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Abstract

This thesis concerns transport phenomena in laminar, Lagrangian unsteady flow
fields. First, a multiple-timescale technique is used to analyze convective disper-
sion in diverging or converging ducts. A long-time, asymptotic equation governing
the cross-sectionally averaged solute probability density is derived and its coefficients
computed from the exact, microscale transport problem. The form of this equation
and its limits of applicability are shown to be dependent upon the number of spatial
dimensions characterizing the duct. Additionally, the techniques developed for the
case of rectilinear channel and duct boundaries are extended to incorporate curvilin-
ear boundaries, and an illustrative calculation performed for the case of axisymmetric
flow in a flared Venturi tube.

Secondly, generalized Taylor dispersion theory is used to study transport in chaotic
laminar flows. Transport of a solute is considered for the case of laminar axial
‘Poiseuille’ flow in the annular region between two nonconcentric cylinders, accom-
panied by a laminar chaotic transverse flow induced via alternate rotation of the
cylinders. A Brownian tracer introduced into the flow is allowed to undergo an in-
stantaneous, irreversible reaction on the surface of the outer cylinder. The resulting
effective, transversely- and time-averaged reaction rate, axial solute velocity, and ax-
ial convective dispersivity are computed and their values compared to those in the
presence of comparable non-chaotic transverse flows. The presence of chaotic flow
significantly increases the effective reaction rate, decreases the axial dispersivity, and
causes the mean solute/solvent velocity ratio to approach the perfectly-mixed value
of 1.0.

The Stokes flow occurring within a non-neutrally buoyant spherical droplet sus-



pended in an immiscible liquid which is undergoing simple shear is shown to be chaotic
under many circumstances wherein the droplet translates by buoyancy through the
entraining fluid. When solute initially dissolved within the droplet is extracted into
the bulk fluid, the resulting extraction rate is significantly higher in the chaotic flow
case.

Both chaotic flows studied reveal that commonly used qualitative measures of
mixing effectiveness, such as Poincaré maps, do not always correctly indicate trends
in the transport rate. Explicitly, the degree of enhancement does not strictly correlate
with the qualitative degree of ‘chaosity’ shown in the map.

Thesis Supervisor: Professor Howard Brenner
Title: Willard H. Dow Professor of Chemical Engineering
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Chapter 1

Introduction

This thesis concerns material (or equivalently heat) transport phenomena in complex
flow fields, explicitly those that are Lagrangian unsteady due to either temporal
variations or spatial variations in the direction of flow. In particular, the theory of
generalized Taylor dispersion, or macrotransport processes, is further developed and
utilized to analyze global reaction and dispersion processes occurring in two broad
classes of flows: (i) those net unidirectional flows whose mean velocity varies along
the direction of net flow; and (ii) laminar chaotic flows.

Macrotransport theory allows multi-dimensional microscale transport problems to
be reduced to macroscopically equivalent one-dimensional problems in the direction
of the mean flow, characterized by macroscale phenomenological coefficients (such as
effective reaction-rate constant, solute velocity, and axial dispersivity) that can be
calculated from the exact, microscale transport equations and boundary conditions.
The prototypical example of a macrotransport analysis is G. I. Taylor’s (1953) treat-
ment of the dispersion of a passive solute dissolved in a fluid undergoing Poiseuille
flow in a tube. Using clever intuitive approximations, Taylor demonstrated that the
cross-sectionally-averaged solute concentration evolves according to a one-dimensional
convective-dispersive type equation, in which the solute velocity is equal to the aver-

age velocity of the solvent, and the dispersion coefficient macroscopically quantifies
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the axial spreading arising from the radial variations in the axial velocity profile. Aris
(1956) later formalized these results through use of the method of moments, in addi-
tion to incorporating the effect of axial (vs. transverse, or radial) molecular diffusion,
which Taylor had explicitly neglected.

Following these pioneering contributions, abundant research into so-called Taylor
(or Taylor-Aris) dispersion phenomena has appeared in the scientific and engineer-
ing literature (see Brenner & Edwards 1993). The method of moments and related
‘projection’ techniques have been used to study dispersion in a variety of situations,
including: (i) spatially-periodic flows, such as flow through model porous media; (ii)
time-periodic flows, which are common in physiological flows; and (iii) dispersion of
chemically reactive solutes. This thesis both: (i) expands upon the existing theory
to analyze flows which were previously not amenable to classical dispersion theory —
in particular flows in converging and diverging ducts; and (ii) applies existing macro-
transport theory to novel chaotic laminar flows of potential practical and academic
interest. Specifically, in the context of several examples, it is shown how existing
macrotransport theory can be used to calculate the enhancement of global transport
rates resulting from chaotic flows.

Chapter 2 of this thesis presents a multiple-timescale analysis of dispersion in
diverging and converging flows. Classical Taylor dispersion theory based on moment
methods is limited to those circumstances in which the mean velocity does not vary
in the direction of net flow; yet many flows of interest do not fulfill this criterion. For
example, flows in nature, such as occur in rivers and estuaries, rarely, if ever, maintain
a constant width over the course of their entire length. Rather, their cross-sections
expand (and occasionally contract) as they flow, leading to variations in the mean
velocity along the flow path. Similarly, plumes (and jets) expand as they travel away
from their origins. In industrial applications, the entrance and exit regions of reactors
and other vessels typically involve gradual expansions and contractions, in which the

mean velocity varies in the direction of flow.
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Only a limited number of studies of dispersion phenomena in these types of flows
exist. Those prior theoretical analyses are limited to small angles of divergence and/or
(incorrectly) assume without theoretical justification that the macroscale equation
has the same elementary form as in the constant cross-section case (Gill & Giiceri
1971, Smith 1983, Mercer & Roberts 1990). Such converging-diverging problems are
unamenable to existing techniques, such as the method of moments or gradient ex-
pansions. In the present work, a multiple-timescale expansion is used to determine
the proper form of the governing macroscale equation, as well as to obtain values
for the coefficients appearing therein. It is shown that the form of the macrotrans-
port equation depends upon the dimensionality of the diverging or converging duct,
differing significantly for two- vs. three-dimensional flows. Appropriate limits of ap-
plicability governing these asymptotic, long-time macrotransport descriptions of the
mean solute transport process are established in terms of the physical parameters
quantifying the microscale transport process.

The remaining chapters of this thesis apply macrotransport theory to laminar
chaotic flows. A detailed review of the kinematics of chaotic flows is presented in
Chapter 3, so only a brief description is provided at this point. A flow is said to
be chaotic if its material particle trajectories display chaotic behavior; that is, if the
coupled, possibly non-linear, set of equations for the particle position x = x(xo, ?)
(with xq the position vector at time ¢t = 0),

% —v(x,1), (1.0-1)
possesses chaotic solutions (i.e. two initially proximate particles follow exponentially
diverging trajectories). Even a velocity field satisfying the linearized Navier-Stokes
equations can display chaotic behavior, since v is often nonlinear in x. Laminar flows
may possess a recirculation region, which when periodically perturbed in time or space

can create chaotic behavior. A much studied example is the journal-bearing flow, oc-
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curring in the annular space between nonconcentrically positioned circular cylinders.
Each cylinder is rotated independently and time-periodically. For sufficiently large
eccentricities, the flow patterns resulting from the individual cylinder rotations con-
tain a recirculation region adjacent to the stationary cylinder. It is the temporal
perturbation of these two recirculation regions that results in chaotic motion.

It has been suggested that laminar chaotic flows would be useful in mixing ap-
plications, particularly for shear-sensitive solutes (for which turbulent mixing would
prove undesirable), as well as for highly viscous fluids (for which production of a
turbulent flow may be impractical). In fact, many existing mixer designs have been
shown to produce chaotic flows; cf. Khakhar, Franjione & Ottino (1987), wherein the
Kenics static mixer is shown to be equivalent to the chaotic partitioned-pipe mixer.
Following the pioneering work of Aref (1984), much effort has been devoted to the
study of chaotic flows (see Ottino 1990 for a review). However, the vast majority of
research into chaotic flows has focused on demonstrating that particular flows display
chaotic behavior, and on establishing which regions of the chaotic flow will be well
mixed. That research, most of which consists of purely computational kinematics,
has resulted mainly in visualizations of the regions exhibiting chaotic behavior and
in establishing other primarily qualitative descriptions of the eztent of mixing. Much
less attention has been paid to quantifying the (presumably) enhanced rate of mixing,
or to determining the extent by which rates of transport processes are enhanced by
laminar chaotic flows.! In contrast, this thesis develops a universal method for glob-
ally quantifying the rate of chaotic transport, using ideas drawn from macrotransport
theory for reactive solutes. This method is then used to study several chaotic flows
and to illustrate the transport enhancement attained through the judicious selection

of the parameters governing these flows. In addition, the important effect of molecular

IThroughout this thesis, the term ‘mixing’ will be used to denote the process by which an initially
inhomogeneous fluid is rendered homogeneous, while the ‘extent of mixing’ is a measure of the degree
of homogeneity of the final product. ‘Transport’ includes all heat- or mass-transfer processes, and
is measured in terms of the amount of material or heat transferred per unit time.
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diffusion, excluded from most prior work, is considered.

In Chapter 4, solute transport of within the chaotic flow existing in the annular
space between alternately-rotating eccentric cylinders (also known as the ‘journal-
bearing flow’) is considered. A first-order, instantaneous chemical reaction or solute
deposition process is prescribed on the surface of the outer cylinder. Superposed on
the two-dimensional chaotic transverse flow is an axial, pressure-driven ‘Poiseuille’
flow. Using macrotransport theory (Brenner & Edwards 1993), the effective reac-
tion/deposition rate, mean axial solute velocity, and axial convective dispersivity are
determined. Each of these three macroscale parameters provides an independent
means for quantifying the degree of chaotic enhancement by comparing their respec-
tive relative values in the presence and absence of chaos.

The most direct and easily interpreted measure of the degree of chaotic enhance-
ment is provided by the effective reaction rate. Since the reaction at the outer wall
is assumed instantaneous, the overall reaction rate is determined exclusively by the
transport of solute to the wall. Thus, the effective reaction rate furnishes a direct
and simple measure of the transverse transport rate.

The effective axial solute velocity in the presence of the inhomogeneous reaction is
increased above the mean solvent velocity via the depletion of solute from the slowest
moving streamlines, existing near the reactive wall (cf. Shapiro & Brenner 1986).
In a transversely well-mixed flow, this disparity in velocities is lessened; indeed, in a
perfectly-mixed flow the solute and solvent velocities would be identical. Thus, the
mean axial velocity of the reactive solute furnishes a simple global measure of the
transport effectiveness of a given flow, although it is less easily interpreted than is
the effective reaction rate.

Lastly, the axial convective Taylor dispersivity declines with improved transverse
transport rates due to the increased rate at which the solute molecules sample the
various axial velocities characterizing the Poiseuille streamlines. The dispersivity

thereby provides an additional means of globally assessing the effectiveness of the
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chaotic transverse transport.

By calculating these three macrotransport coefficients, it is shown that the trans-
verse transport rate is significantly enhanced by the existence of chaotic flow within
the annulus. Comparison of the effect of varying the flow parameters on each of the
three macroscale coefficients reveals that the choice of optimal parameters for maxi-
mizing the transport rate is independent of which of the three quantitative measures
is used to assess the effectiveness of the chaotic flow; that is, what is optimal for one
is also optimal for the other two. In a more general context, it is shown that qualita-
tive diagrams such as Poincaré maps, which are frequently used in visualizing chaotic
flows, do not always provide accurate qualitative indications of the effectiveness of a
given flow in enhancing the global transport rate. Explicitly, the quantitative degree
of enhancement does not strictly correlate with the qualitative degree of ‘chaosity’
indicated by the map.

Chapter 5 addresses a novel steady chaotic flow, occurring within a spherical fluid
droplet. The flow considered is that arising from translation of a non-neutrally buoy-
ant droplet through an external fluid undergoing simple shear. This flow is of interest
due to its ubiquity in applications, as well as to the ease with which it can be pro-
duced in the laboratory. It occurs (among other circumstances) when a droplet rises
or falls through the annular space between two vertical concentric cylinders contain-
ing a Couette flow produced by their relative rotation. A comparable, yet nonchaotic,
flow is produced by the translation of the non-neutrally buoyant droplet through a
vertical Poiseuille flow occurring, say, in the same (non-rotating) annular apparatus
— the only difference between the two flows being the relative orientation of the
external shear and translational motions.

The parameter ranges for which the flow internal to the droplet is chaotic are first
determined; following this, the rate of extraction of a passive solute initially dissolved
within the droplet into the bulk fluid is considered for circumstances in which the

bulk-phase mass-transfer coefficient is effectively infinite, and hence non-rate-limiting.
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This extraction rate is conceptually equivalent to the effective chemical reaction rate
considered in Chapter 4. It constitutes a simple and direct measure of the rate at
which solute is transported through the droplet interior to the interface, from where
it passes unrestricted into the bulk fluid. Results gleaned from this example once
again demonstrate that: (i) laminar chaotic flows can significantly enhance transport
rates; and (ii) the extent of mizing, as determined through Poincaré sections, does not
always accurately correlate with the degree of enhancement observed in the transport

rate.
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Chapter 2

Dispersion in diverging and

converging ducts

Abstract

A multiple-timescale analysis is employed to analyze Taylor dispersion-like convective-
diffusive processes in converging and diverging flows. A long time, asymptotic equa-
tion governing the cross-sectionally averaged solute probability density is derived.
The form of this equation is shown to be dependent upon the number of spatial di-
mensions characterizing the duct or ‘cone’. The two-dimensional case (nonparallel
plates) is shown to be fundamentally different from that for three dimensions (circu-
lar cone) in that, in two dimensions, a Taylor dispersion description of the process is
possible only for small Péclet numbers or angles of divergence. In contrast, in three
dimensions, a Taylor dispersion description is always possible provided sufficient time
has passed since the initial introduction of solute into the system. The convective
Taylor dispersion coefficients D, for the respective cases of low-Reynolds number flow
between nonparallel plates and in a circular cone are computed and their limiting
values, DY, for zero apex angle are shown to be consistent with the known results for
Taylor dispersion between parallel plates and in a circular cylinder. When plotted
in the nondimensional form of D./D? versus the half-vertex angle 6, the respective
dispersivity results for the two cases hardly differ from one another, increasing mono-
tonically from 1.0 for y = 0 to approximately 2.6 for a fully flared duct, 6y = =/2.
Lastly, the techniques developed above for the case of rectilinear channel and duct
boundaries are extended to the case of curvilinear boundaries, and an illustrative
calculation performed for the case of axisymmetric flow in a flared Venturi tube.
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2.1 Introduction

The problem of convective dispersion in ducts of constant cross-section, such as cylin-
ders and parallel plates, has been well-studied. In those studies, the velocity profile
and molecular dispersivity are taken to be independent of the axial (global) coor-
dinate. In fact, application of the general theory of macrotransport processes in its
current form (Brenner & Edwards 1993) explicitly requires that the phenomenological
coefficients appearing in the microscale description of the process be independent of
the global-space position.

A limited number of studies exist which address problems involving axially-varying
velocity fields. Thus, Frankel & Brenner (1991) studied Taylor dispersion in un-
bounded shear flows, allowing the velocity to depend linearly on the global coor-
dinate. Mercer & Roberts (1990) used centre manifold theory to treat the case of
dispersion in channels with slowly varying cross-section and thus, varying velocity.
Gill & Giiceri (1971) conducted numerical studies of Taylor dispersion in flow between
nonparallel flat plates, in addition to having derived a theoretical expression for the
axial dispersion coefficient in channels possessing small angles of divergence. Lastly,
Smith (1983) derived a expression for the dispersion coefficient in a varying channel
whose small depth relative to its width allowed it to be treated as well-mixed in the
vertical direction.

The method of multiple-timescales has been used to analyze Taylor dispersion in
rectangular ducts (Pagitsas, Nadim & Brenner 1986). This method takes advantage of
the separation of time-scales required for a macrotransport description of the process
to exist. The present contribution presents a multiple-timescale analysis of dispersion
between nonparallel flat plates and in a circular cone. The functional dependence of
the macrotransport equation upon the dimensionality of the channel is established
and circumstances quantified whereby such a dispersion description of the process

is indeed possible. The Taylor dispersion coefficients for low-Reynolds number flow
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between nonparallel flat plates and in a circular cone are calculated. Finally, an ex-
tension of the current multiple-timescale methods to cross-sectionally varying flows
in curvilinear channels and ducts is presented, and illustrated by example. This ma-
terial has previously appeared in the Journal of Fluid Mechanics (Bryden & Brenner

1996).

2.2 Kinematics of flow in an n-dimensional cone

The vector velocity field for axisymmetric radial flow in an n-dimensional cone of

apex angle 260, (see figures 2-1a and 2-1b) is of the form

0<r<oo, —Og<0<h<n (n=2)
v = i,0, (T, 0) , (2.2-1)
0<r<oo, 0<f0<b<sn (n=3)
with
0
vy = Qo) (2.2-2)

Here, the inverse 7"~ ! dependence results from the requirement that the axisymmetric

flow field satisfy the continuity equation

1 0

rn=1or

(r"tv,) =0 (2.2-3)

for incompressible radial flow. The algebraically-signed ‘volumetric’ flow rate through
the duct, namely Q = [ v,dS (with dS a scalar element of surface area on the surface

r = constant) is given explicitly by the expression
)
Q = 21 / Q(6) sin™2 0df. (2.2-4)
0

The exact solution of the Navier-Stokes equations for incompressible Jeffrey-Hamel
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Figure 2-1: (a) Nonparallel plates (b) Circular cone
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flow between nonparallel flat plates (n = 2) is well known (Rouse 1959; Goldstein
1965a) and can be expressed in terms of elliptic functions. For low Reynolds number

flow this velocity field is

Q) cos20 — cos 26,

v, = n=2). (2.2-5)

r sin 26y — 20 cos 6,

While no comparable exact Navier-Stokes solution exists for flow in a circular cone
(n=3) (Ackerberg 1965; Goldstein 1965b), the velocity field for low Reynolds number
is (cf. Happel & Brenner 1983)

3Q cos? § — cos? 6,

L W (14 2cosbp)(1 — cos by)? (n=3). (2.2-6)

(%

2.3 Microscale transport equation for convection
and molecular diffusion in a diverging or con-
verging duct

The governing equation for unsteady convection and diffusion of a dissolved or col-

loidal Brownian species between nonparallel plates or in a circular cone is

oc Q) 9C¢ D[ 1 0 (,,0C 1 8 (. a0,0C
ot Ty * rzlm=sar " or sin s 0

o C
sin @ 0¢?

] —0, (2.37)

with D the molecular diffusivity, assumed constant, and d,3 the Kronecker delta. This
equation is to be solved for the solute concentration C(r, 0, (¢), t) subject to the initial

and boundary conditions:

Cli=o = Co, (2.3-8)
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oC

20— 0 at 6=0 and 6y, (2.3-9)
C isfiniteat r =0, (2.3-10)
Cly = Clgran  (n=23). (2.3-11)

(In the two dimensional case, we have for simplicity by symmetry confined ourselves
in the above to the half region 0 < 8 < ). The first of these conditions represents
a prescribed initial solute concentration, with Cy(r, 8, (¢)) a specified function. The
second represents the condition of symmetry about the cone axis, together with the
requirement of no flux through the duct walls. The remaining conditions (2.3-10) and
(2.3-11) respectively represent the requirements of boundedness of the concentration
field and single-valuedness of the latter in the azimuthal angle ¢.

As the velocity field and molecular diffusion coefficient are both independent of
the angle ¢, this angle constitutes a ‘dead’ degree of freedom over which one can
integrate in the n = 3 case. (Of course, in the n = 2 case no such integration is
required.) To ultimately establish the macrotransport equation [see (2.5-50)], we

therefore need solve only for the azimuthally averaged concentration field:
2n
e(r,0,) < / C(r6,6,t)dp  (n=3). (2.3-12)
0

Upon introduction of the dimensionless quantities

tD
55, 0=—, R=—, (2.3 —13a,b, )

0
T = —
070 to To

where g is a characteristic radial distance, (2.3-7) — (2.3-11) become

dc  q(©) oc , 1 0 n1 OC 1
o Ve r1oR "™ R10R R OR R2sin"%(046,)

0 (. no dc\
X35 (sm (@90)56> =0, (2.3-14)
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C|T:0 = Cp, (23-15)

dc
5 at ©=0 and 1, (2.3-16)
¢ is finiteat R =0, (2.3-17)

in which ¢ is the prescribed value of ¢ at 7 =0,

Q(©0)

q(0) = ——, 2.3-18
(©) 3 ( )
_ 6Q

£ = 2D (2.3-19)
and
B Dr(’]‘_2 2
K= ( 00, ) ) (2.3-20)

In the above, @ = [ Q(0)dS/ [ddS is the algebraically-signed average ‘volumetric’

flow rate, explicitly defined as

o= " 06 sin"20d0 / [ si"-?6d6 2.3-91
Q—/O Q(0) sin //0 sin : (2.3-21)

The dimensionless parameter || is proportional to the ratio of the angular diffusion

time 7p to the convection time 7¢ from r = 0 to 7o, respectively defined as

2,.2 n
_ 0ora To

— To = ——.
="p T RQ]

(2.3 — 22a, b)

2.4  Multiple time-scale analysis

Equation (2.3-14) may be recast in terms of the comparable Green’s function (Brenner
& Edwards 1993), the latter being formally equivalent to the conditional probability

density P(R,©,7|R',0') that a unit tracer introduced into the system at position
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(R',©’) at time 7 = 0 is present at the position (R, ) at time 7:

oP  q(©) 8P 218R8P 1
or " “R-19R " R"10R

OR E?E) R2sin"2(06,)

0 d(R—R) 6(06-0)
*55 (sm (©6p) ) T sn”"z(@QO)(S(T)' (2.4-23)

II

This equation is to be solved subject to the boundary conditions

oP
= = 2.4-
20 =0 at ©=0 and 1, (2.4-24)
P isfinite at R =0, (2.4-25)
R*'P -0 as R —oo. (2.4-26)

In the long time limit and for |e|] < 1, the above system of microscale equa-
tions may be reduced to a comparable macroscale equation for the cross-sectionally

averaged probability density, defined as
— 1 1
= [ Psin"*(00)d0 / | sin2(@80)de, (2.4-27)
0 0

through the use of a multiple-timescale analysis in which ¢ is a small parameter. (The
physical implications of the requirement that ¢ be small are discussed in §2.6.) To
accomplish this macrotransport analysis, introduce into (2.4-23) the sequence of time

variables

Tm = €T (m=0,1,2,...,00), (2.4-28)

each of which is to be treated as an independent variable, and write

P(R,0,7|R,0') = P(R, 0,1, 71,T2,...|R,0"). (2.4-29)
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Expand P in a perturbation series in ¢:

P=> €"P,(R,0,70,71,T2,...|R,0). (2.4-30)

n=0

The time derivative appearing on the left-hand side of (2.4-23) may then be written

as
0 00

Z Z €n+m

n=0m=0

(2.4-31)

aTm

Substitute (2.4-30) and (2.4-31) into (2.4-23) and equate terms of equal order in € to

obtain the following recursive sequence of equations governing the respective Py:

o(7), (2.4-32)

oPy 1 0 (in (eg)ap _§(R-R) 56 -9
819  R2sin™%(66,) 00 ) R*1  sin™ 2(O6,)

(@90)‘21;1) —0  (2.4-33)

8P1+8P0 Q(@)apo_ 1 _6_ si
or,  9n | R"1OR  R?sin" *(0,) 00

and

3P2 8P1 8P0 q(@) 8P1 1 8 i 8P2
o " on  9m  R1OR  RPsin" (0f) 00 (005
k 0 n_10F0
=Y (R E)—R> 0, (2.4-34)

up to and including terms of second order in £. Each such equation is to be solved
subject to the same boundary conditions set forth for P in (2.4-24)—(2.4-26).
Multiply (2.4-32) by sin~%(©6y), integrate from © = 0 to © = 1 and apply the
boundary condition (2.4-24) to obtain
0P,
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Thus, for long times (75 > 1),

Pg NE(R, Tl,TQ,...’R,) + exp, (24-36)

in which ‘exp’ denotes terms which decay exponentially in 73.
Substitution of (2.4-36) into (2.4-33) furnishes an asymptotic equation governing
P, for long times. Multiply (2.4-33) by sin™ %(©0,), integrate from © = 0 to 1, and

apply the boundary condition (2.4-24) to derive the asymptotic relation

al—-"l+6ﬁo 1 9P,

~ exp. 2.4.37
o0 "o B ior P (2.4-37)

The second and third terms in the above equation are independent of 7. Thus, in
order to prevent secular growth of P, in Ty, it is required that
P, 1 0P,

87.1 = _Rn_l aR ’ (24-38)

whence

Py ~ exp. (2.4-39)

(This secular growth argument is equivalent to that used by Chatwin (1970)). Sub-
stitute (2.4-36), (2.4-35), and (2.4-39) into (2.4-33) to obtain

1 O (. no oP, ;)
2060 56 \ == | ~ R == (9(0) - 1 , 4
sin™2(60,) 00 (Sm (©%) 55 ) R —22(a(0) = 1) + exp (2.4-40)

The above may be solved subject to the boundary and normalization conditions (2.4-

24) and (2.4-39), yielding

P~ f(@)R3_"% + exp, (2.4-41)
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where the function f(©) represents the solution of the boundary value problem

1 0 (. 1o of\ _
S 2(00,) 56 (sm (@00)3@) =q(©) — 1, (2.4-42)
subject to the conditions
af .

5‘(_3‘ at ©=0 and 1, (24-43)

1
/ £(©) sin™2(66,)d© = 0. (2.4-44)

0

It remains only to find the terms of O(¢?). By substituting the respective so-
lutions (2.4-36) and (2.4-41) for P, and P, into (2.4-34) and integrating over the

cross-sectional area, the dependence of Py upon 7, may be obtained:

R"-1 OR

0P, 0Py _ k0 (Rn_laﬁ,)_p(eo 9 (R3‘"6E

LS 90) Cexp. (244
oro « 0m R"1OR R 8R> P (24-45)

Here,
~F0) = [ ' (0)q(6) sin™2(66,)dO / | ' Sin"2(00,)dO, (2.4-46)

or in an alternative form which may be derived through use of (2.4-42)—(2.4-44) in

the above,

F(60) = /O 1 (%)2 sin™2(06,)dO / /O ' Sin"2(00,)de. (2.4-47)

Prevention of the secular growth of P, in 7y requires that

A n — — |~ 2.4-
or, R*10R (R 8R> o\ or)”° (2.4-48)
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and

P, ~ exp. (2.4-49)

2.5 The macrotransport equation

The macrotransport equation governing P (accurate to O(c?)) may be found by in-
tegrating (2.4-31) over the cross-sectional area and substituting (2.4-36), (2.4-38),

(2.4-39), (2.4-48), and (2.4-49) into the resulting expression to obtain (in dimensional

form)
9P, Q 9P D 0 (,,0P\_ D. d (,,0P\ o(r=r)
ot rrlor  ro-lor or rr=10r or | nl f(fo sin®26do’
(2.5-50)
wherein
— Q2
D, = 5(J(Q,F(e) (2.5-51)

represents the convective contribution to the dispersivity. This equation is valid for
both positive (diverging flow) and negative (converging flow) values of Q. Note that
inasmuch as F(6) is always nonnegative [see (2.4-47)] it follows that D, is always

nonnegative irrespective of the direction of flow.

2.6 Range of validity of the global equation

The present analysis is valid provided that |¢] < 1 and 75 > 1 (or equivalently
t > 62r2/D). It can be shown that the first requirement is automatically satisfied
provided that the second constraint is met. A tracer particle initially introduced

into the flow within a diverging or converging cone at the radial position ' will (on
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average) be located at time ¢ at the point

re = [nQt + ()"0, (2.6-52)

(For converging flows, for which @ < 0, the above is valid for ¢t < (r)*/n|Q)|, after
which time the solute particle will, on average, have flowed out of the cone through

the apex along with the solvent.) Substitution into (2.6-52) of the inequality

O5rs
t>— 2.6-53
> (2.6-53)
followed by subsequent rearrangement gives
92_ 2
n6Qro g, (2.6-54)

Diry — (r')"]

The characteristic length ry is to be chosen as the larger of the two lengths r, and
r'. Thus, for diverging flows (Q > 0) ro = 7, while for converging flows (Q <
0) ro = r'. After replacement of ry in (2.3-19) and (2.6-54) with the appropriate
length, comparison of the two constraints reveals that the requirement (2.6-53) is
more restrictive than the requirement |¢| < 1. Thus, satisfaction of a single constraint
suffices to guarantee that the macrotransport description (2.5-50) of the process is
applicable.

Observe that ¢, the ratio of the transverse diffusion time to the convection time,
scales as 75" "2 (2.3-19). Hence, in three dimensions a macrotransport description
of the process is always possible for some sufficiently large ro or, equivalently, for
long enough times. For the two-dimensional case, the situation is different. In this
case, ¢ is independent of ry. Thus, circumstances exist for which no macrotransport

description is possible, regardless of the length scale of the channel. Physically, this

means that in some instances the transverse diffusion time 7p is greater than or
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equal to the convection time 7. In such cases, corresponding to large flow rates or
apex angles, a particle introduced into a diverging flow will be swept downstream
so quickly that insufficient time exists for it to sample all angular positions. This is
so because as the particle is convected downstream, the transverse distance through
which it must travel in order to reach the most distant streamlines increases more
rapidly than (Dt)%, the lateral distance through which it has diffused. It may appear
that this limitation would not be present for the case of converging flow, for which
the particle encounters a decreasing cross-sectional area as it is convected toward the
apex of the system. This impression is erroneous, however, for although the particle
is confronted with a smaller area to sample, its velocity increases at precisely the
same rate at which the cross-sectional area decreases, so that the particle still has
insufficient time in which to sample all of the streamlines. In such circumstances, a
purely asymptotic description of the process cannot be valid since the particle will
‘remember’ the angular position ' at which it was originally introduced.

In contrast, in three dimensions, a macrotransport description is always possible
for some sufficiently large rg. Although the transverse distance that a particle in a
diverging flow must sample increases as it is convected through the cone, the velocity
with which it is convected decreases rapidly enough that the particle can sample all
of the streamlines if given enough time. Likewise, in converging flow, the velocity in-
creases more slowly than the cross-sectional area decreases, thus enabling the particle

to sample all of the streamlines.

2.7 Examples: Low Reynolds number flow

2.7.1 Nonparallel Plates

Application of (2.4-42)—(2.4-44) together with (2.4-47) and (2.5-51) to the case of

creeping flow between nonparallel plates, for which the velocity is given by (2.2-5),
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gives

5 _ @ 1 605 — 65in” 205 + 96 sin 26 cos 20 + 463 sin” 26
‘" D12 (sin 26y — 26, cos 26;)? '

(2.7-55)

It may be shown in the limit #; — 0 that this reduces to the classical result for
Taylor dispersion between flat plates. To do so, replace the flow rate with the average
velocity, v @/r, introduce the half-distance, h df Oor, between the plates, and

expand in a Taylor series about 6, = 0 to obtain

4

FNED(l
¢ ¢ +15

02 + ) , (2.7-56)

where
o 2 VP

¢ 105 D

(n=2) (2.7-57)

is the classical result (Wooding 1960) for flow between parallel plates.

A plot of the convective contribution (2.7-55) to the dispersivity versus the half
angle between the flat plates is given in figure 2-2. The dispersivity increases appre-
ciably with increasing angles owing to the fact that the transverse velocity gradients
0v, /00 increase with increasing angles of divergence.

For this two-dimensional situation, the macrotransport equation governing the
angularly-averaged conditional probability density P(r,t|r’) is

oP QoP D a [ 9P\ o(r—1)

— = — [T | = ———2(2 2.7-58

ot T or rBr(ra:) ®), ( )
in which

D*=D+D, (2.7-59)

is the total Taylor-Aris dispersivity. The solution of (2.7-58) may be found through
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Figure 2-2: Convective contribution, D, to the dispersion coefficient for axisymmetric
low-Reynold’s number flow between nonparallel plates or in a circular cone. Observe
that for the limiting case where 6y = =/2, the dispersivity ratio quantified by the
ordinate attains the limiting values of 105/47* (n = 2) and 128/572 (n = 3).
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use of Laplace transforms to be

— 1 5 [r? + (r')?] rr!
P = QD_*t (;.—/) exp (——-;-— I@ — , (27—60)

in which

Pe* = = (2.7-61)

is the effective Péclet number and I, is the modified Bessel function of order v .
Note that the two-dimensional case is unique in that the macrotransport equation
(2.5-50) assumes the same functional form as the symmetric, purely radial form of the
microscale equation (2.4-23). In contrast the three -dimensional macroscale equation
possesses a different structure than the original microscale equation in regards to the

final term appearing on the left-hand side of (2.5-50).

2.7.2 Circular cone

Solution of (2.4-42)—(2.4-44) for low-Reynolds number flow in a circular cone, for
which the velocity is given by (2.2-6), followed by subsequent use of (2.4-47) and
(2.5-51) yields (see figure 2-2):

2

- Q" (1 —Go)(2 =3¢ — 23¢§ — 38¢3 — 8¢3 — 2) +30¢2(1 + (o) In[2(Co + 1) ]
€~ 15D (14 2¢0)%(1 — Go)? ’
(2.7-62)

in which (o = cosfy. As in the two-dimensional case, replacement of the flow rate
with the average velocity v Q/r?, introduction of the ‘radius’ h &of Bor at any point
in the cone, and expansion of the above in a Taylor series about ; = 0 demonstrates
that in the limit 6, — 0, the dispersion coefficient reduces to the classical result for

Taylor dispersion in a circular cylinder (Taylor 1953; Aris 1956):

D,~D° (1 + 2—393 + ) , (2.7-63)
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where
1 V2hp?
730
= — = 3). 2.7-
D, 5 D (n=3) (2.7-64)

The macroscale equation in three dimensions is

oP @6_? Fﬁ(zaﬂ_ﬁyﬁ_é(r—r’) 5(t) (2.7.65)
r o

E_Fﬁar T r2or\ Or) rzor2 . 1z 1—cosby

"9

In this case, in contrast with the two-dimensional case (2.7-58), the convective dis-
persivity D, contributes to the net transport differently than does the molecular
diffusivity D, as can be seen by comparing the final two terms on the left-hand side

of the above.

2.8 Discussion

2.8.1 Solute conservation

Although our analysis is valid for both converging and diverging flows, the semi-
infinite configuration of the conical domain, coupled with the singularity of the veloc-
ity field at the apex r = 0, leads to fundamental differences in the temporal behavior of
the probability densities for the respective cases of @ > 0 and @ < 0, all other things
being equal. In particular, the total probability of a solute particle being located
within the cone is conserved for diverging flow, but not for converging flow; rather, in
the latter case there is a continuous loss of solute through the apex. Mathematically,
this behavior may be seen by integrating the microscale equation (2.4-23) over the in-
finite domain Vo, of the cone and applying the boundary conditions (2.4-24)—(2.4-26)

to obtain (in dimensional form)

d
= /V _PdV =QPl, (2.8-66)
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where dV = dSdr = 7" !sin""20drdf(d¢) is a ‘volume’ element. For Q = 0, the
total amount of solute initially present in the cone is conserved for all time, as in
the known results (Carslaw & Jaeger 1959) for pure diffusion in a wedge and in a
circular cone. However, examination of the solution (2.7-60) of the macrotransport
equation for n = 2 reveals that for Q@ > 0, P[,—o = 0 for all times ¢ > 0. Hence,
for diverging flow, the particle is always contained within the cone. The explanation
for this phenomenon lies in the functional form of the velocity field, which varies
inversely with radial position. A solute particle is never able to diffuse backwards to
the apex of the cone because its diffusion is opposed by an infinite velocity in the
positive direction. In contrast, for Q < 0, P assumes a finite positive value at the

origin, namely

Pl = T’(Zﬁ‘t)—(@ﬂ) exp (— i%)jt) . (2.8-67)

Thus, solute exits the cone at its apex, eventually becoming entirely depleted.

2.8.2 Asymptotic behavior of the microscale field

Not only does our analysis result in an asymptotic equation for the macroscale prob-
ability density P, but concomitantly it also furnishes an asymptotic approximation
to the exact microscale probability density P. In particular, in combination, (2.4-30),
(2.4-36) and (2.4-41) yield

— Q6?2 0P

P(r,0,t)r",0') ~ P(r, t|r') + ﬁf(@/@o)r?’ 5 T - (2.8-68)

This asymptotic expression is similar in appearance to the first two terms occurring
in the expansion of Taylor (1954) (subsequently expanded upon by Gill 1967), with
the exception of the presence of the coefficient r3~" occurring in the second term on
the right-hand side of the above, which arises from the varying cross-sectional area

of the duct.
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Asymptote to

hyperbola
n=n,=const <m/2 & -

Figure 2-3: Hyperboloid of revolution (‘Venturi’ tube). The coordinate system is
g =¢&, g =1, g3 = ¢, with S; the domain 0 < 7 < 79, 0 < ¢ < 2n. The duct throat,
corresponding to the value £ = 0, is of radius c¢. The duct centerline corresponds to
the value 7 = 0 and the unit normal vector n to the duct surface 7 is the unit vector
iy, = 0 in oblate spherical coordinates. The major and minor axes Ay and By of the
hyperboloid 7y are respectively as shown in the sketch, with By/A, = tanny; thus,
the angle between the z-axis and the dashed asymptote corresponds physically to the
angle 7.

2.9 Dispersion in curvilinear, cross-sectionally
varying channels and ducts

The methods described herein may be utilized to analyze dispersion in generally
varying channels and ducts whose boundaries are curvilinear rather than rectilin-
ear. We use general orthogonal curvilinear coordinates (Happel & Brenner 1983)
(¢1, g2, q3) and consider ‘unidirectional’ flows whose streamlines lie along the ¢; coor-
dinate curves. Flow through a hyperbolic cone or ‘Venturi’ tube (Happel & Brenner
1983, p.150) as in figure 2-3 constitutes an example of this class. We will confine
ourselves to the three-dimensional, duct-flow case, although the analysis is easily ex-
tended to two-dimensional, channel flows. The surface of the duct will be taken to be

defined by the functional relation F'(gq, g3) = const. The continuity equation in such
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a coordinate system is

0 ( Uy )
— =0, 2.9-69
0q1 \hyh3 ( )

in which the scalar u; (g1, g2, g3) is the speed h;(q1, g2, ¢3) and is the metrical coefficient

in the ¢; direction. The velocity field is thus of the form

uy = hahsq(ge, q3)- (2.9-70)

In this notation, the convection-diffusion equation governing the conditional proba-

bility density P(q1,q2, g3,t|q}, d5,q3) is

9P P 0 h, OP 0 hy OP
9 1 hihahaq(ae, ——thh[—— ———)+—( —)
a5 1hahaq(g q3)8q1 12 9g, (h2h3 oq 0q2 \ h1h3 0g2

NN
0q3 \ hihg Og3

) | = 8()6(a: - a1)8(an — a0)3(as — ) uhah. (297)

We now follow a procedure similar to that used in our previous analysis. It is again
required that the convection time be much larger than the transverse diffusion time.

The ratio of these times is given by |e|, where

QllglI?1h|l|h
Dlla:||llR||
Here, the brackets ||...|| denote an appropriate norm of the quantity they bound; g» is

the coordinate corresponding to the largest of the two transverse directions, and the
constant @ is related to the volumetric flow rate ¢ through the duct (both @ and Q

being independent of the ‘axial’ distance ¢;) as follows:

Q= Q/ /51 dgadgs, (2.9-73)
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where

Q= /S q(q2, g3)dgadgs. (2.9-74)

Here, S, denotes the ‘cross-sectional’ domain corresponding to the surface defined by
q1 = const. and bounded by the curvilinear duct wall, F'(gs, ¢3) = const.

Upon performing a multiple-timescale analysis similar to that for the circular
cone, the macrotransport equation governing the macroscale conditional probability

density P(qy,t|q}) is ultimately found to be

0P Q0P D 9 (X"ﬁ) . (Fa—P = S5)i(a—q)  (2.975)

ot Adq Aoq \"0q) Adqu \ 0qp) A
in which
_ dA
Alg) = [ —— (2.9-76)
S1 h1
and
x(a) = [, hidA, (2.9-77)

where dA; = dgodgs/hohs is a differential areal element on the surface q; = const.

The convective contribution D, to the dispersion required in (2.9-75) is given by

=2

C(QI) = _QD S U(QQ,%)Q(Ql,QQ:(I3)dQQdQ3, (29'78)
with
q(g2, g3)
V= ———. 29'79
Q 2979

The function g¢(q1,q2,¢3) appearing above represents the solution of the following

boundary value problem:

9 [ _ho 39) o ( hs 89)] T
B> \Phs 9as) " g5 \hiha9as )| ~ "~ dgxdgs, 2.9-80
[&12 (h1h3 0q2)  9g3 \ h1hy Og3 hihahs Js, (P48 ( )
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n-Vg=0 on F(g,q)= const., (2.9-81)

/ gd—A1 =0. (2.9-82)
ha

In the above, n represents the unit vector normal to the surface of the duct. Use
of (2.9-80)—(2.9-82) in (2.9-78) allows D, to be written in an alternative form which

demonstrates that the dispersivity is nonnegative:

— dg 6g>
D.= h h
[( 2aqz) ( 35%

The ‘average’ probability density function appearing in the macrotransport equa-

an

. 2.9-83
= (2:9-83)

tion (2.9-75) is defined as

rdef dAl/ dA,
= . 2.9-84
/S T (2.9-84)

In our prior discussion of dispersion in a cone and between non-parallel plates, the
average utilized was an area average. The above average is equal to the volume average

taken over an infinitesimal volume centered at a given ‘axial’ position ¢;

N 144
P = lim ( q Pav / / ) (2.9-85)
§—0 q1—9 S1 Jq1—-46

where dV = d¢;dgodgs/hyhohs is a differential volume element. The quantity defined
in (2.9-85) is identically equal to the area average in the conical geometry considered
previously, since in that case h; is independent of ¢ and g3.

The physical form of (2.9-75) becomes especially transparent in circumstances
where the metrical coefficient h is, at most, a function only of ¢;, and hence inde-
pendent of ¢ and g3. Since the quantity dgq; /h; = dl, say, is the arc length, measured
along the ¢;-coordinate curve (Happel & Brenner 1983), it follows that when A, is of

the form h(g;) = hy(l1), the quantity dl; is then an exact differential. Consequently,
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the arc length [; possesses a global physical interpretation. In such circumstances,
(2.9-76) and (2.9-77) become A = A;/h; and x = h;A;, where A,(q1) = A;(l4) is
the ‘cross-sectional’ area of the duct corresponding to the domain S;. Moreover, the
‘volume average’ probability density P defined by (2.9-84) becomes identical with the
(curvilinear) area-average probability density [q PdA;/A;. In these circumstances,
the macrotransport equation (2.9-75) governing P = P(ly, t|l}) adopts the form

= Lswsw 1), (2.9-86)

OP QOP D 9 oP 1 0 (= 0P
(A (Dca—ll A

ot T aan  Aon \“an ) T A on

in which

D* = D.h,. (2.9-87)

An example of a configuration for which h; is independent of ¢, and ¢3 occurs
for the circular cone case, where (Happel & Brenner 1983, p.504) with the choice

(QD g2, Q3) = (’F, 07 ¢)a we have that
hl = 1, h2 = 1/7’, h3 = l/rsin(?, (29—88)
and hence I} =, A; = x = 2n(1 —cosfp)r?. In this case (2.9-86) reproduces (2.7-65).

2.9.1 Dispersion in a flared, ‘Venturi’ tube

As an application of the general curvilinear analysis embodied in (2.9-75), consider
the problem of convection and diffusion in a ‘Venturi’ tube (i.e., a hyperboloid of
revolution of one sheet, as in figure 2-3). Such a flow may be described in oblate
spheroidal coordinates (—oco < € < 0o, 0<7n<n/2, 0< ¢ < 2n),in which the
hyperboloidal surface of the tube is n = 1. (This coordinate system is identical to
that appearing in Happel & Brenner (1983, p.512) with the exception of the ranges of

n and £.) These coordinates are related to circular cylindrical coordinates (z, R, ¢),
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having their origin O at the center of the tube throat, by the relations
z = csinh & cos n, R = ccoshsiny. (2.9 — 89a, b)

The coordinate surfaces € = const. and ¢ = const. are respectively oblate spheroids
and meridian planes, the latter containing the z-axis.
The axisymmetric stream function for the low-Reynolds number flow through the

tube is (Happel & Brenner 1983; Sampson 1891)

QU -3Q) - (1-3@) _
U= A 2)i-G)p (2.9-90)

in which ¢ = cosn and {; = cosmny denotes the surface of the duct, so that the
streamlines are hyperbolas, lying on the coordinate surfaces 7 = const. in a meridian
plane (¢ = const). In contrast to the previous cases of flow in a circular cone or
between nonparallel plates, in the present geometry the flow contains both ‘diverging’
and ‘converging’ regions and no singularity exists at the origin.

In this oblate spheroidal coordinate system, the quantities necessary for determi-

nation of the macroscale equation are

1
hy = hy = , 2.9-91
! ? c(cosh? £ — sin?p)? ( )

1
~ ccosh&sing (2:9-92)
and

dv
q(n) = ——. 2.9-93
n=-5 (2.9-99)

The condition which must be met in order for the present multiple-timescale analysis
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to apply is again |¢| < 1, with

_ Qn
©~ Dekycosh &’ (2:9-94)
in which & is a characteristic value! of the ‘axial’ coordinate £, and
=~_ @
Q= P (2.9-95)
Solution of (2.9-80) subject to (2.9-81)-(2.9-82) yields
09(n, &) _ 30 (L= )¢ —G)(C+ o+ 1)(cosh® £+ ¢F — 1) (2.9-96)
on ccosh€sing (1 +2¢)(1 — (o)?(Becosh?E+ G+ —2) '
The resulting macroscale equation is then of the form (2.9-75) with
A(E) = ACoABN + C), (2.9-97)
x(€) = 3cCo, (2.9-98)
— Q' (V402
D)= =\~ T2 0.
0(5) CD /\(3)\2 _+_ C1)2 3 (2 9 99)
in which A = cosh &, and the constants C; are functions only of 7y as follows:
Co = (2/3)n(1 - o), (2.9-100)
Cy =+ G -2, (2.9-101)
Cy= (¢ -1, (2.9-102)

For long axial distances from the tube throat, the distance r = (R? + zz)% from the origin
approximates r =~ ccosh &, while the transverse distance approximates h = cng cosh§. The parameter
¢ is thus proportional to the ration of the transverse diffusion time 7p to the axial convection time
7Q, respectively defined as 7p = h?/D, 19 =71°/Q.
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_ 65 (1 — Co)(2 — 3Co — 23¢F — 28(3 — 8(y) + 30¢¢(Co + 1)?In[2({o + 1)_1]_

G="3 (14 260)*(1 = Go)*

(2.9-103)
The above Venturi tube results may be compared with the circular cone results, (2.7-
62)—-(2.7-65), as follows. Referring to figure 2-3, it is seen that at large distances
|€] — oo along the axis, the hyperboloidal duct surface is isomorphic with the surface
of the circular cone of half-angle 6, = 7 in figure 2-1(b). From (2.9-89 a,b), we
find that the distance r = (R2 + 22)7 from the origin O is 7 = ¢(cosh? ¢ — cos?n)z,
which for |£] — oo asymptotes to 7 ~ ccoshé. Additionally, from (2.9-91), we see
that, asymptotically h; ~ (ccosh &)™}, which is independent of 7 and ¢, and thus
asymptotically fulfills the requirement set forth in the paragraph following (2.9-85).
Use of the above asymptotic relation for h; and the dispersivity (2.9-99) in (2.9-87)
reveals that in this limit, D? is independent of the axial position I ~ r (l; being
calculated from its definition, dl; = d&/h;), and may therefore be brought to the
outside of the derivative in which it appears in the macrotransport equation (2.9-86).
The ratio D?/A; then reduces to the form

—D—Z‘_@: Cs
- D

Ze S E— 2.9-104
A 18n(1 — Co)r?’ (2:9-104)

which may be shown, through use of the respective (albeit slightly different) defini-
tions (2.9-95) and (2.3-21) for @ in the hyperboloidal and conical cases, to be exactly
equal to the dispersivity (2.7-62) in the case of a circular cone, bearing in mind
that 8y = ny. Straightforward calculation shows that the other terms appearing in
the macrotransport equation (2.9-86) are also identical to their counterparts in the
circular cone case, (2.7-65).

Finally, we note that the case of flow through a circular aperture in a wall occurs

when 19 = n/2 ({o = 0).
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Chapter 3

Laminar Chaos: Background

3.1 Introduction

The existence of chaotic laminar flows was first demonstrated by Aref (1984). The
seemingly contradictory suggestion that chaos could exist within a laminar flow has
since been confirmed both theoretically and experimentally in numerous studies (see
Ottino 1990 for a review). In contrast to turbulent flows, in which the instantaneous
flow field is chaotic and apparently random, in a laminar chaotic flow the flow field is
completely known. The particle trajectories, however, may behave chaotically. Such
flows may prove useful for improving transport in circumstances for which turbulent
flows are impractical. For example, suspensions of living cells used in biotechnology
cannot be subjected to the high shear rates produced by turbulent flows without
causing damage to the cells. Similarly, many polymers suffer degradation due to
locally high shear rates. In other instances, where the fluid is highly viscous, or even
viscoelastic, it may not be practical to produce a turbulent flow. Laminar chaotic
flows have the ability to provide thorough and rapid mixing without the high shear

rates and potentially large power requirements accompanying turbulent flows.
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Chaotic trajectories are possible because the Lagrangian equation

CC%‘ —v(x,1) (3.1-1)
for the particle trajectories x = x(xg,t) (with xo the initial position vector at time
t == 0) comprises, in many instances, a set of coupled non-linear equations, with the
instantaneous velocity v a non-linear function of the position vector x. Chaos is often
described as the exponential divergence (in time) of initial conditions. In the case
of laminar flows, the presence of such exponential divergence assures that a solute
locally dissolved within a fluid subjected to a chaotic laminar flow will soon disperse
throughout the fluid even in the absence of molecular diffusion or turbulent eddies.
Moreover, small perturbations in the particle positions — caused for instance by
molecular diffusion — are magnified by the chaotic flow, further increasing the extent
of solute spreading. The unavoidability of such perturbations signifies that laminar
chaotic flows are irreversible. [This observation provides the basis for a proposed
separation technique based on differences in diffusivities (Aref & Jones 1989).] The
common belief that laminar flows are necessarily reversible results from experiments
and analyses with linear flows. Taylor’s famous ‘unmixing’ experiment, for example,
was conducted in a linear Couette flow, in which the trajectories constitute solutions

of equations of the form
do

E - f(r)a

(3.1-2)
dr
P

with r the radial coordinate and 6 the angular coordinate. The position at time
t of a particle initially located at (rg,8) is (ro,60 + f(r0)t). Thus a perturbation
in the particle position grows at most linearly in time, assuring that the flow is

reversible. In general, however, pathlines in laminar flows need not be reversible and
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this sensitivity to small perturbations enhances the mixing effectiveness of these flows

(Dutta & Chevray 1995).

3.2 Examples of chaotic laminar flows

An incompressible flow must be either time-dependent and at least two dimensional
(possessing two non-zero velocity components) or, if<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>