Segment-Based Image Matting using Inpainting to

Resolve Ambiguities MASSQ%HT%%?*@E&I/W
by NOV 13 2008
Heng Ping Nabil Christopher Moh LIBRARIES

S.B. Computer Science and Engineering, M.I.T. (2008)
S.B. Economics, M.I.T. (2008)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008
(© Massachusetts Institute of Technology 2008. All rights reserved.

Author ... e Ve
Department of Electrical Engi%' % and Computer Science

: 'August 12, 2008

Certified by...':.;;...—.....‘.__,,. e

Frédo Durand
Associate Professor
//7,7/ ") Thesis Sipervisor

Accepted by S ; e e e
-~ Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

ARCHIVES

Segment-Based Image Matting using Inpainting to Resolve
Ambiguities
by
Heng Ping Nabil Christopher Moh

Submitted to the Department of Electrical Engineering and Computer Science
on August 12, 2008, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Image Matting and Compositing [6, 25| — the extraction of a foreground element
from an image and overlaying it over a different background — are two important
operations in digital image manipulation. The extraction of the foreground element
and its composition over an existing background is performed using a mask known
as an alpha matte, which is generated by Image Matting. The problem of Image
Matting is inherently ill-posed and has no “correct” solution; however, several matting
algorithms have been proposed. This thesis studies the popular Bayesian Matting [9]
algorithm in detail, and documents several problems with regard to its efficiency
and accuracy. Inspired by these problems, this thesis proposes two major ideas:
Firstly, a new Segment-Based Matting Algorithm that incorporates shading and has
a closed form solution. Secondly, a new general approach that uses Digital Inpainting
— the technique of restoring defective areas in digital images — to resolve ambiguous
areas in the alpha mattes. This thesis demonstrates that the combination of these
ideas improves both the efficiency and accuracy of Image Matting. From the results
obtained, this thesis proposes the following idea: The degree of local smoothness
enforced in the alpha matte should depend on the local color distribution; the more
similar the local foreground and background color distributions are, the greater the
amount of smoothness enforced.

Thesis Supervisor: Frédo Durand
Title: Associate Professor

Acknowledgments

This thesis would not have been possible without the help of many people.

First and foremost, my utmost gratitude goes to my thesis supervisor, Frédo Durand,
for countless things, including providing me the opportunity to work on this thesis,
providing me with research guidance and good ideas when I was stuck, and providing

me the necessary resources to work on this problem.

I am extremely grateful to my family for their undying support and their encourage-

ment in helping me get through MIT.

I thank the many people who have provided technical resources — such as code and
sample images — that have been useful to me. Notables include Marcelo Bertalmio,

Kevin Chen and Anat Levin.

I would like to thank the Singaporean undergraduate community at MIT, and my
neighbors in Senior House Second Ware, for being such good friends and a source of

community support.

I have grown a lot academically at MIT, and I would like to thank everyone who
has contributed to this academic growth, including my academic supervisor, Ronitt
Rubinfeld, the Course VI Undergraduate Administration — especially Anne Hunter —
and all the professors and TAs who taught the classes I took.

I would also like to thank all my friends at MIT. You have definitely made my life at
MIT a lot more meaningful, worthwhile and fun.

Finally, to everyone this thesis owes a debt to but I have not mentioned, I thank you

and offer my sincere apologies for omitting you from this list of acknowledgements.

Contents

1 Introduction 17

1.1 Digital Image Compositing and Matting: A Mathematical Framework 20
1.1.1 Natural Image Matting 22

1.2 Thesis Motivation and Contributions 26

2 Some Prior Work in Natural Image Matting 31
21 Ruzon-Tomasi, 31
2.2 Bayesian Matting 32
23 Closed Form Matting 33
2.3.1 Spectral Matting 35

24 Graph Cut. e 35
241 GrabCut 37

25 Robust Matting L 38
2.6 Iterative Optimization 40
2.7 GeodesicMatting e 42
2.8 General Problems with Matting 43

3 Bayesian Image Matting 47
3.1 A Description of Bayesian Matting 47
3.1.1 Clustering pixels 51

3.1.2 An Interpretation of Bayesian Matting 52

3.2 Problems with Bayesian Matting 53
3.2.1 Efficiency 53

3.2.2
3.2.3

3.24
3.2.5

Accuracy I - Non-Sparse Alpha due to Mean Preference ... 56

Accuracy II — Discontinuity due to similar foreground and back-

ground distributions L. 62
Accuracy III — Miscellaneous Issues that Affect Accuracy . . . 64
A Remark on Measurement Error 67

3.3 A Slightly Modified Bayesian Matting Algorithm to Form a Baseline . 67

4 Segment-Based Matting: A Closed Form Color-Based Statistical
Matting Algorithm 69
4.1 Motivation and Overview 69

411 ACCUraCY . . . v v v e e e e e e 70

4.1.2 Efficiency 71

4.1.3 Summary of Approach 72

4.2 The Color Line Model 72
4.2.1 Applying the Color Line Model in Our Framework: The Full

Line Model vs. The Line Segment Model 75

43 Our Approach 76

4.3.1 Sampling and Weighting pixels 78

4.3.2 Foreground and Background Detection 78

4.3.3 Solving for a: An Overview 81
4.3.4 Solving for a: Detecting the Cases and Additional Transforma-

tions e 81

4.3.5 Solving for a: The Collinearcase 85

4.3.6 Solving for a: The Coplanarcase 86

4.3.7 Solving for a: Neither Collinear nor Coplanar 94

4.3.8 Multiple Foreground/Background Cluster Pairs 95

4.3.9 Further Optimizations and Special Cases 98

4.4 TImproving the Orchard-Bouman Clustering Algorithm 102

5 Using Inpainting/Texture Synthesis to Resolve Ambiguities in Mat-

ting

109

5.1 Background: Inpainting and Texture Synthesis 110

5.1.1 Inpainting, 110
5.1.2 Texture Synthesis 111
52 Motivation 113
53 Approach 114
5.3.1 Smoothing around Ambiguous Regions 115
5.4 Application to Bayesian Matting 118
5.5 Application to Segment-Based Matting 120
Results and Discussion 123
6.1 Efficiency and Runtimes 124
6.2 Accuracy I: Sharpness of Matte 127
6.3 Accuracy II: Continuity and Regions of Ambiguity 132
6.4 Some Problem Cases 143
6.5 OtherResultsc..... 148
6.6 Summary of Results and Further Discussion 157
- Conclusions and Further Work 159
7.1 A Better Method of Sampling 160
7.2 Data-Dependent and User-Defined Parameters 161
7.3 Application of our ideas to other Matting Algorithms; creating an
“matting-biased” inpainting algorithm 162
Linear Algebra and Important Operations 165
A1l Basic Definitions 165
ALl Lines. 169
A12 Planes e 170
A2 Projections 170
A.21 Orthogonality Criteria 171
A22 ProjectingOntoalLine 171
A23 ProjectingOntoa Plane 172

A3 Eigenvectors and Eigenvalues 174
A.3.1 Eigenvalue Decomposition of Symmetric Matrices 174
A.3.2 Rayleigh Quotient for Symmetric Matrices 175

A4 Transformations 177
A4.1 Rotations in two dimensions 177
A.4.2 Rotating a Plane to make a Given Line Vertical 178
A4.3 Getting 2-D coordinates of Points in a Plane 179

A.5 Homogenous Coordinates in Two Dimensions 181
A.5.1 Representing Lines and Points Using Homogenous Coordinates 181
A.5.2 Obtaining a line passing through two points 182
A.5.3 Obtaining the intersection between two lines 182

Statistics and Statistical Algorithms 185

B.1 Basic Statistics 185
B.1.1 Multivariate Statistics 186
B.1.2 Weighted Statistics 187

B.2 The Normal (Gaussian) Distribution 188
B.2.1 The Multivariate Gaussian 190

B.3 Testing if a Single Sample belongs to a Given Normal Distribution . . 192

B.4 Maximum Likelihood Estimation 196

B.5 Bayes’ Law and Maximum A Posteriori Estimation 197

B.6 Markov Random Fields 199
B.6.1 Estimation using Belief Propagation Algorithms 201

C Principal Component Analysis 205

C.1 Approach e 206

Bibliography 209

10

List of Figures

1-1 An example of Matting and Compositing 17
1-2 Natural Image Matting User Input: Trimaps 24
1-3 Natural Image Matting User Input: Scribbles 24
3-1 Splitting A Cluster 51
3-2 An geometric interpretation of Bayesian Matting. 53
3-3 The Convergence Rate of Bayesian Matting’s Numerical Optimization 55
3-4 Bayesian Matting does not give sharp mattes 57
3-5 Bayesian Matting assigning fractional values of alpha incorrectly. . . . 59
3-6 Bayesian Matting choosing the wrong pair of foreground/background
clusters. 61
3-7 Discontinuity caused by similar foreground and background distributions. 63
4-1 The Color LineModel 74
4-2 The Full Line and Line Segment Models. 76
4-3 An Example of Inexact Collinearity. 82
4-4 Non-collinearlines. 83
4-5 Non-coplanarlines. 85
4-6 Solving the Collinear Case. 86
4-7 Solving the Coplanar Case with the full line model. 88
4-8 Solving the Coplanar Case with the line segment model. 93
4-9 Pixels lying beyond the foreground or background clusters 100
4-10 Cases for Splitting Clusters. 104

11

51 Anexample of inpainting, ... 110
5-2 Texture Synthesis 112
5-3 Filling in holes with Texture Synthesis 113
6-1 Test Images for Matting and Associated Trimaps 125
6-2 Matting onimage6-1(a) 128
6-3 Matting on image 6-1(a) —Part 2 129
6-4 Matting on image 6-1(a) —Part 3 130
6-5 Matting on image 6-1(b) 133
6-6 Matting on image 6-1(b) —Part2 134
6-7 Matting onimage 6-1(c) 135
6-8 Matting on image 6-1(c) - Part 2 136
6-9 Matting on image 6-1(b) —Part3 138
6-10 Matting on image 6-1(d) 139
6-11 Matting on image 6-1(d) - Part 2 140
6-12 Matting on image 6-1(n), 141
6-13 Matting on image 6-1(n) —Part 2 142
6-14 Matting on image 6-1(¢) 144
6-15 Matting on image 6-1(e) - Part 2 145
6-16 Matting on image 6-1(f) 146
6-17 Matting on image 6-1(f) —Part 2 147
6-18 Matting on image 6-1(g) . . . P 149
6-19 Matting on image 6-1(g) —Part 2 150
6-20 Matting on image 6-1(h) L. 151
6-21 Matting on image 6-1(1) 152
6-22 Matting on image 6-1(j) 153
6-23 Matting on image 6-1(k) 154
6-24 Matting on image 6-1(1), 155
6-25 Matting on image 6-1(m) L. 156
A-1 A Graphical Depiction of Defining a Plane. 171

12

A-2
A-3
A-4

B-1
B-2
B-3
B-4

C-1

The Orthogonality Criteria for Projection 172
Rotating a Line to be Vertical 179
Transforming from Three to Two dimensions 180
An Example of a Univariate Normal Distribution. 189
An Example of a Multivariate Normal Distribution. 190
A Markov Random Field. 199
A Simple Three-Node MRF. 202
A motivation for PCA. 206

13

14

List of Tables

3.1
3.2

6.1
6.2

Relative Running Times of Different Aspects of Bayesian Matting . . 54
Relative Total Running Time of Bayesian Matting 54
Relative Running Times of Different Algorithms 126

Relative Estimation Running Times of Different Algorithms, after sam-

pling and clustering. 127

15

16

Chapter 1

Introduction

Digital Compositing and Matting are two important operations in Digital Image Pro-
cessing. In Compositing, a foreground image is overlaid over an existing background.
This foreground image is extracted from an existing image using a mask known as
an alpha matte, which will also be interchangeably referred to as the alpha channel
or simply the matte. Matting, the counterpart of compositing, is the process that
generates the matte. An example of Matting and Compositing is shown in Figure

1-1.

Figure 1-1: How to Walk on Water: An example of Matting and Compositing. From
the original image (left), a matte is obtained (center). This matte is then used to
composite the foreground onto a different background (right).

Matting has a long history dating from the 19th century. We will only briefly mention

some of its history here; a more detailed account can be found in expositions such as

[6] and [8].

17

Optical printers in the early 1900s created composites using an optical compositing
technique [4] that used three film plates — a foreground plate, a matting plate and a
background plate — to create new composite images. The foreground plate contained
the foreground image and the background plate contained the background on which
the foreground would be composited on. The matting plate helped to combine the
foreground plate and the background plate; it was a monochrome plate that helped
to control the foreground opacity and ensure that only the desired elements from the
foreground plate were composited onto the background. Clearly the matting plate

was the most important plate and designing and producing it well was crucial.

Matting has obvious applications in the film and video industry. In the 1960s and
1970s, Petro Vlahos invented Blue-Screen Matting through a series of patents that
earned him a Scientific and Technical Academic Award of Merit at the 1994 Oscars;
his work is formalized by Smith and Blinn [32]. In Blue-Screen Matting, actors are
filmed against a constant-colored (usually bright blue or green) screen; the background
is removed using a color difference method and the resulting images are composited
onto a different (often computer generated) background to obtain special effects. This

technique is still used today.

Matting is also used in the print and magazine industry. The front cover of magazines
often features images (such as celebrities in fashion magazines or haute cuisine in food
magazines). These images are often extracted from a digital picture or photo using

matting and then composited onto the magazine cover.

In recent years, with the increasing popularity of image editing software such as Corel-
Draw and Adobe Photoshop, together with the growing use of digital cameras among
the general public, matting has also become more popular with amateur image editors
and casual computer users. Cutting out a foreground element from a digital photo
and compositing it on a different background, in order to create logos, forum avatars,

MySpace and Facebook pictures, etc. has become commonplace; in the Internet jar-

18

gon, it has become popular to refer to it as a “Photoshop” (as in “I Photoshopped
my head onto his body”).

Matting is closely related to Image Segmentation, which deals with the problem of
separating objects in an image from the background [1]. There are many different
techniques for image segmentation, such as thresholding methods [29] to separate
objects with different light intensities from the background, or edge detection methods
[36] such as Laplacian zero-crossings that try to detect the boundaries between object
and background. Although these techniques have been fairly well-studied, we will not
encounter them in this thesis; there are important differences between Matting and

Image Segmentation. We will list a few:

1. Image segmentation is binary — a pixel either belongs to an object or to the
background. However, matting seeks partial coverage information: The alpha
matte can take fractional values, especially at boundaries where the foreground
blends into the background; these fractional values allow the extracted fore-

ground element to blend better into the background it is composited on.

2. Image segmentation is generally unsupervised and without human intervention.
However, matting generally requires human intervention in order to generate

an accurate alpha matte.

3. In an image with many objects (such as a photo with many people), image seg-
mentation will attempt to separate each of these objects from the background.
In matting, however, in most cases the human user is only interested in ob-
taining one particular object and removing everything else — including all other

objects.

4. Image segmentation is primarily a useful tool in Computer Vision — for example,
when a robot needs to identify obstacles to avoid. Matting, on the other hand,

is a tool in Image Processing, for images to be viewed by the human eye.

The remainder of this chapter will proceed as follows: Section 1.1 will briefly present

19

the mathematical framework for Digital Image Compositing and Matting. Section
1.2 will discuss the motivation behind this thesis and the contributions of this thesis,

as well as lay out a roadmap for the rest of the thesis.

1.1 Digital Image Compositing and Matting: A
Mathematical Framework

A digital image I is a rectangular array of pizels. In color images, each pixel is usu-
ally a three-dimensional vector, denoting a point in three-dimensional color space.
There are many different color spaces, such as RGB (Red-Green-Blue), HSV (Hue-
Saturation-Value), Lab (Light and two opponent color spaces); for the purpose of
this thesis, we assume RGB color space — so that the three dimensions of each pixel
represent the Red, Green and Blue components of its color — but the concepts and
algorithms discussed will transfer easily to different color spaces. We will refer to the
Red, Green and Blue components of every pixel in the image collectively as the Red,
Green and Blue channels of the image. For each pixel, each component is 8 bits in size

and thus each of its Red, Green and Blue components lie in the set {0,1,2,...,255}.

In the standard Digital Compositing framework, introduced by Porter and Duff [25],
a new composited image I is composited from three elements: A foreground image
F, a background image B, and an alpha matte «. F' and B are both color images,
while « is a grayscale mask such that 0 < a < 1 for all pixels in the image. These
three elements are related to the image I through the Compositing Equation®, also

referred to as the over operator:
I=oF+(1-a)B (1.1)

Thus, the image I is a linear interpolation between the foreground and background

L Although F, B and o are all arrays, the multiplication in equation (1.1) should be interpreted as
pointwise multiplication. For example, at each foreground pixel, the Red, Green, and Blue values
are all multiplied by the value of a at that pixel.

20

images F' and B, with the degree of interpolation determined by the alpha matte.
When o = 1, the pixel displayed is that of the foreground; similarly, when a = 0,
the pixel displayed is that of the background and there is a smooth transition be-
tween the two for fractional values of a. Thus, another interpretation of « is of the
foreground opacity or more precisely — following Porter and Duff [25] — the partial
foreground coverage: When « is high, the foreground is relatively opaque and has a
high coverage, and when « is low, the foreground is relatively transparent and has a

low coverage.

Now that we have formalized the compositing and matting framework, we can state

the Digital Compositing and Matting problems:

¢ Compositing: Given foreground F', background B, and alpha matte @, com-

pute the composited image I.
e Matting: Given image I, separate it into its components ', B and a.?

The compositing problem is trivial and is easily solved by applying the compositing
equation (1.1). The matting problem, however, is non-trivial. It is in fact inherently
ill-posed and underconstrained and thus has no “correct” solution: There are seven
unknowns — the three color channels of each of the foreground and background images
and the alpha matte — but only three equations — equation (1.1) for each of the three
color channels. As such, further approximations and assumptions will have to be used

in order to obtain a solution.

In blue-screen matting, the background is assumed to be a known constant color, and
as such there is no need to estimate the three background color channels as they are
known. With this assumption, there are now four unknowns and three equations. A

further assumption is now required to compute the matting solution. There are many

%For most practical purposes, only o and F' need to be computed: When compositing a foreground
element onto a new background, the background B of the original image is completely discarded.
However, when « and F' are both known, computing B from the image I is trivial, following equation

(1.1).

21

possible assumptions of various complexity and power; for the sake of brevity, we will

only briefly mention Vlahos’s first solution from [32].

Let us quickly introduce some notation: Let Fg, Fg and Fg denote the Red, Green
and Blue channels of the foreground and Bg, Bg and Bp the corresponding channels
for the background. In blue screen matting with a blue background, B = Bg = 0,
and Bp is set by the user (for a pure blue, Bp = 255). One assumption that leads to
Vlahos’s first solution [32] is that F¢ = aFjp for a user-tuned setting of a — thus there
is a constant ratio of green to blue. As [32] notes, this assumption is quite valid in
movie settings as it holds for gray colors (such as spaceships) and flesh colors. With
this additional assumption, the matting problem is solvable, and Vlahos’s solution

gives

1 1
=1-— (Fg - -F,
@ BB(B a G)

where as stated before Bp and a are user-defined parameters. Since the above for-
mula may not lead to a value of & € [0, 1}, the resulting solution is clamped to [0, 1].
Different assumptions about the colors will provide different matting solutions in

blue-screen matting; for a fuller overview, consult [32].

A different technique introduced in [32] — but is quite implausible in practice — is
to obtain two pictures of the foreground element against two different known back-
grounds, assuming that the alpha matte is the same in these two pictures. By putting
the foreground elements against two different known backgrounds, additional infor-

mation and constraints are provided which makes the matting problem feasible.

1.1.1 Natural Image Matting

However, in many settings — especially non-industrial and amateur settings — the

background is not known. Furthermore, the background may not be a constant color;

22

in the case of photos, for example, the background is often multi-colored. In addition,
the user may not want to extract all the objects in the image; if, for example, the
user wishes to extract a single face from a group photograph, all the other people in

the photograph also become part of the “background”.

All the above facts mean that the techniques of blue-screen matting will not be ap-
plicable in the general case where we are presented with a single image and wish
to obtain an alpha matte to extract a particular foreground element. This problem,
which is the main focus of this thesis, is known as natural image matting. Natural
image matting algorithms generally require guidance from the user to help generate
the alpha matte; usually the user helps classify certain regions as foreground and
background, so that the algorithm can “learn” to distinguish which areas belong to

the foreground elements and which belong to the background.

There has been much prior work in natural image matting (a brief summary is pro-
vided in chapter 2), and the algorithms differentiate themselves in different ways. One
way in which the algorithms distinguish themselves is the user input that is provided
to them other than the image itself. There are two main types of user input: Trimaps
and Scribbles.

In a trimap, the user supplies a separate grayscale bitmap that separates the original
image into three sub-images: An area that is known to be entirely foreground, an area
that is known to be entirely background, and an unknown region. The algorithm is
generally constrained to set o = 0 in the background region, a = 1 in the foreground
region, and its main goal is to infer a in the unknown region, using the knowledge
about the known foreground and background pixels. An example of a trimap is shown

in figure 1-2.

In scribbles, the user simply marks certain areas on the original image as foreground

or background — with the rest of the image unknown — and the algorithm uses this

23

Figure 1-2: Example of a trimap. From left to right: Original Image, Trimap, Al-
pha Matte generated using Bayesian Matting [9]. In the trimap, black represents
background, white foreground, and gray unknown.

limited information to compute an alpha matte. While there are many similarities
between trimaps and scribbles — indeed, a trimap can be used as a scribble, albeit a
very detailed one — we distinguish the two because trimaps are generally far tighter
and provide much more information than scribbles; the area of the unknown region
is far larger in scribbles than in a trimap. Figure 1-3 shows an example of a scribble

input.

Figure 1-3: Example of scribbles. From left to right: Original Image, Scribbles on
Image, Alpha Matte generated using Levin et al’s Closed Form Matting Solution [16].
In the scribbles, black denotes background and white denotes foreground.

A related important distinction — which we will allude to over the course of this thesis
— differentiating matting algorithms involves their formulation and use of data and
connectivity (or smoothness). Data involves the use of color-based information, such
as the local foreground and background color distributions near a pixel. Connectivity
involves the use of smoothness constraints that try to enforce local smoothness in
the alpha matte. As a general guideline — although of course this is not true in all

cases — trimap-based algorithms generally emphasize the data term, while scribble-

24

based algorithms favor the connectivity term and use propagation mechanisms with
smoothness constraints to estimate the alpha matte. We will see some examples of

these in chapter 2.

One advantage of trimap-based algorithms is that they are designed to use the ad-
ditional information provided, and thus can be more accurate, especially in regions
of sharp foreground/background boundaries where o jumps from 0 to 1. In contrast,
scribble-based algorithms often use propagation mechanisms that tend to prefer a
smooth transition for o from 0 to 1 and thus can be less accurate in such regions.
Scribble-based algorithms are not designed to use the additional information pro-
vided by a trimap efficiently: While they tend to be more accurate for extremely
loose trimaps, as the trimap becomes tighter eventually the trimap-based algorithm
becomes more accurate (see [35] for an example). Moreover, in regions where the
foreground /background transition is sharp, the additional effort required to generate

a tight trimap, as compared to mere scribbles, is relatively low.

However, in images where the foreground/background boundary is blurred and ex-
tremely textured, such as in figures 1-2 and 1-3, the additional user effort needed
to create a tight trimap may become significant. Furthermore, in these images, it is
more natural for a to transition smoothly from 0 to 1 at the foreground/background
boundary; in these cases the scribble-based algorithms can be more efficient and ap-

pear more natural.

This thesis will introduce Segment-Based Matting — a new trimap-based algorithm
motivated by the problems of the Bayesian Matting [9] algorithm (which is also
trimap-based). The next section will briefly discuss the motivations behind this thesis

as well as its contributions.

25

1.2 Thesis Motivation and Contributions

Bayesian Matting [9] is a popular trimap-based natural image matting algorithm
that estimates each pixel separately; for each pixel, it builds local foreground and
background color distributions from nearby foreground and background pixels and
estimates a solution to the matting problem using a Bayesian approach. Although
Bayesian Matting performs reasonably well in practice, it has some problems. We
provide here a brief informal summary of some of its problems; details can be found

in section 3.2:

1. The run-time can be fairly long, because its numerical optimization procedure

can have an empirically slow rate of convergence.

2. Bayesian Matting can assign fractional alphas to pixels that should clearly be
foreground or background pixels and thus have @ = 1 or a = 0; thus the mattes
generated are less sharp than optimal and their accuracy is reduced. One reason
for this is that it tends to favor the mean of the foreground and background

distributions and thus does not consider the effect of shading.

3. Bayesian Matting considers each pixel independently and thus can generate
a fairly discontinuous alpha matte, with patches of high alpha interspersed in
regions of low alpha. This is especially true in regions where the local foreground

and background color distributions are very similar.
This thesis contributes with regard to this aspect in two ways:

1. We perform an in-depth study of many of the details of Bayesian Matting that

result in such problems.

2. Motivated by Bayesian Matting and its problems, we propose Segment-Based
Matting — a new color-based statistical algorithm. Segment-Based Matting
solves many of the problems of Bayesian Matting. Firstly, it has a closed form
solution which improves runtime efficiency. Secondly, it models color distri-

butions as lines and does not favor the means of these line distributions; this

26

models shading and helps increase the sharpness and accuracy of the alpha

matte. Empirically, it also reduces the discontinuity of the alpha matte.

A problem many matting algorithms have is distinguishing the foreground and back-
ground when the foreground and background color distributions are very similar.
Since these algorithms rely in part on the foreground and background having differ-
ent color distributions, the resulting matte can be fairly arbitrary and ambiguous.
Propagation-based algorithms that try to enforce smoothness on the alpha matte can
reduce the effect of this problem, but the resulting matte can still be incorrect, espe-

cially with regard to the contours of the foreground and background boundaries.

This thesis contributes to this aspect in two ways:

1. We propose a new approach where matting algorithms will first attempt to
classify pixels as either foreground, background, or ambiguous — being both in
the foreground and background — before performing estimation. This has a few
benefits: It sharpens the matte by ensuring most pixels have & = 1 or a = 0,
it reduces the computation effort needed by identifying “obvious” cases, and it

allows us to identify the areas the algorithm will have a problem on.

2. We use a different image processing technique to resolve ambiguities and fill in
the ambiguous areas. Such techniques include inpainting [3] — the restoration

of defective regions in digital images — and texture synthesis [11, 12].

Informally, the above approach first tries to use color information to estimate the
matte. When estimation based on color is inaccurate and ambiguous, it uses a differ-
ent kind of digital image processing technique that is less reliant on color and more
on other visual aspects such as contour continuation and texture similarities to fill in

the ambiguous areas.

Finally, we will demonstrate that Segment-Based Matting and our new approach of

using inpainting to resolve ambiguous areas in alpha mattes compares favorably to

27

some existing matting approaches on a variety of images. From our results, we pro-
pose the following important concept: Many existing matting algorithms generally
use two principles, which we have previously described as data and connectivity: Data
— which we will refer to as color — suggests that the global or local color distribution of
foreground and background should help determine the matte. Connectivity — which
we will refer to as smoothness — suggests that the the alpha matte should be smooth
in some sense. Some algorithms — such as Bayesian Matting — use only color, some —
such as Levin et al’s Closed-Form laplacian matting solution — use only smoothness,
while some — such as Wang and Cohen’s Robust Matting [35] — try to combine color
and smoothness. In this thesis, we claim that none of these approaches are entirely
optimal: For example, the Bayesian Matting solution can result in disjointed mattes,
while the Closed-Form solution can result in mattes that are overly smooth at fore-
ground /background boundaries, which is inaccurate if the foreground/background
boundary is sharp. We propose a two-fold approach that emphasizes the use of color
over smoothness: Smoothness only becomes important if the color distribution is am-
biguous. While it is possible to adjust the extent we enforce smoothness based on
the ambiguity of the color distribution — and we will note as such in the conclusion
of this thesis — the approach we propose here uses the color distribution to determine
the matte, and only if the color distribution is ambiguous do we try to use smooth-
ness. This allows the matte to be sharp when the foreground/background boundary
is sharp, and generate a smoother matte when there is a smoother transition from

the foreground to the background.

Remark 1.1. As we have briefly mentioned in our introduction to matting, one im-
portant industrial application of matting is in the film industry, where matting is
performed on a series of film frames, and not on a single static image frame. Video
matting is also the topic of a large amount of research, and many existing mat-
ting algorithms — including Bayesian Matting — have been adapted for video matting.
However, video matting is beyond the scope of this thesis; we will only discuss our

algorithms on static image matting.

28

The remainder of this thesis will proceed as follows. Chapter 2 will briefly summarize
some prior work in natural image matting. Chapter 3 will summarize Bayesian Mat-
ting as well as present our in-depth study of some of its problems. Chapter 4 presents
Segment-Based Matting, our color-based statistical matting algorithm. Chapter 5
discusses our approach for using techniques such as inpainting and texture synthesis
to resolve color ambiguities in matting. Chapter 6 presents the results of running our
Segment-Based Matting algorithm from chapter 4 and incorporating our approach
from chapter 5, and discusses possible implications of these results. Finally, chapter

7 will conclude and propose some future work.

We have also provided three appendices that lay the mathematical groundwork —
assuming a working knowledge of first-year college calculus - for our work. Appendix
A provides a brief introduction to elementary linear algebra, including a section on
basic transformations in two dimensions in section A.4 and a section on the appli-
cation of homogenous coordinates to line intersection in A.5. Appendix B provides
a brief introduction to basic statistics and estimation procedures, including a very
brief overview of Markov Random Fields (section B.6) as it pertains to this thesis.
Finally, appendix C builds on some of the material introduced in appendices A and
B to briefly introduce the technique of Principal Component Analysis, which is used
in the Segment-Based Matting algorithm.

29

30

Chapter 2

Some Prior Work in Natural Image

Matting

In this chapter, we will briefly introduce some prior algorithms in Natural Image
Matting. We first introduce the approach by Ruzon and Tomasi in section 2.1; this
is an approach that has inspired many trimap-based statistical approaches. We next
briefly mention Bayesian Matting in section 2.2; Bayesian Matting is the subject of
chapter 3 and its problems motivate the development of our Segment-Based Matting
algorithm in chapter 4. We introduce Levin et al’s closed form laplacian matting
algorithm in section 2.3. Section 2.4 introduces the graph cut and grab cut algo-
rithms. Following that, we briefly mention more complicated hybrid approaches such
as robust matting in section 2.5 and the iterative optimization approach in section
2.6; these approaches use elements from some of the other algorithms introduced. We
then briefly introduce geodesic matting in section 2.7; this algorithm uses a different
approach and follows a geodesic framework. Finally, we will list some problems of

natural image matting in section 2.8.

2.1 Ruzon-Tomasi

The trimap and color-based method introduced by Ruzon and Tomasi [28] is a sta-

tistical approach that has inspired many other statistical sampling-based algorithms

31

such as Bayesian Matting,.

Each unknown pixel is estimated independently: For each unknown pixel, the nearby
(in a spatial sense) foreground and background pixels (as labelled in the trimap) are
sampled and several isotropic (spherical) Gaussians are fitted to these foreground and
background distributions based on different criteria. The number of foreground and
background distributions are identical and paired up, so that there are n (foreground,
background) distribution pairs. For the jth pair of Gaussian distributions, 1 < j < n,
we denote the foreground distribution as N(uy;, afc,j) and the background distribu-
tion as N (us,j, af’j). The jth foreground-background pair is also given a confidence
level a;, which is normalized such that Z?=1 a; = 1. Note that while uy; and
are vectors in three-dimensional color space, o¢; and oy ; are scalars as the fitted

Gaussians are isotropic.
The solution of a for pixel I; in image I is then given as

n
o = arg ma,xZajfm,,mal(Ii; apr; + (1 — o), ozafe,j +(1- oz)of’j)
a =1
where frorma is the multivariate normal probability density function. The above
equation is solved numerically. To gain some intuition into the above formulation,
consider the case when n = 1, so that there is only one foreground/background pair.
In this case, the solution for a is obtained by “projecting” the pixel I; into a line

connecting the foreground and background distributions.

2.2 Bayesian Matting

Bayesian Matting is a trimap and color-based statistical algorithm that models the
image, foreground, background and alpha matte using a joint probability distribu-
tion and solves the matting problem using a Bayesian approach. Bayesian Matting

is studied in detail in chapter 3, so we will only give a very brief overview here.

32

Like in the Ruzon-Tomasi approach described in the previous section, Bayesian Mat-
ting estimates each unknown pixel independently and samples the nearby foreground
and background pixels. It then partitions the foreground (background) pixels into
multiple clusters and fits a Gaussian to each cluster; unlike in Ruzon-Tomasi, the
Gaussians fitted are anisotropic, so they are not necessarily spherical. For each fore-
ground /background pair of clusters, Bayesian Matting performs Maximum A Poste-
riori estimation to solve the matting problem; this gives multiple possible solutions,
one for each foreground/background pair of clusters. Bayesian Matting then chooses

the solution that has the highest Maximum A Posteriori likelihood.

2.3 Closed Form Matting

The closed form laplacian matting algorithm introduced by Levin et al [16] is a
scribble and smoothness-based algorithm that uses a propagation approach based on

smoothness assumptions to solve for the alpha matte.

From the compositing equation (1.1), we obtain I; = a;F; + (1 — a;)B; for pixel j.

This can be rewritten to give a solution for a; as
o = a;l; + bj (21)
where a; and b; are constants that depend on the values of F; and B;.

To provide an understanding of this approach, we will start — as in [16] — by assuming
that the image I is grayscale. The key assumption in the grayscale case is a local
smoothness property: In a small window around any unknown pixel I;, the fore-
ground and background are essentially constant and equal to F; and B; respectively.

Therefore, any discontinuities in the image must be caused by discontinuities in a.

33

Under this assumption, for all pixels i in a window w; around pixel I;, a; = a; and
b; = b; since the values of a and b are dependent on F' and B, which are constant in

this window by assumption. Hence, following equation (2.1), we obtain
o; = ain + bj (22)

for all pixels 4 € w,. Naturally, this assumption cannot hold exactly over the entire
image, but we wish to find o for all pixels such that this assumption is as accurate
as possible. Thus we wish to find o, a and b (over the entire image I) that minimizes

the cost function

J(a,a,b) = Z Z(ai — a;1; — b;)? + eal (2.3)

jel \icw;
In the above formulation, the regularization term eaj? has been added. A higher
value of € penalizes a non-zero value of a; more. Following equation (2.1), a value of
a; = 0 implies that a; = b; is independent of the observed image value I;, and this
enforces smoothness of o under the assumption that F; = F; and B; = B; — and thus
o; = b; = b; = o; — for pixels 7 and i in each other’s local window. Hence, a higher

value of the e parameter makes the generated alpha matte smoother.

The key insight of the closed form laplacian matting algorithm is that we can eliminate

the terms a and b in equation (2.3) and rewrite it as
J(a) = o' La (2.4)

where « is a vector of all the unknown alpha values and L, the matting laplacian, can
be entirely determined by the observed image, the window size, and the € parameter;
in other words, it is a constant matrix. The problem of finding o that minimizes the
cost function (2.4), subject to the constraints imposed by the scribbles, can be solved

in closed form and this is the gist of the algorithm.

34

The above description applied to grayscale images; Levin et al extend it to color
images by observing that under the assumption that the foreground (background)
color distribution lies on a straight line in color space (this is the color line model,
also briefly discussed in section 4.2), analogues to (2.3) and (2.4) can be obtained,

and the analogous problem can be solved to find o.

2.3.1 Spectral Matting

The Spectral Matting approach in [17] performs further analysis of the matting lapla-
cian L. First of all, they draw an analogue between the matting laplacian and node
affinities in graph segmentation models. In these graph segmentation models, edges
between nodes represent affinities between the nodes and the goal is to segment the
graph by cutting edges — subject to certain criteria — such that as far as possible,
nodes with a high affinity with each other remain connected. An affinity matrix A
can be built for such a graph, such that A; ; corresponds to the affinity between nodes
i and j. The Spectral Matting approach considers the pixels as nodes and the matting

laplacian as the affinity matrix.

One well-known technique for cutting a graph, given an affinity matrix, is the normal-
ized cuts technique given in [31], which uses the eigenvectors of the affinity matrix.
In a similar fashion, the Spectral Matting approach tries to utilize the eigenvectors
of the matting laplacian, and generate an alpha matte from a linear combination of

these eigenvectors. Details can be found in [17].

2.4 Graph Cut

The Graph Cut [5] algorithm is an approach that combines color and smoothness. It
generates a hard segmentation of grayscale images — color images are first converted
to grayscale — so that the resulting alpha matte only contains & = 1 and a = 0 val-

ues. The algorithm views the image as a lattice graph — where pixels are connected

35

to adjacent pixels — and separates the pixels into foreground and background using a

minimum cut approach.

Two nodes are added to the lattice graph: A foreground node F' and a background
node B. Both of these nodes are connected to every pixel node in the graph, but not
to each other. The algorithm finds the minimum cut in the graph that separates F'
and B — a subset of edges that disconnect F' and B such that the total weight of all
these edges is minimal. After removing the cut, the set of vertices that are connected
to F' are given a = 1 and the set of vertices that are connected to B are given a = 0.
Minimum cut is a well-studied problem that has efficient algorithms [10]; hence all
that remains is to describe the edge weights such that the resulting cut provides a

desirable result.

In the lattice graph, the weight between adjacent pixels i and j is given by W (3, j) «
exp (—%)Lz) where I; and I; are the scalar (grayscale) intensity values of pixels i
and j in the image and o is a user-defined parameter. This formulation gives higher
weight to edges connecting adjacent pixels with similar intensities; therefore it is more
likely that they will belong to the same component (foreground or background) in

the resulting cut.

For any unknown pixel, the weight between pixel i and the foreground node F' is given
by — log P(I;| B), where P(I;|B) is the probability that a pixel with intensity /; be-
longs to the background, and similarly the weight between pixel ¢ and the background
node B is given by — log P([;|F)). The probabilities P(I;|F') and P(I;|B) are obtained
by tabulating a global histogram of the intensity values of the pixels that were marked
as foreground and background by the user. Since the image is grayscale, the number
of possible intensity values is small, and hence if the number of marked pixels is large
— or equivalently if the number of unknown pixels are small — the histograms provide

a good approximation to the probabilities.

36

Any pixel marked as foreground has an extremely large weight with F' and zero weight
with B, and similarly any pixel marked as background has an extremely large weight
with B and zero weight with F'. The exact magnitudes of these weights — discussed
in [5] — ensure that in the resulting minimum cut, all pixels marked as foreground will
remain connected with /' and all pixels marked as background will remain connected

with B, thus preserving user-defined constraints.

If pixel ¢ remains connected to the foreground, it is cut from the background with cut
edge weight — log P([;|F'), and similarly, if it remains connected to the background, it
is cut from the foreground with cut edge weight — log P(/;| B). Hence, the minimum

cut problem attempts to solve

a = arg min Z Wi, j) — Zlog P(I;]|o;)

* § in foreground, j in background i
where P(Ljoy; = 0) = P(L;|B) and P(I;|a; = 1) = P(I|F) (recall that graph cut
provides a hard segmentation and thus o; € {0,1}). The first term W (i, j) can be
viewed as an interaction term and the second term is a likelihood term; hence we
can interpret graph cut as maximizing the likelihood of the foreground/background

assignment, adjusted by a correction term for interaction.

2.4.1 Grab Cut

The Grab Cut algorithm [27] extends the Graph Cut algorithm to color images.

In color images, the space of possible pixel values is much larger than in grayscale
and tabulating histograms no longer forms a good approximation to probabilities.
To calculate the assignments of pixels to foreground or background, the Grab Cut
algorithm performs the following two steps repeatedly:

1. Calculate probabilities P(I;|F) and P(I;|B) using previously obtained assign-

ments of a.. In the first iteration, « is obtained using the trimap, and unknown

37

pixels are arbitrarily assigned o = 1.

2. Perform Graph Cut as described in the previous section to solve for o using the

probabilities derived in the first step.

The first step fixes the values of & and solves for the probabilities; the second step fixes
the probabilities and solves for a. To estimate the required probabilities in the first
step, [27] models the foreground and background as a mixture of anisotropic Gaussian
Distributions, and estimates the distributions using a variant of hard Expectation-

Maximization (EM) in this Gaussian Mixture Model [18].

Once the estimation process is done, [27] then performs a further regularization step

to smooth the matte and allow fractional values of a.

2.5 Robust Matting

The robust matting approach [35] is a trimap-based approach, combining color and
smoothness, that uses a graphical model similar to graph cut, with pixels forming a
lattice graph and additional foreground and background nodes (F' and B) that are

each connected to all pixel nodes. There are two major differences:
1. The edge weights in the graph and the way they are calculated.
2. The problem to solve in this graph.

As in the case of graph cut, we need to define two types of edge weights in the graph:
The interaction weights between neighboring pixels — which control the smoothness
of the matte — and the weights between the foreground (background) node and the

pixel nodes.

For the interaction weights between neighboring pixels, [35] uses the affinity as given
by the matting laplacian from Levin et al’s closed form laplacian matting solution

(see section 2.3 and [16]), so that W(i,j) = L;; where L is the matting laplacian

38

matrix.

The weights between the foreground (background) node and the pixel nodes are cal-
culated separately for each pixel. For each unknown image pixel, nearby foreground
and background samples (from the trimap) are obtained. Instead of building a dis-
tribution over these samples, [35] tries every (foreground, background) pixel pair
from these samples. For each (foreground, background) pair, an alpha value and a
confidence level is calculated — the alpha value is obtained simply by projecting the
unknown image pixel onto the line formed by the (foreground, background) pixel
pair, while the confidence level takes into account, among other factors, both the
foreground—background distance as well as the distance of the unknown image pixel

from its projection.

The three (foreground, background) pairs with the highest confidences are then cho-
sen, and the overall alpha estimate a and overall confidence level f of this pixel are
taken as averages of the values from these pairs. The weight between the unknown

image pixel and the foreground and background nodes are then given by

W(F) =~lfa+ (1 - f)é(a > 0.5)]
W(B) =~[f(1 - a)+ (1 - f)é(a < 0.5)]

where ¢ is a boolean function that returns 0 or 1. «y is a parameter that adjusts the
relative importance of the weight with the foreground (background) node; the higher
7 is, the more important this weight is, and the less important the interaction weights

are; thus the obtained alpha matte will be less smooth with higher .

The problem that [35] solves in this graph is not a graph cut, but a random walk
question: Suppose we start a random walker at the node corresponding to a given
pixel, and at each step he has a probability of transitioning to any neighbor that he

shares an edge with; the probability of transitioning to a given neighbor is propor-

39

tional to the weight of the corresponding edge. What is the probability that he enters
the foreground node before he enters the background node?

This probability is higher for pixels that are more likely to be foreground, and at the
same time it can take any real value between 0 and 1; [35] hence uses the solution for
this question as the values of . This problem can be solved as a linear system, using

a graph laplacian matrix; details can be found in [14].

2.6 Iterative Optimization

The iterative optimization approach [34] is a scribble-based algorithm, utilizing both
color and smoothness, that gradually propagates the alpha matte outwards from the
user-provided scribbles, using a Markov Random Field (MRF) formulation (a brief

introduction to MRF's can be found in Appendix B.6).

A brief overview of the approach is as follows: A set U, of all pixels that have been
previously estimated — including the pixels marked by the scribbles — is kept, and
each of these pixels is given a confidence value, indicating how confident the algo-
rithm is of its estimate for that pixel. Initially, U, consists only of the marked pixels,

and they are all given a confidence level of 1, indicating that their confidence is perfect.

The optimization approach proceeds as follows. The following steps are repeated until

the set U, remains constant and the confidence level of pixels no longer increases:

1. Add any pixels that are spatially near the set U, to U, if they were not previously
in U,. Each of the newly added pixels has a confidence of 0.

2. Take all pixels in U, — including pixels that were previously estimated — that
have a sufficiently low confidence level. This allows pixels that were estimated
in previous steps to be re-estimated, if new pixels that were added can provide

new information about the alpha matte. We denote this set U.

40

3. Re-estimate o, F' and B and update the confidence of the estimated pixels in
Us.

In the estimation step, the pixels are modelled as a lattice graph as previously, but
instead of solving a graph cut or a random walk problem as in previous sections, the
graph is viewed as a Markov Random Field with corresponding estimation problem

(see appendix B.6)

a = arg max H Uy, (o) H Vo, a; (0, 05)
@ All pixels i€Uy (4,§) are neighboring pixels, i,j € Uy,
where Wy, (a;) is the data term and Wy, o, (i, a;) is the connectivity term. Once the
data and connectivity terms are specified, the MRF problem can be solved using
loopy belief propagation (see appendix B.6) to obtain «; hence all that remains is to

specify the data and connectivity terms.

The data term is obtained as follows: For pixel i, sample the foreground and back-
ground pixels in its immediate neighborhood, including pixels that were previously
estimated; pixel j in the neighborhood of pixel ¢ is considered foreground if a; is
greater than the previously estimated value of a; and similarly pixel j is considered
background if «; is less than the previously estimated value of a;. Each foreground
(background) pixel j is given a weight w; which is a combination of the spatial dis-
tance of j from ¢ as well as the confidence of the estimate of a;;. Next, the likelihood

of a given value of ¢; is computed as

L(os) | > > W; Wy, €Xp (_ || fi — i ;0((211‘ - ai)Bk||2)
j€ foreground sample k€ background sample i

where I; is the color of pixel i and F; and By are the foreground and background

values of the foreground pixel j and the background pixel k. The covariance oy,

is calculated from interpolating the covariance of the foreground and background

distributions: o0,, = a;o; + (1 — o;)0p, where o and o}, are the foreground and

background covariances. The likelihood is calculated for K different values of o; €

41

{ai1,...,0;k}. Finally, the data term is given by

L(a,;)

Yol = S)

yo; €{0G1,. .., 00k}

The connectivity term is simply given by

(o — aj)2>

‘Ilai,aj (O{i, aj) = exp (_ 20_2

where o, is a user-defined parameter. This connectivity term tries to enforce smooth-

ness of the alpha matte; the greater o is, the lower the degree of smoothness enforced.

Once the values of a are estimated using the MRF, the values of F; and B; for each
pixel ¢ € Uy are estimated as follows: Pick the pair of pixels j in the foreground
sample and k in the background sample from the neighborhood of pixel i such that
||l — i Fj — (1 — ;) Bg|| is minimized, and pick F; = F; and B; = By. Finally, the
confidence of the pixel i is updated as being equal to ,/w;wk, where j and k are the

foreground and background pixels that were picked to form F; and B;.

2.7 Geodesic Matting

Geodesic Matting [2] is a different color and smoothness-based approach to scribble-

based matting that uses shortest distance calculations to classify pixels.

From the scribbles, global foreground and background probability densities Pr and
Ppg are calculated using a non-parametric kernel density estimation procedure. For
a given pixel ¢ with intensity I;, its likelihood of being in the foreground is given
as Lp(L;) = T,ﬁjﬁ% and its likelihood of being in the background is given as
Lp(l;) = 1 — Lp(l;). Now define the path weight between two adjacent pixels as
VL, the gradient of the foreground likelihood. This defines a weighted graph with
edge weights. For a given pixel ¢, the foreground distance Dp(7) is then the shortest

distance in this graph from ¢ to any pixel marked in the scribble as foreground, and

42

similarly the background distance Dp(i) is the shortest distance from i to any pixel

marked in the scribble as background.

From these values, «; for pixel 7 is calculated as:

wp(i) = Dp(i)_er(Ii)
wB(i) = DB(Z')_TLB(I,')

wr (i)
wF(z') + wg (Z)

.i=

where r is a user-specified parameter. The higher r is, the greater the distance from
the foreground or background matters; when r = 0, the calculated a value is simply

its foreground likelihood Lp.

To obtain F; and B; for pixel ¢, nearby foreground and background pixels (as marked
by the scribbles) are sampled, and the (foreground, background) pair F' and B that

minimizes ||I; — &;F — (1 — o;) B|| are used as the values of F; and B;.

2.8 General Problems with Matting

Natural Image Matting is an area with many potential problems, because users do
not have complete control over the circumstances the image was obtained in. We will
briefly list some of these potential problems. Most matting algorithms try to attack a
subset of these problems, but none - as far as we know of, and including the algorithm
described in this thesis — solves all these problems adequately. The problems we will

mention are:

1. Smoothness of the image matte. One fundamental assumption behind
many matting algorithms is that the alpha matte should be somewhat smooth.
There is always a trade off between smoothness and accuracy of the matte
at sharp foreground/background boundaries: The alpha values should change

rapidly at these boundaries, but this is not a smooth change. It is arguable

43

that in these cases it is far more desirable to entirely discard smoothness, to
allow for a sharp boundary instead of a smooth transition. Furthermore, if the
foreground element contains small holes, it is a challenge to prevent the matting

algorithm from smoothing over these holes in the alpha matte.

2. Sudden Changes in foreground and background color distributions in
a local area. The foreground and background distributions are not homoge-
nous throughout the entire image. In an extremely colorful image, these can
change extremely rapidly in a local area. Matting algorithms must be able to

handle such changes.

3. Similar foreground and background color distributions. Most matting
algorithms use foreground and background color distributions in a local area to
solve for the alpha matte, using the underlying assumption that these distribu-

tions are distinct in some way. What if these distributions are very similar?

4. Shading. Often, especially at a foreground/background boundary, different
shades of the same color can be found; these can be caused by uneven lighting
throughout the image. Shading can cause problems for matting algorithms; an

example can be found in chapter 3 when we examine Bayesian Matting.

5. Shadows. Light shadows caused by background lighting or camera flashes can
distort images and cause dark shades throughout the foreground element; this
can cause discontinuities if the background is dark and the matting algorithm

estimates these pixels as belonging to the background.

6. Compression Artifacts. Many digital cameras compress images and store
them in lossy image formats such as JPEG; these can cause local artifacts in
the image and can cause problems for matting algorithms that assume the image

is generally flawless.

We postulate that one reason why many of these problems have not been explicitly

examined in the literature is that enforcing smoothness of the alpha matte can help

44

mitigate the effect of many of these problems, such as similar foreground and back-
ground distributions, shading and shadows. However, as we have noted here and we
will see in chapter 6, enforcing smoothness can lead to its own problems. In this
thesis, we propose a different approach that tries to solve the matting problem using
color information and only enforces smoothness when we detect some of the problems

noted here; this allows sharp mattes at sharp foreground /background boundaries.

45

46

Chapter 3

Bayesian Image Matting

In this chapter, we will perform a detailed study of the popular Bayesian Matting
[9] algorithm, focusing on its problems. Bayesian Matting is a sampling-based algo-
rithm, utilizing a trimap input by the user, that uses Maximum A Posteriori (MAP)

estimation in a Bayesian Framework (see Appendix B.5) to estimate «, F' and B.

Section 3.1 will describe the Bayesian Matting Algorithm, as well as provide a brief
interpretation of the algorithm. Next, section 3.2 will perform an in-depth study of
some problems of the Bayesian Matting algorithm. Finally, section 3.3 will discuss a
few minor changes to Bayesian Matting that will address some of these problems; this
modified Bayesian Matting algorithm will form part of the basis of our comparisons

in chapter 6.

3.1 A Description of Bayesian Matting

In Bayesian Matting, the image I, foreground element F', background element B,
and alpha matte o are linked through a joint probabilistic distribution; each pixel
is considered to be independent of the rest and hence every pixel is estimated sepa-
rately. Using this joint probabilistic distribution, the algorithm uses Bayes’s law to
form an a posteriori probability distribution of the unknown parameters F, B and o

and perform MAP estimation.

47

To be precise, letting P(A) denote the probability of variable A and P(A|B) denote
the probability of variables A conditioned on the values of variables B, we may use

Bayes’s law to obtain:

P(I|F, B,a)P(F, B,a) _ P(I|F, B,a)P(F)P(B)P(c)

P(F,B,a|l) = P B

where in the Bayesian matting framework F', B and a are independent of each other

and hence the second equality. Taking logs, and letting L(.) = log P(.), we obtain
L(F, B,a|l) = L(I|F, B,a) + L(F) + L(B) + L(a)) — L(I)

In the matting framework, I is observed and fixed and is not a parameter to optimize
over, hence L([) is a constant. In the Bayesian Matting framework, L(a) is a constant
over all o — in the sense that each possible o is considered uniformly likely. Hence
in the MAP framework, we may discard both L(a) and L(I). The MAP problem to

solve is then

(F, B, a) = arg max L(I|F, B, a) + L(F) + L(B) (3.1)

F,B,a

The Bayesian Matting Algorithm models each of the three separate terms in (3.1)
as Gaussian distributions. The likelihood L(I|F, B,a) is modelled as a univariate

Gaussian with mean given by the compositing equation (1.1):

L{I|F, B,a) = M =aF = 2(1 — 9B (3.2)

oc

where 0% is the measurement error variance and is a user-specified parameter. The
L(F) and L(B) terms are computed via color sampling, which we briefly describe as

follows:

Pixels from a circular spatial region around pixel I are collected to form the foreground

48

and background color distributions. The collected pixels include both user-marked
pixels from the trimap, as well as pizels for which o was previously estimated. Each
pixel from this sample is then given a weight; the weight of the ith sample is given
as w; = S(d)K (a): S(d) = -=— exp(—d?/203) is a Gaussian spatial distance falloff

270, d

with d the distance of the sample pixel from pixel I and o4 a user-specified falloff
parameter, and K(a) = o for the foreground distribution and K(a) = (1 — a)? for
the background distribution measures the relevance of this pixel to the given fore-
ground or background distribution. Thus the K(a) term ensures that foreground

pixels contribute no weight to the background distributions and vice versa.

To ensure that there exists a good number of sample pixels, the Bayesian Matting
algorithm estimates pixels in onion-peel order, marching inward from the boundaries
of the user-specified foreground and background regions. This ensures that even when
there are few pixels from the trimap in the sample, there will exist some previously

computed pixels to sample from.

The foreground and background pixels may come from a wide variety of color dis-
tributions. Hence, these foreground and background pixels are clustered into a fixed
number of clusters, partitioning them into groups. The clustering technique used is
by Orchard and Bouman [22] and is briefly described in section 3.1.1. For each pair
of foreground and background clusters, the likelihoods L(F') and L(B) are modelled
for the foreground and background clusters respectively and the MAP estimate given
by (3.1) is calculated for that foreground/background pair. From all these pairs, the
final F, B and o chosen will correspond to the F, B and « from the pair that has the
highest likelihood as defined by (3.1). Hence, for ease of exposition we will simply
describe how L(F) and L(B) are modelled for a single foreground or background
distribution.

For a given set of pixels in the foreground distribution, each with an RGB value (in
3-dimensional space) F; and foreground weight w;, the foreground likelihood is simply

49

modelled by a multivariate Gaussian with mean and covariance matrix given by the

weighted means and covariance matrices of the pixels:

L(F) = —(F—up)"S5'(F - pr) (3.3)
ur = Z,—lwi Z,: w; Fj
Zr = ﬁ ; wi(F; — pr)(F; — pp)"

Similarly, for a given set of pixels in the background distribution with background

values B; and background weights w;, the background likelihood is given by

L(B) = —(B-)5 (B - up) (3.4)
UB = lewz ;wiBi
5, _ L

S 0 Zwi(Bi — uB)(B; - MB)T

Combining equations (3.1), (3.2), (3.3) and (3.4) completes the specification of the
Bayesian Matting estimation problem. It is possible to take the resulting first order
condition and solve for F, B and «, although because of the multiplication between un-
knowns in (3.2), the resulting problem becomes fairly difficult to solve. The Bayesian

Matting solution uses an iterative numerical optimization approach as follows:

First assume a is constant. The resulting problem (3.1) becomes quadratic in both F
and B (because there is no longer the multiplication of unknowns in (3.2)) and thus
there is an easy closed form linear equation solution. Next, using the values of F' and
B calculated, fix F' and B as constant and solve (3.1) for o: In this scenario, the
L(F) and L(B) terms are inconsequential and only the L(I|F, B,) term in (3.2) is
used; the solution for « is obtained by projecting I onto the F' — B line in RGB color
space, and taking the distance of the projection from B normalized by the length of
the F' — B line. This procedure is repeated: Fix a constant and solve for F' and B,

then use the solutions for ' and B to solve for ¢, and use this o to solve for F' and

50

B again, etc. in an iterative procedure.

This concludes our description of the Bayesian Matting Algorithm.

3.1.1 Clustering pixels

An important step in the Bayesian Matting algorithm concerns the partitioning of
foreground or background pixels, each with a given weight, into clusters. The algo-
rithm used for this is by Orchard and Bouman [22], and we will briefly describe it

here without going into too many specifics.

We first start by describing how to split a single cluster into two. The algorithm first
finds the direction of greatest variance among all the points, and splits the points
into two clusters separated by the hyperplane perpendicular to this direction passing
through the mean. An example is shown in figure 3-1.

Figure 3-1: One cluster of points is split into two. First the direction of largest
variance (solid line) is calculated, and then the points are divided into two clusters,
separated by the hyperplane perpendicular to the direction of largest variance passing
through the mean (dotted line). In this example, the points are divided into two
clusters A (on the left) and B (on the right).

To find the direction of greatest variance, first the weighted covariance matrix ¥ is
calculated using a formula similar to equation (3.3) (see Appendix B.1.2). From this,

the direction of greatest variance is given by the eigenvector corresponding to the

51

largest eigenvalue of ¥ and the variance in this direction is given by the correspond-

ing eigenvalue (see appendix C for a brief discussion of the derivation of this fact).

To split one cluster into multiple clusters, we perform an iterative greedy procedure.
First we split one cluster into two smaller clusters. We then choose the cluster with
the larger vériance along its direction of greatest variance — given by the largest eigen-
value of its covariance matrix — and split that into two. This process is repeated until
we have obtained the desired number of clusters: From all the clusters, pick the cluster

that has the largest eigenvalue of its covariance matrix, and split that cluster into two.

One important reason for choosing this algorithm is that it is fast — there exists a
method to quickly update the covariance matrices of the split clusters in constant time
without using the formula for the covariance matrix, which requires going through all

the points. Details can be found in [22].

3.1.2 An Interpretation of Bayesian Matting

The estimation framework given by equation (3.1) may be somewhat abstract; in this
subsection we will quickly outline an intuitive geometric interpretation that will be

helpful in our later discussion.

Consider figure 3-2. The lightly-shaded oval represents the foreground distribution
and the darker-shaded oval represents the background distribution as described in
(3.3) and (3.4) respectively. The small circle around the pixel I represents the mea-
surement error as described in (3.2). The calculated o represents the relative distance

of the projection of I on the F' — B line from the estimated B.

Using figure 3-2 as a guide, we may interpret the estimation problem (3.1) as follows:
The Bayesian Matting Algorithm attempts to find F' and B such that the sum of the

following three distances is minimized:

52

Foreground

Measurement Error

Figure 3-2: An geometric interpretation of Bayesian Matting.

1. Squared distance from F' to pup, normalized by Yp.

2. Squared distance from B to up, normalized by .

3. Squared distance from I to its projection on the F' — B line, normalized by o2.

From the estimated F' and B, the estimated « is obtained through a projection of 1
onto the F' — B line.

3.2 Problems with Bayesian Matting

In this section, we will study some of the problems associated with the Bayesian
Matting Algorithm described so far, both in terms of running efficiency as well as

accuracy.

3.2.1 Efficiency

With any computer algorithm, efficiency is important. One way to improve efficiency
is to identify runtime bottlenecks in implementations and optimize them. Table 3.1
contains approximate percentage times spent in four different areas in our Bayesian
Matting implementation, where we have fixed the number of foreground and back-

ground clusters at 3 each.

53

Table 3.1: Relative Running Times of Different Aspects of Bayesian Matting

Number of Iterations Miscellaneous Sampling Clustering Numerical Optimization

20 5% 12% 3% 80%
30 3% 9% 2% 87%
40 2% % 2% 89%
50 2% 5% 2% 91%
60 2% 5% 1% 92%

In the table, the leftmost column denotes the number of iterations we perform in
the numerical optimization step to solve for F, B and a. The miscellaneous column
denotes the relative time spent ordering pixels in onion-peel order and pre-computing
means and covariance matrices for the different clusters. The sampling time denotes
the relative time spent sampling nearby foreground and background pixels, and the
clustering time is the relative time spent to order these samples into clusters. Finally,

the last column denotes the relative amount of time spent in numerical optimization.

We thus see that the numerical optimization step dominates the run-time. Next, we
ask how badly the run-time is affected by increasing the number of iterations. Table
3.2 demonstrates the relative running time after increasing the number of iterations

in numerical optimization.

Table 3.2: Relative Total Running Time of Bayesian Matting
Number of Iterations Total Running Time (Relative)

20 100%
30 136%
40 174%
50 212%
60 250%

From table 3.2, we see that increasing the number of iterations will significantly in-
crease the running time. The final and most important question to ask, then, is:
How many iterations are required? Figure 3-3 shows a representative example. From

figure 3-3(b), we see that the pixel belongs to the foreground, and thus should have

54

an « close to 1 — if we follow the interpretation of figure 3-2, the o value should be
slightly greater than 1 as the pixel is away from the foreground mean. This is indeed
the solution in figures 3-3(c) and 3-3(d), which shows the numerical optimization

procedure for two different values of 0., the measurement error standard deviation.

Pixel ——>+

'; Foreground

vso)}\ —
» \\ : Background //ﬁ/“/
w0 .]
n>>\>(/“‘/ h

(a) Source Image (b) Distribution of Pixels in RGB space

1.2 ' ' T o.=25 12 0e =50
1t T T — 1t T -
3 o | s
E 0.8 golg- /
50.5 50.6‘3
1

20 40 60 80 100 %% 20 40 60 80 100

Num Iterations Num Iterations

(c) Convergence with o, = 2.5 (d) Convergence with o, = 5.0

o
o

Figure 3-3: A representative example demonstrating the convergence rate of the
Numerical Optimization technique. Figure 3-3(a) shows the source image, taken
from the Berkeley Segmentation Dataset [19]; the small red box shows the area we
are sampling from. Figure 3-3(b) shows the foreground and background distribution
as well as the pixel being examined. Figure 3-3(c) and 3-3(d) show the convergence
of the numerical optimization procedure for two different values of o,.

We see that the greater o, is, the faster the rate of convergence. We can think of
each iteration of the numerical optimization procedure as “moving” F' and B such

that oF' + (1 — «)B is sufficiently close to I, as allowed by the measurement error.

'In understanding the magnitude of o, recall that each color channel takes an integer value in the
range [0, 255].

%)

Intuitively, the greater o is, the greater our allowance for measurement error, and
thus the faster the convergence of F, B and a to an acceptable solution. If we refer to
figure 3-2, this intuition translates as follows — the greater o, is, the larger the circle
representing the measurement error, and thus the less ' and B have to move away

from their means in order for the line between F' and B to pass through the circle.

Figure 3-3 demonstrates that the rate of convergence is relatively slow, and therefore
about 40 iterations is required in order to achieve sufficient convergence. From table
3.2, this translates to about a 75% slowdown over an approach with 20 iterations.
In fact, even with 20 iterations, Bayesian Matting is already fairly slow, and thus
with 40 iterations Bayesian Matting is rather inefficient. It therefore follows that the

inefficiency of Bayesian Matting represents a problem with it.

3.2.2 Accuracy I — Non-Sparse Alpha due to Mean Prefer-

ence

In this section, we discuss what we believe is the most important accuracy problem

with Bayesian Matting.

We believe that one important feature of alpha mattes is that it should be sharp when
the foreground/background boundary is sharp, which implies that in images with sharp
boundaries o should primarily take the values of 0 and 1. This desirable property of

a is known as sparseness.

Bayesian Matting fails this criteria fairly often. An example can be found in figure
3-4, which demonstrates a matte created by Bayesian Matting which is not sharp at
the boundary, even though the foreground-background boundary in the actual image
is relatively sharp.

Why is this so? We believe the main reason is the propensity of Bayesian Matting to

56

(a) Source Image (b) Closer look at
marked region

(c) Alpha Matte generated with Bayesian Matting (d) Closer look af
marked region

Figure 3-4: An example demonstrating how Bayesian Matting does not give sharp
mattes. Figures 3-4(b) and 3-4(d) show close-up views of the regions marked in red
in figures 3-4(a) and 3-4(c) respectively. We see that even though the foreground-
background boundary is relatively sharp, the matte generated is not.

prefer means: This means that Bayesian Matting prefers F' to be near ur and B to
be near pp, as well as the measurement error to be near 0. The penalty for deviating
is large; for example, from our discussion in section 3.1.2, we know that the penalty
scales with the square of the distance from F' to pp. This causes problems in two

ways:

1. Tt assigns fractional values of « to pixels that clearly belong to the foreground
or background clusters, as long as these pixels deviate sufficiently far from the

relevant foreground or background mean.

57

2. When deciding which foreground/background pair of clusters to pick, it can

often pick the wrong one.

We will briefly study each of these problems in turn. First, we consider the assignment
of fractional values of a. Figure 3-5 shows, for two pixels from the problem region
labelled in figure 3-4, a representative foreground/background cluster pair for each
pixel. Even though both pixels clearly lie in the foreground distribution and should

be given o = 1.0, they are given fractional values of o, because they lie away from up.

It may be argued that fractional values of o that are close to 0 and 1 — such as those in
figure 3-5 — are very similar to a = 0 or a = 1; however, this problem is exacerbated
if the foreground or background distribution has high variance and the pixels lie on
the edge of the distribution. In this case, the calculated values of a are no longer

near 0 or 1.

58

\ Foreground

Pixel -———»f?\

*

o 5 8 8 B8

\" Y A S S)
\
8

(a) Within the foreground cluster, but assigned o = 0.97.

Pixel & Foreground

o] pr and pp

40

(b) Within the foreground cluster, but assigned o = 0.96.

Figure 3-5: The above two plots show Bayesian Matting assigning a fractional value
of a to two pixels that are both in the foreground distribution and should be assigned
a = 1. The reason is that the pixel (marked with a triangle) lies away from up
(marked with a diamond and in a circle).

59

The second problem created by mean preference is that it can cause Bayesian Mat-
ting to pick the wrong foreground/background pair of clusters. Recall that Bayesian
Matting tries to solve for F, B and « for every pair of clusters and then picks the
pair that minimizes the sum of normalized squared distances from their mean, as
described in section 3.1.2. This means that a pair of clusters that results in a sparser

and more correct value of @ may be overlooked for an inferior pair of clusters.

Figure 3-6 shows an example for one pixel in the problem region labelled in figure
3-4, and two different pairs of foreground /background clusters. The pair of clusters in
figure 3-6(a) results in a more accurate value of & — though not entirely accurate (the
correct & = 1) because of the first problem caused by mean preference — but the pair
of clusters in figure 3-6(b) is chosen instead because it has F' much closer to pr and
the measurement error — the distance from a pixel to its projection on the F' — B line
— is smaller, even though these distances are already small in figure 3-6(a), because of

the squared distance penalty! As a result, the value of o chosen is more incorrect.

60

Foreground jo—F

(a) Better Pair of Clusters, inferred a = 0.92.
Foreground ,

90~

80

70|

80

50

pr and pp Projection of Pixel

(b) Inferior Pair of Clusters, inferred a = 0.79. This is the pair chosen by Bayesian Matting.

Figure 3-6: Figures 3-6(a) and 3-6(b) show two foreground/background pairs of clus-
ters for the same pixel. The pixel is marked with a triangle, ur and pp are marked
with diamonds, and the chosen F' and B are marked with circles, as well as the pro-
jection of & onto the F'— B line, which is shown dotted. The pair of clusters in figure
3-6(b) is chosen because of the smaller F' — p1r and projection distances.

61

Failure to Recognize Shading

A more important reason why mean preference is a problem is that it ignores shading
effects. The foreground-background boundary often contains shading of the fore-
ground or background; this means that the colors on the boundaries are of slightly
different shades — even though they may be of the same color — as the interior re-
gions, which are used to build the foreground and background distributions. Even
with shading, the foreground/background boundary is often still very distinct and
thus o should be sparse; however, by using mean preference, Bayesian Matting ig-
nores the effect of shading and automatically assumes that the shades on the extreme

regions of the foreground or background distributions should have fractional alphas.

3.2.3 Accuracy II — Discontinuity due to similar foreground

and background distributions

Another property of « is that if the foreground is continuous, the region where « is
high should be continuous. Bayesian Matting does not explicitly factor in this con-
straint as each pixel is estimated independently; however, in most cases, this should
not cause discontinuity as long as the local foreground and background color distri-

butions are sufficiently distinct.

However, in regions where the local foreground and background color distributions
are very similar, or even overlap, this can cause large fluctuations in the estimated «
in the region and result in discontinuous regions of a. An example can be shown in
figure 3-7 in the middle-upper area of figure 3-7(c). This is because in a small spatial
region, the image pixels move a small amount in RGB space, but a small movement
can result in very different values of a being estimated when the foreground and

background color distributions are very close to each other or overlap.

Remark 3.1. As noted in section 2.8, areas where the foreground and background

have similar color distributions are a problem faced by all matting algorithms.

62

(a) Source Image (b) Alpha Matte generated with (¢) Closer look at Marked
Bayesian Matting Region

45 .

40 .

P

Background. L
(g Foreground A\Pixel

(d) A plot of the foreground and background pixels around one problem pixel.

Figure 3-7: Discontinuity caused by similar foreground and background distributions:
Figure 3-7(c) shows a close up of the region marked in red in figure 3-7(b); there are
noticeable discontinuities at the middle-upper area of the image. Figure 3-7(d) shows
the foreground and background distributions around one of the problem pixels; the
foreground and background distributions are very close to each other and the pixel is
on the boundary of the foreground/background distribution.

63

3.2.4 Accuracy IIT — Miscellaneous Issues that Affect Accu-

racy

This section discusses some relatively minor issues that can affect the accuracy of
Bayesian Matting in a detrimental way. Unlike the problems of the previous two
sections, most of these issues can be rectified within Bayesian Matting easily — see

section 3.3 for our modifications.

Number of Clusters

Bayesian Matting partitions the foreground and background distributions into a fixed
number of clusters. However, setting a fixed arbitrary number of clusters is not ideal:
The number of clusters may depend on the variation of foreground and background

color in an image, and it should also be different in different areas of the image.

The goal of having “clusters” is to ensure that each foreground or background group
of similar colors gets its own cluster. Setting a fixed number of clusters create two

opposite problems:

1. The fixed number of clusters may be too small: In this case, there may be

clusters that span multiple different colors.

2. The fixed number of clusters may be too large: In this case, there exist different
clusters that contain very similar colors and it would be more optimal to merge

these clusters.

In general, these problems — especially the first problem — will cause errors in the

estimated p and X of each cluster, and thus result in incorrect estimation.

Remark 3.2. Because we have to perform numerical optimization for every pair of
clusters, and numerical optimization is the runtime bottleneck of Bayesian Matting

(see section 3.2.1), having too many clusters will slow down the runtime greatly.

64

Choosing Pixels

Recall that Bayesian Matting also includes the previously inferred foreground and
background pixels in the set of sampled foreground or background pixels. This can
cause problems, especially when combined with the mean preference tendencies of

Bayesian Matting, as described in section 3.2.2.

The first problem is that the sampled pixels may have been estimated incorrectly:
We have seen in section 3.2.2 that mean preference can result in the wrong set of
foreground and background clusters being chosen, and this will result not only in
inaccurate o values, but also in incorrect values of F' and B being estimated (see

figure 3-6 for an example). Thus, the sampled values of F' will be incorrect.

The second problem is that because of mean preference, the sampled foreground or
background pixels that were previously estimated will be close to the mean of the
distribution they came from, and from mean preference the estimated foreground or
background value of the current pixel will also be close to this mean, and thus subse-

quent future pixels, which sample from this pixel, will be biased towards this mean.

The effect of the problems associated with choosing previously estimated pixels can

result in incorrectly estimated u and X.

Weighting Pixels

Recall that Bayesian Matting weights each pixel by a multiplicative combination of
a spatial distance term and a relevance termm. We will concentrate on the spatial
distance term, which is a Gaussian falloff. We have found in practice that this falloff

— which is exponential — decays too rapidly. This results in two problems:

1. Pixels that are slightly far away from the pixel to be estimated are essentially
worthless. When combined with sampling from previously inferred foreground

“and background pixels that can be inaccurate (see previous section), this means

65

that greater and greater weight is placed on possibly incorrect foreground and

background pixels.

2. In a practical sense, there are many numerical difficulties associated with per-
forming clustering and inference on pixels that have such a great variety of

weights.

A more troubling aspect with pixel weighting is that Bayesian Matting fails to nor-
malize weights before calculating covariance matrices. Since nearby pixels are given
higher weights, the covariances of clusters that were sampled near the estimated pixel
is much greater than the covariances of clusters that were sampled further away from

the estimated pixel. This can cause problems in at least two ways:

1. The higher the covariance, the more we allow deviation away from the mean. It
should be the case that for clusters that are further away spatially, we should
allow greater deviation away from the mean — especially when considering shad-

ing. However, the approach used by Bayesian Matting does the opposite!

2. The (relatively) unequal covariances can cause problems when choosing the cor-
rect pairs of clusters to use for estimation, similar to the problems caused by
mean preference (see figure 3-6 for an example). For example, consider an im-
age where the trimap specified is tighter on the background side (meaning that
most of the unknown pixels are foreground). For the pixels on the background
boundary, the sampled background distribution has a much higher covariance
than the sampled foreground distribution. This means that the distance be-
tween F' and pp is much more important than the distance between B and pp.
In this case, for a background pixel, the correct pair of clusters determined by
Bayesian matting is primarily determined by the foreground estimates! This
problem is not rectified by onion-peel ordering of pixels to estimate, because
this pixel — a background pixel close to the edge of the trimap — will be sampled

early in the order.

66

3.2.5 A Remark on Measurement Error

From section 3.2.1, we have seen that the measurement error can affect the rate
of convergence of the numerical optimization procedure and hence the efficiency of
Bayesian Matting. We have also seen in section 3.2.2 that it can affect the choice
of the foreground and background cluster pair to use for estimation, as it normalizes
the distance penalty of the image pixel to its projection on the estimated F' — B line;
because the measurement error is generally small considered to the foreground and
background covariances, it could play a very important role in choosing the correct

pair of clusters.

Why should measurement error play such a large role? In other words, why should
the projection distance be normalized this way? We feel that it should make no dif-
ference whether the projection distance is 5 or 6 units in RGB space; however, if the
measurement variance is sufficiently small, such a difference can be huge. It can be
argued that measurement error is really an artificial construct in order to make the

estimation problem more numerically tractable.

A more reasonable model would have the measurement error penalty be zero for
small values up to a threshold and then increase exponentially above that threshold.
However, this model may be a lot more difficult to estimate and solve in a practical

sense.

3.3 A Slightly Modified Bayesian Matting Algo-
rithm to Form a Baseline

For our experiments and comparisons in chapter 6, we modify the Bayesian Matting

algorithm to fix some of the issues discussed in section 3.2.4, as follows:

1. We only sample from pixels that are marked either as foreground or background

in the trimap; to compensate for the lack of sampling from previously estimated

67

pixels, we use tighter trimaps.

2. We weight sample pixels using a 1/d falloff, where d is the spatial distance from

the pixel to estimate, instead of a Gaussian falloff.

3. We normalize weights — so that the total weight of all pixels is 1 — before

calculating covariance matrices.

We fix the number of clusters at 3. While this does not address the issue of a fixed
number of clusters — and we certainly could have used the improved clustering al-
gorithm discussed in 4.4 — we have found that this proves adequate for comparison

purposes.

Finally, as discussed in section 3.2.1 on convergence, we fix the number of iterations

of numerical optimization at 40 to allow for sufficient convergence.

68

Chapter 4

Segment-Based Matting: A Closed
Form Color-Based Statistical

Matting Algorithm

In this chapter, we present Segment-Based Matting — a closed form trimap and color-
based statistical matting algorithm that addresses the problems of Bayesian Matting

we discussed in section 3.2.

Section 4.1 presents the motivation behind Segment-Based Matting and presents a
quick overview and summary. Section 4.2 presents an overview of the simple color line
model that we use to model the foreground and background distributions, section 4.3
provides a comprehensive description of our Segment-Based Matting algorithm, and
finally section 4.4 describes an improvement and adaptation of the Orchard-Bouman
clustering algorithm (see [22] and also section 3.1.1) that we use to partition sampled

pixels into clusters.

4.1 Motivation and Overview

We have seen in the previous chapter that Bayesian Matting has problems with effi-

ciency and accuracy — in particular with regard to issues of shading and non-sparse

69

alphas, resulting in mattes that are far less sharp than optimal. In this chapter, we
propose a new color-based statistical matting algorithm — Segment-Based Matting
~ that fixes these problems. In this section, we provide a quick overview of how
Segment-Based Matting addresses accuracy and efficiency, and finally provide a brief

summary of the approach.

Segment-Based Matting distinguishes itself from other approaches in a few ways. In
contrast to Bayesian Matting — which also uses color-based statistics — it models
foreground and background distributions as lines in three-dimensional RGB space.
This provides a model for shading and also allows a closed-form solution. In contrast
to approaches such as Levin et al’s closed form laplacian matting which explicitly
enforce smoothness of the alpha matte, Segment-Based Matting is purely color-based

and does not enforce smoothness directly.

4.1.1 Accuracy

In section 3.2.2, we found that a major cause of Bayesian Matting’s inaccuracy was
that it did not generate sharp alpha mattes in many cases — especially in regions
with shading — because of its bias towards means. Segment-Based Matting models
distributions as lines or line segments in RGB space, and shading can be incorpo-
rated easily by allowing foreground and background pixels to lie along these lines.
We eliminate mean bias by modelling the probability of foreground and background
colors with a flat segment distribution. An empirical justification for modelling the
distributions as lines can be found in a simple color line model which we will briefly
discuss in section 4.2. There are at least two ways to incorporate shading using lines

in a reasonable way, which we will also discuss in section 4.2.

Another way to improve the sharpness of the alpha matte is to ensure that for most
pixels, « = 0 or @ = 1. This is justified because most pixels are obviously — to the
human eye — entirely foreground (o = 1) or background (a@ = 0). Following this

intuition, we use a hypothesis testing approach (see Appendix B.3 for an overview)

70

to test if pixels belong to the foreground or background distributions.

Remark 4.1. We do not directly address the issue of the continuity of the alpha matte
- such as discontinuities caused when the foreground and background distributions
are similar — that was discussed in section 3.2.3. However, we have found empir-
ically — see chapter 6 for examples — that Segment-Based Matting alleviates many
of the problems associated with discontinuity of a. Chapter 5 also discusses a new
approach for using inpainting and texture synthesis to resolve ambiguities in matting
— easily applicable to Segment-Based Matting — that explicitly addresses the problem

of similar foreground and background distributions.

4.1.2 Efficiency

In section 3.2.1, we saw that the major efliciency cost of Bayesian Matting was the
number of iterations required for convergence during numerical optimization. The
reason numerical optimization was required was that there was no closed form solu-

tion.

In Bayesian Matting, there is no closed form solution because we have to optimize
over three-dimensional Gaussians. However, if the foreground and background distri-
butions were one-dimensional lines in RGB space — as in Segment-Based Matting — a
closed form solution might exist. In our Segment-Based Matting approach to model
shading, a closed form solution does exist and improves the running time significantly.
For the Bayesian case, there is an obvious solution if the foreground and background
color distributions lie on the same line, since the problem becomes one-dimensional.
We have not closely studied solving the Bayesian Matting MAP estimator in the gen-
eral case using the line distribution model — as we feel our Segment-Based Matting

approach is superior — but it is quite possible that it has a closed form solution.

Our approach to test if a given pixel was obviously foreground or background also

71

improves efficiency. If we could rapidly classify these obvious cases based on color
distributions, we would not have to solve for these pixels. If the number of obvious

cases are large, this would reduce the running time significantly.

4.1.3 Summary of Approach

We will briefly provide a summary of Segment-Based Matting; section 4.3 will reit-
erate this summary, provide more details, and complete the description of the algo-
rithm. Segment-Based Matting estimates each pixel independently. For each pixel,

it performs the following steps:

1. Sample the local foreground and background pixels, as labelled in the trimap.

Partition the foreground and background pixels into multiple clusters.

2. For every cluster, we fit a one-dimensional line or line segment in RGB space

representing its distribution.

3. We test if the pixel belongs to exactly one of the foreground or the background.
If it does, we assign @ = 1 or a = 0 respectively and we skip the next step,

otherwise we proceed with the next step.

4. For each pair of clusters, estimate a. This gives multiple solutions of «, one
from each pair of clusters. We choose the solution of a that is best according
to a scoring system that is described in section 4.3.8. This is the key step in

the algorithm.

5. Once we find o, we solve for F' and B.

4.2 The Color Line Model

In the color line model, we assume that after clustering, the foreground and back-
ground clusters form straight lines in RGB space. This model arises from the empirical

observation that in the local area around a pixel where we collect samples, the pixels

72

tend to form straight lines. An example can be found in figure 4-1.

The color line model has some empirical justification. Omer and Werman [21] have
noted that pixel histograms of an entire image tend to form elongated lines in RGB
space, and have used this to create a different image-specific color space based on cqlor
lines. Levin et al [16] have also noted that in situations such as shading and edges
between background and foreground regions, the color line model captures much of
the local pixel information. The color line model is also used in some image matting
algorithms — it is the core assumption behind the closed form laplacian matting [16]

and spectral matting [17] approaches.

73

200 t
150 ",

100 4 "
3

Figure 4-1: The Color Line Model as demonstrated from the starfish image from the
Berkeley Segmentation Dataset [19]. We have provided a close-up view as well as
plots of the colors in RGB space of the areas marked in red in the original image.

74

4.2.1 Applying the Color Line Model in Our Framework:
The Full Line Model vs. The Line Segment Model

In our matting framework, we use the color line model to represent shading: Each
foreground (background) distribution can be represented by a line in RGB space,
and this line represents the possible shades that a typical foreground (background)
pixel from this distribution can take. Given a set of foreground (background) pixel
samples that lie on a line, there are at least two different methods for incorporating

this interpretation:

e The Full Line Model. We solve for the foreground (background) pixel by
allowing them to lie anywhere on the line. This approach fully extrapolates the
shading for the foreground (background).

e The Line Segment Model. From the points on the line, we generate a line
segment on this line: The line segment may be generated in many ways, such as
taking the two extreme points, or taking the mean of the samples plus or minus
a few sample standard deviations; in our approach, we use the two extreme
points of the line. We then solve for the foreground (background) pixel by
ensuring that it lies on on the foreground (background) line segment; if this is
impossible, we attempt to extend the line segment, but by as little as possible.
While this approach still models shading along the line segment, it restricts the

amount of shading desired.

Figure 4-2 demonstrates the difference between the two models. We note that in both
models, we still evaluate the quality of the estimation by deviation from the mean,
with a different penalty system to prevent the bias towards the mean associated with
Bayesian Matting (see section 4.3.8 for details); the difference in the models comes
solely from the way the foreground (background) pixels — and hence « — is solved for.

Details of the solution techniques can be found in sections 4.3.3 through 4.3.7.

75

Points Full Line Line Segment
Figure 4-2: A comparison of the full line and line segment models. The left-most
image shows the original points, the middle image shows fitting a full line to the
points, while the right-most image shows fitting a line segment to those points. In

the right-most image, the dotted lines signify possible extensions to the line segment
— but only if really necessary — in order to obtain a solution to the matting problem.

The full line model is more appropriate when the range of shading is large and the
trimap is not very tight — so when evaluating pixels far from the borders of the
trimap, we can fully extrapolate the amount of shading required. The line segment
model is more appropriate when the trimap is tighter and we wish to obtain a more
precise solution, and in some sense it is more principled because it does not extend

the shading indefinitely, but rather only within reasonable limits.

4.3 Owur Approach

Segment-Based Matting is a color-based approach that like Bayesian Matting, sam-
ples the local foreground and background pixels, partitions them into foreground and
background clusters, and solves for each unknown pixel independently. The key dif-
ference is in how F, B and « are solved in the matting problem. The steps in the

Segment-Based Matting Algorithm for each unknown pixel are as follows:

76

1. Sample the local foreground and background pixels and assign each sample a

weight.

2. Partition the samples into multiple foreground and background clusters; we use
a modified Orchard-Bouman clustering method, which will be described at the
end of the chapter in section 4.4.

3. For each cluster, fit a line in RGB space, following the color line model. We
do this via principal component analysis on the points (see Appendix C) using
their weighted covariance matrix and taking the first principal component (in

the language of Appendix C, we try to reduce the data to 1 dimension).

4. Determine if the pixel is unambiguously foreground or background. If so, set
a =1 or a = 0 respectively and skip to step 7; if the pixel is neither foreground
nor background or both foreground and background, we proceed with the next

few steps.

5. For each pair of foreground/background lines, we solve for a. This is the key

step in the algorithm.

6. We choose the foreground/background pair that returns the best solution, as

determined by a scoring system, and we use its associated solution of a.

7. Once a is solved, we will solve for F' and B as follows: If a = 1, we set F' to be
equal to the pixel and B to be zero. Similarly, if & = 0, we set F' to zero and
B to be equal to the pixel. Otherwise we follow an approach similar to [2] and
[34]: We sample from the nearby foreground and background pixels (the same
set we used to solve for @), and find the pair of foreground and background
pixels that minimize || — aF — (1 —)Bl||, where I is the pixel value and F
and B are the values of the foreground and background pixels. The values of
this pair then become the values of F' and B for that pixel.

The next few sections will fill in the details of the above algorithm — sections 4.3.1

through 4.3.8 will briefly discuss the key techniques, while section 4.3.9 will add

7

details about important optimizations and special cases. Let us quickly define some
terminology: If x is a point in RGB space, and X is its projection onto a plane or a

line, we define the following;:

e The projection value, which is defined only if X is a projection on a line, is the
distance from X to an arbitrary point on the line; in general, it does not matter
which point on the line is the reference point, as long as it is kept constant for

all points projected to that line.
e The projection distance is the orthogonal distance ||x — X||.

For more information on linear projections, refer to Appendix A.2.

4.3.1 Sampling and Weighting pixels

We follow a similar sampling and weighting technique as our modified Bayesian Mat-
ting Algorithm described in section 3.3. Samples are collected from a circular region
around the pixel to infer from, and only from pixels marked as foreground or back-
ground in the trimap — no previously estimated pixels are used. The area of sampling
is initially a circle of radius five around the pixel; we expand the radius until at least
twenty samples are collected. We only collect foreground samples for the foreground

distribution and background samples for the background distribution.

We weight samples using a 1/d falloff, where d is the Euclidean distance of the pixel
from the sample. After collecting the sample, we normalize the weights such that

they sum to 1.

4.3.2 Foreground and Background Detection

For ease of exposition, we first assume that there exists a single cluster of foreground
points, with fitted foreground line, and we wish to test if the pixel belongs to the
cluster. We project all the foreground points to the line, and replace each point with

its projection value; hence the points now become uni-dimensional. We then calculate

78

the sample mean and variance of the projection values and fit a univariate normal

distribution to the sample mean and variance.

The pixel needs to satisfy two tests in order to be considered part of the foreground

cluster:

1. It should belong to the foreground line.

2. If it belongs on the foreground line, its projection value should belong to the
univariate normal distribution with mean and variance given by the mean and

variance of the sample projection values.

For the first test, we use an ad-hoc method: The pixel belongs on the foreground line
if its projection distance is at most twice the maximum projection distance of the
sample foreground points. A justification for this simple test is that since the projec-
tion distance measures the distance orthogonal to the principal component (the line
itself), and most of the information — according to the color line model - is contained
along the line, the projection distance is simply a noise factor that does not convey
much information about whether the point belongs to the distribution. We simply

want to determine if the pixel is sufficiently close to the line.

Remark 4.2. 1t is possible — especially if the number of pixels that make up the cluster
is few — that the maximum projection distance of the sample points can be very small
and insignificant in RGB space. As an additional heuristic test, we will also allow a
pixel to lie on the foreground line if its projection distance is less than a threshold

value; the threshold value we use is 5 units in RGB space.

The second test is more important, since it is a test along the principal component,
which contains most of the information about the distribution. Thus we use a more

principled approach. We use a hypothesis testing framework (see appendix B.3) to

79

test between the following two hypothesis:

Hy: The pixel belongs to the foreground cluster.

Hy The pixel does NOT belong to the foreground cluster.

Similar to many classical statistical tests, we fix the probability « of incorrectly reject-
ing Ho'. We fix o = 0.05. Under these assumptions, and fitting a univariate normal
distribution to the mean and variance of the sample projection values, the test rejects
Hy if the projection value of the pixel is greater than 1.96 standard deviations (where
the standard deviation is the square root of the sample variance) away from the mean
of the sample projection values; see appendix B.3 for details. Equivalently, we will
claim the pixel passes the second test if its projection value is less than 1.96 standard

deviations away from the mean of the sample projection values.

Remark 4.3. Again, if the number of pixels is very small, the sample variance can be
small; thus, as an ad-hoc rule, we ensure that the sample standard deviation is at

least a small value; we use the value of 1.5 units in RGB space.

We can summarize the above discussion — modulo the remarks at the end of each
case — as follows: The pixel belongs to the foreground line if its projection distance is
less than twice the greatest sample projection distance and its projection value is less
than 1.96 sample standard deviations away from the mean of the sample projection

values.

The extension to multiple clusters is simple: With multiple foreground clusters, the
pixel belongs to the foreground if it passes the above described series of tests for at
least one of the clusters. The sequence of tests above also extend to the background;
we test for foreground and background independently. Thus, at the end of this series

of tests, we can tell if a pixel belongs to the foreground, the background, both, or

1This is known as type 1 error. See appendix B.3.

80

neither.

4.3.3 Solving for a: An Overview

Suppose the pixel belongs neither to the foreground nor the background, or belongs
to both the foreground and the background. We then estimate o using pairs of
foreground /background lines. Since each of these lines lie in three-dimensional RGB

space, there are three possible cases for every pair of lines:

1. They are collinear.

2. They are coplanar. This is the case, for example, if the lines intersect, or have

the same slope.

3. They are neither collinear nor coplanar.

The following sections discuss how we detect the cases and solve for each possible
case. We actually do not solve for the third case, as its solution is very sensitive to
noise — hence the description in section 4.3.7 is primarily for reference — and therefore
we will treat the lines as coplanar if we detect the third case; details can be found in

section 4.3.4.

Remark 4.4. The case we solve for does not rely on the location of the input pixel in
RGB space, because it is very difficult to incorporate it directly without introducing
significant additional complexity. If the case chosen does not fit the input pixel well
~ for example, if we use the collinear case and the projection distance of the input
pixel on the line is large — the scoring system in 4.3.8 will heavily penalize it and thus

reduce the possibility of choosing a bad case.

4.3.4 Solving for a: Detecting the Cases and Additional Trans-

formations

It is fairly trivial to detect if lines are collinear or coplanar if we only allow ezact

collinearity and coplanarity. However, there is always some noise associated with

81

sample observations, and therefore we need to allow inexact collinearity and copla-
narity; an example can be found in figure 4-3, where the lines are not exactly collinear,

but it is in our interests to detect them as such.

Figure 4-3: An Example of inexact collinearity: The lines are not exactly collinear,
but we should probably detect them as such.

We can define a line as two points on the line; the choice of such points will be im-
portant because of the way we detect inexact collinearity and coplanarity. Like in the
line segment model, we can choose these two points as the extreme sample points on
the line — the points with the greatest projection values — or we can simply take the
projection mean plus or minus a few standard deviations; in our approach, we choose

the two extreme points.

Collinearity Detection

Two lines are exactly collinear if they satisfy two properties:
1. The angle between the two lines is zero or 7. Equivalently, the absolute value

of the cosine of this angle is one.

2. Each line can be defined with two points, for a total of four points. Pick any
of these two points, and project all the points on the line defined by these two

points. The projection distance of all points should be zero.
For inexact collinearity, we relax the above two conditions a little:
1. The absolute value of the cosine of the angle between the two points is suffi-

ciently high.

2. Out of the four points, take the two points that are the furthest away from each
other, and project all the points on the line defined by these two points. The

projection distance of all points should be sufficiently small.

82

We will consider two lines as being collinear if both tests above pass. For our purposes,
we take the cosine angle threshold as cos 5 and the projection distance threshold as

5 units in RGB space.

Remark 4.5. The second condition suffices for exact collinearity, however, if we only
use the second condition for inexact collinearity, there can be problems. For example,
consider the case in figure 4-4. The two lines are not collinear, but the two points
on the dotted line are close to each other and straddle the solid line. The second
collinearity test will pass, but the first will fail. This is why we need both conditions

to pass.

Figure 4-4: Non-collinear lines: The lines are not collinear, but if we use only the
second condition for inexact collinearity, we would detect them as collinear.

Coplanarity Detection

In this section, we will assume that the lines are not collinear. With two points for
each line, there are a total of four points. We first remove the point that is closest to
all the other points. The remaining three points define a plane; if the points selected
are collinear, we try a different set of three points, and since the lines are not collinear,

there exist a set of three points that define a plane. Associated with this plane is a

83

vector v that is perpendicular to this plane.

Now, the fourth point lies in this plane — and therefore the lines are exactly coplanar

— if the following two conditions are met:

1. The projection distance of this point on the plane is zero.

2. Take the three lines formed by taking this point with the three points that
formed the plane. These lines are all perpendicular to the vector v; equivalently

the absolute value of the cosines of their angles with v are all zero.
As with the collinear case, we relax the above conditions for inexact coplanarity:

1. The projection distance of this point on the plane is sufficiently small.

2. Take the three lines formed by taking this point with the three points that
formed the plane. The absolute values of the cosines of the angles of these lines

with v are all sufficiently small.

We will consider two lines as being coplanar if they are not collinear and both tests
above pass. We use the same thresholds as in the collinear case: The cosine angle

threshold is cos {5 and the projection distance threshold is 5 units in RGB space.

Remark 4.6. The first condition suffices for exact coplanarity; however if we only
use the first condition for inexact coplanarity, there can be problems. For example,
consider the case in figure 4-5. The lines are not coplanar, but since the points on
the dotted line are close to each other, the first test would pass but the second would

fail. Thus we need both conditions to pass.

Post-Detection Transformations

Once we have detected if the pair of lines are collinear, coplanar, or otherwise, we
transform the points on the line as follows: First, we perform principal component
analysis on the set of four points comprising the two lines. Next, we do the following

depending on the case we detected:

84

Figure 4-5: Non-coplanar lines: The lines are not coplanar, but if we use only the
first condition for inexact coplanarity, we would detect them as coplanar.

o If collinearity was detected, project the four points on the first principal com-
ponent. Also project the image pixel for which we wish to estimate « onto the

first principal component.

e If coplanarity was detected, project the four points on the plane spanned by the
first two principal components. Also project the image pixel for which we wish

to estimate « onto this plane.

e We have noted previously that if the lines are neither collinear nor coplanar, we
will still use the coplanar solution. In this case, we will transform the points as

in the coplanar case.

Once the points are transformed, we solve for a depending on the case we have

detected.

4.3.5 Solving for a: The Collinear case

In the collinear case, it is not possible to use the full line model. Hence we will use
the line segment model. Given the foreground line segment and the background line
segment, as well as the image pixel I for which we wish to estimate a — all collinear

after the transformations we performed in section 4.3.4 — we do the following:

85

1. Take F” as the point on the foreground line segment closest to the image pixel
I

2. Take B’ as the point on the background line segment closest to the image pixel
I

3. Take a as the projection value:

_ (=B)Y("-B)
- (F' _ BI)T(FI _ B’)

A simple depiction of this process can be shown in figure 4-6.

Background
BI

/

Foreground

Figure 4-6: Solving the collinear case: A visualization. The asterisk denotes the image
pixel, while the solid lines denote the foreground and background line segments.

If F' and B’ are identical, the above process fails; in fact, F’ and B’ can only be
identical when the foreground and background line segments overlap. In this case, we
take F' and B’ to be the means of the foreground and background lines respectively
(the projection of the means of the sample foreground and background pixels onto

their respective lines). If F” and B’ are still identical after this, we set & = 0.5.

4.3.6 Solving for a: The Coplanar case

In the coplanar case, both the full line model and the line segment model can be

used. We will discuss the motivation and solution for both in the following sections.

86

As before, we shall assume that after the transformations discussed in section 4.3.4,

the lines and the image pixel lie on the same plane.

The Full Line Model

In the full line model, we can use any point on the entire foreground (background) line
as the F' (B') pixel values. Following the standard compositing equation (1.1), the
image pixel I lies on the line connecting the F’ and B’ pixels. To incorporate shading,
we want the foreground (background) shade that is closest to the pixel. Hence, our

problem statement is:

Find the point F' on the foreground line and the point B’ on the back-
ground line that minimizes ||F" — I|| + || B’ — I|| such that the F’ — B’ line
passes through 1.

A visual interpretation can be found in figure 4-7.

Another justification for this optimization condition is as follows: Another possible
way to incorporate shading is to find the foreground and background shades that are
closest to each other, that is, to find the points F’ and B’ such that ||F' — B'|| is
minimal and the F’ — B’ line passes through I. In the case when I lies between the
foreground and background distributions, as is usually the case, this is equivalent to

the above formulation.

Since all the points and lines are coplanar, we will first convert them to two-dimensional
cartesian coordinates in a manner such that the image pixel I is the origin in the new
two-dimensional coordinate system. This conversion transformation is elementary
and is described in Appendix A.4.3; since this transformation preserves distances and
angles, we can solve the problem in the transformed two-dimensional space, undo the
transformation, and preserve the correct solution in the original three dimensional

space. From this point on, we will describe the solution in two-dimensional space.

87

Background

Foreground

Figure 4-7: Solving the coplanar case with the full line model: A visualization. The
asterisk denotes the image pixel, while the solid lines denote the foreground and
background line segments.

Next, we will assume that one of the foreground or background lines is vertical. If
not, we may rotate the space such that one of the lines becomes vertical; such a trans-
formation is described in Appendix A.4.2. This transformation preserves distances
and angles, so solving the problem in the transformed space is equivalent to solving
it in the original space. This assumption of a vertical line is very important; we will

discuss its importance later.

Now the image pixel [is the origin, so we require the F' — B’ line to pass through
the origin. If one of the lines — suppose it is the foreground line — passes through the
origin, then F” is the origin, and B’ is the projection of the origin onto the background

line. A similar solution can be found if the background line passes through the origin.

88

Next, if the two lines are parallel, the solution can be found by projecting the origin
onto both lines. Now we will assume that the lines are not parallel and neither line
passes through the origin. Since the pixel I is the origin, and we wish to minimize
the sum of its distance from F' and B’, which are points on the foreground and

background lines respectively, we can restate the problem statement as follows:

Given two lines in Cartesian space, one of which is vertical, find a third
line passing through the origin that intersect with the two lines at points

p1 and p, such that ||p1|| + ||p2|| is minimized.

Since one line is vertical and does not pass through the origin, the solution cannot be
a vertical line. Hence, we may write the solution line as y = mzx, where the slope m
is the desired quantity to be found. Furthermore, since the lines are not parallel and
one line is vertical, we may write the equation of the non-vertical line as y = m;z+¢;
and the equation of the vertical line as © = c;. We will assume that c; is non-negative;

if it is negative, we can always rotate the plane by .

The intersection of the solution line y = mx with the line y = mz + ¢; is

pr= (2) (1)

m—ml’m—ml

and the intersection with the line z = ¢y is

P2 = (c2,™mcCy) (4-2)

Since ¢, is non-negative, we can write the objective function as

C C
||p1u+||pz||=| 1 }¢—1+m2+cm+m2=\/1+m2 (m{ 1
m—my m—my

)

(4.3)

89

There are two cases: First consider the case when "Tfh > 0, so that we may rewrite

(4.3) as

Vitm? (c2+ a)

m-—ms

Taking the first order condition with respect to m yields

(c+ C1) m clv1+m2_0
Tme—m) Vitm® (m-m)?

Since neither line passes through the origin, the answer cannot be m = m; and
therefore we multiply throughout by v1 + m2(m — m,)?:

m (cz(m —m1)® + e (m— ml)) —ca(l+m?) =0
Since neither line passes through the origin, ¢; # 0. Thus we divide throughout by
¢y and simplify:

m3 +m?(=2m;) + m (mf — mlﬂ) -——= (4.4)
Co Co

This cubic equation in m has at least one and at most three real roots, and there

exists a closed form solution to find all its roots (for example, see [20]).

Now, we consider the second case, when E—_c-lm—] < 0. In this case, we rewrite (4.3) as

m—m,

c
V1+m? (cz - !)
and the corresponding cubic equation that is the counterpart of (4.4) is

m® +m*(—2m;) + m (mf + m1%> + 2_1 =0 (4.5)
2

Together, solving (4.4) and (4.5) gives us between two and six real roots. We can

then try with each real root to find the choice of m that minimizes our objective

90

function (4.3). In the following paragraph, we demonstrate that there will be a real
root of (4.4) satisfying —%— > 0 and a real root of (4.5) satisfying —%— < 0, which

m—mi

is sufficient to justify the assumptions of these two equations.

We quickly discuss the existence of an interior solution to the minimization problem
and why this procedure works. Consider the geometric interpretation of the objective
function. Since one of the lines is vertical and does not pass through the origin, as
m tends towards both oo and —oo, the solution line becomes vertical and the ob-
jective function tends towards oo; for the same reasoning with the non-vertical line,
the same is true as m tends towards m, from either direction. Since the objective
function (4.3) is differentiable in m in the regions (—oo,m;) and (m;,00) and tends
towards oo at both boundaries in both regions, it follows that the solution to the
minimization problem can be found in the interior of these regions and there exists
a local minimum, solvable by taking a first order condition, in each of the regions
(=00, m1) and (my,00). Since 72— has different signs in these two regions, it imme-
diately follows that we can find the local minimum in the region where m—?——ml >0 by
solving (4.4) and the region where 72— < 0 by solving (4.5), as both these equations

are equivalent to solving the first order conditions in these regions.

Finally, we make a few notes on the importance of assuming that one line is vertical:

1. It allows us to guarantee that the solution line is not vertical, and therefore we

can write it in the form y = mz.

2. It allows us to guarantee that the objective function (4.3) tends towards oo as
m tends towards oo and —oo, and therefore argue the existence of an interior

solution to the minimization problem.

3. Suppose both lines are not vertical; the equation of the second line can then be
written as y = max+c2. If we proceed in the same way as before, the equivalent
first order condition that is the counterpart of (4.4) is quartic instead of cubic.

While quartic equations also have closed form solutions, there are two problems

91

with a quartic equation: Firstly, the algorithm is far more complicated, and
secondly and more importantly, unlike a cubic equation a quartic equation is
not guaranteed to have any real roots and thus there may be no solutions to

the problem!

Once we have found the solution slope m and hence the solution line y = mz, the
value of F is simply the intersection of this line with the foreground line and B’ is
the intersection of this line with the background line. We can calculate the value of
o without undoing any of the transformations performed, because all our transfor-
mations preserve lines and angles:

_ (I-—- B')T(F' __B/)
- (F’ _ B/)T(F/ _ B’)

The Line Segment Model

In the line segment model, we want to find F’ and B’ that lie on the foreground and
background line segments respectively such that the F’ — B’ line passes through the
image pixel. If this is not possible, we may extend both the foreground and back-
ground line segments by as little as possible, but proportionately with their length —
so that we do not extend one line greatly and the other line by very little — so that

this condition is satisfied.

We present a geometric construction that achieves this goal. First, we join one end-
point of the foreground line segment with one endpoint of the background line segment
to create a line, and join the other endpoints of the foreground and background line
segments to create a second line. We will assume that these lines do not intersect
in the interior of the convex hull formed by the foreground and background line seg-

ments; if not, we can always switch the endpoints around.

Take the intersection of the two lines, and join this intersection with the image pixel I
to form another line. The intersection of this line with the foreground and background

lines are the values of F’ and B’ respectively. Figure 4-8 shows this construction.

92

the image pixel lies in the convex hull formed by the foreground and background line
segments — the construction gives a good solution. Figure 4-8(b) shows that when
there is a need to extend the lines — or equivalently, when the image pixel does not
lie in the convex hull - the construction extends the lines in a manner such that the
longer line (the background line in figure 4-8(b)) is extended longer than the shorter
line; in other words, the lines are extended proportionately to their lengths. For ex-
ample, if the line segments were formed by taking standard deviations, then the lines

are extended proportional to their standard deviation, which is a desirable property.

As with all previous cases, once F' and B’ are found, we can calculate a:

_U-B)(F-B)
- (F’ _ B’)T(F’ _ B')

4.3.7 Solving for a: Neither Collinear nor Coplanar

Although this case will never be used — because we force coplanarity and utilize the
solution in section 4.3.6 — we will briefly describe the solution for the sake of com-

pleteness.

In this scenario, we will use the full line model. The line segment model is not ap-
plicable here: As long as the lines are not coplanar, there exists at most one solution
— and there may be none, as we will see — for F’ on the foreground line and B’ on
the background line such that the F' — B’ line passes through the image pixel. Thus,

restricting possible solutions to line segments does nothing.

We first translate the coordinates such that the image pixel lies on the origin. Thus,
as in the full line model for the coplanar case described in section 4.3.6, we wish to
find pixels " on the foreground line and B’ on the background line such that the
F' — B’ line passes through the origin. If one line — say the foreground line — passes
through the origin, then F” is the origin and B’ is the projection of the origin on the

background line. A similar solution can be obtained if the background line passes

94

through the origin. Hence we shall assume the lines do not pass through the origin.

We will briefly describe a simple geometric solution to this problem?. Consider the
plane formed by the origin and the foreground line. Any line passing through the
origin in this plane will intersect the foreground line, except the line parallel to the
foreground line, and no other lines passing through the origin — that is, the lines
passing through the origin but not in this plane — will intersect the foreground line.
Therefore, the solution for B’ is given by the intersection of the background line with
this plane. If the background line is parallel with this plane, there is no solution.

We can then obtain F’ by taking the intersection of the line passing from B’ through
the origin with the foreground line. If no intersection exists, then no solution exists,
otherwise this procedure gives the unique solution for F’ and B’. As before, we can

calculate o from F' and B’:

_U=B) (' -B)
- (F’ _ B’)T(F’ _ B')

4.3.8 Multiple Foreground/Background Cluster Pairs

Up to this point, we have described how we can obtain o from a single pair of fore-
ground/background lines. Since we have partitioned the foreground and background
pixels into multiple lines, we need to choose between different solutions of F’, B’ and
a. For this, we utilize a scoring system, where the higher the score, the more desirable
the solution. We then pick the pair of lines, and its associated solution for F’, B’ and

a, that has the highest score.

Our scoring system is heuristic, but is based on the following guidelines:

1. To solve for o, we had to project the pixel onto a plane or line, without account-

2An algebraic solution that uses line equations is easier to code and derive, but lacks the geometric
intuition to understand its problem cases when no solution can be found. Since we will not be
utilizing the non-collinear, non-coplanar case, we will not describe this solution.

95

ing for the projection distance. We want to put a penalty for a high projection

distance.

2. To allow for shading, we should allow the calculated F’ and B’ to deviate sub-
stantially from the mean of the foreground and background line distributions
without penalty. The amount of deviation allowed should depend on the stan-

dard deviation of the distributions.

3. There should be a penalty if F' and B’ deviate sufficiently far from the mean
of the foreground and background line distributions. However, if the calculated
F' and B’ are extremely far from the foreground and background means respec-
tively, increasing their distance from their respective means should not increase

the penalty substantially.

This is to prevent this penalty from essentially dominating the choice of fore-
ground and background cluster pair when all foreground (background) clusters
have F' (B') far from the foreground (background) mean — as may be the case
for a point that is spatially far from the foreground and/or background edges
of the trimap. For example, if we use a squared distance penalty, increasing the
distance of F' (B') from the foreground (background) mean by 1 — a relatively
small amount — can increase the penalty by a great amount if the distance is

already far.

4. We would like the solved a to be sparse i.e. near 0 or 1. If « is too small or too
large i.e. much smaller than 0 or much larger than 1, there should be a penalty

as well.

Following these guidelines, we devise the following scoring system:

_ |F' — prl]
Score = — | Penaltyp;(d) + Penaltyrp —
f

B -
+ Penaltyrp (M) + Penaltyq (a)) (4.6)

Ob

96

In the above, d represents the projection distance in RGB space, F’ and B’ repre-
sent the calculated F” and B’ values, ur and pp are the projections of the means of
the foreground and background distributions onto their respective lines, and o; and
op are the standard deviations of the projection values of the foreground and back-
ground distributions. Hence, in the foreground and background penalties, we take
the deviations of the estimated values from their means, normalized by their standard

deviations; the foreground and background penalty functions take the same form.

We describe each of the penalty functions as follows: The projection penalty is given
by
d2

Penaltypo;(d) = = 4.7
d

where o4 represents the standard deviation of the projection distance. We use o4 = 2

units in RGB space. The foreground and background penalties are given by

0 z < thresh
Penaltyrp(z) = (4.8)

k(z — thresh) x > thresh

where thresh represents a threshold within which we allow shading without any
penalty, and k is a linear penalty factor once the amount of shading exceeds thresh
standard deviations away from the mean. We use thresh = 2 and k = 2. Finally, the

penalty for o, which drives the solution towards sparseness, is given by
Penaltyy(@) = cz?, £ = min(ja - 0|, |a — 1|) (4.9)

where z represents the deviation of a from 0 or 1 and c is a scaling factor. We use

c=20.

Combining equations (4.6), (4.7), (4.8) and (4.9) gives us our scoring system for a

given foreground /background pair of clusters after F’, B’ and o have been estimated,

97

and we choose the foreground/background pair of clusters with the highest score.

While our scoring system may seem fairly ad-hoc and heuristic — especially with the
choice of similarly arbitrary parameters — it works well in practice. Nevertheless,
there is a lot of scope for future work in deriving a better scoring system; section 7.2

discusses this issue.

4.3.9 Further Optimizations and Special Cases

In this section, we discuss some optimizations that we perform to improve both ac-

curacy and efficiency.

Gamma Correction

Although the Red, Green and Blue channels in a color image represent the red,
green and blue intensities respectively, a computer display generally converts the
input signal (the red/green/blue channels) into output light intensities in a non-
linear manner, so that the image appears different. A standard model that models

this non-linear relationship is
OxI

where O represents the output light intensity and I represents the input value. v is a
display-dependent parameter that is usually around 2.2. To correct for this non-linear

relationship, the RGB values stored in image files are usually pre-corrected:
I o AV

where A is the actual RGB value that is desired. This is known as gamma correction
[26]. Since our model of shading assumes that the foreground and background dis-
tributions form a straight line in RGB space, we undo this gamma correction before

performing Segment-Based Matting, using v = 2.2.

98

Foreground and Background Detection: Overlapping Foreground and Back-

ground Clusters

In areas where the foreground and background have very similar distributions, the
foreground and background clusters may overlap partially. This can be a problem
when the pixel we wish to estimate for is near both these clusters in RGB space: It

is possible for it to be detected as foreground but not background, or vice versa.

To mitigate this problem, we pre-detect if any foreground and background clusters
overlap: For any foreground/background pair, we check if any of the pixels in the
background cluster would be considered a foreground pixel, or any of the pixels in
the foreground cluster would be considered a background pixel, following the tests

described in section 4.3.2. If so, we assume the clusters overlap.

When a pixel is classified as foreground (background) following a given foreground
(background) cluster, we check if that foreground (background) cluster overlaps with
any clusters of the opposite type. If so, we also classify that pixel as the opposite type.
This prevents us from assigning o = 0 or & = 1 immediately, and allows us to mark
the pixel as being ambiguous. This will be useful, not directly in the Segment-Based
Matting algorithm in this chapter, but in our approach described in chapter 5 that

uses inpainting to resolve ambiguities in mattes.

Foreground and Background Detection: Pixels lying beyond the fore-

ground /background clusters

It is usually assumed in Segment-Based Matting that the image pixels being esti-
mated are either between the foreground and background clusters, or are sufficiently
close to one of them. It may be possible that an image pixel lies “beyond” either one
of these clusters, in which case we will not classify it as a foreground or background
pixel, even though it should be one of them. Figure 4-9 shows a visual idealization of

this scenario, where the pixel should belong to the foreground even though it is not

99

in the foreground distribution.

Pixel 1
K

Foreground

Figure 4-9: Pixels lying beyond the foreground or background clusters: The pixel
should be classified as foreground.

Our approach to solve this is as follows:

100

1. After partitioning foreground and background pixels into clusters, we take the
distance in RGB space of the mean of every cluster to the image pixel that
we wish to estimate o for. We denote the smallest distance among all the
foreground clusters as d; and the smallest distance among all the background

clusters as d.
2. We classify the pixel as foreground if:

(a) kldf S db AND
(b) dp > ko

where k; and k, are parameters we set. We classify the pixel as background if
the above conditions hold after swapping d, and dy. The first condition ensures
that the pixel is much closer to the foreground than the background, and the
second ensures that the pixel is sufficiently far from the background - this
prevents situations where the foreground and background are very close to each
other and d; and dj are both very small, in which case — following the previous
optimization described — we classify them as both foreground and background.
We set k; = 2.5 and k3 = 10 units in RGB space.

Single points in RGB color space.

It is not unusual for some clusters to be single points in RGB space. As an optimiza-
tion, we ignore any cluster that contains a single point, as these are usually outliers in
the distribution. However, it can also be the case that these clusters contain multiple
points, all with the same RGB value. We do not ignore these cases; however, these

clusters do not generate a line distribution!

Nevertheless, we can deal with these clusters fairly easily:

1. When we have two clusters that are both single points in RGB space, we apply
the collinear solution described in section 4.3.5; in this case the F’ and B’ values

are the single points. We also apply the collinear solution when one cluster is

101

a single point in RGB space, the other cluster is a line, and the line and the

point are collinear.

2. When we have one cluster that is a single point in RGB space and the other
cluster is a line, and the line and the point are not collinear, we apply the
coplanar solution described in section 4.3.6. There are no modifications to the
line segment model; in the full line model, we use the line passing through the
single point in the direction from the foreground to the background cluster as
the line distribution of the single point cluster; this models shading between the

foreground and background.

4.4 Improving the Orchard-Bouman Clustering Al-

gorithm

In section 3.2.4, we mentioned that a possible source of inaccuracy in Bayesian Mat-
ting was that it fixed the number of foreground and background clusters. In this
section, we describe a heuristic modification to the Orchard-Bouman algorithm that
dynamically decides when to stop splitting clusters into new clusters, and thus intel-

ligently deduces the correct number of clusters.

Recall that the Orchard-Bouman algorithm greedily chooses a cluster to split based
on the variance in its direction of largest variance — equivalently, the largest eigen-
value of the cluster’s covariance matrix (see Appendix C) — and splits the cluster
along the direction of largest variance, which is the largest eigenvector of the cluster’s
covariance matrix. Intuitively, we can use these variance values to deduce when to
stop splitting: If the variance of the split clusters are not substantially smaller than

the variance of the original cluster, we should stop splitting.

Now we make this intuition concrete. To understand our modifications, consider the

following cases we wish to enforce:

102

1. If the pixels are distributed relatively evenly throughout the cluster, do not
split.

2. If the variance of the cluster is not high, do not split. This rule is especially
important if there are a small number of pixels: If there a very small number
of pixels, splitting it will reduce the variance drastically, especially if after the
split, there is a cluster with only one pixel — which has zero variance — and thus
any rule that simply looks at the ratios of variances before and after will always

split, even when there should not be splitting.

3. If the variance is much higher in one direction than in other directions, split.

This suggests that there are multiple clusters in that direction.

4. We need to be able to split if there could be further splits in nearly-orthogonal
directions on the split clusters; this ensures if there are multiple clusters that
would require splits in different directions, we will still split — otherwise we
might not split based on rule 1 as the variances in different directions may be

fairly even (see figure 4-10(d) for an illustration)

These cases are demonstrated in figures 4-10(a), 4-10(b), 4-10(c) and 4-10(d) respec-
tively.

We first begin with some basic facts to help us calculate the variance in a given

direction and the total variance of a cluster:

1. Given the covariance matrix ¥ of pixels in a cluster, we can calculate the vari-

ance in a given direction v — where v is a unit vector — as vI Zv.

2. The largest eigenvector of X is the direction of largest variance, and the variance

in that direction is its corresponding eigenvalue.

3. The total variance of the cluster is given by the sum of the eigenvalues of its

covariance matrix.

103

X g ¥k
KRR ET x4 .
* Kok Tk %
* %k *
(a) Do not split. (b) Do not split.
% * X X %k
X X
* %
X " | *
(c) Split.
*** * *
X X
k
* X
* % X %
X
%k *
% " *
(d) Split.

Figure 4-10: The above plots show some cases and describe whether we wish to split
them or not. If a split is preferred, we denote the axis of splitting with a dotted line.
In figure 4-10(b), we want to avoid splitting clusters with a small number of pixels if
the variance in the cluster is not high. In figure 4-10(d), we want to split the clusters
so that we can perform further splitting steps on the split clusters created.

For derivations of these facts, see definition B.7 in Appendix B and Appendix C.

In the original Orchard-Bouman algorithm, the algorithm repeatedly chooses the
cluster with the largest eigenvalue of its covariance matrix and splits it until the

desired number of clusters is obtained. Our modified algorithm performs three steps,

104

where we have emphasized (italicized) the areas that differ from the original algorithm:

1. Choose the cluster with the largest eigenvalue.

2. Decide if the cluster should be split. If so, split it as usual; if not, discard it and

mark it so that it is never chosen again in the future.

3. Repeat until the maximum number of clusters n is reached or there are no

clusters available to be chosen.

Thus, the main aspect of our modification is a procedure for deciding if a cluster
should be split. The user specifies a set of parameters: 7,n,ky, ko, k3, where 7 is
a maximum variance parameter, n is the maximum number of clusters allowed (this
replaces the fixed number of clusters in the original Orchard-Bouman algorithm), and
ki, ks and ks are parameters that will be defined later in this description. The values
of these parameters will depend on the particular application — which in our case is
partitioning pixels into clusters in RGB space — although in general reasonable values
of these parameters will result in good dynamic behavior. For our application, we use

T=25n=06,k = 0.8 ky =0.25 k3 = 0.1. We now have:

Algorithm 4.7. Deciding if a cluster should be split. We follow the following
set of rules to decide if a cluster should be split:

1. Do not split if the total cluster variance is less than 7.

2. Split if the largest eigenvalue of its covariance matrix is more than k; times the

total cluster variance.

3. Perform a trial split of the cluster — which will be denoted as the original cluster
- to obtain two split clusters. We will perform the split if at least one of the

split clusters satisfies the following property:

Let v be the normalized eigenvector associated with the largest eigen-
value of the covariance matrix of the original cluster — equivalently, v

is the direction of splitting. Let A\ be the variance of the split cluster

105

in the direction of v, and 7 be the variance of the original cluster in
the direction of v. Let v be the largest eigenvalue of the covariance
matrix of the split cluster. The property is satisfied if A < kyv and
A < ks3n.

What do these rules do? The first rule prevents splitting when the total cluster
variance is small, as illustrated in figure 4-10(b). The second rule splits when a
large majority of the variance (recall that in a perfect spherical cluster, the largest
eigenvalue is one-third of the total variance and in a perfect two-dimensional circu-
lar cluster, the largest eigenvalue is half the total variance) can be explained by one
direction, which suggests — not always, but it is a good indicator — that the clusters

are arranged in a manner similar to figure 4-10(c).

If the first two rules do not apply, it then becomes a matter of distinguishing between
the cases in figure 4-10(a), where we do not split, and figure 4-10(d), where we split.
There are two features that distinguish the cases: In 4-10(a), if we split, the vari-
ance along the direction of splitting does not decrease substantially, and the largest
eigenvalues of the covariance matrices of the split clusters are small. In 4-10(b), after
splitting, the variances of the split clusters along the direction of splitting decreases
substantially, and the largest eigenvalue of the covariance matrices of the split cluster

is large because there is a different direction of high variance.

The third rule in the algorithm tries to decide if at least one of the split clusters
benefitted substantially from the split of the original cluster, in which case the split
should proceed. To decide this, it uses the two properties above: The cluster should
have a much smaller variance in the direction of the split, and it should still have a

different direction where it has a relatively high variance.

Remark 4.8. One valid criticism of remaining within the Orchard-Bouman algorithm

is that in Segment-Based Matting we model distributions as lines and therefore should

106

use a clustering mechanism that tries to cluster points into line segments (The work by
Omer and Werman [21] on color lines cannot be directly used because it is relatively in-
efficient and assumes that the lines pass through the origin in RGB space, which is not
necessarily the case in our application). Empirically, our modified Orchard-Bouman
algorithm does perform reasonably well in this aspect, although this is certainly an

area for future improvement.

107

108

Chapter 5

Using Inpainting/Texture
Synthesis to Resolve Ambiguities
in Matting

In this chapter, we describe a new approach that uses other techniques in image pro-
cessing — inpainting and texture synthesis — to resolve ambiguities in image matting.
By combining inpainting with matting, we can increase the accuracy of the generated

alpha matte.

Inpainting [3] is the process of filling in holes in images — using ideas similar to contour
continuations — such that the resulting image looks untampered; it is thus an image
restoration technique. Texture synthesis [12] is a technique that allows a small texture
element to be replicated smoothly over an large area. We use an application of tex-

ture synthesis introduced by Criminisi et al [11] to fill in holes in images with textures.

We will first provide a brief introduction to inpainting and texture synthesis in section
5.1. Section 5.2 provides a brief motivation behind our approach. Section 5.3 describes
the approach. We present two applications of our approach: In section 5.4, we present
its application to Bayesian Matting, and in section 5.5 we present its application to

our Segment-Based Matting algorithm described in chapter 4. Although we have

109

presented our approach for just two matting algorithms, the approach is fairly general

and can be easily adapted to many matting algorithms.

5.1 Background: Inpainting and Texture Synthe-
sis

To help explain our new approach that uses inpainting or texture synthesis to resolve
ambiguities in image matting, in this section we will provide a brief introduction to

both inpainting and texture synthesis.

5.1.1 Inpainting

As we have mentioned previously, inpainting is the restoration of damaged areas in
an image. An example can be found in figure 5-1, where a damaged image is restored

using Bertalmio’s inpainting algorithm [3].

(a) Original Image (b) Marked Image (c) Restoration over Marked
Area using Inpainting

Figure 5-1: An example of inpainting: An image is scribbled over and then restored
using inpainting.

Intuitively, the algorithm attempts to maintain the continuity of contours from the
areas surrounding the damaged region, so that the restored image looks natural. The
algorithm tries to extend isophotes — lines of constant intensity — from the surrounding
areas into the damaged region in a natural and continuous way, while progressively

curving the lines of propagation as they enter the damaged area, to prevent them

110

from crossing.

To this end, the following two steps are repeated until convergence is reached.
1. Propagate isophotes into the damaged area.
2. Curve the lines of propagation to prevent them from crossing.

The propagation mechanism is an iterative process that progressively propagates
intensity information into the damaged region. For a pixel p in the damaged region,
we denote I'(p) as its value at iteration t. The propagation mechanism performs the

iterative update step

(I} (p) — I'(p)) oc 6L (p) - N*(p)

where L*(p) and N*(p) are vectors that represent the intensity information and the
direction of propagation for pixel p at iteration ¢. Intuitively, this is the desired for-
mulation — to propagate the change of the intensity information in the direction of
propagation, such that at steady state, when there are no changes to be made, the
intensity information has been entirely propagated in the direction of propagation.
[3] formulates the intensity information L!(p) as the Laplacian at pixel p, and the
direction of propagation N*(p) as the direction perpendicular to the image gradient

at pixel p.

To curve the lines of propagation, the algorithm applies a discretized version of
anisotropic diffusion [24], which is a partial differential equation. This allows the

lines to be curved without losing sharpness in the image.

5.1.2 Texture Synthesis

Texture synthesis is concerned with the creation of larger textures from smaller tex-

ture components. An example can be found in figure 5-2.

111

Figure 5-2: An example of texture synthesis: The example texture on the left is tiled
in a smooth way to form the image on the right. Image from [12].

A simple texture synthesis algorithm proposed by Efros and Leung [12] proceeds as
follows: From a small seed patch taken from the original texture element, grow the
larger texture pixel by pixel outward. To synthesize a pixel, we consider its imme-
diate spatial neighborhood; there would have been some pixels in the neighborhood
that were previously synthesized and some that were not. Let X be the set of pixels
in the neighborhood that were previously synthesized. The algorithm looks at every
possible patch that has the same shape as X in the original texture and considers all
the patches that are very similar to X, using a measure of similarity. Next to each of
these patches in the original texture, there exists a pixel that would correspond to the
pixel we are synthesizing. The algorithm then forms a weighted histogram of these
pixels — where the weight is its corresponding patch’s similarity to X — and samples

from this histogram to synthesize the pixel.

It is not difficult to presume that a similar technique can be used to fill in holes in
regions, by synthesizing textures that fit the desired area. In this case, the source
texture element could be obtained from the area around the hole or even the entire
image, minus the holes, since the above algorithm only deals with small neighborhood

patches around each pixel.

This is indeed the method proposed by Criminisi et al [11]. Their novel contribution is

an ordering of filling in the hole. The texture synthesis method previously described

112

would synthesize pixels in the hole inwards, in onion-peel order. [11] suggests that at
every iteration, the pixel in the hole that is chosen to be synthesized next maximizes
a combination of confidence — how confident we are that the pixel can be synthesized
accurately — and the strength of the isophotes flowing into the pixel. This ensures
that pixels that can be synthesized accurately and propagate a large amount of in-
formation are synthesized first to increase the accuracy of synthesizing other pixels

in the hole.

Once the pixel is chosen, it is synthesized in a similar manner — not exactly identical,
but the differences do not matter in this discussion — to the texture synthesis method
in [12] that we described previously. An example of running Criminisi et al’s algorithm

for filling in holes is shown in figure 5-3.

(a) Source Image (b) Marked Area (¢) Filling in the marked area
with Criminisi et al’s texture
synthesis-based inpainting algo-
rithm

Figure 5-3: Removing a helicopter from the sky: An example of filling in holes with
Criminisi et al’s texture synthesis-based inpainting algorithm.

5.2 Motivation

Most matting techniques — including our Segment-Based matting algorithm described
in chapter 4 — rely on a clear distinction between the foreground and background color
distributions. When the foreground and background color distributions overlap, and
the image pixel lies within the overlap, the resulting calculated value of o may be

inaccurate. For example, as we have seen in section 3.2.3, this can result in discon-

113

tinuities in the matte generated by Bayesian Matting, as pixels in a small spatial
area with minor differences in RGB coordinates can have large differences in their

estimated values of o when the foreground and background color distributions are

very close.

In this case, our intuition proceeds as follows: Color contrast is probably the most
important factor to a human viewer in determining the foreground elements in an
image, and this is what color-based matting algorithms try to use. However, when
there is ambiguity in the foreground and background color distributions, humans use
different visual techniques, such as contour continuation or texture similarities. Sim-
ilarly, our approach uses image processing analogues such as inpainting and texture

synthesis to fill in regions in the alpha matte where there is color ambiguity.

5.3 Approach

The approach we propose is simple and elegant and can be adapted to many matting

algorithms:
1. For each pixel, determine if it is a foreground pixel.
2. Similarly, also determine if it is a background pixel.

3. If a pixel is foreground and not background, assign it @ = 1.0. Similarly, if it is

background and not foreground, assign it a = 0.0.
4. If a pixel is neither foreground nor background, perform the matting algorithm.
5. If a pixel is both foreground and background, mark it as ambiguous.

6. After all pixels are estimated, first smooth the areas around the regions marked
as ambiguous in the alpha matte (see section 5.3.1), and then perform either
inpainting or texture synthesis to fill in these ambiguous regions. Thus, the
marked regions serve as “holes” in the matte which region-filling /image restora-

tion algorithms such as inpainting or texture synthesis will fill in.

114

We note that the first few steps of this approach are very similar to parts of the
Segment-Based Matting algorithm described in chapter 4. As we will note in section
5.5, extending Segment-Based Matting to use this approach is extremely straightfor-

ward.

Although our approach, in the context of using inpainting, does try to enforce conti-
nuity of the alpha matte, we note that in contrast to matting algorithms that directly
enforce continuity and/or try to balance continuity and color contrast, we only en-
force continuity in regions where color-based solutions are ambiguous and fail. This is
an important difference: In our approach, inferring the matte from color data is more
important, and we only resort to other methods where we cannot infer the matte from
color data. We feel that this is a more principled approach than trying to incorporate

both color data and enforce continuity at the same time.

5.3.1 Smoothing around Ambiguous Regions

From the above discussion, an ambiguous pixel is a sign of similar foreground and
background color distributions, which also indicates that its nearby spatial regions
also have similar local foreground and background color distributions. Since our fore-
ground and background detection mechanisms are not perfect, we may miss detecting
some nearby pixels that have similar foreground and background distributions and

are incorrectly estimated.

These wrongly estimated pixels which are not marked as ambiguous will cause a
problem during inpainting or texture synthesis, because both inpainting and texture
synthesis rely on information from pixels surrounding the region to be filled, and if

these pixels are wrongly estimated, the resulting solution can be very inaccurate.

Therefore, as a preprocessing step before inpainting or texture synthesis, we take a
small region around the pixels marked as ambiguous and smooth this region to reduce

discontinuities. We propose two possible smoothing approaches which we will briefly

115

present: A simple Markov Random Field approach or smoothing using Levin et al’s

closed form laplacian matting algorithm.

Remark 5.1. Smoothing can be done even in regions that are not marked as am-
biguous. This can be useful when the user wishes a smoother matte or there are

discontinuities in the generated matte caused by the independent estimation of pixels.

Therefore, smoothing can be done either on just the ambiguous regions of the alpha
matte — as described here — or if we allow further user input, in other areas also
specified by the user. The smoothing approaches that we propose are sufficiently fast
that the additional user input can be done interactively: The user specifies the area,
where smoothing is required and any parameters (for example, in the MRF approach
in section 5.3.1, the parameters o, and o4) for the smoothing algorithm in this area,
and he can see the results almost immediately. This can be repeated, with different
parameters, on different areas of the alpha matte, and is thus extremely useful when
different parts of the matte requires different degrees of smoothing. Thus, with further

user input, a much more accurate matte can be obtained.

Smoothing using a Markov Random Field

Smoothing on the generated alpha matte can be done using a Markov Random Field

(MRF) (see section B.6 for an introduction to MRFs).

The goal of the MRF is to balance smoothness between adjacent values of a with
maintaining a value of « as close as possible to its originally estimated value. We can
therefore formulate an objective function of the combination of all a values in the
unknown region — to be maximized — as a product of connectivity and data terms.
The connectivity terms — between neighboring pixels — try to maintain continuity and
smoothness, while the data terms — for individual pixels — try to keep the values of «

close to the original value. With this objective function, the MRF tries to find

116

o = arg max H U, (o, o)) H W;(a) (5.1)

@ 1,j are neighboring unknown pixels unknown pixel ¢
where o = (a1, g, ...) is the combined « of all unknown pixels, ¥; ;(as, ;) is the
connectivity term between two neighboring unknown pixels ¢ and j, and ¥;(«;) is
the data term associated with pixel 7. We formulate both the connectivity and data

terms as univariate Gaussians: The connectivity term is

and the data term is

_ (O[,' - ai,original)z)

U, (a;) = exp (203

where o, is the connectivity standard deviation, o, is the data standard deviation,
and ; origina 18 the o that was estimated originally by the matting algorithm. The
less o is, the smoother the resulting solution, and the less oy is, the more the solution

tries to adhere to the originally estimated values of a.

To find « over the entire image that maximizes the objective function (5.1), for
each pixel i we discretize a; to 17 uniformly-spaced levels between 0 and 1 inclusive,
formulate the objective function (5.1) as a MRF problem and optimize using loopy

belief propagation — see Appendix B.6 for details.

Smoothing using Levin et al’s Closed Form Laplacian Matting Algorithm

From section 2.3, Levin et al’s closed form laplacian matting algorithm is an approach
that tries to obtain a relatively smooth alpha matte subject to boundary conditions
given by the marked foreground and background regions. To utilize this approach in

our smoothing step, we simply use the closed form laplacian matting algorithm to

117

solve for the alpha matte in the region to be smoothed, with boundary conditions

given by the estimated values of o around the region.

The degree of smoothing can be adjusted by the parameter e given in equation (2.3);

the higher the value of ¢, the smoother the resulting solution.

5.4 Application to Bayesian Matting

To apply the technique to Bayesian Matting, we need to detect if a pixel belongs to
the foreground and/or the background. We can then inpaint or apply texture syn-

thesis in the ambiguous regions which we believe are both foreground and background.

We follow a similar testing framework as described in section 4.3.2 for Segment-Based
Matting: A pixel belongs to the foreground if it belongs to the distribution of one of
the foreground clusters, and similarly it belongs to the background if it belongs to
one of the background clusters. All that remains is to describe how to test if a pixel

belongs to a cluster.

In Bayesian Matting, a cluster is a three-dimensional Gaussian described by a mean
p and a covariance matrix ¥. Since the distribution is three-dimensional in three-
dimensional RGB space, there is no need to test projection distance as in section 4.3.2,
where a one-dimensional distribution was fitted in three-dimensional space. Thus, we

can directly test if the pixel belongs to the given distribution.

The principled approach to test if a pixel belongs to a cluster — which utilizes property
B.19 and the discussion from section B.3 in Appendix B - is as follows: Since the
covariance matrix is symmetric positive definite!, we can factorize it as ¥ = QSQ7,

where @ is an orthogonal matrix and S is a diagonal matrix with positive diag-

1If ¥ is only positive semidefinite, we add the term o02I to make it positive definite, where o. is
the measurement error standard deviation and I is the 3 x 3 identity matrix; this addition can be
justified as incorporating measurement error into the samples.

118

onal entries. Suppose X is a multivariate Gaussian random vector with mean pu
and covariance matrix ¥; the statistic S~/2QT(X — p) is distributed according to
the standard multivariate normal with mean zero and covariance matrix equal to
the identity (see property B.19). Thus, for image pixel I, we calculate the statistic
[|S~Y2QT(I — p)||, which is its distance from the origin after normalizing it to the
standard 3-dimensional multivariate normal. We then threshold on this statistic: If
it exceeds a certain threshold, we believe it does not belong to the cluster, otherwise
we claim it does belong to the cluster. This threshold depends on the stringency of
the test; possible values include a threshold of 2.8 (a sphere of radius 2.8 contains
about 95% of the probability of the standard three-dimensional multivariate normal)
or 2.0 (a sphere of radius 2.0 contains slightly under 75% of the probability of the

standard three-dimensional multivariate normal).

In practice, however, an equally effective — and slightly simpler and more efficient
— technique thresholds on a different statistic: (I — p)TX1(I — p), where I is the
observed pixel and p and ¥ are the mean and covariance matrix of the cluster. An
intuitive justification of this statistic is that it represents the squared distance of
the pixel from the mean of the cluster, normalized by the cluster covariance, and is
thus the multi-dimensional analogue of (X—;’L')'z, where X is a one-dimensional value
which we test for belonging to a univariate normal distribution with mean y' and
standard deviation o’. Since it is well known that one common test (see section B.3)
for the univariate normal distribution will not reject that X belongs to the normal
distribution with mean y’ and standard deviation o' if the statistic lx—;,“—'| does not
exceed 1.96, a similar test here would not reject that I belongs to the cluster with
mean / and covariance matrix ¥ if the statistic (I — u)TS71(1 — 1) does not exceed
1.96 ~ 3.8. Our implementation of augmenting Bayesian Matting to use the ap-
proach described in this chapter — for purposes of comparison in chapter 6 — will use

this technique.

It is possible to use one of the optimizations described in section 4.3.9 and classify

119

a pixel as both foreground and background when a foreground (background) cluster

that the pixel belongs to overlaps with a cluster of a different type.

There are two advantages when this approach is applied to Bayesian Matting: Effi-

ciency and Accuracy with respect to Sparseness.

In section 3.2.1, we saw that the main speed bottleneck in Bayesian Matting was the
numerical optimization needed to solve for F', B and a. However, in this approach,
if we detect that an image pixel belongs to exactly one of the foreground or back-
ground, we solve for the unknown parameters immediately (for example, if we detect
foreground, we set oo = 1, F' to the image pixel and B is inconsequential). Thus, we
can skip the numerical optimization procedure for all pixels detected as exactly one
of foreground or background; these pixels usually comprise a large percentage of the

unknown region and hence efficiency is greatly improved.

In section 3.2.2, we saw that one important accuracy problem with Bayesian Matting
was that it did not generate Spa.rse a — where the majority of a is 0 or 1 — even
when the foreground /background boundary was sharp. By forcing o = 0 when the
pixel is definitely background and a = 1 when the pixel is definitely foreground, we
enforce the desirable sparseness property and improve the sharpness and accuracy of

the matte.

5.5 Application to Segment-Based Matting

The approach introduced here is easily applied to the Segment-Based Matting ap-
proach described in chapter 4: Since we already detect if a pixel belongs to the
foreground and/or the background (see section 4.3.2), we can simply inpaint or apply
texture synthesis in the regions which we believe are both the foreground and the

background.

120

The main advantage of applying this approach to Segment-Based Matting is that
accuracy is improved when the foreground and background distributions overlap and

the calculated alpha value is ambiguous.

121

122

Chapter 6

Results and Discussion

In this chapter, we will present the results from running Segment-Based Matting
from chapter 4 and our extension presented in chapter 5 — using inpainting to re-
solve ambiguities in generated alpha mattes — applied to both Bayesian Matting and
Segment-Based Matting. We will briefly discuss our results as we present them.

Our techniques are run on a variety of images, for which scaled-down thumbnails
are presented in figure 6-1 together with their associated trimaps. We compare our
results with the results obtained — by running with the same images and trimaps —
on both our modified Bayesian Matting algorithm described in section 3.3 and Levin
et al’s closed form laplacian matting algorithm. Although Levin et al’s algorithm is
scribble-based, we can simply consider the trimap as being two very dense scribbles,
one for the foreground and one for the background. Thus, we standardize the inputs

across all the algorithms.

For each image, we measure the performance of the algorithms in two ways: Effi-
ciency and Accuracy. To measure efficiency, we use the run-times of each algorithm.
To study accuracy, we examine the matte in closer detail, as well as use it to com-
posite the extracted foreground element onto a blue background. As noted in [2],

compositing on a blue background' is preferable for studying accuracy because arti-

1Depending on the foreground color, compositing on & checkerboard of colors can also be very good.

123

facts in the matte solution can be more closely examined, as compared to compositing

it on a complex background.

For the basis of comparison, our Segment-Based Matting implementation will utilize
the line segment model in the coplanar case (see section 4.3.6). The differences
between this and the full line model is generally negligible, and the comparisons
presented in this chapter will still hold valid. For the extension described in chapter
5, we use inpainting to fill in ambiguous regions and an MRF to smooth the areas
around the ambiguous regions; the solutions from using texture synthesis are generally

quite similar.

6.1 Efficiency and Runtimes

Table 6.1 shows the running times of each algorithm on each of our test images, using
as a reference point our Bayesian Matting implementation. The columns Bayesian++
and Segment-Based++ indicate the running times for the Bayesian Matting and
Segment-Based Matting algorithms extended by using inpainting to resolve ambigu-

ous regions as described in chapter 5.

We see that Levin et al’s algorithm is much faster than all the other approaches —
although this is an unfair comparison, as all programs were written in MATLAB
where Levin et al’s algorithm is extremely fast and the others are relatively slow due

to a large number of array accesses. More importantly, we observe a few things:

1. The Bayesian++ algorithm is significantly faster than the Bayesian Matting
algorithm. This implies that a large percentage of pixels can easily be classified
directly as foreground or background — using the tests described in section 5.4
— and there is no need to run the slow Bayesian Matting iterative optimization

procedure on these pixels.

2. The Segment-Based and Segment-Based++ algorithms are faster than even the

124

(f) (e)

Figure 6-1: Test Images for Matting and Associated Trimaps. Images 6-1(a) and
6-1(b) are from the Berkeley Segmentation Dataset [19], while images 6-1(i), 6-1(j),
6-1(k) and 6-1(1) are from [16].

125

Table 6.1: Relative Running Times of Different Algorithms

Image Bayesian Levin et al Bayesian++ Segment-Based Segment-Based++

@ 100% 1.5% 1.7% 25.6% 26.0%
(b) 100% 4.2% 37.4% 32.0% 26.0%
) 100% 7.9% 41.7% 17.9% 21.2%
d 100% 5.3% 26.3% 23.2% 23.8%
(€) 100% 2.4% 16.8% 12.9% 13.5%
) 100% 5.2% 21.0% 14.6% 15.8%
(g) 100% 6.1% 30.8% 19.5% 18.9%
(h) 100% 7.6% 43.0% 24.6% 23.2%
G 100% 1.3% 40.5% 22.9% 19.6%
G) 100% 1.3% 36.4% 18.0% 18.4%
k) 100% 1.3% 30.2% 22.5% 22.8%
QO 100% 1.3% 45.4% 41.3% 41.3%
(m) 100% 4.1% 34.0% 25.2% 20.7%
(m) 100% 7.8% 45.5% 29.2% 26.0%

Bayesian++ algorithm. This shows that — as expected — a closed form solution

is much faster than numerical optimization.

We wish to elaborate slightly on the second point. Although from table 6.1 the time
differences between Bayesian++ and the Segment-Based and Segment-Based++ ap-
proaches may not appear large, this is because all these approaches spend a relatively
large amount of time in sampling local pixels and clustering them. Although we had
noted in table 3.1 that in Bayesian Matting this time was relatively insignificant,
in more efficient approaches this time can become significant. Table 6.2 shows the
estimation time of each algorithm, after sampling and clustering, using the Bayesian
Matting time as the reference point. We see that in fact the processing time spent
in estimation in the Segment-Based and Segment-Based++ Algorithms is much less

than in Bayesian++, which itself is a significant improvement over Bayesian Matting.

We have thus demonstrated that classifying a large number of pixels directly as fore-
ground or background can greatly improve the efficiency of Bayesian Matting, and
further improvements in efficiency can be obtained by using Segment-Based Matting,

which has a closed form solution and thus improves the estimation time.

126

Table 6.2: Relative Estimation Running Times of Different Algorithms, after sampling
and clustering.
Image Bayesian Bayesian++ Segment-Based Segment-Based++

@) 100% 34.4% 16.4% 16.9%
(b) 100% 29.7% 23.6% 16.8%
(¢) 100% 34.5% 7.8% 11.5%
d 100% 17.2% 13.7% 14.4%
() 100% 6.5% 2.1% 2.8%
(f) 100% 11.2% 4.0% 5.3%
) 100% 22.2% 9.6% 8.9%
(h) 100% 35.9% 15.3% 13.7%
() 100% 33.2% 13.3% 9.7%
G) 100% 28.5% 7.9% 8.3%
k) 100% 21.6% 13.0% 13.3%
1) 100% 38.7% 34.1% 34.0%
(m) 100% 27.9% 17.6% 12.1%
(m) 100% 38.7% 20.4% 16.8%

Remark 6.1. Since the sampling time is significant in the Bayesian++, Segment-
based and Segment-based++ algorithms, it would be worthwhile to use more efficient

heuristics and data structures to accelerate sampling and clustering.

6.2 Accuracy I: Sharpness of Matte

We now briefly examine the accuracy of the generated matte in the context of its
sharpness. We look at image 6-1(a), which has a clearly defined foreground/background
boundary and thus should have a sharp alpha matte.

Figures 6-2 shows the results of running the different algorithms on this image, and
figures 6-3 and 6-4 show some close ups of the alpha matte and the result of com-
positing on a blue background. Since the foreground/background boundary is sharp,
the ambiguous areas where the foreground and background color distributions overlap
are negligible; thus using inpainting to resolve ambiguous regions in Segment-Based

matting is essentially identical to simply using Segment-Based Matting.

127

(d) Bayesian with inpainting

(e) Segment-Based Matting

Figure 6-2: Results of running the different algorithms on image 6-1(a), as well as
compositing the results on a blue background.

128

(c) Levin et al (d) Bayesian with inpainting

(e) Segment-Based Matting

%

s

i Foreground
#

150
100 4

50""-

Background

#

sr<—Pixel
160

200 300

150 200

50 A0
(f) Plot of Neighborhood around one problem pixel

Figure 6-3: A close up view of some of the results in figure 6-2.

129

(d) Bayesian with inpaint- () Segment-Based Mat-

ing ting
4:
+
a0 -
60
40 "y
- + Foreground
%+ S
20 .
*f : .
0 +
150 ackground |

100

50

0 0
(f) Plot of Neighborhood around one problem pixel

Figure 6-4: More close up views of some of the results in figure 6-2. The dotted line
indicates an approximate shading line fitted to the background distribution.

130

From the figures, we observe the following:

1. The result by Levin et al is too smooth; even when the boundary is sharp, it

tries to enforce smoothness and thus the matte is inaccurate.

2. The result from Bayesian Matting is also not sharp; this is probably due to its

bias towards means as described in section 3.2.2.

3. Using inpainting to resolve ambiguous regions in Bayesian Matting improves
the sharpness greatly; this is not due to the inpainting itself, but rather to the
fact that we test for foreground and background pixels and assign a = 1 or
a = 0 directly to them. However, the matte is still far from perfect, because
there remain areas for which « is not directly assigned but are estimated by

Bayesian Matting, and the alpha matte in these areas is not sharp.
4. Segment-Based Matting gives the best result.

The result of Levin et al demonstrates why enforcing smoothness in the alpha matte
is not always the best choice; in fact we would argue — as we did in chapter 5 — that
smoothness should only be enforced in areas where there may be problems in using
color to estimate the alpha matte, in order to ensure that the matte is as accurate as
possible. Another example of this can be found in figure 6-9, which is a close up view
of figure 6-5: The foreground/background boundary is sharp but the alpha matte
generated by Levin et al is not (there are no regions of ambiguity in that area and
thus the results of Segment-Based Matting with or without inpainting are identical);
in addition, adding inpainting to Bayesian Matting greatly improves the sharpness of

the matte for the same reasons as in figures 6-3 and 6-4.

To understand why Segment-Based matting performs well, we look at the plots in fig-
ures 6-3(f) and 6-4(f), which plot the foreground and background color distributions
in RGB space around a particular pixel. In figure 6-3(f), the image pixel is detected as
background, not directly because of the foreground and background tests described

in 4.3.2, but because of one of the optimizations described in section 4.3.9, where

131

we classify pixels lying beyond the foreground (background) clusters as foreground
(background). See also figure 4-9.

In figure 6-4(f), the image pixel is given a very low value of a. This is because
Segment-Based matting models shading; as can be seen from the dotted line in the
figure, the image pixel lies on a short extension to the background shade and our

shading model captures this effect.

In summary, we have shown that the Segment-Based Matting approach can generate
sharper and more accurate mattes, due to its modelling of shading and its checking

if an image pixel belongs to the foreground or the background before estimation.

6.3 Accuracy II: Continuity and Regions of Ambi-
guity

In section 3.2.3, we briefly discussed the continuity of the alpha matte generated by
Bayesian Matting, and noted that this was discontinuous in areas where the fore-
ground and background distributions were similar. In chapter 5, we proposed an
approach where we would detect these regions of ambiguity and use inpainting —
enforcing some form of contour continuity — to fill in these regions and resolve the
ambiguity. In this section, we study the effect of this approach and discuss the issue

of accuracy of the alpha matte with regards to its continuity.

To this goal, figures 6-5 and 6-7 show the results of running the matting algorithms
on the images in figures 6-1(b) and 6-1(c) respectively, and figures 6-6 and 6-8 show
close-up views on some ambiguous areas — where the foreground and background color

distributions are similar — from figures 6-5 and 6-7 respectively.

132

(a) Original Image (b) Bayesian

(f) Segment-Based Matting, with inpainting

Figure 6-5: Results of running the different algorithms on image 6-1(b), as well as
compositing the results on a blue background.

133

(a) Original Image (b) Bayesian

(c) Levin et al (d) Bayesian with inpainting

(e) Segment-Based Matting, without (f) Segment-Based Matting, with in-
inpainting painting

(g) Ambiguous re-
gions marked in red

Figure 6-6: A close up view of some of the results in figure 6-5, together with the
regions of ambiguity.

134

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-7: Results of running the different algorithms on image 6-1(c), as well as
compositing the results on a blue background.

135

(a) Original Image

(b) Bayesian (¢) Levin et al

(d) Bayesian with inpainting () Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting (g) Ambiguous regions

marked in red

Figure 6-8: A close up view of some of the results in figure 6-7, together with the
regions of ambiguity.

136

From the figures, we observe the following:

1. Both the Bayesian and Segment-Based approaches without inpainting have dis-

continuous regions.

2. Applying the inpainting extension improves both the Bayesian and Segment-
Based approaches greatly.

3. Levin et al performs adequately — but probably not as well as Segment-based
Matting with Inpainting.

Thus, using inpainting to resolve ambiguous regions in the alpha matte can improve
the accuracy and appearance of the matte by enforcing continuity in areas where

color estimation can fail.

The reason why Levin et al performs adequately, even in areas where the foreground
and background color distributions are similar, is that it already enforces continuity
in the alpha matte. However, enforcing continuity all the time, even in areas where
we can clearly estimate « from the color distribution, can lead to problems. We have
already seen in the previous section that it can lead to mattes that are not sharp.
Another problem is when the correct alpha matte has holes in it; enforcing continuity

can lead to these holes being covered up in the estimated matte.

Two examples of this can be found in figures 6-10 and 6-12 and their associated close-
up views in figures 6-11 and 6-13; these are the results of running the algorithms on
images 6-1(d) and 6-1(n) respectively. In figure 6-11, the solution by Levin et al
captures the books and the shelf behind the person as part of the person, even when
they are not; in figure 6-13, the solution by Levin et al captures the white background
— part of the referee’s outfit — as part of the footballer’s helmet, even though this is

incorrect.

These examples show the danger of trying to enforce continuity in all cases regardless

of the local foreground and background color distributions. Therefore, we believe

137

that our approach — use color to estimate, and only try to enforce continuity if the

color distributions are ambiguous — is more precise.

(a) Original Image

(b) Bayesian (c) Levin et al

]

(d) Bayesian with inpainting (e) Segment-Based Matting

Figure 6-9: More close up views of some of the results in figure 6-5.

138

(a) Original Image

(b) Bayesian

(c) Levin et al

\

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-10: Results of running the different algorithms on image 6-1(d), as well as
compositing the results on a blue background.

139

(b) Bayesian

(c¢) Levin et al (d) Bayesian with in- (e) Segment-Based (f) Segment-Based
painting Matting, without Matting, with inpaint-
inpainting ing

Figure 6-11: A close up view of some of the results in figure 6-10.

140

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-12: Results of running the different algorithms on image 6-1(n), as well as
compositing the results on a blue background.

141

(b) Bayesian

(c) Levin et al

(e) Segment-Based Matting

Figure 6-13: A close up view of some of the results in figure 6-12.
142

6.4 Some Problem Cases

Unfortunately, there are also some cases where our inpainting extension produces
sub-optimal results. These sub-optimal cases happen when the inpainting algorithm

fails to obtain an accurate matte in the ambiguous regions.

Two examples of this can be found in figures 6-14 and 6-16 and their associated close-
up views in figures 6-15 and 6-17; these are the results of running the algorithms on
images 6-1(e) and 6-1(f) respectively. In both cases, adding the inpainting extension
results in a degradation of the result of the Segment-Based approach, because the
inpainting algorithm adds extra elements to the foreground. We have plotted the lo-
cal foreground and background distributions around a typical pixel from the regions
marked as ambiguous in figures 6-15(h) and 6-17(h); we see that these pixels are
marked correctly as being ambiguous, and hence the problem lies with the inpainting

aspect of the algorithm.

One possible reason is that the inpainting algorithm is entirely independent of the
matting and foreground /background detection algorithms, and only uses the gener-
ated alpha matte, not the original image and trimap; it may be useful for future
research to study possible inpainting algorithms that can be adapted to the mat-
ting framework, using the additional information provided by the original image and

trimap.

143

a) Original Image

b) Bayesian

) Levin et al

d) Bayesian with inpainting

e) Segment-Based Matting, without 1npa1ntmg

f) Segment-Based Matting, with inpainting

Figure 6-14: Results of running the different algorithms on image 6-1(e), as well as
compositing the results on a blue background.

144

(a) Original Image

i) n

(d) Bayesian with inpaint- (e) Segment-Based Mat- (f) Segment-Based Mat- (g) Ambigu-

ing ting, without inpainting ting, with inpainting ous regions
marked in
red
«}A)
T
80 - '
4
B0 - |
4
40 T
1
20 .
F ¥ T
0. T

100 +
1 150
50

Backgrourfd.“ Pixel

(h) Plot of Neighborhood around one problem pixel

Figure 6-15: A close up view of some of the results in figure 6-14, together with the
regions of ambiguity.

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

f) Segment-Based Matting, with inpainting
y O

Figure 6-16: Results of running the different algorithms on image 6-1(f), as well as
compositing the results on a blue background.

146

(a) Original Image b) Bayesian

(¢) Levin et al) Bayesian with inpainting
(e) Segment-Based Matting, without (f) Segment-Based Matting, with in- (g) Ambiguous re-
inpainting p(unnnfr UlOIls marked in
red
15
10)
5 -
0 = 4
15

Foreground 18

m\\
Backgrou
0 0

(h) Plot of Neighborhood around one problem pixel

1xel®

Figure 6-17: A close up view of some of the results in figure 6-16, together with the
regions of ambiguity.

147

6.5 Other Results

Figures 6-18 to 6-25 show the results of running the different algorithms on the

remaining images in figure 6-1. In these results, the key observations we have made

in the previous sections are generally true:

1.

The Segment-Based Matting solution is generally sharp and accurate.

. The solutions from Levin et al and from Bayesian Matting are usually not sharp;

in the case of Levin et al, the matte is usually too smooth and there are no clear

edges separating the foreground/background boundary.

Applying the inpainting extension makes the Bayesian Matting solution much
sharper and more accurate, primarily because of the foreground and background
detection mechanism that enforces sparseness of the alpha matte in areas which

are “obviously” foreground or background.

Applying the inpainting extension improves the accuracy of both the Bayesian
and Segment-Based Matting algorithms in ambiguous regions where the fore-

ground and background color distributions are fairly similar.

These observations can be seen in figure 6-19, which is a close up view of a difficult

matting area from figure 6-18, which itself shows the results of running the matting

algorithms on image 6-1(g); although none of the results are optimal, the best result

is obtained from using Segment-Based Matting with inpainting. In particular, Levin

et al’s solution is too smooth and creates an artificial “box” around the shoe, while

the Bayesian and Segment-Based Matting approaches without inpainting generate

discontinuous mattes in the regions of color ambiguity.

148

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-18: Results of running the different algorithms on image 6-1(g), as well as
compositing the results on a blue background.

149

(a) Original Image

(b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting (g) Ambiguous regions marked
in red

Figure 6-19: A close up view of some of the results in figure 6-18, together with the
regions of ambiguity:.

150

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-20: Results of running the different algorithms on image 6-1(h), as well as
compositing the results on a blue background.

151

(a) Original Image (b) Bayesian

(d) Bayesian with inpainting

; A
(e) Segment-Based Matting, without inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-21: Results of running the different algorithms on image 6-1(i), as well as
compositing the results on a blue background.

152

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting

e

(f) Segment-Based Matting, with inpainting

Figure 6-22: Results of running the different algorithms on image 6-1(j), as well as
compositing the results on a blue background.

153

(a) Original Image (b) Bayesian

(c¢) Levin et al (d) Bayesian with inpainting

(e) Segment-Based Matting, without inpainting (f) Segment-Based Matting, with inpainting

Figure 6-23: Results of running the different algorithms on image 6-1(k), as well as
compositing the results on a blue background.

(a) Original Image (b) Bayesian

(c) Levin et al

(d) Bayesian with inpainting

(f) Segment-Based Matting, with inpainting

Figure 6-24: Results of running the different algorithms on image 6-1(1), as well as
compositing the results on a blue background.

155

(b) Bayesian

(c) Levin et al

(f) Segment-Based Matting, with inpainting

Figure 6-25: Results of running the different algorithms on image 6-1(m), as well as
compositing the results on a blue background.

6.6 Summary of Results and Further Discussion

In this chapter, we have demonstrated the following:

1.

Segment-Based Matting is far more efficient than Bayesian Matting.

. Adding foreground /background detection to Bayesian Matting improves its ef-

ficiency greatly, although its efficiency remains far inferior to Segment-Based

Matting.

Segment-Based Matting generates mattes that are sharper and more accurate
than both Bayesian Matting and Levin et al’s closed form laplacian matting.
Adding foreground/background detection to Bayesian Matting improves the
sharpness of the generated matte, but is still inferior to Segment-Based Matting.

Applying the inpainting extension to both Bayesian Matting and Segment-
Based Matting improves the accuracy of the matte in regions wherg the local

color distribution is ambiguous.

. Although Levin et al’s algorithm performs well in areas where the color distri-

bution is ambiguous, it does so because it enforces continuity of the alpha matte
everywhere. This can lead to several problems, including mattes that are too
smooth near the foreground/background boundary and incorrectly estimated

mattes when the foreground elements have holes.

From these results, we infer three key take-aways: Firstly, for most pixels, we can

directly infer @ = 1 or a = 0 from the color distribution; this can be seen from the

efficiency gain in Bayesian Matting after adding foreground/background detection.

Therefore, we should directly assign these values; this can lead to increased efficiency

and matte sharpness.

Secondly, modelling shading can improve the sharpness of the matte. The Bayesian

Matting solution is not sharp — even with foreground /background detection — because

of its bias towards means, which leads to fractional values of « in areas that are of the

157

same color as the foreground or background but of a different shade. Segment-Based

Matting models shading and therefore results in a sharper and more accurate matte.

Thirdly, and most importantly, we propose an important idea in matting: Enforcing
continuity directly can lead to undesirable results. It is more desirable — as in our
approach of using inpainting to resolve ambiguous regions in Bayesian Matting or
Shading-Based Matting — to try using color-based estimation first, and only enforce
continuity when the uncertainty of color-based estimation is high. Alternatively,
another suitable approach — and one that can be adapted to other matting algorithms
that already enforce continuity — is to make the degree of local continuity enforced
dependent on the local color information, such that a high amount of continuity
is enforced when the color uncertainty is high, and a low amount of continuity is
enforced when the color uncertainty is low. This allows good estimation when there
is high color uncertainty, and a sharp and accurate matte when the foreground and

background boundary is clear and sharp and the color uncertainty is low.

158

Chapter 7

Conclusions and Further Work

This thesis has three main contributions:

1. We have enumerated problems with Bayesian Matting.

2. Inspired by these problems, we have proposed Segment-Based Matting: A color-
based statistical matting algorithm that models shading using color lines to pro-
vide sharper mattes. In addition, it has a closed form solution which improves

efficiency.

3. We have proposed a new approach that uses inpainting or texture synthesis to
resolve regions of color ambiguity in mattes; this allows a better matte to be

obtained in areas of color ambiguity.

We have demonstrated that our combined approach — of using inpainting to resolve
regions of color ambiguity in mattes generated by Segment-Based Matting — is efficient
and generates sharper and more accurate mattes. From our results, we have obtained
a few important ideas about matting. These ideas are summarized in section 6.6, but

we will quickly repeat them here:

1. For most pixels, @ = 0 or & = 1, and we can improve efficiency by detecting

these pixels before performing any estimation.

2. Modelling Shading in Matting can improve the sharpness and accuracy of the

matte.

159

3. Most importantly, the degree of local continuity enforced in the alpha matte by
the matting algorithm should depend on the local color distribution; the more
similar the local foreground and background color distributions are, the higher
the amount of continuity enforced in the matte. This allows good estimation
in areas where the color distribution is ambiguous — by enforcing continuity —
but still ensures that the matte is sharp and accurate in areas of very distinct

foreground and background color distributions, where continuity is not enforced.

We conclude this thesis by providing three directions of future work. Section 7.1
briefly discusses some issues regarding sampling. Section 7.2 discusses techniques
to obtain better parameter choices in our algorithms. Finally, section 7.3 discusses
applying our ideas regarding matting and inpainting to other matting algorithms.
The discussion in section 7.1 is relatively minor in importance compared to the other

two.

7.1 A Better Method of Sampling

One problem with any kind of sampling is a “horizon” effect: It is possible that the
area from which you sample from is “just a little too small”, and if we expanded the
sampling radius by 1 pixel, we would capture important pixels. [35] has proposed
a different technique for sampling from a trimap, where instead of sampling from a
circular region around the pixel, we sample along the trimap boundaries near the
pixel. This is better for regions with complex boundaries; such a sampling algorithm

would greater capture the color variation along the boundary.

Another problem with sampling is the fact that the radius of sampling can be different
for different pixels, since the radius expands until a minimum number of samples are
collected. Ideally, we would want the local foreground and background color distribu-
tions to change “smoothly” as we move along the foreground/background boundary.
However, if the radius of sampling changes along this boundary, this may not be the

case, and can be a separate source of discontinuity in the estimated matte. Hence,

160

work on a better sampling technique may prove to be useful.

Finally, we noted in section 6.1 that sampling takes a significant proportion of time in
Segment-Based Matting. Designing more efficient sampling algorithms and associated
data structures can significantly improve the runtime efficiency of Segment-Based

Matting.

7.2 Data-Dependent and User-Defined Parameters

The algorithms described in this thesis use many different parameters. These pa-
rameters are generally constant throughout the image. However, it may be useful for
these parameters to be set dynamically throughout the image based on the data and
inferred values; in some cases it may even be possible for the user to define different

parameters for different areas in the image.

We list some possible examples below:

e In section 5.3.1, we listed techniques for smoothing an area before inpainting it,
and suggested that it was also possible for the user to choose different smoothing
parameters for different areas. It may also be possible to use other data avail-
able, such as the trimap and original image, to dynamically choose different

smoothing parameters for different ambiguous regions.

¢ In section 4.3.8, we described a scoring and penalty system for evaluating a given
foreground and background pair of clusters, in order to choose the pair that gave
the best solution for .. This system utilized many different parameters. These
parameters could be adjusted by the user in different areas of the image or
dynamically modified based on the provided data. For example, in areas where
the trimap is looser — and thus require more shading extrapolation — the penalty
for deviating too far away from the mean could be reduced. Similarly, if the

user believes that the degree of shading in a particular region should be very

161

large, he can reduce the penalty for substantially deviating from the mean in
that region. As another example, if the calculated value of o was high, the
foreground becomes far more important than the background, in which case
the scoring system might emphasize more on the estimated foreground color

rather than the estimated background color.

e In the line segment model, the line segment represents a permissable range of
shading. We proposed a fairly arbitrary method of generating this line segment.
It is possible that in certain regions — for example, in areas where the trimap
is looser — the permissable range of shading should be larger. In this case, the
line segment generated should be longer. Similarly, it is possible for the user to
mark areas in the image where he believes the range of shading allowed should

be different and specify the amount of shading in these regions.

7.3 Application of our ideas to other Matting Al-
gorithms; creating an “matting-biased” inpaint-
ing algorithm

In chapter 5, we proposed a new approach to use inpainting to resolve ambiguous
regions in mattes. This approach can be applied to other matting algorithms. Many
algorithms — such as robust matting [35] and the iterative optimization approach [34]
— have a measure of confidence for the estimated values at each pixel. It may be

possible to modify these algorithms to inpaint over regions of low confidence.

Our proposed approach of using inpainting to resolve ambiguous regions — as de-
scribed in chapter 5 — is an extreme example of an idea we described in section 6.6:
The amount of local smoothing enforced on the alpha matte should depend on the
color ambiguity: If the foreground and background color distributions are very dis-
tinct, the amount of smoothing enforced should be very low, while if the foreground

and background color distributions are very similar, the amount of smoothing en-

162

forced should be much higher. Our approach is extreme because we do not perform
any smoothing or inpainting unless the distributions are extremely similar. It is cer-
tainly possible to perform a “softer” version of this where the level of smoothing is
adjusted based on the ambiguity of the local foreground and background color distri-

butions.

The above idea can be applied to many matting algorithms that enforce smoothness;
in these algorithms, each pixel usually has a parameter that enforces smoothness in
its local area. In the original incarnation of these matting algorithms, this parameter
is usually globally static and identical for all pixels; however, it may be worthwhile to
dynamically change this parameter based on data such as the similarity of the local

foreground and background color distributions.

Finally, we noted in section 6.4 that the inpainting algorithm could fill in ambiguous
regions incorrectly because it did not utilize other information such as the trimap
and the original image. It may be possible to adjust the parameters of the inpaint-
ing algorithm dynamically in a local region based on these information, creating a
“matting-biased” inpainting algorithm. This is speculation and we have not put
much thought into the process for obtaining such an algorithm; however, it may be

worthwhile to devote research effort to this problem.

163

164

Appendix A

Linear Algebra and Important

Operations

This chapter covers some important mathematical definitions and operations in ele-
mentary linear algebra that are relevant to this thesis. Many of the concepts presented
here should be familiar to readers with a good grasp of elementary linear algebra; a

good review of linear algebra can be found in [33].

For readers familiar with linear algebra, sections A.1 through A.3 may be skipped,
but section A.4 should be quickly scanned through. Section A.5 briefly describes ho-
mogenous coordinates; for readers unfamiliar with this concept, a simple introduction

can be found in [7].

A.1 Basic Definitions

Definition A.1. A vector is a one-dimensional array of values. In this thesis, all

vectors are column vectors: A three-dimensional vector has size 3 x 1.

Definition A.2. A matrix is a two-dimensional array of values. For example,

12 -1
A=
[35 1}

165

is a 2 x 3 matrix and its A, entry is A;o = 2. Note that a vector may also be
viewed as a matrix with only one column. A square matrix is a matrix with the

same number of rows and columns.
Definition A.3. The transpose operator, indicated by a superscript T', flips the

rows and columns of a matrix. For example,

1 2 -1
35 1

Definition A.4. A symmetric matrix is a square matrix that is equal to its trans-

pose: AT = A.

Definition A.5. Matrix addition and subtraction between two matrices is simply
the addition/subtraction of the pairwise elements between the two matrices. The

matrices have to be the same size. For example,

10 3 -1 4 -1
01 2 1 2 2

Matrix addition is commutative and associative.

Suppose A is a matrix of size a x b and B is a matrix of size b x ¢. Then matrix

multiplication between A and B generates C, a matrix of size a x ¢ such that

Cij= E Aq kB
!

To be able to multiply two matrices, the number of columns in the first matrix must
equal the number of rows in the second matrix. Matrix multiplication is associative

but not commutative.

Matrix multiplication and addition follow the distributive law. For example: (A + B)C

166

= AC+ BC.

Definition A.6. The identity matrix I of a given size is the square matrix with
the diagonal entries equal to 1 and all other entries zero. For example, the identity

matrix of size 3 is

100
L=[010
0 01

Definition A.7. The inverse of a square matrix is the matrix that multiplies the
original matrix (following the definition of matrix multiplication) to give the identity
matrix. If A is a square matrix, then AA™' = A~'A = I. Note that inverses only
exist for square matrices and inverses are themselves square matrices. If a matrix has

an inverse, it is invertible; if not, it is singular.

Remark A.8. The equation Ax = b, where A is a matrix, x and b are vectors of the
appropriate sizes, and with A and b known and x unknown is often referred to as a
linear system of equations. If A is a square invertible matrix, then a simple solu-

tion is x = A~*b which is easily verified by substitution: Ax = AA™'b=1Ib=b.

Definition A.9. The vector scalar product, also known as the dot product
between two vectors of identical sizes is the sum of the pairwise product of each

component. For example,

1

: =(1x2)+(-1x3)=-1
-1 3

A convenient way to obtain the product using matrix multiplication is to take the
transpose of the first vector and multiply it by the second (see definitions A.3 and

A.5): For example, we may write the dot product between vectors a and b as aTh.

Definition A.10. The vector cross product, or cross product for short between

167

two 3 x 1 vectors is the vector defined as:

a b, agbs — asby
ag | X | bg | = | ashy —arbs
as bs a1by — aghy

Definition A.11. Two vectors are orthogonal if their dot product is zero. Orthog-

onality is equivalent to two vectors being perpendicular.

Property A.12. If ¢ = a x b, then c is orthogonal to both a and b. This can be
easily verified by taking the dot product of ¢ (defined in definition A.10) with a or b.

Definition A.13. The magnitude, length or norm of a vector is defined as the
square root of its dot product with itself: ||a|| = VaTa. A vector can be normalized

to be a unit vector (i.e. with a norm of 1) by dividing itself by its norm.

Definition A.14. A collection of n different vectors in n-dimensional space is called

an orthonormal basis if the following two conditions hold:

1. Every vector has unit magnitude (of 1).

2. The vectors are pairwise orthogonal.

These vectors are then denoted as the basis vectors of the orthonormal basis. A
simple example of an orthonormal basis is the columns of an identity matrix (each

column is a basis vector).

Property A.15. Fix an arbitrary orthonormal basis in n-dimensional space. Any
point in n-dimensional space can be represented as a linear combination of the basis
vectors. Furthermore, this combination is unique. Equivalently, if we place the basis
vectors as the columns of a matrix A, then the equation Ax = b has exactly one

solution x for any n-dimensional vector b.

Definition A.16. An orthogonal matrix is a matrix whose inverse is its transpose:
A is an orthogonal matrix iff AAT = ATA = I. The columns of an orthogonal
matrix form an orthonormal basis; similarly, an orthogonal matrix can be formed by

inserting the basis vectors of an orthonormal basis as its columns.

168

Property A.17. Multiplying by an orthogonal matrix preserves the magnitude of a
vector: If A is an orthogonal matrix, then ||Ax|| = ||x|| for all vectors x. Furthermore,

multiplying by an orthogonal matrix also preserves dot products: (Ax)?(Ay) = xTy.

This property is easily derived from definition A.16: (Ax)T(Ay) = xTATAy = xTy.
Substituting x = y yields ||Ax||? = ||x|[?, or ||Ax]|| = ||x]|.

Remark A.18. The above property is equivalent to saying that multiplying by an

orthogonal matrix preserves distances and angles.

Definition A.19. A symmetric n X n matrix A is positive definite if for any n x 1

non-zero vector v,
vIAv >0

If we allow the possibility of equality in the above criteria, so that we replace > with

>, then A is termed positive semidefinite.

A.1.1 Lines

A line can be defined in many different ways:

1. A line can be defined with a point p and a slope v, in which case the line is

defined by all points p + tv,t € (—o0, 00).

2. A line can also be defined by two points p; and p2 on it. In this case, it can be
transformed into the previous definition of a line: Take the point p = p; and

the slope v = p2 — ps1.

3. Finally, a line can be defined by all points satisfying a set of algebraic equations.
The equations needed will depend on the dimensionality of the space, but we
will mention the two-dimensional case in the (z,y) Cartesian plane. There are

at least two different ways of defining a line in the Cartesian plane:

169

(a) A line can be defined as y = mx + ¢; for non-vertical lines and z = ¢,
for vertical lines, where m denotes the slope, ¢; the y-intercept and ¢, the

x-intercept.

(b) A line can be defined as az + by + ¢ = 0. In this case, the slope is —a/b,

the y-intercept is —c/b and the x-intercept as —c/a.

A.1.2 Planes

In this section, we will assume three-dimensional space.

A plane can be defined in two different ways:

1. A plane can be defined by a point p on the plane, and a vector v that is
perpendicular (or orthogonal) to the plane. In this case the plane can be defined
by all points x such that (x — p)Tv = 0, using the definition of orthogonality
(definition A.11). See figure A-1 for a graphical interpretation.

2. A plane can be defined by three non-collinear points p;, p2 and ps that all lie
on the plane. In this case, we can convert it to the previous definition of the
plane. Since p2 — p1 and ps — p1 are non-collinear vectors that both lie on the
plane, any vector perpendicular to both these vectors is perpendicular to the
plane. Therefore, using property A.12 we can obtain a vector v perpendicular
to the plane via v = (p2 — p1) X (ps — p1). For the point p on the plane, we

can arbitrarily choose one of p1, p2 or ps.

A.2 Projections

The projection of a point x onto a line/plane is the point X on the line/plane that has
the smallest distance to x i.e. the point that minimizes ||x — X||. In this section, we
assume three-dimensional space. The following subsections will discuss the derivation

of formulas to project a point onto a line or plane.

170

Figure A-1: A Graphical Depiction of Defining a Plane.

A.2.1 Orthogonality Criteria

A fairly intuitive criteria for deriving the projection formulas is that the line x — X is
perpendicular to the line or plane on which x is to be projected on. This criteria is

known as the orthogonality criteria for projection.

A proof of the orthogonality criteria proceeds as follows: There exists a point y on
the line/plane such that the line x —y is perpendicular to the line/plane. Suppose
the line x — % was not perpendicular to the line/plane. Since X lies on the line/plane,
the line segment from X to y also lies on the line/plane. Therefore, the line segment
from x to y is perpendicular to the line segment from X to y, and by Pythagoras’

formula
IIx — %[> = ||x = yI|* + ||X = yII?

and since X # y by assumption, it follows that ||x — %|| > ||x — y||, which contradicts
the assumption that X minimizes ||x — X||. Hence we have proven the orthogonality

criteria by contradiction. See figure A-2 for a visual depiction.

A.2.2 Projecting Onto a Line

We will assume that the line can be represented, following the first definition in

section A.1.1, as a point p and a slope v. Since X must lie on the line, we may write

171

Figure A-2: The Orthogonality Criteria for Projection

X = p + tv, with ¢t to be determined. Following the orthogonality criteria, the line

segment x — X must be perpendicular to the slope v, and hence

T

(x-%)Tv=(x-p-tv)lv=0

and after some rearrangement we obtain

(x-p)Tv
and hence we obtain the projection
RY |
)‘(zp-l-sz-%WV (A.2)
vTy

A.2.3 Projecting Onto a Plane

We will assume that the plane can be represented, following the first definition in
section A.1.2, as a point on the plane p and a vector perpendicular to the plane v.
We will use an algebraic solution, although an alternate approach using the orthogo-

nality property will also be sketched out.

We wish to find % that minimizes ||x — X||, or equivalently minimizing half its square
1(x — %)T(x — %), subject to the condition that X lies on the plane, or equivalently

(%X — p)Tv =0. We add a Lagrange multiplier A and obtain the objective function:

S %) (x— %) = A~ p)'v

172

This is convex in X, so the first order condition with respect to X will yield a minima.

Taking the first order condition and simplifying yields
X=Av+x (A.3)

Substituting (A.3) into (X — p)7v = 0 and simplifying will give us

_(p-x)Tv
A= vy

and substituting back into (A.3) gives us the solution

X= g—)-:ﬁ—’r:v +x (A4)

X=Av+
vIv

We will also quickly sketch out a derivation using the orthogonality property. From
the orthogonality property, we know that x — X is perpendicular to the plane and
thus parallel to v. Let us assume for a moment that p is the origin. Let the point
y be the projection of x onto the line with slope v running through the origin. The
line x — y is perpendicular to v and satisfies the condition (x — y — p)Tv = 0 (since
p is the origin), and is thus on the plane. Since x — (x — y) =y is parallel to v (as it
is on the line with slope v passing through the origin), the solution is therefore given
by x — y. If p is non-zero, we have to additionally add the projection of p onto the

line with slope v running through the origin. Therefore the answer is
X = x — projection of X on v + projection of p on v

Using equation (A.2) to calculate the projections of x and p on the line defined by

the origin point and the slope v, we obtain the answer

xTv pTv

X=X——V-+

—_—vV
vTv vTv

which of course is equal to (A.4).

173

A.3 Eigenvectors and Eigenvalues

Given a square matrix A of size n X n, we wish to find a non-zero vector x of size

n x 1 and a scalar A satisfying
Ax = Xx (A.5)

The scalar A is called an eigenvalue of A and its corresponding vector x is called
the corresponding eigenvector. There will be n eigenvalues, not always unique and
possibly complex-valued. In the general case, some eigenvalues may have an infinite
number of associated unit-length eigenvectors. However, there exists the following
extremely useful and non-trivial property, which we will state without proof (see [33]

for a proof):

Property A.20. If A is symmetric, all eigenvalues are real. Furthermore, there will
exist exactly n unit-length eigenvectors, and each of these eigenvectors are orthogonal

to each other.

From this point on, we will assume that the matrix A is symmetric and that property
A.20 holds. Without loss of generality, we shall assume that each of the eigenvectors
have unit length: The eigenvectors may be normalized by dividing by their length,
and (A.5) will still be satistied. Hence, following property A.20 and recalling definition
A.14, we arrive at the following property:

Property A.21. The (normalized) eigenvectors of a symmetric matrix form an or-

thonormal basis.

A.3.1 Eigenvalue Decomposition of Symmetric Matrices

For a given symmetric matrix A, let the orthogonal matrix Q be such that its columns
contain the n different normalized eigenvectors of A. Let S be a matrix that is zero
everywhere except on the diagonals, and place the eigenvalues of A on its diagonals,

in such a way that S;; contains the eigenvalue corresponding to the eigenvector on

174

the first column of Q, S, contains the eigenvalue corresponding to the eigenvector

on the second column of Q, and so on.

By repeating equation (A.5) for each eigenvalue/eigenvector pair, and placing the

results in matrix form, it can be worked out that

AQ=Q8

By multiplying Q! on both sides of the above equation, and recalling definition A.16,

we obtain the eigenvalue decomposition of A:

A=QsQ™ = QsQT (A6)

where S is a diagonal matrix containing the eigenvalues of A on its diagonals and Q
is an orthogonal matrix whose columns are the eigenvectors of A, corresponding to

the eigenvalues on the diagonal elements of S.

A.3.2 Rayleigh Quotient for Symmetric Matrices

The Rayleigh quotient for a fixed symmetric matrix A and an arbitrary vector v is
defined as

vTAv

vTv

(A7)

For simplicity of exposition, we will restrict ourselves to vectors v of unit magnitude,
so that the denominator of (A.7) is 1; this implies that our proofs will not directly
translate over to the general case, however, the results obtained will still be true in

the general case.

Consider the orthogonal matrix Q from section A.3.1, which contained the normalized
eigenvalues of A on its columns. Without loss of generality, we will assume that its

columns are sorted according to eigenvalue, so that the first column of Q contains the

175

eigenvector corresponding to the largest eigenvalue, the second column of Q contains
the eigenvector corresponding to the second largest eigenvalue, etc. Similarly, the
diagonal entries of the matrix S in the Eigenvalue Decomposition (A.6) of A decrease

down the diagonal.

Since the columns of Q form an orthonormal basis, any vector v may be written as
v = Qy for some vector y (see property A.15). With v of unit magnitude, and using

the Eigenvalue Decomposition (A.6), we can rewrite (A.7) as

vIAv = (Qy)TA(Qy) =y"QT(QSQ™)Qy =y"Sy (A-8)

since QTQ = I from definition A.16. Since v has unit magnitude, it follows from
property A.17 that y also has unit magnitude. Since S is a diagonal matrix with
entries decreasing down the diagonal, the vector y that maximizes (A.8) is simply
[100...]7. Thus the vector v = Qy that maximizes the Rayleigh Quotient is simply
the eigenvector corresponding to the largest eigenvalue of A, which we will term as

the largest eigenvector.

Suppose we wanted the vector that maximized (A.8) but had to be orthogonal to the
largest eigenvector. Since this vector has to be orthogonal to the largest eigenvector,
the first element of y has to be zero. Following the same reasoning as previously, it
follows that the solution is y = [010...]7, and the vector v = Qy is the eigenvector
corresponding to the second largest eigenvalue of A. We can continue this reasoning
to obtain the following important property (which is also true in the general case

when we do not restrict the magnitude of v to be 1):

Property A.22. Suppose we wanted a vector v that maximized (A.7) subject to
the condition that v was orthogonal to the eigenvectors corresponding to the largest
k eigenvalues of A. The solution is that v is the eigenvector corresponding to the
(k + 1)th largest eigenvalue of A. Note that scaling this eigenvector (multiplying it

by a non-zero constant) will yield the same value of (A.7).

176

A.4 Transformations

This section will describe some transformations of points and lines in two and three

dimensional space using tools of linear algebra.

A.4.1 Rotations in two dimensions

The rotation matrix that rotates points in two-dimensional Cartesian space counter-
clockwise around the origin by angle @ is given by
cosf —sind

Ty, = (A9
sinf cosf

Hence, the rotation of x counterclockwise around the origin by 6 radians is given by

Tgx.

An informal derivation of (A.9), which assumes that rotation is a linear operation and
hence follows the law of superposition, is as follows: The point on the z-axis [1 0]7
becomes [cos§ sind]T when rotated counterclockwise around the origin by angle 6
and similarly the point on the y-axis [0 1]7 becomes [-sinf cos6]T. Following the
law of superposition, point x = [z; 2]7 when rotated counterclockwise by angle 6
becomes

cos @ —sinf

T + 2o
sin g cosf

or, when put in matrix form, Tpx, as desired.
The usual interpretation of the matrix Ty is that it rotates points counterclockwise

around the origin by 6, as we have described. However, an alternate interpretation is

extremely useful:

Observation A.23. Another interpretation of the matrix 7 is that it rotates the

177

coordinate system clockwise by angle 6. To obtain some intuition for this, consider
looking at a point on a sheet of paper. There are two ways to view this point ro-
tated counterclockwise around some given origin: Either we rotate the sheet of paper
counterclockwise, thus rotating the point on it (this is the original interpretation), or
we may rotate our head clockwise, thus changing the way we view the sheet of paper

(this is the alternate interpretation described here).
We conclude this subsection with a very important property:

Property A.24. Following definition A.16, the matrix Ty is an orthogonal matrix,
and thus its inverse is its transpose. Following remark A.18, we may also conclude that

the rotation transformation preserves distances between points and angles between

lines.

A.4.2 Rotating a Plane to make a Given Line Vertical

In this thesis, we will require rotating points in a plane around the origin to make a
given line vertical. We can do the operations we desire in the transformed space after
rotation, and then do the inverse rotation to obtain the results in the original space.
For this transform — compute — inverse transform to work for our purposes, we re-
quire that the transformation preserve distances and angles. However, from property

A.24, the rotation transformation does have this property.

Thus, to make a given line vertical, we will need the appropriate rotation matrix,
and hence all we require is the appropriate rotation angle. We will first assume that
the line is not already vertical (otherwise no transformation is required), and thus
according to the third representation in section A.1.1, we may write the equation of
the line (in 2-dimensional Cartesian space) as y = mz + c¢. The slope of the line is
m and its angle with the x-axis is given by |arctan(m)| — see figure A-3. We take

absolute values so as to avoid having negative angles.

We will use the interpretation in observation A.23 to now derive the correct angle.

178

| arctan(m)|

\j

Figure A-3: Rotating a Line to be Vertical

First assume a positive slope m, as shown in figure A-3. We will need to rotate the
coordinate axes clockwise by an angle of £ — | arctan(m)|. Now suppose the slope m
is negative. In this case, we also rotate the coordinate axes by the same angle, but
counterclockwise, or in the negative direction. To conclude, our rotation matrix is

given by (A.9) with angle @ given by
0y
6 = sgn(m) (5 - larctan(m)l)

where sgn(m) takes the value 1 if m > 0 and —1 otherwise.

A.4.3 Getting 2-D coordinates of Points in a Plane

The previous sections have discussed operations in two dimensions in a Cartesian
coordinate system. However, more often, we work with planes in three-dimensional
space. We therefore require a transformation to map from a plane in three-dimensions
to a two-dimensional Cartesian coordinate system and vice versa. As in section A.4.2,
we will require that this transformation preserve distances and angles. In addition,

we will also require that a given point p on the plane be mapped to the origin in this

179

transformation. As before, we will represent the plane by the point p on the plane

and a vector v perpendicular to the plane.

This transformation is not unique; for example, we may multiply the resulting trans-
formed points (in Cartesian coordinates) by any rotation matrix and we will obtain
another transformation that also preserves distances and lines. Therefore, we will

simply state one way of obtaining this transformation.

First, we need to obtain two vectors a and b both parallel to the plane and orthog-
onal to each other. One way of obtaining these vectors, if the points were generated
by a statistical process, would be to use the first two principal components returned
by Principal Component Analysis (see Appendix C). More generally, we may obtain
vector a by projecting a random point to the plane and using the vector from the
projected point to p (if its projection is p, repeat the process!). We can then obtain

b = a x v using property A.12.

Figure A-4: Transforming from Three to Two dimensions

In order for the transformation to preserve distances and angles, we will normalize
both a and b by dividing by their magnitudes, so they are of both unit magnitude. We

will use the normalized a and b vectors as the z and y axes of our two dimensional

180

Cartesian plane. Now for any point x on the plane, we may obtain its x and y
coordinates in Cartesian space by projecting the vector (x — p) to the a and b vectors
respectively and obtaining the distances along the vectors.. This may be done using
equation (A.1) — setting the denominator to 1 since both a and b are unit vectors — to

give us the following transformation to obtain two-dimensional Cartesian Coordinates:

al

Xop = LT (X"P)

This transformation can be visualized in figure A-4. The inverse transformation can

be easily derived using the interpretation provided by the figure:

X=p+ [a b]x2[)

A.5 Homogenous Coordinates in Two Dimensions

This section briefly describes the use of Homogenous Coordinates in Two Dimensions

to calculate line intersections and obtain lines from points.

A.5.1 Representing Lines and Points Using Homogenous Co-
ordinates

A point in Cartesian space can be represented as (z,y). In homogenous coordinates,

a third scaling parameter is added: The point (z, y, w) in homogenous coordinates is

equivalent to (z/w,y/w) in Cartesian space, with w being the scaling parameter. If

w = 0, there is no equivalent representation in Cartesian space; rather, we may think

of (z,y,0) as representing a vector in the (z,y) direction.

We recall from the third definition of a line in section A.1.1 that a line can be repre-

181

sented as ax + by + ¢ = 0. Since this representation is invariant to scaling, we may
rewrite this as 1- p = 0 where 1 = (a, b, ¢) is the representation of the line in homoge-

nous coordinates and p = (z,y, w) is a point on the line in homogenous coordinates.

We summarize:

1. A point can be represented as (z, y, w); its equivalent representation in Cartesian

coordinates is (z/w,y/w).

2. A line can be represented as (a, b, ¢), representing the line ax + by + ¢ = 0.

A.5.2 Obtaining a line passing through two points

Given two points p; = (@1, 1, w;) and pa = (Z2,¥y2, w2) in homogenous coordinates,

we wish to find a line passing 1 = (a, b, ¢) passing through both these points.

From the line equation, it suffices for 1 - p; = 0 and 1- p2 = 0. Equivalently, 1 is
orthogonal to both p; and p2 if they were represented as vectors in 3-dimensional
space! We now know how to obtain 1: From property A.12 of cross products, it follows

that 1 = p; X pa.

A.5.3 Obtaining the intersection between two lines

Given two lines 1; = (aj,b1,¢1) and la = (a9, b2, ¢2) in homogenous coordinates, we

wish to find their intersection p = (z,y, w).

As in the previous section, it suffices for I; - p = 0 and 1, - p = 0, and following the

same logic, the solution is p = 1; X ls.

Remark A.25. As can be seen from the previous two subsections, one advantage of
homogenous coordinates is that everything can be done with cross products, without
needing to worry about special cases. See the next remark for an example of a

“special” case that is handled naturally using homogenous coordinates.

182

Remark A.26. In the line intersection case, what happens if the lines are parallel?
It turns out that the point generated is of the form p = (z,y,0), which represents
a vector, or a “point at infinity”. This point can be manipulated in the same way
as other points; for example, if we take two parallel lines, take their intersection
(the “point at infinity”), and compute the line running through this intersection and
another point x, the resulting line in homogenous coordinates is the line passing

through x that was parallel to the first two lines, which is the expected solution.

183

184

Appendix B

Statistics and Statistical

Algorithms

This chapter introduces some of the statistics, estimation and inference procedures
that are relevant to this thesis. A more detailed overview of statistics, estimation
and inference can be obtained from [13] and [23]. We assume a basic knowledge of
elementary probability (measure theory not required); an overview can be found in

[13].

B.1 Basic Statistics

The following definitions are given under the assumption that zi,...,zn, are a se-

quence of scalar-valued samples.
Definition B.1. The sample mean is its average: u = 71;2?:1 x;.

Definition B.2. The sample variance! is the average squared deviation from the

mean: o2 =230 (z; — p)?

1As an aside, the unbiased estimator for the variance uses the exact same formula, except that the
normalizing factor is n—i—l instead of -}; In practice, however, the difference between the normalizing
factors is negligible.

185

B.1.1 Multivariate Statistics

In this section, we will assume that the samples are k-dimensional: x;,...,X, are a

series of k-dimensional samples, with x; = (%i1, Zi2, ..., Zik)-

Definition B.3. The sample mean is defined the same way as in the univariate
case (see definition B.1): p = 13" x;. For each dimension 1 < j < k, we have

1 n
i =5 Ei:l Lij

Definition B.4. The sample covariance between two dimensions 7 and k is defined
as oy = 130 (#i; — 1) @ik — k). When j = k, the formula gives the sample

variance of the jth dimension.

Definition B.5. The sample covariance matrix, also referred to simply as the

covariance matrix, is defined as

£=2Y 6a - m)x -)T (B.1)

For k-dimensional samples, ¥ is a k X k matrix. The diagonal entries correspond to
the variance of each of the individual components, and the L, ; entry corresponds to

the covariance between dimension ¢ and dimension j.

From definition B.4, we see that covariance is a symmetric relation: The covariance
between dimensions j and & is the same as the covariance between dimensions k and
J. Since these quantities are represented by the ¥;; and X ; entries respectively in

the covariance matrix, we immediately obtain the following property:
Property B.6. The covariance matrix is symmetric.

Definition B.7. Let v be a k-dimensional vector of unit magnitude. Suppose we
project all the points x;, .. . , X, onto v. We can replace each sample by a number that
denotes its position along the line, corresponding to its distance from an arbitrary
point. The projection variance is the variance of these values. Note that the
arbitrary reference point, or the points v passes through does not matter, as the

variance accounts for the squared deviation from the mean.

186

To derive a formula for the projection variance, we shall without loss of generality
(as noted in the previous paragraph) assume that v passes through the origin and
the reference point is the origin. Then the distance of each point’s projection onto
v from the origin is given by equation (A.l), with the reference point p equal to the
origin. This gives the distance (the denominator in equation (A.1) is equal to 1 as v
has unit magnitude)

i Vv

Since projection is a linear operation, the mean of these values is given by
t, = uTv

where p is the sample mean as given in definition B.3. Applying the formula given

in definition B.2 for single variable variance, we obtain the formula

n

LS v =) = 23 [= ™) [] = £ 3T) =)

i=1

=vIZv (B.2)

following the formula for the covariance matrix given in equation (B.1). Since variance
is always non-negative, and since v is arbitrary up to a scaling factor, we can conclude

from property B.6 and definition A.19 the following:

Property B.8. The covariance matrix is positive semidefinite. Furthermore, if there
is no direction in which the projection variance is zero, then the covariance matrix is

positive definite.

B.1.2 Weighted Statistics

It is often the case that not every sample is assigned equal weight: We may wish to
consider some samples more important than others. In this section, we remain within

the multi-dimensional framework, but each sample is additionally given a weight w;.

187

Definition B.9. The equivalent number of samples is given by W = 3" | w;.

We can define the mean and covariance matrix (and hence the covariance and vari-

ance) for a weighted set of samples as follows:
Definition B.10. The mean of a weighted set of samples is given by u = —‘;7 o wixg.

Definition B.11. The covariance matrix of a weighted set of samples is given by
Y= 1 i wi(x)(x)T
77 2 i\ Xi — B)\Xi — U

with p following definition B.10. As before, we can obtain the variance of any dimen-
sion or the covariance between two dimensions from the elements of the covariance
matrix (variance from the diagonal elements, covariances from the off-diagonal ele-

ments).

B.2 The Normal (Gaussian) Distribution

The univariate Normal or Gaussian distribution is parameterized by two parameters:

1 and o2, and has probability density

f(@; p,0%) = \/2170 exp (‘%)

This probability density is shown in figure B-1 for a distribution with y = 0 and

02 = 1. The normal distribution has the following two important properties:

Property B.12. The normal distribution has mean y and variance o%. Furthermore,
the mean and the variance completely characterize a normal distribution: Two normal

distributions with the same mean and variances are identical.

Property B.13. A normally distributed random variable that is scaled by a con-

stant factor or has constants added remains normally distributed. Furthermore, any

188

fl=)

Figure B-1: An Example of a Univariate Normal Distribution.

linear combination of independent normally distributed random variables is normally

distributed.

The normal distribution is important in statistics because of a Central Limit Theo-
rem: Put informally, it states that if samples are drawn independently and identically
from a probability distribution with finite variance?, the sample mean converges in
distribution to a normal distribution. Therefore, for most purposes, if the number of
samples drawn is sufficiently large, we may assume that the distribution of the sample

mean is normal.

Definition B.14. The standard normal distribution is the normal distribution

with mean y = 0 and variance o2 = 1.

The standard normal distribution has been widely studied and its cumulative dis-
tribution — for which no closed form formula exists — has been tallied in tables. For
example, it is well known that there is roughly a 95% probability that a value sampled
from the standard normal distribution lies in the range [—1.96,1.96]. As such, it is
useful to transform any given normal distribution into the standard normal distribu-

tion. This can be done using the following property:

2The assumption of finite variance is necessary. For example, the Cauchy distribution, which has
an infinite variance, does not obey the Central Limit Theorem: The mean of samples drawn from
identical Cauchy distributions is distributed according to that same Cauchy distribution.

189

Property B.15. If a random variable X is normally distributed with mean p and

variance o2, then the random variable X—;E follows the standard normal distribution.

This is easily shown to be true: Following property B.13, the random variable X—;ﬁ
is also distributed normally. It can easily be verified that the mean of this random

variable is 0 and its variance is 1. The result then follows from property B.12.

B.2.1 The Multivariate Gaussian

We now consider the Normal distribution in multiple dimensions. The k dimensional
multiariate normal distribution is parameterized by a k x 1 vector x and a k x k

symmetric positive semidefinite matrix ¥, and has probability density

1

F6.%) = G e (3= "2 x =)

Figure B-2 shows the probability density function of a two dimensional multivari-

3 -1
ate normal distribution with 4 = [0 0]7 and ¥ = . Like the univariate
-1 4

v\ //</ -
; _—

T o~

2 \\// ‘ x1

Figure B-2: An Example of a Multivariate Normal Distribution.
normal distribution, the multivariate normal distribution has several important prop-

erties. We will first state the analogues of properties B.12 and B.13:

Property B.16. The multivariate normal distribution has mean p and covariance

matrix Y. Furthermore, the mean and covariance matrix completely characterize

190

the multivariate normal distribution: Two multivariate normal distributions with the

same means and covariance matrices are identical.

Property B.17. If the k-dimensional random variable X is distributed multivariate
normal, then the random variable ¢ + A X, where ¢ is a n X 1 constant vector and A

a n X k constant matrix, is also distributed multivariate normal.
We now define the analog of definition B.14:

Definition B.18. The standard multivariate normal distribution in k£ dimen-
sions is the multivariate normal distribution with mean ¢ = 0 and covariance matrix

Y = I, the k x k identity matrix.

Unlike the univariate standard normal, there have been less tables computed for the
multivariate standard normals; however, it has been equally well-studied and there are
known efficient computations for it. For example, we might compute that a random
variable sampled from the 3-dimensional standard multivariate normal distribution
is likely to be in a sphere of radius 2.8 around the origin approximately 95% of the
time. Hence, it is also useful to convert a distribution to the standard multivariate

normal distribution. This procedure is known as whitening.

Whitening is only possible if ¥ is strictly positive definite rather than simply positive
semidefinite; ¥ being only positive semidefinite is similar to o2 = 0 in the univariate
case, in which case the procedure outlined in property B.15 will fail as well. Hence, we
will assume that ¥ is strictly positive definite, in which case one possible whitening

procedure is as follows:

Property B.19. Suppose X is a multivariate normal random variable with mean
p and covariance matrix ¥. Since ¥ is symmetric positive definite, we can perform
the Eigenvalue Decomposition outlined in section A.3.1: ¥ = QSQT, where Q is
an orthogonal matrix with the eigenvectors of ¥ as its columns and S is a diagonal
matrix with the eigenvalues of ¥ along its diagonal. Let S~/2 be a diagonal matrix

where every diagonal element is the corresponding element of S taken to the —1/2

191

power. Then S~/ 2QT(X —) is distributed according to the standard multivariate

normal distribution.

We can verify this: Following property B.17, the random variable S/ 2QT(X —p) is
distributed according to a multivariate normal distribution. It is easily checked that

it has mean O and it has covariance matrix equal to

[S_l/2QT(X _ ,U/):l [S_l/zQT(X _ /J,)]T _ S_1/2QT(X _ llz)(X _ /J,)TQS_I/2
= §71/2Q £Qs1/2
— 5-12Q"QSQTQs /2
—1

where in the first equality we note that S~1/2 is symmetric and is thus equal to its
transpose, and in the last equality we have used the fact that QTQ = S—1/288-1/2 —
I. Since the means and covariance matrices are identical, the result follows from

property B.16.

Remark B.20. It is usually convenient to visualize the multivariate normal distribution
as an ellipse, which is a reflection of the two-dimensional case but remains a useful
tool for obtaining intuition about the general multivariate normal distribution. In the
two-dimensional case, the axes of the ellipse point in the direction of the eigenvectors
of the covariance matrix, and the length of the axes is proportional to the magnitude
of their respective eigenvalues. Why the eigenvectors and eigenvalues? We will obtain

a clearer understanding in Appendix C.

B.3 Testing if a Single Sample belongs to a Given

Normal Distribution

In this thesis, we will encounter the following problem: Given a normal distribution

parameterized by p and ¥, and a sample measurement x, we wish to test if x came

192

from this distribution. This is one example from a very large class of problems known

as hypothesis testing.

We present a very basic overview of hypothesis testing with regards to this context.
In hypothesis testing, we have an assumed hypothesis we wish to test, known as the
null hypothesis. In our context, our assumed hypothesis is that x comes from the
given distribution. We test the null hypothesis against an alternate hypothesis,
which in our context is that x does not come from the given distribution. We shall

refer to the null hypothesis as Hy and the alternate hypothesis as H 4.

Our aim is to determine if we will reject or not reject the null hypothesis®. The
hypothesis testing framework proceeds as follows (here we assume that x € R* and

is thus in k-dimensional space):

1. Select a region C' C R* which is termed the critical region.

2. If x € C, reject the null hypothesis. Otherwise, do not reject the null hypothesis.
There are generally two types of errors with any such statistical test:

e Type 1 error. This is an error in which we reject the null hypothesis when it
is true. In our context, a type 1 error occurs when we claim that x does not

come from the distribution when it actually does so.

e Type 2 error. This is an error in which we do not reject the null hypothesis
when it is incorrect. In our context, a type 1 error occurs when we claim that

x comes from the distribution when it does not.

Generally, there is no way to minimize both type of errors simultaneously; we can
reduce one at the expense of the other: For example, we may minimize type 1 error

by choosing C as the empty set, but this maximizes type 2 error. One approach used

3In classical hypothesis testing, we never accept the null hypothesis, but rather we do not reject
it. The null hypothesis is assumed to be true, but we can never actually determine if it is actually
correct; rather we can only determine if we should reject it because of statistical reasons.

193

is to fix the probability of type 1 error allowed and find a test that minimizes the
probability of type 2 error, subject to the constraint that the probability of type 1
error cannot exceed the fixed amount. We denote the fixed probability of type 1 error
as a. To ensure that the probability of type 1 error is a, we need the region C to
have probability a under the normal distribution with mean y and covariance ¥ — so
that if the null hypothesis was true, that x was really drawn from such a distribution,

there would only be an a probability of incorrectly rejecting the null hypothesis.

There exists many possible regions C with the property we are considering; however,
we wish to choose the region that minimizes type 2 error. We will note that the two
hypotheses we are distinguishing between — x coming from the given distribution and
not — are considered simple point hypotheses. In this case, the celebrated Neyman-

Pearson lemma (see [13]) tells us how to construct C: Consider the statistic

— PHo(x)
Py, (x)

LR(x) (B.3)
where Pp,(x) is the probability of sampling x under the null hypothesis — in our
context, the probability of obtaining x from the given distribution — and Py, (x) is
the probability of sampling x if it does not come from the given distribution. The
critical region C - the region in which we reject the null hypothesis — consists of the
region where LR(x) < k, for the correct value of k such that the probability of C
under the given distribution is a. The statistic LR is known as a Likelihood Ratio

Statistic and the test we have described is an example of a Likelihood Ratio Test.

In our context, we will assume that if H, is true, then x could have been sampled
uniformly everywhere, and therefore Py, (x) is a constant for all x. Similarly, if Ho
is true, then the probability of sampling x is simply the probability of x under the
given distribution, and therefore Py, (x) = f(x; i, £). Hence, the likelihood ratio test

194

simply becomes the following test:

Reject Hy iff flxu,%) <k
Do not reject Hy iff fxu,X) >k

where we have to determine k such that the critical region of rejection has probability
a under the normal distribution. Now consider the standard normal distributions (see
definitions B.14 and B.18). Since these distributions are spherically symmetrical and
decay exponentially away from the origin, the above test under these distributions is
equivalent to choosing a radius r and setting the critical region to be all points further
than r from the origin — in such a way that the critical region has a probability of «
under the distribution we are considering. We illustrate this with two examples that
are relevant to this thesis; in both cases, we have a = 0.05, and we will assume stan-
dard normal distributions, since it is always possible to convert an arbitrary normal

distribution to these standard normal distributions (see properties B.15 and B.19):

Univariate standard normal distribution. In this case, we choose 7 = 1.96 as
it is well known that the region [—1.96,1.96] has probability 0.95 under the stan-
dard normal distribution; thus the critical region, with probability & = 0.05, is
(—00, —1.96) U (1.96, 00).

Remark B.21. Since 1.96 =~ 2, a general rule of thumb is to reject the null hypothesis
for a general (not necessarily standard) univariate normal distribution if x is two

standard deviations or more away from the mean.

3-dimensional standard normal distribution. The sphere with radius 2.8 around
the origin has probability approximately 0.95 under the standard 3-dimensional stan-
dard normal distribution; hence r = 2.8 and the critical region is the area outside the

sphere with this radius.

195

B.4 Maximum Likelihood Estimation

In many cases, we model data using a distribution — such as the multivariate normal
distribution — but do not have the parameters (x, Z in the multivariate normal case)
to complete its specification. In this case, we will have to perform parameter esti-

mation using the data. One popular estimation technique is Maximum Likelihood

Estimation.

The main idea of Maximum Likelihood Estimation is to find the parameter settings
that maximize the likelihood of the observed data. The likelihood is simply the
probability of observing the given data. For example, for a multivariate normal
distribution with fixed ¥ and observed data x, the likelihood as a function of the

unknown parameter y is simply

Wp;x,) = f(x; 1, %)

In practice, it is often more convenient to maximize the log likelihood rather than the
likelihood. Let L(u;x,Y) = logl(u;x, X); following our example with data x, fixed X

and unknown p, the maximum likelihood estimate of 4 is given by

fiyr = arg max L(x; p, X) (B.4)
n

Not surprisingly, in the multivariate Gaussian case, it will turn out that the maximum
likelihood estimate of i from a given data sample will be the sample mean. Maximum
Likelihood estimation is popular for several reasons: In a practical sense, even when
no closed form solution for (B.4) exists, there usually exist fairly efficient numerical
methods to obtain the estimate. In a theoretical sense, maximum likelihood estima-
tors exhibit a variety of desirable properties, which we will briefly mention informally
(although many of these properties require far more mathematical rigor — beyond the

scope of this thesis — to define and specify precisely):

1. An unbiased estimator is an estimator whose expected value is the value of

196

the parameter itself. An efficient unbiased estimator is the unbiased estima-
tor that has a lower variance than all other unbiased estimators regardless of
the value of the actual parameter. Note that there may not exist an efficient
unbiased estimator. However, if there exists one, that estimator is identical to
the Maximum Likelihood estimator?. We note that in the Gaussian case an
efficient unbiased estimator exists and thus the Maximum Likelihood estimator

is efficient.

2. The maximum likelihood estimator is usually consistent; by consistency we
mean that the maximum likelihood estimate converges® in probability to the

actual value of the parameter as the number of samples increase.

3. Under certain conditions that are usually met in practice, the maximum likeli-
hood estimator exhibits several fairly desirable asymptotic properties, such as

asymptotic unbiasedness and asymptotic efficiency.

B.5 Bayes’ Law and Maximum A Posteriori Esti-

mation

In many cases, when performing estimation, we have some prior knowledge or beliefs
about the parameter we are trying to estimate, and we would like to incorporate
these beliefs into our estimation framework. The key instrument we will use is Bayes’
law. Let 6 denote the set of parameters we are trying to estimate and x the data
we observe. We have a prior belief P(f) on the parameters, and the probability of
observing the data we observed is P(x). Let P(|x) denote the updated probabilities

~ incorporating our beliefs — on the parameters after observing x. Bayes’ law tells us

4More precisely, if there exists an estimator that satisfies the famous Cramer-Rao bound, that
estimator is the Maximum Likelihood estimator. See [30] for details.

$We will not discuss the different kinds of probabilistic convergence here; this is a fairly advanced
topic that requires some understanding of measure theory.

197

that

P(x|0)P(0)

PO = =

(B.5)

The value P(x|0) denotes the probability of observing x under a given set of param-
eters. For example, if our model is the multivariate normal, and 6 = (u,X), then
P(x|0) = f(x;p,X). Note that the term P(x) in the denominator of (B.5) accounts
for the probabilit;y of observing x weighted over all possible values of §; in other words
P(x) = [, P(x|0)P

We now wish to estimate the parameters @ given our prior beliefs and observed data.
The technique we introduce here is Maximum a Posteriori (MAP) estimation,
which is extremely similar in spirit to Maximum Likelihood Estimation, which was
introduced in section B.4. In essence, the key idea is to find # that maximizes the

right hand side of equation (B.5).

As with Maximum Likelihood Estimation, it is often convenient to take logarithms
and maximize the log a posteriori likelihood. Furthermore, it is usually the case that
we may ignore the P(x) term; since x is observed and is constant regardless of the
value of @ chosen, P(x) often plays no role in the estimation process. With these
modifications, and using L(.) to denote log P(.), the MAP estimate of 6 is then given
by

Orap = arg max L(x|6) + L(6) (B.6)
0

If we have no prior on § — or if we have a uniform prior on 6 — such that L(f) is a
constant across all possible &, then the MAP estimate and the Maximum Likelihood

estimate are identical.

Remark B.22. The MAP estimate takes the mode of the posterior probability given

198

by equation (B.5). Another common Bayesian estimator, the Bayes Least Squares

estimator, uses the mean of this posterior probability as its estimate of 6.

B.6 Markov Random Fields

Occasionally we have a collection of variables that are related in a structured manner,
and we wish to perform inference by taking advantage of this structure. One such
class of structured models are the Graphical Models. Within this class of models,
we will consider only one particular model, the Markov Undirected Graphical

Models, or Markov Random Fields (MRF).

In this model, every variable can be represented as a node in an undirected graph.
Edges denote dependencies between variables; an example of a nine-node MRF can

be found in figure B-3.

Figure B-3: A Markov Random Field.

The key feature of such a model is the Markov property: Given a set of nodes S
whose removal partitions the graph into two separate components, the variables on
these two components are independent given the values of the variables in the set
S. A special case is when one component consists only of a single node; the set S
is then denoted as the Markov blanket of the node. As an example, in figure B-3,
the Markov blanket of node A consists of the shaded nodes B, D, and E; hence vari-

able A is independent of all other variables in the graph conditioned on the values of

199

variables B, D and E.

In this graph, a maximal clique is a set of nodes that has the following two prop-

erties:
1. The nodes are all pairwise directly connected to each other.
2. No additional node can be added to this set while maintaining the first property.

In the MRF in figure B-3, the set of maximal cliques are every pair of adjacent ver-
tices. The Hammersley-Clifford theorem (see [23]) states that if the Markov property
holds and every assignment of values to variables has positive probability, then the
probability distribution over the variables can be factored into potential functions
over the maximal cliques. For example, using x4 to represent the value assigned to
variable A, and so on, and using ¥, , », to represent the potential function over the
pair of variables (A, B), we may factorize the probability density of the MRF in figure
B-3 as

P(za,...,21) % H Uy, 2 (T, T5) (B.7)

(i,j) connected by an edge
In this thesis, we will consider a special case: Regardless of the size of the cliques, we
will assume that the probability distribution can be factored into potential functions
that only include two variables which share an edge®. This condition automatically
holds true for any graph with maximal cliques of size at most two; this includes, for

example, the MRF in figure B-3 and trees — graphs without cycles.

We will also include potential functions for individual nodes e.g. ¥.,(z4) is the
potential function for node A. This is clearly not necessary — since these potential
functions can always be incorporated into the pairwise potential functions —~ but it

allows us to classify the potential functions into two categories:

5This will simplify our discussion of Belief Propagation in the next section; however, in most cases, by
converting graphs that contain potential functions over more than two variables into factor graphs,
Belief Propagation will also be applicable.

200

1. Data term. These are the individual potential functions which allow us to
specify some prior beliefs on the probability of each value the variables can
take.

2. Connectivity term. These are the pairwise potential functions which allow

us to specify how neighboring variables can affect each other.

With this change, equation (B.7) now becomes:

P(xA, cen ,.’171) x H v, (xz) H \Ilari,a:j (xi, "L'j) (B'S)

All nodes i (4,j) connected by an edge

B.6.1 Estimation using Belief Propagation Algorithms

We wish to perform estimation on our graphical model to solve the following problem:

Find

(za,...,) =arg max P(zg4,...)

TA,...

That is, find the assignment of values to variables that has maximum probability. In
this section, we will briefly introduce the Belief Propagation technique that solves
the above problem exactly for graphs without cycles and can serve as an approxima-
tion for graphs with cycles. We will need the set of possible values taken by each

variable to be discrete and have finite size’.

Belief Propagation relies on message passing between adjacent nodes connected by
an edge; intuitively, a node receives messages from its Markov blanket informing it
about the nodes beyond it, and due to the Markov property it does not require fur-
ther information. To build some intuition as we introduce Belief Propagation, we

shall look at a simple three-node example, shown in figure B-4.

" Approximations such as Particle Filtering are available for the continuous case; however, we will
not encounter them here.

201

Figure B-4: A Simple Three-Node MRF.

The probability factorization of this MRF is as follows:

P(:L‘A’ zp, .’L'C) = ‘leA(wA)\IJ:vB (wB)\I,mc(xC)‘IlmA,mB(xAymB)\IIwB,wc(xB7$C)

and thus our maximization problem can be rewritten as

arg ma,x\Ile (wA)\I!zB(xB)\IImc(mC)\IIzA,zB (xAyxB)‘pxg,xc(xBaxC) =
TAXBXC

arg max ¥, , (z4) (arg max ¥, (28)¥s, z5(Za,ZB)
TA B

[arg max ¥, (20)¥zp 20 (2B, wc)]) (B.9)

zc

where the term in the square brackets [] is a function of zp and the term in the round

brackets () is a function of z4. This suggests the following message passing schedule:

1. In the first round, for each possible value of zp, node C sends node B the

message mop(zp) = Maxy, VYo, (2¢)Vap oo (T8, Z0).

2. In the second round, for each possible value of x4, node B sends node A the
message mpa(Ta) = Maxyy Vi, (28)¥z, 05(4, zB)Mep(zp). Note that node

B uses the messages that C passed to it initially.
3. Finally, node A takes x4 = arg max,, ¥, (z4)mpa(ta).

4. By sending the value of 4 to node B, node B can figure out
zp = arg max, . Vo, (B) Vs, +5(T4, TB)mcop(7B), and similarly by sending the

value of zp to node C, the value of z¢ can be figured out.

The above message passing schedule relies on a given message passing order. However,
it is certainly possible for messages to be passed simultaneously. For example, nodes

C and A could pass messages to node B at the same time. The only catch is that

202

when node B passes a message to node A, it should “forget” the message that node
A previously passed to it. This suggests the following general simultaneous message

passing algorithm for an acyclic MRF:

Algorithm B.23. The Belief Propagation Algorithm for Maxima Estima-
tion. Let map(xp) denote a message passed from node A to node B for a given value
of zp, and let N4 denote the set of neighbors of node A. We perform the following
steps:

1. Initially, every node A passes to each of its neighbors B € N4 the message

map(zp) =1 for every possible value of zp.

2. At every time step, every node A passes to each of its neighbors B € N4 the

following message for every possible value of zp:

map(xp) = max Vo, (24)Vso,z5(24, 78) [T mea(za)
4 CEN4\B
Here m{ 4(z4) is the message that node C sent node A in the previous time
step. Thus, the message that A sends B takes into account the messages that

A received from all its neighbors — except for B — in the previous time step.

3. After a sufficient number of iterations (one less than the diameter of the graph),

each node A calculates

Ta = arg max\Ifo(wA) H mCA(a:A)
A CeNa

A quick word of warning: The final step of algorithm B.23 is not entirely accurate if
there are multiple values of 24 that maximize V., (z4) [[¢ N, cA (x4); in this case,
a directed propagation mechanism similar to the final step of our example three-node
message passing schedule will work. However, in most cases algorithm B.23 will be

accurate.

203

Algorithm B.23 will give an exact solution when the graph is acyclic; in practice, it
can be a good approximation to apply it to graphs with cycles; this is referred to as
loopy belief propagation. This no longer gives an exact answer, and in some cases
can result in wildly incorrect estimates, but in most cases it gives a fairly satisfactory

answer, and will be adequate for our purposes in this thesis.

Remark B.24. In practice, the messages that are passed can become extremely small,
so to prevent computational error due to numerical issues, it is common to normal-

ize the messages after each iteration: For every neighboring (A, B) node pair, set

map(tp) = —maE)

- >zp maB(zB)’

204

Appendix C

Principal Component Analysis

This section will briefly discuss the technique of Principal Component Analysis
(PCA), also known as the Karhunen-Loeve transform. A detailed description can

be found in [15}.

The primary motivation of PCA is of dimensionality reduction. Suppose we receive
data that is d-dimensional in nature — perhaps each sample could be the age, height,
weight, etc. of a person — and we want to perform some data analysis on it. If d is
large, analysis might take too long, and we are interested in reducing the dimension-
ality of the data while still retaining its useful information so that our analysis will

remain accurate.

Furthermore, perhaps some data is simply noise and conveys no useful information;
for example, if in our data set the age variable is always the same value, we should
not need it in our analysis. Perhaps the ratio of height to weight is extremely similar
for every person in our data set — in this case we should merge the two variables into

one variable.

These motivations are illustrated in figure C-1. Although the data points are two-
dimensional, they are mainly scattered along the line with unit slope; it would perhaps

be appropriate to project all the points onto this line and take their distances along

205

the line as their value — this reduces the dimensionality of the data from two to one.

8 T T T T —T T
.
6 —
.
¥
kb *
a4 * /‘/"1. ..
P 4
ETs
-
2 e
- . -]
2 2N
* * *
‘e, W +
& * - *
.
* “y s *
o *‘ ,*/o *e 4
. ke *
+ . -
/’ + .
F 4 L4 A4 +
-

*.

2 LRGN _
e Por * *
+
»
o
4 e 4
It
»*

s I | I I
£ 4 2 [2 [®

Figure C-1: A motivation for PCA.

C.1 Approach

PCA tries to find the directions that maximize the variance of the data; in figure C-1,

this direction is the line with unit slope. One way to view PCA is as follows:

1. Initially, no directions have been found.

2. Find the direction that maximizes the variance of the data, subject to the
condition that the new direction found is orthogonal to all previous directions

found.

3. Repeat the previous step until we have found enough directions (if we want to
reduce the data to d dimensions, we find d directions), or the variance in the

directions found is too small.

206

4. Project each point onto every direction found. The distances along the projec-
tions correspond to the new values for the data; in this way the dimensionality

of the data is reduced to the number of directions found.

However, it turns out that we can find all the relevant directions simultaneously; the
techniques required are the projection variance discussion from definition B.7 and the

Rayleigh quotient discussion from appendix A.3.2.

From the projection variance discussion, we know that the variance in the direction
denoted by the unit vector v is given by vIEv, where ¥ is the sample covariance

matrix of our data.

From the Rayleigh quotient discussion, we know the following: The direction v that
maximizes vIXv is the normalized eigenvector corresponding to the largest eigen-
value of ¥; furthermore, to find the next direction orthogonal to all previous directions
found, take the normalized eigenvector corresponding to the largest eigenvalue of ¥

not already previously taken.

To determine the variance in the direction found, we can recalculate vIXv for each
vector v found, or using the fact that v is an eigenvector of ¥ with corresponding

eigenvalue A, we have

vIZv =Aviv=)\

since v is a vector of unit magnitude. Therefore, the variance in the direction of
the eigenvector v of X is simply its corresponding eigenvalue. Since the directions
(eigenvectors) found are orthogonal to each other, the total variance of the data is

the sum of all the eigenvalues.

We summarize our discussion as. follows:
e To perform PCA, calculate the eigenvalues and corresponding eigenvectors of

207

the covariance matrix. Sort the eigenvalues in decreasing order and take the
eigenvectors corresponding to the d largest eigenvalues, where d is the desired

dimensionality of the resulting data.

e The variance in the direction of a given eigenvector is its corresponding eigen-

value.

e The total variance of the data is the sum of all eigenvalues of the sample co-

variance matrix X.

208

Bibliography

[1] T. Asano, D. Chen, N. Katoh, and T. Tokuyama. Polynomial-time Solutions to
Image Segmentation. In Proc. 7th Annual SIAM-ACM Conference on Discrete
Algorithms, pages 104-113, 1996.

[2] X. Bai and G. Sapiro. A Geodesic Framework for Fast Interactive Image and
Video Segmentation and Matting. In Proc. ICCV 2007, Oct 2007.

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image Inpainting. In
Proc. SIGGRAPH 2000, pages 417-424, 2000.

[4] D. Biedny, B. Monroy, and N. Moody. Photoshop Channel Corps. New Riders
Publishing, 1998.

[5] Y. Boykov and M. Jolly. Interactive Graph Cuts for Optimal Boundary and
Region Segmentation of Objects in N-D Images. In Proc. ICCV 2001, volume 1,
pages 105-112, 2001.

[6] R. Brinkmann. The Art and Science of Digital Compositing. Academic Press,
San Diego, CA, 1999.

[7] S. Buss. 3D Computer Graphics: A Mathematical Introduction with OpenGL.
Cambridge University Press, 2003.

(8] Y. Y. Chuang. New Models and Methods for Matting and Compositing. Ph.D
thesis, University of Washington, 2004.

[9] Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A Bayesian Approach
to Digital Matting. In Proc. CVPR 2001, 2001.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.

[11] A. Criminisi, P. Perez, and K. Toyama. Object Removal by Exemplar-Based
Inpainting. In Proc. IEEE CVPR 2008.

[12] A. Efros and T. Leung. Texture Synthesis by Non-parametric Sampling. In Proc.
IEEE ICCV 1999, pages 1033-1038, September 1999.

[13] N. Giri. Introduction to Probability and Statistics. Marcel Dekker, New York,
NY, 2nd edition, 1993.

209

[14] L. Grady. Random Walks for Image Segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 28(11):1768-1783, November 2006.

[15] 1. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[16] A. Levin, D. Lischinski, and Y. Weiss. A Closed Form Solution to Natural Image
Matting. In Proc. IEEE CVPR 2006, pages 61-68, 2006.

[17] A. Levin, A. Racha, and D. Lischinski. Spectral Matting. In Proc. IEEE CVPR
2007, June 2007.

[18] D. Mackay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 2002.

(19] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms and
Measuring Ecological Statistics. In Proc. ICCV 2001, volume 2, pages 416-423,
July 2001.

[20] R. Nickalls. A new approach to solving the cubic: Cardan’s solution revealed.
The Mathematical Gazette, 77:354-359, 1993.

[21] I. Omer and M. Werman. Color Lines: Image Specific Color Representation. In
Proc. IEEE CVPR 2004, pages 946-953, June 2004.

[22] M. Orchard and C Bouman. Color Quantization of Images. IEEE Transactions
on Signal Processing, 39(12):2677-2690, December 1991.

[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco, CA, 1988.

[24] P. Perona and J. Malik. Scale-Space and Edge Detection Using Anisotropic
Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629-639, July 1990.

[25] T. Porter and T. Duff. Compositing Digital Images. In Proc. 11th Annual

Conference on Computer Graphics and Interactive Techniques, pages 253-259,
1984.

[26] C. Poynton. Digital Video and HDTV Algorithms and Interfaces. Morgan Kauf-
mann, San Francisco, CA, 2003.

[27] C. Rother, V. Kolmogorov, and A. Blake. GrabCut: Interactive Foreground
Extraction using Iterated Graph Cuts. In Proc. SIGGRAPH 2004, volume 23,
pages 309-314, 2004.

[28] M. Ruzon and C. Tomasi. Alpha Estimation in Natural Images. In Proc. IEEE
CVPR, volume 1, pages 18-25, Hilton Head Island, SC, June 2000.

210

[29] P. Sahoo, S. Soltani, A. Wong, and Y. Chen. A survey of thresholding tech-
niques. Computer Vision, Graphics and Image Processing, 41(2):233-260, Febru-
ary 1988.

[30] J. Shao. Mathematical Statistics. Springer, 2nd edition, 2007.

[31] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888-905, August
2000.

[32] A. Smith and J. Blinn. Blue Screen Matting. In Proc. SIGGRAPH 1996, 1996.
133] G. Strang. Linear Algebra and Its Applications. Brooks Cole, 4th edition, 2005.

[34] J. Wang and M. Cohen. An Iterative Optimization Approach for Unified Image
Segmentation and Matting. In Proc. IEEE ICCV 2005, pages 936-943, 2005.

[35] J. Wang and M. Cohen. Optimized Color Sampling for Robust Matting. In Proc.
IEEE CVPR 2007, June 2007.

[36] D. Ziou and S. Tabbone. Edge Detection Techniques — An Overview. Interna-
tional Journal of Pattern Recognition and Image Analysis, 8:537-559, 1998.

211

