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Chapter 1

Introduction

1.1 Background Information on Schlumberger Technology

In oil drilling systems there is often a need for electrical power downhole. Current

Schlumberger downhole industrial applications use turbo-alternators for high power levels. The

turbo-alternators provide substantial AC power. Turbo-alternators have a wide speed range,

which varies with flow speed and load. From this a problem arises: flow and load changes cause

a variation of the alternator output voltage. However, Schlumberger technology needs a well

regulated output voltage to control tools.

Schlumberger is interested in improving their alternator technologies. Schlumberger

wants to use less expensive and smaller alternators. To make these new alternators feasible,

Schlumberger needs to develop electronic control circuitry.

1.2 Project Objectives

The objective of this project is to evaluate and test options for electrically controlling new

alternators. The goal is to implement a buck or boost function electronically. This control

functionality will be achieved through the use of a controlled rectifier circuit.

This project was sponsored by the Schlumberger Concept Project M6tier. The goal of

this project was not to design the actual controller that would be used in a new tool. The goal

was instead to design a prototype that would prove the feasibility of the proposed design. The

prototype would later serve as a basis for the design of the production system.

Because Schlumberger's technologies are utilized in an atypical environment, designs

must meet many criteria not often considered. In addition to the usual concerns about efficiency,

size, and cost, Schlumberger's downhole technologies face extreme temperature and pressure
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conditions. Downhole technologies must typically operate at temperatures near 160 'C, though

temperatures can rise even higher [1.1]. The solution must operate properly at these

temperatures. In addition, the desired solution will be able to control the alternator output

voltage with low voltage ripple. Finally, the design must avoid hot spots and high voltage or

high current transients, which could damage expensive components.

Because of the harsh downhole environment mentioned above, many typical

components cannot be used downhole. Downtime on the job is extremely expensive; therefore,

Schlumberger will not use components that have not been thoroughly tested for resilience to

temperature, pressure, and shock. Because the qualification process takes a long time, parts

selection is limited. To balance these many constraints, Schlumberger wanted to investigate the

feasibility of a three-phase rectifier with high-side control. The simplicity of this solution makes

it extremely desirable.

This thesis will present the three-phase rectifier with high-side control that I designed for

Schlumberger. The three-phase rectifier has been designed and simulated, and a prototype has

been tested at Schlumberger. This thesis will discuss the design process, simulation,

construction, testing and results. Chapter two contains the background needed to understand the

proposed design. Chapter three discusses the proposed design and operation of the high-side

controlled rectifier. Chapter four provides simulation results and analysis to support the

proposed design. Chapter five details the construction of the prototype. Chapter six gives results

achieved with the prototype. Finally, chapter seven discusses possible directions for future work.

1.1 Drilling in extreme environments. Downloaded from SLB.com on October 1, 2007. Available at:
http://www.seed.slb.com/en/scictr/watch/joides/drilling3.htm



Chapter 2

Background

2.1 Review of three-phase diode rectifier and phase control rectifier topologies.

Rectifiers are commonly used to provide DC output voltage from an AC source. A

schematic of a basic six-pulse diode rectifier with inductive filtering is shown in figure 2-1. The

AC voltages applied across the lines labeled 'a' 'b' and 'c' are rectified to provide a near DC

voltage across the load. Figure 2-2 shows the line-to-line voltages and the unfiltered rectifier

voltage [2.1]. A constant current load diode rectifier gives a DC output voltage of

approximately:

VDCI 2* VLL Equation 2-1

where VLL is the rms value of the line-to-line voltages. A complete discussion of rectifier

operation can be found in many power electronic textbooks (e.g., [2.1]).

A

B

C

Fig 2-1: Six-Pulse Diode Rectifier Fig 2-2: Six-pulse diode rectifier waveforms. The
labeled traces are the line-to-line input voltages. The load
voltage follows the peaks of the line-to-line voltages.
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Although the diode rectifier successfully converts AC voltages to DC voltages, the basic

diode rectifier does not provide any control over the rectified voltage magnitude. Fortunately,

numerous controlled rectification circuit topologies can be used to control output voltages. One

such controlled circuit is the phase-controlled rectifier.

If we replace the diodes of the basic rectifier with controllable devices we have a phase-

controlled rectifier. A full-bridge phase-controlled rectifier using thyristors can be seen in figure

2-3. The significance of phase control is that it gives the user control over the alternator output

voltage. Using switches, only a portion of the source voltage may be applied to the load. By

applying a smaller portion, one can lower, or buck, the output voltage. An example of unfiltered

output waveforms can be seen in figure 2-4 (2.2).

For a phase-controlled six pulse rectifier with constant current load the average DC

output voltage is given in equation 2-2, where a is the firing angle (2.2). As compared to the

basic diode rectifier with output from equation 2-1, we can see that the average DC output

voltage has been reduced by a factor of cos(ar) (2.2).

VDC2 =3, , VLL *COS(af) =VDCl *cos(a,) Equation 2-2

The above discussion concerned inductive filtered rectifiers. This discussion was

included to provide some background and intuition as to how basic rectifiers work. Inductive

filtered rectifiers are easy to analyze, and have been thoroughly discussed in the literature. The

remainder of this paper will propose a variant of a phase-controlled rectifier with a capacitive

filter at the load. Capacitively filtered rectifiers, also known as constant voltage load rectifiers,

are more difficult to analyze. A discussion of capacitive filtered diode rectifiers and phase-

controlled rectifiers can be found in Caliskan [2.3, 2.4].
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Fig 2-3 Phase-controlled rectifier with thyristors
and inductive filtering of the load.
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Figure 2-4 Phase Control Output: The six line-to-

line voltage sine-waves are shown. The phase
control load voltage is superimposed. The load
voltage follows the line-to-line voltage until a new
switch is turned on.

2.1 Mohan, N., T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd edition, John
Wiley, 1995.

2.2 Trzynadlowski, Andrzej M. Control of Induction Motors. Boston: Academic Press, 2001. Chapter 4.

2.3 V. Caliskan, D.J. Perreault, T.M. Jahns, and J.G. Kassakian, "Analysis of Three-Phase Rectifiers with Constant-Voltage
Loads," 1999 IEEE Power Electronics Specialists Conference, Charleston, SC, pp. 715-720, June 1999.

2.4 V. Caliskan, D.J. Perreault, T.M. Jahns, and J.G. Kassakian, "Analysis of Three-Phase Rectifiers with Constant-Voltage
Loads," IEEE Transactions on Circuits and Systems - I, Vol. 50, No. 9, Sept. 2003, pp. 1220-1226.
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Chapter 3

Design and Operation of the Rectifier

3. 1 Specifications and Design Constraints

The goal of the project is to control the output of a permanent magnet alternator driving a

resistive load. The alternator characteristics are shown in figure 3-1. The output will be

capacitively filtered with a 300uF capacitor bank. To meet load specifications, the output must

be controlled within the operational range of 175-350V with a load of 0-7A.

To rapidly demonstrate the principle with a prototype, the feasibility of controlling the

system with only high-side phase control was investigated. IGBTs were selected for the high-

side switches.

Figure 3-1 shows a schematic of the proposed circuit design. Throughout the design and

simulation stages the alternator was modeled as a perfect three-phase sinusoidal voltage

generator plus a phase inductance and phase resistance. This alternator model is schematically

depicted in figure 3-1. The values utilized for the alternator source inductance and resistance are

listed in table 3-1.

Poles 8

Mechanical Speed Range (rpm) 2000---5500

Mechanical Speed Range (Hz) 33.3---9-1.6

Electrical Speed (Hz) 133---370

Phase Resistance at 250C (ohms) 1.106

Phase Inductance (mH) 3.133

Voltage Constant phase-to-neutral (V/krpm) 123

Table 3-1: The data in this table summarizes key alternator characteristics used for design and simulation.



Vload

Figure 3-1: Simulation Schematic. The sources on the left are three sinusoids separated by 120 degrees in

phase representing the alternator voltage. The source inductance and resistance is shown. Six high voltage
diodes are used to create the bridge, in addition to the three phase-controlled IGBTs on the high side.

3.2 Description of Rectifier Functionality

The basic operation of the high-side controlled three-phase rectifier can be likened to the

operation of the three-phase diode rectifier, except for one major difference; in the high-side

phase controlled rectifier, the given phase cannot conduct until the IGBTs are turned on. The

high-side controlled three-phase rectifier must have the highest phase voltage among those with

their corresponding IGBT on.

The goal of the project is to have a controllable rectifier that can be used to set the desired

load voltage. The remainder of section 3.2 will present an intuitive description of how the high-

side phase control system operates. This description will ignore some issues related to switching

currents. These issues will be discussed more thoroughly in section 3.3.

The phase controlled rectifier gives us control over the load voltage. The IGBT turn-on

delay relative to the phase voltages may be used to control the load voltage. By delaying the

switch turn on time, the output voltage can be reduced. A controller will monitor the alternator

voltage and the load voltage to determine the appropriate time to turn on the IGBT. After
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activating the switch, the switch will remain on until it is safe to turn off, at which time an off

signal will be sent.

To make the above explanation clearer figures 3-2, 3-3, and 3-4 depict the system

behavior. Figure 3-2 shows alternator waveforms for the ideal case. This figure was included to

demonstrate how the phase-to-phase and phase-to-neutral voltages compare. Since both voltages

will be important in this system, it is essential to have a clear understanding from the outset. The

phase-to-phase voltages are V times larger than the phase-to-neutral voltage. In addition, the

phase-to-phase voltages are shifted relative to the phase-to-neutral voltage. Finally, the phase-to-

phase voltages exhibit six pulses (or peaks) per AC cycle.

Figures 3-3 and 3-4 depict typical steady state operation of the high-side-controlled three-

phase rectifier. Figure 3-3 shows the phase-to-neutral voltages, denoting the three phases with

letters a, b, and c, and neutral with the letter n. Figure 3-3 also shows an example set of IGBT

gate drive waveforms, staggered on different axes for ease of viewing. Figure 3-4 contains

everything in figure 3-3, plus it also shows a series of current pulses delivering power from

source to load.

As can been seen in figure 3-3, a switch is turned on sometime after its respective phase-

to-neutral becomes positive, and the switch is turned off sometime after the respective phase-to-

neutral voltage becomes zero. Because of the source inductance, some special considerations

must be made to switch turn off delay. While a given IGBT is on, and the phase is conducting,

the source inductor is storing energy. If an IGBT is shut off while the inductor is still conducting

positive current, the inductor will try to maintain the current, thereby destroying the switch. To

prevent this, the IGBT gate signal is kept high even after the associated phase voltage is no

longer the highest.



During operation, current will be drawn from the source to power the load and charge the

filtering capacitor. Figure 3-4 depicts the IGBT control process, and shows a current pulse from

each of the three IGBTs. As can be seen in figure 3-4, when a gate signal goes high, a current

pulse is immediately transmitted. By delaying the IGBTs turn on time, the time for which the

source voltage is applied to the load decreases. The average current delivered to the capacitor

will decrease, and the output voltage will correspondingly decrease. This effectively bucks the

average output voltage. As was explained above, figure 3-4 show the switch gate signal doesn't

go low until after the current has gone to zero. This is done to make certain that there is no

residual current through the phase as a result of the phase inductance.
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3.3 Supplemental discussion of current waveforms

In a diode rectifier with a constant current load, the load draws continuous current from

the source. One phase is ceasing to conduct while another is beginning. While the currents are

changing, the (AC-side) source inductance will act to preserve currents. The source inductance

thus causes a non-zero commutation time (for a more detailed description see [3. 1]).

The high-side phase control with constant voltage load system draws pulse-like currents

from the source. The currents drawn are discontinuous. An example of the current pulses with a

firing angle of 120 degrees can be seen in figure 3-5. The current pulses are drawn from a phase

when the respective phase voltage is highest and the associated IGBT is on.

With firing angle less than 90 degrees we would expect to see two current pulses through

each IGBT per switching cycle. With a firing angle greater than 90 degrees, we only see one

pulse per IGBT per cycle. This can be understood as follows: Let's assume Vab peaks and then

Vac peaks. The transition of peaks occurs at 90 degrees. If the IGBT is turned on after the first

peak, a current pulse cannot be driven by this peak. This effect can be seen in figure 3-5, where

the firing angle is 120 degrees. Figure 3-6 shows current pulses for a firing angle of 60 degrees.

Figure 3-7 shows current pulses for a firing angle of 30 degrees. In both figure 3-6 and figure 3-

7 we see peaks twice as frequently as in figure 3-5. Also worth noting is that since Vab peaks at

30 degrees, the system could not drive a current before 30 degrees. Consequently, operation

with a phase angle between 0 and 30 degrees is identical to the thirty degree case. As we can see

in figure 3-7, the discontinuous, one phase at a time, current waveform assumption is still valid.

It is important to note that due to source inductance the current pulses do not decay to

zero as rapidly as they otherwise would. However, as can be inferred from examining simulation

and prototype results, the effect of the source inductance is small in the system described here.



Non-zero currents are not maintained for long. Since there is significant time between the end of

the current pulse and the start of the next cycle there is ample time in which to safely shut off the

switches.

Y2 YI

1rnsehnsecs

Figure 3-5: Firing angle 120 degrees. Only one current pulse is transmitted per device per cycle. Because the
IGBT is turned on too late, the first voltage peak of the phase cannot drive a current pulse. The line-to-line
voltages are shown for reference.



Figure 3-6: Firing angle is 60 degrees. The pulses are asymmetrical because the IGBT is off for part of thefirst voltage peak.
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Figure 3-7: Firing angle 30 degrees. Since the IGBT is on for both full cycles, the pulses are symmetrical.
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3.1 J.G. Kassakian, M.F. Schlecht and G.C. Verghese, Addison-Wesley, 1991. Chapter 4.3.2 Pgs. 69-73.



Chapter 4

Simulation Results and Design Verification

4.1 Simulation Design

To verify the functionality of the proposed system, simulations were completed.

Simulations were conducted using two different software packages: Catena's SIMetrix power

electronics simulation package [4.1], and Powersim Inc.'s PSIM simulator [4.2]. Both of these

packages are excellent programs with unique benefits. In addition, both of these packages have

limited versions available freely online.

Figure 4-1 is a screen capture of a model used in SIMetrix. This model was used to

simulate the rectifier performance. In the model, the left-most sources represent a perfect three-

phase sinusoidal voltage source. These sources are followed by phase inductors and resistors.

Together these elements provide a good approximation of the alternator performance. The

rectifier software SPICE models for the diodes and IGBTs are included in an appendix [4.3].

Figure 4-1 Screen capture of simulation circuit used in SIMetrix to generate data for figure 4-2



For the diodes, a SPICE model of BYT30P-1000 diodes is used for the model [4.3]. These are

1000V diodes (The actual prototype used 1200V diodes). The load is approximated by a

resistor with capacitive filtering. The right-most sources, which are driving the IGBT gates,

provide and idealized model of the gate-drive behavior. The output voltage is also indicated.

4.2 Simulation Results

Throughout this discussion, phase angle will be referenced from the phase-to-neutral

voltage. Zero degrees is taken to be when the phase-to-neutral voltage crosses zero volts (See

Figure 4-2). Figure 4-3 shows the simulated steady state voltage as a function of phase firing

angle for different parameters. Each successive point depicts the output voltage for a 20 degree

phase angle change. Results are shown for three different alternator frequencies each with three

different load conditions. The results in figure 4-3 show an important fact about the system. As

expected, output voltage monotonically decreases as phase firing angle is increased. This makes

sense: as we apply a lower portion of the source waveform, the average load voltage should

decrease. It is also worth noting that at some angles the output voltage changes little, while at

other angles the change is many volts.



Figure 4-2: Graphical depiction of how phase angles are referenced for phase 'a'.
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Two fundamental questions needed to be answered before considering phase control:

First, can manipulation of phase maintain the desired output voltage range? Second, will current

waveforms be small enough to prevent damaging components? These two questions are

addressed in the following paragraphs.

The output voltage can be satisfactorily controlled by manipulation of phase. Figure 4-3

shows output results of simulations at various frequencies, loads, and firing angles. At the

lowest operating frequency (133Hz) the output is still within tolerable constraints (> 175V). At

these frequencies, operating like a diode rectifier is sufficient. At the higher voltages and

frequencies the alternator output voltage must be substantially attenuated to meet the

specification. By utilizing phase control, the high-frequency high-voltage source cases can also

be controlled.

Chart 4-1 shows additional simulation data for higher frequency test cases. The chart

shows peak switch currents, peak-to-peak load ripple voltage, and DC load voltage as frequency,

voltage, and load resistance were varied. For each frequency, the load resistances were selected

to give three different DC load currents. The chart includes data for higher frequency cases than

will be tested with the prototype. Even for these extreme cases the design can meet the required

constraints. (The chart also includes some data for higher loads than depicted in figure 4-3. If

the future load range is increased, the system will still function correctly.) The chart shows

important results. In all cases, the output voltage was controllable below the 350V upper limit.

Furthermore, in all cases, output voltage ripple was reasonably small. Since the system can be

controlled at both extremes, and since all intermediate values are constrained between the

extremes, the system can be controlled at all frequencies of interest.



In answer to the second question above, current waveforms are small enough to protect

components. Chart 4-1 includes the data that verifies this result. The peak currents observed

were less than 10A. The prototype system will use 1200V diodes which can withstand

continuous currents of 30A, or repetitive peak currents of 60A at 1750C. The IGBTs can

withstand a continuous collector current of 39A or a pulsed current of 280A at 1000C. Although

this low temperature tolerance may not work in the actual high temperature device, it is sufficient

for the prototype developed here. Also, in the worst case, the CE voltage on the IGBT was

400V, which is well below the 600V tolerance.



DC

Mechanical Electrical Vin p-n I_IGBT p Output Ripple

rpm f (Hz) (V) (A) Vo (V) AVo (V) Phase Rload (0) DC Iload

3000 200 369 0.6 300 0.6 112.5 2000 0.15

3.5 277 3 62 150 1.846667

6.9 254 3 60 50 5.08

3750 250 461.25 0.6 343 0.3 127.5 4000 0.08575

4.2 335 3.5 82.5 175 1.914286

6.5 324.5 3 60 70 4.635714

4500 300 553.5 1.5 310 1 150 1000 0.31

3.9 343 2 127.5 250 1.372

7.6 328 4 112.5 90 3.644444

5000 333.3333 615 0.35 349 0.1 160 10000 0.0349

4.5 333 2 135 200 1.665

7.4 342 2 120 100 3.42

5500 366.6667 676.5 0.5 342 0.1 165 10000 0.0342

4.8 321 2 140 200 1.605

7.75 350 4 125 100 3.5

Chart 4-1: Simulation Data



4.3 Controller Design

The results demonstrated above are promising. Simulations results indicate that the

system can behave as desired if a suitable controller can be developed. The system control needs

to dynamically adjust the turn on delay of the IGBTs to regulate the output voltage while system

parameters vary.

A proportional plus integral (PI) controller was used in the system. PI controllers are

very common in control circuit design. Prior to the PI controller the load voltage is compared to

a desired reference value. The load and reference voltages are subtracted to produce an error

signal, which is then passed through the PI controller. A schematic of the controller is presented

and discussed below.

Using PSIM, a controller design behavioral model was developed. The controller used

feedback around a PI block to find the desired phase angle. Figure 4-4 shows the complete phase

control circuit with the feedback behavior model. Figure 4-5 shows a close up of the feedback

behavior model.

After the error signal passes through the PI block the resulting signal is naturally

sampled. The rising edge of this naturally sampled waveform gives the desired phase turn on

delay of the IGBTs. However, the falling edge is incorrect. To ensure the correct turn off delay,

a monostable multivibrator (or "one shot") was used. The monostable turns on when it receives

the on pulse from the naturally sampled waveform and stays on for the desired amount of time

(calculated from the input frequency). Through this action I can guarantee correct turn off delay

for simulation (Note: In the prototype a different method was used to control turn off delay).

The controller also contains three blocks that implement the delay needed to drive each switch

in the correct phase relative to the input sine waves.



The simulation results using the feedback controller looked promising. To verify the

dynamic stability of the controller, the load was stepped. Figure 4-6 shows an example of the

feedback controller with stepped load, including the start-up transient time. The system settles to

the command voltage in a reasonable period of time. To generate figure 4-6, a capacitor in

parallel with a DC current source was used as the load. Since the output voltage is nearly DC,

the output resistor draws near DC current, and a DC current source is a good approximation.

The abrupt changes represent a load change from 6 amps to 2 amps on the current source. As

can been seen in the figure, the error voltage shows a peak overshoot of around 100V and a

settling time on the order of 1/10 second. This indicates that after step changes in the load the

output settles in a reasonable time. Although large, the output peak transient voltage stays within

a tolerable range for components. This could likely be improved through a better design of the

PI controller. Based on these results, the high-side phase-controlled rectifier should meet the

desired system specifications. With simulation results that validate the design, I decided to build

a prototype of the system.

lay Blocks

Figure 4-4 Phase-control circuit with feedback loop
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Figure 4-5 Close-up of feedback behavior model block
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Figure 4-6: Output and Error Voltage. DC Current Load is stepped from drawing 6A to drawing 2A, at a
frequency of 1hz. The PI controller has a gain of .003 and a time constant of .001.



4.1 SIMetrix website: http://www.catena.uk.com/site/downloads/download.htm
4.2 PSIM website: http://www.powersimtech.com/
4.3 See appendix A: Spice Models



Chapter 5

Construction and Integration of Prototype Rectifier

5.1 Overview

After validating the design with simulations, a prototype system was built. The prototype

system was composed of an alternator model, attenuation and filtering electronics, a controller,

gate driver circuits, a rectifier circuit, and a load. The design, construction, integration, and

testing of the parts of the prototype is discussed in the sections below.

5.2 Alternator Model Employed in the Prototype

Because this was a desktop prototype, a model had to be used to simulate the downhole

alternator being driven by fluid flow. It was important that this model closely resemble the

actual downhole alternator. Further, it was imperative to have desktop control over the model's

output speed and subsequent voltage. A MOOG G416-204 motor was used to model a downhole

alternator [5.1]. This "alternator motor" was driven by a primary motor which had desktop

control (Throughout this thesis, the primary motor will be called the "motor" and the secondary

alternator motor will be called the "alternator"). This permitted simple robust control of the

alternator. The alternator was the Fastact G415-804 by MOOG. The datasheet for both motors

are available online [5.1].

Figure 5-1 provides a summary of parameters for the alternator. In the table the

inductance and resistance values are given as terminal-to-terminal values; the phase values are

therefore half of the values listed in the table. The phase inductance used in simulations is

closely in line with the prototype inductance. The resistance listed in the table is less than the



resistance utilized for simulations. The listed resistance will be increased slightly by the

resistance of the wiring.

G415-8xx

Metric [English] (L50)

25.0

Continuous stall torque Mo Nm [Ib-in] [221.3]

Continuous stall

current lo Arms 14.8

60.0

Peak torque Mmax Nm [Ib-in] [531]

Peak current Imax Arms 43

Nominal speed nN Rpm 2200

Nominal power PN kW [hp] 4.6 [6.2]

Maximum speed nmax Rpm 2400

Torque constant kT Nm/Arms [Ib-in/Arms] 1.69 [15]

Motor resistance

(line-to-line) Rtt Ohm 0.56

Motor inductance

(line-to-line) Ltt mH 5.4

kg cm2 [Ib-insec2 x 18.4

Inertia w/o brake J 10-4] [163]

16.6

Mass w/o brake m kg [Ib] [36.6]

Figure 5-1: Selected properties of the alternator model utilized in the prototype [5.1]



5.3 Gate Driver Boards

The gate driver was created from a Schlumberger proprietary gate drive board. The gate

drive board is proprietary technology, so a schematic cannot be included here. Schlumberger

wanted to use the existing gate driver board since it was already tested and certified for

downhole use. (Because of the aforementioned fears related to downhole temperature and

pressure, certification for downhole use is a lengthy process. Whenever possible it is best to re-

use existing certified technology.) However, there were many issues related to the existing gate

driver that made it difficult to adapt. Most notably the way in which the board turned off had to

be modified. Also, capacitance had to be added to the board power supply to correct power

supply issues.

After my modifications, the gate driver required distinct pulses to turn on and off. The

driver was reset on start-up so that the first pulse would always turn it on. One pulse on the gate-

drive input will raise the gate drive output high, which turns the IGBT on. The IGBT will stay

on until the gate drive input receives an additional pulse, which will turn the switch off. This

simple behavior is captured in figure 5-2.

Gate Drive Input

Gate Drive Output

Figure 5-2: Simple gate driver behavior



5.4 Controller design

The original controller was designed for use with a Spectrum Digital TMS320LF2407

evaluation board [5.2]. The evaluation board is built around a Texas Instruments 2407 DSP. In

addition the DSP, Spectrum Digital included a D/A converter, convenient connectors for I/O

pins, and a simple to use JTAG interface for programming the board. The Spectrum Digital

evaluation boards provide an excellent platform for prototyping. In the final stage of the project

the 2407 board was replaced with a Spectrum Digital EZDSP TMS320F2812 board [5.3]. The

2812 board, which is similar to the 2407 in many regards, has a faster clock speed than the 2407

(150MHz as compare to 40MHz), allowing my controller to function well at higher alternator

frequencies.

The code for the controller was generated with VISSIM DSP code developer [5.4].

VISSIM is a graphical tool that allows for designing systems at block levels. VISSIM is able to

generate and compile C-code executing the block level control design. VISSIM has several

qualities that make it ideal for rapid prototyping. First, it allows real-time interaction with a

personal computer. For example, while reading the target boards ADC, you can watch the ADC

value on your PC screen. This feature makes debugging easier. Second, VISSIM takes care of

all the DSP specific problems for the user. The user does not have to learn about the DSP timers

and registers. You can use simple VISSIM utilities to set control timers and I/O. This is

extremely valuable if you want to rapidly prototype a system. It proved an excellent advantage

on my project. Modifying my code for the switch from the 2407 to the 2812 board took little

time compared to what modifying hand C code would have taken.
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Figure 5-3: Block level illustration of my controller

Figure 5-3 shows the block level controller designed in VISSIM. To make the behavior

clear, the functionality is described in the following paragraph. When describing a particular

blocks function, the block's name from figure 5-3 will appear in parenthesis.

The behavior is as follows: Using the onboard ADCs, the controller reads in attenuated

and scaled version of the alternator sine waves (Read in Sine blocks). These values are

compared to a reference to detect when a phase has become positive (providing a reference point

for phase). Using a PI controller, natural sampling, the programmed reference voltage, and

additional manipulation blocks, the controller determines the desired on and off time for each

switch. A more complete description of the controller behavior can be found in Appendix B.

In the system, the controller is followed by a gate drive board capable of driving the

high-side IGBTs. To be compatible with the gate driver, the controller was designed to generate

a pulse for turn on and turn off. Several of the blocks show in figure 5-3 (Square pulse, Hyst fall

pulse, Latches) are needed to implement this functionality.

The switch turn off time must be carefully selected to protect the circuit. Turning off a

switch with current flowing through it immediately destroys the switch, and must absolutely be

avoided. To accomplish the goal of zero-current turn off, the IGBT turn off pulse was made to

34



occur near when the sine wave reached its minimum value. At first, the minimum value was

determined by comparing successive samples of the sine-wave and waiting until the readings

began to rise. In essence, this method found a local minimum and assumed it was the absolute

minimum. This method worked well when the input was approximately a perfect sine wave.

However, when the full system was run, due to loading and noise issues, the method needed to

be revised. In the new system, the off pulse is generated after the input reading falls a certain

amount below its median value. This requires calibrating the system with a turn-off A. Once the

input falls below the mean by A, the off pulse is generated.

Although this method was extremely robust against noise problems it included the

undesirable effect of requiring calibration to the appropriate levels. This design could be

improved upon by using separate hardware (such as a positive phase-current detector) to

determine a safe time to turn off the switch.

5.5 Rectifier circuit construction

The rectifier shown in figure 5-4 was built. IGBTs were used for the high side switches.

The IGBTs selected had an ultrafast soft recovery diode. These IGBTs have a maximum

collector-emitter voltage of 600V, a maximum continuous collector current of 39A, and a

maximum pulsed collector current of 280A. Each high side IGBT was preceded by a diode to

prevent the IGBT body-diode from conducting in the reverse direction. The diodes used were

1200V, 30A diodes. The diodes could take a nonrepetitive peak current surge of 300A. The

diodes had hyperfast soft recovery characteristics (t, <65ns).

The rectifier circuit was mounted on a one foot by two foot solid metal ground plane.

The switches were electrically isolated from the ground plane. The switches were mounted



above aluminum oxide ceramic insulating pads, were bonded to the pads using silicone heat sink

compound and were connected using 12 gauge copper wire. Screw terminals were provided

for easy connection and access to the alternator phases, as well as both sides of the load. The

large metal sheet left room for later mounting the gate drive board, controller board, and the

attenuation and low-pass filter blocks.

Figure 5-4 Rectifier circuit with load

5.6 Attenuation and Low-Pass Filter Blocks

To integrate the system, several more components were needed. The sine waves coming

from the alternator were hundred of volts peak-to-peak. These signals needed to be attenuated to

levels that the ADC could handle (OV-3.3V). In addition, a differential amplifier was needed to

measure the phase-to-phase voltages. To accomplish both of these feats a differential attenuator

was designed. The schematic of this amplifier can be seen in figure 5-5. The frequency

response of this differential amplifier can be seen in figure 5-6. As can be seen from the figure,

at the frequencies of interest this amplifier has an attenuation of about 285:1. This attenuation



factor will allow a maximum peak-to-peak incoming sine wave of 940V and convert it to

maximum peak-to-peak below 3.3V.

R12
4.7k

R9
1 meg

Vout

C2
220p

Figure 5-5: Schematic of differential attenuator circuit.
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Figure 5-6: Frequency response of the differential amplifier in figure 5-5.
attenuated by a factor of 285.

At low frequency, the output is

After constructing the differential attenuation circuit, the output still had some

undesirable components. In addition to the desired sine wave, some high frequency noise had

been picked up. Most of this noise was caused by the high-frequency high-voltage driver that

was driving the motor. To correct this, a low-pass filter stage was included after the amplifier

stage. The low-pass filter was designed using Texas Instruments FilterPro toolbox. The low-

pass filter is a second order Sallen-Key type Butterworth filter. The circuit was designed to have

a cut-off frequency of 1KHz. This frequency was selected to be well above the maximum

switching frequency of around 300Hz, but well below the higher order noise frequencies. A

screen shot of the lowpass filter design from FilterPro can be seen in figure 5-7. The screen shot
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includes the circuit schematic, pertinent design info, and a graph of the frequency response of the

filter.

Figure 5-7: Low-pass filter design toolkit. Image generated with TI FilterPro [5.5].



5.7 Capacitor Bank and Load Selection

The output of the rectifier is capacitively filtered with a 300uF bank of capacitors. The

capacitor bank is a custom design. It is composed of stacked ceramic capacitors. The stack is

comprised of twenty separate 15uF capacitors. This large filter capacitance is used to maintain

an excellent voltage filtering result at the load. This ensures a low ripple DC output.

The rectifier was loaded with a bank of 100 watt incandescent light bulbs. The load bank

was made with five parallel rows of light bulbs. Each row of bulbs could be switched from three

to six light bulbs. This allowed a load of either three bulbs or six bulbs in series, with one to five

rows in parallel. This allowed me to run the system from 300W (one row of three bulbs) up to

3000W (five rows of six bulbs).

5.1 Moog Inc. Corporate website. Data sheet for Fastact G/G4xx servomotors available at:
http://www.moog.com/Media/1/fasg-g4xxservomotors.pdf

5.2 Spectrum Digital Corporate Website. Information for EVM320LF2407A evaluation module available at:
http://www.spectrumdigital.com/product_info.php?cPath=37&products_id=47&osCsid=Oa01682a826e163811 e917ed8
fcOf272

5.3 Spectrum Digital Corporate Website. Information for eZdsp F2812 available at:
http://www.spectrumdigital.com/product_info.php?cPath=32&products_id=169&osCsid=81e52daef6766calf741b300e
bl1134dc

5.4 Visual Solutions, Inc. VisSim/Embedded Controls DeveloperTM . Available at:
http://www.vissim.com/c2000/c2000.html

5.5 TI FilterPro active filter design application. Available at:
http://focus.ti.com/docs/toolsw/folders/print/filterpro.html



Chapter 6

Results

6.1 Measurement Results

The basic operation of the system is captured in figures 6-2 through 6-4. Since each of

the three phases exhibits similar behavior, waveforms will only be shown for one phase. In

figures 6-2 through 6-4, trace one is the line-to-neutral voltage on one phase (eg. the voltage

between the points Al and N from figure 6-1), trace two is the corresponding gate-drive signal

(eg. G1-gnd from figure 6-1), and trace three is the load voltage (L-gnd from figure 6-1). To

generate figures 6-2 through 6-4, the controller reference voltage, which is the voltage the

controller was trying to create at the load, was set to 135V. Also, the load was attached to a DC

power supply. This allowed the load to be externally held to a constant value. For figure 6-2,

the DC source on the load was set to 127V (notably, this is below the reference value). Because

the load voltage is below the reference, the controller tries to increase the load voltage. To do so,

the controller maintains a high duty cycle on the IGBT gates. After taking the screen shot for

figure 6-2, the DC power supply voltage was increased to 137V. Since this is above the

reference voltage, the controller tries to reduce the load voltage, and therefore reduces the gate-

drive duty cycle. Figures 6-3 and 6-4 depict this process. As can be seen in the figures, the gate-

drive signal decreases and approaches zero.

Figure 6-5 illustrates this process in the reverse direction. In this figure, the top trace is

the line-to-neutral voltage (Al-N from figure 6-1) and the bottom trace is the corresponding

gate-drive signal (Gl-gnd). To generate the figure, load was again attached to an external DC

power supply. This time, however, the DC load voltage was decreased from above the reference



voltage to below the reference voltage. The controller observes the drop of the load voltage, and

tries to increase the load voltage by increasing the gate-drive duty cycle.

For the remainder of the tests, the rectifier was loaded with 100W, 120V light bulbs. The

load was designed to allow loading with rows of three bulbs in series. There were ten total rows

of bulbs, allowing for loading with from one to ten parallel rows of three bulbs in series. Light

bulbs were selected because they are a convenient and inexpensive way to get a high power load.

Light bulbs have a resistance that depends on the temperature of the filament. The resistance of

a light bulb can range from about 9.6~ at room temperature (3000 K) to 1440 when the bulb is

on (30000 K) [6.1]. Throughout this section, the load resistances given are calculated assuming

1442 per bulb.

Gate-Drive Signals from Controller

Figure 6-1: Abbreviated Schematic of system for use in explaining measurements. The lines labeled Al, A2,
and A3 are the three phases coming from the alternator. The point labeled N is the neutral point. In the
actual alternator used, all of these terminals were available for measurement. The lines labeled G1, G2, and
G3 are the three gate-drive voltages coming from the controller. G1, G2, and G3 correspond to Al, A2, and
A3, respectively. The load is labeled L. Ground is also shown.



Figure 6-Z: High duty cycle gate-drive (trace Z) because load is held below reterence. Trace one is the line-to-

Figure ti-3: (iate-drive duty cycle (trace Z) is decreasing since the load voltage was increased. Trace one is

the line-to-neutral voltage, trace two is the IGBT gate-drive signal, and trace three is the load voltage.
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Trace one is the line-to-neutral voltage, trace two is the IGBT gate-drive signal, and trace three is the load

voltage.

Figure 6-5: Control reaction to load change from above the reference to below the reference. Trace one is the

line-to-neutral voltage and trace two is the IGBT gate-drive signal.



As was discussed above, it is necessary to ensure that no current is flowing through an

IGBT when it is turned off. Ignoring inductance, current would not be driven through a phase

when the line-to-neutral voltage is more than 150 degrees. However, with inductance current

may be maintained beyond 150 degrees. It was determined that the inductance never maintains

the current beyond 180 degrees. Therefore, after the phase passes 180 degrees the IGBT can be

safely shut off. To provide additional margin of safety for turn off, the controller was calibrated

to ensure that turn off occurred well after 180 degrees of phase. The controller observes the line-

to-neutral voltage, and once it has fallen below the median by the calibrated A, the off pulse is

generated. Figure 6-6 shows the line-to-neutral voltage (Al-N from figure 6-1) overlaid with the

IGBT gate drive voltage (Gl-gnd from figure 6-1). As can been seen in the figure, the IGBT is

turned off when the line-to-neutral voltage is near its minimum (that is, near 270 degrees of

phase). Though this control method sufficed for the prototype, it would be better to have current

sensing technology in a production design. This technology could provide absolute certainty of

zero current without the need for calibration.

Figures 6-7 and 6-8 depict the full system operation. These figures show actual rectifier

operation, with current flowing from the source to the load. In figure 6-7, trace 1 is the line-to-

neutral voltage for the observed phase (Al-N from figure 6-1), trace 2 is the gate-drive voltage

for the observed phase (G1-gnd from figure 6-1), trace 3 is the load voltage (L from figure 6-1),

and trace 4 is the current through the observed phase (il from figure 6-1). In figure 6-8, trace 1

is the line-to-neutral voltage for the observed phase, trace 2 is the gate-drive voltage, trace 3 is

the load voltage but AC coupled, and trace 4 is the DC current going through the load (iL from

figure 6-1). For these figures, the set-up was run with a command of 300V. Trace 3 of figure 6-

8 shows that the load voltage has low ripple content (Peak-to-Peak is about 2V).



Figure 6-6: Close up where gate off pulse crosses sine-wave. Trace one is the line-to-neutral voltage. Trace

two is the IGBT gate drive voltage. When this signal is high the IGBT would be on, when low the IGBT

would be off. Trace three is the load voltage.

Figure ti-7: Full system operation at ZZUOrpm with CMD=3UUV. Trace 1 is the line-to-neutral voltage, trace 2

is the IGBT gate-drive voltage, trace 3 is the load voltage, and trace 4 is the current through the phase.



Figure 6-8: Full system operation with 2200rpm and CMD=300V with AC coupled load. Trace 1 is the line-
to-neutral voltage, trace 2 is the IGBT gate-drive voltage, trace 3 is the load voltage but AC coupled, and

trace 4 is the DC current going to the load.

The system was tested for a number of loads and commands. Figure 6-9 show the output

voltage results for a number of different loads and input frequencies. As the figure shows, the

output voltage DC level was well controlled. In the case where we are drawing high currents

from the source while running the input at low frequency and voltage, the output is pulled down

slightly from the desired level (less than two percent). However, the output is still well within

the tolerable range.

Figure 6-10 shows the peak-to-peak load ripple voltage at the load for different

frequencies and loads. The maximum peak-to-peak ripple observed was 4.5V, which is

acceptable.



Figure 6-11 shows the RMS phase current. Figure 6-12 shows the peak switch current

for a given frequency and load. Peak currents observed are well below component tolerances.

Figure 6-13 and figure 6-14 shows results for more load test cases. In 6-13 we see the

load voltage is pulled down slightly when with low resistance at the load (Voltage is pulled down

max of 20V, or about 6 percent). However, even at the worst case the effect is small and well

within our constraints. In figure 6-14 we can see current increases almost linearly as the load

increases.

Load Voltage vs. Rows of bulbs
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Figure 6-9: Output voltage for several loads. Each load is three bulbs in
parallel listed on the chart.
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Figure 6-10 Voltage ripple peak-to-peak for different loads
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Figure 6-12: Peak switch currents.

Figure 6-13 DC load voltage for several loads while frequency is held constant at 230Hz.
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6.1 Sciences Education Foundation (General Atomics). "The Physics and Materials Science of the Incandescent
Light Bulb." See results from experiment 2, available online at:
http://www.sci-ed-ga.org/modules/materialscience/light/pdf/section_08.pdf

Figure 6-14



Chapter 7

Future work

7.1 Suggested Future Work

There are several key areas in which future work should be conducted. If Schlumberger

chooses to proceed with this design, current sensing technology should be utilized to remove the

need for calibration. Also, smaller gate driver circuits should be designed to make the whole

package much smaller. In addition, the entire package needs to be designed to be packed in a

downhole device, and must be pressure, temperature, and shock qualified.

In the above design, a "soft-start" mechanism was utilized. Prior to adding the soft-start,

the system was started from rest with zero volts on the load. The system attempted to get up to

the command voltage too quickly, driving too large a current and destroying the switches. To

alleviate this problem, the system was started with the load pre-charged to 150V. The load was

charged using a desktop power supply. This design successfully reduced the initial current

transients. Once the system regulated itself up past the 150V, the soft-start generator could be

removed. This mechanism was sufficient for demonstrating the concept, however, it would be

undesirable in a production system. Future work must change the system to incorporate a

commercially viable soft start.



Appendix A

Spice Models

A.] IGBT Models

The IGBT model used came included in the SIMetrix software package. The model was

a model of the actual IGBT used in the circuit (IRG4PC50FD). A model of a BYT30P-1000 was

use for the diodes. The SPICE code for each device is found below:

*File: g4pc50fd.spi

.SUBCKT irg4pc50fd 1 2 3
**** **********************************

* Model Generated by MODPEX *
*Copyright(c) Symmetry Design Systems*
* All Rights Reserved *
* UNPUBLISHED LICENSED SOFTWARE *
* Contains Proprietary Information *
* Which is The Property of *
* SYMMETRY OR ITS LICENSORS *
*Commercial Use or Resale Restricted *
* by Symmetry License Agreement *
*************************************

*Model generated on Mar 13, 01
* MODEL FORMAT: SPICE3
*Symmetry IGBT Model (Version 1.0)
*External Node Designations
*Node 1 -> C
*Node 2 -> G
*Node 3 -> E
M1 9 6 8 8 MSUB L=100u W=100u
* Default values used in MSUB:
* The voltage-dependent capacitances are
* not included. Other default values are:
* RD=O RS=0 LD=0 CBD=0 CBS=0 CGBO=0
.MODEL MSUB NMOS LEVEL=1
+VTO=6 KP=1.43492 LAMBDA=0.625287 CGSO=3.89883e-05
RD 7 9 0.000977651
RS 4 8 0.000996656
D1 3 1 d4pc50f
.MODEL d4pc50f d
+IS=6.53076e-09 RS=0.0228005 N=2 EG=0.6
+XTI=0.500186 BV=600 IBV=0.00025 CJO=1.16126e-08
+VJ=1.5 M=0.638969 FC=0.5 TT=1.7512e-08
+KF=0 AF=1



Q1 4 7 1 QSUB OFF
.MODEL QSUB PNP
+IS=1.55191e-17 BF=23.5373 NF=0.85 VAF=131.421
+IKF=1172.87 ISE=9.99937e-12 NE=2.00092 BR=1.04218
+NR=0.999653 VAR=101.051 IKR=999.976 ISC=3.7297e-12
+NC=l RB=0.00867835 IRB=990.164 RBM=0.00867835
+RE=0.000648409 RC=0.000998116 XTB=0 XTI=3.01201
+EG=1.2 CJC=8.09777e-10 VJC=0.4 MJC=0.340876
+CJE=1.61955e-08 VJE=0.4 MJE=0.9 TF=9.99999e-10
RDS 7 4 1e8
RER 4 3 0.0137988
RG 6 2 2
RL 10 11 1
D2 12 11 DCAP
* Default values used in DCAP:
* RS=O EG=1.11 XTI=3.0 TT=0
* BV=infinite IBV=lmA
.MODEL DCAP D IS=le-32 N=50
+CJO=6.71681e-09 VJ=0.4 M=0.9 FC=0.5
D3 0 11 DL
* Default values used in DL:
* EG=l.11 XTI=3.0 TT=0 CJO=0
* RS=0 BV=infinite IBV=lmA
.MODEL DL D IS=le-10 N=0.4
VFI2 12 0 0
FI2 6 7 VFI2 -1
EV 10 0 7 6 1
CAP 10 13 6.71681e-09
RCAP 10 14 1
D4 0 14 DL
VFI1 13 14 0
FI1 6 7 VFI1 -1

.ENDS irg4pc50fd

BYT30P-1000 code:

.model byt30p-1000 D(IS=3e-18 RS=5m CJO=970p M=0.4 VJ=0.75 ISR=790n
+ BV=1000 IBV=100u TT=130n)



Appendix B

Controller Design and Code

Figure B. 1 shows a block diagram of the complete control system developed in VISSIM.

The block labeled "Sine blocks" read in the three ADC's capturing the phase-to-neutral voltages.

Because the ADC's can only read voltages from OV-3.3V, these voltages phase-to-neutral

voltages were attenuated and shifted some DC voltage above zero (This was described in chapter

5). The block labeled "Zero Crossing Ref" reads in the DC voltage used in the aforementioned

shift. These phase-to-neutral and reference signal are compared in the "Hysteresis" block. This

block also includes some noise protection by waiting until the phase-to-neutral voltage has gone

sufficiently far above the reference to signal the change (the final buffer voltage used was .05V).

This ensures that small amounts of noise will not cause the system to change early. Through this

method the system is able to determine when a given phase-to-neutral voltage is positive or

negative, and generates the corresponding square wave.

I



Figure B. 1 Block diagram of control system created in VISSIM.

In the "Saw Gen" block, the square wave is integrated to form a sawtooth. This sawtooth

has the same frequency as phase-to-neutral voltage, and is also locked in phase for each of the

three respective phase-to-neutral voltages. At this point, the attenuated load voltage is read by an

ADC ("PI" block) and is naturally sampled in the "PI sawtooth compare" block. The results are

used to generate the appropriate on pulses. Additional blocks add additional noise protection,

ensuring that the system only gets one on pulse per cycle.

The off pulses are generated through the "Hyst fall pulse" block. This block waits until

the phase-to-neutral voltage falls sufficiently below the reference before generating an off pulse

(this was done by calibration and experiment, with a final value of .15V being used). As was

discussed earlier, anytime the phase-to-neutral voltage is below the reference the system cannot

drive current. Therefore, the IGBTs can safely be turned off at any point during this time.

The complete system code was generated by VISSIM. The C code can be found below:

/*** VisSim Automatic C Code Generator Version 6.0C12 ***/
/* Output for c2.vsm at Sun Jan 13 22:42:09 2008 */

#include "math.h"
#include "cgen.h"
#include "c24x.h"
#include "c24x.h"
#include "pidFx.h"
int _crystalMultiple=Oxa;
int MHZ=150;

int _maxAnalogInChan=38;
PI_CONTROLLER pidl5 = {0,0,10240,32735,0,0,32767,0,0};
extern CGDOUBLE Zed;

static int clock;



static int clock 88;
static int reset 68;
static int lowlim_89;
static int highlim_90;
static int input_91;
static int clock 228;
static int reset 201;
static int lowlim_229;
static int highlim_230;
static int input_231;
static int clock 278;
static int reset 251;
static: int lowlim_279;
static int highlim_280;
static int input_281;

static void cgMainO;
static: SIM_STATE tSim={0, 0.0001, 1,0,0.0001,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,cgMain,0,0,0,0,0,0,0};
SIM__STATE *sim=&tSim;

static void cgMain0
{
int t60;

static int _delayOutBuf290=0;
static int _delayInBuf290=0;
static int _delayOutBuf272=0;
static int _delayInBuf272=0;
int __clock4_252;

static int _delayOutBuf265=0;
static int _delayInBuf265=0;
static int _delayOutBufl55=0;
static int _delayInBufl55=0;
static int _delayOutBuf305=0;
static CGDOUBLE _delayOutBuf311=0;
static CGDOUBLE _delayOutBuf330=0;
static int _delayOutBuf240=0;
static int _delayInBuf240=0;
static int _delayOutBuf222=0;
static int _delayInBuf222=0;
int _clock4_202;

static int _delayOutBuf215=0;
static int _delayInBuf215=0;
static int _delayOutBufl38=0;
static int _delayInBufl38=0;
static int _delayOutBuf299=0;



static CGDOUBLE _delayOutBuf317=0;
static CGDOUBLE _delayOutBuf336=0;
static int _delayOutBufl88=0;
static int _delayInBuf188=0;
static int _delayOutBuf84=0;
static int _delayInBuf84=0;

int _clock4_69;
static int _delayOutBufl93=0;
static int _delayInBufl93=0;
static int _delayOutBuf104=0;
static int _delayInBufl04=0;
static int _delayOutBuf5=0;
static CGDOUBLE _delayOutBuf323=0;
static CGDOUBLE _delayOutBuf342=0;
static: int _delayOutBufl79=0;
static: int _delayOutBuf173=0;
static: int _delayOutBufl27=0;

int t58;
int t269;
int t286;
int _reset_252;
int t257;
int t267;
CGDOUBLE t254;

static CGDOUBLE _sampBuf253=0;
int t166;
int t161;
int t154;
CGDOUBLE t349;
int t22;
int t2 1;
int t26;
int tl 1;
int t313;
int t38;
CGDOUBLE t37;

static CGDOUBLE _sampBuf39=0;
int t219;
int t236;
int _reset_202;
int t207;
int t217;
CGDOUBLE t204;

static CGDOUBLE _sampBuf203=0;
int tl 49;
int t144;



int t137;
CGDOUBLE t348;
int tl0;
int t319;
int t32;
CGDOUBLE t31;

static CGDOUBLE _sampBuf33=0;
int t81;
int t96;
int _reset_69;
int t74;
int t195;
CGDOUBLE t71;

static CGDOUBLE _sampBuf70=0;
int t115;
int t110;
int t103;
CGDOUBLE t347;
int t9;
int t325;
int t44;
CGDOUBLE t43;

static: CGDOUBLE _sampBuf45=0;
int t132;
int tl131;
int t 130;

static int _sampBuf61=0;
t60 = !(int) _sampBuf61;
clock = t60;

clock_278 = clock;
if (__clock_278) _delayOutBuf290=_delayInBuf290;
if (__clock_278) _delayOutBuf272=_delayInBuf272;
_clock4_252 = clock_278 ;

if ( clock4_252 ) _delayOutBuf265=_delayInBuf265;
if (t60) _delayOutBufl55=_delayInBufl55;

clock_228 = clock;
if ( __clock_228) _delayOutBuf240=_delayInBuf240;
if ( _clock 228) _delayOutBuf222=_delayInBuf222;

_clock4_202 = clock 228 ;
if ( _clock4_202 ) _delayOutBuf215=_delaylnBuf215;
if ( t60 ) _delayOutBufl38=_delayInBufl38;

clock_88 = clock;
if ( clock_88) _delayOutBufl88=_delayInBufl88;
if ( clock_88) _delayOutBuf84=_delayInBuf84;

_clock4_69 = clock_88 ;
if (_clock4_69) _delayOutBufl93=_delayInBufl93;



if ( t60 ) _delayOutBuf104=_delayInBufl04;
input_281 = c2407ReadAnalogVal(6);
highlim_280 = 409 /* 0.05@fx3.16 */;

t58 = c2407ReadAnalogVal(8);
t269 = ( input_281 >(int)((long)(( highlim_280 +(( t58 )<<1)))>>1));

lowlim_279 = 1228 /* 0.15@fx3.16 */;
t286 = ((int)((long) (((( t58)<<1)- _lowlim_279))>>1)> _input_281);

reset_251 = MUL_SHIFT16((-( _delayOutBuf272 *0x1000)+( t286 *0x1000)),( t286
*0x1000),12);
_reset_252 = reset_251;
t257 = ((int)MUL SHIFT16((-( delayOutBuf290 *0x1000)+( t269 *0x1000)),( t269

*0x1000),12)(int) _reset 252);
t267 = MUL_SHIFT16((-( _delayOutBuf265 *0x1000)+( t257 *0x1000)),( t257 *0x1000),12);
t254 = (_reset_252 ?0.:1.);
if ( t267 ) sampBuf253 = t254;
t166 = (int)( _sampBuf253 * 8192);
t161 = _delayOutBufl55;
if (tl61 > 27033) t161 = 27033;
if (t161 <-819) t161 = -819;
t154 = (MUL_SHIFT16((int) ((long) (4 /* 0.001@fx4.16 */)<<1), t166 ,13)+(((t166

?(int) ((long)( t161 )>>13):0))<<13));
t349 = (t161 *9.);
if ( t349 > 0.999) t349 = 0.999;
if (t349 < 0) t349 = 0;
t22 = c2407ReadAnalogVal(10);
if ( t22 > 13475) t22 = 13475;
if ( t22 < 40) t22 = 40;
pidl5.refreg2 = (int) ((long) (2048 /* 0.5@fx4.16 */)<<3);
pidl5.fbreg2 = (int)((long) (MUL_SHIFT16( t22 ,4959,14)/* 0.3027@fx4.16 */)<<3);
piControl (&pid 15);
t21 = pidl5.outreg2
if (t21 > 32735) t21 = 32735;
if (t21 < 327) t21 = 327;
t26 = (8192 /* 1@fx3.16 */- (int)((long)( t21 )>>2));
tll (t349 > t26);
t313 = ((int) ((long) ((-( _delayOutBuf311 *0x2000)+( sampBuf253 *0x2000)))>>13)>0);
t38 = ((int) ((int) ((long) ((-( _delayOutBuf305 *0x2000)+( tll *0x2000)))>>13)>0)l (int) t313);
t37 = (t313 ?0.:1.);
if (t38) _sampBuf39 = t37;

input_231 = c2407ReadAnalogVal(4);
highlim_230 = 409 /* 0.05@fx3.16 */;

t219 = ( input_231 >(int) ((long) (( highlim_230 +(( t58 )<<1)))>>1));
lowlim 229 = 1228 /* 0.15@fx3.16 */;

t236 = ((int) ((long) (((( t58 )<<1)- _lowlim_229 ))>>1)> input_231);
reset_201 = MUL_SHIFT16((-( _delayOutBuf222 *0x1000)+( t236 *0x1000)),( t236

*0x1000),12);



_reset_202 = _reset201;
t207 = ((int)MUL SHIFT16((-( _delayOutBuf240 *0x1000)+( t219 *0x1000)),( t219

*Ox1 000),12) (int) _reset_202);
t217 = MUL_SHIFT16((-( _delayOutBuf215 *0x1000)+( t207 *0x1000)),( t207 *0x1000),12);
t204 = ( _reset_202 ?0.:1.);
if ( t217) _sampBuf203 = t204
t149 = (int)( sampBuf203 * 8192);
t144 = _delayOutBufl38;
if ( t144 > 27033) t144 = 27033;
if (t144 < -819) t144 = -819;
t137 = (MULSHIFT16((int) ((long) (4 /* 0.001@fx4.16 */)<<1), t149 ,13)+((( t149

?(int) ((long)( t144 )>>13):0))<<13));
t348 = (t144 *9.);
if (t348 > 0.999) t348 = 0.999;
if (t348 < 0) t348 = 0;
tl0 = (t348 > t26);
t319 = ((int) ((long) ((-( delayOutBuf317 *0x2000)+( _sampBuf203 *0x2000)))>>13)>0);
t32 = ((int) ((int) ((long) ((-( _delayOutBuf299 *0x2000)+( t10 *0x2000)))>>13)>0) (int) t319);
t31 = (t319 ?0.:1.);
if (132) _sampBuf33 = t31;

input_91 = c2407ReadAnalogVal(2);
highlim_90 = 409 /* 0.05@fx3.16 */;

t81 = ( input_91 >(int) ((long) (( highlim_90 +(( t58 )<<1)))>>1));
lowlim_89 = 1228 /* 0.15@fx3.16 */;

t96 = ((int) ((long) (((( t58 )<<1)- lowlim89 ))>>1)> _input_91);
reset68 = MUL_SHIFT16((-(_delayOutBuf84 *0x1000)+( t96 *0x1000)),( t96

*0x1000),12);
_reset_69 = reset_68;
t74 := ((int)MUL_SHIFT16((-( _delayOutBufl88 *0x1000)+( t81 *0x1000)),( t81

*0x1000),12)|(int) _reset_69);
t195 = MUL_SHIFT16((-( _delayOutBufl93 *0x1000)+( t74 *0x1000)),( t74 *0x1000),12);
t71 := ( reset_69 ?0.:1.);
if ( t195) _sampBuf70 = t71
t115 = (int)( sampBuf70 * 8192);
t110 = _delayOutBufl04;
if ( t 110 > 27033) t110 = 27033;
if (t110 < -819) t110 = -819;
t103 = (MUL SHIFT16((int) ((long)(4 /* 0.001@fx4.16 */)<<1), t115 ,13)+(((t115

?(int) ((long)( t110 )>>13):0))<<13));
t347 = (t110 *9.);
if (t347 > 0.999) t347 = 0.999;
if (t347 < 0) t347 = 0;
t9 = ( t347 > t26);
t325 = ((int) ((long) ((-( _delayOutBuf323 *0x2000)+( sampBuf70 *0x2000)))>>13)>0);
t44 = ((int) ((int) ((long) ((-( _delayOutBuf5 *0x2000)+( t9 *0x2000)))>> 13)>0) (int) t325);
t43 = (t325 ?0.:1.);



if ( t44) _sampBuf45 = t43;
t132 = !(int) _sampBuf253 ;
tl31 = !(int) _sampBuf203 ;
t130 = !(int) _sampBuf70 ;
if (((int) ((long) ((-( _delayOutBuf342

PADATDIR 1= 0x40;
else
PADATDIR &= OxFFBF;

if (((int) ((long)((-( _delayOutBuf336
PBDATDIR 1= Oxl;

else
PBDATDIR &= OxFFFE;

if (((int) ((long) ((-( _delayOutBuf330
PBDATDIR = 0x4;

else
PBDATDIR &= OxFFFB;

if (((int) ((long) ((-( _delayOutBufl27
PADATDIR I= 0x80;

else
PADATDIR &= OxFF7F;

if (((int) ((long) ((-( _delayOutBufl73
PBDATDIR 1= 0x2;

else
PBDATDIR &= OxFFFD;

if (((int) ((long) ((-( _delayOutBufl79
PBDATDIR I= 0x8;

else
PBDATDIR &= OxFFF7;

if (__clock_278 )
_delayInBuf290= t269;

if( clock_278)
_delayInBuf272= t286 ;

if (_clock4_252)
_delayInBuf265= t257;

if ( t60)
_delayInBufl55= t154;

_delayOutBuf305= t 1 ;
_delayOutBuf311= _sampBuf253;
_delayOutBuf330= _sampBuf39;
if( _clock_228)

_delayInBuf240= t219;
if( clock_228)

_delayInBuf222= t236 ;
if (_clock4_202)
_delayInBuf215= t207;

*0x2000)+( _sampBuf45 *0x2000)))>>13)>0))

*0x2000)+( _sampBuf33 *0x2000)))>>13)>0))

*0x2000)+( sampBuf39 *0x2000)))>>13)>0))

*0x2000)+( t130 *0x2000)))>>13)>0))

*0x2000)+( t131 *0x2000)))>>13)>0))

*0x2000)+( t132 *0x2000)))>>13)>0))



if (t60)
_delayInBufl38= t137;

_delayOutBuf299= tl0 ;
_delayOutBuf317= _sampBuf203;
_delayOutBuf336= _sampBuf33;
if( _clock_88)

_delayInBufl88= t81 ;
if( _clock_88)
_delayInBuf84= t96;

if ( _clock4_69)
_delayInBufl93= t74;

if (t60)
_delayInBufl04= t103;

_delayOutBuf5= t9 ;
_delayOutBuf323= _sampBuf70 ;
_delayOutBuf342= _sampBuf45 ;

delayOutBuf179= t132 ;
_delayOutBufl73= t131;
_delayOutBufl27= t130;
_sampBuf61 = t60;

)

main0
{
noIntegrationUsed = 1;
EALLOW;
WDCR=0x00ef; // Disable Watchdog
asm(" clrc DBGM");
PCLKCR = 0x8;
HISPCP = OxO; // HCLK = 150 MHZ
EDIS;
simlnit( &tSim);
startSimDsp();
installInterruptVec (-2,7,timerFunc);
TIMER2PRD = 0x3a98; // 32-bit Timer Period Low
TIMER2PRDH = OxO; // 32-bit Timer Period High
TIMER2TCR 1= 0x4020; //Interrupt enable, Timer Reset
EALLOW;
PIECTRL = 1; // Enable PIE Interrupts
EDIS;
IER 1= 0x2000; //CPU Interrupt enable
enable_interrupts0; // Global Start Interrupts
dspWaitStandAlone 0;
return 0;
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