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ABSTRACT

Of the eleven coordinate systems allowing separable

solutions of the wave equation, only the spherical and

oblate spheroidal frames have been treated with the

definite purpose of using the proper coordinate surface

as the boundary of an infinite horn. The last mentioned

system produces a horn formed by half a hyperboloid (of

revolution) of one sheet, and was investigated by

Freehafer.(1) In view of the possibility of checking

some of the interesting predictions of the exact theory

a hyperbolic horn has been constructed and measurements

made of the pressure field and throat impedance. Since

the experimental horn did not simulate the infinite one

for all frequencies only qualitative agreement with the

exact theory was obtained.

In order to take account of the reflected wave,

Webster's plane wave assumption has been used as the

starting point in the development of a plane wave analysis

of general applicability. The results of this analysis

are in satisfactory agreement with both exact theory and

experimental results for the hyperbolic horn, and indicate

that especially for low frequencies the approximate theory

will predict with sufficient engineering accuracy the

average performance of any reasonably shaped horn.
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TL~ SOUIND FI.LD AN0i) iAJIATIOIO I "PJhDANCOI

OF A iHYP?:LBOLIC HORN

I IiT• ODUCTION

Among the host of products of rmodern acoustical re

search, sound reproducing systems occupy the most promi-

nent place, and to the casual observer the horn from

which the radiation proceeds is also visually the most

prominent. However, this device has a more important

function than that of impressing the listener; and to

understand the reasons for using horns a discussion of

the details of sound radiation will be not amiss before

considering the specific problem indicated by the title

of this work. In this introduction, then, we shall brit

ly consider the wave equation and bring in the concept

of acoustical imiedance in connection with the radiatioi

from the ideal rigid piston, and then indicate how the

need for a horn follows.

If the first order theory is considered, the prop-

agation of acoustic waves of infinitesimal amplitude in

a simple fluid medium is represented by

2z 1% (d(1
V 'P d t- C2-Pt 2
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where I is the velocity potential,

5 is the ratio of specific heat at constant pressure

to that at constant volum.e,

Po is the steady "barometric" pressure,

fb is the steady density of the fluid

and c2 = XPo/fo is the wave velocity.

From P there may be obtained the particle velocity €

and excess pressure p by(2)

e =-V , IW (1.2)

These quantities are the departure from the undisturbed

and statistically steady conditions; in order for the wave

equations to be valid, the amplitude of these quantities

must at least be below the auditory threshold of pain, and

the waves must traverse not too confined a space.

The radiation of sound is ordinarily accomplished by

the coMuunication of the motion of a vibrating surface to

the transmitting medium, which awe shall take as the atraos-

phere. According to the method by which the surface is

coupled to the air, radiators may be classified as direct

or indirect, the latter being formed by a direct radiator

plus a horn. Of the former the simplest and most completely
(3)

worked out practical case is that of a rigid circular

plane piston set in a closely fitting hole in an infinite,

rigid plane, and oscillating with infinitesimal cisoidal

__.__ _ __r_le~ L--



motion normal to the plane. ihen the driving force is

specified, it is found that with the transmitting mediuun

removed, the relation between force and velocity resulting

may be expressed in the form

F
Stj

Where Zp is the mechanical impedance of the piston

R is the mechanical resistance of the oiston

Xp is the mechanical reactance of the piston.

This relation arises directly from the differential equation

for the velocity when the time variation is contained in

ej . The unit of Z. is the dyne sec/cm.

Now, when the air is allowed to react back on the

piston, the impedance is increased by an amount ZA, as

calculated in the reference cited (3). This is merely the

ratio of the sound pressure integrated over the surface S

of the piston, to the velocity , and may be expressed

in the form

where the r and x are non-dimensional functions of

.ka 2xrraV
A c

where a is the piston radius, • the wavelength and %

the frequency. Thus the essential behaviour of ZA  is

represented by r and x; the quantity ~/SoC gives the

dimensions of mechanical impedance to ZA* The product foC

1~1____ _I__ : r
rc=iii~
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is a property of the medium and type of waves ( 4 ) , and is

known as the characteristic impedance of the medium.

The behaviour of ZA for this piston case is shown1

in Plate 1, in which r and x are plotted together

with the frequency parameter ka determining each point.

The important fact to note is that for ka large, or

when the product Va is large, the impedance approaches

the value kSoctj 0 , known as the ultimate impedance.

The implications of this behaviour are seen most clearly

in considering the amount of sound radiated. From mechanics,

the average power is given by the product

FA
averaged over many periods. Here the complex method fails,

so we must use the real parts of the quantitius in such

an evaluation. 'Jith this proviso, and remembering that

FA = RA
is the real part of the reaction of the air on the piston,

then

PA - A (1.5)

where PA is the acoustic poiwer radiated. Thus PA will

not be the same for all frequenciLs unless the product

ý'RA is; and since it is desirable in lmost cases to ob-

tain this independence of frequency we must examine PA

carefully from the point of view of practical application.

Ui _
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5.

As the practical representative of the rigid piston,

the direct radiating, cone type, moving coil loudspeaker

is the most common approximation. From the following con-

siderations we proceed to show that it is essentially a

low efficiency device. First, most cones cannot be made

rigid enough to vibrate as a whole above, say, 800 hz,

and greater rigidity is obtained only at the cost of more

moving mass, thus limiting the high frequency response.

At low frequencies corresponding to ka < i, HR, decreases

as the frequency is lowered, and thus the sound power would

likewise decrease were it not for the fact that the me-

chanical resonance of the speaker is placed at the low end

of the audio range. Thus the cone velocity will increase

(modified by the electrical system), helping to keep the

power fairly constant. However, since the moving mass

must be large to place the resonant frequency low, most

of the mechanical impedance is due to the mass reactance,

the radiation resistance RW contributing but little.

Hence most of the electrical input to the moving coil is

in the wattless component moving the cone; or, the system

is relatively inefficient in that the load is highly re-

active. In fact, the electroacoustic transfer efficiency

is usually below 5 7o over the useful range of frequencies.

To increase this efficiency the solution would be to

minimize the moving mass of the piston to such an extent

L~I __~et~



that the radiation resistance is a large part of the me-

chanical impedance; or, the acoustic system must obtain

its ultimate iimpedance sooner in frequency. As this latter

is only possible for a large piston, and the former only

only possible for a small one, the situation demands a

means of increasing the apparent size of the piston by

loading it in such a fashion that it looks into a system

reaching its ultimate impedance quickly, and "reflecting"

that iimpedance, substantially unchanged., back to the actual

piston.

It is now fairly easy to visualize the apparatus needed:

a horn must be fitted to the piston; and its cross section

mlust increase in such a manner that the-"equivalent piston"

of the mouth reaches the ultimate impedance quickly, and

that this impedance is reflected to the piston. Thus the

overall efficiency will be greater, and the output should

show less prominent peaks than the simple piston.

The results of this discussion may now be su•m•Larized.

by the statement that the impedance concept is able to

suggest the correct design conditions, as well as to in-

terpret the results. In view of the possibility of making

a correlated study of a particular horn, we choose the

hyperbolic type because of the availability of an exact

theory. In the following sections we propose to outline

the exact theory duo to L'reehafer ( 1 ) , to develo an

C__: _C__ _L_:· 11I-- ----- 1



7,

approximate theory suitable for calculation and to apply

this to the hyperbolic horn, and finally by experiment to

obtain results which may be interpreted from both exact

and approximate theory. It will be shown that the agreement

is satisfactory among the three points of view, and that

the approximate theory may be used for calculations of suf-

ficient accuracy to indicate comoarative performance.

__ ~
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II EXACT THIORY OF TIIE HYPEBOLIC HORN

We now consider the results of the theory of the in-

finite hyperbolic horn; in general, the predictions will

be qualitative because the radial functions were not avail-

able at the time of this writing. Although the assumption

of an infinite horn presents rather difficult experimental

conditions, the predictions still should be of general

correctness when compared to experiment.

The wave equation for the velocity potential with

cisoidal timie variation may be vwritten as

v + 9/fJ2 q/,6 (2.1)

(By cisoidal time variation we mean that time is contained

in the factor e t ) . The number of possible solutions of

interest to the general horn problem is strictly limited,

as the equation is separable in but eleven coordinate sys-

tems (s ) and still'fewer have horn shaped coordinate sur-

faces. Although Rayleigh has laid the groundwork for the

exact treatment of the conical horn ( 6 ) , to the authorts

knowledge no complete treatment is yet available, although

the functions are rather well known. Hence Freehaferts

work is unique in being the first evaluation of a sound

field in other than the common geometrical solids.

Turning now to F'reehafer's results, we first note

the coordinate systeci, formied by rotating, about the

~-----



axis of Fig. I, farmilies of confocal hyperbolas and ellipses.

The figure shows a saoimple hyperbola,

r

Fig. i
and its appearance as the profile of a hyperbolic horn,

having zero slope at the throat, and approaching asymptotes

formaing the generators of a cone with vertex at the origin.

The unrotated spheroidal coordinates (,, 9) are related

to the cartesian (), ¢) by

(2.2)

Where R is the interfocal distance commion to the hyper-

bolas and ellipses. By eliminating A the equation for

the hyperbolas is

(4)r I (2,3)
or (a

~~__j __
rePi;i

g

c



10.

By rotating the hyperbola specified by a given 9 (E

being fixed for the system- ) through i = 21, the hyper-

bolic horn is formed.

Expressing P as below, and putting in the wave

equation (2.1),

= (2.4)

) turns out to be given by

Since I must return to the sam•e value after 99 goes

through 2i1, a must be an integer. The equation for the

angular and radial functions are simplified if the follow-

ing substitutions are made.

,& (2.5)

Then (I -zi) W"-2(at-)tM W (b-c )\4 =o
TW(2 .6)

(Ite)F'"tZ(a4,) F'- (b-c'x)F 0F
where iv2 A

and b is any of the characteristic values, to be deter-

mined by the boundary conditions.

The solution of the equation for the angular functions

H was effected by noting that for - c2 =, . = , (Z),

the associated legendre functions. The b's and I's may then

be expanded in powers of (-c 2 ) about -c 4 = O, yielding

nicely convergent series. It is found that the first few

L_~I__ ~;----- .--- -·-- - --



11.

W's show greatest dependency on frequency (in the -c a

factor), and that the b's are nearly linear functions of

-c0 . Freehafer's data is given in graph foria for bounding

hyperboloids specified by 9 = 150 and 300; it is interesting

to note that the W's for -c9 = 0 are those for the coni-

cal horn of the saiiLe G.

The radial functions presented more difficulty, for

the equation for F has singular points at t j and in-

finity; no contour was found which would give an integral

representation. Recourse was had to the WKB method, which

was found feasible for -c not too near a value for which

any b became zero. Since most of the low frequency energy

is carried by the first terza in the series expansion for IF
and the first characteristic value is zero for -ca = 0,

the method is of doubtful application in this important

case, where the low frequency behaviour is desired. Differ-

ential analyzer methods have been used for these F's, and

when all the data is worked up, will present a practically

complete picture.

The W•B method yields results as follows, with the

above restriction on -ca: there are two representations

for Fn, one on each side of the point xA = (bn/c2)'.

Region I will include the space from x = 0 to x = jx4

when X'< 0

00"Mi --- ~ =-



12.

and iegion II the remainder. Then

S Itx.'+ "
Ii F'NVtt( C ix'ft'

___ A_(2.7)

Note that in I the phase is constant at 1T/4 lead-

ing to an infinite phase velocity. This imeans that under

such conditions the reaction of that particular elementary

wave back on the -piston is mainly that of the mass of air

which moves as a unit. J'lso, when x .>x: the air behaves

as a dispersive medium with phase velocity

W= I x tX-  (2.)

where cs is the velocity from the wave equation. It should

be noted, for reference in the next section, that if for

the F equation of (2.6), we set

-fV

then the equation for fn is

" Lcx'- (Itx?)Z jO (2.10)

If rigid cisoidal piston motion with a velocity
~~C3 ,,Jr

_;_: _
rcy*i~i ,_I..



13.

is assuimed at the plane A- = O, the resulting velocity

potential in the infinite horn is given by

Uo e j I vj (A l(2.11)

where zo = cos 9o, the angle 9. being that determining

the horn surface.

The above -matheiitatical results may now be translated

into the following qualitative predictions for the infinite

hyperbolic horn:

1. The pressure amplitude field is sir•ple at
low frequencies and shows a fairly steady
decrease outward along the axis. At hig;er
frequencies this steady decrease is ac-
companied by periodic variations about the
smoothed out steady decrease.

2. iAt low frequencies the phase of the pressure
on the axis changes non-uniformly, but be-
comies more uniform as the frequency increases.
At all frequencies the phase changes msost
slowly near the throat.

3. The variation of amplitude with angle in-
creases with frequency, the uost mriarked vari-
ation approaching the throat as the frequency
increases.

4. The radiation resistance (as roughly coimputed
by Freehafer and communicated privately to
the author) should rise rapidly from. zero as
the frequency is increased until a peak about
36 0/ above the ultimiate value is reached at
-ca = 1. Then the resistance shlould fall
asympbotically to the ultimate value.

~__I_"i6



14.

In this section the mathematical results of the exact

theory have been translated into termis of the quantities

to be measured. Ulthiough applicable only to the infinite

horn, the finiteness of the experimental system shouldi not

alter the type of result, but only the degree.

~_: L =i_
Pr;--T*i~
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III PLADNE YfAVE ANALYSIS

The foregoing theory holds only for the infinite horn,

which is difficult to simulate experimentally. In order

to obtain a solution applicable to the actual horn it will

be seen that the essential factor is the presence of the

reflected wave. If we try to investigate the finite horn

set in an infinite baffle, then the horn surface, including

the baffle, is very different from that for the infinite

horn. As the boundary value problem for surfaces other than

those represented by setting one coordinate constant is

still awaiting rigorous solution, we seek approximate

methods. For the horn problem the usual approxiliation is

to assume that plane waves in the horn represent a type of

average behaviour which may be used to calculate the aver-

age performance. This analysis, first conceived by
(7)7ilebster , may be further extended in such a manner as

to apply to any reasonably shaped horn. In what follows,

then, we shall derive the wave equation for plane waves in

a channel of changing section S ,noting the necessary

approximations, and obtain general results for the sound

pressure and acdmittance at any section S, taking due

account of the reflected wave. For comparison with -re-

vious results for conical and exponential horns, the so-

lutions for these particular cases will be briefly indi-

cated. The application to the hyperbolic horn will then

_ ~_ ___ ___ _^__ ·MffiiWW_kiýý
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be discussed, and there will be given a general method of

solution which will apply to any horn.

The wave equation will now be derived, using a

La3rangian procedure in which our attention is focussed on

a given nlass of the medium. Follo;wing Fig. 2,

S(X (X+dx)
X

we take this mass as the auiount of air rwhich when acous-

tically undisturbed is between the slab whose faces are

fixed by the axial distances x and x+dx. 4 is the

displace:iient as a function of x and t. S denotes

the average area of the slab faces and for infinitesimal

amplitudes is a function of x alone. By cofmbining the

equations of continuity, state and motion it is desired

to express the sound pressure p as a function of

x, t and 3.

Continuity conditions are satisfied by deimanding

that the muass of air remain unchanged, or that the product

o Sdx
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reimain constant. Then under disturbed conditions the

mass is

f Slx5) [dx t adx]

which xwhen we assume that • is very smiall, becomes

dx (S C)'s

f dx S ~ %d S+ 4{)
or fd

where the product 4 - has been neglected on the

assumption that not only 1 but also 6S/ax is s~iall.

1e note that 3 is also a function of 9 because in

the Lagrangian procedure it is the face of a palrticular

mass of air; but with infinitesimal ; S3 is substan-

tially a function of x alone, as it rigorously would

be in an Eulerian treatment. ?ractically this means that

the horn iimust not flare too rapidly, and that the inten-

sity of the sound must be such as to keep small at

least where a354x is large.

Returning to (3.1), we set

in which we use S for S, subject to the above re-

strictions. In the last member of this equation we note

the infinitesimal S'o/C ; for use in the wave equation

this may 'e approximiated by , , since 6f• <



18.

Hence the equation of continuity is

a -x (3.2)

To replace density by pressure, it has been generally

assumed and amply demonstrated that the adiabatic law is

followed at least for all intensities of sound below that

causing pain. Thus

? V = constant

or Uv
P (3.3)

for small changes in pressure and volume, which holds

under the conditions indicated above. Since the mass is

constant in our La-rrangian treatment, Voc 1/ , (3.3) be-

SP ' _ as_

Since SP is the sound pressure p, we set finally

In order to introduce time, the force equation is

applied to the faces of the slab. Taking forces to the

right as positive, and assuiming p•< Po, the equation of

motion is

where x + ý denotes the instantaneous position of the

i
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(3.6)

slab. Simplif ying,

3t?
The wave equation for

eli•ilnating ' from (3.5)

6t S

p may now be obtained by

and (3.6). For-

Since under the assutmptions mentioned in connection wivrth

the continuity equation S is a function of x alone,

- o ( LS )~t't)
C) ts k

I a-(c i _3or

3Equation (3.7) is substantially that derived by

Webster, and applied to specific horns by later worker.

The main asswumptions (other than the plane wave picture)

may be suti-iarized by stating that the amrplitudes of the

field quantities p and & must be small, and that S

must not change too quickly with x, or at least not

where V is large, as tt the throat.

4

4= 0 ( 3.7)
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With cisoidal time variation of e Wt (3.7) becomes

J -t 1Q =0 (3,8)

For checking with experiment, p should be regarded

as an average value over each section. Since in a plane

wave (in which the velocity is approximately in phase with

the pressure) the intensity varies with p2 (8), the aver-

age pressure should best be represented by

SfJ p ds (3.9)

taken over each section S. However, at low frequencies

for which the actual wave fronts approach the plane wave

condition, the values on the axis are sufficient.

iReturning to a general solution for (3.8), a hint as

to the possible form for p is obtained from the physics

of the situation. Using the intensity variation with p

as above, then the product

p S = PA

must be constant in a progressive wave for whaich p is

uniform over S, in order to keep constant the power PA

transmitted. Thus the variation of p as a function of

x will be due, to a great extent, to a factor
I

~_i__ ~__ __ ii _
r- I~- --- --L c; .·I-
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Hence by setting

the function f will be given the task of representing the

variations of p about the steady decrease of I /V-.

The mathematical arguments for this forim for p are

still simpler. Equation (3.8) is of the self adjoint type,

for which the substitution of (3.10) yields an equation

for f of the form

f" + Bf = 0, B = B(S,x), (3.11)

the first derivative being lacking. The advantage of

(3.11) is that many of the numerical methods of integration

now used in atomic physics imay be directly applied, yielding

results for most cases of interest.

However, before finding the forla of B(S,x), we pause

to change to non-dimensional variables, leaving physical

constants to fix the dimensions of the final solutions.

First, from the equation for the horn profile we seek a

unit of length so that x may be expressed as a ratio. In

general this is possible, as seen from the relations below

for conical, exponential and hyperbolic horns.

Conical horn r= ro (/Xo)

Exponential horn r - o /X (3.12)

Hyperbolic horn Y - Co C C 0

HIence we set

>(- (3.135)

· ~IIIL-L- -··. -_ _·i ..·i .·_
1E~ii -, .... Y -. i .... .-- ·· --



22.

The section S = wr2  becomes S = SoX , where:

Conical horn , = (z

Exponential horn (3.14)

Hyperbolic horn Y =  a

If we finally define

1 = kxo k -- (3.15)

and express the wave equation (3.8) in terms of a, C and

1', we get

I 3 (3.6)

and substituting

f

the equation for f turns out to be

f"+ [ +() (?r) ]If =0 (3.17)

where the priumes refer to differentiation by a.

Before going on to a general solution for p, we give

briefly the form for f when the X for conical and ex-

ponential horns is inserted, in order to note the agreement

with the results of previous and different modes of

attack (9,10)
at~tack

·~__ ~··~ _·___ __ I~--"Y-L~- -··- -·--- · r· I· --



Conical horn;

-F: = (3.16)

where the upper sign is for the outgoing wave.

Exponontial horn;

= e e =

In this last case the cut-off at 1 = 1 is

clearly apparent.

Using the value of 6 for the hyperbolic horn, the

equation for f turns out to be

This is very nearly the sam.e as the equation for fl of

the set (2.10), for b, /c2 is close to unity when the

_=__QQ -"
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angular opening of the horn is small. Thus at low frequen-

cies the plane wave picture is essentially the sa&i)e as that

from exact theory.

Returning now to the general solution, we first assume

that f may be expressed as

f =ge" (3.20)

or f =  :- Vw- (3.21)

where in general, g and h or u and v are functions

of a. We relate the first and second forms for f in

the simplest manner, nan.-ely

u = g cos h

v = g sin h

Thus, the first form represents a sinusoidal variation of

varying amplitude. This representation is advantageous

for most horns, for at large values of a, most horns give

an equation for f of the type

f" + Bof = O,

where Bo is constant. Under these conditions, the first

form represents f most directly. The second form has

its greatest utility in the numerical integration some-

times necessary to obtain f, for here both u and v

satisfy the equation for f.

It is desired to obtain a. general expression for the

pressure and admittance, the latter being defined as

_____ ____ ·__ II --- I~ -- ~- r
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It will prove easier to obtain the latter quantity first.

From equation (1.2)

Y-"~
Y ( =-/g) (3.22)

and with cisoidal time variation and. plane waves

y= _ (W u,/dx )

Setting 5,/ p•e (3.23)

(J q/dx)
we get

By some simple juggling it is easily shown that p and l

obey the same wave equation) hence

or in terias of non-dimensional variables

*-A (3.24)

where the primes refer to differentiation with respect to

a. Substitution from (3.16) and (3.21) gives

V!in lTn(3.25)

Rationalizing,

1:1 -- v-t  (3.26)
+42.kl-t K)-a+

QVIM



26.

where the upper of the double signs is for the outgoing

wave. Note that the negative real part of y- corresponds

to energy returning to the source in the reflected wave.

Thus, the sigrmfor the total pressure and velocity are con-

tained in y, so that

p = p + P

4- =y+'O + y.p.
(3.27)

In order to obtain y, some sort of relation must be

ass-umed between p+ and p _. In general., these quantities

may differ only in amplitude and phase; and since we are

interested in the variation of p and y with distance,

it is advantageous to state this relation in a forr'L for

which the distance factor is confined to one terma. This

is done by setting

1o, 9 g e (j h •e9tJl-) "

- e eA~~ P W. 2 t 2 U<P" 6) (3.28)

where the 1P. and To are the arbitrary amplitude and

phase constants, usually to be determined by conditions at

the mouth of the horn.

Using the form 1 = 9 e and oroceding as before,

Then y in ters of the total essure nd velocity give(3.29)

Then y in terrms of the total oressure and velocity gives

miii ---- "
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an expression reducing to

9 - -"

or :J- -, v-"- l (3.30)

Likewise, the total pressure turns out to be

x-_ C&"O

P
(3.31)

P to -/Y6 -Y ~

These results may be directly applied to any reason-

ably shaped horn when the function f has been evaluated,

numerically or otherwise. For checking with the previous

conical and Qxponential horn results ( 9 ) , the form

f = (ge. is best; but for calculation, the formL

f = L• )V is necessary, as both u and v satisfy the

WigI ----- --
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equation for f. The method of calculating f is de-

scribed. in Appendix A, and the results for four values of

the frequency parameter f are listed as oppendix B.

The constants /. and ~. may be obtained in two

ways; by mouth impedance, and by the pressure along the

axis. In the first case, if the mouth is provided with

an infinite baffle, the admittance y is converted to its

reciprocal (the iiapedance z = Z/P.c) and covmpared at

the mouth with that obtained by assuming the vibrating at

the mouth replaced by an ideal piston, the impedance of

which is given by Plate 1. The constants Vo and .o

may then be evaluated analytically, but graphical means

using a chart plotting the conversion

r+ ix = :F U4( wt +j 9)

is preferable. If the mouth has no baffle, the mouth

impedance may be approximated by methodis described by

Crandall(ll) or iicLachlan( 1 2)

TJhen the pressure along the axis is known, the con-

stants may be determined from the equation for ? in

(3.31), by requiring that the theoretical curve fit the

experimental one in amplitude (for Yo ) and position

along the axis (for eo ).

To zumi~arize the results of this section, vie have

used !ebster's assumption of plane waves for the starting

point of an analysis applicable to any horn whose section

iii ~~-- - -r- "
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does not change too violently with position. The general-

ized results agree with those for the conical and exponen-

tial horns as obtained by previous procedures. As a

direct application, some f functions have been computed

for the hyperbolic horn, and are listed in an Appendix,

together with the general method of solution.

i_~_i __i61ii - c--i ~
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IV EXP R Ii;NL TECb, IIUE

The general experimental work may be divided into two

parts, the first dealing withi the amp!litude and phase of

the sound field, and the second with the impedance at the

throat. In each there was used a horn of so = 150, or

of 300 total angular opening.

For the field measuremrents, it was desired to have

the throat large enough to enable a Hall type ininimic to

be inserted in to at least 10 cm from the piston without

distorting the sound field too much. It was found that if

tile interfocal distance (Freehafer's r) of 30 cm were used,

then the ratio of microohone area to throat area would be

less than 1/10. Also, at the nighest frequency at whicn

stable measurements were possible (2000 hz), the micro-

phone was less than A/10 in overall dimesionsi , so that

little reflection was expected. hith these constants

8o and d, the resulting hyperbola is

For ; 50 cm, it was found that a cone of half angle

140 5 0 ' would fit closely enough from there on, so the

mouth section was ,made in this shape frora #18 guage gal-

vanized iron. iFor the throat part a wooden pattern, ac-

curately turned to the desired profile, was obtained and

used as the core in a cement casting together with a join-

ing collar. On removal of the core the surface was finished

E
....ii miimo-
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with paraffin to the dimensions and smootlness desired; and

by the joining collar the mouth and throat pieces were fastened

together to form a horn of 7.76 cr throat diamaeter, 96.8 cm

mouth diameter, and 180 cm long.

For a driving unit there was used a mechanism invented

by Prof. Fay at M.I.T., as shown in plate 2. Briefly, it

is a transformer whose secondary, a flat rectangular copper

frame, is made to move in its own plane by the interaction

of the current induced in it by the primary, and a steady

magnetic field. Phosphor bronze wires serve to constrain

the motion along one direction, and may be used to tune the

unit to resonance by adjusting the tension. As a piston

there was used three layers of 4mm balsa wood, cemented to-

gether with the grain crossed. Chladni figure tests showed

that rigid piston motion obtained for frequencies well above

the highest used in the experiment. No impedance measure-

ments were made on the unit, for due to the iron and air

losses involved, and the permanently closed circuit of the

copper frame, not all the parameters could be obtained.

The horn and driver were suitably mounted together, and

the horn placed with its mouth firing through the one bare

wall of the otherwise well-damped booth in the Electrical

Engineering Dept. Sound Lab. See Plate 3. The Hall type

minimic was mounted on a platform whose position could be

set from the outside to about t 0.8 cm from its original

position,after having been displaced in two dimensions.

I _~ I·M=--n ý - zi--_^ '
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Practically, this means that if the pressure shows fairly

sharp peaks, occurring every A/2, then noticeable diffi-

culty in setting and checking will come around 2500 hz,

where this uncertainty as to setting will distort the

pressure curve, becauseA e1,fGr 6 at this frequency. i•iost

of the difficulty was in the lack of smooth motion, causing

the microphone lead pipe to swing to a new stable position.

Plate 4 indicates the circuit used for determining the

relative amplitudes and phases by means of comparing the

output of the microphone with a portion of the input to

the driving unit. It was assumaed that the phase relations

in the amplifiers were not functions of amplitude over the

range used. This was checked by varying the input to the

driver, and changing the attenuator V ("nay") to restore

balance as indicated by the phones. With the two to three

figure accuracy obtainable at most balance settings, this

effect was negligible.

Data was obtained in the form of contours of equal

amplitude and phase, which are presented and discussed in

the next section. Runs on the axis were also taken to

provide data as free as possible from shifts in the field

structure due to slight temperature or frequency changes.

For all the field measurements the Plane 10 cm from

the piston was chosen as the fiducial point, the amplitude

100 and the phase zero being arbitrarily assigned there.

Field plots in rather large detail were obtained for the

-·k~-- --· r - -L- _L-r--Lwl ~--- - -"
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first 130 cm of the 180 cm horn, while runs on the axis

were extended to 170 cm from the piston, the linmit of the

microphone travel. The frequency parameter of the exact

theory, -ca, was used with values of .2 5, .5, 1, 2, 8 and

30 corresponding roughly to frequencies of 180, 250, 360,

510, 1000 and 2000 hz respectively. Since in -c0 it is

k3 which must be constant, the frequency had to be adjusted

with temperature, as the value of the wave velocity varies

with temperature. Results were nicely reproducible as to

all essential features except for the highest value of -ca,

at 2000 hz. Here the run had to be gone through rapidly

after the salient features had been picked out, as the field

was unstable and the settings critical.

Impedance tests were made on another 150 horn of the

same conical mouth, but provided with a throat piece going

to 3/4" diameter at the driver fitting. The equation of

the hyperbola was

and it was found that the total length came out to be 182 crm,

using the same mouth diameter as before.

The driving unit was the -Western Electric Type 555

telephone receiver; and by using a modification (suggested

by Fay) of the Fay-liall impedance circle method , input

impedance measurements on the receiver were used to obtain

the air load on the receiver, and hence the throat impedance.

· I~cu,-- .·~ i-~---- -I- :-·I ,-- -·- i-~---- -I- :-
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By this measurements down to 120 hz were possible, although

difficult; a substitution bridge as shown in Plate 5 was

set up, and -phones, copper oxide meter and tuned vibration

galvanometer used as null indicators. Incidentally the use

of the meter indicator turned out to be the best technique

all around, for whenever the balance was broad, a setting

at the average of settings a given amount off balance -was

always possible.

For the lowest frequencies, this imeter method was the

only one available, and was applied up to 400 hz. However,

above 300 hz the acoustic line described by Fay and Hall

at the November 1938 Acoustical Society meeting was more

convenient and accurate, and so -was applied up to 4000 hz.

Above this the readings became too irregular to interpret

safely, but the interesting portion of the impedance was

well within this range.

I__ __ _i^_ _^__ _
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V RESULTS AND DISCUSSION

The experimental results fall into two groups: the

data from pressure measurements, and that from impedance

measurements. For both cases graphical presentation is

used; and whenever possible calculations from theory is

also shown on the graph. In general, the results are rela-

tive, not absolute, and non-dimensional variables are used

throughout.

Field Mie asurements

In Plates 6, 7 and 8 are shown the contours of con-

stant phase and pressure obtained by the circuit of Plate 4.

Frequency is stated in terums of the parameter

2 2V 2..

C- 360
the latter value being for the horn investigated. Each

plate depicts the field at two frequencies, as the symmetry

was sufficient to justify giving but half. The lower fre-

quency is at the right. At the fiducial point 10 cm from

the piston the amplitude 100 and phase zero were arbitrarily

assigned, all other values being relative to these.

Turning now to the low frequency fields mapped on

Plate 6, we recall the predictions of the exact theory

(page 13). First, the amplitude and phase contours are

nearly coincidental for -ca = .25, for which V ;- 180 hz.

Along the axis the pressure decreases steadily with but

The experimental results fall into two groupst the

data from pressure 1-flearsuremen·t;s, and that from impedance

me B 8UX~ eme nt; a . For bo~t;l·i cases graphical 13resenta·t;i~n is

used; and whenever ~ossSlblz calculations ~flc~o~j, theory is

also shovrm on the graph. In general, the results are re~a-

t~ve, not absolute, and'non-dimensional variables are used

throughout.

Field Z~e aswemen·t;s

In Plates 6, 7 and 8 are shown t;'ne conlours oJ~ con-

slt;ant phase and pressure obtained by the circuit; of Pla~t;e 4.

Frequency is stated In eerins of the parainater

-- e" TT 3~2C, /-· 3603 )"

the latter value being for the horn investigated, Xach

plate depicts the field at two frequencies, as t'ne s~mletry

was sufficient to justify giving but haLr. The lower fre-

quency is at the right. .At the fiducial point 10 era from

the Rist;on the amplitude 200 and phase zero mere arbitrarily

assigned, all other values being relative to these.

Turning now to the low frequency fields mapped on

Plate ~, we recall the predictions of the exact theory

(paee 13). First, the amplitude and phase cont;ours are

nearly coincidental for -c2 .25, for tvhich J ~ 180 hz.

Along the axis the pressure decreases steadily with but
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small variations about the smnoothed out decrease. The phase

advances uniformly, and the contours in the mouth portion

are practically those for a spherical wave. There is only

slight variation with angle from the axis.

For -c 2 = .5 V'• n 250 hz) slightly more complexity is

evident, mostly in the amplitude field which now shows

definite variation with angle and the beginning of isolated

regions of pressure extremes. The change of phase is

markedly irregular at the center of the plot. This is not

predicted by the infinite horn theory, but may safely be

attributed to the presence of the reflected wave, due to

the finite length of the horn. The approximate plane wave

analysis has been applied to calculate this variation, the

results of which will be discussed in connexion with

Plates 9 and 10.

The middle frequency conditions of Plate 7 show the

increased dependence on angle in the -c e = 2 (n e500 hz)

plot. Since the particle velocity lies along the pressure

gradient, the presence of transverse vibrations is apparent

at the regions of maxima and minima at the horn surface.

Here the picture is definitely changed by the presence of

reflections, for in the third pressure "island" from the

throat, the amplitude shows a definite increase with angle,

which should not take place so markedly otherwise. The

lack of information as to the value of the derivative of

the radial functions (Fn) at the throat precludes an

9



37.

exact evaluation, but since the room is certainly re-

flecting appreciably from the walls at this frequency, the

incoming wave is not inconsiderable.

The other field on Plate 7, for -c = 1 (V 360) shows

substantially the same behaviour as the low frequency plots

of Plate 8, and so needs no further discussion, iiowever,

the irregularity in spacing of the phase contours is now

greatest near the thlroat, showing the influence of the

rapid change of section there; the relatively smooth change

farther along the axis is not a safe hint as to the magni-

tude of the reflected wave. "lthough the effect on the

phase may be small, the effect on the amplitude may be quite

large, as the other plots indicate.

At the highest frequencies chosen, corresponding to

-c = 8 ( 1000 hz) and -c 2 = 30 ('V 2000 hz), the fields

as given by Plate 8 show how the amplitude contours may be-

come very complicated, while the equal-phase contours re-

main simple and uniformly spaced. The amrplitude islands

along the axis come at approximately the positions pre-

dicted by the exact theory, as verified by a rougnn calcu-

lation using but one teriml of the expansion for the velocity

potention (JEq. 2.11). However, the values do not fluctuate

(about the smoothed decrease -long the axis) as much as the

infinite horn theory predicts, indicating that the termina-

ting conditions are still not able to simulate the infinite

horn.

F
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Next, in order to find how well the approximate plane

wave theory corresponded to the measurements, the amupli-

tude and phase of the pressure on the axis was measured,

the plots for which are Plates 9 to 14 inclusive. As

before, 10 cm from the throat has been taken as the fi-

ducial point; but the amplitude has been multiplied. by the

factor -•r + a2 which represents the smoothed out decrease.

In symbols, f

where f represents the oscillatory part of p.

The value at the fiducial point of a hundred arbitrary

units, and at the first imraximur, viere fittcd to the theo-

retical value

in order to determine the constants io and ., Then

these same constants were used in the calculation of the

phase, affording a fairly independent check. Because of

the irregularities in the modified aiplitude plot, fits

were attempted only for values of the frequency parameter

a= =k) o ( )2 of .255 and .466, or frequencies of

about 180 and 250 hz.

Plates 9 and 10 present the results of both experi-

ment and the above plane wave calculation for the values

I--a-;r·-u- - I__ ·̀  ·
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of f mentioned. ilthough the fit is only approximate, it

agrees with the field plots of Plate 6 in showing the

assumption of plane waves to be a good one for these fre-

quencies. The irregularities in the purely experimental

amplitude plots for the higher frequencies of Plates 11,

12, 13 and 14 show that although the phase surfaces of the

field plots suggest plane wave fronts, the variation of

amplitude over the wave front is considerable; as again

checked by referring to the field plots. More regularity

would be expected if the values to be checked had been ex-

perimentally averaged over each cross section, as suggested

by equation (3.9).

The last four plates mentioned also show the increasing

regularity in the change of phase, for which the best curve

becomes a straight line at large . Thus the phase

velocity, vwhich is proportional to the reciprocal of the

slope, shows less varition as the frequency increases,

and approaches the wave velocity eventually.

For Plate 14, the points on the amplitude plot have

not been connected, for the experimental points were not

taken close enough together to resolve the rapid oscillations.

however, it is noted that the amplitude of variation is

greatest here, showing that the conditions of the exact

theory are being opproachcd.

To stum up, the pressure measurements show general

agreemLent with the exact and plane wave analyses, when the
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finiteness of the horn and termination is given due con-

sideration. The plane wave oicture is particularly appli-

cable at low frequencies, providing some moans of evalu-

ating the two arbitrary constants ýo and P. is possible.

Impedance i!easureiments.

The two oxperimental techniques mentioned earlier gave

overlapping results whichi agreed nicely in spite of their

sensitivity to inequalities in temperature, etc. The

measured resistance and reactance components are presented

in the non-dimensional form Z/Soo c. Plate 15 uses the

frequency parameter ( as the abscissa, while ?late 16

comprares the smoothed results with those for the idealized

conical horn by impedance loci.

To consider first the behaviour with frequency, we

first note that the abscissa for Plate 15 is P V/1540,

for' the horn described in Section IV. This high value of

V, allows measurements to be easily made in the range

most interesting in the theory, for the experimental tech-

nique is difficult at extreme frequencies.

The curves have been smoothed, for the resonances

due to the finiteness of the horn occur less than 100 hz

apart, and as the points attained are not close enough,

connecting themto would give a false picture. However, the

general predictions of the exact theory are verified in the

upper curve for the resistance, which exhibits the rise to



0

1.01

1- -~ -~

1,5

1.0

0.5

- _I_~ ~-~:----.-I· ;:- .~--r~-·-·-- _r-----· L- -':L · --=;-r·.L ~:_i_.i:.~: -111:23-1--- .. ·--·- i::r :-:::-~I7~---X~-----_~--PrYi~.~--~;=-~-- i::---~~e-"T·s~--·~··------ "~----- -- 1 I --c-_-----~-- -- -I-- C -·-------------------

0.5 1,5



Ei_

i_

41.

a maximum above the ultimate value, and the asyimptotic drop

down to it as ( increases further. The shape differs from

that of the theoretical curve (rough calculation cormmunicated

privately by Freehafer) in that the experimental peak is

about 400/ higher, and occurs at a frequency parameter e

also approximately 400/a higher. At the lowest frequencies

the exact theory predicts a large slope which becomes in-

finite at the origin while from experiment the resistance

tails into the origin with practically zero slope, ill

these discrepancies are no doubt due to the finiteness of

the horn, which again introduces the complicating reflected

wave, especially at low frequencies, However, the general

shape is that predicted.

The reactance curve required -more arbitrary smoothing

than the resistance, as evinced by the scattering of the

experimental points. Although no data from the exact theory

was available, the values from a rough plane wave analysis

should show no large peaks, which is borne out by the curve.

Moreover, the dip in the reactance at the resistance maxi-

mun definitely agrees with 3 asurements on other horns, and
(14)with the curves fromi plane wave theory

For snother check, the values of the impedance at the

throat were calculated from the plane wave theory. The

constants ~ and ,o were found by assuming the mouth

replaced by a piston of equal area, and the value of the

radiation impedance at the mouth read off from ?late 1 and
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the constants evaluated. The table below shows the com-

parison of the calculations(at the four values of pa

chosen) with the unsmoothed experimental values.

Comparison of Plane ;7ave Analysis and Experiment

Throat impedance I/Sofoc frjx

B .25 .5 1 2

r x r x r x r X

Theory .40 .73 .78 .89 1.19 .71 1.26 .29

Exp. .52 .63 .75 .65 1.54 .82 1.96 .07

The agreement is only approximate, but is best at the

lower frequencies, where the surfaces of equal amplitude

and phase approach those of the plane type, as mentioned

in the discussion of the field plots. Still, a fair estimate

of the performance may be obtained. by the plane wave theory;

and since it is usually the low frequency performance which

is of greatest interest, the analysis happily turns out to

be of greatest aid where it best represents actual conditions.

For compnarison with the conical horn, Plate 16 shows

smoothed impedance loci for the two shapes. For the conical

horn of the same overall dimensions, the locus from smoothed

plane wave theory (14 ) is a semicircle centered at (1, O).

Frequency is denoted by the marks on the loci, and by means

of this,comparison is readily made. First, at the lowest

frequencies the hyperbolic horn has practically twice the
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impedance, at the same power factor or lag angle as the

conical horn. Thus if the driving system is of the usual

mass controlled moving coil type, the effective electrical

reactance will depend but little on the acoustical reactance,

so the larger radiation resistance of the hyperbolic horn

will tend to increase the overall efficiency. However, since

at very lo-w frequencies the driver is hardly mass controlled,

and the mouth impedance has considerable reactance, the gain

will certainly be less than the two to one impedance ratio.

Next, at higher frequencies, the resistance peak in

the hyperbolic horn may be sharp enough to be quite noticeable

by the ear, although again the mouth conditions may be so

adjusted that when its impedance is "reflected" to the throat,

the effect at the piston is reduced. .ny exact calculation

to obtain the practical effect will be complicated by the

variation of driver parameters with frequency, but the quali-

tative results cannot be far off from those suggested above.

On Plate 16, the exponential horn of the samre overall

dimensions yields a smoothed locus consisting of the X/SoPc

axis from the origin to unity, and then a quarter circle

(centered at the origin) ending at the ultimate point (1,0).

For the dimensions given, the point corresponding to

(N/=)-- (.1) occurs near the point (V/vo) = .6 on the hyper-

bolic horn locus. Thus the exponential horn is already near

its ultimate impedance, and hence should radiate low fre-

quencies much more efficiently than either of the other types.

_L·T~i +~- --'i··-
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From this we may conclude that the order of increasing

efficiency with an electromagnetic driver should be conical,

hyperbolic and exponential horns. It should also be noted

that this is the reverse order of ease of constructior-,

and perhaps of initial cost.
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As far as agreement with theory goes, the results in-

dicate that the experimental requirements for simulating

an infinite horn demand the complete elimination of the

reflected wave arising both from the abruptness of the

mouth termination, and from incomplete absorption in the

terminating space. Unless this requirement is met, exact

quantitative agreement is not possible, but nevertheless

the general features of the field may be correctly pre-

dicted. Q(ualitatively the plane wave analysis has been

shown to yield results of sufficient accuracy to periiit

a knowledge of the gross behaviour. Using the throat

iimpedance as a measure of the performance, the experimental

results agree with exact and plane wave theory in demon-

strating that the hyperbolic horn is slightly better than

the conical, but that the exponential type still remains

the best to construct from a given practical set of over-

all dimensions.
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APPENDIX A.

Modified Hartree Method.

In many cases the wave equation is found to have

the essential behaviour of the dependent variable stated

in an equation of the form

f" + Bf = 0,

where B is a specified function of the independent vari-

able a. In many cases the solution is known for extreme

values of a; and the purpose of the Hartree method is to

allow the numerical evaluation of f at other points.

W/e shall not go into the details of the method in

its most precise application, as that is completely set

forth in reference 15, but shall merely derive a simple re-

cursion formula which needs two known values of f to

start. Suppose that the functions f and f" have been

arranged at equal increments (8 a) of the independent

variable. Then by successive differencing of the functions,

the kth difference at the position (in the table) n irlay

be obtained as kf n . Hartree's fundamental formula may

be written as

In general, Vkf will need (k + 1) values of f in

order to be evaluated; hence if two starting points are

to be used, the S C' term on the right must be omitted.

It will be found that to any desired accuracy this is

L __ ~__ 1_ I· ·__ - 1--
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possible if ( a) is small enough, which may be tested

directly by observing the effect of doubling ( ga), etc.

Usually, if dB/da. is not large anywnhere, then a single

value of ( 8a) will suffice over the whole range.

Uith this provision we set

= (T)Zf t2 -ih L 'Z

Using

Substituting f" = -Bf, and solving for fn+l we get

2.

If we now set N ( there results

A L2,N -1oBo] -fn, J b• 8,-,]

This has been used in the follovwing tabular for'i

suitable for calculation.

o< 2 0 -10 + 6 f

Fir
n -'-_.I_.n-M

n +1

L
I

r
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By using a calculating machine, and performing the opera-

tions in the order indicated f may be read directly off

the quotient dial.

For obtaining derivvtives there may be used

which is adapted from equation (8) in Hartre's paper.

which is adapted froiki equation (8) in Hartroe's paper,
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APPEINDIIX B.

Table of values of f

The following table lists solutions of the f

equation for the hyperbolic horn

in the form

f = u - jv,

as oOtained by the Hartree method described in Appendix A.

The known values of f were obtained by

at values of a large enough so that

1

was less than 1 % at the position of matching. The ( Ja)

was -.05 for all but the last values for p = .25. The

values of u and v so obtained were used in the calcu-

lation of the pressure on the axis, and of the throat

impedance.

The tables stop at such a value of a that the ap-

proximation fe •4 holds beyond that.

-=-~s I;L.-- ·li i
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Values of u and v for hyperbolic horn equation.

2

a u

= .25

0 1.373 .244 1.298

.2

.4

.6

.8
1.0

1.2
1.4
1.6
1.8
2.0

2.2
2.4
2.6
2.8
3.0

3.2
3.4
3.6
3.8
4.0

4.2
4.4
4.6
4.8
5.0

5.2
5.4
5.6
5.8
6.0

6.2
6.4
6.6
6.8
7.0

1.2344
1.128
1.045

.973
.907

.841

.772

.698

.620

.537

.449

.357

.262

.165
.066

-. 034
-. 133
-.231
-. 327
-. 419

-. 507
-. 591
-. 668
-. 739
-. 802

-. 858
-. 905
-. 943
-. 971
-. 990

-. 999
-. 998
-. 988
-. 967
-. 936

.292

.348

.411

.478

.548

.618

.686

.750

.809

.861

.907

.944

.973

.993
1.003

1.004
.995
.976
.948
.911

.864
.809
.746
.676
.599

.515

.427

.335

.239

.141

.042
-. 058
-.158
-. 256
-.351

1.170
1.061

.962
.866
.765

.657

.540
.415
.283
.146

.006
-.134
-.271
-. 403
-.528

-. 642
-. 743
-.829
-. 900
-.952

-. 986
-1.000

-. 994
-. 968
-. 923

.265 1.244

.348

.437

.530

.623

.714

.797

.870

.929

.973
1.000

1.008
.998
.968
.919
.853

.770

.672

.561

.438

.307

.170

.030
-.111
-. 250
-.384

1.117
.986
.844
.688
.523

.343

.151
-.046
-. 241
-. 427

-.597
-. 744
-. 861
-.945
-. 992

-. 999
-.967
-. 897
-. 791
-. 654

.260 1.130

.400

.537

.670

.789

.889

.963
1.004
1.010

.979

.912

.809

.675

.514

.334

.140

.059
-. 256
-. 443
-. 612
-.757

1.008
.844
.637
.394
.125

-. 152
-. 418
-. 652
-. 837
-.957

-1.002
-. 969
-. 860
-. 683
-.452

.232

.456

.660

.830

.952
1.013

1.003
.920
.768
.558
.305

.028
-.252
-. 511
-.730
-. 892

- --o
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