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Abstract

This thesis presents iNav - a hybrid system for 802.11-based localization targeted at
low-power mobile devices. WiFi localization enables numerous location-based services
and applications without requiring a separate GPS module, thus offering device cost
and power consumption savings.

iNav is a WiFi localization system targeted at low-power mobile devices, capable
of utilizing multiple data sources to produce location estimates with accuracy higher
than that of pure WiFi estimates. iNav uses a stochastic location estimation algorithm
based on particle filters to integrate streams of WiFi access point observations and
3-axis accelerometer data. The system is tailored towards localization of vehicles and
relies on a road network map to increase localization accuracy. iNav is designed with
low-power devices in mind, and is capable of computing real-time location estimates
on embedded devices like the iPhone.
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Chapter 1

Introduction

With the growing number of WiFi-equipped consumer devices - cell phones, personal

media players, and even digital cameras - the prospect of using the existing WiFi

infrastructure as a localization platform for location-based services is becoming in-

creasingly feasible. WiFi localization systems work by using WiFi access points (APs)

with known positions as radio beacons for triangulation. This thesis presents iNav -

a WiFi localization system targeted at low-power mobile devices, capable of utilizing

multiple data sources to produce location estimates with accuracy higher than that

of pure WiFi estimates. iNav uses a stochastic location estimation algorithm based

on particle filters[2, 15] to integrate streams of WiFi access point observations and

3-axis accelerometer data. The algorithm relies on a road network map to increase

localization accuracy; because of this reliance it is primarily targeted for estimating

vehicle locations and trajectories. The system is designed with low-power devices in

mind and is capable of computing real-time location estimates on embedded devices

like the iPhone.

This chapter explains the motivation for creating iNav, highlighting the advan-

tages of iNav over alternative localization solutions. The next chapter provides back-

ground on the systems and algorithms that iNav builds upon. Chapters 3 and 4

explain the system design and implementation in detail, followed by Chapter 5 which

presents an evaluation of iNav. Finally, chapter 6 discusses potential applications for

the system, considerations for large-scale deployment, and possible improvements.



1.1 Advantages Over Alternative Localization Sys-

tems

This section compares iNav to alternative localization systems, explaining the advan-

tages of iNav's approach.

1.1.1 GPS

While offering relatively high localization precision, GPS has several shortcomings

which make it a poor fit for a number of applications. The first disadvantage of GPS

is availability - GPS often fails when the device is indoors, in an urban canyon, or

carried in a pocket with no clear visibility of the sky. These scenarios are usually

not a problem for WiFi-based localization schemes. The last case - visibility to

the sky - is particularly advantageous for WiFi-equipped devices like cell phones.

While GPS systems require constant visibility to the sky (especially in cases of con-

tinuous tracking), cell phones using WiFi technology will continuously log location

information with or without visibility to the sky.

Second, the Time to First Fix (TTFF) for GPS modules can be excessive for

applications requiring immediate location information on a cold start - for example

location-aware search or directory services. Since it is impractical from a power-

management perspective to have the GPS module be active at all times, the user

may have to wait up to a minute to get a response from the system for each search.

With WiFi localization the position estimate is available as soon as a WiFi scan is

complete (typically within a second from cold start), making it more practical for

these types of applications.

Finally, cost is also a disadvantage of GPS when compared to WiFi localization

- GPS modules are more expensive to add than WiFi radios.



1.1.2 Skyhook Wireless/Navizon

Skyhook Wireless and Navizon are two of the popular localization platforms using

WiFi/GSM signals. These systems operate in a client-server setup, with the mobile

device acting only as a sensor, and all of the location estimation computation taking

place on a central server. While this configuration is attractive because it places very

little complexity on the device itself, it suffers from estimation accuracy and latency

issues, preventing these systems from being used in a large class of applications.

Because a communication round-trip between the device and the server is required

for every location query, the latency of the location estimates can be prohibitively

high. Especially over a slow GPRS link, the round trip can take over 10 seconds,

making such localization schemes a poor fit for applications like navigational aids.

The requirement of a persistent data link to the central server also negatively impacts

the cost and availability. Running the localization computation locally on the device

avoids these latency, availability, and cost issues.

Finally, these two systems offer relatively low positioning accuracy, since the lo-

cation estimates are made based on individual WiFi scans. In comparison, iNav uses

the entire observation history up to present, allowing for more accurate estimation.

1.2 Motivation for WiFi Localization

Using WiFi for localization is attractive for two reasons: its accuracy is good enough

to power a wide class of location-based services, and its low cost and ease of deploy-

ment make it a very feasible proposition.

1.2.1 Location-Based Services and Applications

While existing WiFi-localization schemes do not offer the precision of a satellite po-

sitioning system, even the coarse-grained location estimates they produce can be

practical for a large number of applications and services. Some of the applications

enabled by WiFi-localization schemes for vehicles - such as iNav - are navigational



aids, vehicle tracking, and traffic estimation.

All three of these applications do not require very high localization precision -

reporting the correct street on which vehicle is currently moving on, or even a street

block, is usually good enough. While WiFi localization precision does not allow for a

realtime turn-by-turn navigation system, it does enable a system that can report up-

coming turns within the next minute and providing a map of immediate surroundings

- still a significant navigational aid.

Approximate location information can be used for almost all vehicle tracking ap-

plications: reporting expected bus/shuttle arrival times, tracking package delivery

vehicles, and monitoring locations of cars in a taxi fleet to optimize cab dispatching.

For these applications, the WiFi radio can perform double duty - both acting as a

location sensor, and functioning as a means for uploading the location information

from the tracked device.

Finally, if the vehicle tracking information is allowed to be aggregated, it can be

used for traffic density estimation in urban environments. Given a sufficient number

of probe vehicles reporting their location to a central server, congestion estimates can

be computed for the urban road network.

1.2.2 Advantages of WiFi-Localization

The main advantage of WiFi-localization is the low cost of deployment - both in

terms of the cost of required infrastructure and the cost of consumer devices that can

utilize such system. Most urban centers and their suburban surroundings have a very

high density of deployed WiFi access points (AP); a typical one hour drive through the

Boston metropolitan area will pass within range of 1000-2000 access points. The high

density of already deployed public and private access points eliminates the need for

any additional infrastructure to make a WiFi localization system functional. The only

required infrastructure development is collecting war-driving data that is necessary

to map the already-deployed access points.

The cost of adding a WiFi radio in a consumer electronics device is relatively low

as well. Because many devices on the market already include a WiFi antenna, the



only component needed to enable location-based services for these devices is software.

1.2.3 Advantages of Accelerometer-Assisted Systems

iNav is capable of utilizing accelerometer input to improve location estimation ac-

curacy. This section offers the intuition for why combining accelerometer and WiFi

data is a good fit.

While accelerometer does not allow for absolute positioning, it can be used to infer

relative movement between locations with good accuracy. In contrast, WiFi location

estimates offer absolute positioning, but the noise and gaps in WiFI coverage make the

accuracy of the estimates fairly low. Combining accelerometer and WiFi information

helps cover the gaps that the individual data sources suffer from. WiFi localization

can provide individual location estimates, while the accelerometer data can be used

both to compute location estimate when a gap in WiFi coverage is encountered, and

to disambiguate between possible locations when WiFi observations are noisy.

1.3 iNav Overview

iNav produces location estimates with a particle filter-based algorithm, using WiFi

observations for its sensor model, and a street map combined with accelerometer data

for its transition model.

iNav offers three main contributions. First, iNav implements a particle filter

that is capable of integrating accelerometer data together with WiFi observations

to compute location estimates that are more accurate than the ones based on WiFi

alone. Second, iNav presents an optimized WiFi-localization system that can utilize

large amounts of AP location and street map data while running on a resource-limited

device such as a cell phone. Finally, iNav offers an evaluation of accelerometer-assisted

WiFi-localization system in environments with varying levels of WiFi coverage.





Chapter 2

Background

This chapter presents several pieces of earlier work on WiFi-localization upon which

iNav is based and offers a brief survey of the well established WiFi-localization algo-

rithms. Chapter 3 describes in detail how these algorithms are applied in iNav, and

Chapter 4 explains the specifics in implementing these algorithms.

2.1 Related Work

Place Lab system[10, 4] and its derivatives are presently some of the most commonly

used 802.11 based positioning systems. Place Lab relies on a database of WiFi access

points with known positions acting as beacons for tracked devices. Projects like

UCSDs Active Campus[7] proposed various approaches to estimating location given

observed beacon set, such as relying on RF signal strength, and modeling of RF

signal propagation in indoor environments. The requirement for having a database

with APs with known locations is a major restriction for Place Lab, but some recent

work has partially alleviated this issue. By using self-mapping algorithms that can

determine access point locations given a small initial training set[11], Place Lab has

been able to more easily estimate specific locations.

Bahl's et al RADAR[3] system uses a fundamentally different approach by record-

ing radio signal fingerprints (for example signal strengths of visible 802.11 APs) for a

set of locations, and matching these against the training fingerprint database to esti-



mate positions of tracked devices. This approach requires a large amount of detailed

training data, but is capable of providing highly accurate position estimates, with

median errors of just 2-3 meters. Section 2.2.2 describes this approach in detail.

Additional work has been done attempting to improve the basic beacon and fin-

gerprint based positioning schemes by taking into account the past observations for

the tracked object in addition to the present readings. The scheme designed by Ladd

et al[9] and the Locadio project[8] at Microsoft Research both take this approach

- using hidden Markov models to compute current location probabilities given past

observations prior. Using sequential Monte Carlo algorithms such as particle filters[5]

is another possible technique, attempted by [12] and [13]. Section 2.3 provides addi-

tional information on particle filters.

iNav uses a particle filter-based algorithm for its location estimation. iNav's de-

parture from prior work is in attempting to use a particle filter to integrate separate

streams of WiFi access point observations and accelerometer data. iNav's use of a

street map to assist the particle filter, and the system's focus on low-powered mobile

devices separates it from earlier work as well.

The following two section present a brief survey of the well established WiFi-

localization algorithms.

2.2 Single-Point Estimation Algorithms

This section describes the basic single-point location estimation algorithms for WiFi-

positioning systems. These algorithms take as an input a single WiFi fingerprint

represented as a set of (MAC, RSSI) pairs, and produce a location estimate (a

(Latitude, Longitude) pair) as the output. These algorithms are trained on a large

database mapping WiFi fingerprints to locations where they've been made. Typically,

such databases are accumulated by war-driving - having a vehicle, equipped with

a WiFi scanner and a GPS, drive around the area of interest while recording WiFi

observations labeled with the corresponding GPS location.
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Figure 2-1: The centroid algorithms

2.2.1 Centroid Algorithm

Centroid is one of the simplest single-point estimation algorithms. From the training

data, the algorithm tries to estimate the locations of all the individual access points in

the training set, using a simple centroid of all the observations for each access point.

Then, when a location estimate needs to be computed for an input WiFi fingerprint,

the algorithm takes the centroids of all the access points seen in the fingerprint, and

computes a centroid of those, returning it as the estimate. The pseudocode for the

centroid algorithm is listed in Algorithm 1. The algorithm is attractive because of its

extremely low processing and training storage requirements, but offers relatively low

precision.

Several variations of the Centroid algorithm exist, which are described below and

illustrated in Figure 2-1.

RSSI-Weighted Centroid

RSSI-Weighted Centroid is a variation of the centroid algorithm. Instead of comput-

ing the output location estimate centroid uniformly over the centroids of APs seen in

• ", L.alcula1:eQi • }Location Estimate1% 00



input : training map D: AP -> {Loci... Lock}, WiFi fingerprint {API ... APn}
output: estimated location

1 estimate +- new Location(0,0)
2 points +- 0
3a for i +-- 1...n do
4 for loc E D[APi] do
5 points <-- points + 1
6 estimate <- estimate + loc

7

8 estimate -- estimate/points
9 return estimate

Algorithm 1: Centroid Algorithm

the input fingerprint, the AP centroids are weighted by their observed signal strength.

This variation benefits from RSSI information by shifting the centroid towards the

access points that are likely to be closer than the others.

Bounding-Box Center

The Bounding-Box Center algorithm computes a bounding box of observations and

selects its center instead of computing a centroid of the observations. This variation is

less affected by irregularities in training data, such as when a particular access point

is visible from two streets, but much more frequently on one than the other, causing

the centroid of the AP observations to shift towards the more trafficked street.

2.2.2 Fingerprinting Algorithm

The fingerprinting algorithm is based on the RADAR work of Bahl et al[3], and is a

fundamentally different approach to single-point location estimation. This algorithm

discretizes the location space into individual locations, and stores a database of all the

training fingerprint-location pairs. When a location estimate needs to be made, the

algorithm scores the input fingerprint against its training fingerprint database, looking

for the best match. The location of the best-matched fingerprint is reported as the

output location estimate. Figure 2-2 illustrates the algorithm, and the pseudocode is

shown in Algorithm 2.

Compared to the centroid algorithm, fingerprinting has the potential to be much
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input : training map D: {APi ... APk} -+ loc, WiFi fingerprint {APi ... AP}

output: estimated location
1 estimate +- new Location(0,0)

2 bestScore k- 0

3 for F E D.keys do
4 score - matchFingerprints(F, {APi ... APn})

5 if score > bestScore then
6 bestScore -- score
7 estimate *- D[F]

8

9 return estimate
Algorithm 2: Fingerprinting Algorithm

, PP1 ,AP A



more accurate, but also requires much more storage space for the training data and

is considerably more computationally expensive.

2.3 Particle Filter Algorithm

In contrast with the algorithms from the previous section, particle filter computes a

location estimate given the entire sequence of WiFi observations up to the present.

The algorithm maintains a probability distribution of the current device location, and

updates it at every time step as each new WiFi observation becomes available. The

probability distribution is represented as a vector of weighted particles, and is initial-

ized using the first WiFi observation, such that the particles represent the probability

distribution of the current location given the first observation. After initialization,

the algorithm proceeds enters the main cycle, with each iteration consisting of Update,

Reweight, and Resample steps, explained below.

In Update step, all particle locations are updated according to particle filter's

Mobility Model. Possible Mobility Models vary in sophistication, ranging from naive

models that simple translate each particle a random distance from its previous loca-

tion, to much more complex models that simulate cars driving on streets.

To maintain the probability distribution of the current location, the algorithm

reweighs the particles based on their new locations and the transitions made in the

Update step. Using the probabilistic interpretation of particle weight, the update

equation for the weight wi(t) of particle i with location xi(t) at time t when WiFi

observation O(t) is made, is

wi(t) = wi(t - 1)P(xi(t) O(t))P(xi(t)xi(t - 1))

The new weight wi(t) of the particle i is its old weight wi(t - 1) multiplied by

the probability that the tracked device is at particle's location xi(t) given current

WiFi observation O(t), multiplied by the probability of transitioning from particle's

old location xi(t - 1) to its new location ax(t). Particle filter's Sensor Model is
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responsible for estimating P(xi(t)O(t)) and the Mobility Model is responsible for

estimating P(xi(t)lzi(t - 1)).

At the end of the Reweight step, particle weights are normalized so that they all

add up to one.

The final step of the algorithm cycle is the Resample step. In this step, particle

distribution is resampled, discarding particles with low weights and replacing them

with high-weighted particles. A preset percentage of particles is discarded, with each

removed particle being replaced by a clone of a random particle sampled from the

weighted particle distribution.

Figure 2-3 illustrates the execution of the particle filter, and Algorithm 3 shows

the pseudocode.
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input : WiFi observation sequence W : t -+ {API... APk , number of particles N,
number of particles to resample at each step K, mobility model M, sensor
model S

output: estimated location sequence
/* Initialize particles */

1 particles +- new List
2 for i +- 0...N do
3 particles.append(S.sampleParticle(W[0]))
4 /* enter main Update-Reweight-Recycle loop */
5 for t E W.keys do

sum <- 0

for i - ... N do
/* Mobility Model updates particle location and returns the

probability of the transition */
transProb +- M.updateParticle(particles[i])
locProb +- S.scoreParticle(particles[i],W[t])
particles[i].weight +- particles[i].weight *transProb * locProb

sum +- sum + particles[i].weight

/* Normalize weights
for i - 0...N do

I particles[i].weight -- particles[i].weight /sum
/* Resample particles */
for i +- 0... K do

i + random(0,N)
good +- weightedSampleParticle(particles)
particles[i]. cloneParticleFrom(good)

/* Output estimate */
estimates.append (weightedAverage(particles))

22 return estimates
Algorithm 3: Particle Filter Algorithm
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Chapter 3

iNav Design

This chapter explains iNav's system architecture in detail, describing how algorithms

from Chapter 2 are used to create a hybrid WiFi/accelerometer localization scheme.

The chapter begins with a general overview of the system design and then examines

each of the components individually.

3.1 System Overview

iNav is composed of four major components, illustrated in Figure 3-1. At the center of

iNav is the particle filter that is responsible for maintaining system's belief state about

the tracked vehicle's location. The system takes continuous streams of WiFi and

accelerometer observation data as inputs, which are then routed to the appropriate

processing modules. The incoming WiFi fingerprints are directed to the WiFi Model,

and the accelerometer readings are processed by the Accelerometer Model. Once the

current WiFi/accelerometer observations are processed by their respective models,

iNav's particle filter is stepped through the update/reweight/resample cycle and a

location estimate is produced by the system.

The WiFi Model is used as the sensor model of the particle filter, while the Ac-

celerometer Model is used an an input to the Mobility Model. This mapping is natural

- the accelerometer data provides information on how the vehicle transitions from

its previous location to the current location, allowing the Mobility Model to estimate
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full 6 degrees of freedom accelerometer with very high accuracy and sampling rate.

While a simple 3-axis accelerometer is a lot more difficult to use in this fashion, a

great amount of device/vehicle motion information can still be extracted from its

readings. The features that can be extracted with a 3-axis accelerometer are best

compared to what a blindfolded person sitting in a car can detect. It is possible to

tell when the vehicle is stopped or moving, when it is accelerating or slowing down,

and when it is turning (along with the direction of the turn).

The Accelerometer Model used by iNav extracts all of these features. By having

the device accelerometer axis aligned with the car body (or having the information of

device's orientation relative to the car, and assuming that it remains fixed), changes

in car's speed can be determined by looking at longitudinal acceleration values, and

turning can be detected by spikes in lateral acceleration. Figure 3-2 illustrates this.

iNav processes the accelerometer data with a simple averaging time window. Turns

are labeled by comparing the lateral acceleration window average with a preset thresh-

old value, and stops are identified by lack of variance in accelerometer samples over

the time window (also compared to a preset threshold value). Algorithm 4 shows the

pseudocode for the accelerometer processing logic. The intuition behind the averag-
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ing is that a turn is characterized by continuous presence of lateral acceleration over

multiple seconds - an averaging time window will capture these occurrences given an

appropriate size of the window. The threshold and window size values are calibrated

from the training data. Window size of 2 seconds, and average lateral acceleration

threshold cutoff of 0.88 m/s 2 (roughly 1/10th of g) are used for turn detection in the

evaluation system.
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Figure 3-3: Lateral acceleration averages over time, with turn detection thresholds

Figure 3-3 shows a plot of time window-averaged lateral acceleration values, along

with threshold values for identifying turns and stops.

The performance of iNav's Acceleration Model at correctly identifying vehicle

motion features such as turns is evaluated in section 5.2.

Average lateral acceleration over 2 seconds -

Right Turn

- Left Turns



input : lateral acceleration input sequence A : t -+ acceleration, Turn detection
threshold T, averaging window size W

output: sequence of times for which turns were detected
1 turns +- new List

2 average + 0
3 for t e A.keys do
4 average +- average + A[t]
5 average +- average - A[t - W]
6 if laveragel > T then
7 turns.append(t)
8

9 return turns
Algorithm 4: Accelerometer Turn Detection Algorithm

3.3 iNav WiFi Model

The purpose of the WiFi Model in iNav is to process incoming WiFi observations,

using the resulting information for the intialization and reweight phases of the parti-

cle filter. The WiFi Model requirements are similar to that of single-point estimation

algorithms reviewed in section 2.2. While any of the single point estimation algo-

rithms can be used for the WiFi Model, iNav uses a plain Centroid algorithm, for

its computational simplicity and accuracy comparable to that of other single-point

estimation algorithms.

The WIFi Model maintains a database of (MAC- > Location) pairs for every

known access point, along with a mapping between AP identifiers and the streets on

which the AP was observed in the training dataset. The (MAC- > Location) pairs

are used for the Centroid algorithm, and the (AP- > Streeto... Street,) map is

used for particle initialization, as described in Section 3.4.1.

When estimating P(xi(t)lO(t)) for particle reweighing, the WiFi Model uses the

single point estimate Estimate(O(t)) in the following equation:

P(xi(t) O(t)) = 1/Distance(xi(t), Estimate(O(t)))

Particles farther than a certain distance (500 meters is used) are assigned zero

score. This is done to allow the particle filter to enter a degenerate state and restart



when the particle distribution no longer matches the incoming WiFi observations.

3.4 iNav Particle Filter

The particle filter is at the center of iNav's design, and it is responsible for processing

the outputs of all other modules and computing the final location estimate. iNav uses

the particle filter algorithm exactly as presented in Section 2.3, with the details of

the four phases - initialization, update, reweight, and resample, described below.

3.4.1 Particle Initialization

Particle initialization takes places as soon as the system receives the first WiFi fin-

gerprint that the WiFi Model can recognize (i.e. it contains APs that are in the

training database). To initialize particle locations, the WiFi Model looks up the set

of streets on which any of the APs from the fingerprint was observed. The particles

are initialized with locations uniformly sampled from this street set. Each particle's

initial speed is picked randomly between zero and maximum allowed speed by the

system (80mph).

3.4.2 Map-Assisted Mobility Model

The Mobility Model is responsible for the update phase of the particle filter algo-

rithm, and for computing the transition probability estimate in the reweight phase.

To reduce the search space that needs to be covered by the particles, all particle

trajectories are restricted to streets on the map. At every update step, the particles

move some distance along the streets (based on their current speed), making random

turns when they hit intersections. Every particle keeps track of its speed, which is

adjusted with random gaussian acceleration applied at every step.

The Mobility Model makes heavy use of the accelerometer data. Since the Ac-

celerometer Model can identify when the vehicle is stopped or changing its speed, this

information can be used to bias the motion of particles. The Mobility Model takes



processed accelerometer data as an input, and adjusts the particle speeds based on the

accelerometer values. If the vehicle is determined to be stopped by the Accelerometer

Model, then all particle speeds are set to zero. While the accelerometer data can

also be used to determine whether the car is speeding up or slowing down, only very

coarse-grained estimates are possible, making this information not very useful for the

Mobility Model.

Optionally, the accelerometer data can be used to bias turn directions of the

particles, although iNav does not. Instead, iNav uses the turn information reported

by the accelerometer to compute the estimates of P(xi(t) I (t - 1)) that the Mobility

Model returns for the reweight step of the particle filter.

After updating particle locations, the Mobility Model determines whether each of

the particles made a turn in the update step. This is determined by computing the

angle between the previous street segment that the particle was on and the current

street segment. If the angle is above a preset threshold (60 degrees is used), then the

transition is labeled as having made a turn. For each particle that made a turn, the

score reported by the Mobility Model is 1 if the turn matches what Accelerometer

Model reports, and 0.1 otherwise. All particles that did not make a turn get assigned

a score of 1.

3.4.3 Particle Reweighting and Resampling

The reweighting and resampling of particles in iNav is done in exactly the same way

as described in Section 2.3. For reweighting, each particle's weight is multiplied by

the scores returned by the WiFi Model and the Mobility Model, and all the weights

are re-normalized afterwards.

For resampling, at every iteration iNav replaces randomly selected 10% of the

particles with particles sampled from the weighted particle distribution. Section 4.2.1

provides details on the exact resampling algorithm implementation used by iNav.



3.4.4 Location Estimate Reporting

iNav reports the location estimate the same way as described in Section 2.3. A

weighted average of all particle locations is taken to produce the estimate.

Additionally, iNav is capable of reporting an estimate of the street segment that

the vehicle is currently on. The estimate is computed by selecting the street segment

with largest cumulative particle weight.

3.4.5 Dealing With Degenerate Cases

A particle filter can suffer from degeneracy when all of its particles end up with zero

weights. While it is possible to avoid this scenario by injecting newly initialized parti-

cles at every iteration of the algorithm, iNav does not attempt to do so. Instead, the

system lets the algorithm reach a degenerate case if the evidence leads to zero scores

for all particles, and simply stops reporting a location estimate. Once degeneracy is

reached, the system restarts the particle filter, re-initializing all of the particles in the

same way it did in section 3.4.1.



Chapter 4

iNav Implementation

iNav has been designed to run on low-power mobile devices such as cell phones,

and includes a number of optimizations to make a fairly sophisticated algorithm like

particle filter run on in a very resource-limited environment. This chapter describes

the specifics of iNav implementation and presents the optimizations that the system

uses to achieve its performance.

4.1 Overview

The target platform for the current implementation of iNav is Apple iPhone. The

iPhone has both a WiFi radio and a builtin 3-axis accelerometer, making it an ideal

target device for iNav. iPhone also has plenty of computational resources available

for a cell phone - a 400MHz ARM CPU, 128MB of RAM, and up to 16GB of storage

space.

Figure 4-1 shows screenshots of the iNav client on the iPhone. The demo appli-

cation runs the particle filter implementation, stepping the algorithm every time a

new accelerometer and/or WiFi observation is recorded. The application is capable

of sending the current location estimate to iPhone's Maps.app to visualize the device

position.

While the code for acquiring WiFi and accelerometer readings is iPhone-specific,

the rest of the codebase is platform-independent. In addition to the iPhone client,



(a) iNav application (b) iNav console (c) iNav output to Maps.app

Figure 4-1: iNav iPhone client

a build of iNav for Mac OS X-x86 exists. The iNav codebase is relatively small,

consisting of less than 2000 lines of code. iNav is written mostly in C++ with some

iPhone-specific code done in Objective C.

Source code from the Stumbler[1] project is used for WiFi scanning code on the

iPhone. With the scanning code, WiFi observations are taken once every two seconds

on average, The system samples iPhone's accelerometer readings at 50Hz.

4.2 Optimizations

This section discusses the optimizations that went into iNav to allow it to run in

resource-limited environments, such as cell phones with limited amount of RAM and

slow CPUs.

4.2.1 Fast Particle Resampling with Particle Distribution Buck-

eting

Particle resampling is one of the most processing-intensive steps in a particle filter.

Given N total particles and K particles to be resampled, a naive implementation
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would take O(NK) time to sample a replacement particle for each particle that is

discarded.

iNav introduces an optimization for the resampling process that discretizes parti-

cle distribution into B buckets, reducing the runtime complexity to O(NlogN). The

intuition for optimization lies in the idea that one could simplify the particle distribu-

tion by splitting it into a fixed number of buckets such that every bucket has particles

with approximately same weight, and the cumulative weight of all particles in each

bucket is the same as well. Then to sample a particle from the particle distribution,

one could simply uniformly select a random bucket, and then select a random particle

in the bucket.

To build up the buckets, all the particles are first sorted by their weight (taking

up O(NlogN) time which dominates the rest of the steps). Then, an indexing array

buckets, defining the bounds of each bucket, is built by scanning through the sorted

distribution once. Once all the buckets are built, the K particles are sampled as

described in the previous paragraph. The pseudocode for the optimized resampling

step is shown in Algorithm 5.

4.2.2 Flat-File DBs

Low memory utilization and quick startup times are crucial in applications targeting

low-power mobile devices. iNav addresses these requirements by storing all of the sys-

tem data (the access point table, and the street map) in flat-file databases residing on

the phone's flash memory. Because all of the data remains on permanent storage only

the particles themselves must be allocated in RAM at runtime, minimizing memory

consumption. The startup times are minimized as well since no data needs to be

loaded to RAM on a cold start. iNav can begin outputting location estimates as soon

as the first WiFi scan is complete.

The flat-file databases are extremely simple. The databases themselves consist of

fixed-size records with a unique fixed-sized key for each record. Keys are laid out in a

sorted order forming an index. Binary search on the index is used for record retrieval,

and no caching is performed, leaving that to the application.



input : Particle array particles, number of particles N, number of particles to
resample K

output: Resampled array of particles particles
1 sorted *-- sort(particles)
2 buckets - new Array
3 sum *-- 0

4 bucket -- 0
5 i +- 0
6 while i < N do
7 sum -- sum + sorted[i].weight
S while sum >= bucket/B do
9 buckets[bucket] +- i

10 bucket -- bucket + 1

11

12 i 4- 0
13 while i < K do

14 pick - random(O, 1)
15 bucket -- pick * B
16 idx +- random(buckets[bucket], buckets[bucket + 1])
17 sorted [i]. cloneFrom (sorted[idx])
18

Algorithm 5: Optimized Particle Filter Resampling Algorithm

For access points, the keys are MAC addresses, and the records include AP location

estimates and streets on which the access point has been seen in the training data.

For street map DB, intersection ID is the key, and the record consists of IDs of all

connecting intersections.

4.2.3 Caching Strategies

Because all of the data remains on the slow permanent storage, caching is necessary

to achieve acceptable system performance. The WiFi Model caches both the records

for every access point looked up and the location estimate for every WiFi fingerprint

processed. The fingerprint estimate caching ensures that the AP database is only

accessed once per WiFi scan, which typically happens no more than once every second.

The Mobility Model maintains a cache of the recently looked up street intersec-

tions. The LRU policy is used for cache replacement. Because under typical running

conditions intersections from a limited map area are accessed (the streets on which

the current set of particles resides), LRU is a reasonable choice.



Chapter 5

Evaluation

This chapter presents a numerical evaluation of iNav's performance, both at the

individual component level, and for the system as a whole. The methodology section

explains the specifics of collecting training and testing data, and is followed by the

component-level evaluations of the Accelerometer Model and the WiFi Model. The

performance of the system as a whole is evaluated both in terms of distance error,

and road segment identification accuracy,in section 5.4. Finally, the chapter concludes

with an analysis of iNav resource utilization at runtime.

5.1 Methodology

5.1.1 Training Data

iNav relies on the vTrack[6] war-driving database for its training data, which is popu-

lated by records from 30+ taxi cars driving in the Greater Boston area. The database

consists of WiFi fingerprints mapped to the locations where they have been observed,

as marked by GPS. Since locations of access points whose observations span large

areas cannot be accurately estimated by the centroid algorithm, these access points

are filtered out from the training dataset. The data is cleaned to remove access points

whose observation points span an area larger than a kilometer in the diagonal. The

resulting cleaned training set includes over 450,000 unique access points.



iNav requires a road network map for the Mobility Model of its particle filter.

NavTeq map data was used for the evaluation.

5.1.2 Testing Data

The testing data was collected over 3 hours of driving in Downtown Boston, Cam-

bridge, Somerville, and Brookline areas. Figure 5-1 shows the GPS trace of the test

vehicle driving, and the test data collection setup is illustrated in Figure 5-2. An

iPhone running accelerometer and WiFi loggers is mounted on the vehicle's dash-

board, and a separate Garmin eTrex Vista HC GPS unit is used for recording GPS

trace of the car.

Figure 5-1: GPS trace of the test vehicle

While the iPhone is capable of logging WiFi fingerprints, the evaluation WiFi

data was collected using a separate Meraki Mini box. Due to lack of control over

access point caching in the current version of iPhone's Stumbler WiFi scanning code,

the resulting WiFi fingerprints are not a good estimate of the current location of the



device. To avoid this problem for the evaluation, the WiFi scans from Meraki Mini

were used instead. The Meraki Mini runs a modified firmware that performs WiFi

scans every second, and periodically sends the traces to a central server where the

fingerprints are processed and stored in a database.

(a) iPhone logging acceleration (b) GPS logging ground truth location

Figure 5-2: Data collection setup

Since accelerometer, GPS, and WiFi data are collected on three separate devices,

the time synchronization issue must be addressed. The GPS and the iPhone get

their clocks set by GPS satellites and cell towers respectively, resulting in a closely

matching timestamps for both devices. The remaining third data source - the Meraki

Mini is synchronized by recording the clock offset between the WiFi logging server

and the iPhone. Using the offset, the WiFi timestamps are shifted appropriately,

resulting in all three data sources matched in time.

Table 5.1: Test drive descriptions

1 Cambridge to Somerville. Mainly suburban areas with good WiFi coverage
2 Somerville to Brookline. Suburban areas with large WiFi gaps
3 Brookline to Downtown Boston. Dense urban areas with good WiFi coverage
4 Downtown Boston to Somerville. Mostly highway, with very large WiFi gaps
5 Cambridge to Somerville. Mainly suburban areas with occasional WiFi gaps

The test driving data is split into five separate drives each lasting between 10 and

20 minutes, with the split points picked to minimize gaps in WiFi coverage in the five



drives. The five drives are characterized in Table 5.1.

GPS traces for all five drives are used as ground truth in the evaluation.

5.2 Accelerometer Model Performance

Before evaluating the performance of the entire system, it is important to take a look

at the performance of the individual components that make up the system. This

section examines the performance of the Accelerometer Model.

The job of the Accelerometer Model is to identify when the vehicle is making a

turn, using the accelerometer readings, and to score the particles based on how well

their trajectories match the turn information. Figure 5-3 shows route turns for drive

#5 identified by the Accelerometer Model, and turns extracted from the GPS trace.

RightTurn RightTurn

SLeft Turn 
LeftTurn

(a) Turns identified by accelerometer (b) Turns identified by GPS

Figure 5-3: Accelerometer Model identifying turns and stops over a drive

To numerically assess the performance of the Accelerometer Model, the evalu-

ation computes the percentages of intersections where the turns identified by the

Accelerometer Model match those extracted from the GPS trace. For the evalua-

tion, only intersections with more than two streets emanating are considered, since

those are the only intersections at which a vehicle has a "choice" of where to go (i.e.

turn left or right). Table 5.2 shows the numerical results for Accelerometer Model

accuracy. First line shows the percentage of intersections where both GPS and the



Accelerometer Model report a turn in the same direction, out of all the intersections

where turn is reported by the Accelerometer Model. The second line lists the percent-

age of intersections where both report no turn being made, out of all the intersections

where Accelerometer Model reports no turn.

Table 5.2: Accelerometer Model performance at identifying route turns

Percentage of intersections where G = tIA = t 62%
Percentage of intersections where G = fjA = f 94%

Based on these results, the Accelerometer Model is very good at instructing the

particle filter to not allow the particles to make turns when the vehicle maintains a

straight trajectory.

5.3 WiFi Model Performance

100 200 300 400
Distance Error from GPS (meters)

Figure 5-4: CDF of distance errors for WiFi Model location estimates



The WiFi Model scores particles based on how far away they are from the current

single point estimate computed using the centroid algorithm. To evaluate the WiFi

Model performance, distance errors between the centroid location estimates and the

GPS location are computed for all WiFi observations. Figure 5-4 shows a CDF of

distance errors for the location estimates produced by the centroid algorithm for all

five test drives. The median error is 103.7 meters and the mean is 216.7 meters.

5.4 iNav Particle Filter Performance

- iNav
GPS
WiFi

- iNav
GPS

- WiFi

(a) iNav with accelerometer (b) iNav without accelerometer

Figure 5-5: iNav performance with and without accelerometer input

Having examined the performance of individual iNav components, this section

now takes a look at the performance of the whole system. Figure 5-5 displays the

output of iNav for drive #2, running with and without accelerometer input. In both

configurations, iNav produces a trace that is much smoother than the centroid WiFi

estimates, doing a better job at following the GPS trace. The output of iNav running



with the accelerometer input diverges less from the GPS trace, particularly in the

areas with higher noise in WiFi centroid estimates.

For numerical evaluation, two separate metrics are used to examine iNav's perfor-

mance. The first one is distance error from GPS - the same metric as the one used

in previous section. While raw distance error is a good basic indicator of the system

performance, for a number of applications, the accuracy of identifying the street on

which the vehicle is currently traveling on is more important than the distance from

true location itself. These applications include vehicle tracking, navigation aids, and

traffic monitoring. Therefore the second metric used for system evaluation is the

percentage of points in time when the system reported the correct street segment the

vehicle was traveling on, as reported by GPS. Since a lot of the street segment in the

map data are quite short, some degree of error in time is allowed when computing

the second error. Instead of computing percentage of points where the iNav-reported

street segment is the same as the one reported by GPS, the relaxed metric computes

the percentage of points where the iNav-reported street segment was in the GPS trace

within a fixed time window. For the evaluation a time window of 30 seconds was used.

Table 5.3: iNav average distance error with and without accelerometer input

Drive Median Error(w. Accel.) Median Error(No Accel.)
1 60.1m 98.9m
2 328.6m 334.2m
3 73.1m 73.3m
4 413.1m 261.3m
5 127.2m 148.8m

Figure 5-6 shows the distance error CDF for iNav over all of the test drives,

and Table 5.3 lists distance error averages for individual drives. For evaluation, the

particle filter was run with 10,000 particles. Note that these numbers are not directly

comparable to the numbers from section 5.3, since iNav outputs location estimates

every second, whether there is a WiFi observation or not, extrapolating the location

when no WiFi data is available. The table shows that iNav performs considerably

better in drives without large gaps in WiFi coverage, and indicates improvement in
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Figure 5-6: Relative performance of Particle Filter(WiFi Only), and Particle Fil-
ter(WiFi+Accelerometer)

performance for estimates calculated with accelerometer data for almost all of the

drives. The only drive which shows a decrease in performance is drive #4, which has

very large WiFi observation gaps, some lasting over 2 minutes.

The CDF plot of errors for all drives shows similar numbers for the system run-

ning with and without the accelerometer, although the accelerometer-assisted system

makes smaller distance errors (<50 meters) more often. This fits well with the num-

bers seen in Table 5.3: the accelerometer input boosts system performance in areas

with dense WiFi coverage, but degrades it when there is a large amount of WiFi noise

or complete lack of WiFi signal.

A possible explanation for the degradation in system performance on drives with

large WiFi gaps is that route features identified by the accelerometer become useless

without the absolute location context provided by WiFi observations. Knowing that

I I I I

iNav With Accelerometer Distance Error CDF --
INav Without Accelerometer Distance Error CDF ---.

----

-1

-

,,

-



a right turn was made is only useful when one can estimate which intersection the

turn was made at. With a large WiFi gap it is possible that none of the particles

have reached the true intersection yet, so the turn information reported by the ac-

celerometer will be applied at a wrong intersection, leading the particle distribution

away from the true vehicle trajectory.

Table 5.4 shows the results of the road segment identification accuracy metric for

individual drives. Again, accelerometer input improves performance considerably for

drives without large gaps in WiFi coverage.

Table 5.4: iNav road segment identification accuracy with and without accelerometer
input

% segments identified
Drive With Accel. No Accel.
1 77.4% 39.0%
2 33.8% 25.0%
3 78.2% 50.4%
4 8.9% 15.9%
5 57.1% 39.0%

5.5 Resource Utilization on Low-Power Devices

This section examines runtime resource utilization of the system. Because iNav is tar-

geted at low-power mobile devices like cell phones, the ability to perform in resource-

limited environments is critical. Table 5.5 shows the main performance figures for

the system running on an iPhone. The RAM requirements are very modest even for

cell phones much less powerful than the iPhone, and running with 10,000 particles

the system is still capable of stepping the particle filter over 3 times per second. The

data put in phone's permanent storage includes training database and street map for

the entire Greater Boston area. At 100MB, the storage space required is fairly large

but acceptable for most of today's smartphones.



Table 5.5: iNav system resource utilization and runtime performance with 10,000
particles

Storage used 100MB
RAM used 1.5MB
Particle Filter performance 3.7 cycles / second



Chapter 6

Discussion

This chapter presents a discussion of the evaluation results from the previous chapter

with respect to possible applications for iNav. Section 6.2 provides some practical

considerations for large-scale deployment of a WiFi localization system such as iNav,

followed by an analysis of directions in which future work on iNav can be done. The

chapter concludes with a summary of contributions of this thesis.

6.1 Suitability for Location-Based Services/Applications

Possible applications that can be built on top of iNav's localization platform have

been discussed in section 1.2.1. This section examines these applications given the

system performance evaluation data from chapter 5.

While the average distance error for iNav location estimates is still too high for

producing realtime turn-by-turn directions, the high percentage of correctly identified

street segments still allows for significant navigational aids. For example, an iNav-

based application would be capable of alerting the driver when a turn is coming up

few blocks ahead.

Because iNav can with high probability identify the current street the vehicle is

on, user interaction with the navigational software can be significantly simplified.

In current interface of iPhone's Maps application the workflow for obtaining driving

directions is following:



1. User hits the "Find My Location" button to get a WiFi-triangulated location

estimate

2. User picks the starting point of the route one the map that is now centered

around the location estimate

3. User picks the end point of the route and directions are computed

If the initial point of the route can be estimated with high accuracy, the first two

steps can be eliminated, resulting in a much simpler workflow. iNav's performance in

identifying the current street segment should allow just that.

The ability to report a street location rather than a simple (latitude, longitude)

pair is helpful in other applications as well. For vehicle tracking applications such as

a system that reports the time estimates for when a shuttle/bus will arrive at its next

stop can benefit from the street location estimate. Since shuttles typically travel on

a pre-defined route, the location estimation algorithm's job is further simplified by

having the search space restricted to just the vehicle's assigned route. A very cheap

system for shuttle tracking can be built by simply putting a GPRS-capable phone

with a WiFi radio on every shuttle that needs to be tracked.

The last application that was introduced in section 1.2.1 is urban traffic monitor-

ing. In its current form iNav is not a good match for this application. While the

system does a good job at identifying street segments that the vehicle is traveling

on, these identifications are made within a fairly large time window. In other words,

iNav is good at reporting information like "the vehicle has been on this street segment

within 30 seconds from now", which makes it difficult to estimate vehicle speeds on

each street segment. iNav's focus is doing the best job possible at estimating the

most recent location of the vehicle, which is considerably different from the require-

ments of a traffic monitoring system. For a traffic monitoring system, an estimate

of vehicle's recent path is more important. Such application would make a tradeoff

between estimation latency and estimation accuracy, choosing accuracy over latency.



6.2 Practical Considerations for System Deploy-

ment

While the current implementation of iNav is functional within the Boston metropoli-

tan area, creating a large-scale deployment of iNav that can provide a WiFi localiza-

tion platform for multiple cities simultaneously would require considerable changes to

the system architecture. This section discusses some of the practical considerations

for creating a large-scale deployment of iNav.

The first issue with a large-scale iNav deployment is that with multiple metropoli-

tan areas it is no longer feasible to fit all of the AP centroids/streets data on the

mobile device itself. To address this problem, a scheme with over-the-air updates for

on-device data can be designed. In such scheme, a central server would host the AP

database for all of the APs in all of the markets covered by the system, and individual

devices would make requests to the server to send AP data for the area in which the

device currently is in. Since a very rough location estimate of the device location can

be obtained even with just one WiFi observation, sending a single WIFi fingerprint

to the server should be sufficient for the server to determine the general area in which

the client device is located, and respond with AP database subset for that area.

With the central server in charge of carrying the AP database, the maintenance of

the AP data becomes another issue to consider. The AP database must be updated as

old access points get moved and new ones are added. Since GPS-labeled war-driving

data is only available for the initial dataset, these updates to the AP database must

be made based on the client WiFi data alone. To maintain the central access point

database, the devices using the system would periodically send their WiFi traces

to the central server. A self-organizing WiFi mapping scheme bootstrapped on a

sparse GPS-labeled training set is possible, as described in [11]. A simplification of

such scheme would be having the new WiFi fingerprints labeled with WiFi-estimated

location instead of GPS location, and then added to the central AP database.



6.3 Future Work

The current implementation of iNav had demonstrated that accelerometer data can be

used in conjunction with WiFi observations to improve location estimation accuracy.

This section examines possible ways of further improving iNav performance, and

discusses directions for future work.

6.3.1 Algorithm Improvements

Several improvements can be made in the algorithms used by iNav. Since particle

filter performance is dictated by the accuracy of the sensor and transition models,

improvements to either of those would be beneficial to the overall system performance.

The accuracy of the WiFi Model is difficult to improve without increasing the

computational complexity of the algorithm. As discussed in section 2.2.2, the Fin-

gerprinting algorithm could improve estimation accuracy at the expense of added

computational cost. Alternatively, the estimation accuracy of the centroid algorithm

can be raised by training it on a larger GPS-labeled dataset.

There are a number of ways in which the Accelerometer Model could be enhanced.

Based on the evaluation numbers, the current implementation is very good at detect-

ing when the car is on a straight trajectory, but its accuracy could be improved for

identifying when turns are made. The current thresholding algorithm is a very simple

approach to accelerometer data processing and it is possible that better results could

be obtained with more sophisticated algorithms.

Additional information, such as vehicle speeding up or slowing down, should be

possible to extract from accelerometer data, even if at very coarse granularity. Speed

information can be used to further bias particle mobility model, improving estimation

accuracy for estimates based on the accelerometer readings only (for example when

passing through an area with sparse WiFi coverage).



6.3.2 Integrating Additional Data Sources

Integrating additional location information sources could be used to improve system

estimation accuracy as well. Similar to WiFi, cell towers and Bluetooth devices act

as radio beacons, and therefore can be used as location sensors. Integrating these

additional sources with the existing system would require creating a sensor model for

each additional location data source, and changing the particle scoring function in

the particle filter to take into account the output of the new sensor model.

It is also possible to use a GPS module as an additional location sensor for the

system. One of the possible motivations for doing so would be increasing location

estimation accuracy and system availability compared to WiFi localization and GPS

alone.

Finally, multiple devices with WiFi radios can be used for collaborative localiza-

tion. With this setup, each device can use the WiFi observations made by other

devices surrounding it as a separate location sensor. Same as with other additional

data sources discussed, combining observations from multiple devices for particle scor-

ing would require a separate sensor model for the additional observations.





Chapter 7

Conclusion

In summary, the major contributions of this thesis include designing and implement-

ing a WiFi localization system capable of utilizing street map data and accelerometer

input to improve estimation accuracy.

The created implementation of the system is specifically optimized for running on

low-power devices such as cell phones. The embedded performance of the system is

achieved in part by the proposed and implemented optimization of the resampling

step in particle filter algorithm, which reduces the time complexity of the step from

O(N 2 ) to O(NlogN).

Finally, this thesis evaluates the performance of accelerometer-assisted WiFi lo-

calization system on test drives with varying levels of WiFi coverage, and examines

the suitability of accelerometer-assisted WiFi localization system for various location-

based services and applications.
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