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ABSTRACT

Of the cleven coordinate systems allowing separeble
solutions of the wave equation, only the spherical eand
oblate spheroldal frames have been treated with the
definite purpose of using the ovroper coordinete surface
as the boundary of an Infinite horn. The last mentioned
systew produces a horn formed by half a hyperboloid (of
revolution) of oﬁe sheet, and was investigated by
Freehafer.(l) In view of the possibility of checking
some of the interesting predictions of the exact theory
& hyperbolic horn has been constructed and measurements
made of the pressure fleld and throat impedance. Since
the experimental horn did not simulate the infinite one
for all frequencies only qualitative agreementvwith the
exact theory was obtalned.

In order to take sccount of the reflected wave,
ebster's plane weve assumption has been used as the
starting point in the development of a plane wave analysis
of general gpplicabllity. The results of this analysis
are in satisfectory sgreement with both exect theory and
experimental results for the nyperbolic norn, and indicaete
that especlally for low frequencies the spproximate theory
will predict with sufficlient engineering accuracy the

average performeance of any reasonably shaped horn.



THis SOUND FILLD AND RADIATION IiePEDANCH
OF A HYP-IBOLIC HORN

I INTRODUCTION

Among the host of products of modern acoustical re-
search, sound reproducing systems occupy the wost promi-
nent place, and to the casual observer the horn from
wnich the radiation proceeds is also visually the wmost
prominent, However, this device has a more Ilmportant
function than that of impressing the listener; end to
understand the reasons for using horns s discussion of
the details of sound radistlon will be not amiss before
considering the specific problem indlcated by the title
of this worik, In this introduction, then, we shall brief -
ly consider the wave equation and oring in the concept
of acoustical impedance in connection with the radlation
from the ideal rigild piston, end then indicate how the
need for 2 horn follows.

If the first order theory is considered, the prop-
agation of acoustic waves of infinitesimal amplitude in

a simple fluld medium 1s represented by

P 32 2
VZL// S_ZL_; %th ﬁ,cl_z éty/z (1.2)



where Y 1is the veloclty potential,
¥ is the ratio of specific heat st constant pressure
to that at constant volume,
P, 1s the steady "barometric" pressure,
f;is the steady density of tne fluld
and c® = JPo/po 1s the wave velocity.
Fron Y/ there may be obtained\the perticle velocity ;
(2)

and excess pressure p by

EEOVY } (1.2)
p = po(oyst)

These quantities ere the departure from the undisturbed
end statistically steady conditions; in order for the wave
equations to be velid, the amplitude of these quantities
must at least be below the suditory threshold of psain, and
the waves must traverse not too confined a space.

The radiation of sound is ordinarily accomplished by
the comuunication of the wmotion of a vibrating surface to
the transmitting medium, which we shall take as the atmos-
phere. According to the method by which the surface is
coupled to the alr, radistors mey be classified es direct
or indirect, the latter being formed oy a direct radiator
plus a horn. Of the former the simplest and most completely
worked out practical(s) case is that of e rigid circular
plane piston set in a closely fltting hole in an infinite,
rigid plene, and oscilleting with infinitesimel clsoidal



motion normal to the plane. ‘hen the driving force is
specified, it 1s found that wilth the transmitting medium
removed, the reletion between force and velocity resulting

may be expressed in the form

. F
g = Zp RP 'f’j' XP (1.3)

)

Where is the mechanical impedance of the viston

is the mechanical resistance of the piston

Xy 1s the mechanical reactance of the piston,

This relation arises directly from the differential equatlon
fo? the velocity when the tiwe varistion is contained in
ejwf The unit of Z, 1s the dyne sec/cm,

Now, when the air is allowed to react back on the
pilston, the impedance is increased by an amount ZA, as
calculeted in the reference cited (5). This 1s merely the
ratio of the sound pressure integrated over the surface S
of the ovliston, to the velocity é » and may be exprcssed
in the form

Z/\: SfaC(f'fjx) (1.4)
where the r and X are non-dimensional functions of

_ 21na - 2110V
ka = ) S

where a 1s the piston radius, A the wavelength and V

the frequency. Thus the essential behaviour of 2, 1is
represented by r and x; the quantity f;f%c gives the

dimensions of mechanical impedance to Z,* The product‘/%c
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1s a property of the medium and type of waves(é), and is
known as the characteristic impedance of the medium.

The behaviour of Z, for this piston case is shown
in Plete 1, 1n which r and x are plotted together
with the frequency perameter ka determining ecach point.
The importent fact to note is that for ka large, or
when the product va is large, the impedance approaches
the value fﬁ%C'fjo » known as the ultimate impedance.
The implications of this beheviour are seen most clearly
in considering the amount of sound radiated. F©rom mechanics,
the average power is given by the product

Fa g
averaged over many perlods, Here the complex method fails,
so we must use the real parts of the quantitics in such
an evaluation., With tihnis proviso, and remembering that
Fa = ERj4

1s the real paert of the reasction of the air on the niston,

then

- £2
‘DA = 5 RA (1.5)
where P, 1s the acoustic power radiated. Thus Py will
not be the same for &ll frequencics unless the product
ézf?A is; and since it 1s desirable in most cases to ob-
tein this lndependence of frequency we must examine P,

carefully from the point of view of practical applicstion.



As the pnractical representetive of the rigid piston,
the direct radiating, cone type, moving coil loudspeaker
is the wost common gpproximetion., From the following con-
siderations we proceed to snow that it is essentially a
low efficiency device, IMirst, most cones cannot be made
rigid enough to vibrate as a whole above, say, 800 hz,
and greater rigidity is obtained only at the cost of more
moving mass, thus limlting the high frequency response.
At low frequencics corresponding to ka < 1, H& decreases
as the frequency is lowered, and tius the sound power would
likewise decrease were it not for the fact that the me-
chenical resonance of the speaker is placed at the low end
of the audio range. Thus the cone velocity will increase
(modified by the electrical system), helping to keep the
power fairly constaent. However, since the moving mass
must be large to place the resonant rrequency low, most
of the mechanical impedance is due to the mass reasctance,
the radistion resistance L, contributing but little,
Hence most of the electrical input to the moving coil is
in the wattless component moving the cone; or, the system
is relatively inefficient in tnat the load is highly re-
active, In fact, the electroacoustic transfer efficiency
is usually below 5 % over the useful range of frequencies.

To increase this efficiency the solution would be to

minimize the moving mass of the piston to such an extent



that the radistion resistance is z large part of the me-
chanical impedance; or, the acoustic system must obtain

its ultimate impedance sooner in frequency. As tnls latter
is only possible for a large piston, and the former only
only possible for a small one, the situation demands &
means of increasing the apparent size of the piston by
loading it in such a fashion that 1t looks into a system
reacning its ultimate impedance quickly, and "reflecting”
that lwpedance, substantially unchanged, back to the actual
piston.

It is now fairly easy to visuslize the apparatus needed:
a horn must be fitted to the niston; and its cross section
nust increese in such a manner that the-"equilvalent piston”
of the mouth resches thne ultimate impedance quickly, and
that this impedance 1s reflected to the piston. Thus the
overall efficlency will be greater, and the output should
show less prominent peaks then the simple niston.

The results of this discussion may now be swamarized
by the statemsnt that the impedance concept is able to
sugmest the correct deslgn conditions, as well as to in-
terpret the results. In view of the possibility of making
a correlated study of a particular horn, we choose the
nyperbolic type bucause of the avallabllity of an exact
theory., In the following sections we propose to outline

the exact theory due to Ereehafer(l), to develon an



approximate theory suitable for calculation and to apply
this to the hyperbolic horn, and finally by experiment to
obtain results winich may be interprected from both exact

and approximate theory. It will bDe shown that the agreement
is satisfactory among the three points of view, and that

the approximaste theory may oe used for calculations of suf-

ficient accuracy to indicate comperative performance.



II EXACT THEORY OF TH: HYPERBOLIC HORN

e now consider the results of the theory of the in-
finite hyperbolic horn; in general, the predictions will
be qualitative beceuse the radial functions were not avall-
able at the time of tnis writing. Although the assumption
of an infinite horn presents rether difficult experimental
conditions, the predictions still should be of general
correctness when couipared to experiment,

The wave equation for the veloclity ootential with

cisoidal time veriation may be written as
iy + R ¢y =0 (2.1)

(By cisoidal time verlation we mean that time 1is contained
in the factor ejum). The number of possible solutions of
intercst to the general horn problem is strictly limited,
as the equation is separable in but ¢leven coordinate sys-
tems(5), and still fewer have horn shaped coordinate sur-
faces, Although Kayleigh has laid the groundwork for the
exact treatment of the conical horn(ﬁ), to the author's
knowledge no couplete treatment is yet aveailable, although
the functions are rather well known, Hence Freehefer's
work is unique in being the first eveluation of & sound
field in other then the common geometrical solids.

Turning now to freehnafer's results, we first note

the coordinate systea, formed by rotating, about the g'
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axis of Fig. 1, families of confocal hyperbolas and ellipses,

The figure shows a sample hyperbola,

r

¢, r)
Py<, 6)

/

Fig.l

and its appearance as the profile of & hyperboliec aorn,
naving zero slope at the throat, and approaching asymptotes
forning the generators of a cone with vertex at the origin.
The unrotated spheroidal coordinates 9“’ ®) are related

to the cartesian 0;, ) by

(2.2)
there @ 1s the interfocal distance common to the hyper-

bolas and ellipses., By elimlnating M the equation for

the hyperbolas 1s

(2.3)

6
g ) - (&) -
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By rotating the hyperbola specifled by a given 6 (T
being fixed for the system ) through ¢ = 2w, the hyper-
bolic horn is formed,.

Expressing y' as below, and putting in the wave

equation (2.1),

Y= Mg 06) P@) Cj“’t, (2.4)

(P turns out to be given by

(d2¢p/de?) + a*¢ =0
Since V/ must return to the same vaelue after @ goes
through 2%, a must be an integer. The equation for the
angular and radial functions are simplified if the follow-

ing substitutlions are mede,

@=W.M“9 , Z = cr 6 (2.5)
M= Frcoh'm, X = anhi
e (1-29) W"-2(a+)zW +(b-c2z2)W =0 (2.6)

(|+x2)F "+ 2(at)x F'- (b-c*x? F: 0
where "Cz = @Q&/Z,)z =@WV/Q)

and Db 1is any of the characteristic values, to be deter-
mined by the boundary conditions,

The solution of the equation for the angular functions
W was effected by noting that for - ¢® = 0, W= Pli (z),
the associated legendre functions. The b's and W's may then

- Py
be expanded in powers of (-c®) about -c®

il

0, ylelding

nicely convergent serics, It 1Is found that the first few
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W's gshow greatest dependency on frequency (in the ~c®
factor), and that tiae D's are nearly linear functions of
-c®. TFreehafer's data is given in graph form for bounding
hyperbololds specified by 6 = 15° and 30°; it is interesting
to note thet the W's for -¢c® = 0 are those for the conl-
cal horn of the saue 6,

The radial functlons presented more difficulty, for

the équation for F has singular points at t j eand in-

£inlty; no contour was found which would give an integral

representation. Recourse was had to the WKB method, which

was found feasible for -c¢ not too near a value for whicha

eny b Dbecame zero, Since most of the low frequency energy
is carried by the first term In the serles expansion for qI
and the first characteristic value is zero for -c® = 0,
the metnod is of doubtful application in this important
case, wneres the low frequency behaviour 1is desired, Differ~-
entiel analyzer methods have been used for these F's, and
when all the data 1s worked up, will present a practically
complete picture,

The WiB wethod yilelds results as follows, with the
above restriction on ~-c®; there are two representations
for F,, one on cach side of the point x} = (bn/oa)ﬁ.
Region I will include the space from x = 0 to x =|x}}

when X,'.< 0
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end Hegion II the remainder, Then

Am xS x>
I F - e oxpl s |+ x° dx]
" V2 COx e xr)3"

T F - erp(ab) it JAEE dx] (2.7)

[ +x2 )0 Lt > )]

Note that in I the phase is constant at W4 lead-
ing to an infinite phase velocity. This means that under
such conditlons the reaction of that particular elementary
wave back on the niston is malnly thet of the mass of air
which moves as a unit, 4lso, when X >[x}!} the air behaves

as a dispersive medium with phase velocity

_ Cs
W= X FA® (2.8)
)+ x?

where cg 1is the veloclty from the wave equation., It should

pe noted, for reference in the next section, that if for

the F equation of (2.8), we set

Fo- £
" L(xe e X 1ex3)) (2.9)

then the equation for fn is

" PN, A . LN N
t, ‘h[“[ S (”"2)2] 0 (2.10)

If riglid clsoldal piston motlion witn & velocity
é - \Ao€33'°t



is assumed at the plane /L = 0, the resulting velocity

potential in the infinite horn 1s given by

Cwert 5 L Webldz (i) EK) (210
p o™ 2, / W:@/de )

where z, = €08 8,, the cngle 6, Deing that determining

the horn surface,

The above mathematical results may now be translated
into the following qualitative predictions for the infinite
hyperbolic horn;

1. Tne pressure zsmplitude field is simple at
low frequencies and shows a fairly steady
decresase outward along the axis. At higher
frequencles thls steady decrease is ac-
companied by perilodic variations about the
smoothed out steady decrease,

2. At low frequencies the phase of the pressure
on the axls changes non-uniformly, but be-
comes more uniform as the frequency increascs,
4t all frequencles the phase changes most
slowly near the throat.

3. The variotion of amplitude with angle in-
creases with frequency, the wost marked vari-
ation approacining the throat as the frequency
increases,

4, The radiation resistance (as roughly couputed
by Freehafer and commnlcated »rivately to
the zuthor) should rise rapidly from zero as
the frequency is increased until a peak about
36 % above the ultimate value 1s reached at
-¢® = 1, Then the resistance should fall
agymptotically to the ultimate value,
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In this scetion the mathematical results of the exact
theory have Dbeen translated into terws of the quantities
to be measured, Although spplicable only to the infinite
norn, the finiteness of the experimental system should not

alter the tyoe of result, but only the degree,



III PLANZG WAVE ANALYSIS

The foregoing theory holds only for the infinite horn,
which 1is difficult to simulate experimentally, In order
to obtaln a solution applicable to the actual horn it will
be seen that the essential factor is the presence of the
reflected wave. If we try to investigate the finite horn
set in an Infinite baffle, fhen the horn surface, including
the naffle, is very different from that for the infinite
horn. As the boundary value problem for surfaces other than
those represented by setting one coordinate constant is
still awaiting rigorous solution, we sesk approxlnate
methods. For the horn problem the usual approxlmation is
to assume that plane waves in the horn represent =z type of
average behaviour which may be used to calculate the aver-
age performance, This analysis, first conceived by

(7)

Webster ,» may be further extended in such a manner as

to apply to any reasogably shaped horn. In what follows,
tnen, we snall derive the wave equation for plane waves in
a channel of changing secetion S , notlng the necessary
approximations, and obtain general results for the sound
pressure and admittence at any section S, taking due
account of the reflected wave, For coumparison with ore-
vious results for conlical and exponential horns, the so-

lutions for these particular cases will be oriefly indi-
cated. The application to the hyperbolic horn will then
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be discussed, and there will be gilven a general method of
solution which Will apply to any horn.

The wave equation will now be derived, using a
Lagranglan procedure in which our attention is focussed on

a glven mass of the medium, Following Fig. 2,

E(x4dx)
)
Syl * 1 -Slxds)
X,

i :

'

, ;
|

' i

1

|
|
i

Fig.?, ’ X+dx

i
!
i
1
'

we take this mass as the awmount of air which when acous-
tically undisturbcd is between the slab whose faces are
fixed by the axlal distances x and x+dx. & is the
displacement as a function of x and t. S denotes
the average crea of the slab faces and for infinitesimal
amplitudes is a function of x alone. By combining the
equations of continulty, state and motlon 1t 1s desired
to express the sound »ressure p as a functlon of
x, t and 3.

Continuity conditions are satisfied by demanding

that the mass of air remain unchanged, or that the product

/Z,f;dx
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remain constant. Then under disturbed conditions the

7 S(x4g) - Ldx + %‘gd"]

mags is

which when we assume that & 1s very small, becoues
/dx (S + 5&5)(“ gf)
~ pdr (S+5 1 555)
v ppdxS = pdx (St $£2) (3.1)

where the product §§ %é' has been neglected on the
assumption that not only & but also 05/0x is suall,
e note that S 1s also a function of & Decause in

the Lagrangian procedure it is the face of & particular
mass of alrj; bubt with infinitesimal &, S 1s substan-
tilally a function of x alone, 2s it rigorously would

be in an Zulerian treatment., Practicelly this means thet
the horn must not flare too rapidly, and that the inten-
sity of the sound must be such as to keep £ small at
least where  95/9x is large.

Returning to (3.1), we set

AU X -9 S V4
I T

n which we use S for 3, subject to the above re-
strictions. In the last member of this equation we note
the infinitesimal 67645 ; for use in the wave equation
this may be spproximated by /A , since 47 <P .
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Hence the equation of continuity is
_égz_%_éﬁ_) ]
fo IX (3.2)
To replace density by pressure, it has been generally
assumed and amply demonstrated that the adiabatic law is
followed at least for all intensities of sound below that
causing pain., Thus
4 VX = constant
or -]%? = J‘J%%[

for small changes in pressure and volume, which holds

(3.3)

under the conditions indicated above., S3Since the mass 1is
constant in our Lasrangilan trcatment, Voo 14p, (3.3) pe-
comnes

SP SV yv8p . _ L 2(SE) -
—r:;:*“fvo—r’f" S Ox (3.4)

Since §P 1s the sound pressure p, we set finally

&£

s
13=_—0’E—§f%§;§) (5.5)

In order to introduce tiue, the force equation is
applied to the faces of the slab. Taking forces to the
right as positive, and assumlng ps< Py, the equation of

motion 1is ( )
=, d(X+§
S‘[(R-rfwkab—fdx)”(%frfﬂ = ?}[ﬁso{" st J

wnhere X + & denotes the instantancous position of the
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slab., Simplifying,

RE 1) .
7{2— ﬁoﬁ (3.6)

The wave equation for p may now be obtained by

eliainating § from (5.5) and (3.6). Foru

2p - YR [ 2s8)]

EA
- %Pﬁ g—x(_%—tl (S};‘)]

1

1|

Since under the assumptions mentioned in connection with

alone,

[ul

the continuity equation S is o function of x
q

2 3*§
g:EZ :'—LSEQ-_%((SC“CZ

_ Lo& (s $2)

e, 0 o P
or T 5(S55%) -5 - 0w
Squation (3.7) is substentially that derived by
siebster, and appliled to specific horns by later workers.
The main assumptions (other than the olane wave picturc)
may be summarized by stating thst the cuplitudes of the
field quentities p and £ must be smell, and that S

must not change too quickly with x, or at lcast not

where § 1s large, as 8t the throat.



t
Vi ciso me variaction of e . ceomes
With cisoidsal ti joti £ 3 (3.7) b

bhisd)« om0 o

For checklng with experiment, p should be regarded
as an average value over each section. Since in a plane
wave (in which the velocity 1s aporoximately in phase with

z (8)

the pressure) the intensity variles with »p , the aver-

age oressure should best be represented by

1'5 = ‘\[_gspzds (3.9)

taken over each section 8, IHowever, at low frequencies

for which the actual wave fronts approach the plane wave
condition, the values on the axls are sufi'lcient.
Ileturning to & gensral solution for (3.8), a hint as
to the possible form for p 1is obtained from the physiecs
of the situation, Using the Intensity varlation with p

as above, then the product

must be constant in a progressive wave for which p 1is
uniform over S, in order to keep constant the power PA
transmitted, Thus the variation of p as a function of

x will be due, to a great extent, to & factor
1
15

20.
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Hence by setting £
L (5.10)

the function f will be given the task of representing the
varlations of p about the steady decrease of | //S.

The mathematical arguments for this form for p are
8till simpler. Equation (3.8) i1s of the self adjoint tyve,
for which the substitution of (3.10) yilelds an equation
for £ of the form

f" + Bf = 0, B = B(8,x), (3.11)
the first derivative being lacking. The advantage of
(3.11) is that meny of the numerical methods of integration
now used In atomic physics may be directly opplied, yilelding
results for most cases of interest.

However, before finding the forw of B(S,x), we pause
to change to non-dlimensional varlables, leaving physical
constants to fix the dimensions of the final solutions,
First, from the equation for the horn profile we seek a
unit of length so that x msy be expressed as a ratio, In
general this is possible, as seen from the relations below

for conical, exponential and hyperbolic horns.

= o ( X/X0)
ro &7 (3.12)

Lo Vi+ (x4.)

Conical horn

r
Lxponential horn r
v

]

Hyperbolie horn

Hence we set

]

X —f: (3.13)
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The section S = wr? becomes S = S ¥ , where:
Conical horn y = x% |
L '
Exponentisl horn ¥y =€ (3.14)
2
Hyperbolic horn y = |+
a= l'l'roz

If we finally define

=i, 5 k=¥ (3.15)

and express the wave equation (3.8) in terms of a, é and

¥, we get

_:Yd“glé:) + 3213=0 (3.16)

and substituting

. £
Py

the equation for f turns out to be

£ (B2 (S —(F)]F =0 (5.17)

wnere the primes refer to differentistlion by a«a,.

Before going on to a general solution for p, we give
briefly the form for f when the § for conical and ex-
ponential horns 1s inserted, in order to note the agreement
with the results of previous and different modes of

9,10
attack (s, ).



Conical horns
y=ot
fr L@l A = =0
A = A B _ AR x
= e’ = € (3.18)
- CooBx F 5,@4;30(

= CooRx  F 4 Amkx

where the upper sign 1is for the outgoing wave

sxponential horng

=
fre[@r-zlf = FIH(Rf=0
f = e?j"‘m"‘”' _ gﬂxdh@(o) (5.19)

- CoalPTX :FJAA;\ p2-1

coo kx IG5 g kX 1~z )’

last case the cut-off at £ = 1

1!

In this is

clearly aopparent,
Using the value of § for the hyverbolic horn, the
equation for f turns out to be

(o[ 8%+ () ~Talf
'+ [ et = 0

I

This is very ncarly the same &s the equation for

f, of
the set (2.10), for b, /c®

is close to unity when the
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angular opening of the horn is small, Thus at low frequen-
cies the plane weve plcture is essentielly the sane as that
. from exact theory.

Returning now to the generszl solution, we first assume
that f may be expressed as

f=-ge™d" (5.20)
or f=usyVv (3.21)

winere in general, g and h or u sand v are functions
of «a. We relete the first and second forms for f in

the simplest manner, naviely

u =g cos h

v=gsinh

Thus, the first form represents a sinusoidal varietion of
varying emplitude., This representation is adventageous
for most horns, for at large values of o most horns give
an equation for f of the type
£ + Bof = 0O,

whiere DBo 1s constant. Under these conditions, the first
form reprcsents f most directly. The second form has
its grestest utility in the numerical integration some-
times necessary to obtain f, for here both u and v
satisfy the equetion for f.

It is desired to obtaln & general expression for the

pressure and admittance, the latter being defined as
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yz_i

P
It will prove easier to obtailn the latter quantity first,
From equation (1.2)

—V
Y= 7o (39/5t) (3.22)

and wlth clsoidal time verilstlion and plane waves

Y = _(dv/dx)

JRAC Y
Setting ‘j = Yﬂc’ (3.23)
__ (dy/dx)
we get ‘j = IRy

By some simple juggling it is easlly shown that p and ¢

obey the same wave equations hence

y = - (dp/dx)

gk P
or in terns of non-dimenslonal varisbles

¢ X
- ! - — .
y= 4 ;RFx ) x=% (5.24)
where the primes refer to differentiation with respect to
c. Substitution from (3.16) and (3.21) gives

g - 4LERE - K
- 8

Wijyv 2y (3.25)
Retionalizing,

wv! —vu/ ' 't
‘ji = i"é‘( UZ g v2 )"é‘(’élbr" nWetv= (3.26)
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where the upper of the double signs 1s for the outgoing
wave, Note that the negative real part of y- corresponds
to energy returning to the source in the reflected wave,
Thus, the sigms for the totel pressure and velocity are con-

tained in y, so theat

D =p, + Db

. (3.27)
¢

1]

€, +€_ = y.py + yopo

In order to obtain y, some sort of reletion must be
assumed between P, and p_. In general, these quantities
mey differ only in amplitude and phase; and since we are
interested in the variation of » and y with distance,
it is advantageous to state this relstion in 2 form for
which the distance factor i1s confined to one term, This

1s done by setting )
"-Fh i(Wo—tjw"
pr=gel.e
— 3.28)
pr _ 2% 1)2(@—h) (3.28)
where the yg end @e¢ are the erbitrary amplitude and
phase constants, usually to be determined by conditions at
the mouth of the horn,

Fah

Using the form f = Q€ » and oroceding as before,

Ui’i%‘“ﬁ(?};”%") (3.29)

Then y in terms of the total pressure end veloclty gives



an expresslon reducing to

Yy = ‘g\l W[% +4 (‘po'\")] a % (2_%" - %,)

oo Y= b BBk e (085 (3.50)

2y ut vz

- z ¥ uw'+v-v’

Likewise, the total prcssure turns out to be

,P = ’P+ + ’P..

3]
~
>\
2
—
=
-+
(W
~~
=
1
£
&

P = \ﬁ‘” oo Yo—ani@. - ta ) |
0 = “tamd [W % TO""(CPO‘B:'TV:)J

These results may e directly spplied to any reason-
ebly shaped horn when the functlon f has been evaluated,
numerically or otherwise, For checking with the previous
conlcal and <xponentiel horn results(g), the form

by

"

33Mh is best; but for calculation, the form

by w )V 1s necessary, as both u and v satisfy the

A



equation for f, The method of calculating £ 1s de-
scribed in Appendix A, and the results for four values of
the frequency parameter [ are listed as ipnendix B,

The constants ¢ and @ may be obtalned in two
ways: by mouth impedance, and Dy the prcessure along the
axls. In the first case, if the mouth is provided with
an infinite baffle, the admlttance y 1is converted to its
reciprocal (the iupedance 2z = Z/V%c) end commared at
the mouth with that obtained by assuming the vibrating =t
the mouth replaced by an ideal piston, the impedance of
which 1s given by Plate 1, The constants ¢ and ¢
may then be evaluated enalytically, but graphical means

using a chart plotting the conversion
r+4x =tonh(y+4¢)

is preferable, If the mouth has no baffle, the mouth
inpedance may be anproxlmated by methods described by

(11) or McLachlan(lz).

Crandall
When the pressure along the axis is known, the con-
stants mey be determined from the equation for 2 in
(3.31), by requiring that the theoretical curve fit the
experimentzl one in amplitude (for y, ) and position
along the axis (for @, ).
To swuserize the results of this section, we have

used Jebster's asswiption of nlane waves for the starting

point of an ansalysis applicable to any horn whose section
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does not change too violently with position, The general-
ized results agree with those for the conical and exponen-
tial horns as obtained by previous procedures., As a
direct application, some f functions have been computed
for the hyperbolic horn, and are listed in an Appendix,
together with the general method of solution,



IV EXPuRIusHIAL TECHWINUE

The general experimental work may be divided into two
parts, the first dealing witn the amplitude and phase of
the sound field, and the second witn the impedance at the
throat. In each there was used a horn of 8, = 15°, or
of 30° total angular opening.

For the field measurements, 1t was desired to have
the throat large enough to enable a Hall type wminimic to
be inserted in to at lecast 10 cm from the piston witnout
distorting the sound field too much, It was found that if
tihe interfocal distance (Freehafer's &) of 30 cm were used,
then the ratio of microphone arca to throat area would bve
less than 1/10. Also, at the nighest frequency at waicn
stable measurcments were possible (2000 hz), the micro-
phone was less than A/10 in overall dimensions, so that
1little reflection was expected, #ith these constants

B and &, the resulting hyperbola is

(&) - (w) - !

For ¢'> 50 cm, it was found that a cone of half angle

14° 50' would fit closely enough from there on, so the
moutn section was made in this shape from #18 guage gal-
vanized iron, For the throat part a wooden pattern, ac-
curately turned to the desired profile, was obtained and
used as the core in a cement casting together with a join-

ing collar. On removal of the core the surface was finlshed
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with paraffin to the dimenslons and smootinness desired; and

by the jolning collar the mouth and throat pieces were fastened
together to form a horn of 7.76 cwm throat diameter, 96.8 cm
mouth diameter, and 180 cm long.

For a driving unit tnere was used & mechanism invented
by Prof. Fay at M.I.T., as shown in plate 2, Briefly, it
is a transformer whose secondary, a flat rectangular copper
frame, 1s made to move in its own vlane by the interaction
of the current induced In 1t by the primary, and a steady
magnetic field, 2hosphor bronze wires serve to constrain
the motlon along one direction, and may be used to tune the
unit to resonance by adjusting the tension, A4As a piston
there was used three layers of 4mm balsa wood, cemented to-
gether with the graln crossed., Chladni figure tests showed
that rigld piston motion obtained for frequencies well above
the highest used in the experiment., No impedance measure-
ments were made on the unit, for due to the iron and air
losses involved, and the permanently closed circult of the
copper freome, nobt all the parameters could be obtained,

The horn and driver were sultably mounted together, and
the horn placed with its mouth firing through the one bare
wall of the otherwise well-damped booth in the Llectrical
Enginsering Dept. Sound Lab, See Plate 5, The Hall type
minimlic was mounted on a platforu whose position could be
set from the outside to about L 0,8 em from its original

positlion,after naving been displaced in two dimensions.
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Practically, thils wmeans that if the pressure shows fairly
sharp peaks, occurring every'lk/b, then notilceable diffi-
culty in setting and checking will come around 2500 hz,
where this uncertalinty as to setting will distort the
pressure curve, because%%&(.em at thils frequency, iiost
of the difficulty was in the lack of smooth motion, causing
the microphone lead pipe to swing to a new stable position,

Plate 4 indicates the circuit used for determining the
relative amplitudes and phases by means of comparing the
output of the miecrophone with a portion of the input to
the driving unit. It was assuued that the ohase relations
in the amplifiers were not functions of amplitude over the
range used, This was checked by varying the input to the
driver, and changing the attenuator V ("nay") to restore
balance as indicated by the phones, With the two to three
fligure accuracy obtalnable at most balance settlngs, thils
effect was negligible.

Data was obtained in the form of contours of equal
amplitude and phase, which are presented and discussed in
the next section. Runs on the axis were also taken to
provide data as free as possible from shifts in the field
structure due to slight temperature or frequency changes.

For all the field measurements the nlane 10 cm from
the piston was chosen as the fiducial point, the amplitude
100 and the phase zero belng arbltrarily assigned there,
Field pnlots in rather large detall were obtalned for the

32.
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first 150 em of the 180 em horn, while runs on the axis
were extended to 170 cm from the piston, the limit of the
mlcerophone travel, The frequency parameter of the exact
theory, -c®, was used with values of .2 5, .5, 1, 2, 8 and
30 corresponding roughly to frequencies of 180, 250, 360,
510, 1000 and 2000 hz respectively. Since in -c® it 1s
k& which must be constant, the frequency had to be adjusted
with temperaturé, as the value of the wave velocity varies
with temperature, Results were nicely reproduclble as to
all essential features except for the highest velue of -c®,
at 2000 hz., Here the run had to be gone through rapidly
after the salient features had been picked out, as the field
was unstable and the settings critical,

Impedance tests were made on another 15° horn of the
same conical mouth, but provided with a throat piece going
to 3/4" diameter at the driver fitting., The equation of

the hyperbola was

(g‘%)a - (3.26)2— = |

and 1t was found that the total length came out to be 182 cm,

usling the same mouth diameter as before,

The driving unit was the Western Electric Type 555
telephone receiver; and by using a modification (suggested
by Fay) of the Fay=-ilall impedance circle method(ls), input
lmpedance measurements on the receiver were used to obtain

the air load on the receiver, and hence the throat impedance,
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By thils measurements down to 120 hz were possible, although
difficult; a substitution bridge as shown in Plate 5 was
set uv, and vhones, copper oxlde meter and tuned vibration
galvanometer used as null indicators. Incidentally the use
of the meter indicator turned out to be the best technique
all around, for whenever the balance was broad, a setting
at the average of settings a given amount off balance was
always possible,

For the lowest frequencies, this meter method was the
only one avallable, and was applied up to 400 hz, However,
above 300 hz the acoustic line described by Fay and Hell
at the Noveuwber 1938 Acoustical Soclety meeting was more
convenient and accurate, and so was appllied up to 4000 hz.
Above this the readings became too irregular to interpret
safely, but the interesting portion of thc impedance was

well within this range.
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V  RESULTS AND DISCUSSION

The experimental results fall into two groups: the
data from pressure mcasurements, and that from impedance
measurements., For both cases graphical presentation 1is
used; and whenever possible calculations from theory is
also shown on the graph. In general, the results are rela-
tive, not absolute, and non-dimensional variasbles are used

throughout.

Field iieasurements
In Plaetes 6, 7 and 8 are shown the contours of con-
stant phase and pressure obtained by the circuilt of Plate 4,
Frequency is stated in terms of the parameter

2 2
2_ 'H:ﬁaz =~ V
—C ( C; (360)

the latter value belng for the horn investigated., ZRach
plate deplcts the field at two frequencles, as the symmetry
was sufficient to justify glving but half, The lower fre-
quency is at the right. At the fiducial point 10 cm from
the piston the amplitude 100 and phase zero were arbitrarily
assigned, sll other values being relative to these,

Turning now to the low frequency fields mapped on
Plate 6, we recall the predictions of the exact theory
(page 13). First, the amplitude and phase contours are
nearly coincidentel for -c¢® = .25, for wnich V == 180 hz,

Along the axls the pressure decrsases steadily with but
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small variations about the smoothed out decrease, The phase
advances uniforuly, snd the contours in the mouth portion
are practically those for & spherical wave, There is only
slight variation with engle from the axis,

For =-c® = 5 (v ~ 250 hz) sligntly more complexity is
evident, mostly in the amplitude field which now shows
definite variation with engle and the beginning of isolated
regions of pressure extremes., The change of phase is
markedly irregular at the center of the olot, This is not
predicted by the infinite horn theory, but may safely be
attributed to the vpresence of the reflscted wave, due to
the finite length of the horn., The approximate plane wave
analysis has been epplied to calculate this verilstion, the
results of which will be discussed in connexion with
Plates 9 and 10.

The middle frequency conditions of Plate 7 show the
increased dependence on angle in the ecz = 2 (V> 500 hz)
plot, Since the partlcle velocity lies along the pressure
gradient, the preseﬁce of trensverse vibrations is apparent
at the regions of maxima and minime at the horn surface,.
Here the picture is definitely changed by the presence of
reflections, for in the third pressure "igland" from the
throat, the aumplitude shows a definite increase with angle,
wihich should not take place so markedly otherwise, The
lack of Informetion as to the value of the cerivative of

tne radial functions (Fn) at the throat precludes an



exact evaluation, but since the room is certainly re-
flecting aporeciably from the walls at this frequency, the
‘incoming wave 1s not inconsiderable.

The other field on Plate 7, for -c® = 1 (V~ 360) shows
substantially the same behaviour 2s the low frequency onlots
of Plate 8, and so needs no further discussion, Iowever,
the irregularity in spacing of the phase contours is now
grecatest neer the throat, showing the influence of the
rapid change of section there; the relatively smooth change
farther along the axis 1s not a safe hint 2s to the magni-
tude of the reflected wave., Although the effect on the
pnase may be small, the effect on the amplitude may be quite
large, as the other »nlots indicate.

At the highest frequencies chosen, corresponding to
-c® = 8 (y21000 hz) and -c® = 30 (V= 2000 hz), the fields
as given by Plate 8 show how the amplitude contours may be-
come very comvnlicated, wnlle the equal-phase contours re-
maln simple and uniformly spaced. ‘The amplitude islands
along the axis come at approximately thne nositions pre-
dicted by the exact tneory, as verilfied by a rough calecu-
lation using but one term of the expansion for the veloclty
potention (Zg. 2.11). However, the values do not fluctuate
(about the smoothed decresse clong the sxls) as wmuch as the
infinite horn theory »redicts, indicating that the termina-
ting conditions are still not able to simulate the infinite

horn.
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Next, in order to find how well the approximate plane
wave theory corresponded to the measurements, the ampli-
tude and phase of the prcssure on the axis was measured,
the plots for which are Plates 9 to 14 inclusive. 4is
before, 10 cm from the throat has been taken as the fi-
duclal point; but the amplitude has been multiplied by the

factor V1 + a® which represents the swoothed out decrecse,
In symbols, |
PpVT = phte™ = f

wiiere [ represents the oselllatory part of p.

The value at the fiduecizl point of a hundred arbitrery
units, and at the first maximun, were fittcd to the theo-
retical value ‘ .

N —-|_V"
= V(utv2) Lok ¢y~ i (@o=Ton™E
-t v—s
(ot [ Tanh ¢ B (o tan™ )]

in order to determine the constants , and @ . Then

these same constants were used in the calculation of the
phase, affording a fairly independent check, Because of
the irregularities in the modifled auplitude plot, fits
were attempted only for values of the frequency parameter
g2 = k{;)efx (ggb_)a of .255 end ,466, or frequencles of
ebout 180 and 250 hz.

Plates 9 and 10 present the results of both experi-

ment and the above plane wave calculation for the values
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of fa mentioned. Although the fit is only avoroximate, 1t
agrees with the field plots of Plate 6 1n showing the
assumptlon of plane waves to be a good one for these fre-
quencies, The irregularities in the purely experimental
amplitude plots for the higher frequencies of Plates 11,
12, 13 and 14 show that although the vhase surfaces of the
field plots suggest olane wave fronts, the variation of
amplitude over the wave front is considerable; as again
checked by referring to the field nlofts. liore regularity
would be cxpected 1f the velues to be checked had been ex-
verimentally averaged over eech cross sectlion, as suggcested
by equation (3.9).

Tne last four plates mentioned elso show the increasing
regulerity in the change of phase, for which the best curve
becomes & streizht line at large {°. Thus the phase
veloclity, which is vroportional to the reciprocal of the
slope, shows less variction es the frequency incresasses,
and approaches the wave veloclty cventually,

For Plate 14, the points on the smplitude plot have
not been connected, for the experimental points were not
taken close enough together to resolve the ranid oscilletions.
However, it is noted that the amplitude of varilation is
grectest here, showlng thet the conditions of the exact
theory are being sopproachcd,

To sum up, the pressure neasureuments show general

agreement with the exact and plane wave znalyses, when the
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finiteness of the horn and termination 1s given due con-
slderation., The nlane wave picture is particularly appli-
cable at low frequencies, providing some means of evalu-

ating the two arbitrary constants ¢, and @ 1s possible,

Impedance Leasurements,

The two experimentsl technlques mentioned earlier gave
overlapping results which agreed nicely in spite of their
sensitivity to inequslities in temverature, etc, The
measured resistance and recactance components sre presented
in the non-dinmensional foru Z/Sofgc. Plate 15 uses the
frequency parameter { as the abscissa, while Plate 16
compares the smoothed results with those for the idealized
conical horn by impedance loci.

To consider first the behaviour with frequency, we
first note that the abscissa for Plate 15 is [~ V/1540,
for the horn described in Section IV. This high value of
vV, @allows measurements to be easily made in the range
most interesting in the theory, for the experimental tech-
nique is difficult at extreme frequencies,

The curves have been smoothed, for the resonances
due to the finiteness of the horn occur less then 100 hz
apart, and as the noints attained are not close enough,
connecting thew would give a false victure, IHowever, the
general predictions of the exact theory ere verified in the

upper curve for the resistance, which exhibits the rise to
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a maxlmun above the ultimete value, and the asymptotic drop
down to it as £ 1increases further. The shepe differs from
thet of the theoretical curve (rough calculation comaunicated
privately by Freehafer) in that the experimental pesk is
sbout 40% higher, and occurs at a frequency parameter
also approximetely 40% higher., At the lowest freaquencies
the exact theory predicts a large slope wirich becomes in-
finite at the origin while from exveriment the resistance
tails into the orilgin with practically zero slope, 41l
these discrepancies are no doubt due to the finiteness of
the horn, which again introduces the cownlicating reflected
wave, especieally at low frequencles, However, the general
shepe 1s that predicted.

The reactance curve required more arbitrary smoothing
then the resistance, as evinced by the scattering of the
experimental points. Although no data from the exact theory
was avallable, the valucs from a rough plane wave analysis
should sihow no large peaks, which is borne out by the curve.
lioreover, the dip 1n the reactance at the resistance maxi-
mun definitely agrees with me asurements on other horns, and
with the curves irowm plane wave theory(lé).

For another check, the values of the ilumpedance at the
throat were calculated from the plane wave theory. The
constants Yo and ¢, were found by assuming the mouth
replaced by & piston of equal area, and the value of the

radistion impedance at the mouth read off from Plate 1 and
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the constants evaluated. The table below shows the com-
parison of the calculations(at the four values of ﬁa

chosen) with the unsmoothed experimental values,.

Comparison of Plane Wave Analysis and ixperiment
Throat Iupedance Z/S.fC = It)x
£ .25 i) 1l 2
r b4 r pid r X r X
Theory 40 LT3 78 .89 1.19 71 l.26 .29
Exp. .52 .63 75 .65 1.54 .82 1.96 .07

The agreement is only approximeste, but is best at the
lower frequéncies, where the surfeces of equal amplitude
and phase aporoach those of the plane type, as mentioned
in the discussion of the fileld nlots, Still, a fair estimate
oft the ?erformance may be bbtained.by the plane wave theory;
and since it is usually the low frequency performence which
is of greatest interest, thne analysis happily turns out to
be of grestest aid where 1t best represents actual conditions,
For comparison witin the conical horn, Plate 16 shows
smooéhed impedance loci for the two shapes, For the conical
horn of the same overall dimensions, the locus from smoothed
plane wave theory(lé) is a semicircle centered at (%, 0).
Frequency 1s denoted by the marks on the loci, and by means
of this,comparison is readily made., First, ot the lowest

frequencies the hyperbolic horn has practically twlce the
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impedance, at the same power factor or lag angle as the
conlcal horn. Thus if the driving system is of the usual
mass controlled moving coil type, the effective electrical
reactancelwill depend but little on the acoustical reactance,
so the larger radiation resistance of the hyperbolic horn
wlll tend to increase the overall efficilency. However, since
at very low frequencies the driver is hardly mass controlled,
and the mouth lmpedence has conslderable reactance, the gain
will certainly be less then the two to one imvcdance ratio.
Next, at higher frequencies, the resistance peak in
the hyperbolic horn may e sharp enough to be quite notlceable
by the ear, although again the mouth conditions may be so
adjusted that when its impedance 1s "reflected" to the throat,
the effect at the plston is reduced. Any exact calculetion
to obtain the practical effect will be complicated by the
varlation of driver varameters witih frequency, but the quali-
tative results cannot be fer off from those suggested sbove.
On Plate 16, the exponential horn of the same overall
dimensions yields a smoothed locus consisting of the X/S A c
axis from the origin to unity, and then a quarter circle
(centered at the origin) ending at the ultimate point (1,0).
For the dimensions given, the point corresponding to
(V/%) = (,1) occurs near the point (V/v.) = .6 on the hyper-
bolic horn locus, Thus the exponential horn is already near
its ultimate impedance, and hence should radiate low fre-

quencles much more efficiently than either of the other types.
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From this we may conclude that the order of increasing
efficiency with an electromegnetic driver should be conical,
hyperbolic and exponential horns. It should also be noted
that this 1s the reverse order of ease of constructior,

and perhaps of initial cost.
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VI SUMMARY

As far es agreement with theory goes, the results in-
dicate that the experimental requirements for simulating
an infinite horn demaend the complete elimination of the
reflected wave arising both from the abruptness of the
mouth termination, and from incomolete absorption in the
terminating space. Unless thls requirement is met, exact
quantitative agreement 1is hot nossible, but nevertheless
the general features of the field may be correctly pre-
dicted. Qualitatively the plane wave znalysis has been
shown to yleld results of sufficilent accuracy to peruit
a knowledge of the gross behaviour. Using the throat
impedance as & measure of the performence, the experimental
results agree with exact and plane wave theory in demon-
strating that the hyperbolic horn is slightly better than
the conlcal, but that the exponentisl type still remains
the best to construct from a given practical set of over-

21l dimensions.
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APPENDIX A,
llodifled Hartree liethod,

In many cases the wave equation is found to have
the essentlal behaviour of the dependent varisble stated
in an equation of the form

£ + Bf =

where B 1is a specified functlion of the independent veri-
able a. In meny cases the solution 1s known for extreme
values of a3 and the purpose of the Hartree method is to
allow the numerical eveluation of f at other points,

#le shall not go into the details of the method in
its most precise application, as that is completely set
forth in reference 15, but shall wmerely derive a simple re-~
cursion formula which needs two known values of f +to
start. Suppose thzt the functions f and f" have been
arranged at equal increments (& a) of the independent
varieble, Then by successive differencing of the functions,
the kB aifference at the position (in the table) n uay
be obtained as Skfn. Hartree's fundamental forwmuls may

be written as
53, = 60 [ fa + - OF -2-%,7, LN

In general, Skf will need (k + 1) values of £ in
order to be evaluated; hence if two stertling points are
to be used, the Sq{: term on the right must be omitted.
It will be found that to any desired accuracy this is



possible if ( da) 1is small enough, which may be tested

directly by observing the effect of doubling ( da), ete.

Usuelly, if dB/do 1is not large anywaere, then a single
value of ( da) will suffice over the whole range.

With this provision we set

= (o0 (£ 475 8%
Using Sfmg_ = {hfl B .Fh-l,

‘Fnﬂ“th*fn«w = Go‘)a[{h“ + llé({h:! —2{:4: * F‘I"' )]

Substituting f£" = -Bf, and solving for f,.q we get

ﬂ\{a (§)? Bn] _F -.[ | — (5‘0() Bv\ J
{nﬂ = [,‘ _ (JRX)B,,HJ
12

If we now set N = (’3%;)1_ there results

£ 2N ~108.1 . [N+ Br_._._]_
n+\ [_H""B“+‘]

This has been used in the following tabuler foru

sulteble for calculation,

I 2N - 10P N+B f
B ey
Q)Mul'h'ply
n —= - g;vfde

. — \'\NY —
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By using a calculating machine, and performing the opera-
tions in the order indicated f may be read directly off

the quotient dial,

For obtaining derivetives there may ve used

’__f;+'"“F““L_ ESL “. -
fh_ > () ~+ 'Z(Bmﬁh B... 1.

which 1s adapted from equation (8) in Hartrce's paper,
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APPENDIX B.
Table of values of ¢

The following table lists solutions of the f
equation for the hyperbolic horn

'+ 8- el f = 0

in the form

f“—"u-jv,

as obtained by the Hartree method described in Appendix A.
The known values of f were obtalined by

- x
fre®
at values of a large enough so that

61_(‘_'“2,)2-

was less than 1 9, at the position of matching, The ( da)
was =-,05 for all but thne last values for ﬁ3= .25. The
values of u and v so obtained were used in the calcu-
latlion of the pressure on the axis, and of the throat
impedance.

The tables stop at such a value of a that the ap-
proximetion T< N LialN veyond that.
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Values of u and v for hyperbolic horn equation.

1,373 .44 1,208 . 260 1.244 + 260 1.130 . 232

1,254 292 1,170 348 1,117 400 1,008 456
1.128 .548 1,061 437 .986 037 . 844 .660

1.045 411 .962 .530 . 844 670 . 637 . 830
973 .478 . 866 623 .688 789 .594 .952
. 907 .548 765 714 023 . 889 .125 1,013

841 .618 657 797 $ 43 «9605 -.152 1,003
L2 .686 -~ .940 .870 .181 1,004 -.418 . 920

.698 750 415 .929 -.046 1.010 -.652 .768
.620 .809 283 975 -. 241 979 -.837 . 558
537 .861 .146 1,000 -.427 .912 -.957 Re10}5)

449 . 907 .006 1,008 -.59%7 .809 -1,002 . 028
. 357 944 -.134 .998 -.744 .675 -.969 -,2562
. 262 973 -.271 .968 -.861 .514 -.860 =-,511
.165 . 993 -.403 .919 ~-.945 . 334 -.68% -.700
.066 1,005 -.528 . 853 -.992 140 -.452 -,892

-.034 1.004 -.642 770 -.999 . 069
-, 133 . 996 -.743 .672 -.967 -,256
~-.251 .976 -.829 .561 -.897 ~-,443
-.027 .948 ~-.900 438 -.791 -,612
-.419 .911 -.952 . 307 -.654 =, 75%

-.507 864 -.986 170
-.5901 .809 =1,000 . 030
-.668 746 -.994 -,111

-.858 .515
-.905 427
-.943 335

71 « 2359
-.990 141
-.999 L0042
-.998 -,088
-.988 =-,1568
-.967 -.256
-.936 =-,351
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