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Abstract

In this document I discuss the fabrication of metallic, aluminum and
aluminum oxide, 3D micro channels, made with standard milling technology,
along with two channel closing methods for openable devices: half cured-glued
PDMS and Pressure Sensitive Adhesive (PSA) Film. Using the aluminum oxide
coated micro channels, along with the half cured-glued PDMS process to close
the channels and external fast speed valves for actuation, a microfluidic switch
for cell sorting capable of operating at 48 Hz was designed, fabricated and
tested. The use of aluminum as a channel substrate provides channel strength
and short heat dissipation times, and the use of aluminum oxide enhances light
energy absorption, which provides the possibility of further laser actuation. Also,
the combination of micro fabrication process and actuation technique makes
possible the further scaling and handling of large cells as cardiocytes.
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CHAPTER ONE

INTRODUCTION

Figure 2 Narcissistic Photo of the Author



1. - Introduction

1.1. - Specific Aims

The main objective of this project is to design and test a process to fabricate

openable, reusable, 3D, with high light absorption and heat dissipation, microfluidic

devices and test it designing a microfluidic switch for cell sorting with cleaning

capacities.

In the literature, to the best of my knowledge, the idea of a fully reusable and

openable, and thus cleanable, dynamic microfluidic device has not been explored, and

thus remains an open area. In order to produce a fully reusable openable microfluidic

device, the microfluidic channels have to be as rigid and hard as possible. Rigidity is

desired because makes the dimension of the devices stress independent. Also hard

materials are preferred because they tend to be less affected by wear and scratching.

Thus, the commonly used soft material fabrication methods can't be used, and an

alternative method, e.g. machining, has to be used.

Also, in order to make a fully reusable device, actuation has to be external.

Possible external actuation methods for the device are mechanical actuation, e.g.

electromechanical valves, an optical actuation, i.e. laser actuation; methods that have

quite different characteristics. Mechanical actuation represents a cheaper and highly

available alternative, and thus was selected as the actuation method for the device. Since

external actuation means that a type of transduction has to be used in order to transfer

force to the fluid, the actuation time increases accordingly to the type of external

actuation used, being larger for external mechanical actuation. Thus, the cost of

selecting a mechanical method is increased actuation time.

As an additional requirement, to make possible the future implementation of a

switching method based on bubbles created by light (i.e. laser illumination), the micro

channels have to be highly thermally conductive and have capacity to absorb a large

fraction of the incident light too.



1.2. - Microfluidics and Cell Sorting

During this century, the so called Century of Biology, it is becoming more and

more common the use of small samples: DNA, cells or chemicals, for different reasons:

lack of samples, e.g. forensics, high value of the samples, e.g. crystallization, or the

possibility of the creation of new methods, e.g. high content screening; and the need for

ways to handle small volumes arises. To satisfy this increasing need, the field of

Microfluidics has been developed. Microfluidics encompass the analysis of the fluids at

the micron scale as well as the micro fabrication techniques required for fabricating

devices of such dimensions.

Several kinds of microfluidic devices have been developed so far, from single

cell analysis to DNA fast speed detection. One of the most promising applications is the

analysis of small cell samples based on their phenotypes. So far, flow cytometry has

been used to sort large number of cells based on fluorescence, but this method can only

deal with relatively large cell population percentages, around 1% of the sample. Also,

flow cytometers are normally only able to analyze size and the intensity of cell

fluorescence. Microfluidic devices can provide a more detailed analysis of samples with

a lower fraction of interesting cells.

1.3. - Cell Sorter Technology

Many different techniques have been used for cell sorting; a list of some of the

actuation mechanisms is presented in Figure 2. In contrast with the thousands of cells

sorted by second by standard flow cytometers, the sorting speed of microdevices is

smaller than a couple hundred per second at best. This deficiency is compensated with

the possibility of small cost and increased sorter efficiency.

The actuation technique can be of two kinds: internal (or local), and external.

Local actuation methods encompass all the methods in which a mechanical element

within the flowing channels performs the actuation, e.g. PDMS valves actuated by an

external pressure source. External methods are those for which the actuation force is



provided from outside the device and, the only element that reacts to the application of

the force is the fluid itself, e.g. pressure valves or laser-created bubbles.

Most of the local methods, like piezo actuation, are not suitable for our application

because these methods use parts that are too sensitive to external forces applied on them

(during opening and cleaning). Notable exemptions to this observation are the PDMS

valves and the electrode actuated devices; these two methods are considered in the

design part along with the external actuation methods

The possible external methods considered were optical actuation and mechanical

actuation. Optical actuation, creating bubbles in the fluid with a laser source, can

potentially create a device with actuation time of a fraction of a millisecond, which is

comparable or better than most internal actuation technologies. The drawback is that an

expensive external high power laser source is needed as energy source to create bubbles

in the milisecond time range. On the other hand, mechanical actuation is slower, but

provides a cheaper mechanism for actuation.

ACTUATION
GROUP PAPER TIME

David C. Duffy, Olivier J A
Schueeller, Scott T Brittain and Rapid Prototyping of Microfluidic
George M Whitesides switches in PDMS

An AC Magnetohydrodynamic
Asuncion V. Lemoff an dAbraham Microfluidic Switch for Micro Total
P. Lee Analysis System 1 ms

Dieletrophoretic Microfluidic

Lisen Wang and Abraham Philip Switching for Lab on a Chip
Lee Applications

An Integrated Microfluidic System
for Reaction, High Sensitivity
Detection, and Sorting of

Petra S. Dittrich and Petra Schwille Fluorescent Cells and Particles 50 ms

Sorting of polystyrene
K. Grujic, O. G. Helleso, J. P. Hole microspheres using a Y-branched
and J. S. Wilkinson optical waveguide

On-chip high-speed sorting of
D. Holmes, M. E. Sandison, N. G. micron-sized particles for high-
Green and H. Morgan throughput analysis 3 ms



Alan H. Tkaczyk, Dongeun Huh,
Joong Hwan Bahng, Yu Chang,
Hsien-Hung Wei, Katsuo Fluidic Switching of High Speed
Kurabayashi, James B. Air-Liquid Two-Phase Flows
Grotberg,Cahng-Jin Kim, Suichi Using Electrowetting-On
rakayama Dielectric 0.2 s

Frequency Dependent
atzer, Roland Zengerle and Jens transversal flow control in
Ducree centrifugal microfluidics. 18 ms

An implementation of a
Microfluidic Mixer and Switch

H. Jagannathan, G. G. Yaralioglu, using Micromachined Acoustic
A. S. Ergun, and B. T. Khuri-Yakub Transducers

Sung-Yi Yang, Suz-Kai Hsiung,
Yung-Ching Hung, Chen-Min A cell counting/sorting system
Chang, Teh-Lu Liao and Gwo-Bin incorporated with a micro
Lee fabricated flow cytometer chip 8 ms

C. C. Chen, S. Zappe, O. Sahin, X.
J. Zhang, E. E. Furlong, M. Fish, M. Microfluidic Switch for Embryo
Scott, O. Solgaard and Cell Sorting 0.3 ms

A capillary System With Thermal
-Bubble -Actuated 1xN
Microfluidic Switches via Time-

Chih-Ming Cheng and Cheng-Hsien Sequence Power Control for
Liu Continuous Liquid Handling 1 ms

Mark M. Wang, Eugene Tu, Daniel
E. Rymond, Joon Mo Yang,
Haichuan Zhang, Norbert Hagen,
Bob Dees, Elionore M. Mercer,
Anita H. Forster, Ilona Kariv,
Philippe J. Marchand and William F.
Butler Sorting Particles with Light 2-4 ms
Tpehniues

1.4. - Fabrication Options for Non Permanent Bonded Devices

The main goal for the fabrication process is to provide the capacity of eventually

opening and cleaning the micro fabricated devices in order to deal with the recurrent

clogging during testing, reducing the number of chips needed for testing and therefore

the required yield for the entire process. To achieve openability, non permanent ways of

closing the channels are analyzed in the fabrication section.

The used methods can be classified in three categories: physical methods,

characterized by the direct application of a force, e.g. pressure; and chemical methods,

which use the force between the materials themselves to provide adhesion, e.g. bonding,

gluing or adhering; and finally hybrid methods, which use two of the previous together

to achieve better results. Vacuum and the direct application of pressure are the common

Jur. ..1L.1 
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physical methods used for chucks and momentary holding pieces together and therefore

are the logical options for developing an openable microfluidic device. Among the

chemical methods, despite not considering the permanent adhesives for obvious

reasons, there are many options available. The suitable chemical methods can be

classified accordingly to the adhesive type method used into four different categories:

thermal adhesive, pressure sensitive adhesive, UV adhesive and multicomponent cured

adhesive.

Vacuum Adhesive

Thermal Adhesive Pressure Sensitive
Adhesive (PSA)

Pressure

I 0

T Vacuum

Pressure Enhanced
Thermal Adhesion

'Supermarket Sealing"

s Pressure

Enhanced PSA

Figure 3 Closing Channel Options

The multicomponent cured adhesive is the most common form of adhesive, it

consists of two different substances that upon mixing react and form a rigid layer that

provides adhesion between two different materials. Many multicomponent cured

adhesives produce a by-product that either evaporates or swells out and must be taken

into account when using this kind of adhesive.

Multicomponent
Cured Adhesive

• I

I r

I I



Poly-dimethylsyloxane (PDMS) is one the most used multicompound curable

adhesives in electronics and microfluidics. PDMS is biocompatible and non fluorescent,

characteristics that makes it a good choice for building biological micro devices. PDMS

is a perfect example of a polymer formed combining two liquids that release a by-

product which evaporates during curing.

A thermal adhesive consists of a plastic film backed with an adhesive layer.

After placed in contact with the surface to bond, the compound film is moderately

heated, which activates the adhesive layer; otherwise, the adhesive layer does not adhere

effectively to any surface.

A pressure sensitive adhesive, PSA, consists of a layer of plastic film backed

with a layer of pressure adhesive. The pressure sensitive layer adheres to surfaces using

Van der Waals forces and therefore, requires intimate contact with the other surface to

form a strong bond. To achieve this proximity between the surfaces, pressure is applied

upon the surfaces have been placed together.

To enhance the adhesion performance, a combination of physical and chemical

methods can be used, creating a more reliable result, making the adhesion more uniform

and stronger. For instance, thermal adhesive or a Pressure Sensitive Adhesive can be

combined with vacuum to enhance uniformity.

The combination of thermal adhesive with vacuum force provides the

opportunity to deform a polymer film over the uneven surface, applying pressure where

required, before creating a stronger bond during the exposure to a moderate heat source.

Similarly, the use of vacuum along with PSA improves sealing by the application of

local forces where needed.



CHAPTER TWO

DESIGN OF CELL SORTING SWITCH

Figure 4 Final System



2. - Design of Cell Sorting Switch

During the course of this thesis, we designed the microfluidic circuit shown in

figure 5. Our goal was to design a switch to be used to enrich selected cells out of a

continuous microfluidic flow channel. The main design considerations for such a switch

are the speed of the device, open plus closing time; the dilution factor, which

determinates final concentration achieved; and the switching reliability, which

determines the efficiency of enrichment and the purity of the selected subpopulation.

We present a brief discussion on the process that led to the selection of the technologies

used and follow this with a description of the design process.

7.15cm

Figure 5 Basic AutoCAD Design

2.1 Actuation Selection

To increase the number of cells processed and decrease the total processing time,

the actuation time should be as short as possible. The two components of the total

actuation time, both opening plus closing, are the time associated with the direct

actuation time and the transduction time, i.e. the time associated with the fluid response.

Depending on each actuation technique, one or the other might be the limiting factor.



Pressure-Activated PDMS valves have actuation times in the order of 2

milliseconds. 14 Roughly half of this time is required for activation of the pressure source

and the remaining time is used for building up pressure next to the PDMS valve. This

actuation time is low enough to fabricate a cell sorter, but the fabrication process is not

compatible with the requirements of our process.

Electrode actuated devices, which encompass heating and electric field actuation,

also have actuation times in the order of few millisecondsl5. The electrode methods

depend on the creation of a conductive path that would either have to be deposited on

the sealing layer or created on the channel surface. If the first option is performed,

depositing on the cover layer, careful alignment has to be done each time the device is

assembled and a sealing method that does not create a thick insulating layer over the

electrodes has to be used. Alignment would compromise bonding yield and reusability

of the device, and any electrode pattern is prone to severe degradation over time.

Therefore, we decided that the electrode device would be overly complex and likely to

be unrealizable.

Due to these considerations, external actuation was preferred over internal

actuation. Possible external actuation methods for the device are optical actuation, i.e.

laser actuation, and mechanical actuation, e.g. electromechanical valves. Mechanical

actuation is a cheaper and highly available alternative, and thus was selected as the

actuation method for the device. The cost of using an external mechanical actuation

method is a higher actuation time, milliseconds, compared to that which might be

possible with an external high power heat source such as a laser.

2.1.1 Mechanical Actuation Selection

The available mechanical actuators for small fluidic applications can be classified

in three categories: dispensing valves, pressure source valves, and flow valves, which

encompass inline valves and constriction valves.

Dispensing valves are devices that provide a fixed output volume when actuated.

Examples of this kind of valves are the valves used for inkjet printers. Despite having a

low response time, in the order of milliseconds, the dispensing valves have a serious



drawback: the large minimum displaced volume. For micro application valves, the

minimum dispensed volume is in the order of a hundred nL. For most applications, a

hundred nL is a small volume, just a drop; but not for many microfluidic applications. If

a 200-microns-wide by 50-microns-depth rectangular channel is considered, a hundred

nL would occupy a 1 centimeter channel, an unreasonable length for any practical

device.

Pressure source valves, i.e. valves that control the pressure applied to a fluid

reservoir using a second fluid as air, have small enough actuation times, milliseconds

too, but they have their drawbacks too. If pressure is applied to the reservoir, the

reservoir will reach the supplied pressure once the air in it has the same density of the

air at the source (i.e. it has to be filled first). From the dimensional analysis, the filling

time is proportional to the area of the reservoir and inversely proportional the cinematic

viscosity of the fluid. For air at 1 atmosphere and 20 'C, in order to have actuation times

in the order of the milliseconds, a cross section smaller than a millimetre is required,

and therefore the reservoir has to be a long piece of tubing. Due to the large size of this

tubing, the calculation of any property of the device would be associated with the

fraction of tubing filled, and the device properties would be modified as it is operated.

Then, if the reservoir moderately sized, it becomes hard to model the dynamic

performance of such devices.

Flow valves can operate on a vast number of principles, but essentially they

block or enable the fluid flow using an obstruction. This obstruction has a non

negligible volume, dead volume (DV), which has a large effect on the response of the

valve. The initial actuation depends on the ratio between the DV and the volume that

can be filled by the liquid during the valve activation, which can be calculated as the

flow just due to the pressure source, F, times the actuation time, T. The ratio of these

factors defines three operation modes:

(Case 1: F * T <<DV) During opening, the DV is not filled by the liquid as it

unblocks the channel, thus vacuum is generated, and a temporary pressure fall is

created. This pressure drop generates a backpressure that moves some of the liquid

backwards. The back volume is proportional to the ratio of the pressure differences

between the valve zone and the inlet and outlet fluidic circuit ports, and inversely



proportional to the ratio of the hydraulic resistances on each side. The hydraulic

resistance is the analogue of the electrical resistance, and relates the pressure applied to

the output flow; a more detailed description of this concept is given in the appendix.

As the valve is closing, the liquid is not fast enough to get out of the volume by

itself, thus the valve pushes the fluid to the sides. The liquid displaced this way flows to

the sides of the valve accordingly to the value of the resistances next the valve, as

shown in figure 6.

(Case 2: F*T >> DV) In this operation mode the valve is slow enough to be felt

by the liquid as a strangulation in the flow. The flow has enough time to fill the DV as it

is generated, therefore, no backflow is generated, but the system has a long transient.

During closing, the fluid has enough time to evacuate the cavity before being pushed by

the obstruction, generating no back flow again, but imposing a longer transient with

large flow.

(Case 3: F*T-DV) In this mode, a competition between the generation of

vacuum and backflow occurs. As a first degree approximation, an average pressure

gradient can be defined at each side of the valve as a weighted pressure gradient, and

the problem can be treated as a lD problem. The flow can be modelled as the

superposition of two flows product of a flow source and a two pressure sources, which

can diagrammatically be represented as shown in figure 6.

P2

V1 R2

R1

P1

Figure 6 Equivalent Flow Circuit Diagram



As before, even external actuation devices designed for microfluidics have large

dimensions, and the DV is not the exception. Normally condition 1 holds, F * T <<DV.

As a consequence, the backflow is proportional to the resistance ratio: R1/R2; where R1

is the fluidic resistance after the valve and R2 the fluidic resistance before the valve. In

order to make a reliable circuit independent of the external connections, the resistance

before the actuation, mainly due to tubing, has to be small compared to the resistance

after the valve, mainly due to the device. Therefore, for any design it is desired that

R1/R2<0.01, and as a consequence, the backflow can be greatly minimized.

In order to avoid the possible unsteady state implications of flow valves, a low

DV and internal resistance are required. Among the valve options examinated, the Lee

Nanoliter Dispensing Valvesl had the smaller dead volume and a low internal

resistance and therefore were selected for actuation. The Lee valve also has a good

actuation speed, less than 0.5 ms.

Lee Valve Limitations

Valve must operate with clean liquid

Operation Pressure 3 psi-20 psi

c/PaVm Yvars WSr
DIispnse Vea atrUiw PrwasU

I ®-

40.

20m
| - I

"I I I I I
0 0.4 0. D0.8 I

Apped Vaney Pute ounfia (mB)

Figure 7 Lee Valve Dispense Volume at Various Pressures, from http://www.theleeco.com

The DV was not disclosed by the Lee Company due to a confidentiality policy,

but an estimation of the performance for microfluidics can still be done using the

dynamic behavior shown in the previous graph, figure 7. In this graph, the fraction of

1 The Lee Company, http://www.theleeco.com, 2008
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the DV that is sent forwards during the actuation of the valve is roughly 5 nL. To obtain

the previous graph, the valve outlet was connected to an orifice that increased the total

outlet resistance, R1, to 60,000 L 2; and the inlet was simply connected to a water

reservoir.

For orifices, like the ones used for the valve operation, there is no linear

relationship between the flow and the pressure drop, instead the flow increases as the

square root of the pressure. Despite this non linear relationship, the resistances from

holes and channels can still be compared upon linearization assuming 3 psi of pressure.

If a 50-micron-radius channel of length 5 cm is assumed, the total output resistance is

increased by a factor of roughly 500, and therefore the fraction of the DV that is sent

forward to the device is decreased by roughly the same factor. The net result is that the

incoming unwanted flow is reduced to 10 pL, and the additional flow is a mere

difference of 1 micron in the flow and therefore can be neglected.

2.2 Valve Actuation and Unsteady Flow

With the selection of the Lee valve as a primary actuator, we then designed a

micro fluidic configuration for switching of biological cells. Now that the actuation was

selected, taking into account the parameters of the valve, a basic description of the valve

actuation can be preformed.

Due to the characteristics discussed above, the Lee valve selected can be

considered as a 2 ms on/off pressure source switch. Therefore, the actuation can be

modelled as the unsteady pressure driven flow of liquid through a tube. The solution for

the circular tube is well known3, and a more general approximation for regular shapes is

presented in the Appendix.

Using the derived approximate model, final parameters for the actuation can be

obtained. Using the velocity profile, the average velocity can be derived, resulting:

2 LQ, not Q, is used for apertures, holes and expansion because the resistance is not linear but quadratic.
3 The solution for this case is presented by Batchelor in his book, 'An Introduction to Fluid Mechanics',
although the derivation is just an outline.
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As can be seen from equation 1, the time it takes for the system to get to steady

state is proportional to the cross area of the channel and inversely proportional to the

viscosity of the fluid used, as expected from the non dimensional analysis. As time

progress, the number of terms required to describe the flow behaviour decreases, and

the relation becomes nearly exponential. For a 250 micron by 75 micron rectangular

channel filled with water, the characteristic time is in the order or 5-8 ms, which sets

the limit between steady states in microfluidic channels with these dimensions to 5-8

ms.

The total actuation time is two times the actuation time, one for on and one off,

plus two times the fluid unsteady states, plus the time the switch is activated. This cycle

sets the minimum total actuation time between 14 to 20 milliseconds. Of course,

accordingly to the derived model in the Appendix, the device can be driven at higher

velocities; but the unsteady state and particular geometry must be considered. A second

limiting factor for not driving the device at higher velocities is the pressure needed for

doing so. From the model, it can be observed that the pressure gradient supplied has to

increase in order to compensate for the lack of time to achieve the desired flow

velocity, and thus actuation.

The minimum increment in pressure needed for actuation follows the equation:

Q = ln(I-1/k) + k=l/( 1-exp(-Q)) (2)

Where:

Q is the fraction of the fluid actuation time and has no units

k is the lower bound for the minimum number of times the pressure has to

be increased



For instance, to make the fluid response time 10 times smaller, reducing the

actuation time to 4 ms after considering the valve actuation, a pressure more than 10

times the original value is needed. For instance, if a PDMS device is operated at 3 psi,

common for microfluidics, at least 30 psi is needed for 4 ms actuation, resulting in

probable debonding.

Additionally, actuation times have to grow in order to maintain cell velocities

low if high content/contrast images are also desired. In order to select cells, cells have

to move substantially within the time prescribed by the actuation; for an average cell

20-50 microns of travel should suffice. If the minimum actuation times are considered,

velocities of several millimetres per second are required.

2.3 Circuit Design

Once the basic formulation for the valve actuation was derived, the device was

designed. The full micro-fluidic circuit was designed based on the steady states we

discussed above.

Models

The following fluidic circuits were considered for valve actuation.

Design A

Source

9*rl

Collection

Atmospheric
Pressure

Figure 8 Equivalent Resistance Circuit A



In this design, the valve is placed just above the channel junction. During normal

flow, the valve is closed and the flow is divided in two streams: collection and waste. In

order to minimize the volume of the liquid collected, and therefore, increase the final

sample density, the collection lane has to have a larger resistance than that of the waste

lane. In the diagram, the maximum flow ratio is set to one tenth, but this number is still

high, and a lower resistance is preferred. When the switch is activated, the valve opens

cancelling partially the effect of the flow division. In order to completely cancel the

effect of the flow division, the sample lane resistance needs to be larger than the

collection lane resistance. Also, since the flow is normally divided in two streams, a

flow focusing step is needed. The larger the flow ratio of the hydraulic resistances, the

lower the focusing step required. The drawback of this circuit is that the resistance from

the valve inlet to the atmospheric pressure is still high, and thus limits the achievable

velocity for any pressure supplied.

Design B

rl

Wa
lan

Vaccum

Figure 9 Equivalent Resistance Circuit B

In this design the valve is attached to the side of the collection lane. The valve is

attached directly to the junction to minimize the path and thus the resistance in the valve

lane. During normal operation, the flow is divided in a waste and collection lane as

before. When the valve is activated, most of the flow is switched to the lane leading to

the valve, and upon deactivation, the flow that stayed within rch flows to the collection

lane. In order to increase the final velocity of the actuation lane, the resistance rch and

rv have to be minimized. The main drawback of this design is that during frequent

activation cycles, the flow in rch that may contain the desired samples will flow to the



valve, being lost and possibly clogging the valve. For solving this problem, an

additional large resistance can be added between the valve inlet and the pressure source,

acting as a washing lane. Once again, a pre-flow-focusing step is required, and now, the

smaller that rv is compared to rl, the lower the requirement for flow focusing.

Design C

Design C is a hybrid between design A and B. It has actuation in the waste lane

as well as in the collection lane. The basic actuation of this device is the same as the

sum of A and B. As for its main drawback, it inherited the failure for frequent cycles

from mode B, and a waste lane has to be incorporated. The high resistance due to the

presence of rl is mitigated by the combined effect of the two valves.

Y

Vaccum

Figure 10 Equivalent Resistance Circuit C

Despite its higher complexity, the design can overcome more easily the time

constraint, and therefore was selected. Also, this design can be further simplified

eliminating rch and connecting the valve lanes junction to a Y junction, but higher

attention to the geometry and the unsteady state must be paid. After the fabrication

process was selected, the fabrication characteristics, i.e. precision, were still unknown,

and this modification was not performed. As in design C, a washing lane can be added

before the outlet lane or a filter.
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Figure 11 Improvements over design C

2.4 Equivalent Resistance Circuit

After the initial selection of the circuit type, the design outline was replaced by a

more detailed version that incorporated a washing lane to avoid clogging the outlet

valve.

R1in

RI

I 
'

y

18 +filter
R3

Waste
Lane
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Collection
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Figure 12 Detailed Circuit Diagram
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Calculation of the Circuit

Once the basic circuit was selected, the value of the hydraulic resistances can be

established. The design parameters that were used for selecting the resistance ratio are

the following ones:

Valves OFF

lin < Iout High Dilution Factor

lin =< 12 No Selection when the valve is OFF

Flexible Factor that depends on the Flow Focusing

Valves ON

17 > 12 Effective Switching

lin ON +- lin OFF Flow stability, will guarantee stable flow focusing

After numerical iterations, the following resistance ratios satisfy the basic requirements.

DF

0,01
0,05
0,06
0,08

0,1

I 4UWC 1 13I3L4IILE I\4LIUD

The values are listed from top to bottom accordingly to their dilution factor, DF

in the table. For the values satisfying the criteria, the DF is enhanced almost

proportionally to R4/R3 within a single significant digit. For the same values, the

actuation performance, I7/I2, was relatively stable, roughly 1.5 +-0.1.

Despite of having the best DF, the first resistances ratio may be abandoned in

favor of one of the other choices because, for some fabrication methods, such a large

difference may be not easily achievable.



2.5 Final Design

Once the resistances desired are known, the exact cross sections can be

calculated; for that purpose, an analysis of the relationship between rectangular cross

sections is performed in the next section, followed by the final selected cross sections.

Calculation of the Channel Resistance Based on the Equivalent Radius

For calculating equivalent resistances of channels of varying cross section, the

equivalent radius along with the friction correction factors for different geometries must

be used. For such purpose, the following table, obtained from the book: "Fundamentals

of Heat and Mass Transfer" written by Incropera and DeWitt, was used.

b
Cross Section - fRes.a

0 64

----] 1. ) 57

N1.43 59
h

2.0 62

a LII 3.0 69

, 4.0 73

8.0 82

_ _ 96
Heated

Insulated

A53

Figure 13 Friction Factor for Different Tube Geometries

Along with this table, the following derived equations were also used.

From the definition of friction factor:



SdP
dx e=f
p-i2

2

is the Pressure Gradient

is the equivalent tube diameter

is the friction factor

is the liquid density

(3)

Sis the average velocity

Also, for a laminar flow the friction correction factor has the form

Re(u, Deq)

Where # is a real number

Now, combining both equations:

(dP), Deq
dPx

- R*D) UPDe

pU- Re(U, Deq) -pDeq

Where /u is the viscosity

Now, simplifying for the pressure gradient to obtain an expression in terms of

the pressure drop and the flow:

Where:

SdP
dx- -Sdxj

Deq



dP2 1u**#
dx 2Deq 2

(6)

Now, taking into account the definition of the average velocity, q = A* -, and that of

, and substituting into the previous equation:equivalent diameter, Deq = 4 * AP

dPdx

Where

P is the Perimeter of the tube cross section

A is the area of the tube cross section

Q is the volumetric flow

Finally, to obtain the resistance equivalent, both sides of the equation are

multiplied by the length L.

P dP* 2*# *,* * # *AP= - *i q=R *qdIx P* Do 3
eq

Where Req is the equivalent tube resistance.

Therefore, the equivalent resistance can be calculated as:

2*L*p*#
P* D 3 eqeq

When dealing with only rectangular channels, only the functional dependence is

important, therefore

L*# L*#
eq P*Deq

3 (a+ ab)*8 ab b)

(a+b)

S *# *(-*A)= *# *q (7)
2 * Deq2 * A 2*(Deq P/4) * D2

(10)
(a * b)3



R L * (a + b) 2 *#

(a*b)
3

Based on the fabrication process selected, as discussed in the next chapter, the z

dimensions can be varied every 25 microns after the initial 50 microns. As for the

channel width, the minimum is 150 microns, and can be increased every 25 microns.

Based on these restrictions, the maximum resistance cross section is 150 by 50 microns.

A reasonable cross section for the minimum resistance channels is 500 by 150 microns,

which being so large, might be difficult to connect to the other channels. Finally, in

order to maintain the resistances within the same length magnitude, and thus minimize

the overall space, the remaining cross sections have to compensate for the higher

resistance; based on this criterion, an intermediate cross section was selected too, figure

15.

Designed f Re(D)
Channel Dimensions

500X150 70.33

250X75 70.33

150X50 69

Figure 14 Channel Cross Sections

Now, using the expression for the resistance ratio and the channel cross sections,
the following resistances ratios can be obtained, figure 16.

CHANNEL 4 (a+b) RATIO RATIO F

(a * b)
COMPENSATED

500x150 4.006x10^-9 1 1
250x75 6.409x10^-8 16 16
150x50 3.793x10^-7 94 92.21

Table 3 Correction Factors and Resistance Ratios

I



Using these dimensions, it is clear that the design that is easiest to fabricate is

the one at the bottom of the list; and particularly due to the process's unknown

reliability in closing channels, this was the one selected for fabrication.

A more detailed view of the switching junction is shown next, first image of the

figure. The junctions is not designed as a Y junction in order to use the inertia from the

sample to create switching, although it turns harder to switch the selection mode off.

Since the fabrication outcome is still unknown, the junction may have numerous

variations that can greatly modify the unsteady state.

Samole

Waste

JColection

VALVE
OFF

Washing Ftc

Flow from Valve 1

d

VALVE ON Flow to
Valve 2

Figure 15 Switch Junction

Figure 16 Probable Outcome from the fabrication process.

Additionally to this basic design, a flow focusing lane has to be designed. Due to

the flow ratios, flow focusing of at least one third of the channel is needed. In order to

calculate the flow focusing, the steady velocity profile was approximated as a double

parabolic profile in the X, Y directions. Thus, the velocity profile can be described as:

m



V= K(1- y^2)*(1- x^2)

Figure 17 Double Parabolic Approximation

Using this model, further analysis of the flow rates required for focusing can be

done. Given the cross sections of the channels, in order to focus the central flow, a

channel with the smaller cross section must be crossed by a channel with the larger

cross section. This crossing will produce vertical focusing as well as focusing along the

width of the channel. If the focusing zone is assumed to produce a symmetrical flow

along the X axis, the focused flow remains in contact with the upper surface, and the

focused zone is assumed as a rectangular zone, an approximate model of the focused

zone can be obtained.

During focusing, the flow coming from the sample channel has to be the same as

the one in the focused region.

Using the double parabolic model, the following relationships can be obtained.

From the momentum conservation

16A2 / (1+#) A2=2*(15a-10a^3+3a^5)*(8+10b^3-15b-3bA5)-M (13)

From the mass conservation

16/(1+#)=2*(3a-aA3)* (2+b^3-3b) (14)

(12)



Where

# is the ratio of the total flow divided by the sample channel flow

a is half the width of the focused flow

b is the height of the bottom of the focused flow measured from the center

of the channel

M is the momentum gained

-b

Figure 18 Flow Focusing Schematic

For the given dimensions, the approximate flow ratios are shown in the next

graphs.

9

7

S 0.6

.1 u

Figure 19 Possible a and b for a given 1/#
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Figure 20 Possible a and b for a given log(l/#)

Flow Ratio
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Figure 21 Flow ratios for the given a and b dimensions
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Figure 22 Allowed a and b for a given flow ratio

Accordingly to the channel dimensions, the focusing in the X and Y dimensions

should be similar, 1:1 - 1:1.5. In the plot the range of allowed a and b dimensions for

this ratio are shown. Therefore, accordingly figures 21-24, the ratio of one to nine

should suffice for the requirements.

Square Approximation

Figure 23 Focusing Accordingly to the Approximation

After this initial selection, a basic AutoCADTM Design was generated, Figure 5.

Additionally to the resistances, during the geometrical design, other parameters were

selected based on functionality.

Input Holes Ports were selected to be 10 mm in diameter in order to produce

interconnection with the ports.

b



Ports Ports are 10-32 threaded ports, smallest dimension for standard

chromatographic ports.

Figure 24 Inlet-Outlet Ports

Vacuum Area In order to enhance vacuum, the area fraction composing the vacuum

cavity was set to 60%, 33 square centimeters.

Figure 25 Vacuum Chamber

Channel Density In order to provide enough area for the channels to be properly

sealed, a distance of four times the channel width was left between the

channel center lines.

Also a possible method for increasing the concentration of the cell samples was

designed. The device consists of a large cavity that divides the stream in two rotating

zones. The design was added to the collection lane. A basic diagram of the device

functioning is shown in figure 28.



Figure 26. Basic Concentrator Actuation. Based on the cavity geometry, the flow can be set
into a rotation that minimizes the flow velocity between the two cycles. The flow enters and leaves
the cavity perpendicular to the surface. Besides these flow directions, 90 degrees rotations were also
evaluated, but did not produce the desired rotation.

The basic circuit connection is shown in figure 29.
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Figure 27 Basic Circuit Connection

2.6 Optics and Electronics

In order to acquire the images from the device, an inverted fluorescent

microscope, Nikon TE2000, was used. After substituting filters, the microscope

provided the basic optics needed for the switch activation. A photo multiplier tube,

PMT, was used for signal acquisition, followed by a filtering and amplification signal.

t- 1 . a
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Figure 28 Optics Setup

Driving Circuit for Automatic Valving (Pressure Sources)

Pressure
Regulator

Pressure
Line

Power
Source

Figure 29 Pressure Regulating Line, Not to scale

In order to apply automatically the pressure, the following circuit was used to

activate the pressure valves. The pressure valves used were Pneumadyne solenoid

valves; in the following diagrams they are represented as R2 and the diodes. The

Amplificati _Y

U1 F



voltage needed for logical activation was provided by a USB port connected to a USB-

Parallel Port Codifier. For the Power Supply, a 8 amperes and 24 volts variable voltage

source was used.

ov

CIRCUIT OFF

____I__, I____u m

CIRCUIT ON

Figure 30 Driving Circuit for Pressure Valve, ON and OFF positions. The actuation time is set to

0.3 ms.

Driving Circuit for the Lee Valve

In order to activate the switching valves, the circuit shown in figure 33 was built.

The input signal for testing was a signal generator working between 1-50 Hz. When a

sample is flown, the signal is switched the signal coming from a PMT after

'5%,

I

jv



amplification, which senses the flow of samples. In order to provide the circuit power, a

24 V, adjustable power supply was used. The Lee valves require for activation two

voltages: spike activation voltage and hold voltage. The first voltage, activation, is

higher, and is provided directly from the voltage supply. For the second one, hold, a

voltage transformer was used. The signal generator sequences the voltage supplied

accordingly to the signal provided from the signal line; first applies the activation

voltage followed by the hold voltage.

PMT signal after
amplification

JnhTh

12 V
Voltage
Source

nd

Signal Generator
Circuit

Figure 31 Switching Valve Driving Circuit

Voltage
Transformed
Circuit 12 V to 3.5 V

Figure 32 Voltage Source, Signal Generator and Transformer



CHAPTER 3

PROCESS DESCRIPTION AND CHARACTERIZATION

Figure 33 The Lab Was in the Mood



3. - Process Description and Characterization

Our objective was to be developed a debondable, true 3D microfabrication

procedure. Most lithography based microfabrication does not allow true freedom in the

depth dimension; hence it is termed "2.5 D". Our goal was to develop a procedure that

allowed variable depth channels. We also wanted a reversible bonding process in order

to allow cleaning plus recycling of high value actuated structures. The design factors

during the device design of the fabrication were the reversible bonding plus a

transparent cover for high quality imaging.

The fabrication process can be divided in two parts: channel fabrication, by

milling, and channel sealing with an optical window. After experimenting with different

methods, the fastest and easiest method is shown in figure 36.

Aluminium

Cut with filying wheel + Sanding

I + Final Cut

Vacuum is not
Machining necessary anymore,

but could be used
to increase uniformity
if a lower pressure

is applied

Rubber

Place adhesive backed layer
upside down on rubber

Application of 5 atm of pressure

backing piece of glass

Figure 34 Final Process

I



3.1 Channel Fabrication

3.1.1 Material Selection

Due to the thermal properties of metals, large heat conductivity and resistance to

high temperatures (which could enable further laser actuation), a metallic material was

chosen for the channel fabrication. Among the metallic materials, aluminium was

chosen due to its machinability, and the further possibility of surface hardening by

anodization. Anodization, the growth of an oxide layer by an electrolytic process, has

the additional advantage of creating a dark surface that enhances the absorption of

incoming luminous energy, and improves the contrast in images of specimens flowing

though the channels. Anodization can also provide an additional layer of precise

thickness and therefore can be used to further tailor the dimensions of the channels. Soft

materials such as PDMS are often chosen for prototyping microfluidics, but these are

very poor materials in terms of stability, permeability and thermal properties.

3.1.2 Surface Characteristics

In order to achieve bonding in the next fabrication step and improve the quality

of the surface milling, two extra parameters must be defined: surface roughness and

surface flatness. The first parameter, surface roughness, is the local surface height

variation, within a distance comparable to the dimensions of the channels. The second

one, surface flatness, describes the variation of the surface average level between two

different surface points separated by a prescribed distance, in this case, the device

length.

Surface roughness modifies the local surface adhesion and the local channel

geometry, but it could also influence the large scale behaviour if the surface forms

distinctive patterns across large areas. Therefore, must be prevented by reducing surface

roughness. Surface flatness can modify the overall quality of the device since a large

surface variation could represent large variations in the channels height. Also, a large

variation in surface flatness creates extra difficulties during bonding of hard substrates,



since the weaker layer, the borosilicate glass layer in this case, has to deform to

resemble the non flat surface, creating extra stresses that will tend to debond the piece.

In order to create a flat surface, the MIT Machine Shop flying wheel was used.

To improve the surface roughness, sanding, followed by diamond paste polishing were

used to finish the bonding surface.

3.1.3 Machining Process

Milling was selected as method of fabrication because it provides an

economical, readily available and reproducible method of true 3D fabrication. Since

commercial milling tips of up to 50 microns 4, flat and spherical, are available, the

existence of milling tools does not represent a limitation for the fabrication of most

microfluidic channels for cell handling. Commercial milling machines can handle drill

bits of up to 75 microns in diameter, 10 micron tolerances for the X-Y dimensions and

can make up to 50 micron depth channels; comfortably the machines can handle drill

bits of up to 150 microns, 10 micron tolerances in the X-Y dimensions and make 75

micron depth channels. However, the machine limitations are not the real limiting

factor; instead, the real problem is that it is difficult to convince most of the commercial

machining facilities to make a device even with the larger specifications, since

relatively few shops specialize in fine-scale milling. Therefore, the real constrain, at

least initially, is the machining center.

After quoting, QC Drilling was selected for the milling process.

3.1.4 Process Characterization

Aluminium stock was provided by the machining center. After the flying wheel

cut performed at the MIT Machine Shop, the aluminium surface was flat within 15

microns for the cut, 10 cm by 10 cm, aluminium piece. The achieved flatness is

compatible with the floated borosilicate glass flatness of 7-15 microns for the same

dimensions.

4 The available milling tips depend on the specific provider and milling tips of up to 25 microns are
available commercially, but the common range is up to 50 or 75 microns.



ALUMNUM PIECE BEFORE ANY PROCESS, ROUGHNESS 6.lum
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Figure 35 Aluminium Piece Surface before any Process

The roughness of the aluminium piece changed from 6.5 um to 7 um RMS. This

was reduced with a complete cycle with sanding paper using a turning table to roughly

0.7 microns RMS. During sanding, more surface material is removed as the distance

from the surface border decreases. In order to compensate for the distance effect, a

larger aluminium piece, 10 cm by 10 cm, was originally cut for a final part of 7.5 cm by

7.5 cm. After sanding, the piece was cut to its final dimension and the borders rounded.

Following this initial step, the channels were milled by the outside vendor.

ALUMINUM SURFACE AFTER SANDING, 0.7 MICRONS ROUGHNESS

8 mm

Figure 36 Aluminium Piece after Sanding

Two chips were milled for the project. The first chip did not achieve the required

dimensions since, as admitted by the company, there was no quality control

implemented for the given dimensions (not even measuring was performed). After

consideration of this initial drawback, it was decided to compensate the fabrication

dimensions with an additional pressure source at the actuation port, and the process was

continued. Next, the first chip was anodized, and a 20 microns oxide layer was grown,



increasing the surface level by roughly 11 microns, and decreasing the channel X-Y

dimensions by 20 microns. Even with this layer, the channels were wider and deeper

than requested as can be seen in the first graph of desired dimensions versus achieved

dimensions, figure 39.

Figure 37 Anodized aluminium piece, First Iteration.
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Figure 38 Aimed VS Fabricated Dimensions.
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Figure 39 Desired Dimensions VS Absolute Error
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Figure 40 Aluminium Piece Structure Next to the Channel

Besides the error in dimensions, the first piece milled presented other additional

problems. The surface of the first chip was milled to create a working surface as a pre-

milling step. This pre-step created one micron height stripes across the piece, which

made the bonding step harder to achieve. Also, as an unforeseen but predictable side

effect of the anodization, the surface roughness grew considerably due to the new grain

structure, producing a roughness of nearly 15 microns. Both of these problems were

compensated with an extra polishing step after milling. During polishing, roughly 15

microns of material were removed from the aluminium surface using diamond paste.

The polishing created an almost mirror finishing, but it was not uniform; some grains

were lost from the surface during the polishing process, producing a higher local

roughness around these points of roughly 18 microns. Polishing also curved the surface,

making the surface 5-10 microns lower near the edges than in the center. Further



polishing may compromise the flatness of the piece and therefore, it was concluded that

extra polishing was incompatible with anodization.

ORIGINAL
PIECE
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Figure 41 Grinding and Polishing Process

On a second iteration with the machine shop a large improvement is noticeable.

As it can be seen in figure 43, "Desired Dimensions VS Achieved Dimensions", the X-

Y dimensions were just slightly smaller than requested. For the range shown in the

graph, the Aimed Dimension VS Fabricated Dimensions have a linear relationship, a

good process property for design. Also, as it can be seen from figure 43, "Desired

Dimensions VS Absolute Error", the error for the requested channel dimensions

interval, 150-500 microns, is always below 10%, and decreases as the aimed dimension

increases.

The Z dimensions are smaller than requested, 80% of the requested/aimed value,

but also follow a linear relationship. In contrast with the X-Y dimensions, z error

remains non-negligible, around 20% for our channel dimensions, 50-200 microns.



Despite the discrepancy in the aimed VS fabricated Z dimensions, the process is

susceptible of being used reliably in other designs provided this calibration curve is

known.

Figure 42 Aluminium Piece, Second Iteration
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Figure 43 Desired VS Fabricated Dimensions
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Figure 44 Dimensions VS Error %

For the second milling iteration, no pre-milling steps and anodization were

performed; therefore the surface characteristics are roughly the same as the ones

initially obtained, 0.5-0.6 microns roughness and 10-15 microns for the flatness. As the

sanding process progress the surface roughness diminishes, as it can be seen in the next

graphs, figure 45.

ALUMINUM SURFACE INTERMEDIATE SANDING , ROUGHNESS 3.6 um ALUMINUM SURFACE, INTERMEDIATE SANDING, ROUGHNESS 2.7 um

Sum
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Figure 45 Aluminium Surface as Sanding Progress

Fly wheel cutting followed by sanding in circles has the advantage over the pre-

milling step of not creating large zones of lower height. After sanding, surface

roughness of up to 0.5 microns maximum can be obtained as shown in figure 46, "Final

Aluminium Surface Roughness", which shows the final roughness obtained after

sanding.
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Figure 46 Final Aluminium Surface Roughness

The milled final surface must also be characterized. Inside the channels, roughly

one micron height marks left by the milling tip are visible. The exact height of the

marks left depends on a combination of two factors: the milling tip and the milling

machine used for the channel fabrication. For small tip diameters, smaller than 500

microns, a weak relationship was observed: the larger the milling tip used, the larger the

roughness left by the tip. This behaviour can be seen in the next two graphs, figure 47,

that show the surface roughness of a 250-micron-wide channel and the roughness of the

concentrator channel surface. Special attention is required to interpret the second graph,

the one that displays the concentrator roughness, since it combines the roughness due to

the milling tip itself, and the process roughness, product of passing the milling tip over

the surface several times in a discontinuous way to produce the cavity. The two sudden

height changes, steps, are the result of the machine tip passing over the surface in a non

continuous way, and therefore, the roughness created by the tip is just 0.9 microns

RMS.
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Figure 47 Aluminium Channel Surface; Left, outlet; Right, concentrator

As can be seen from the figure 47, "Aluminium Concentrator Roughness", the

channel geometry can also modify the surface roughness achieved. This behaviour is

more evident in the vacuum cavity, where changes in the milling direction and

discontinuous milling produce large surface effects, figure 48. The first graph in figure

48, "Step Due to Change in Milling Direction", shows the 25 micron step due to the

joint of two perpendicular milling directions in the vacuum cavity surface. The second

graph shows the 2 micron steps due to discontinuous milling, i.e. milling of parallel

lanes to produce a larger cavity.
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Figure 48 Steps and Stripes on Aluminium Surface due to Milling

3.2 Channel Sealing

The method that we chose originally for closing the channels, vacuum, didn't

produce the desired results. It leaked. Instead, two different methods were explored for

sealing: gluing to a hard surface using PDMS and film sealing, with and without



vacuum. Before discussing both methods, a discussion of the vacuum approach is

presented.

3.2.1 Vacuum

In order to create a sealing surface, a 0.8 mm thick floated borosilicate piece of

glass was coated with a spun 40 micron thick PDMS layer. After spinning and curing,

the PDMS surface roughness was 0.25 microns, equal to that of the borosilicate glass.

The rim resulting from the PDMS spinning was pushed outside the sealing area by

increasing the size of the glass piece by 2.5 cm. After fabrication, the PDMS-glass layer

is placed into contact with the channel surface, and then the vacuum is activated.

The vacuum cavity occupies 33 square centimeters of the total surface area,

roughly 60%. Therefore, upon vacuum application, assuming perfect sealing, a pressure

of 23 psi is applied to the surfaces in contact, sealing the channels. After the initial

closing, liquid was flown through the channels using as a first attempt negative, and

then positive pressure on the water column. In both cases, and after and before the

diamond paste polishing step, leaking out of the water channel was observed, within the

first five minutes of operation. The leaking rate was high enough to prevent the normal

operation of the device.

Further analysis led to the conclusion that the leaking was due to fluid

"channelling" through the local roughness and surface grain boundaries. As mentioned

above, even the surface polishing didn't prevent the liquid in the channels from leaking

into the vacuum cavity. Therefore the vacuum clamp method was discarded.

3.2.2 Channel gluing to a transparent surface

After the initial failure of the vacuum approach, a second method using a multi

component polymer adhesive, PDMS, was used. PDMS is a well known and extensively

used polymer; it is biocompatible and non fluorescent, excellent properties for the micro

channels, particularly when used as a gasket. The process consisted of partially curing a

PDMS film spun on a piece of borosilicate glass, and joining the partially-cured layer

and the aluminium piece followed by a full curing process. Partial curing is performed



in order to reduce the polymer flow into the channels and prevent channel obstruction

before the pieces are glued by fully curing the PDMS.
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Figure 49 Fabrication Process with Gluing

Spinning

In order to produce a thin film of PDMS over the borosilicate glass the following

procedure was followed:

FLOATED

BOROSILICATE

GLASS

PDMS

1. - In a clean environment, and using a clean container three times larger

than the PDMS volume used, mix 20 grams of the polymer and curing agent that

constitute the Sylgard 184 compound, fast curing PDMS, in a weight proportion of

10 to 1. Over mixing would introduce unnecessary gas to the mix, and therefore,

should be avoided if possible. On the other hand, over mixing is preferable to

insufficient mixing, which yields complete uncured film zones that won't provide

adhesion. Normally around 150 strokes should suffice.

2. - Degas the mix for 1 hour using a vacuum desiccator connected to a

vacuum pressure of 0.6 atm; almost no bubbles should be visible after this step.

Normally using 1 atm of vacuum, just half an hour should suffice, but the used

electrical pump did not provide enough vacuum and an increased time was

necessary.

3. - Spin PDMS on the borosilicate surface.



The PDMS mix viscosity changes as the compound cures, and, as a result, the

thickness obtained after degassing for different times is also different; thus the available

curves in the literature are of little help unless the same time is used. Therefore, in order

to produce a reliable fabrication process, the spinning was characterized.

Despite frequently omitted in the literature, spinning cycles must be described in

detail in order to make the process reproducible because different spinning cycles

greatly modify the surface properties. For this process, two spinning cycles were used.

The first cycle, named 'half time cycle' in figure 50, lasts for 275 s, and drives the

spinning surface at maximum speed for 25 seconds. The second one, named 'full time

cycle' in figure 51, drives the spinning surface at maximum speed for 50 seconds, and

last 600 seconds. Both processes achieve maximum speed with minimum acceleration,

that otherwise could produce radial stripes product of local PDMS non uniformities.

Intermediate speeds are used before and after the maximum speed to create a uniform

layer for the high speed spinning, and to dry the PDMS after being spun, respectively.
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Figure 50 Half Time Curing Cycle Figure 51 Full Time Curing Cycle

Using the spinning processes above, the following calibration curves were

obtained, figure 52. In this graph it can be observed that the processing time does make

a notable difference. As the spinning time is increased, the final thickness of the film

decreases, as expected. In order to bond the glass piece and the aluminium chip, the

thickness of the PDMS layer has to be at least of the same thickness magnitude as the

surface roughness and flatness; additionally, it also must the thin enough to be rapidly

cured and decrease film distortion upon curing. A compromise between both is 24

microns, which occurs at 1200 rpm.



Figure 52 Thickness VS RPM, Sylgard 184

Additional considerations

Most of the spinners use a vacuum chuck for holding the pieces to spin, in this

case, the spinner we used, SP100-BIDTEC, deformed the glass surface when used to

hold the substrate as illustrated below. Due to the local deformation a circle of lower

PDMS thickness was formed after vacuum release.
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Figure 53 Film Distortions due to Vacuum Chuck

The circular depression prevented bonding of this zone. In general, local changes

in the PDMS thickness have no significant effect on the overall bonding, but when the

depressions form a continuous line, the material is hard to bond. In order to prevent the
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deformation due to vacuum, a backing dummy piece of glass was used to be hold by

vacuum, and the window glass piece was hold to the dummy piece using duct tape. The

new holding method completely prevented the appearance of the vacuum marks, but

decreased the range of available spinning velocities. Even with careful alignment, the

larger amount of mass hold by the spinner lowered the onset of vibration, which leads to

the piece separation from the vacuum chuck at roughly 1300 rpm.

Figure 54 Spinner as the Dummy Layer is Placed

Partial Curing

The partial curing process must create a PDMS film hard enough to prevent

leaking into the channels and leave enough curing agent to promote adhesion during the

following full curing step. This requirement proved to be difficult to achieve initially,

and upon the initial failure, the drying step was modelled to create a deeper

understanding that could yield a successful process.

The curing of PDMS is an irreversible reaction between two compounds;

therefore, the reaction can be modelled either as a first order or a second order

irreversible reaction. The reaction is mainly a cross linking with a gas by-product.

Accordingly to the datasheets the compound "fully cures"5 in 24 hours at room

temperature (293 K) and in 1-2 hours at 338 K. Based on this information and

experimental information a model of the curing reaction and its dependence on the

temperature can be formulated.

If a first order reaction is assumed, the equation relating the remaining amount

of cross linked compound, X, and time, t , takes the following form:

X = 1- e-  (15)

5 PDMS achieves dimensional stability after this time; any further dimensional change is smaller than 2%,
although mechanical properties as the Young Modulus continue to changes asymptotically at a different
lower rate.



Where X is the linked fraction of the compound, and A is the inverse of the

reaction time constant. For chemical reactions, the reaction time constant has the

following temperature dependence:

S= Ke f T (16)

Where K and / are appropriate constants for the reaction. Given these

relationships, the time and temperature dependence of the reaction can be established.

Combining these two equations, the following relationships can be obtained:

X = 1- e - e Tt (17)

-ln(1- X) , (18)
K = e (18)

t

t -ln(1- X) ef8T (19)
K

From these equations and assuming a fixed cure fraction from the definition of a

"fully cured" substance, a basic description of the process can be obtained based on the

initial information. Using the data cited above, the following graphs were obtained for

room temperature, 318 K, and 338 K.

Figure 55 Curing Process at Room Temperature



Figure 56 Curing Process at 318 K
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Figure 57 Curing Process at 338 K
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If a second order reaction is assumed, the equation relating the remaining

uncrosslinked compound with the time takes the form:

1
1+at
l+ at

(20)

Where a is a constant of the reaction that has the following time dependence:

a= reT (21)

Where y and 3 are appropriate constants for the process. Combining the last

two equations, 20 and 21, the following expression can be obtained:

1
l-X-

1± yeSTt

From the above data, the following graph can be obtained:

(22)



Figure 58 Cured Fractions at Room Temperature as Time Progresses, Second Degree Kinetics

Comparing the two models, first and second order reactions respectively, it is

noticeable that the total curing time doesn't change much, but the initial reaction rate

does, being faster for a second-degree reaction, as expected. From observations of the

curing process, the second model can be discarded in favor of the first-order-reaction

model. For the given data, the second-order-reaction model predicts that the reaction is

almost completed after 5 hours (>90% curing), which is much faster than what is

observed, since PDMS still behaves like a fluid rather than a solid after 5 hours of

drying.

Once the model was obtained, subsequent experiments yield better results. In

order to produce a reproducible process, independent of thermal unsteady states that

depend partially on the specific oven used, the half curing step was performed at room

temperature, between 20 and 23 "C for the laboratory. In order to reduce the process

time, using the already derived relationships, partial curing can be performed at higher

temperatures as long as the unsteady state is taken into account too. Between 17 and 19

hours of curing at room temperature produced good results in terms of liquid not



flowing into the channels and adhesion, which is further analyzed in a subsequent

section. In the subsequent analysis 18 hours is the standard time used, which correspond

to an approximate 90% curing.



Figure 59 Example of the adjusted curing time for different temperatures. Top, using a first
kinetics model, and bottom using a second degree kinetics. The Top one, first degree kinetic, is

preferred since fits observations better.
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Using the first order reaction graphs obtained from calibrations, it can be noticed

that even at a relatively low temperature as 45C, if the oven and glass thermal unsteady

states are roughly half an hour, the remaining uncured fraction might change by a factor

of 2, producing a PDMS layer that will flow into the channels or not adhere to the

substrate. Thus, the reliability of a process depends highly on the unsteady thermal state

as the temperature is increased, and is not likely to work if different ovens are used (as

was done during the initial experimentation step).

After fully curing and debonding the PDMS layer, uniform film cross sections

were verified on a Mitutoyo Micrometer Surftest 301, figure 60. The difference in the

PDMS surface due to flow of the uncured polymer and full curing was smaller than 4

microns, smaller than the error from machining. An unexpected result is that the surface

is not slightly higher, but slightly depressed. The depression could be the result of the

difference in gas release efficiency by an open surface above the channel relative to a

closed one. Therefore, the material adhered to the aluminium surface is less efficiently

degassed, hence more "fluffy".

PDMS SURFACE AFTER DEBONDING, CONCENTRATOR CROSS SECTION
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Figure 60 PDMS Surface After Debonding, Concentrator Zone

The same pattern as the one observed for the large cavity is seen in the smaller

channels, but here, the step height is smaller. The height difference suggests a

mechanism sensitive to the changes in channel dimensions as the responsible for the



surface irregularities, and reinforces the hypothesis of a local PDMS depression in the

channel zone due to gas release during drying.
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Figure 61 PDMS Surface after Debondig, Zig Zag Channels Zone

Full Curing

The main goal of the full curing step is to produce enhanced adhesion to hold the

PDMS and the aluminium piece together, thus, it interacts with the previous step, which

leaves an uncured fraction for adhesion. Once the maximum amount of possible

uncured fraction is known from the previous process, the remaining unknown process

parameters are the temperature and the pressure at which the process must be

performed.

Temperature

Curing of the PDMS can be performed at room temperature, yielding higher

adhesion strength, but the more time it takes to become fully solid, more material will

flow into the channels. Also, the time for bonding should be minimized in order to

speed the process.

During the curing process, PDMS has to remain below 180 'C to prevent the

formation of formaldehydes, which sets an upper limit for the temperature. Also, as the



temperature is increased, degassing due to the blocked free surface becomes a problem

and bubbles start to appear at the surface. Therefore, temperatures in this range are

rarely used. Normally temperatures lower than 100 "C should produce fast enough

curing.

Aluminum

Figure 62 Example of Bubble formed in the film

The temperature rise has as secondary effect: the creation of shear stresses due to

thermal expansion. The materials used in the fabrication of the micro channels:

aluminium, PMDS and borosilicate, have quite different thermal expansion coefficients.

Thus, this difference has to be considered when dealing with the temperature increments

during curing. For these materials, the reported values of the expansion coefficients are

the following:

1/K

Al 23x10^-6

Borosilicate 3x10^-6

PDMS16  3.1x10A-4

Table 4 Expansion Coefficients

After examination of these values, it is clear that PDMS is the material that

experiences the maximum amount of expansion during a given curing process, and

therefore stresses over its surfaces have to be considered. The adhesion force between

the borosilicate and the PDMS is stronger than the adhesion force between the PDMS

and the aluminum piece, since, for glass, covalent bonding provides stronger adhesion.

Thus, the limiting factor is the adhesion of the PDMS to the aluminium piece.



In addition to these factors, PDMS imposes an additional constraint: the uncured

polymer experiences shrinking due to the evaporation of the curing agent. PDMS

shrinkage, as the thermal stress, creates a shear stress on both faces of the cured PDMS.

Given the order in which glass and aluminium are placed into contact with the PDMS,

by the time that PDMS and the aluminium surface contact, almost all of the curing has

occurred, and the shrinkage left is minimized. In a simple curing process, the shrinkage

ratios of PDMS are "1.06, 1.52 and 1.94% for curing temperature of 65, 80 and 1000C,

respectively""

Using the reported values for the shrinkage and the remaining curing fraction

predicted by the model, a comparison of the influence of the shrinkage and the thermal

expansion can be made. For a temperature difference of 100 "C and 10% uncured

fraction, the linear shrinkage is roughly 0.2%, and the thermal expansion is 3.1%,

therefore, for this temperature the predominant factor is thermal expansion. In general,

and assuming shrinkage of 1% for temperatures lower than 65 "C, shrinkage does not

become important till the temperature difference is smaller than 10 "C. As an alternative

calculation, from the cited data it can be extrapolated that at room temperature the

shrinkage reduces considerably, figure 63, and the thermal expansion effect remains the

predominant factor even at temperature differences lower than 4"C.
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Initial bonding experiments at 100 "C produced unfavorable results. Just after

curing, the pieces seemed to have bonded, but after cooling down, the pieces debonded,

leaving just the central piece adhered. After cooling down, roughly 1/3 of the initial

length remained bonded. Thus, knowing that the thermal expansion is the main factor in

the process and, using the fact that thermal expansion is linear, an adequate temperature

can be estimated. After performing such calculation, new trials were performed for

temperatures below 50 "C; finally 35C, curing for 2.5 hours, was selected for the last

step of the curing process and new experiments produced positive results (up to 45 "C

could be used, but would produce a less reliable process). As an optional process, in

order to reduce the curing time, the initial curing temperature can be set higher, i.e. a

ramping process, as long as most of the curing is realized at a lower temperature, or, the

glass layer can be set at a higher temperature as the aluminium piece is maintained at a

lower temperature.

Using the PDMS thickness; the Poisson ratio'", 0.5; and the Young Modulus1 9,

an estimate of the order of magnitude of the failure stress can be obtained. Given that

the film thickness is roughly 25 microns, and neglecting non linearities due to the large

deformation, the thin film approximation can be used, giving roughly 30 kPa.

Additional Factors

In order to enhance the aluminium adhesion to the PDMS layer, experiments

applying vacuum pressure during the final curing step were also performed. During

them, 0.7 atm of vacuum were applied at different times during the curing process. As a

side effect from the application of vacuum, bubbles were produced in the covered

zones, as in the case of the pre-curing step when the temperature was increased. These

bubbles had a dome like structure, indicating that most of them were nucleated in the

proximities of the aluminium surface or the glass surface, and are the result of the

accumulation of the gas by-product of the PDMS curing, figure 64.
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Figure 64 PDMS Bubble Structure

Even though the vacuum process seemed to improve the process adhesion,

bubbles prevented the process from becoming reliable. Since the aluminium piece

roughness traps small quantities of air upon contact with the PDMS layer, these surface

imperfections become nucleation points for bubbles. As more and more gas is

accumulated due to the curing process, it slowly diffuses creating air bubbles and

eventually air channels, which appear when several air bubbles collide. The collision

phenomenon is enhanced by scratches, machine tool marks and the non polished grain

structure on the aluminium surface that provide close nucleation points. Eventually

these nucleation points form bubbles that collide forming air channels that will produce

imperfect bonding and leaking, figure 65.

Due to the formation of such bubble structures, the application of vacuum was

abandoned. If further attempts of using vacuum to enhance adhesion are performed, a

tighter control of the surface properties is required.

BUBBLETRUCTURE
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Figure 65 Air Channels Formation Process in PDMS

Bonding Characterization

In order to evaluate the process performance, visual inspection, leaking at 5 psi,

and then bursting pressure tests were performed for the anodized aluminium piece.

Upon water filling at 3 psi, visual inspection of the channels was performed.

Using an optical microscope, the following photographs were taken. The next images

are from a 17 hours partially-cured and 45 "C fully cured piece. The images are shown

because they represent the defects found during bonding, although are not present in

most of the finally bonded pieces. As can be seen in the series of images of figure 66,

bubbles were formed in the vicinity of the channel, colliding with the channel space

once they had grown enough. The grain structure of the piece is visible upon polishing

because the grain boundaries reflect the incoming light differently and the thickness of

the aluminium oxide coating is different in these zones.
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Figure 66 Bonding Defects Next to the Channels

The next image, figure 67, shows a bubble in one of the channels. In this

picture, the coating layer of aluminium dioxide is more evident, as it surrounds the

bubble. Given the channel roughness observed is evident that small bubbles will tend to

accumulate in certain zones.of the channels during actuation.
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Figure 67 Bonding Defects Next to the Channels II



In order to perform the leaking test and visualize the liquid flowing through the

channels, a solution of 1.25 pM fluorescein was flowed through the closed channels. To

take the photographs, a fluorescent microscope was used. As can be seen from the

photograph, and its negative in figure 68, the channels do not present leakage. The only

zones that present some illumination are the zones near the channel, where some grains

are missing. Also, some grain boundaries that reflect the illumination light are seen

since the optic filter is less effective with light not coming exactly parallel to the filter

optical axis. This scattering effect is seen even when no fluorescent liquid is flowed

through the channels and over the entire aluminium surface, with and without

fluorescent die.

Figure 68 Fluorescein Leakage Test, Positive and Negative Image

In order to show the contrast with an unsealed channel, the following image of

an improperly closed channel is presented, figure 69. In this case 2.5 micron green

fluorescent beads were flown across this channel junction. The bright/dark spots are

beads stuck in the aluminium surface, and the white/dark lines are beads flowing across

the channel and the space between the aluminium and PDMS. Given the size of the

beads, the space between the channels is at least 5 microns. Again, the grain structure is

visible due to the reflected light.



Figure 69 Leakage after bonding

Finally, a pressure burst test was performed. Commonly leakage stops once the

pressure has been balanced by the closed cavity, unless leakage starts between different

lanes conducting fluid. If leakage between the channels and the vacuum cavity is severe,

it will push apart the aluminium piece from the PDMS-glass substrate. As expected, the

zones with smaller distance between the lanes were the ones prone to fail, zig-zags and

the focusing zone. The bursting pressure for well adhered pieces was roughly 30 PSI,

maximum pressure used in most micro fluidic devices, figure 70.
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Figure 70 Failure Pressure for PDMS + Glass Layer
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Finally, the additional use of enhanced adhesion chemicals for PDMS, i.e. DOW

CORNING P5200 and 1593 CLEANER/PRIMER, can make the process more reliable,

but also produces an undesired layer inside the channels, and therefore it is not

recommended unless additional strength is required.

3.2.3 Channel closing using polymer films.

Different kinds of polymer films are available commercially, but in order to be

usable for sealing the channels, they must have the following properties:

1. - Low fluorescence.

2. - Good adhesion and confomality to the surface upon application.

3. - High stiffness and non delamination during the application of pressure.

PDMS was used as a benchmark for fluorescence properties, but is unsuitable

for the application in thin films due to the stiffness requirement.

Fluorescence

Different commercially available adhesive-backed films were considered. We

measured their optical properties and compared them to PDMS. The following films

were considered.
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In order to measure the fluorescent properties of the adhesive backed films, a

Nikon Eclipse TE2000 U Inverted Fluorescent Microscope with blue excitation and

green excitation light and a Hamamatsu Camera Model C4742-95-12NR were used.

The sample intensity sensed by the camera is an arbitrary measurement; but along with

the measurement of the intensity of a common fluorescent liquid, fluorescein, provides

an adequate standard to compare the luminicence of the films relative to that of a

selected arbitrary staining method. For that purpose, measurements of fluorescein for

25-ms exposure were taken for different fl uorescei n concentrations.

Figure 71 Calibration Curve for Nikon Microscope

As can be seen from figure 72, the camera reaches a saturation point around 2

1M, and therefore a lower concentration must be used to perform any measurements.
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Also, for concentrations below 1 tM, the relationship between the concentration and

intensity is almost linear.

Most of the films showed a significant fluorescence, as can be seen in the

complete set of florescence graphs in the Appendix. Here, only the ones containing the

Optical Adhesive Cover (OAC) used for RNA fluorescence tests are shown, since it

showed the best performance. Since the intensity may depend on the sensibility of the

system to the exposure time, the measurements were performed for different exposition

times.

INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, BLUE EXCITATION

* FLOATED BOROSILICATE GLASS, TELEC 1mm

* GLASS+PDMS (Sylgard 184)

GLASS+PARAFILM M (AMERICAN NATIONAL CAN)

GLASS+Optical Adhesive Cover (Applied Biosystems
4311971)

x GLASS+MicroAmp Clear Adhesive Films (Applied
Biosystems 4306311)

* DusfParticles
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Figure 72 Film Fluorescent Intensity Relative to Vacuum, Blue Excitation

Figure 73 Film Fluorescent Intensity Relative to Vacuum, Green Excitation
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From the figures 73 and 74, it can be seen that the intensity for the highly

fluorescent samples follows an exponential curve in the log scale shown, and therefore

shows direct proportionality to the incoming light and exposure time. Thus, the ratio of

intensities should be relatively independent of the exposure time for the fluorescent

samples. Although, for the low fluorescence samples, the intensity remains almost at

constant level and then rises slightly, making it hard to fit properly to a model.

As expected, the PDMS shows relatively low levels of fluorescence. The

fluorescence intensity values for the PDMS-glass layer are practically the same as those

for the bare glass piece in the case of green excitation, and low for the blue excitation.

The only other film that had a similar performance, slightly better for blue illumination,

was the Optical Adhesive Cover (OAC).

In the figures, for illustrative purposes, the intensity of a random dust particle is

shown. The particle is relatively non fluorescent; even though, a good contrast is

achieved for all exposure intervals is obtained if the glass-PDMS substrate or the OAC

is used as a substrate. In order to show the dependence of the contrast vs. the exposure

time of the system, the parameter of interest in most systems, the following graphs were

obtained.

Figure 74 Contrast VS Exposure Time, Blue Excitation
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Figure 75 Contrast VS Exposure Time, Green Excitation

As can be seen from the figures 75 and 76, the contrast is nearly constant for low

exposure times, and improves for long exposure times. The slight contrast decrease that

is observed for low exposure times is due to the slight increase in fluorescence level of

the PDMS and OAC, and is at least partially due to the expected measurement error for

low intensities.

After the initial testing, full absorption emission and emission spectrums were

obtained for the films. Spectra for all the analyzed materials are shown in the Appendix.

The OAC was selected for closing the channels based on its low fluorescence, and then

was tested for mechanical properties.

Adhesion

Figure 76 Leak Test using food colorant

To measure adhesion, a bursting pressure test was performed. The film was

initially adhered applying pressure with the fingers, which produced a local pressure



between 1 to 7.5 atm. Although high pressure was locally applied, checking for non-

adhered parts had to be performed constantly to avoid non adhered zones. Next,

pressure was applied. As can be seen from the figure 78, "Pressure Failure for Optic

Film", initially the failure pressure is larger, but then decreases slowly due to the

accumulation of adhesive residues, which eventually degrade the adhesion to the

surface. The failure pressure stabilizes at roughly three quarters of the initial value, 15

PSI. The decreasing adhesion strength phenomenon can be observed more dearly in the

graph for Static Cling Film (SCF), second to the OAC in fluorescence performance, in

the Appendix Section.

FAILURE PRESSURE FOR OAC
(PSI), -1-7.5 atm pressure applied with bare
fingers directly over the piece, NO GLASS

BACK
30
20

-. 10

0-
123456789

TRIAL

* FAILURE PRESSURE
FOR OPTIC FILM
(PSI), -1 -7.5 atm
pressure applied
with bare fingers
directly over the

Figure 77 Failure Pressure for OAC, bare hands bonding

From these trials, it can be observed that the failure zones are stress concentration

zones, as expected. The failure occurs in regions of large channel area is or where

channels join together. The OAC film exhibited slightly less adhesion force than other

films normally used for covering plates.

Table 7 Zones of Failure Pressure for OAC
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The failure pressure of the film can be compared with the higher obtained for BS

film and shown in the Appendix.

In order to increase the values of pressure failure of the plastic film, two

methods were used: a) vacuum enhanced adhesion and b) uniform pressure preloading.

A) Vacuum Enhanced Adhesion

In order to improve adhesion, vacuum was used after initial bonding, deforming

the film near the vacuum cavity that had been designed into our device for "Vacuum

Chuck Bonding to PDMS Gaskets" in chapter 2. Vacuum applied extra pressure just

where the film was not completely bonded; making the sealing more uniform and

reliable, but did not increase the bursting pressure noticeably.

Aluminium

Flying wheel cut + Sanding +
Machining

Rubber-

Place adhesive backed
layer on rubber

Apply 1-2 psi of pressure for initial
adhesion, then apply vacuum to
achieve uniformity and better
adhesion

Figure 78 Vacuum Enhanced Adhesion Process



B) Uniform Pressure Loading

As an alternative to vacuum pressure application, upon initial contact with the

aluminium piece, uniform pressure was applied mechanically over the film to increase

bond strength. As the loading pressure was increased, the failure pressure increased too,

as can be seen for the shown figures for 1 and 5 atm of loading pressure.

Cut with fllying wheel + Sanding

Machining

FIW=i
Apply 4.5 atm to icrease bond

strength

Place adhesive backed layer
upside down on rubber

Figure 79 Uniform Pressure Enhanced Adhesion Process

For 1 atm, the film resisted more than with the application of a higher local

pressure with the bare hands. This effect is due to the improved uniformity of the

bonding, although no uniformly adhered zones were still present. The failure zones were

located again where geometrical stress concentration zones are present, i.e. the focusing

zone, or where the film had a smaller contact area, e.g. the zig-zags of the washing lane.

2 3 4

TRIAL

Figure 80 Failure Pressure for 1 atm Pressure
Enhanced Adhesion
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For 4.5 atm of external bonding pressure, the film didn't debond at the

maximum internal channel measurable pressure, 35 PSI. This is enough for most

microfluidic applications; but, by the time the maximum pressure was applied, the film

had already suffered deformation that enlarged the channel dimensions, more than 30%.

However, all the plastic film was completely uniformly adhered to the aluminium

surface. After the film removal, few small fragments of the adhesive part of the film

layer remaned adhered to the aluminium surface, and removal of them was necessary

before each trial.

>35

>35

>35

* uniform bonding

Table 8 Pressure for 1 atm Pressure Enhanced Adhesion

Deformation

After the application of external pressure the OAC deforms considerably. By the

ti me pressure reaches six psi, the height of the concentrator channel is increased by 16

microns, and becomes more important than the machining errors. This appreciably

changes the device flow patterns and is not acceptable. Even more significantly, some

of the deformation is non elastic, and using high pressure will permanently affect

further performance of the channels when cycled back at lower pressures. In the next

graph, the maximum height increment of the concentrator zone versus the pressure

applied is shown, along with a cross section of the concentrator obtained with the

Mitutoyo micrometer Surftest 301.
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Figure 81 Maximum Deformation for Concentrator Channel

In order to compensate for the deformation, the film was backed with a piece of

glass borosilicate that prevented long range deformations. An additional benefit from

backing the film with a glass layer is the enhance range of pressures before film

separation. After glass backing, for the first process, vacuum enhanced adhesion,

separation occurred between 30 and 35 psi, and for the second one, pressure loadi ng at

4.5 atm, separation occurred at pressures higher than 35 psi.



Bonding Characterization

In order to evaluate the process performance, leak inspection was performed

using the OAC film adhered to the non anodized aluminium piece using a bonding

pressure of 4.5 atm. Testing was by visual inspection using 1.25 uM fluorescein

pumped at 3 PSI. Inspection was done using a Nikon TE2000 inverted fluorescent

microscope. As it can be seen in the series of images no major leakage is observed.

Some zones with small scratches around the channels seem to have higher intensities,

but the effect disappears after a short a distance from the channel.

Figure 82 Fluorescein Leak Test, Outlet Zig-Zag and Outlet Port

Additional Considerations

Since the vendor was uncooperative in supplying even rudimentary information

about the film, short series of forensics were performed to identify the polymers'



composition. An estimation of the Young Modulus, and measurement of the absorption

and emission spectrums were performed.

Although the film was too thick for the thin film approximation to be used, the

geometry of the concentration zone could be used to perform a Bulge Test20 to get an

approximation of the order of magnitude of the film's Young Modulus. In any case,

since the OAC film is likely a compound layer where the adhesive layer is a soft

polymer, even if the exact solution is used, the calculated Young modulus would be an

approximation too. Usually, if the adhesive layer is present, the layer is about 25

microns, one quarter of the total thickness; therefore, a calculation neglecting this soft

layer would give the right order of magnitude.

The Youngs modulus estimation of the film can be obtained using non-

dimensional analysis and matching the local first derivative of the model to that of the

linear approximation of the data around the same point. The equation obtained is:

AP - 2Eth/a^3 * Ah (23)

Where:

AP is the Pressure Change

Ah is the Film Height Change

t is the Film Thickness

a is the Concentrator Channel Width

E is the Youngs modulus

After substitution, the Young modulus was estimated to be 3 GPa. Therefore,

polystyrene or COC (cyclic olefin copolymer) are both consistent since their Youngs

moduli is similar as the unknown OAC film.
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After comparison of the measured transmission spectrum of polystyrene and the

OAC film to that reported of COC and Polystyrene, COC, figure 87, is considered to be

most likely material composing the Optic Film.
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3.3 Summary

In summary, after experimenting with partially-cured PDMS gaskets, we successfully

developed a bonding process and characterized its adhesion. We found that the curing

conditions were difficult to control, and time consuming. An alternative method of channel

sealing using pressure sensitive adhesive on, putatively, COC films was successful.



CHAPTER FOUR

SWITCH OPERATION

Figure 85 Microfluidics is a hippie field too...



4. - Switch Operation

4.1 Pre-operation Problems

To operate the device, it first has to be fully filled with a pre-filtered and

degassed liquid. First, the zones prone to accumulate bubbles are filled, the focusing

zone and concentrator. Then, pressure is increased up to 30 PSI to make the bubbles

leave the fluid circuit. Next, the previously filled fluid lines leading to the valves are

connected and operated at different frequencies. Normally, bubbles are hard to evacuate

from the channels; if bubbles remain, without disconnecting the valves, the cycle is

repeated. Bubbles also shed from the input ports, where they accumulate in the flat

bottom ports, so flowing extra time after no bubbles are observed is advisable. The

bubble problem is in part created by the grain structure of the aluminium surface, figure

89, which created specific zones prone to accumulate bubbles, especially when one

grain was lost next to the channel surface.

Figure 86 Grain Structure Defects that made the channels prone to bubble clogging.



Figure 87 Bubble in Concentrator, place prone to bubble accumulation.

In the next images, figure 91, bubbles in the inlet and outlet ports are shown,

bubbles at the outlet ports are of no concern as long as the flow is not reversed. Bubbles

in the ports are common in many microfluidic devices, and is associated more with the

geometry of the port rather than the fabrication process.

Inlet Port Outlet Port

Figure 88 Bubbles at Inlet and Outlet Ports

Normally the bubbles are hard to observe using fluorescent light, and visual

inspection is preferable. For the oxidized aluminium piece, due to the enhanced

contrast, bubbles can be seen with naked eyes, whereas, for the bare aluminium piece a

microscope was used with reflected light. This characteristic made it hard to distinguish

between circuit clogging due to the bubbles and other kinds of malfunctions.



Reflected Light Fluorescent Light

Figure 89 Bubble Images Using Reflected and Fluorescent Light

4.2 Concentrator

Within the concentrator, bubbles experienced a lower drag force due to the lower

velocity, thirty times smaller. Therefore this cavity was prone to bubble accumulation.

Bubble accumulation prevented the proper function of the concentrator design most of

the time.

Figure 90 Flow in Concentrator

For the maximum velocity of 5 mm/s, the Reynolds number in the cavity is 0.01.

At this Reynolds number, the flow still exhibited a non-rotational behaviour, as can be

seen from the figure 93. At higher velocities, images of the particles were hard to

obtain, and the flow was no longer compatible with the function of the device,

switching. Some differences from the simulation are due to a miscalculation of the

Reynolds number when handling the transformation to a 2D simulation. The use of this



rotational flow pattern for cell concentration is still a possibility, but it would require the

use of higher velocities than we used in this design.

4.3 Flow Focusing

Due to the fabrication errors during fabrication of the first fabrication iteration, a

lower degree of focusing was achieved by 20-30% relative to the design.

Figure 91 Flow Focusing without compensation

For the first fabrication iteration, the error in the dimensions was in the order of

50%, as shown in figure 95, but, since what is important for focusing is the resistance

ratio, not the absolute value, the resistance error was slightly smaller, around 40%, as

shown in figure 96. This error produced the difference in hydrodynamic focusing. For

the fabricated ratio, 1:6 instead of 1:9, the focusing should be 40 % instead of the

expected 30%, which agrees with the observed results.
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In order to compensate and achieve stronger focusing, a higher pressure can be supplied

to the buffering lane, as shown in the next images, figure 47.

Figure 92 Pressure Adjusted Flow Focusing. The pressure applied to the sample lane was 2.5 PSI.
Pressures applied to the buffer lines are increased approximately every 0.5 PSI, limit of the

pressure gauge resolution, above the sample-lane pressure.



Figure 93 Flow Focusing Stream Lines

For the second fabrication iteration, the problem was reduced, and the resistance

error was smaller, as it can be seen in figure 99.

DIMENSIONS: Microns
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Table 12 Resistance Ratio for the Second Iteration Aluminium Piece

For this second iteration, the focusing was better because in general the

dimensions were smaller than designed, and since the relationship between the

resistances is nonlinear, the resistance ratios were larger. For this piece the flow ratio

was approximately 1:9, which increased the focusing to roughly 25%, as it can be seen

in figure 101, where fluorescein is flown through the sample port. The width of the

focused liquid stream is in agreement with the value predicted by the model (28%).

Figure 94Hydrodynamic Focusing using fluorescein, second chip closed using the OAC layer. The
first image was taken just after the focusing zone. The second image is from a point after the

concentrator, where the geometry increased the diffusion length, and thus decreased the focusing.
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Figure 95 Hydrodynamic Focusing using food colorant, second fabrication iteration closed using
OAC. The images show the focusing zone. Here, the vertical focusing is more evident than with the

fluorescent dye.

Figure 96 Hydrodynamic Focusing using food colorant, second fabrication iteration closed using
OAC. Zones where the closing adhesive did not adhere properly can be seen as slightly green areas

next to the channel.

4.4 Switching

The geometry for switching was quite different from the design. To ensure

connection, a critical requirement, the washing lane was joined to the collection lane,

which had a smaller cross section, creating a depressed zone. This flow crossing

created a zone prone to bubble accumulation. As a secondary affect, the particles

crossing this area had a reduced velocity. Both effects created an irregular flow within

this area. Also, the milling process did not create a sharp edge between the waste and

collection lane. Instead of a sharp edge, a 200-micron-radius-of.curvature rounded

shape was formed.
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Figure 97 Switching Zone Geometry

During the actuation, images of the 33% focused fluorescein liquid were

acquired with an ORCA Hamamatsu Camera. The images were acquired

stroboscopically for different actuation frequencies, from 1 Hz up to 48 Hz. In the next

images, actuation at 10 and 48 Hz is presented. As can be seen from the images, the

flow ratio between the waste and the collection lane is insufficient to cause total flow

switch between the collection and waste lanes.
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Switch about to be
activated, due to the
reduced velocity, some
fluorescein is still
present in the channel

Fluorescein is
switched into the
selection channel, the

- intensity of the flow
between the sample
and collection lane is
noticeable

As the tfluid enters the
crossing between the
washing and collection
lane, it goes into a larger

- cross sectional area that
decreases the flow
velocity and lets the
fluorescein accumulate

As the switch is deactivated,
the accumulated fluorescein
leaves the crossina and the
fluid circulates into the
waste lane again.

Figure 98 Switching at 10 Hz. As it can be seen in the images, the flow ratio is insufficient to cause
the total switch of the flow into the collection lane.
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Figure 99 Switching at 48 Hz, as can be seen, the actuation was greatly minimized compared to 10

Hz. Actuation at higher frequencies was limited by the unsteady state behaviour of the liquid. Also,

in order to make the system work at higher frequencies, the flow velocity had to be increased.

Next, HeLa cells were flown through the channel, as it can be seen in the

following images. In the case of the HeLa cells, stained with Sytox Orange, the contrast

was good for a 25 ms exposure time. In the images, the cells appear as lines in the

central focused region, roughly 1/3 of the channel.

Figure 100 HeLa cells flowing through the sample lane.

The images of figure 108 show the flow of cells when the switch is deactivated.

The first image shows cells flow when 3 PSI where applied. The second image shows

cells at a higher velocity and pressure, 6 PSI. As the velocity increases, the inertia of the

cells makes them take tighter turns, and makes them easier to switch.
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Figure 101 Cells flowing through the channel with the switch off.

The images of figure 109 show cells selected at 10 Hz. As the switching time

was random with respect to the position of the cells down the flow channel, the cells

ended up in different zones of the collection channel. Here, the undesired effects of the

flow crossing can be appreciated. As can be seen form the image, the cells tend to

accumulate in the crossing next to the wall and to the washing lane.

Figure 102 Superposition of images of cells selected when flowing through the channel

Switching at higher velocities and visualization was hard even after increasing

the flow velocity due to the exponential behaviour of the average velocity. As can be

seen from the figure 110, because the exponential decay of the velocity is slower than

the flow acceleration on valve opening, the average velocity increases overtime. Thus, if

the valve half on is activated at a higher frequency than 48 Hz, the switching is replaced

by a steady state after a small number of cycles.
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Figure 103 Exponential behaviour of the average velocity

In order to characterize the switching performance of the valve, the valve was

activated at different frequencies as fluorescein was flown through the sample port, and

the fluorescein concentration from the collection and waste lanes were measured.

First, the Hamamatsu camera was calibrated to measure the intensity of different

concentration fluorescein samples, figure 111. In order to have reliable measurements,

the sample concentration flown has to be smaller than 1.25 gM. For smaller

concentrations a linear relationship can be used for relating concentration to fluoresce

intensity.

An additional factor to consider is the possible error due to photobleaching. As

can be observed from the following graph, figure 111, photobleaching can have a

significant effect, especially for higher concentrations. The intensity error can be as

high as 15% for the higher concentrations.

When extrapolating the concentration from the intensity in the nonlinear region,

of high concentrations, the intensity variation due to photo bleaching can lead to

concentration errors in the order of 25%. In the linear region, the intensity error has the

same approximate magnitude as the extrapolated concentration, roughly 15%.
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CONCENTRATION VERSUS INTENSITY

Figure 104 Effect of photo bleaching in the light intensity

In figures 112 and 113, the concentration obtained for the waste and collection

lanes is presented. During this process, 1.25-micromolar fluorescein is flown through

the sample channel; the required dilution will come from the buffer, which will decrease

the intensity to the linear zone, maintaining a large signal.

Figure 105 Frequency VS collection Intensity
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FREQUENCY VS WASTE INTENSITY
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Figure 106 Frequency VS Waste Intensity

As can be seen from figure 112, as the frequency is increased, the efficiency of

the switch increases. This effect is due to the increased pressure and thus velocity used

for the valve actuation. This higher pressure was needed for adequate actuation, as

observed before for the particles. In the graph, the sample pressure was increased from

1.5 psi to 3 psi. Due to the increased inertia, the flow is switched more easily to the

collection lane. After the initial increment of the flow switched, the flow fraction

switched dropped before the unset of the transient state of valve operation. This drop is

consistent with the reduced open time, which is comparable with the on-set of flow at

high pressure oscillation rates. On-set is preventing switching times of less than 18 ms.

From the data, the final concentration for a given sample can be obtained. For a

given concentration, the final purified concentration will be around 1/40 of the original

concentration within the collected volume.

4.5 Channels after Debonding

Once the channels were clogged, either with the sample or particles not removed

during filtering, the channels were opened and cleaned. The cleaning process starts with

flowing distilled water when possible, followed by opening of the channels. Next, the

channels were sonicated using filtered water for 20-30 minutes. After this, the channels

were cleaned using a bleach solution, 1:5, followed by 10 minutes of sonication in
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distilled water. If particles remained, the process was repeated or the remaining particles

were removed using a sharpened plastic straw. The use of metals should be avoided

since it can scratch the surface, in any case, the Moss Hardness Scale must be consulted

first.

After the cleaning process, almost no particles remained except when adhesion

chemicals were used, as explained in the fabrication chapter; it left a thin film over the

channel surface, which caused irregular flow in the channels and increased the particle

shedding when cleaning the aluminium piece.

Figure 107 Aluminium Piece being Sonicated

Non filtered particles

Fiber
Particle in
the Focusing
Zone

Figure 108 Clogging in the Channels
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CHAPTER FIVE

DISCUSSION AND CONCLUSIONS

Figure 109 The Lab after cleaning, or it was before?

110



5 Discussion and Conclusions

5.1 Fabrication

Our objective was to develop a de-bondable fabrication process which could

allow a microfluidic part to be classically micro-milled (e.g. into aluminum), then

bonded with a low fluorescence window. We tested parts with and without anodization

and tried three different approaches to reversible bonding.

The anodization step created many irregularities over the surface, but also

provided a harder surface with higher optical contrast. In order to decrease the

irregularities, anodization needs to be introduced at the correct order in the fabrication

sequence. If an anodization of up to 200 microns thickness step is performed after the

flywheel cut followed by sanding and polishing, the irregularities during milling should

de diminished. Any anodization causes some enhancement of grain boundaries, and the

best procedure is probably to avoid anodization and use an alternative blackening

method if required.

The use of square channels, created by micromachining as opposed to isotropic

etching, made the analysis and design of the device easier, but at the same time, did not

eliminate zones of low velocity and pressure loss at the channel junctions. Semicircular

channel cross section, may reduce the creation of separated flow and loss of velocity,

and may decrease the accumulation of undesired particles and bubbles at low-flow

regions. Additionally, the crossing of channels of different width should be avoided,

and channel extensions should be used between the channels of smaller width and those

of larger width. This eliminates tool changing in the machining step, which was found

to be the largest contributor to machining errors. If only semicircular channels are used,

no compensation due to the friction factor is needed.

The bonding process using PDMS was proven successful, resisting up to 30 psi,

but time consuming and difficult to control. As an alternative, sealing techniques using

adhesive backed polymers were tested. In order for the film to adhere, the roughness

has to be small as possible, but 0.6 micron RMS should suffice. Finally a 4.5 psi pre-

compressed AOC film was shown to be successful, withstanding up to 34 psi. The

111



AOC film reduced the bonding time to a couple of minutes, but needed a back support

to reduce deformation.

Based on the previous observations, the fabrication process can be redesigned as

shown next in figure 117.

Aluminiumi

Cut with fllying wheel + Sanding

Anodization

Sanding +
+ Final Cut

Cut with fllying wheel ?

Application of 5 atm of pressure

FL~I I

Machining needed anymore,
but could be used
if thermal
adhesion is used.

*Optioinal use of heat sensitive adhesive

Rubber

Place adhesive backed layer
upside down on rubber

backing piece of gla:ss

Figure 110 Fabrication Process

112

ipm~g~i

p~aq

V~mac"lum is nt



5.2 Design

Inlet/Outlet Ports

The flat-bottom ports, created by the end mill, were a constant reservoir of

bubbles during operation. Flat bottom ports could have practically no dead volume as

long as they are precisely aligned to the hole inside the cavity, but the alignment was

not precise in many channels, and large dead volume was observed frequently. It would

be possible to replace the flat bottom ports with conical ports, which self align and have

a constant dead volume. Also, the diameter of the inlet ports could be decreased to 500

microns, half of the current value, which would increase the flow speed and would

facilitate the evacuation of bubbles.

Flow Focusing

Stronger flow focusing using two independent lanes for the buffer would give a

more flexible design. This would reduce the accumulation of particles and bubbles, and

decrease the filling time. A stronger focusing, with at least an order of magnitude larger

flow ratio, would decrease the requirements on the pressure pulse rise time, and would

reduce the actuation time. Additionally, most of the focusing should be done using

length to obtain the resistance ratio. In this way, the flow should be much more reliable

than balancing with different pressure sources. Using the model developed in chapter 2,

a curve for predicting the needed flow ratio was obtained, figure 118. Accordingly to

this graph, a flow ratio of 1 to 70 or 1 to 90 should be enough to center the 10-20

micron cells in a line at the center of the channel.

T

Figure 111 Focusing for different flow ratios
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Switching

The switching circuit can be modified to obtain a lower time response, using the

optional circuit described in figure 119. In this design, the Lee valves can be used to

change the path of the particle. This approach requires a smaller displacement of the

particle and thus, permits a faster reaction time. In this improved design, in order to

protect the valves, filters can be added before the valves or the pressure can be reversed

during the second part of actuation. This change should reduce the net amount of flow

between the valves to near zero.

y ally
ed
P2

Atmospheric Pressure Atmospheric Pressure

Figure 112 Alternative Flow circuits

For both circuits, the resistances rv should be minimized as possible to decrease

the flow resistance and achieve a faster final flow speed. The pressure source should

include a pre-focusing step as discussed before. The main part of the circuit, i.e. the

resistances shown in the diagram, should be machined with the same cross section as

much as possible, to decrease the error during fabrication.

Resistance Ratio

Now that a reliable high performance reversible bonding process has been

found, a higher channel density can be used in future designs. For the aluminum pieces,

a distance of four times the channel width between the centers of the channels was used

in our studies here. Accordingly to what was observed, this distance can be decreased

to roughly three times the channel width, but no much further, because those areas will

be prone to failure and leakage.
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The resistance ratio between collection and waste should be increased by

at least a factor of 10 to increase the final concentration of the sample.

Based on the observations, the following designed rules can be recommended:
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Design Rules

1. - Minimize the number of different cross sections used; whenever

possible, use length to obtain the resistances ratio required; this will decrease the

error during fabrication.

2. - Don't cross channels of different cross sections unless necessary;

crossings will create zones of reduced speed and pressure drop that increase

bubble clogging. Consider using semicircular cross sections instead of rectangular

ones to reduce junction dead zones.

3. - Do not directly connect channels of different cross sections, use

extensions from the smaller cross section to the larger cross section.

4. - Separate the channels leaving at least three times the channel diameter

between center lines.

5. - Use conical input ports; this will create self aligning ports that will

help decrease the trapped volume at ports.

6. - Use 0.5 mm or smaller input holes, this will decrease the volume of air

trapped.

7. - Before adding extra ports, think of the way bubbles will escape the

channels and design accordingly.

8. - When joining a large cavity to the rest of the channels, do it gradually,
otherwise bubbles will clog near to the cross section discontinuity.



5.3 Future Applications for Cell Sorting

Initial cell switching was successful, as shown in the images acquired in section

4. The florescent light from the cells was collected using a photomultiplier as shown in

chapter 2.

The signal from the PMT was weak and filtering and amplification was needed

in order to obtain sufficient signal for switching. The filtering stage consisted of a

differentiator that sampled the increase of signal over time, and the amplification was a

variable 1000 gain amplification. For this signal acquisition scheme, the alignment of

the optics to obtain a reliable signal proved to be achievable but difficult, and an

alternative method such as scattered laser light should be investigated.

This selection method could provide an easy to fabricate method for large cells,
as 200 microns wide cardiocytes, because, unlike clean room methods, is easy to scale

up.

5.4 Laser Actuation

Laser remains as an alternative for faster actuation, sub-millisecond range. For

light interaction, the anodization step is required. This layer of oxide enhances

absorption, and decreases immediate heat conduction to the substrate, till the heat wave

reaches the aluminium substrate. The absorption coefficient of light for the aluminium

oxide in the visible spectrum is in the order of 14%. Once the surface is heated, roughly

40% of the heat is transferred to the water above the channel, and 60% is conducted.

From the literature, an estimate of the order of magnitude of the laser power can be

performed. From figure 120, for a 5-10 ms bubble, a laser of 200 mW is needed. As the

actuation time decreases, the power required for the laser increases, and for a couple of

ms, a laser of roughly 1-2 W is needed.
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2000

20-100
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APPENDIX 1

FLUID MECHANICS BASIC THEORY

Flow Resistance in a tube

When a liquid moves inside a tube and the flow reaches steady state, the

pressure drop across the length of the tube can be linearly related to the flow through it.

The resistance of the fluid to move in a circular pipe is proportional to the length of the

channel, inversely proportional to the fluid's viscosity and inversely related to the radius

of the tube. This relation is expressed precisely for circular tubes by the Poiseuille's

Law:

dV = v7 =R4 P irR_
dt 8n Ax 8q L (Al)

Where:

D is the volumetric flow

rl is the viscosity

AP is the pressure drop across the tube

L is the total length of the tube

R is the radius of the tube

The specific geometrical dependence on the cross section for non circular

channels is most of the time hard to calculate exactly; for these cases, an equivalent

circular cross section can be used instead. The equivalent circumference must preserve

the inertia to viscous force ratios, which is proportional to the area and perimeter

respectively, therefore:

Req=2*A/P (A2)

Where:

Req is the equivalent radius

A is the cross section area

P is the perimeter of the cross section
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Unsteady Flow through a Tube

For the case of a tube with a difference of pressure applied between the

extremes, the unsteady equations describing the behavior of the system can be obtained

solving the Navier-Stokes equations applying the appropriate boundary conditions

(unidirectional flow).

From the Navier-Stokes Equation

a (.V)-= VP+ 2 v * (A3)

at p p

And the continuity equation:

V-v=O (A4)

Now, in index notation the NS equation can be simplified as:

Sv, av. 10 8 t p2v+ v ax-- =p+ - (A5)
at dx. p xi  p 2

Now, since the velocity in the in the x and y directions are null due to the

assumption of unidirectional flow plugged into the continuity equation and that the

8v.
profile in the x direction doesn't change: j =0, the NS equations are:

axj

av,; 1 8P p a2v-= - -+ (A6)
at p ax, p ax (

Also, since the flow is unidirectional, at , therefore, the equation for the

i# 3

first two coordinates is null.

S ++ + (A7).
at p x p ax2 a/ + aZ2
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But, again, since the flow profile doesn't change in the x direction

&v 1 a . 2v 8 2V (A)......... a+ + (A8)
at p x P ax2 a/

When a pressure difference is applied across a small long channel, the

lubrication approximation is valid and the pressure gradient can be considered as

constant.

AP
VP = -

(A9)

Now, since the geometry is complex and could change due to fabrication

process, let's analyze the problem using an equivalent radius for the cross section.

2ab ab
r'= 2A/P= (A10)

2(a+b) (a+b)

Now, considering the reduced equations in circular coordinates:

Z(r,t) 1 a avz(rt) (All)= k+ - - (All )
t invariant r r rt)

Since the equation is theta invariant: v vz (r, t

>V2 = 1 r (rt) (A12)
r ar ar

Now, if the velocity is decomposed in two terms, an steady and unsteady

term vz = v, + v2 ,

v, = k2 2 +c (A13)
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av(r, t) = 0
at

S0 = k +
1 a a(k2I + c)0=4kzv+k
rr ar r

k
4v

On the other hand, for the unsteady term:

av2  (1 a
at r ar

r av2(r, t)J

Now, using the method of separation of variables:

v2(r, t) = R (r) T(t)

aTR =at vT (r ar
I aT u (
T t Rr ar

r
ar)
R

r- = -a
ar

From the firsr part:

1 aT

T at
= -a

(A19)

T=> T= To eat

Now using the boundary conditions for the steady part and T, since the unsteady part

will disappear as t gets large

v, = k (r' 2 2 ), (A20)

Where k=(AP/L)p
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Since the velocity at the wall is zero, as it was derived before in the notes

From the second equation:

V a r __ = -a

a2R 1 aR a
+ -- +- R=0

8d2 r r u

(A21)

This is a Bessel equation with solution:

r = qJo(Ar) + c2 Y0 (Ar) , with = (A22)

But in order to get convergence when r approaches 0+, c2 = 0.

>r = q Jo (r) (A23)

Now , substituting back in the reduced equation

v2 Te = Qiea t 0 (r) (A24)

Now applying the boundary condition in r=r', vz=O y v1 (r') = 0,:

= v;t 0 i QeJ o (Air) = 0 (A25)

SJo (A r') = 0 (A26)

Then Ar' are the eigenvalues of (,X s)

Sa, = v (A27)

Using the orthogonality property of the Bessel polynomials for t=0O, vz-=0

k
0 = vz = VI + 2, = k 2 -r 2 ), (A28)

40
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v Z iQ,eai J0 (2r) (A29)

k
- (r' 2-r 2) = 0 Q, Jo (Ar)

Multiplying by the weight function and integrating:

1 /r

-f -' (r2 -r2)J 0(Ar rdr= fZ'=0 QJo (2r)Jo (2Ar)rdr
04 0 i

'' k k 2 )j ( r) rdr = QJO2 (ir)rdr

0 4 o

4k r2 j (1rdr r dr
S 0 0

(A30)

(A31)

(A32)

(A33)

j02 (2ir)rdr

but

r'2

Jo (2r)rdr = - 2 (2')
0 2

(A34)

For the second integral

r
,

f Jo (AJr)rdr=
1 r

2 f J iir)(2ir)(dr)=
A10

r'

1
2 A (Air)(A r ) =A 'i 0

Using integration by parts

jr3Jo(A;r)dr= J(Ar)
0 i

o- r2J (2Ar)dro 2 -o

) - 2 ( r
2 )2 1J ( )(A2 ( dr )  () J 

0 (A 2 2 (r 2(2r)

0 A 0 Ai 0 A

(r3) r 2r (3) 2 2( J (,r) - A2 (rA) J2 (2 r r) ( 3) J ( ) J 2 ( 2 )0; 2;o 2;2

Now substituting back to find the function
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r J (Ai) (A35)

(r3)
-- (A]7

(A36)

0 (A37)



0 (ir)rdr- r'Jo (2Ar)dr

SJ0 2 (2ir)dr

2 2

4v r'2  2

2

SJ1 2 (,ir)
220 12(i)

(A38)

But noticing that the lambdas are the zeros of the function

2
2A (Ai) = 2 (Ar')+ 0(Air')= J2 ( ))

Aiir'

Substituting back into the previous equation:

2k J, (2,r')
Q A =- r j(2r)2, ur d , ,)

2k 1

A3 , )

Then Vz is equal to

k (22 2k 1
vz = ( -2)or I -atJo (ir)

4v 
2, O3r J (A)

Now, obtaining the average velocity

(,2-r 2) 0
i=0

2k 1

-1 ,yr1 .J.(...
e-§a t ( r) rd9dr

(A42)

- r3)dr] - 2 0  2k

* 
2

, lo ~.i3r'

1

1,(2/ F)
e-"aJo (A21r)rd

(A43)

k (r)J 2k 1 ait2 f - e- Jo(Ar)(Ajr)(drA,)

[ 2
(A44)
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[ 2

k
4v

Qi=

(A39)

(A40)

(A41)

r' 2

00 L
vz =

27 k (r'2 r

-O 4v
Vz =



Lkr'4 14 ( )4v 4j
2k 1 1

=211 r' J (Ar') ]
(A45)

[[ k r'4  
0  

e)1I (22r)(,r ')4o 4 o r J, (Air)
vz =- 2

Now simplifying using the following definitions:

(47)
(A47)

a, = '
.jI'

(A48)

4k a.o ,t

v i=O 4
kr' 2  4k c -alt

8- or'2 i=0 4

(A49)

Now, substituting the value of k

kr'2  4kr'2
vz= -

8v v

vz =

x Vt

Xi

- VP* r'2 1

p 8

k- r2 1-4 O

.5.i
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vz =

(A46)

Vz =

4k Ikr'2

8t

e
.x U

e-( r')

r
i4 2

U

e'
4

Xi

(A50)

Ur 2 Li=0o

L8vJ



APPENDIX 2

CALIBRATION CURVES FOR HAMAMATSU CAMERA AND NIKON
ECLIPSE MICROSCOPE

CALIBRATION CURVE FOR
MICROSCOPE NIKON ECLIPSE TE-2000
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0

0,00 0,50 1,00 1,50 2,00 2,50 3,00

Fluorescine (MicroMolar)

CONCENTRATION VERSUS INTENSITY

0 0,2 0,4 0,6 0,8 1 1,2
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1,4
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APPENDIX 4

FILM FLUORESCENCE RELATIVE TO PDMS

INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, BLUE EXCITATION

1,6

1,5

. 1,4

Z
- 1,3
Z

1,2

w
1,1

0,9
10 100 1000

EXPOSURE TIME IN MILISECONDS
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INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, GREEN EXCITATION

1000

EXPOSURE TIME IN MILISECONDS

INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, BLUE EXCITATION

100

EXPOSURE TIME IN MILISECONDS

1000
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INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, GREEN EXCITATION
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INTENSITY RELATIVE TO VACUUM MEASSURED WITH MICROSCOPE
NIKON ECLIPSE TE 2000, GREEN EXCITATION
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APPENDIX 5

FAILURE PRESSURE FOR DIFFERENT FILMS
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APPENDIX 6

FILM OPTIC PROPERTIES
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PDMS, SYLGARD 184TM
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I I I

I

STATIC CLING FILM, PVC (TYPE 1) FILM, TRANSLUCENT, Low TACK, 0.002" THICK, 12"
WIDTH, 12' L, 7524T13 MCMASTER-CARR.
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I I

TRANSPARENT SILICONE RUBBER SHEET, ADHESIVE BACK, 0.020" THICKNESS, 12" x12",
40A DUROMETER, 86915K22 MCMASTER-CARR
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I

FEP FILM WITH ADHESIVE BACK, 0.0035" THICK, 12" X 12", 5805T11 MCMASTER-

CARR
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-------- 1

0% LJ
208.8nu ( 100/div) 80 ,0anu

ADHESIVE BACKED POLYESTER (PET) FILM, 0.002" THICK, 27" WIDTH, 20" LENGTH.

8689K31 MACMASTER-CARR
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