inappropriately calls extra

methods on one of the accounts which don't affect the balance. It may also be the

case that all of the "real" implementations of a fixture type are complex and require

much overhead to set up; for example, it's hard to believe that a CheckingAccount

could really be created with just an initial balance, since a real checking account has

many other attributes that vary from one customer to another. A developer writing



a state-based test must either go through the effort to initialize the complex imple-

mentation in each test, or write a custom stub Account implementation. The latter

choice has the downside that custom stubs are yet another place where bugs can hide.

Behavior-based testing allows the developer to test each class independently of

its environment. The jMock test in Figure 2-3 does not run any code except for

Portfolio and the expectations are defined succinctly in the test method itself. It is

impossible for a bug in an Account implementation to cause testTransfer to fail or

to erroneously pass, because no Account implementation is used. And we can verifjy

that transfer does not affect the two accounts in any other way than the expected

withdraw and deposit calls.

It can be difficult to write clean behavior-based tests for all Java programs; mod-

ules with complicated and ad hoc ways of interacting with their environment require

equally complicated mock objects. In fact, some proponents of behavior-based testing

claim that its strongest advantage is encouraging clean 00 design, as it works best

with programs that follow 00 design guidelines such as the "tell, don't ask" prin-

ciple and the "Law of Demeter" [20, 26, 18]. These developers view behavior-based

testing and the use of mocks as a design tool as much as a testing tool: classes that

are intertwined enough to be difficult to test with mock objects are often difficult to

extend in other ways.

Because behavior verification does not require knowledge of the internal state

representation of the objects in the test fixture, unit tests with behavior verification

make an ideal target for automated test factoring. The entire purpose of test factoring

is to separate testing a single object from testing an entire system, which meshes nicely

with the fact that mock-based tests run no code outside of the SUT. Guessing how

the fields of the fixture objects represent the abstract state of the environment is

difficult if not impossible, but observing the method calls that the SUT makes on

its environment is relatively straightforward. The behavior of the SUT during the

execution to be factored is much more well-defined than the state of the entire fixture.



2.2 Writing tests with jMock

In addition to being more succinct than manually-defined stub objects, jMock pro-

vides simple syntax to define more complex expectations. jMock allows test writers

to customize when an expectation matches a given invocation; define actions that

occur when an expectation is matched; and provides higher-level mechanisms for ty-

ing multiple expectations together. Because jMock consists of a syntactic layer on

top of an extensible API for defining expectations, developers can add more possi-

bilities themselves; some of the features described here come with jMock, and others

are extensions provided by amock. More information about jMock can be found in

[16, 18, 17, 22].

2.2.1 Expectations

Figure 2-3 only showed the simplest form of jMock expectation declaration: single

independent calls with fixed arguments. jMock allows test writers to state how many

times methods should be called, customize how arguments are matched, and enforce

ordering constraints on arguments. These features are demonstrated in Figure 2-4.

Test writers can declare that expected methods should be invoked any number of

times. Expectations can be declared as having one invocation, atLeast or atMost

a given number of times, or between two amounts. They can occur any number of

times including zero using either the allowing or ignoring declaration (depending

on taste). Finally, they can be declared to never occur, though this is mostly a

matter of documentation, because invocations that are not explicitly expected result

in test failure anyway. Test writers can extend jMock to provide custom cardinalities

such as anEvenNumberOfTimes.

In addition to just listing method arguments in the expectation (which are com-

pared to the received values using equals), test writers can specify other ways to

compare arguments by writing matchers. The matcher interface is provided by the

Hamcrest 2 library [19]. To define an expectation with parameter matchers, each ar-

2 "Hamcrest" is an anagram of "matchers".



1 public class ExpectationsTest extends MockObjectTestCase {
2 public static void testCooking() {
3 Bowl bowl = mock(Bowl. class);
4 BakingDish pan = mock(Pan.class);
5 Sequence baking = sequence (" baking");
6 // [ other mocks elided ]
7 Cook cook = new Cook(/* ... */);
8

9 checking(new Expectations() {{
10 atLeast (2) .of (bowl) .add(milk);
11 between(4, 6).of (bowl).stir();
12

13 allowing (bowl) . smell ();
14 ignoring (bowl) .spin();
15 never (bowl). spill();
16

17 one (bowl) .add(with (any(Flour. class)));
18

19 one (bowl) . pourInto (pan);
20 inSequence (baking) ;
21

22 one (pan). bake() ;
23 inSequence(baking) ;
24

25

26 cook. makeCookies() ;
27 }
28 )

Figure 2-4: Examples of jMock expectation declarations.

gument in the declaration must be a matcher, enclosed in a with call, as in line 17 of

Figure 2-4. Here, the any method returns a matcher which matches any object of the

Flour class or a subclass. Hamcrest and jMock come with several useful matchers

and matcher combinators, and test writers can define their own custom matchers as

well.

By default, expected invocations may occur in any order, but jMock provides

several ways to specify otherwise. If a series of expectations must be satisfied in a

particular order, tests can create a sequence (line 5 of Figure 2-4) and declare that the

expectations lie in it (lines 19 through 23). The expectations may even have different

receivers. jMock also allows the test writer to state that certain expectations can

only happen during certain "states" and to define a post-invocation for expectations.

2.2.2 Actions

As well as making sure that the right method calls are made, jMock allows the test

writer to declare what happens when methods are invoked on mock objects. Tests can



1 public class ExpectationsTest extends MockObjectTestCase {
2 public static void testCooking() {
3 Bowl bowl = mock(Bowl. class);
4 // [ more setup elided ]
5

6 checking(new Expectations() {{
7 allowing (bowl) . getVolume();
8 will (returnValue (1000));
9

o10 allowing (bowl) . getContents ();
11 will(returnIterator (flour , milk, eggs));
12

13 allowing (bowl) . pour(with(any(BakingDish. class)));
14 will (onConsecutiveCalls (returnValue (true) ,
15 throwException (new EmptyException ()))) ;
16

17 one (bowl) . emptyIngredientsIntoCollection (collection);
18 will(doAll(new CallBack() { public void go() {
19 collection .add(flour);
20 collection .add(milk);
21 collection .add(eggs);
22 }), returnValue(3)));
23

24

25 cook. makeCookies () ;
26 }
27 }

Figure 2-5: Examples of jMock action declarations.

specify one of several predefined actions that may occur when a mocked method is

invoked, or can trigger custom actions. Actions are declared inside a will call, after

the expectation declaration itself. Various actions are demonstrated in Figure 2-5.

The simplest actions are to return a given value or throw an exception. If no

action at all is given for a non-void method, it will return 0, null, false, or the

empty string, as appropriate (and the test writer can customize default results by

class). The returnValue action specifies a specific return value for the method to

return. The returnIterator method is a convenient shorthand for returning an

iterator over a sequence of values (and a new iterator will be created each time the

expected method is invoked). The throwException action makes the method throw

the specified exception.

If the mocked method needs to make callbacks on the SUT, a custom callback

action can be written. An example is shown on lines 18 through 21 of Figure 2-5;

here, when the SUT calls bowl. emptyIngredientsIntoCollection(collection),

the test driver will add three items to the collection. (The syntax is a little clunky



because Java does not support closures well.) There is no need for special support

for "nested" callbacks. Say that the SUT calls A on a mock, which needs to call B on

the SUT, which will call C on a mock, which itself needs to call D on the SUT. This

can be expressed as a pair of expectations: one expecting A and with a callback for

B, and the second expecting C and with a callback for D; ordering constraints can be

used to make sure they invoked at the right time.

Multiple actions can be combined into one single action. The onConsecutiveCalls

method creates an action that runs a different action on each invocation of an expec-

tation. The doAll action creates an action that executes a series of actions in order;

this is useful for making an expectation that first invokes callbacks and then returns

a value, for example.

2.2.3 Test structure

Expectations are declared with calls to the checking method in the body of the unit

test. If a test has multiple checking blocks, the expectations are just combined,

and all expectations are automatically verified at tear-down time. "Verify" in this

context means to check for unsatisfied expectations ("errors of omission"); unexpected

invocations ("errors of commission") result in errors as soon as they occur. The

exercise phase in the tests that amock generates can contain several method calls on

the SUT. Ideally, expectations should be verified after each exercising method call,

so a single tear-down verification stage is not appropriate. amock thus provides an

alternative to checking blocks called verifyThenCheck that verifies the previous set

of expectations before adding more.

When expectations fail, the user needs to be able to understand the failure. All

of the important interfaces in jMock and Hamcrest implement a SelfDescribing

interface, which gives a method for concisely describing themselves. So when a failure

occurs, jMock outputs a compact legible description of all of the passing and failed

expectations, including how many times they were invoked.

While it's easy to refer to the elements of the test fixture in expectation decla-

rations, it's slightly trickier to refer to objects created by the SUT and passed as argu-



1 public void testCaptures() {
2 final Capture<String> seenTwice = capture(String. class);
3 final Receiver r = mock(Receiver .class);
4

5 checking(new Expectations() {{
6 one (r). getIt(with(a(String .class)));
7 will (seenTwice. capture (0));
8

9 one (r) . getAgain (with (valueCapturedBy (seenTwice)));
10

11 one (r).whatWaslt();
12 will (returnValueCapturedBy (seenTwice)) ;
13
14

15 // Exercise phase.
16 String random = "I-chose:-" + new Random().nextInt();
17 r . getIt (random) ;
18 r . getAgain (random);
19 assertThat (r . whatWasIt() , is (random));
20 }

Figure 2-6: Example usage of amock's Capture feature.

ments to methods in the fixture. It is impossible to directly say one (obj) .method(fooCreatedBySU'

because there's no variable fooCreatedBySUT in the test method! One attempt to

solve this problem would be to write one (obj) .method(with(any (Foo. class))),

but this does not work if the same object is used more than once: passed to a mocked

method twice, or passed to a mocked method and later returned from another mocked

method, say.

amock provides a class Capture that allows test writers to deal with this situation.

To capture an object of class Foo, declare a Capture<Foo> object, and use its capture

method which returns an action that captures the argument at the specified position.

Later expectations can use the valueCapturedBy matcher to ensure that the same

value is passed to the mocked method, or use the returnValueCapturedBy action to

return the captured value back to the SUT.





Chapter 3

Test factoring with amock

amock is a three-phase system: capture, factor, and replay. Section 3.1 describes

describe how amock implements the capture phase of test factoring. Section 3.2

describes the factorizing processor which produces a suite of JUnit tests from each

trace. Section 3.3 briefly describes amock's replay phase. Finally, in Section 3.4 we

describe the limitations of amock's design and implementation.

This chapter contains the core of amock's technique. However, we found that

several additional heuristics were necessary to produce tests of a reasonable quality.

To not distract from the main concepts, these enhancements are described later, in

Chapter 4.

3.1 Capturing a system test

The first phase of test factoring is producing a transcript, or trace, of a system

test. amock instruments the bytecode of the system test using the Java programming

language agent framework and the ASM bytecode manipulation library [3]. The

instrumented version of the system test produces a trace of events and serializes the

trace to disk'.

1 amock can serialize objects either as XML (using XStream [42]) for ease of debugging or using
Java's native serialization for efficiency.



3.1.1 Data harvested during the capture phase

The capture phase outputs three pieces of data: the trace, the instance information

database, and the hierarchy file. The instance information database is only used

for the extra heuristics described in Chapter 4 and is described there; this section

describes the other two files.

The amock trace

The trace file is a list of events. Each event may refer to several trace objects; a

trace object is either a primitive or an instance. Primitives (including strings) are

recorded in the trace file with their actual value. Instances are recorded with their

(dynamic) class name and a serial number; the serial numbers are tracked inside the

trace mechanism with a identity-based hash table which weakly references its keys.

The follow events are logged:

Pre- and post-method invocations All method call sites are instrumented to pro-

duce pre-call and post-call events. Each call receives a unique serial number

which is shared by the pre-call and post-call event. Both types of event contain

the method name, descriptor, declaring class, and receiver. The pre-call event

contains the arguments, and the post-call event contains the return value. The

receiver, arguments, and return value are all stored as trace objects.

Method entry and exit Method entry and exit are also instrumented. The trace

events contain the same information as at the call sites; however, the class name

logged is of the implementation of the method, not of the static type it is invoked

on. Note that while entry and exit events share a call serial number (just like

the pre-/post-call events), there is no connection between the two types of serial

number. The reasons for using both types of log entry are described in Section

3.1.2.

Field reads Every field read (instance or static) is logged; the event contains the

receiver, field name and type, and value. (Both receiver and value are stored as



trace objects.)

Static initialization Static initialization methods are not instrumented (we have

no interest in trying to generate unit tests that trigger class initialization at

specific times), but the entry and exit from static initialization methods are

logged so that any other code run between them can be ignored.

After the trace has been generated, it is post-processed to add some information

that allows the factorization phase to only make one pass over the trace per generated

test. First, all entries which take place during static initialization are removed 2 . Next,

pre-call and method-entry events for constructors have their receivers fixed: when

constructors are called, the uninitialized receiver cannot be examined directly by the

trace code without halting the JVM, so there is no way to log it as a trace object (with

serial number) until it has been constructed. This pass matches up constructor post-

call and method-exit events (which do contain trace object records for the receiver)

with their pre-call and method-entry events and inserts the correct instance record

into it. Finally, method-entry and pre-call events are matched up, as will be described

in Section 3.1.2.

The hierarchy file

The amock processor avoids using reflection on the subject code, because loading the

subject code could run static initialization in the subject code or have other side

effects. In order to get the information about the loaded classes which the processor

needs, the instrumentation also outputs a file containing information (superclasses,

interfaces implemented, access control, etc.) about the class hierarchy of all of the

instrumented code.

2This should probably be implemented by just not logging them in the first place, saving time
and disk space; the choice to trim in a later pass made it easier to debug when the logic which
matched up pairs of static initialization enter/exit methods failed, but all such bugs have long been
fixed.



3.1.2 Dealing with uninstrumentable code

The java. lang. instrument framework does not allow amock to instrument the stan-

dard JDK libraries. Additionally, instrumentation is impossible for libraries of native

code (in the JDK or elsewhere). We assume that amock users are trying to test their

own Java code, not the JDK, so this is not a major drawback. amock relies mostly

on pre- and post-call events, so calls from the (instrumented) developer's project to

the (uninstrumented) JDK are logged appropriately. However, when JDK code calls

methods in the developer's project, no pre-/post-call events will be generated. For

example, if a developer has written a custom handler for one of the XML parser

libraries in the JDK, the methods on the custom handler will only be called from

the JDK and thus pre-/post-callback events would be lost. While one could require

the user to instrument the Java runtime environment's "bootstrap" jars ([35] does

require this), this would make the tracer much more complicated to run: currently it

just requires adding a single -j avaagent argument to the command line, instead of

replacing part of the installed JRE on the filesystem. Additionally, not instrumenting

the JDK makes it easier to write the amock tracer without having to worry about

using instrumented code inside the instrumentation itself.

In order to deal with callbacks from uninstrumented code, amock logs method

entry and exit events as well as pre-/post-call events. After the trace is created, amock

identifies method entry and exit events that do not have corresponding pre-/post-call

events, and removes all others. From this point on, the remaining entry/exit events

are treated identically to pre-/post-call events.

3.1.3 Dealing with reflection

amock has limited support for recognizing the use of the Java reflection API. Reflection

is often a source of difficulty for Java program analyses, because it allows the operands

of standard operations (instance creation, method invocation, field access, etc) to be

resolved at run time instead of at compile time. However, a dynamic analysis like

amock can handle reflection intelligently.



amock currently recognizes reflective instance creation through the newInstance

method on Class objects, and logs the appropriate constructor event. It would be

straightforward to extend amock to similarly recognize reflective method invocation,

field accesses, and so on.

3.2 Factoring into unit tests

3.2.1 The factorizing finite state machine

amock creates tests in a high-level intermediate representation tailored specifically to

behavior-based unit tests. The use of this domain-specific representation (as opposed

to immediately rendering everything to strings of Java statements, say) allows amock

to generate a unit test with a single pass through the trace, and then optimize them

if necessary.

When processing the trace, amock translates each instance encountered in the trace

into a program object. In doing so, amock determines which instances belong to

the system under test (SUT objects) and which belong to the environment (mock

objects). Note that this is more complicated than just declaring that objects in

a certain class or package are SUT objects and the others are mocks (like in [35]).

Specifically, the SUT objects are the original object specified by the user to factor out

a test for, and any other object constructed by a new expression or returned from a

JDK static method (which is unmockable) during the execution of a method on any

SUT object. Every other instance is in the environment, and if it needs to be referred

to in the generated unit test, it is represented by a mock object.

The factorizer is a state machine which reads through the trace, processing each

entry, and builds up a test as it goes. The internal representation of the test tracks

all of the program objects which the test refers to, all of the descriptions, and all of

the invocations exercising the system under test (and the assertions on their return

values). The states of the processor FSM and the transitions between them are shown

in Figure 3-1.
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The processor processes one event at a time. Pre-call events may trigger the

transitions between states shown by solid edges in Figure 3-1. The matching post-call

event triggers the transition shown by the corresponding dashed edge. For example, in

the "Environment (outermost)" state, the pre-call for the constructor of the specified

tested object or the pre-call for any method call on a SUT object will cause a transition

to the "SUT" state. Assuming that the trace is well-formed, when amock reaches

the post-call that matches the pre-call which caused the "Environment (outermost)"

to "SUT" transition, it will have returned to the "SUT" state (perhaps without

having left); the post-call then triggers amock to follow the dashed edge back to the

"Environment (outermost)" state. Essentially, the states are on a stack: relevant

pre-calls push a new state onto the stack, and their matching post-call pops it off

again. (Note that this is even true for the constructor call event in the "SUT" state:

when the self-loop transition is taken, a second "SUT" is pushed onto the stack, and

popped off again when the constructor finishes.)

3.2.2 Example

Consider a partial trace containing the following events (we use the notation ClassName@id

to denote a specific instance of class ClassName):

1. pre-call: new CookieJar@42()

2. pre-call: new ArrayList@43()

3. post-call: new ArrayList@43()

4. post-call: new CookieJar@42()

5. pre-call: CookieJar@42. add(Cookie@44)

6. pre-call: ArrayList@42. add (Cookie@44)

7. post-call: ArrayList@42. add(Cookie@44)

8. post-call: CookieJar@42. add (Cookie@44)



9. pre-call: CookieJar@42. getACookie()

10. pre-call: ArrayList@43.isEmpty()

11. post-call: ArrayList@43. isEmpty() returns false

12. pre-call: ArrayList@43. remove (0)

13. post-call: ArrayList@43. remove (0) returns Cookie@44

14. post-call: CookieJar@42. getACookie() returns Cookie@44

A developer invokes amock to construct a test for CookieJar@42. The finite state

machine starts in the "Environment (outermost)" state, and performs the following

operations:

pre-call: new CookieJar@42() This is the initial SUT object constructor, so amock

transitions to the "SUT" state and creates a SUT-object program object to

represent CookieJar@42.

pre-call: new ArrayList@43() This is a constructor call, so amock follows the self-

loop from "SUT" to itself and marks ArrayList@43 as an internal SUT object.

post-call: new ArrayList43 0() This is the matching post-call event to the previous

event, so amock follows the corresponding dashed self-loop edge (and remains

in "SUT").

post-call: new CookieJar@42 () This matches the first pre-call event, so amock tran-

sitions back to "Environment (outermost)".

pre-call: CookieJar@42.add(Cookie@44) This is a method call on a SUT object,

so amock transitions to the "SUT" state and begins building a SUT method

execution for the method call add. amock determines that Cookie@44 is in the

environment and represents it by a mock object.



pre-call: ArrayList@42. add(Cookie@44) This is neither a constructor call, a static

method call, or a call on a mock object: it is just the internal implementation

of CookieJar. add that is being tested. amock makes no transitions.

post-call: ArrayList@42. add(Cookie@44) Similarly, no transitions are necessary.

post-call: CookieJar@42.add(Cookie@44) amock follows the dashed edge back to

"Environment (outermost)" and finishes building the SUT method execution;

because Cookie Jar. add is a void method, it does not need to create an assertion

for the SUT method execution.

pre-call: CookieJar@42.getACookie() This is a method call on a SUT object, so

amock transitions back to the "SUT" state and begins building a SUT method

execution for the method call getACookie.

pre-call: ArrayList@43. isEmpty() This does not cause a transition.

post-call: ArrayList@43. isEmpty() returns false This does not cause a transi-

tion.

pre-call: ArrayList@43. remove (0) This does not cause a transition.

post-call: ArrayList@43. remove (0) returns Cookie@44 This does not cause a tran-

sition.

post-call: CookieJar@42. getACookie () returns Cookie@44 amock transitions back

to "Environment (outermost)", and creates an assertion verifying that the

getACookie execution returns the mock object associated with Cookie@44

3.2.3 State details

The processor starts in the "Environment (outermost)" state. It waits until it sees

that the object specified by the user as the initial SUT object is being constructed.

amock then transitions to the "SUT" state, gathering data for what arguments the

object's constructor takes as it goes. Once the constructor finishes, amock returns



to "Environment (outermost)" and waits for method calls on any SUT object; these

method calls are turned into "SUT executions" with assertions on their return value.

The events inside the "SUT" state correspond to the code that is actually being

tested. Constructors cause amock to transition to a nested "SUT" state (as shown in

Figure 3-1 by a self-loop) and mark the object being constructed as a SUT object.

Method calls on mocked objects (that is, any object not known to be a SUT object)

or static methods in neither the current class or the JDK cause amock to transition

to the "Environment (mocked)" state. This state represents the code that should not

be executed during test replay, so amock ignores everything until the method returns,

and use the arguments and return value to create an expectation. The one exception

is that method invocations on SUT objects during "Environment (mocked)" cause

amock to transition to a nested "SUT" state; these methods are recorded as callbacks

in the expectation. Finally, static method calls that cannot be mocked (see Section

5.1 for details) go to a special state, ignoring the events that occur during it but

making sure that the value returned from the static method is marked as being a

SUT object.

When a field read event on a mock object is encountered during the "SUT" state,

amock needs to make sure that the field has the appropriate state during the unit test

execution. amock handles this by adding a "callback"-type action (called TweakState)

to the previous expectation which manually sets the field to the expected value. This

is only effective if the field has a consistent value over the course of the SUT method,

though. A related heuristic is described in Section 4.2.

When the processor finishes its single pass over the trace, it has generated a unit

test. Each pass through the "Environment (mocked)" state creates an expectation;

each pass through the "SUT" state creates an assertion (top-level if it came from "En-

vironment (outermost)", and a callback if it came from "Environment (mocked)").

The internal representation of the test tracks all of the mock object and SUT objects

required, with their declarations at the appropriate spots. Capture declarations (see

Section 2.2.3) are inserted for any objects created by the SUT, passed to the environ-

ment, and referred to again. One pass over the generated test eliminates unnecessary



declarations of objects that are only used once.

3.2.4 Writing the test

After constructing the internal representation of the generated test, amock analyzes

each mock object to decide what class it should be declared as in the Java code. It

takes the least upper bound of all the static types that the object is used as during

the generated test, and sets the class of the mock object to be that class, instead of

using the actual class of the instance that it is based on. This is so that the generated

test will refer to (for example) Iterator, not ArrayList$Iterator.

Finally, the processor prints out the generated test as Java source code. It resolves

class and variable names at this point, so that classes used in the code can be imported

and the main text of the test can be free of long package names. Care is taken to

appropriately indent code, separate expectations from each other with blank lines,

and generally to create legible code.

The generated test is by default in the same package as the primary SUT object,

though the user can specify a different package. All methods exercised by the test

case and all methods expected to be invoked must be accessible from the test case.

This choice of package placement allows it to access protected and package-private

methods on the primary SUT object. Because the generated test is a unit test and

mostly focuses on the single object, it is likely that there is only one package that the

test needs to access protected members of. That is, being in the same package as the

initial SUT object allows you to call protected methods on it (and private methods

won't be exercised by the environment anyway), and it shouldn't be able to make

callbacks on any objects it does not have access to. The main hole here is that the

SUT object may make protected method calls (either static, or on mock objects of

the same class) on protected superclass methods in a different package; the generated

test will not be able to call them.



3.3 Replaying and enhancing generated unit tests

amock's replay phase is straightforward: compile the generated tests with a standard

Java compiler, and replay them with any JUnit test harness (command line test

runner, IDE plug-in, etc). Note that if the test needs to mock any static methods,

the test must be run with the smock instrumentation; see Section 5.1 for more details.

If the project already has a JUnit test suite, the tests may be added to it; nothing

about amock-generated tests requires them to be separated from manually written

tests.

Because the tests are just standard Java code, they can be modified and refactored

just like ordinary JUnit tests. For example, a developer might use amock to create a

unit regression test for a method foo when called with a certain argument. Now that

amock has taken care of writing a test with all of the setup required to test foo (0),

the developer can refactor the test (either by hand or with an automatic refactoring

tool) to make it easy to write tests for foo(1), foo(-1), foo(Integer. MAX_VALUE),

and so on. (Such refactoring would not be possible for tests that are not expressed

as code, at least not without requiring domain-specific tools.)

It may be possible to automatically enhance amock-generated tests, either with

source-level or higher-level analysis. For example, a system test may use an enormous

number of instances of the same class during its execution, but only exercise them

in a small number of essentially different ways. amock can be directed to generate

one test case for each instance, but this will create a massively redundant test suite,

and a single code change will lead to a huge number of failures, making it difficult

for a developer to know where to start investigating. Code similarity analyses could

help to weed out duplicates, or to automatically refactor common parts out of nearly-

redundant tests.



3.4 Limitations

While amock successfully creates tests for real-world projects (see Chapters 6 and

7 for more details), it can not always successfully factor every test with respect to

every run-time object. This is due to a combination of conceptual limitations with

the concept of factoring executions into JUnit tests, and implementation deficiencies

in the current amock prototype implementation.

3.4.1 Conceptual limitations

Java access control features can prevent both developers and amock from creating

mock-based tests for some classes. If reproducing the behavior of the system test

requires running protected methods or accessing protected classes in multiple pack-

ages, there is no straightforward way to write a single test which can access all of the

methods and classes. If the test would require mocking a final class, jMock will not

be able to properly mock the class. (There is a relatively straightforward workaround

for this: the attempt to mock final classes fails at run time, not compile time, and

so you can use the java. lang. instrument framework to remove the final modifier

from classes and methods as they are loaded. The library Definalizer [12] implements

this in 39 lines of code (including import statements, blank lines, etc). amock could

choose to run tests under Definalizer when necessary.)

Arrays present a difficulty for behavior-based testing. Arrays have some charac-

teristics that make them more like objects than like primitives, such as being mutable

and not necessarily having a literal representation (if their base type is not primitive).

However, they are not actually objects, and there is no way to mock them. amock

would need to create an actual array of the proper length and set its entries to the

expected values ahead of time. There is no way to declare that it expects certain

elements of the array to be modified, except for by checking that they end up in the

expected state at the end of the method call.

amock does not handle all cases of field access across the factorization boundary: if

the SUT needs to access fields in the mocked environment and the fields change values



frequently, the generated test may not be able to present the correct field values to the

SUT. By, default jMock only allows you to create mock objects based on interface

types (which do not have fields); the assumption of the jMock developers is that

clean code communicates over well-defined method interfaces, not via direct field

access. In a concession to the need to test legacy code, though, jMock does allow you

to mock concrete classes (using the Objenesis library [30]), but even here it's clear

that they frown on such uses, as the code to mock concrete classes is distributed

in a separate jmock-legacy.jar archive. Of course, amock needs to be able to

mock concrete classes, and so it is possible that the SUT code does try to access

the fields of the mock objects. When manually writing tests for a SUT which directly

accesses fields in its environment, the technically best solution is most likely to change

the field access into a (mockable) accessor method call. amock cannot change the

tested code, so instead it works around it by trying to set up fields to have the right

value before the SUT accesses it. This is effective (albeit ugly) if the value does not

change more often than the test can update it, but fails under more complex access

patterns. In addition, the fact that this is implemented by attaching a callback action

to the previous expectation means that relaxation of ordering constraints carl fire the

callback at the wrong time.

Not all code is testable, so in general, we can not expect amock to be able to create

fully-isolating tests for every instance in every execution. Much code is difficult to

write tests for by hand, let alone automatically. In fact, the authors of jMock recognize

this [18]; they argue that jMock should be thought of as being a design tool as much

as a testing tool. That is, they believe designing classes with testability in mind (and

specifically, testability via behavior verification) leads to better code and better tests.

(This explains why, for example, the jMock authors have no interest in allowing users

to mock static methods3 : code that relies on the behavior of static methods should

in their view be rewritten to not rely on hard-coded global methods.)

3We implemented this, as described in Chapter 5.



3.4.2 Implementation limitations

The current implementation of amock has some additional limitations which have not

been solved at this point. Some of these would be relatively straightforward to fix;

others would require deeper changes to the implementation.

When generating tests that use arrays, amock may create incorrect code which fails

to compile. Specifically, if an array must pass over the boundary between the SUT

and the mocked environment, and thus must be explicitly mentioned in the generated

test code, amock currently generates code which does not even compile. (An array

that is used entirely within the SUT or entirely within the mocked environment causes

no problems.)

amock does not recognize the use of multiple threads. The trace writer is syn-

chronized so that multi-threaded programs will not corrupt the format of the trace,

but events from multiple threads will be overlapped. This can cause the finite state

machine to end up in an inconsistent state. It would be straightforward to add a

thread identifier to each event; the processor could then only pay attention to events

in the thread in which the original SUT object was constructed, or use a similar

heuristic. This would enable it to generate correct unit tests if the SUT is only being

accessed in one of the threads. (For example, if there is a UI thread and a logic

thread, this would effectively create tests for UI elements or internal logic objects

even if unrelated events are occurring in the other thread, as long as the specific code

being tested doesn't depend on inter-thread communication.)

If the SUT code runs an instanceof check or a checked cast on the object, it

may behave differently from the instance it is simulating. As described in Section

3.2, mock objects are declared as the most general type which is a subtype of all

types that the mock is used as during the generated test. This means that, for

example, mocks will be declared as mocking a public interface instead of as mocking

a private implementing class. This means that the mock object will not necessarily

be a subtype of the type of the instance that it is simulating. We have not found this

to cause problems in practice. This could be solved by instrumenting instanceof



checks and checked casts, and including the types seen there in the set of types which

the declared type must be a least upper bound of.

While amock does support writing tests which capture objects created by the SUT

and passed as arguments to expected invocations on mock objects (as described in

Section 2.2.3), it only handles the most straightforward cases. If the captured object

must then be expected by a later expectation, or is returned to the SUT code, amock

can write the appropriate code. However, if (for example) an object found in a field

of the captured object must be returned to the SUT, amock fails to recognize this

condition, and can not generate a passing test. In order to fix this, amock would need

a data flow analysis that remembers how to access each SUT object from the SUT

objects that the test has immediate access to (i.e., the initially created SUT object,

any captured SUT object, and any SUT object returned from a SUT method).

amock ignores the Java 1.5 generic type system; the generated tests will use raw

types (and have compile-time warnings because of this). Because ASM does give

access to generic information, it should be possible to dynamically discover the generic

signature of many variables, but this is not implemented.

If the initial SUT object is created via a public static method which calls a private

constructor, the generated test will erroneously try to use the private constructor to

create the SUT object, which will fail to compile. This could be fixed by making

the initial FSM state track static method calls in order to deal with this special case

explicitly, instead of only looking for constructor calls.



Chapter 4

Heuristics to improve generated

tests

The technique described in Chapter 3 will create JUnit tests that simulate the effect

of system tests on individual objects. However, the basic technique does not always

generate concise and readable tests. The generated tests could be lengthy, fragile,

and hard to understand, because they express in minute detail concepts that would

be rendered at a higher level of abstraction in manually-written tests. To improve the

quality of generated tests, amock implements several heuristics that generate better

tests for certain patterns in the code. This chapter describes the patterns recognized

by amock: iterators (Section 4.1), record classes (Section 4.2), and final static fields

(Section 4.3).

The heuristics rely on an instance information database, which is built from the

trace before running the factorizing processor. In order for the processor to only

make a single pass over the trace per generated unit test, it needs to be able to

decide if a given instance matches one of the heuristic patterns as soon as it is first

encountered. However, it may not be able to tell whether it fits the pattern until it has

seen all of its interactions. Thus, amock creates a database with information about

all of the instances seen in the trace; then during each execution of the processor

(for each generated unit test), it can simply refer to the database to see what each

instance does. Each instance info entry contains the set of methods invoked on the



instance, the set of fields read from the instance, and the list of static fields that the

instance is ever read as a value from. (The instance information database is currently

implemented as an in-memory hash table which is serialized to disk, but could easily

be changed to an on-disk database for reasons of scalability.)

The classes to which the heuristics apply are configurable by the developer. In

the current implementation, the developer must explicitly specify the classes that

should be considered for heuristics, as well as some extra pattern-specific information.

However, it would be possible for that configuration file to be automatically generated

as the results of an analysis, or for the heuristic decision to be made automatically

on the fly.

4.1 The iterator pattern

If an expected invocation returns an iterator which the SUT uses, the naive algorithm

of Chapter 3 will create a mocked iterator object and a long series of repetitive

expectations. For example, if the iterator is over a sequence of three strings, amock

would generate expectations like those shown in Figure 4-1. This is lengthy, repetitive,

and much harder to tell what is actually happening than the equivalent (but fifteen

times shorter) expectation in Figure 4-2.

Under this heuristic, when amock finds an iterator object that is not a SUT object

and on which only the hasNext and next (or the equivalent for types other than

Iterator) are invoked, then, instead of translating the instance into a mock object,

it represents it by a special iterator-class program object. amock uses the instance

information database to make this decision as soon as the iterator object is used in

the generated test.

When in the "SUT" FSM state (of Figure 3-1) and methods are invoked on an

iterator-class program object, the state machine goes to a new "Iterator invocation"

state; if the call is next, its return value is remembered and added to an internal list

which is use to construct the argument to returnIterator (as shown in Figure 4-2).



1 will (returnValue (mockIterator));
2 inSequence(s);

one (mockIterator) .hasNext();
will (returnValue (true));
inSequence(s);

8 one (mockIterator) . next();
9 will (returnValue (" foo"));

10 inSequence(s);
11

12 one (mockIterator). hasNext();
13 will(returnValue (true));
14 inSequence(s);
15

16 one (mockIterator) . next();
17 will (returnValue (" bar"));

8s inSequence(s);
19

20 one (mockIterator) hasNext();
21 will (returnValue (true));
22 inSequence(s);
23

24 one (mockIterator). next();
25 will (returnValue ("baz"));
26 inSequence(s);
27

28 one (mockIterator). hasNext();
29 will (returnValue (false));
30 inSequence(s);

Figure 4-1: Expectations generated by the naive algorithm of Chapter 3 for a method
returning an iterator over three strings.

1 will (returnIterator (" foo" ,
2 inSequence(s);

"bar" , "baz" ) );

Figure 4-2: Expectation generated by the
as Figure 4-1.

iterator pattern heuristic for the same test



4.2 Record classes

The jMock authors [18] advise developers to only mock objects with interesting logic.

A "record" class does not actively respond to messages, but is rather just a convenient

aggregate for multiple pieces of data. Such a class doesn't have much logic, and should

not be isolated from the test. amock does not mock these kinds of objects, leading to

shorter, clearer code.

For example, when testing GUI code, there are many uses of java. awt. Rectangle.

We feel confident trusting that this class is relatively bug-free, and so there is no good

reason to mock it; it is much more straightforward to just include new Rectangle (1,

2, 3, 4) in a test than to mock the Rectangle and include many expectations on

getX, getWidth, etc. Thus amock has a heuristic to decide to treat instances as record

classes. Like with the iterator pattern, there is a configuration file that specifies which

classes are record classes; it also specifies mappings between fields and constructor

parameters, and between method return values and constructor parameters. When a

method is invoked on a record-class program object (in the "SUT" state) it goes into

a special record-class data gathering state; when that call returns, amock stores the

return value in the slot of the constructor that it called. Similarly, when values are

read from fields that correspond to constructor parameters, those values are used as

parameters in the constructor.

4.3 Naming static fields

Java's equivalent of symbolic constants is final static fields. One would expect a

unit test to use the same constants as the code it is testing; when these constants are

objects, it would be unnatural and confusing to represent these constants by mock

objects. For example, SVNKit (see Section 6.2) has a class SVNRevision to represent

revision numbers; whenever a non-specific revision needed in the API, the static

field SVNRevision. UNDEFINED is used. Without any special treatment of symbolic

constants, amock would represent any use of SVNRevision .UNDEFINED with a mock



object and explicit expectations about the return values of isValid and getNumber

on the mock object. It would make the test more natural and readable if it simply

referred to the object as SVNRevision. UNDEFINED.

On the other hand, not all static fields should be referenced literally in the gener-

ated test. For example, if the environment passes System. out to the SUT code, then

in the interests of isolation and testability, the unit test really should pass a mock

PrintStream to the SUT instead of passing the real System. out.

amock could implement this feature using a data-flow analysis which tracks values

from the time they are fetched from a static field until they are actually used in

assertions and expectations, but instead it uses a much simpler heuristic. When

amock builds the instance information database, it records the list of static fields that

each instance is ever fetched from. When amock first translates the instance into a

program object, it checks to see if any of the static fields that it ever is in is acceptable

for this heuristic; if so, the generated test will refer to the value by its static field

name instead of by value.

Like the other heuristics, there is a configuration file listing classes and fields that

the heuristic applies to, and one could certainly automatically populate this file as

the results of an analysis. A potentially useful guideline would be that this should be

used for final fields whose values have an immutable type; it may be helpful to pay

attention to the recommended Java style that static fields representing constants are

named with all capital letters.





Chapter 5

Mocking static methods with smock

jMock provides no support for mocking static methods. This chapter describes a

tool that we have created, smock, which extends jMock to allow test writers to mock

static methods. smock can be used independently of amock when manually writing

unit tests, and amock takes advantage of it when generating tests. amock was first

implemented without the ability to mock static methods, but we found that this

vastly decreased the quality of the generated unit tests. The entire purpose of amock

is to generate tests which isolate the tested class from its environment. We discovered

that without being able to mock static classes, this was impossible.

For example, when generating tests for the business logic of the Subversion network

client in SVNKit [39], one would hope that the test could use a mocked version of the

interface used to connect over the network to the server. However, the client code gets

its repository access object by calling the static method SVNClientManager. newInstance;

without somehow intercepting that call, there is no way to prevent the test from ac-

tually accessing the network. Before we wrote smock, the test generated for this high-

level class would declare expectations referencing the low-level textual commands sent

to the server! With smock, amock is now able to generate tests for this class whose

expectations are at the same conceptual level as the code being tested.

In Section 5.1, we demonstrate how smock is used, and in Section 5.2 we describe

its implementation. In Section 5.3 we consider smock's efficiency. In Section 5.4, we

explain why jMock does not itself support mocking static methods.



5.1 smock usage

Some extra setup is required to use smock. The smock jar must be loaded into

the JVM as the Java programming language agent; with the command-line java

program, pass the -j avaagent :smock. j ar argument. Additionally, instead of using

org. jmock.Expectations and org. jmock. integration. junit3.MockObjectTestCase,

you must use subclasses with the same names provided by smock (by changing the

import declarations).

Declaring static method expectations with smock is very similar to declaring meth-

ods on mock objects. Wherever you would specify the mock object, you just write a

class literal, like one (SVNClientManager. class) .newInstance (). Everything else

works just like jMock: arguments can be literals or matchers, you can declare an ac-

tion for the expectation, and so on. The one major difference is the default behavior:

if a static method is invoked which corresponds to no (unsatisfied) expectation, the

method is executed as if smock does not exist instead of throwing an "unexpected

invocation" exception. This allows the test writer to decided which static methods

give too much access to the real environment and must be mocked out, and which are

benign. One drawback to smock is that you can only mock static methods which are

in instrumented classes; specifically, this means that you cannot mock static methods

in JDK classes (and an attempt to do so currently causes undefined behavior).

5.2 smock implementation

smock is implemented as a layer on top of jMock. It does not need to reimplement any

of jMock's expectation matching or dispatching logic; it simply builds expectations

which have a different type of receiver from jMock's normal expectations (a new

CapturingClass type instead of mock objects). Unfortunately, our implementation

does require using a few classes which are part of jMock's internals, not its stable

documented API.

The instrumentation adds a single call, Smock. maybeMockStaticMethod, to the



beginning of every static method in the program. The parameters are the names

of the class and method, the method's descriptor, and the arguments passed to the

function. maybeMockStaticMethod returns a result object with a "short circuit" flag

and a short circuit return value. If the flag is set, the static method immediately

returns the short circuit return value; otherwise it continues to the actual method

code.

The point of communication between smock and jMock is the CapturingClass

class. There is at most one CapturingClass object for each Java Class object.

During the evaluation of expectation declarations, a call like one (Foo. class) looks

up the CapturingClass for Foo.class and passes it to the jMock implementa-

tion of one as if it were a mock object. The jMock internals then pass an expec-

tation builder to the CapturingClass, which it saves. Finally, one (Foo. class)

returns null. The method one is declared with the generic type public <T> T

one(Class<T> cls). That is, the return type of one(Foo.class) is Foo! Be-

cause static methods can be invoked with an expression on the left-hand side of

the dot (whose value is evaluated and ignored), this means that it is in fact legal

to write one(Foo. class). someStaticFooMethod(). When someStaticFooMethod

gets executed during this declaration, Smock. maybeMockStaticMethod notices that

the CapturingClass for Foo. class is currently capturing expectations, and passes

the current invocation to the expectation builder saved in the CapturingClass.

When Smock. maybeMockStaticMethod is called not during expectation declara-

tions, it creates a fake Invocation on the CapturingClass and passes it to the

main jMock invocation dispatcher. Because the expectations were registered with

the CapturingClass as "mock object", the standard jMock expectation matcher will

invoke the correct expectation; Smock. maybeMockStaticMethod then returns a short-

circuit result with whatever the invoked action returns. smock traps the "unexpected

invocation" exception and return a non-short-circuit result instead; as described in

Section 5.1, unexpected static methods should just be executed.



5.3 Efficiency

smock instruments every static method in a program. smock's overhead comes from

two sources: every class must be instrumented when it is loaded, and every static

method invocation triggers a call to the expectation dispatcher. Calls which do not

match expectations cause an exception to be thrown and caught, and exception han-

dling tends to be a relatively slow operation in most JVMs [6].

In order to analyze the slowdown caused by using smock, we ran the SVNKit [39]

test suite with and without smock instrumentation. The experiment was performed

on a 1800GhZ AMD Opteron with 8GB of RAM. The SVNKit test suite invokes the

SVNKit command-line executables 239 times, causing the smock instrumentation to

occur each time. SVNKit makes heavy use of static methods'. The slowdown in

this experiment should thus be a conservative estimate. The uninstrumented test

suite took 636 seconds to execute and the instrumented test suite took 782 seconds,

revealing a 23% slowdown in test suite execution.

5.4 jMock and static methods

jMock does not support mocking static methods for a combination of philosophical

and technical reasons. However, the philosophical reasons do not apply to automated

test generation, and the technical issues are minor compared to the improvement in

the quality of amock's output when static methods can be mocked.

The authors of j Mock view mock-based testing as a design tool as well as a, testing

tool [18], and allowing test writers to mock static methods is counterproductive in

that view. jMock is designed to work best within the test-driven development mindset

[4]. Here, the discovery that the SUT makes a static method call that should not be

executed during testing should lead to eliminating the static method and replacing it

with an instance method on some new type of object, perhaps provided to the SUT

when it is constructed. This way, the test can simply mock the refactored object. A

1In fact, we were convinced that amock needed smock to creative effective tests while performing
a case study on SVNKit.



second benefit is that a user of the SUT can determine by inspection that it needs

to access the troublesome resource, instead of having the dependency hidden away.

When jMock is used to write tests during the design process, its inability to mock

static methods helps to improve the code being tested, at least in the philosophy of

the jMock team. However, this is not much help for an automatic test generation tool

such as amock: although the ability to mock static methods does not help test-driven

development, it does help automatic test generation, where refactoring the SUT may

not be an option.

Mocking static methods seems to require load-time bytecode instrumentation,

which is significantly more invasive than the techniques used by jMock. jMock's

mock objects are dynamically generated subclasses of the interface or class that they

are mocking (created either with java. lang. reflect .Proxy or with Objenesis [30]),

so all of the special mock code is in the subclass and does not need to be "injected"

into the mocked class. This strategy won't work for static methods, because there is

no straightforward way to change what code is run by an INVOKESTATIC instruction

without changing the instruction itself or the body of the method which is invoked.

smock solves this problem by instrumenting static methods at load time using the

java. lang. instrument framework; however, using this framework requires running

your JVM with a special "Java agent" argument, and may be inconvenient or impos-

sible to use with test harnesses that are embedded in other programs, such as a IDE

plug-in.





Chapter 6

Case Studies

In this chapter, we describe the results of applying amock to several real-world Java

programs. We describe the characteristics of the individual programs, display ex-

amples of successfully generated tests, and explain what limitations (conceptual and

implementation) of amock prevent it from complete success in all cases. (We discuss

issues of brittleness, sensitivity, and efficiency later, in Chapter 7.)

For each subject library, we took a sample system test provided with the project or

constructed our own sample execution. We ran amock's capture phase, and attempted

to factor and replay the trace for the first instance of every class observed in the trace.

We then analyzed the results and subjectively classified the factored tests into the

following categories:

Potentially useful A test that appears to usefully test non-trivial behavior of the

specified instance. (Because we are not intimately familiar with the details of

the subject programs, we cannot claim that a given test is definitely useful or

not.)

Accessor-driven A test that constructs the specified instance, but only exercises it

by calling getter and setter methods. While this does test real properties of the

underlying objects, it is likely that a much simpler static analysis could produce

similar tests.

Assertion-free A test that constructs the specified instance and calls one or more



project observed classes useful accessor no asserts no exercise invalid
JHotDraw 47 19 4 2 7 15
SVNKit 33 5 1 0 5 22
Esper 178 17 13 2 18 128

Figure 6-1: Summary of tests generated for case studies.

void methods on it which require no expectations. The only thing that such

tests actually verify is that it does not crash.

Exercise-free A test that just creates the specified instance and does nothing else

(because the given instance in the factored execution had no other method calls

invoked on it). Such tests only verify that the constructor does not crash.

Invalid The factor phase fails to produce a test, the generated test fails to compile

and pass, or the generated test is empty (because the construction of the speci-

fied instance is not recognized). The limitations which cause amock to generate

invalid tests are described in Section 3.4.

We note that the three least useful categories of generated tests (assertion-free,

exercise-free, and invalid) can be trivially automatically recognized, so amock could

choose to not generate them and only generate tests of the first two types. Addition-

ally, given some knowledge about what methods are accessors (based on name-based

heuristics or a program analysis[8, 34, 29, 33, 37, 36, 2]), amock could attempt to

separate the first and second classes. Thus, amock could produce only the factored

tests that are most likely to be meaningful.

We performed the case studies on three open-source Java programs: JHotDraw,

SVNKit, and Esper. Figure 6-1 shows the number of tests of each kind generated

for each project. These include several application domains that are traditionally

considered "hard to test", such as graphical user interfaces and network connections.

JHotDraw and SVNKit were used as experimental subjects throughout the develop-

ment of amock, and so many of the heuristics described in Chapter 4 were implemented

as a direct response to deficiencies in the tests generated by early versions of amock.

This does mean that positive results could represent overfitting to these particular



projects. On the other hand, amock has not (yet) been changed based on our ex-

perience with Esper, so this criticism would not apply to the Esper case study. We

found in general that two types of tests were created: general tests, which exercise a

part of the library in a relatively generic way, and simulation tests, which essentially

replicate the high-level execution in JUnit form.

6.1 GUI: JHotDraw

JHotDraw [21] is a Java GUI framework for creating drawing applications. We

performed experiments on the application JModeller [25] which uses the JHotDraw

framework to create a UML-style object design application. JHotDraw and JMod-

eller combined are 10K lines of Java code1 . Neither JHotDraw nor JModeller comes

with a test suite (unit or system). This means that we were unable to compare our

generated unit tests to "real" unit tests; on the other hand, it means it is a legacy

project without unit tests, where automated generation may be very useful.

Because this project had no system tests, we manually ran a sample execution of

JModeller. The execution consisted of launching the application, creating a new file,

adding two "class" figures to the canvas, connecting the figures with a line, and closing

the application. This was selected as a typical use of the tools in the application.

amock generated 19 potentially useful unit tests, both general and simulation.

Figure 6-2 shows a general test; it tests a ReverseFigureEnumerator, which wraps a

vector and returns its elements in reverse order. (It is typesafe like a Java 1.5 generic

Iterator, but was written before Java 1.5, which is why it does not just implement

Iterator<Figure>.) It is a correct test, and just about the minimal amount that one

could exercise a ReverseFigureEnumerator in order to verify its behavior. Its one

obvious deficiency is that it is unlikely that a human writing a test of this behavior

would choose to mock the standard Vector class; an equivalent manually-written test

might look something like Figure 6-3. Note that the exercising statements are identical

to the automatically generated ones2 . This suggests that implementing heuristics for
1All LOC calculations are generated using David A. Wheeler's 'SLOCCount'.2The only difference is that the manually-written test does not contain some superfluous casts,



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable {
3 final Vector mockVector = mock(Vector. class);
4

5 verifyThenCheck(new Expectations() {{
6 one (mockVector) . size();
7 inSequence(s);
8 will (returnValue (2));
9 }});

10

11 final ReverseFigureEnumerator testedReverseFigureEnumerator = new
ReverseFigureEnumerator (mockVector);

12

13 assertThat (testedReverseFigureEnumerator . hasMoreElements () ,
14 is (true)
15 );
16

17 final Figure mockFigure = mock(Figure.class);
18

19 verifyThenCheck(new Expectations() {{
20 one (mockVector) . elementAt(1);
21 inSequence(s);
22 will (returnValue (mockFigure)) ;
23 }});
24

25 assertThat (testedReverseFigureEnumerator. nextFigure() ,
26 is ((Figure) mockFigure)
27 );
28

29 assertThat (testedReverseFigureEnumerator. hasMoreElements () ,
30 is(true)

31 )

32

33 final Figure mockFigurel = mock(Figure. class);
34

35 verifyThenCheck (new Expectations() {{
36 one (mockVector) . elementAt (0);
37 inSequence(s);
38 will (returnValue (mockFigurel)) ;
39 }));
40

41 assertThat (testedReverseFigureEnumerator .nextFigure() ,
42 is ((Figure) mockFigurel)
43 );
44

45 assertThat (testedReverseFigureEnumerator. hasMoreElements() ,
46 is(false)
47

48 }
49 }

Figure 6-2: A amock-generated unit test for JHotDraw's reverse figure enumerator.



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable (
3 Vector someVector = new Vector();
4 Figure mockFigure0 = mock(Figure.class);
5 Figure mockFigurel = mock(Figure. class);
6

7 someVector. add (mockFigureO);
8 someVector. add (mockFigurel);
9

10 ReverseFigureEnumerator testedReverseFigureEnumerator = new
ReverseFigureEnumerator (someVector) ;

11

12 assertThat (testedReverseFigureEnumerator . hasMoreElements () ,
13 is (true)
14 );

15

16 assertThat (testedReverseFigureEnumerator . nextFigure () ,
17 is (mockFigure)
18 );

19

20 assertThat (testedReverseFigureEnumerator . hasMoreElements () ,
21 is (true)
22 ) ;

23

24 assertThat (testedReverseFigureEnumerator . nextFigure () ,
25 is (mockFigurel)
26 );

27

28 assertThat (testedReverseFigureEnumerator hasMoreElements (),
29 is (false)
30 );
31 }
32 }

Figure 6-3: A manually-written unit test similar to the automatically-generated test
in Figure 6-2.

standard java.util collections, like the iterator heuristic described in Section 4.1,

could improve generated test quality; we have not yet had time to implement these

additional heuristics.

An example of a generated simulation test is shown below. This is a test of the

ConnectionTool which the user clicked on. The test first constructs the ConnectionTool

(line 6) and calls activate on it (line 13). It then informs the tool about the mouse's

motion: a mouseMove in the empty part of the canvas (line 56), a mouseMove over

one of the figures (line 114), a mouseDown on the figure (line 186), a mouseDrag (line

249), and finally a mouseUp. The actual test had three more mouseMove calls and two

more mouseDown calls which were redundant with the ones given and can be elided

without changing the effect of the test. One can imagine that this redundancy could

which are necessary for generic type inference in some cases but which amock could try to leave out
when unnecessary.



be found automatically (see Section 8.2.2).

1 public class AutoGeneratedTest extends MockObjectTestCase {

2 public void testSomethingGenerated() throws Throwable {

3 final ConnectionFigure mockConnectionFigure = mock(ConnectionFigure .class);

4 final DrawingView mockDrawingView = mock(DrawingView. class);

5

6 final ConnectionTool testedConnectionTool = new ConnectionTool (mockDrawingView,

mockConnectionFigure);

7

8 verifyThenCheck (new Expectations() {{

9 one (mockDrawingView) . clearSelection ();

10 inSequence(s);

11 }});
12

13 testedConnectionTool. activate();

14

15 final Drawing mockDrawing = mock(Drawing. class);

16 final Figure mockFigure = mock(Figure.class);

17 final Figure mockFigurel = mock(Figure.class);

18

19 verifyThenCheck (new Expectations() {{

20 one (mockDrawingView) . drawing() ;

21 inSequence(s);

22 will (returnValue(mockDrawing));

23

24 one (mockDrawing).figuresReverse() ;

25 inSequence(s);

26 will(returnValue (new FigureEnumerationIteratorWrapper(mockFigure, mockFigurel))

27

28 one (mockFigure) . includes (null);

29 inSequence(s);

30 will (returnValue(false)) ;

31

32 one (mockFigure) .canConnect();

33 inSequence(s);

34 will (returnValue( true));

35

36 one (mockFigure).containsPoint(128, 18);

37 inSequence(s);

38 will (returnValue (false));

39

40 one (mockFigurel) . includes(null) ;

41 inSequence(s);

42 will(returnValue(false)) ;



43

44 one (mockFigurel) . canConnect();

45 inSequence(s);

46 will (returnValue (true));

47

48 one (mockFigurel).containsPoint(128, 18);

49 inSequence(s);

50 will (returnValue (f alse));

51

52 one (mockDrawingView) .checkDamage() ;

53 inSequence(s);

54 )});
55

56 testedConnectionTool.mouseMove(mock(MouseEvent.class), 128, 18);

57

58 // [Two other mouseMove calls elided.]

59

60o final MouseEvent mockMouseEvent = mock(MouseEvent. class);

61

62 verifyThenCheck(new Expectations() {{

63 one (mockDrawingView). drawing();

64 inSequence(s) ;

65 will (returnValue (mockDrawing)) ;

66

67 one (mockDrawing).figuresReverse() ;

68 inSequence(s);

69 will (returnValue (new FigureEnumerationIteratorWrapper (mockFigure , mockFigurel))

70

71 one (mockFigure) .includes(null);

72 inSequence(s);

73 will(returnValue(false));

74

75 one (mockFigure) .canConnect();

76 inSequence(s);

77 will (returnValue (true));

78

79 one (mockFigure) .containsPoint(343, 97);

80 inSequence(s);

81 will(returnValue(false));

82

83 one (mockFigurel) .includes(null);

84 inSequence(s);

85 will(returnValue(false));

86



87 one (mockFigurel) . canConnect();

88 inSequence(s);

89 will (returnValue (true));

90

91 one (mockFigurel) . containsPoint (343, 97);

92 inSequence(s);

93 will (returnValue (true)) ;

94

95 one (mockFigurel) .connectorVisibility (true);

96 inSequence(s);

97

98 one (mockMouseEvent) .getX() ;

99 inSequence (s) ;

100 will (returnValue (343)) ;

101

1.02 one (mockMouseEvent) .getY() ;

103 inSequence(s);

104 will (returnValue (97));

105

106 one (mockFigurel) . connectorAt(343, 97);

107 inSequence(s);

108 w i ll (returnValue (mock (Connector. class ) ) ) ;

109

110 one (mockDrawingView) . checkDamage() ;

111 inSequence (s);

112 }});

113

114 testedConnectionTool .mouseMove(mockMouseEvent, 343, 97);

115

116 // [One mouseMove call elided.]

117

118 final ConnectionFigure mockConnectionFigurel = mock(ConnectionFigure. class);

119 final Connector mockConnector = mock(Connector. class);

120 final MouseEvent mockMouseEvent2 = mock(MouseEvent. class);

121

122 verifyThenCheck (new Expectations() ({

123 one (mockMouseEvent2) .getX () ;

124 inSequence(s);

125 will (returnValue (344)) ;

126

127 one (mockMouseEvent2) .getY() ;

128 inSequence(s) ;

129 will (returnValue (94));

130

131 one (mockDrawingView) . drawing () ;



132 inSequence(s);

133 will (returnValue (mockDrawing));

134

135 one (mockDrawing) .figuresReverse() ;

136 inSequence(s);

137 will(returnValue (new FigureEnumerationIteratorWrapper (mockFigure, mockFigurel))

138

139 one (mockFigure) .includes(null);

140 inSequence(s);

141 will (returnValue(false));

142

143 one (mockFigure) . canConnect();

144 inSequence(s);

145 will(returnValue( true));

146

147 one (mockFigure) . containsPoint (344, 94);

148 inSequence(s);

149 will ( returnValue ( false ) ) ;

150

151 one (mockFigurel) .includes(null);

152 inSequence(s);

153 will(returnValue(false));

154

155 one (mockFigurel) .canConnect ();

156 inSequence(s);

157 will(returnValue (true));

158

15i one (mockFigurel) .containsPoint(344, 94);

160 inSequence(s);

161 will (returnValue (true));

162

163 one (mockFigurel). canConnect();

164 inSequence(s);

165 will(returnValue(true));

166

167 one (mockFigurel) . connectorAt (344, 94);

168 inSequence(s);

169 will (returnValue (mockConnector));

170

171 one (mockConnectionFigure) . clone();

172 inSequence(s);

173 will (returnValue (mockConnectionFigurel));

174

175 one (mockConnectionFigurel) .startPoint (344, 94);



176 inSequence(s);

177

178 one (mockConnectionFigurel) .endPoint (344, 94);

179 inSequence(s);

180

181 one (mockDrawingView) .add( mockConnectionFigurel );

182 inSequence(s);

183 will (returnValue ( mockConnectionFigurel ));

184 }));

185

186 testedConnectionTool .mouseDown(mockMouseEvent2, 344, 94);

187

188 final MouseEvent mockMouseEvent3 = mock(MouseEvent. class);

189

190 verifyThenCheck(new Expectations() {{

191 one (mockMouseEvent3) . getX() ;

192 inSequence(s);

193 will (returnValue (194)) ;

194

195 one (mockMouseEvent3) .getY();

196 inSequence (s) ;

197 will (returnValue (212));

198

199 one (mockDrawingView) . drawing ();

200 inSequence(s);

201 w ill (returnValue (mockDrawing));

202

203 one (mockDrawing) . figuresReverse() ;

204 inSequence(s) ;

205 will (returnValue (new FigureEnumerationIteratorWrapper (mockConnectionFigurel ,

mockFigure, mockFigurel)));

206

207 one (mockConnectionFigurel) . includes (mockConnectionFigurel);

208 inSequence (s) ;

209 will (returnValue (true));

210

211 one (mockFigure) . includes (mockConnectionFigurel);

212 inSequence(s);

213 will (returnValue (false) )

214

215 one (mockFigure) . canConnect() ;

216 inSequence(s);

217 will (returnValue (true));

218

219 one (mockFigure).containsPoint(194, 212);



220 inSequence(s);

221 wi l 1 (returnValue(false));

222

223 one (mockFigurel) . includes (mockConnectionFigurel);

224 inSequence(s);

225 will(returnValue(false));

226

227 one (mockFigurel) . canConnect();

228 inSequence(s);

229 will (returnValue (true));

230

231 one (mockFigurel) . containsPoint(194, 212);

232 inSequence(s) ;

233 will (returnValue ( false));

234

235 one (mockConnector) . owner();

236 inSequence(s);

237 will (returnValue (mockFigurel));

238

239 one (mockFigurel) . connectorVisibility (false);

240 inSequence(s);

241

242 one (mockDrawingView) .checkDamage() ;

243 inSequence(s);

244

245 one (mockConnectionFigurel). endPoint(194, 212);

246 inSequence(s);

247 }) ;
248

249 testedConnectionTool. mouseDrag(mockMouseEvent3, 194, 212);

250

251 // [Two more mouseDrag calls elided.]

252

253 final Connector mockConnector3 = mock(Connector. class);

254 final DrawingEditor mockDrawingEditor = mock(DrawingEditor . class);

255 final MouseEvent mockMouseEvent6 = mock(MouseEvent. class);

256

257 verifyThenCheck(new Expectations() {{

258 one (mockMouseEvent6) .getX ();

259 inSequence (s) ;

260 will (returnValue (165));

261

262 one (mockMouseEvent6) . getY();

263 inSequence(s);

264 will(returnValue(271));



265

266 one (mockDrawingView). drawing();

267 inSequence(s);

268 will (returnValue(mockDrawing));

269

270 one (mockDrawing) .figuresReverse();

271 inSequence(s);

272 will (returnValue (new FigureEnumerationIteratorWrapper (mockConnectionFigurel ,

mockFigure)));

273

274 one (mockConnectionFigurel) includes (mockConnectionFigurel);

275 inSequence(s) ;

276 will (returnValue(true));

277

278 one (mockFigure) .includes (mockConnectionFigurel);

279 inSequence(s);

280 will (returnValue (false)) ;

281

282 one (mockFigure) . canConnect() ;

283 inSequence(s) ;

284 will (returnValue (true));

285

286 one (mockFigure).containsPoint(165, 271);

287 inSequence(s);

288 will (returnValue (true));

289

290 one (mockConnector) . owner() ;

291 inSequence(s);

292 will(returnValue( mockFigurel)) ;

293

294 one (mockFigure) . canConnect() ;

295 inSequence(s) ;

296 will (returnValue (true));

297

298 one (mockFigure) . includes (mockFigurel) ;

299 inSequence(s);

300 will (returnValue ( false));

301

302 one (mockConnectionFigurel). canConnect (mockFigurel, mockFigure);

303 inSequence(s);

304 will (returnValue (true) ) ;

305

306 one (mockMouseEvent6) .getX ();

307 inSequence(s);

308 will(returnValue(165));



309

310 one (mockMouseEvent6). getY ();

311 inSequence(s);

312 will (returnValue (271));

313

314 one (mockFigure) . connectorAt (165, 271);

315 inSequence(s);

316 will (returnValue (mockConnector3));

317

318 one (mockConnectionFigurel). connectStart (mockConnector);

319 inSequence(s);

320

321 one (mockConnectionFigurel). connectEnd (mockConnector3);

322 inSequence(s);

323

324 one (mockConnectionFigurel) . updateConnection();

325 inSequence(s);

326

327 one (mockDrawingView) . editor ();

328 inSequence(s);

329 will (returnValue (mockDrawingEditor)) ;

330

331 one (mockDrawingEditor) . toolDone();

332 inSequence (s) ;

333 will(new Callback() { public void go() {

334 testedConnectionTool . deactivate();

335 } });

336

337 one (mockDrawingView) . setCursor (with(a(Cursor. class)));

338 inSequence(s);

339

340 one (mockFigure) . connectorVisibility (false);

341 inSequence(s);

342 )));
343

344 testedConnectionTool . mouseUp(mockMouseEvent6, 165, 271);

345

346 }

This test directly verifies the behavior of the connection tool without requiring the

GUI toolkit to be set up. While it is superficially similar to standard GUI capture-

replay tools, note that because it mocks out the actual GUI, it mocks out all details

of the GUI toolkit implementation, functioning at the application logic level.



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated() throws Throwable {
3 final SVNConfigFile mockSVNConfigFile = mock(SVNConfigFile. class);
4

5 final SVNCompositeConfigFile testedSVNCompositeConfigFile = new
SVNCompositeConfigFile (mock( SVNConfigFile. class) , mockSVNConfigFile);

6

7 verifyThenCheck (new Expectations() {{
8 one (mockSVNConfigFile) . setPropertyValue (" auth" , "store-auth-creds" , "yes" ,

false);
9 inSequence(s);

10 }});
11

12 testedSVNCompositeConfigFile . setPropertyValue (" auth" , "store-auth-creds" , " yes" ,
false);

13

14 verifyThenCheck(new Expectations() {{
15 one (mockSVNConfigFile) . getPropertyValue (" auth" , "store-auth-creds");
16 inSequence(s);
17 will (returnValue (" yes"));

s } });
19

20 assertThat (testedSVNCompositeConfigFile . getPropertyValue (" auth" , " store-auth-
creds") ,

21 is ((String) "yes")
22

23

24 }

Figure 6-4: An amock-generated unit test for SVNKit's composite configuration file.

6.2 Network: SVNKit

SVNKit [39] is a Java (60K LOC) implementation of a client for the Subversion

version control system [9, 38]. SVNKit comes with very few unit tests, some system

tests, and a custom test harness for running Subversion's Python-scripted command-

line system tests. The system tests all run the SVNKit command-line client multiple

times; because amock runs on the output of a single execution (see Section 3.2), we

could not directly use an entire system test. We chose to instrument an execution of

the Subversion command svn is http: //svn. collab. net/repos/svn/ as a typical

network-intensive use of SVNKit.

Of the 33 SVNKit classes used in this example, we decided that 5 factored

tests were potentially useful. As with JHotDraw, we found that amock generated

both general and simulation tests. Figure 6-4 shows a general test. It tests the

SVNCompositeConfigFile class, which combines two configuration file objects (one

for per-user configuration and one for system-wide configuration) into one composite

object. The generated test verifies that setting a value on the composite object will



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable {
3 final ISVNRepositoryPool mockISVNRepositoryPool = mock(ISVNRepositoryPool. class);
4 final SVNLogClient testedSVNLogClient = new SVNLogClient (mockISVNRepositoryPool,

mock(ISVNOptions. class));
5
6 final ISVNDirEntryHandler mockISVNDirEntryHandler = mock( ISVNDirEntryHandler.

class);
7 // [ More mock declarations elided. ]
8 final Capture<Collection> capturingCollection = capture( Collection .class);
9

10 verifyThenCheck(new Expectations() {{
11 one (mockISVNRepositoryPool) . createRepository (mockSVNURL, true);
12 inSequence(s);
13 will (returnValue (mockSVNRepository)) ;
14 // [ ... ]
15 one (mockSVNRepository) . getDir (with (equal ("")) , with (equal (25884L)) , with (aNull

(java. util .Map. class)) , with(valueCapturedBy(capturingCollection)));
16 inSequence(s);
17 will (doAll (capturingCollection . capture (3) ,
18 new Callback() { public void go() {
19 assertThat (capturingCollection . getCapturedValue () . add(mockSVNDirEntry) ,
20 is (true)

21 );
22 assertThat ( capturingCollection . getCapturedValue () . add ( mockSVNDirEntryl) ,
23 is (true)
24 ) ;
25 assertThat (capturingCollection . getCapturedValue () .add(mockSVNDirEntry2) ,
26 is (true)

27
28 assertThat (capturingCollection . getCapturedValue (). add(mockSVNDirEntry3) ,
29 is (true)
30 );
31 assertThat (capturingCollection . getCapturedValue () . add(mockSVNDirEntry4) ,
32 is(true)
33 ;
34 assertThat (capturingCollection . getCapturedValue () .add (mockSVNDirEntry5),
35 is(true)
36 );
37

38 returnValueCapturedBy(capturingCollect ion)));
39

40 one (mockSVNDirEntryl). compareTo(mockSVNDirEntry);
41 inSequence(s);
42 will (returnValue(-16));
43 // [ More compareTos elided.]
44

45 one (mockSVNDirEntry2). getName() ;
46 inSequence(s);

47 will (returnValue (" branches"));
48

49 one (SVNPathUtil. class) .append("" , "branches");
50 inSequence(s);
51 will (returnValue ("branches"));
52 // ...
53

54 one (mockISVNDirEntryHandler) . handleD irEntry (mockSVNDirEntry2);
55 inSequence(s);
56 // [ handleDirEntry for the other entries elided. ]
57 )));
58

59 testedSVNLogClient . doList (mockSVNURL, SVNRevision .UNDEFINED, SVNRevision.
UNDEFINED, false , false, mockISVNDirEntryHandler);

60 }
61 }

Figure 6-5: Excerpts from an amock-generated unit test for SVNKit's log client.



set the same value on the per-user configuration object, and that reading a value from

the composite object which is in the per-user object will use the per-user value.

Figure 6-5 shows an excerpt from a simulation test; it tests the internal "log client"

which is used to fetch information about the repository. It constructs a log client (line

4, passing in a mocked repository pool (a factory object)). It then exercises the client

with a doList invocation (line 59). The bulk of the actual network interaction is

mocked out by the getDir call on the repository object (line 15). This method adds

six SVNDirEntry objects to the collection passed in as its last argument, using the

capture facility described in Section 2.2.3 to allow the callback to refer to the collection

constructed by the tested code. Because the added SVNDirEntry objects are mocks

and the collection constructed by the tested code is a TreeSet, amock has to define

compareTo expectations for the inserted mocks (line 40). Finally, the SVNDirEntrys

are fed to the handleDirEntry methods on a directory handler.

The log client example shows us some of the strengths and weaknesses of amock.

The fact that the log client uses a factory object (the SVNRepositoryPool) instead

of directly constructing the SVNRepository allows amock to inject a mock reposi-

tory (line 11); the test would not have been able to isolate the log client from the

network without this. The ability to capture arguments and to write custom call-

back actions (line 18) is clearly essential for this particular test. On the other hand,

the generation of many compareTo expectations (only one shown in the excerpt,

at line 40) is annoying; perhaps amock should have a custom compareTo heuristic

which inserts a single line of code like comparesInThis0rder (mockSVNDirEntryl,

mockSVNDirEntry2, mockSVNDirEntry3, ... ); which automatically sets up all of

the relevant compareTo expectations. Also, while it is useful in some cases to mock

out static methods, the simple choice (described in Section 3.2) to mock out every

static method call outside of the current class leads to unnecessary expectations like

the one on line 49, which mocks out a simple string manipulation call. Even given

these shortcomings, though, this automatically-generated test successfully tests the

log client as used in the svn is command without needing to make any network

connections.



6.3 Esper

Esper [14] is a Java (47K LOC) event stream processing framework. Esper is dis-

tributed with a large JUnit test suite and a set of example programs. We chose the

net. esper. examples. transaction. sim example for our case study: a transaction

stream simulator. Unlike with the previous case studies, we made no changes to

amock based on the results of the case studies. This section describes tests for two

data structures and for two more active objects.

Figure 6-6 shows the generated test for a SortedRefCountedSet object. The test

adds numbers to the set, and checks the minimum value in the set at various times.

Note that no expectations are necessary here because there are no callbacks. It is a

perfectly effective test for the sorted set. It is, however, very redundant: the actual

generated test has 10 calls to add and 20 to minValue. This is yet another case where

automated minimization or refactoring of the generated test could yield improvements

to the test's readability and maintainability. Figure 6-7 is the generated test for an

OuterInnerDirectionalGraph data structure. It sets up a graph structure, and then

queries it repeatedly with isInner and is0uter. It similarly requires no expectations,

and could profit from automated minimization.

Figure 6-8 shows the generated test for a DispatchServiceImpl object. The test

adds Dispatchables to the dispatcher with the addExternal method; the dispatch

method calls execute on each registered Dispatchable, and then forgets about the

Dispatchables. This test clearly takes advantage of mock objects and expectations.

It also places an expectation on the static method ExecutionPathDebugLog. isEnabled;

it appears that these calls could probably be safely executed instead of mocking them

out. Again, there is enormous redundancy in the generated test: the full generated

test adds 49 Dispatchables and calls dispatch 42 times.

Figure 6-9 shows the generated test for a FieldGenerator object. This object uses

a random-number generator to generate values for various fields (names, numbers,

etc.) in the example's transaction model. This test shows that amock is capable of

deterministically testing randomized code; this would be difficult for a capture-replay



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable {
3 final SortedRefCountedSet testedSortedRefCountedSet = new SortedRefCountedSet();
4

5 assertThat (testedSortedRefCountedSet. minValue(),
6 is (nullValue())
7

8

9 testedSortedRefCountedSet.add(929L);
10

11 assertThat (testedSortedRefCountedSet .minValue(),
12 is ((Object) 929L)
13 );
14

15 assertThat (testedSortedRefCountedSet .minValue() ,
16 is ((Object) 929L)
17 );
18

19 testedSortedRefCountedSet . add(1297L) ;
20

21 assertThat (testedSortedRefCountedSet. minValue(),
22 is((Object) 929L)
23 );
24

25 // [More add and minValue calls elided.]
26

27 testedSortedRefCountedSet add(684L) ;
28

29 assertThat (testedSortedRefCountedSet. minValue(),
30 is((Object) 684L)
31 );
32

33 // [More add and minValue calls elided.]
34 1
35 }

Figure 6-6: An amock-generated unit test for an Esper sorted set.



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable {
3 final OuterInnerDirectionalGraph testedOuterInnerDirectionalGraph = new

OuterInnerDirectionalGraph (3);
4

5 assertThat (testedOuterlnnerDirectionalGraph .add (0, 1)
6 is ((OuterInnerDirectionalGraph) testedOuterInnerDirectionalGraph)
7
8

9 assertThat (testedOuterInnerDirectionalGraph .add(l, 0)
10 is ((OuterInnerDirectionalGraph) testedOuterInnerDirectionalGraph)
11 );

12

13 assertThat (testedOuterInnerDirectionalGraph .add(2, 1)
14 is ((OuterInnerDirectionalGraph) testedOuterInnerDirectionalGraph)
15 )

16

17 assertThat(testedOuterInnerDirectionalGraph .add(1 , 2),
18 is ((OuterInnerDirectionalGraph) testedOuterInnerDirectionalGraph)
19 );
20

21 assertThat (testedOuterInnerDirectionalGraph . isOuter (1, 0),
22 is (true)
23 );
24

25 assertThat (testedOuterInnerDirectionalGraph isInner (0, 1) ,
26 is (true)
27 );
28

29 assertThat (testedOuterlnnerDirectionalGraph isOuter (2, 1),
30 is (true)
31 );
32

33 assertThat (testedOuterInnerDirectionalGraph isInner (l, 2) ,
34 is (true)
35 );
36

37 // [More isInner and isOuter calls elided.]
38 }
39 }

Figure 6-7: An amock-generated unit test for an Esper graph.



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated() throws Throwable {
3 final DispatchServiceImpl testedDispatchServiceImpl = new DispatchServiceImpl();
4

5 verifyThenCheck(new Expectations() {{
6 one (ExecutionPathDebugLog. class) . isEnabled();
7 inSequence(s);
s will (returnValue(false));
9 }});

10

11 testedDispatchServiceImpl. dispatch();
12

13 // [More dispatch calls elided.]
14

15 final Dispatchable mockDispatchable = mock(Dispatchable. class);
16

17 testedDispatchServiceImpl. addExternal (mockDispatchable);
18

19 verifyThenCheck(new Expectations() {{
20 one (ExecutionPathDebugLog. class) . isEnabled();
21 inSequence(s);
22 will(returnValue(false)) ;
23

24 one (mockDispatchable) . execute();
25 inSequence(s);
26 }});
27

28 testedDispatchServiceImpl . dispatch();
29

30 // [More addExternal and dispatch calls elided.]
31

32 final Dispatchable mockDispatchable46 = mock(Dispatchable.class);
33

34 testedDispatchServiceImpl . addExternal (mockDispatchable46 ) ;
35

36 final Dispatchable mockDispatchable47 = mock(Dispatchable .class);

37

38 testedDispatchServiceImpl . addExternal (mockDispatchable47 ) ;
39

40 final Dispatchable mockDispatchable48 = mock(Dispatchable. class);
41

42 testedDispatchServiceImpl . addExternal (mockDispatchable48) ;
43

44 verifyThenCheck(new Expectations() {{
45 one (ExecutionPathDebugLog. class) .isEnabled();
46 inSequence(s) ;
47 will (returnValue (f alse)) ;
48

49 one (mockDispatchable46) .execute();
50 inSequence(s);
51

52 one (mockDispatchable47) .execute();
53 inSequence(s);
54

55 one (mockDispatchable48) . execute();
56 inSequence(s);
57 }});
58

59 testedDispatchServiceImpl . dispatch ();
60
61 }

Figure 6-8: An amock-generated unit test for an Esper dispatch service.



1 public class AutoGeneratedTest extends MockObjectTestCase {
2 public void testSomethingGenerated () throws Throwable {
3 final Random mockRandom = mock(Random.class);
4

5 verifyThenCheck (new Expectations() {{
6 one (RandomUtil. class) . getNewInstance () ;
7 inSequence (s);
8 w ill (returnValue (mockRandom));
9 }});

10

11 final FieldGenerator testedFieldGenerator = new FieldGenerator();
12

13 verifyThenCheck(new Expectations() {{
14 one (mockRandom) .nextInt(6);
15 inSequence(s);
16 will (returnValue (2));
17 }});
18

19 assertThat ( testedFieldGenerator . getRandomCustomer() ,
20 is ((String) "YELLOW"')
21 );

22

23 verifyThenCheck(new Expectations() {{
24 one (mockRandom) .nextInt (1000);
25 inSequence(s) ;
26 will(returnValue(717));
27 }});
28

29 assertThat (testedFieldGenerator . randomLatency(1185490766152L) ,
30 is (1185490766869L)
31 );

32

33 verifyThenCheck (new Expectations() {{
34 one (mockRandom) .nextInt (1000);
35 inSequence(s);
36 will (returnValue (580)) ;

37 }});
38

39 assertThat ( testedFieldGenerator . randomLatency(1185490766869L) ,
40 is (1185490767449L)
41 );

42

43 // [More field generation elided.]
44 }
45 }

Figure 6-9: An amock-generated unit test for an Esper randomized data generator.



system without any sort of factoring or explicit random-number generator seeding.

On the other hand, the test does rely on the particular algorithm used to translate

from the randomly generated numbers to the field values, which is unlikely to be

semantically significant. So while it is notable that this test isolates the SUT from

its source of randomness, it is unlikely that this particular test is verifying important

properties of the FieldGenerator.



Chapter 7

Experimental evaluation

Chapter 6 described the qualitative applicability of amock to a variety of real Java

programs. This chapter quantitatively analyzes the performance of amock on one

subject program, the SVNKit Subversion client (as described in Section 6.2). We

performed all experiments on a 1800GhZ AMD Opteron with 8GB of RAM.

7.1 Capture phase slowdown

The first step in generating a test suite is executing a system test with the trace

instrumentation enabled. Because amock traces every method call within the system

test, the instrumented system test will run slower than the original test. (This over-

head is only for tracing the system test, not for running the generated test suite.)

Additionally, the generated trace takes up disk space. The factoring phase also takes

time to execute. These stages can be performed automatically and without developer

interaction, so large constant factors do not necessarily prevent the project from being

useful.

We measured that time required to run the "capture" phase on the SVNKit system

test used in the case studies (Section 6.2), and analyzed the sources of inefficiency. It

took 254 seconds to run the system test 50 times, and 651 to run it 50 times under

the amock tracer. This was thus a slowdown factor of 2.6. The three output files

described in Section 3.1.1 consumed 12 MB of disk space: the transcript was 12 MB,



the instance information database was 290 KB, and the hierarchy file was 17 KB.

7.2 Unit test speedup

One of the advantages that unit tests can have over system tests is that they generally

run much faster, because they do not need to set up complex resources and they only

test a small part of the code. The tests that amock generates should similarly be

noticeably faster (or at least no slower than) the system tests they are factored out

of.

We measured the run time of the (uninstrumented) SVNKit system test used

in the case studies (Section 6.2) and compared it to the run time of the unit tests

factored from it. It took 254 seconds to run the system test 50 times, and 54 seconds

to run the generated unit test suite 50 times. (Note that these figures include the

startup time for the JVM, as well as the time for smock to instrument all non-JDK

code.) This is a speedup factor of 4.7.

7.3 Robustness: resistance to false failures

Automatically generated tests can be brittle. If tests fail spuriously when the tested

code changes, the effort to understand and fix the failing tests is a distraction from

development, and if a tool has too many false failures, a "boy who cried wolf" effect

will prevent developers from paying attention to actual defects revealed by failing

tests.

We used amock to generate a passing test suites for an older version of SVNKit

(version 1.1.0). We performed the same test generation process as in the case studies,

as described in Section 6.2. We then ran the test suite against the four later re-

leased versions of the library which spanned eight months of active development (443

changesets). We observed how many of the generated tests continued to pass and

which failed. We subjectively classified the failing tests into two categories: spurious

failures, where the behavior of the underlying code did not change in way imme-



version date pass spurious failure true failure
1.1.0 2006-11-14 11 0 0
1.1.1 2007-02-01 11 0 0
1.1.2 2007-03-29 10 1 0
1.1.3 2007-06-22 9 1 1
1.1.4 2007-07-20 9 1 1

Figure 7-1: Results of robustness experiments

diately relevant to the behavior being verified, and true failures, where the actual

documented behavior of the tested code or API changed incompatibly.

As Figure 7-1 shows, the generated tests mostly continued to pass under the later

versions. There was enough code churn between the tested versions that two tests

began to fail, but the other nine tests correctly continued to pass. The test which

begins to fail in SVNKit 1.1.2 was a test generated for a DefaultSVNRepositoryPool.

The SVNKit 1.1.2 code calls getLocation and getProtocol methods one time fewer

than the SVNKit 1.1.0 code did, so the test fails due to unsatisfied expectations.

This spurious failure could be avoided if amock used a purity analysis, as described

in Section 8.2.1. The test which begins to fail in SVNKit 1.1.3 is a test of the

SVNLogClient class. SVNKit 1.1.3 started to implement user cancellation support on

the SVNRepository class, so the SUT code began to call a new method setCanceller

on a mocked SVNRepository, causing an unexpected invocation error. Any jMock-

based test of that method would require adding an expectation to make the test

continue to pass, so this is a less spurious failure than the previously described one.





Chapter 8

Conclusion

8.1 Related work 0

Automatic generation of software tests has been studied from many different angles.

The techniques range from random testing [40, 31, 10] to systematic static analyses

[11, 41] to model-based dynamic analyses [1]. Two previous projects exist which

attempt a "test factoring" strategy of turning dynamic traces of large system tests

into smaller unit tests are [35] and [13].

The main goal of Saff's test factoring project [35] is allowing developers to run

a slow system test much more efficiently when only a small part of the system has

changed. Saff's tool captures a transcript of a long system test or other program

execution, and then replays it in a special instrumented Java run-time environment

where all objects other than those of the class under test are mocks following the

transcript. The bodies of method in classes not in the SUT are skipped during

playback, leading to a much faster execution of the original test suite which only

exercises code from one class. If the class under test attempts to make different

method calls to the rest of the system than it did during the original execution,

the replay stops and tells the user that the full system test should be run instead;

otherwise, the factored test succeeds or fails according to whether the program that

it is replaying succeeds or fails. This project uses behavior-based verification, like

amock. Factored tests in Saff's project obey the following property: if a factored test



for the only class whose code has changed passes, then the system test would have

passed as well.

In Saff's project, many benign changes to the class can cause the factored test to

fail. For example, the method under test could call external methods in a slightly

different order or with slightly different parameters; test factoring will consider this

to be too different to continue the replay, but a human could determine that both

versions are acceptable. A developer cannot easily take a transcript made by test

factoring and make it less brittle by relaxing these constraints; tests are recorded in

a transcript which is not meant for human consumption.

Additionally, test factoring slices up the program state based on class or package

names, not based on time or individual object lifetimes: the generated tests consist

of replaying an entire system test on the target class. Thus, even if the tests were

human-readable, they would be very long; even if a typical use of an instance of the

class under test only involves a few method calls, each test includes all of the method

calls ever made on any object of that class.

Finally, test factoring relies on the ability to instrument all classes (including

the JDK system libraries) even just to replay the tests, which makes it non-trivial

to integrate into a pre-existing unit testing process. While the smock library used

by amock also requires instrumentation, smock does not require the JDK libraries

to be pre-instrumented, and only modifies the bodies of methods, whereas Saff's

instrumentation changes the entire class, creating new versions of each class and

method.

In test carving [13], during the execution of a long system test, all reachable objects

are frequently serialized to disk. Pieces of the long test can then be independently

"played back" by loading the state before an action, executing that action, and com-

paring the actual post-state to the serialized post-state. This method fundamentally

uses state-based verification (unlike amock), and relies on the internal data structures

of the objects not changing significantly. Test carving produces tests which only work

in the context of a custom serialization framework - carved tests look nothing like

tests that a programmer would have designed by hand, and it is unclear how much



information a developer can get about why a carved test failed.

Agitar Software's AgitarOne and JUnit Factory products can automatically gener-

ate mock-based JUnit tests[7, 24]. Like amock, the mock objects are defined explicitly

in the test source (as opposed to being an implicit part of the Java runtime environ-

ment); the mock objects use Agitar's proprietary "Mockingbird" library. The tests

are generated using Agitar's "agitation testing" methodology, a combination of dy-

namic invariant detection and test-input generation. As it relies on dynamic analysis

to discover "typical" uses of objects, this is in a sense similar in concept to test

factoring.

Test factoring can be thought of as a three-phase extension of a two-phase capture-

replay system. There exist several commercial capture-replay tools, mostly operating

at the user-interface level, though not as much academic research in the field[27].

Recorded tests tend not to be very legible or comprehensible, and often suffer from

interface sensitivity[28]. Test factoring moves the capture-replay boundary from the

user interface to internal APIs, and separates tests of different modules from each

other.

8.2 Future work

There is much potential for future improvement to the amock concept and implemen-

tation.

8.2.1 Purity

The current amock algorithm ensures that the SUT code calls precisely the same

methods on the environment is exactly the same order. By default, every expectation

is declared to be expected exactly once, and every expectation is threaded into a single

sequence. When these method calls represent active manipulation of the environment,

this can be appropriate. But method calls which passively access the environment

do not need to be as constrained. It should be acceptable for the tested code to call

"pure" methods which have no side effects in a different order than in the observed



execution, or a different number of times, or not at all [35].

There is a rich history of research in analyzing programs to determine which meth-

ods have side effects [8, 34, 29, 33, 37, 36, 2]. amock could use the results of such

an analysis to decide which methods are side-effect-free, and relax the ordering and

uniqueness constraints on them. While developers can already do this manually by

editing the JUnit tests (already an improvement on previous test factoring implemen-

tations), it is reasonable to believe (based on observations of amock's generated tests)

that automating this step would significantly decrease the brittleness of generated

tests.

8.2.2 Refactoring tests

The current amock implementation makes only minor improvements to the test after

initially generating it. However, there are many potential refactorings that could be

applied to the generated test suite to improve its overall quality. Some examples

include:

* If tests are generated for every instance in the execution, many of them will be

identical or isomorphic. amock could detect and suppress redundant tests.

* Each test simulates the entire lifetime of the targeted instance. However, the

object may be exercised repeatedly in essentially the same way. For example,

when generating tests for a GUI handler in JHotDraw, we found that an object

might be exercised by a mouseDown method call, followed by several dozen

mouseMove calls, followed by a mouseUp call. The test would have been equally

valid if it only had one of the mouseMove calls. amock could detect and remove

intra-test redundancy.

* When amock generates many tests for instances of the same class, the tests may

be similar in structure but still test slightly different behavior. amock could

automatically factor out the common code into a helper method, reducing each

individual test to the parts that actually vary.



All of these analyses could be based either on domain-specific knowledge of behavior-

based testing, or through methods that work on any Java code.

8.2.3 Backtracking

The amock factorizing processor makes many choices during its single pass over the

trace which affect the generated test; for example, it must decide whether to apply

each of the heuristics described in Chapter 4, and it must choose a package to place

the test in. If the choice made is in error, it could lead to a test that does not

pass or perhaps even compile. amock has no way to fix such mistakes. amock could

potentially make its choices explicit, and backtrack and try again if the generated

test is not suitable.

8.2.4 Pattern recognition

More heuristics along the lines of those in Chapter 4 could help the generated tests

use a higher level of abstraction in describing expectations. For example, if mock ob-

jects are inserted into a SortedSet, the current amock implementation will need many

compareTo expectations between various pairs of mock objects; amock could instead

replace the explicit compareTo expectations with a declaration like sortedInThis0rder (mockFoo,

mockBar, mockBaz). Additionally, support for recognizing (small) collections from

the java. util package and using them directly instead of mocking them (like we do

now with iterators and record types) could potentially be useful.

8.2.5 Efficiency

amock could be made more efficient in several ways. It is very disk-intensive; the

raw trace is very long, and the various stages of post-processing that occur before

generating tests are done in series with a complete deserialization and serialization

on each stage. It would be relatively straightforward to do more of this processing at

once.



If it is already known at trace time which classes will have tests generated for

them, it may be possible to run a simplified version of the state machine during

trace and refrain from logging events that will be mocked out by any generated test.

This may reduce the overhead of tracing, though it would also make the tracer more

complex.

8.3 Contributions

This thesis presents the following contributions:

* A new approach to test factoring that produces human-readable JUnit tests

with user-level mock objects. Our approach is extensible with heuristics that

more succinctly describe common Java patterns.

* amock: An implementation of this approach. While amock has some limitations

(most notably in its handling of arrays), it successfully factors tests for several

real-world programs.

* Case studies showing the applicability of amock to real-world projects.

* smock: An extension to the jMock library allowing developers to mock static

methods. smock can assist jMock users interested in testing legacy code, inde-

pendently of whether they use amock.
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