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Abstract

Landmines and mine-like traps are effective weapons that are difficult to detect

and discriminate from a safe distance. The ability to detect landmines in their host

environment at a distance and to discriminate them from other objects would be valuable

for countering the landmine threat. This paper explores a standoff acoustic/laser

technique to discriminate landmines from other forms of man-made objects (clutter) in an

urban environment.

A novel approach currently under investigation by MIT Lincoln Labs, University

of Mississippi, and other groups employs a non-contact acoustic/laser technique to detect

landmines from a safe standoff range. This technique uses a sound source to excite

vibrations in targets with an acoustic wave. These vibrations are in turn measured

remotely with a Laser Doppler Vibrometer (LDV).

In this thesis, the vibration responses of landmine variants are measured,

analyzed, and compared to those of common urban objects likely to be found on a

landmine field or roadside. The Fourier Transform of the vibration of the target as

measured by the LDV is used to generate a target vibration spectrum. Target vibration

spectra in response to a sound source were experimentally measured for 59 trials, 28 of

which were of simulated landmine variants and the remaining trials were of urban clutter

objects.

Using an algorithm adapted from a methodology for mass spectral analysis,

parameters of the target signatures are estimated; then individual target signatures are

classified using a Support Vector Machine (SVM) with a training set composed of

parameters from the remaining members of the total population. The best results



obtained from this methodology had a 71% probability of detection and a 3% false alarm

rate corresponding to 20 of 28 of the simulated landmine variants correctly identified and

a single clutter object misidentified as a landmine variant.
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Introduction

The landmine has proven itself to be a highly effective weapon and area denial

device. The primary strength of the landmine is its ability to be emplaced in a concealed

location by an unseen enemy and inflict damage at a later time. In order to more

effectively destroy or immobilize enemy personnel or vehicles, landmines are

deliberately designed and emplaced to be as difficult to detect as possible. The ability to

detect landmines would be valuable tool for denying the enemy the use of this capable

weapon.

Landmines can be actuated by a timer, pressure plate, electromagnetic influence

or command signal. Although the newest landmines in use by the US military include

self-neutralizing features to minimize unintended casualties, self-neutralizing or self-

destructing features are not typically used worldwide [26]. Furthermore due to the

chaotic nature of warfare, records documenting the location of landmines are often lost,

destroyed, or never existed. Even with self-neutralizing features and well documented

records, landmines are inherently indiscriminate weapons.

These factors create a situation in which civilian casualties are easily inflicted

during and beyond the scope of the original military conflict. According to the 2006

Landmine Monitor report, there were 1,743 fatalities and 7,328 total casualties in

calendar year 2006 attributable to landmines and Explosive Remnants of War (also

referred to as unexploded ordinance or UXO) [27]. Others have estimated there to be

sixty to seventy million landmines worldwide that inflict 24,000 civilian casualties yearly

[16]. Although casualty figures from landmines are imprecise, it is clear that significant

loss of human life occurs due to land mines and unexploded ordinance.



Any method to detect landmines must have a high probability of detection,

standoff capability, and a low false alarm rate in order to be useful operationally. Failure

to detect a landmine places personnel and equipment in danger. The ability to detect

mines minimizes the operator's risk of death or injury. False alarms diminish the utility

of the system as time and resources are wasted to investigate false alarms. Urban terrain

increases the level of difficulty in maintaining a low false alarm rate due to the difficulty

in discriminating targets from both naturally occurring and manmade objects. In an

urban environment, there is a wide range of possible disguises for the target itself and of

common manmade objects or clutter that share enough characteristics with the target to

possibly cause a false alarm. Existing methodologies possess some combination of the

above described capabilities with varying degrees of effectiveness. A method with a high

probability of detection, standoff capability, and a low false alarm rate would be an

effective countermeasure for landmines.

Current Detection Methods

Existing countermeasure systems and techniques include metal detectors, ground

penetrating radar, chemical detectors, and acoustic-to-seismic detectors. Electromagnetic

detection methods most frequently rely on some combination of magnetometry,

electromagnetic induction (EMI) detection, and ground-penetrating radar (GPR) [28].

These electromagnetic detection techniques exploit the fact that the metallic components

of the landmine have higher electromagnetic conductivity than surrounding earthen

material.

The metal detector uses an electrically energized transmitting coil to produce a

magnetic field. This magnetic field creates eddy currents in the metal components of



landmines or other innocuous metallic objects in the vicinity. The eddy currents in turn

generate a second magnetic field that is measured by the receiving coil [28 29]. Once the

presence of a metallic object has been detected, the operator typically probes the ground

with a bayonet or other implement in order to determine if the object is a landmine or

false alarm.

The US military uses the AN/PSS-12 Mine Detector. The AN/PSS-12 set is

identical to the AN-19/2 system used by other NATO countries and humanitarian

organizations. Weighing in at 6 kg, the AN/PSS-12 / AN-19/2 has a detection range of a

tenth of a meter for an antipersonnel landmine with 0.15 g of metal components [29].

Soldier using metal detector
www.dod.mil

A range of less than a meter places the operator of a metal detector within the

blast range of the landmine exposing the operator to the risk of death or serious injury.

Also, landmines are increasingly made of plastic components to counter metal detectors

decreasing the probability of detection. Furthermore, metal detectors are likely to

encounter metallic objects in urban areas generating a high rate of false alarms.

Therefore, the metal detector lacks standoff capability and has a probability of detection

and false alarm rate that can vary depending on the target and its environment.



Ground Penetrating Radar (GPR) systems have demonstrated the capability to

detect buried mines and can do so at distances greater than a conventional metal detector

[28 29]. GPR exploits the radar signature of the casing and internal components of

landmines. Unlike metal detectors, GPR can detect plastic landmines; however, the

image resolution needed to discriminate plastic mines from background clutter requires

the use of short pulses that reduces range [28]. GPR operating just above the ground

surface is not limited by attenuation but encounters a high false alarm rate from naturally

occurring clutter such as rocks and tree roots [17]. Minefields and areas with unexploded

ordinance are also likely to have shrapnel and metal debris, creating false detections from

manmade clutter as well [28]. While GPR is a promising emerging technology for

landmine detection, the cost, complexity, size, slowness, and limited ability to

discriminate mines from clutter limit its current applications [29]. In a DARPA study of

the effects of clutter on minefield clearance operations, the DARPA group conducted a

site survey using infrared, EMI, and GPR systems. The DARPA group experienced a

high false alarm rate and recovered only 14 inert mines out of 203 anomalies that the

group detected [18]. This suggests that even when used jointly EMI and GPR are ill-

suited to discriminating landmines from background.

Chemical and biological sensors have also been used for mine detection.

Regardless of the material composition of the mine casing or its actuation mechanism, all

landmines possess some type of explosive charge. The explosive charge is typically

limited to three explosives TNT, RDX, and PETN which presents an opportunity for the

chemical or biological detection of these specific compounds [20]. Oak Ridge National

Research Laboratory created a "bioreporter bacteria" that was genetically modified to



experience bioluminescence when in contact with these explosive compounds [20].

While this method has proved effective in the laboratory, its unconventional nature would

make it logistically challenging to employ on the battlefield.

A novel detection methodology with standoff capability is the acoustic/laser

technique. The acoustic/laser technique employs uses a sound source to generate an

acoustic pressure wave. This acoustic pressure wave induces vibration in a target which

is measured by a Laser Doppler Vibrometer (LDV). Landmines are subject to vibration

due to resonant responses in their casings and internal components to these acoustic

pressure waves [1 2 3 4 5 6 8 9 13 14 25]. The range of operation of the acoustic/laser

technique is limited only by the power of the sound source and the sensitivity of the LDV

providing standoff capability [1]. Unlike GPR systems, the false alarm rate from rocks,

roots, and other soil inhomogeneities is low because solid incompressible materials such

as dirt and concrete are not subject to vibration from acoustic pressure waves although

they can create a radar signature that could be mistaken for a mine with a GPR system [1

23417].

Dr. James Sabatier of the University of Mississippi and Rob Haupt of MIT

Lincoln Labs among others have been developing this acoustic/laser technique by

exploiting the unique characteristics of landmines in reference to acoustic-to-seismic

coupling [1 2 3 4]. This acoustic-to-seismic coupling methodology was used by Dr.

Sabatier and Dr. Xiang of the University of Mississippi to measure the vibration of a

plastic VS 2.2 anti-tank mine with a Laser Doppler Vibrometer (LDV) [4]. The

University of Mississippi team was successful in demonstrating that either metallic or



nonmetallic pressure actuated landmines would exhibit strong vibrational resonances

when exposed to a sound source [3 4].

The strong vibrational resonances common to all landmines that this methodology

exploits are caused by the dynamically compliant casing of the mine [33]. Because the

surrounding soil is stiffer than the landmine, the area above a buried landmine

experiences greater amplitude vibrations than the surrounding soil [33].

Yu and Donskoy model the buried landmine as a series of mass, springs and

dampeners, or inductors, capacitors, and resistors respectively [32 33]. These models are

mathematically equivalent and both have resonant frequencies for an applied force or

voltage [32 33]. Furthermore, there is no such resonant response from undisturbed soil

without the presence of a landmine or other highly compliant hollow object to provide an

impedance contrast. Below are Yu (left) and Donskoy's (right) models of a buried mine.

IF
x M, RI K;

P=F 1,xM2

SK3 - 2

K2

M1 - Mass of Ground R, - Dampening Coefficient due to Soil Sheer
M2- Mass of Mine Pressure Plate R2- Dampening Coefficient due to Soil Compression
F - Acoustic Force R3 - Mine's Dampening Coefficient
K1 - Spring Constant due to Soil Sheer K2 - Spring Constant due to Soil Compression
K3 - Spring constant of Mine's upper diaphragm

[32] [33]
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The mine vibration resonance was then successfully measured with a LDV. Dr.

Sabatier's team conducted a blind test of a minefield at Fort AP Hill and attained a

probability of detection of .95 and a false alarm rate or 0.03 using this methodology [4].

Rob Haupt used a similar methodology with a Parametric Acoustic Array (PAA) to excite

vibration of landmines at ranges in excess of ten meters demonstrating a proof of concept

of this technique for the standoff detection of landmines [1].

The acoustic/laser detection methodology used by Sabatier's team demonstrated

the ability to discriminate antipersonnel mines from undisturbed soil [3] and antitank

mines from gravel roads [4]. Furthermore, Haupt demonstrated that the use of a

Parametric Acoustic Array as the sound source would provide this technique with

standoff capability [1]. The capability to discriminate landmines from naturally

occurring as well as manmade clutter would make the acoustic/laser technique an

attractive and more effective landmine countermeasure than many other detection

methods being researched.

Acoustic-to-Seismic Coupling

The acoustic/laser detection technique measures the vibration of landmines

exposed to an acoustic pressure wave. Specifically, the sound source used for the



acoustic/laser technique generates a Rayleigh surface wave, shear wave, fast P-waves,

and slow P-waves [1 2 3 4]. Both Sabatier and Haupt exploited the acoustic-to-seismic

coupling of a compressional wave called the slow P-wave to excite vibration in the casing

of the target [1 2 3 4].

An acoustic pressure wave incident to the ground has most of its energy reflected

back into the air; however, some of its energy couples to the air/soil interface creating

several seismic waves [ 1]. These seismic waves include the Rayleigh wave, shear wave,

the fast P-wave, and slow P-wave. The Rayleigh wave, shear wave, and fast P-wave all

propagate quickly through the solid granules of the soil [1]. The slow P-wave propagates

through the pores of the soil which slows its speed of propagation down due to viscous

drag [11]. Furthermore, the Rayleigh wave propagates along the surface inhibiting it

from inducing resonances in buried objects. The equations governing the speed of the

sheer wave, slow P-wave, and fast P-wave are as follows [1].

1/2

G( f)
PM +PF)

S 1 1/2

V,(f)slow = (f)
Pu +PF

I 4G(f) ' / 2

- +
C (f)  3V, (f )fast = C(f) 3

PM + PF

G is the soil rigidity, CM is the soil grain matrix, CF is the soil pore fluid

compressibility, PM is the soil grain matrix density, and PF is the soil pore fluid density

[1].



The acoustic/laser methodology relies upon acoustic-to-seismic coupling in

porous material of the slow P-wave [1 2 3 4]. The Rayleigh surface wave, shear wave,

and fast P-wave all propagate at higher speed than the slow P-wave [3 4]. This is

significant because slower speeds are required to generate the waveforms with

wavelengths comparable to the size of a landmine. Wavelengths on the order of the size

of the target are necessary to induce vibration [1 2 3 4]. Furthermore, the lower sound

speed of the slow P-wave in comparison to sound speed in air causes incident waves to

refract downward towards the direction normal to the pressure plate of the mine which is

conducive to vibration along the top surface of the mine upon which the LDV is most

likely to be directed [4]. The slow P-wave is explained in greater detail by M. A. Biot

[11].

Inconveniently, the slow P-wave attenuates rapidly in soil and requires high sound

power. Thus the range of a standoff system is limited with commercially available sound

sources due to practical size and power constraints. Haupt circumvented the limited

range of a commercial speaker by using a Parametric Acoustic Array [1]. For

convenience, an Eminence APT-150 commercially available sound source was used for

the majority of the data collected later; however, the PAA is the lynchpin of the

acoustic/laser detection technique's standoff capability.

Parametric Acoustic Array

The range of the acoustic/laser landmine detection system is a function of the

amplitude of the acoustic sound source and the sensitivity of the LDV [1]. The

Parametric Acoustic Array (PAA) generates a high amplitude narrow beam acoustic

pressure wave that is suitable for landmine detection. P.J. Westervelt named the



Parametric Acoustic Array after the parametric amplifier due to the conceptual similarity

of the two systems [10]. In P.J. Westervelt's own words:

"It has long been known, both theoretically and experimentally, that two plane waves of differing

frequencies generate, when traveling in the same direction, two new waves, one of which has a

frequency equal to the sum of the original two frequencies and the other equal to the difference

frequency. These 'sum' and 'difference' waves have an existence that is, in the following sense,

independent of the existence of the primary generating waves: consider a semipermeable screen

capable of totally absorbing the generating waves, yet freely transmitting the sum and difference

waves; the latter waves will be launched into an independent existence." [10]

Haupt exploited the ability of the PAA to generate a 'difference' wave of

frequency lower than the original ultrasonic acoustical signals [1]. This allows the

system to be covert and protect the operator's hearing by using acoustical signals outside

the audible spectrum as the carrier waves while creating a lower frequency 'difference'

wave that attenuates less rapidly in the ground and is advantageous to exciting vibration

in the target [1].

Acoustic/Laser Detection and Identification Methodology

The two critical steps of a sensor based approach to mine countermeasures is

detection and identification. The objective of this acoustic landmine detection

methodology is to excite and measure resonant vibrations in the target in order to

evaluate whether a mine is present rather than to cause its detonation. Since many

landmines may not be pressure actuated, such a methodology would be insufficient to

ensure for the safety of the operator and for quality assurance of the mine clearance

operation. Therefore, the acoustic/laser technique relies upon measurements of the

target's response to a pressure wave for both detection and identification.



Sabatier and Haupt use the large vibration signature amplitude taken from a LDV

in order to detect the presence of a target. Sabatier, Haupt, Kercel, Korman, Scott, and

others have demonstrated that landmines experience vibration when exposed to an

incident pressure wave [1 2 3 4 5 8 25]. Mine membranes and plungers are designed to

depress and detonate the mine when a person or vehicle encounters the mine [1]. As a

consequence, these membranes and plungers are highly compliant and can vibrate in

response to sound, causing the mine to act as a passive radiator when excited by the

appropriate acoustic frequencies [1].

Sabatier, Haupt, and others have demonstrated that this resonant vibration is not

characteristic of rocks, sticks, and other solid objects allowing landmines to be

discriminated from undisturbed soil [1 2 3 4]. The porous nature of the ground is

conducive to landmine detection with discrimination based upon the anomalous behavior

of the ground surface in terms of acoustic-to-seismic coupled motion [3]. Specifically,

the amplitude of the velocity of vibration was exploited to detect antipersonnel landmine

[3]. A landmine was considered to be present when there was amplification of the

magnitude of velocity over a relatively broad frequency band and when a circular shape

in the remained intact when through this broad frequency band [3].

As mentioned earlier, Sabatier was able to yield a high probability of detection

and a low false alarm rate when searching for landmines in a region of undisturbed soil

that may or may not contain a landmine [3 4]. Sabatier was able to effectively use the

magnitude of the velocity of vibration and the shape and size of the area with increased

vibration in order to discriminate the antitank mines from areas of undisturbed soil with

no mines; however, this classification technique was not tested by Sabatier with



manmade urban clutter objects present [3 4]. While rocks, tree roots, soil, and other solid

incompressible objects lack mechanical resonances, a variety of manmade objects are

more likely to experience vibration [5]. Sabatier effectively discriminated landmines

from background by spatially mapping this vibration response as seen below with the

higher amplitude response of the landmine shown in red [3]:

"Scanning results in form of a color map on a PMD 6 antipersonnel
mine buried 5 cm deep. Its rectangular shape has a -top view! length of
20.5 cm and a width of 9 cm. A grid of 32 by 32 points covering an area

30 by 30 cm was defined, resulting in a spatial resolution of 1 cm.
Magnitude spectra were integrated within 280-310 Hz [3]."

Haupt was also able to discriminate landmines from undisturbed soil. Haupt

created a velocity vibration spectrum of the mine response to a wider band linear sound

chirp function measured on a single point instead of the amplitude, size, and shape of

areas of increased vibration for a series of narrow band chirps measured over an area.

Haupt demonstrated that the velocity vibration spectrum of landmines is distinct from



that of the ground and could be exploited to discriminate mines from undisturbed soil as

seen below [1]:

Anti-tank Mines Anti-personnel Mines

M19 mine (3 inch deep) VS60 mine (0.6 inch deep)
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0.06
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VS2.2 mine (3 inch deep) TS50 mine (1 inch deep)

0 500 000 1500 0 500 1000 1500

Frequency (Hz) Frequency (Hz)

Landmine Velocity Profiles
Haupt Standoff Acoustic-to-Seismic Landmine Detection [1]

An analytical explanation for the frequency response of the landmine in

comparison to soil was explored by Ssu-Hsin Yu [33]. Yu modeled the buried landmine

as a series of masses, springs, and dampeners, and solved a system of linear equations for

the amplitude of vibration of the soil surface in response to a force upon its surface [33].

Yu predicted that the frequency response of a landmine would have a broad peak of

varying frequency and a null would exist at approximately the same frequency regardless

of the relative values of the spring constants of the soil and landmine itself [33]. Using

the same methodology, Yu also predicted that porous soil without the presence of a

landmine would lack any such null [33]. Yu exploited the presence of the null for

classification purposes with a merit function he defined as follows [33]:

tLaser on mine I
Laser oFF Mm ie

PLAI= Wrr" METL L MWA

Laser on mine P.ASIC MINE

Laser ot'ff r

i

FLAS INI Laser on mine

Laser off mie



Merit = log(max f,<f<f 2 (M (f))) - log(minf3<f<f (M (f)))

f <-> f 2 - Frequency Range of Pole

f3 +- f 4 - Frequency Range of Null

M(f) - Magnitude of Vibration

As demonstrated by Sabatier, Haupt, and Yu, these classification approaches are

potentially suitable for the detection of landmines in an environment devoid of other

manmade objects [1 2 3 4 33]. Discriminating landmines from rock, soil, and other solid

incompressible objects is not difficult due to the very low amplitude of vibration

experienced by this type of naturally occurring clutter. However manmade objects are

more likely to be manufactured from compressible materials or contain hollow spaces

that can experience acoustic resonances creating false alarms for these classification

techniques. These classification techniques also may experience difficulty detecting

mine-like traps due to differences in their internal components and casings compared to

landmines. Sabatier's discrimination method is largely dependent on the known

approximate size and shape of conventional landmines buried in soil and would likely

experience problems with above ground mines due to the variances in their design. Yu's

merit function based on peaks and nulls would potentially encounter problems with

aboveground landmines based on his own analysis [33].

Haupt's discrimination method that is based on observations of measurements of

simulated landmines and clutter objects seems more promising. Haupt conducted



experimental measurements on simulated landmine variants (Target 1 and Target 2) as

well as a soda can, foam cup, trash bag, and a rock, shown below:

Target 1
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0
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1000
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Frequency (hz)
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15000
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Simulated Landmine Variants and Clutter Objects Velocity Profiles
Collected by Rob Haupt

Due to the compliant nature of the simulated landmine variant casing and its

larger dimensions in comparison to the clutter objects, the velocity profiles of the

landmines were distinct. Conveniently the landmine velocity profiles have similar

characteristics in terms of their range of amplitudes and the wide bandwidth of their

features in comparison to the velocity profiles of the buried landmines shown before.

Specifically, Haupt relied upon a user-controlled algorithm to select features and estimate

their values for Q and modal density with Q and modal density defined as follows:

10

RI I i I



fmax

BW

# peaksModal Denisty =
BW

BW -bandwidth of 3dB 1/ 2 width

f - frequency of feature's peak

This methodology yielded promising results; however, its reliance on user

selected features presents the potential for user bias in the results. An automated

methodology for the selection of peaks within the velocity profiles would negate this

problem. Conveniently, William Wallace, Anthony Kearsley, and Charles Guttman of

the National Institute of Standards and Technology's paper "An Operator-Independent

Approach for Mass Spectral Peak Identification and Integration" addresses this same

problem [19].

Haupt's classification methodology seemed to be the most promising overall in

terms of landmine detection, standoff capability and clutter discrimination. Wallace's

peak picking method is used to create an algorithm to select features of velocity profiles.

Estimated measurements of these velocity profiles were used to classify targets on the

basis of measured characteristics in order to discriminate targets from clutter without user

input or potential bias.

Experimental Objective

Using Haupt's methodology, a proof of concept of the ability to discriminate

landmines from clutter is the main effort of the experimental portion of this project. This

was accomplished experimentally by generating target signatures of simulated landmine

variants as well as various clutter objects that are likely to appear in an urban



environment. A variant of the Wallace peak picking technique was used to identify

features and estimate parameters [19]. Using a Support Vector Machine (SVM)

developed by Steve Gunn of the University of Southampton, a regression analysis of

these estimated measurements is used to correlate specific parameters to the identity of

the target signatures [15]. The SVM uses the results of this regression analysis to

generalize about the characteristics of unknown objects and make predictions. A series

of MATLAB algorithms were created to process experimental data and estimate the

measurements needed for the SVM's regression analysis. The results of this regression

analysis are used to classify objects. The results of the classification are then compared

to ground truth for performance assessment.

Experimental Nomenclature

* Target signature - The velocity profile of the target's response versus the

frequency of the sound source provided the cornerstone of discriminating simulated

landmine variant from clutter and henceforth is referred to as the target signature.

* Trial - The set of experimental measurements required to generate an individual

target signature are referred to as a trial.

* Feature - The target signatures are divided into a series of individual simple

shapes or features.

* Parameters - Estimated measurements of these features are parameters.

* Data set - A series of trials referred to as data sets were collected with the

experimental processes and equipment described below.



Processes and Equipment

Using a standoff acoustic-laser methodology, target signatures for simulated

landmines and urban clutter objects were generated experimentally. Two mockups of

landmines were constructed by the technical support staff of MIT Lincoln Labs. Empty

soda cans, water bottles, bags of trash, rocks, solid aluminum cylinders, and foam cups

were used to simulate urban clutter. The set of data used later specifically consisted of 15

trials for the first simulated landmine designated Target 1, 13 trials for the second

simulated landmine designated Target 2, 4 trials for an intact soda can, 5 trials for a

crushed soda can, 5 trials for an empty water bottle, 5 trials for a foam cup, 6 trials for an

bag of office trash, and 4 trials for a solid aluminum cylinder (see Appendix B).

For each trial, a sound source swept a given range of frequencies inducing

vibration in the object which was measured by a LDV. Voltages from the LDV and a

background microphone were measured with a Wavebook data acquisition device which

allowed the raw data to be processed and analyzed. The diagram below roughly

approximates the experimental configuration of the hardware used for the experiment.

Function Generator

A--I=--



Experimental Setup

The sound source used was an Eminence APT 150, a parametric acoustic array, or

a generic commercial speaker depending on the frequency band and other signal

characteristics desired. An Agilent function generator through a commercial amplifier

output the speaker's input signal. The speaker's input signal consisted of a sinusoid with

linearly increasing frequency from a low frequency to a high frequency and constant

amplitude.

Sound Source

For convenience, an Eminence APT-150 commercial speaker was used as the

sound source in lieu of the Parametric Acoustic Array described earlier. The APT-150

was not able to generate as high an amplitude as the PAA but was adequate for trials

conducted in indoors. In order to ensure the sound source was consistent, an Earthworks

microphone located near the target measured the ground truth sound pressure level. The

frequency spectrum of the microphone measurements from two nonconsecutive trials is

shown below with the separate trials in red and blue respectively.
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It is desirable for the sound source to generate constant amplitude levels so that

the vibration of the target represents intrinsic properties of the target itself rather than

external factors. From the graph above, it is clear that amplitudes of the sound source

varied at different frequencies as well as between trials. The speaker's input signal was

measured to be constant between trials and with changing frequency, so this variation is

attributable to limitations of the speaker itself and the laboratory environment.

Conducting experimental measurements in an enclosed lab space may have contributed to

some of the variance of the sound pressure level due to backscattering off of walls and

other hard surfaces. Additionally, the manufacturer's specifications for the APT-150

show that the sound pressure level generated is not constant with frequency under ideal

conditions as seen below.
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There was no easy way to compensate for the inherent deficiencies of the sound

source shown above. In spite of the limitations of the APT-150, it was adequate for

generating target signatures and convenient for use in an indoor test facility. However,

the APT-150's fluctuating and comparatively low amplitude would be make it ill suited

for the detection of landmines at the long ranges desired of an operational system.

Laser Doppler Vibrometer

The standoff capability of the acoustic/laser methodology is dependent on being

able to measure the vibration of a target from a distance. This is accomplished through

the use of a Laser Doppler Vibrometer. The LDV emits a laser beam onto the surface of

the target. Vibration in the surface of the target produces a Doppler shift in the frequency

of light that is reflected back towards the LDV. The LDV uses a photoelectric cell to

generate a frequency-modulated signal from the reflected light [3]. The Doppler shifted



frequency is used to determine the velocity of vibration in the direction of the beam,

specifically [34]:

2v
fo=

fD - Doppler shift

v - velocity of vibration in direction of beam

2- wavelength

v fD
22

Since this equation yields the velocity of vibration in the direction of the beam,

the LDV and target are oriented so that the surface of the target is as close to normal to

the direction of beam propagation as possible. The voltage of the demodulated signal is

proportional to the velocity of vibration of the surface being measured [3].

The vibration induced in the target by the sound source was measured by a

Polytec PDV- 100 Laser Doppler Vibrometer. The PDV- 100 has a frequency range of 0-

22 kHz covering the frequency band output by the sound source with a velocity

resolution of 0.02/1n [30].
sec Vfrequency

The PDV-100 is rated to a range of 30m but had superior signal to noise

performance at the closer ranges that were used to collect data. Even at a distance of one

meter, limitations on the PDV-100 were suspected to be a source of noise. The PDV-100

operates on 12 volts DC from either a battery or a converter from 120 volts AC, and had

significantly reduced noise levels when using battery power due to the presence of line

noise from wall power. Although PDV-100 battery is rated for four hours of operating



time, the PDV-100's sensitivity degraded after approximately an hour of continuous use

requiring frequent recharging periods [30].

When in focus, the PDV-100 measures the vibration of a single point a few

millimeters in diameter. In order to scan a potential minefield, it would be more useful

to measure a larger area by using a wider beam. Simulating this experimentally requires

leaving the beam out of focus which generates insufficient signal strength. Even with a

narrowly focused beam, the PDV-100 was only able to attain a sufficient signal to noise

ratio when a piece of reflective tape is adhered to the target's surface.

Wavebook Data Acquisitions Device

The data was collected by a Wavebook/516E digitizer. The Wavebook

manufactured by IOTech converts voltages measurements into a digital signal that can be

transferred to a computer via an Ethernet connection with the Waveview software

package. The Wavebook can be triggered to begin collecting data with a variety of

methods; in this instance, a user actuated trigger was used [35]. This creates a lag time

that is eliminated with a data processing technique described later.

The Wavebook supports up to 72 channels of data which is more than sufficient

for the purposes of this experiment where only 2 channels were needed for the

Earthworks microphone and PDV-100 LDV. Furthermore, the Wavebook's sampling

rate of 62.5 kHz/channel surpassed the Nyquist criteria of twice the maximum frequency

of the signal, in this case 20 kHz. For this experiment, a sampling rate of 50 kHz was

used.



Noise Floor

In order to evaluate the amount of noise present, a solid dense object such as a

rock or aluminum cylinder was used as a calibration measurement. The absence of

hollow spaces and very low compliance produced vibration velocity amplitudes in either

the rock or the aluminum cylinder that were several orders of magnitude less than those

in the landmine targets and clutter objects used in the study. An object not subject to

vibration has a response that is equivalent to the noise floor of the experimental set up. In

this case, the noise floor is measured with the response of a solid aluminum cylinder. In

the figure below the noise floor is graphed in black in comparison to the response of an

empty aluminum soda can in red.
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Through a trial and error process, the experimental setup was adjusted to generate

the lowest noise floor possible. One such adjustment that contributed to a lower noise



floor was the elimination of the tripod used for the PDV-100. The PDV-100's tripod

increased the noise floor of the target signatures due to resonances of the tripod. The

tripod was replaced by bolting the PDV-100 to a block of solid aluminum. This lowered

the noise floor; however, some noise was always present with the equipment and

materials available.

Data Collection

Using the above described processes and equipment, data collection was

conducted in a laser optics range at MIT Lincoln Labs. The PDV-100 was focused on a

small piece of reflexite tape adhered to the surface of the target. Reflexite tape was used

to normalize the reflectance on all the study targets. A sound source generated a 120

second long signal with a frequency that increased linearly with time across a range of

frequencies. For this data set, the range of frequencies used was from 10,000 Hz to

20,000 Hz.
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Additional recording time was added to the beginning and end of the 120 second

long signal in order to compensate for a random delay when the Wavebook is triggered to

begin collecting data. The random delay generated is eliminated through a post

processing algorithm which is described in Appendix A.

Typically, the target was placed approximately one meter from the sound source

and oriented so that the reflective tape was as close to normal to both the direction of

sound propagation and the laser beam as possible. Consecutive trials of data for a single

target were collected with the LDV and target reoriented between trials to conduct

measurements on a different point. After several consecutive trials for an individual

target, a single trial of data was collected using a solid aluminum cylinder as the target in

order to assess any changes in the noise floor over the preceding trials. Collecting

measurements with a ground truth of approximately zero vibration from the cylinder

provided a way to assess whether the other trials were corrupted by electronic noise

sources such as draining battery power supplied to the PDV-100 or other experimental

error. The PDV-100 battery was fully recharged following no more than thirty

cumulative trials in order to minimize such error.

Data Processing

The above described methodology generates a time series of raw voltage

measurements from each channel of data from the laser and the microphone to a single

string of data. As previously mentioned, this time series has slack time at the beginning

and end to compensate for the randomized delay in triggering the Wavebook. This slack

time was cropped from the time series by exploiting the fact that the signal generated by

the Agilent function generator outputs a signal with linearly increasing frequency until it



reaches the maximum frequency of the signal. Then the Agilent outputs a signal with

constant frequency equal to the starting frequency of the sweep. The algorithm

'tau_calc.m' (see Appendix A) locates the point in the time series when the frequency of

the microphone data rapidly drops from its high end value to its low start value. This

point is designated the end index. 
End Index from
I- aency snlit of

series signal

Samples x 10
6  Samples x 10

s

The start index is determined by counting backwards from the end index a

specified number of increments in this case 5,700,000 samples. The segments of the

time series before the start index and after the end index are then truncated.

The frequency spectrum is then computed from the Fast Fourier Transform (FFT)

of the newly truncated time series signals from the LDV. This frequency spectrum is

then downsampled by a factor of 100 to compensate for limited computer memory. The

frequency spectrum is equivalent to the responsiveness of the target to a series of sound

frequencies. These frequency spectrums are referred to as target signatures. A sample of

the target signatures of different objects generated from the data set collected by Haupt

and with the above methodology is shown below:
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It can be seen above that the nomenclature target signature is appropriate given

the distinctive shape of the frequency response of the simulated landmines labeled

'Target 1' and 'Target2' in comparison to the clutter objects used. Also the overall

characteristics of the target signatures seem consistent across different frequency bands.

Furthermore, the target signatures associated with Target 1 and Target 2 seem to have a

consistent range of amplitudes within each data set as well as possess wide bandwidth

features in general. The differences in characteristics between target signatures within

these data sets will be exploited to discriminate targets from clutter. Although the

identity of a target signature may be apparent to an observer, in order to eliminate the

possibility of user bias, an algorithm with no operator interaction is required to identify

targets and clutter.

Feature Selection

The objective of an identification algorithm is to predict whether an unknown

object is a landmine or clutter without prior knowledge or user input; this classification is

done by a regression analysis which correlates parameters with the identity of known

objects. A consistent methodology to select and numerically estimate parameters from

the target signatures is needed in order to perform this regression analysis. Using a

derivative form of a peak picking algorithm developed by Wallace for mass spectral data

analysis, features from individual target signatures are identified with the MATLAB

algorithm 'id_compute_trial3_JD.m' (see Appendix A) [19]. This recursive process

begins by creating a line between the start and end points of the target signature. The

point on the original target signature with amplitude furthest in vertical distance from this

line is then identified (as opposed to perpendicular distance as in Wallace version) [19].



This point is then designated a 'strategic point' and used to draw a linear approximation

of the target signature by connecting the start and end points with any intermediate

strategic points in order of their frequency as demonstrated below with a sample target

signature (from Targetl):
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This process continues with additional strategic points selected in this same

manner until all the points of the original target signature are within a certain preset

threshold distance from the red line which connects the strategic points. Successive steps

of this iterative process are shown below:
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Individual features of the target signature are then selected by identifying strategic

points that have amplitude less than a preset selection threshold. These strategic points

are referred to as marker points. The first and last strategic points are also classified as

marker points regardless of their amplitude. The marker point selection threshold and the
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marker points are illustrated in the figure below with the threshold in magenta and the

marker points represented by red boxes.
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The regions between marker points are designated to be part of a single feature of

the target signature. The linear approximation shown in red derived above is used to

approximate the shape of the feature. Parameters of the individual features are then

estimated with the results used to categorize targets and clutter based on a numerical

analysis of estimated parameters rather than a subjective evaluation of the target

signatures by the operator.

Parameter Estimation

In order to accomplish this, a set of parameters that highly correlates to the

identity of the object must be identified and estimated. On casual observation, the

landmine target signatures have a smoother overall shape than the clutter objects. This

0

v



qualitative observation is roughly equivalent to the bandwidths of the features from the

landmine target signatures having greater numerical value than those from clutter objects.

This observation can be used by comparing the values of parameters dependent on

bandwidth such as Q and modal density (Q is the frequency of a feature's maximum

amplitude divided by its bandwidth and modal density is the number of peaks of a feature

divided by its bandwidth). The frequency of the maximum amplitude of each feature

versus the logarithm of Q times modal density is plotted below for the Haupt data set.
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In the above graph, each feature of the data set collected by Haupt is represented

by a box. The red boxes represent individual features from the two target signature trials

and the features from clutter are represented by blue boxes. There is a linear separation

between the landmines and the majority of the clutter (the single exception belonging to a
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broad feature of the rock that can be discounted by its other attributes such as its low

amplitude).

Frequency (hz)

However, this classification methodology did not linearly separate landmines and

clutter for all the sets of data collected. This is attributable to the fact that this data set

had a small number of trials providing few opportunities for an anomalous trial to fail to

separate. Although the target signatures' value for Q times modal density has not provide

a perfect discriminator for landmines and clutter in all cases, it does serve as a foundation

upon which other parameters can be further included.

The SVM uses a training matrix of parameters organized by column and trials

organized by row. The SVM imposes constraints on how these parameters are chosen.

The rows must have the same number of columns, and entries cannot be blank. Below is

a sample training matrix of two trials with three parameters per trial.

Trial 1 Parameter 1 Trial 1 Parameter 2 Trial 1 Parameter 3

Trial 2 Parameter 1 Trial 2 Parameter 2 Trial 2 Parameter 3

Sample Training Matrix of N trials and N parameters

If objects are compared trial by trial, each target signature must be its own row.

This precludes using parameters from every feature per target signature because the

number of features selected per target signature is not constant (as seen in Appendix B).

150



Alternatively each row of the training matrix could correspond to an individual feature

instead of a target signature; however, isolating and comparing individual features

inhibits the classification of objects based on their target signatures overall

characteristics.

In order to conform to the training matrix size restrictions, only the feature or

features with the largest area and highest amplitude from each target signature were used.

Due to their size, these features are less susceptible to noise distortions and better

represent the characteristics of the target signature as a totality. Parameters from these

two features as well as parameters of the target signature as a whole were then estimated

and used to generate that target signature's respective row in the training matrix.

The parameters that were ultimately included in the training matrix were selected

on the basis of whether their inclusion or exclusion marginally increased or decreased the

accuracy of the SVM classification results discussed later. Using this criterion, the

following parameters were selected:

1. Logarithm of the product of Q and modal density for the feature with the

largest area

2. Logarithm of the product of Q and modal density for the feature with the

greatest amplitude

3. Area under the target signature curve

4. Total number of features selected for the entire target signature

5. Weighted average with respect to the bandwidth of each feature of the

logarithm of Q times modal density of all the target signature's features



6. Weighted average with respect to the maximum amplitude of each feature

of the logarithm of Q times modal density of all the target signature's

features

7. Weighted average with respect to the area of each feature of the slope of

each feature from its minima to maxima

These selected parameters were a subset of a larger group of parameters that also

included the bandwidth, modal density, Q, total number of peaks, the maximum absolute

value slope of the feature, the peak value of the feature, the area of the feature, the ratio

of the area of the feature to the area of the entire target signature, and weighted averages

with respect to the features' bandwidth, amplitude, and area of these individual

parameters among others. The MATLAB algorithm 'id_compute_trial3_JD.m' estimated

the value of each of these parameters.

The quality factor or Q of the target physically represents the amount of

dampening present or the number of oscillations that occur before the amplitude of

vibration attenuates to a negligible value [37 38]. In this instance we would anticipate

rigid incompressible targets to have a high Q and the simulated landmines to have lower

Q due to the compliances of their casings. Q was estimated by dividing the frequency of

the maximum value of a feature by its bandwidth. The bandwidth was approximated as

the difference between the frequencies of a feature's marker points.

Q =fm x
BW

BW = fmarker2 - fmarkerl

A graphical representation of the process used to estimate these parameters is

shown below with the relevant frequencies designated with red arrows.
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The feature's modal density is its number of local maxima divided by its

bandwidth. Since the number of local maxima of the target signature is artificially

inflated from noise, the maxima of a linear approximation of the target signature are used

instead. This linear approximation is derived with the same methodology used to select

features but with different threshold values. In this instance each of the features has at

most a single peak designated by the green arrows with the features designated with

orange arrows. In the event a feature does not have any peaks, an endpoint is considered

to be a peak.

Modal Density = Number _ of _ Peaks

BW

This linear approximation is superimposed in green over the previous example.
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The area under the curve for each feature or target signature is represented by the

sum of all its points. The total number of features per target signature is one less than the

number of marker points.

Once parameters relevant to discriminating between targets and clutter have been

identified and estimated, the algorithm 'svm_variables_helper.m' organizes the training

matrix of these parameters and a column vector of binary solutions of one for targets and

zero for clutter for each row of the training set. The SVM performs a regression analysis

of this training set. This analysis is used to classify unknown sets of parameters.

Classification with Machine Learning Algorithm

The regression and classification is performed with a Support Vector Machine

developed by Steve Gunn of the University of Southampton [15]. Regression analysis is

conducted by mapping each row of parameters from the training matrix. These points are

peak



separated into two classes, in this case landmines and clutter, with a binary column

matrix representing ground truth. A boundary region between the two classes is

generated by the algorithm 'svc.m' (see Appendix A) based on user inputs. Unidentified

objects are then classified based on where their parameters are mapped in relation to the

boundary region.

The SVM is better suited for regression and classification of sparse data sets than

methodologies that minimize error in the training set generating a 'best fit' that often

generalizes poorly for unseen data. Structural Risk Minimization minimizes an upper

bound on the expected risk, as opposed to Error Risk Minimization which minimizes the

error on the boundary region around the training data [15]. It is this difference which

equips SVM with a greater ability to generalize, which is the goal in statistical learning

[15]. With a training set that is closer in size to the total population, the difference

between these two regression methodologies would be diminished. For sparse data sets,

the SVM is considered superior [15].

Since the total number of trials is relatively small (59), a 'jack-knife' technique is

used rather than having a dedicated set of trials for training the SVM and another set for

testing [39 40]. Using this technique, the entire set of trials comprises the training set

except for a single trial [39 40]. The lone trial is then classified based on a regression

analysis of all the other trials [39 40]. This 'jack-knife' technique is repeated for every

individual trial.

The algorithm 'svc.m' maps parameters of the training set in n-dimensional space

(n being the number of parameters selected per target signature) and creates a linear,

polynomial, radial, sinusoidal, or other nonlinear boundary region. The individual trial



that is excluded from the training set is classified on the basis of whether the mapping of

its parameters falls within the boundary region. The operator inputs the type of function

for the boundary of the decision region and the bias, which is the amount of tolerance for

error within the training set the support vector machine will tolerate [15]. By allowing

this user input, the SVM methodology takes advantage of the user's intuition of the

degree of likelihood that members of the training data are misclassified. If the user has a

high degree of confidence in the precision of the training set, a higher order function with

low bias should be selected [15]. It is unlikely that the 29 clutter trials accurately reflect

the universe of possible urban clutter target signatures. For this reason, the boundary

regions used were confined to linear or low order polynomials with a high tolerance for

error. In this case, the parameters chosen for the training matrix are believed to separate

the landmine and clutter target signatures linearly with the exception of area under the

curve which is second order.

The type of function chosen for the boundary region, slack, and various threshold

levels for the peak picking algorithm described earlier are all user-defined and influence

the accuracy of the SVM. The algorithm 'svm_avg_butter.m' (see Appendix A)

classifies a data set based on a single set of user-defined values for the threshold levels of

the peak picking function, threshold for selection of marker points, type of function for

the boundary region, and the amount of bias. A trial and error process was used to

determine which combination of user input settings most accurately classified unknown

objects. No individual set of these threshold values and SVM settings was found that

provided a high probability of detection and low false alarm rate.



However by combining the results derived from several different variations of

user settings, the accuracy of these predictions was improved. Adding the binary output

from several iterations of the SVM produces a range of values. This provides an

opportunity for the user to set a decision threshold for classifying an object as a landmine

or clutter. The decision threshold is the number of individual SVM iterations that are

required to independently classify an object as a landmine to predict that an object is a

landmine. Control of the decision threshold allows the operator to trade off probability of

detection for fewer false alarms.

The results from a sparse data set (containing 28 target signatures and 29 clutter

signatures provided in Appendix B) was used to test this methodology. The results from

each trial are compared to ground truth in order to compute probability of detection and

false alarm rate seen in the graph below. In this case ten different SVM iterative runs

were used with each signature given a score from one to nineteen (one corresponding to

all the SVM runs classifying the object as clutter and nineteen being all SVM runs

classifying the object as a target). The decision threshold value that designates the cutoff

score for an object to be classified as a target is user defined.
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It is worth noting that for the highest decision threshold; there was only one false

alarm belonging to the target signature of the fourth trial of the trashbag shown below:

Trashbag Trial 4
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Qualitatively, it seems reasonable for this target signature to be misclassified as

an landmine. This trashbag's target signature has smooth features with high bandwidth

and amplitude values consistent with the landmine target signatures. It does not have any

obvious distinguishing features that are inconsistent with a landmine or possibly

attributable to noise. The trashbag was partially filled with office trash that shifted

between trials making this trial unrepeatable once the bag has been moved. However in

comparison to other trashbag trials, this trial signature did not resemble all the other

trashbag vibration signatures.
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Conclusions

The results of the classification technique demonstrate that the phenomenology

used by Sabatier and Haupt for landmine detection can be used for discrimination in an

urban environment. Operationally, the frequency of landmine encounters is likely to be

orders of magnitude lower than that of urban clutter. This suggests that the lowest false

alarm rate possible is desired; otherwise the system would generate an alarm almost

constantly. Using the highest decision threshold in order to reduce false alarms, the

standoff acoustic/laser methodology yielded a probability of detection of 0.71 and a false

alarm rate of 0.03.

The data processing and classification methodology seem to function well when

used with a data set with high signal to noise and few anomalies. However, generating

the precision measurements this requires was consistently problematic in a laboratory
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environment and would likely be much more difficult on the battlefield. To a large

degree this was caused by poor instrumentation equipment that can be replaced.

The PDV-100 was suspected to be the source of a great deal of noise. The PDV-

100 had observably degraded performance with time. This is possibly due to degrading

battery performance. Furthermore, its lack of sensitivity necessitated the application of

reflective tape to the surface of the targets. The use of reflective tape on the target raises

the possibility that the experimentally generated target signatures are partially a function

of the responsiveness to the sound source of the reflective tape as well as the target. The

tape's influence was minimized by firmly adhering it to as small a surface area as

possible, but without an alternate measurement method where all other factors are kept

constant it is impossible to know the level of noise contributed by the tape. Obviously,

the requirement that the target have a highly reflective surface makes the entire

methodology worthless; therefore, it is necessary to have a more sensitive LDV system as

a prerequisite for an operational system.

Also the sample size of clutter objects that were tested was limited in comparison

to the size of the population. However, the ability to add trials to the training set as the

system continues to be developed would reduce false alarms from anomalous clutter

objects and provide flexibility in engaging emerging threats.

Recommendations

Although the instrumentation equipment with which experimental data was

collected was not as reliable as would be desired in an operational system, this

experiment did demonstrate that the acoustic/laser technique could detect targets and

discriminate targets from clutter with a reasonable degree of accuracy. It is hoped that



further study and better equipment could enhance the performance of the acoustic/laser

detection methodology in these areas.

Using a Parametric Acoustic Array in an operational system would significantly

enhance its capabilities. The PAA would provide increased sound pressure levels that

would generate higher amplitude vibration in the target. This would enhance signal

strength without the need to improve any other sensors or methods used.

In an operational system, a more sophisticated LDV could enhance system

performance by improving the signal to noise ratio. Furthermore, a more sensitive LDV

is necessary to eliminate the need for the target to have a highly reflective surface. The

requirement that the target have a reflective surface negates any operational utility of the

system. Polytec manufactures a more sophisticated LDV system the PSV. The PSV was

tested in the lab and generated improved signal to noise levels in comparison to the PDV-

100. The PSV also had its own self-contained data acquisitions device that would

eliminate the need for the Wavebook which troublingly generated the occasional

corrupted '.dsc' header file. Commercially available multipixel LDV and scanning LDV

systems are already on the market [41 42]. The VibroMet Multi Beam Laser Doppler

Vibrometer manufactured by MetroLaser is potentially suitable for use in the

acoustic/laser landmine detection apparatus [41]. The VibroMet can measure multiple

locations on a target with high sensitivity simultaneously [41]. It is hoped that a military

LDV system would have even superior sensitivity than the PSV or VibroMet systems

providing enhanced signal to noise performance and eliminating the requirement that the

target be highly reflective.



The classification methodology could also be improved upon to enhance

performance. It is likely that there exist clutter objects that were not tested in this

experiment that would generate a false alarm unless additional parameters are used to

supplement the training set.

It is hoped that with the above described improvements an operationally useful

system will emerge.
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Appendix A: MATLAB Code

function [trial,money,pred_all] =
crowd_wisdom_butter_JD(targetlinfo,target2_info,trashbaginfo,cylinder
_info, sodacan info,pepsibottle_info,foamcup info, crushedcaninfo)

combol = (.3 .6 .25; .4 .6 .25];

multiplier4 = .7;
multiplier5 = .7;

money_k = 1;

for j = l:length(combol(:,l))
multiplier1 = combol(j,l);
multiplier2 = combol(j,2);
multiplier3 = combol(j,3);

% multiplier4 = combol(j,4);
% multiplier5 = combol(j,5);

for laser = 1:3
tic
'laser'
laser
'T1'
for i = 1: length(targetl_info)

% i
x_info = targetl_info{i};
[x_id] =

id_compute_butter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

targetl_id{i} = x_id;
end
'T2'
for i = 1: length(target2_info)

% i
x_info = target2_info{i};
[x_id] =

id_compute_butter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

target2_id{i) = x_id;
end
'TB'
for i = 1: length(trashbag_info)

% i
x_info = trashbag_info{i});
[x_id] =

id_compute_butter JD(x_info,multiplierl,mult iplier uliplier3,multipl
ier4,multiplier5,laser);

trashbag_id{i} = x_id;
end
'CY'



for i = 1: length(cylinder info)

x_info = cylinder_info{i};
[xid) =

idcomputebutter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

cylinder_id{i) = xid;
end
'SC'
for i = 1: length(sodacan_info)

x_info = sodacan_info{i};
[xid] =

id_compute butter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

sodacan_id{i) = xid;
end
'PB'
for i = 1: length(pepsibottle info)

% i
x_info = pepsibottle_info{i)};
[xid] =

id_compute_butter_JD (x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

pepsibottle_id{i} = x_id;
end
'FC'
for i = 1: length(foamcup_info)

% i
x_info = foamcup_info{i});
[xid] =

id_compute_butter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

foamcup_id{i} = x_id;
end
'CC'
for i = 1: length(crushedcaninfo)

x_info = crushedcaninfo{i};
[xid] =

id compute butter_JD(x_info,multiplierl,multiplier2,multiplier3,multipl
ier4,multiplier5,laser);

crushedcan_id{i} = x_id;
end

% [FA5 FA6 FA7I FAV3 FAV4 FAVS FM5 FM6 FM7 FMV1 FMV2 33. G4 ,10 BW1 BWV4
Ml]

combo2 = [2 .001 1; 1 .001 1]

for k = l:length(combo2(:,l))
order = combo2(k,1);
slack = combo2(k,2);
if combo2(k,3) == 1

func = 'poly';



else
func = 'lin';

end

[predicted_temp,Pd_temp,False_Alarm_temp] =
svm_avg_ butter(targetlidtarget2tid,taret_idtrashbag_id,foamcup_id,sodacanid,
crushedcanid,pepsibottle_id,cylinder_id,order,slack,func);

prediction(:,j,k,laser) = predicted_temp;
if j == 1 && k ==1

pred_all = predictedtemp;
else

predall = predall+predicted_temp;
end

Pd(j,k,laser) = Pd_temp;
False(j,k,laser) = FalseAlarm temp;

mult_temp = [multiplierl multiplier2 multiplier3
multiplier4 multiplier5]';

trial{j,k,laser) =
struct('mult' ,multtemp, 'pred',predicted_temp, 'Pd',Pd_temp, 'False',Fals
e_Alarm_temp);

for i = 1:length(Pd_temp)
if Pd_temp(i) > .7 && False_Alarm temp(i) < .3

money(moneyk) =
struct( 'mult',multtemp,'deorder'order, 'slack',slack,'func',combo2(k,3))

money_k = money_k+l;
end

end
end

toc
end

end

predall



function [target_identifier] =
id_compute_butter_JD(target_info,multiplierl,multiplier2,multiplier3,mu
Itiplier4,multiplier5,laser)

f = target_info.f;
if laser == 1

data = abs(targetinfo.lasl);
end
if laser == 2

data = abs(targetinfo.las2);
end
if laser == 3

data = abs(target_info.lasl+target_info.las2);
end

data = data';
datatrue = data;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

start_freq = f(1);
startpres = data(l);
startindex = 1;

end_freq = f(length(f));
endpres = data(length(data));
end index = length(f);

strat_freq(l) =
stratpres(l) =
stratindex(l)=

strat_freq(2) =
strat_pres(2) =
strat index(2)=

start_freq;
startpres;
1;

end_freq;
end_pres;
length(f);

00%%%%0 "0000 0 00 0%%%%%00%%%%%%%%00 0%000

temp_index(1)
temp_index(2)

= 1;
= length(f);

max(data);
std(data);

dt = f(2)-f(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ONLY USER DEFINED THRESHOLD SET BELOW:

0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



limit = multiplierl*6e-4;
limitalt = multiplierl*max(data);

if limit > limit alt
limit = limit alt;

end

limit2 = multiplier2*3e-4;
limit2_alt = multiplier2*mean(data);

if limit2 > limit2 alt
limit2 = limit2_alt;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%

i = 3;
counter = max(data);

while counter > limit
line_data = (end_pres-start_pres)/(end_freq-start_freq)*(f-

start_freq)+start_pres;

temp data = abs(data(start_index:end index)-
line data(start index:end index));

temp index(i) = find(temp_data(l:length(temp_data)) ==
max(temp_data),l, 'first')+start_index-1;

tempfreq(i) = f(temp_index(i));
temp_pres(i) = data(temp_index(i));

% SORT TEMP POINTS; REORDER STRATEGIC POINTS

temp index = sort(temp_index);
temp_index;
for j = 1:length(temp_index)

strat_index(j)= temp_index(j);
strat_freq(j) = f(strat_index(j));
strat_pres(j) = data(strat_index(j));

end

%SELECT NEXT SCANNING REGION BASED ON STRAT POINTS INTERVAL HAS
%BIGGEST DISTANCE FROM LINE TO DATA
for j = l:(length(strat_index)-l)

distance(j) = max(abs(data(strat_index(j):strat_index(j+) ) -
(strat_pres(j)+(stratpres(j+l)-strat_pres(j))/(strat_index(j+) -

strat_index(j))*([strat_index(j) ::strat index(j+1)]-
strat_index(j)))));

end



for j = l:length(distance)
if distance(j) == max(distance)

start_index = stratindex(j);
startfreq = f(strat_index(j));
startpres = data(strat_index(j));
endindex = strat_index(j+l);
end freq = f(strat_index(j+l));
end_pres = data(stratindex(j+l));

end
end
i=i+1;

counter = max(distance);
end

strat_freq;
stratpres;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% USE STRATEGIC POINTS TO PICK OUT FUNDAMENTAL SHAPES
% MEASURE BW, NUMBER OF MICROPEAKS, Q, AREA UNDER CURVE

bwthreshold = multiplier3*(max(data));

if bw threshold <
min(data(floor(length(data)/10):floor(length(data)*.9)))

bw threshold = multiplier3*(max(data)-min(data))+min(data);
% 'bw alt'
end

%%%%%%%%%%%%%%%~%%%%%%-%%%%%%%%%%%-%%%%%%%%%%%%%%%o% %

for i = l:length(strat_freq)-l
marker slope(i) = abs((strat_pres(i+l)-

strat_pres(i))./(strat_freq(i+l)-strat_freq(i)));
end

marker_slope(length(marker_slope)+l) =
marker_slope(length(marker_slope));

bw_marker_freq(l) = strat_freq(l);
bw marker index(l) = strat index(l);
bw_marker_pres(l) = strat pres(l);

k = 2;

for i = 2:length(strat_freq)-l
if stratpres(i) < bw_threshold



% if strat_pres(i) < strat pres(i-1) && strat_pres(i) <
strat pres(i+1)

bw_marker_freq(k) = strat_freq(i);
bw marker index(k) = strat index(i);
bw_marker_pres(k) = strat_pres(i);
k=k+1;

% end
end

end

% 'point2'

bw_marker_freq(k) = strat_freq(length(stratfreq));
bw markerindex(k) = strat_index(length(strat_freq));
bw_marker_pres(k) = strat_pres(length(strat_freq));

bw markerindex = sort(bwmarkerindex);
bw_marker_pres = data(bw_marker_index);
bw_marker freq = f(bw_marker_index);

temp(1) = bw_marker_index(1);

k = 2;

for i = 2:length(bw_marker index)
if bw marker index(i) -= bw marker index(i-1)

temp(k) = bw_marker index(i);
k = k+l;

end
end

bw_marker index = temp;
bw_marker_pres = data(bw_marker_index);
bw_marker_freq = f(bw_marker index);
%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%

k = 1;

for i = 2:length(bwmarker_index)
% for j = 1:length(f)

tempmax = max(data(bw_marker_index(i-1):bw_marker_index(i)));
bw max index(k) = find(data(bw marker index(i-

1):bwmarkerindex(i)) == tempmax,1, 'first')+bw_marker_index(i-1)-1;
bwmaxfreq(k) = f(bwmaxindex(k));
bwmax_pres(k) = data(bw_max_index(k));

% end
k = k+l;

end

%%6%%%%%%%%%%%%%%%% %%%%%%%%%- %%%%% %%%%%%-00060%%% o %%60 1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



% USE STRAT PEAK PICKING CODE TO COUN' NUMEER OF PEAKS WITH

DIFFERENT/LOWER

% THRESHOLD

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o%%%%%%%%%
%%%%%-%% %%%%%%%%%%%%%%%%%%%%%% %%%%%% %%%% %%%%. %%%%

startfreq2 = f(1);
start_pres2 = data(l);
start index2 = 1;

end_freq2 = f(length(f));
end_pres2 = data(length(data));
end index2 = length(f);

strat_freq2(l) =
stratpres2(1) =
strat index2(1)=

strat_freq2(2) =
strat_pres2(2) =
stratindex2(2)=

start_freq2;
start_pres2;
1;

end_freq2;
end pres2;
length(f);

temp_index2(1) = 1;
temp index2(2) = length(f);

i = 3;
counter2 = max(data);

while counter2 > limit2
line_data2 = (end_pres2-start_pres2)/(end_freq2-start freq2)*(f-

start_freq2)+start_pres2;
temp data2 = abs(data(start_index2:end index2)-

line data2(start index2:end index2));

temp_index2(i)
max(temp_data2) , 1,

temp_freq2 (i)
temp_pres2(i)

= find(tempdata2 (:length(temp_data2)) ==

'first')+start index2-1;
= f (temp_index2 (i));
= data(temp_index2(i));

% SORT TEMP POINTS; REORDER STRATEGIC POINTS

temp_index2 = sort(temp_index2);
temp_index2;
for j = l:length(temp_index2)

strat_index2(j)= temp_index2(j);
strat_freq2(j) = f(strat_index2(j));
stratpres2(j) = data(strat_index2(j));

end

%SE,LECT NEXT SCANNING REGION BASED ON STRA?' POINTS INTERVAL HAS



%BIGGEST DISTANCE FROM LINE TO DATA

for j = 1:(length(strat_index2)-1)
distance2(j) = max(abs(data(strat_index2(j):strat_index2(j+1) ) -

(strat_pres2 (j) +(strat_pres2 (j+1) -strat_pres2 (j) )/ (strat_index2 (j +1) -
strat_index2 (j))*([strat_index2 (j): stratindex2(j+1)]-
strat_index2(j)))));

end

for j = 1:length(distance2)
if distance2(j) == max(distance2)

start_index2 = strat_index2(j);
start_freq2 = f(strat_index2(j));
start_pres2 = data(strat_index2(j));
end index2 = strat index2(j+l);
end_freq2 = f(strat_index2(j+l));
end_pres2 = data(strat_index2(j+1));

end
end
i=i+1;

pause
counter2 = max(distance2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0000. .%% %.% %o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.... %%...% %%6o%

num_peaksl = zeros(size(bw_max_freq));

for k = 1:(length(bw marker index)-l)
for i = 2:(length(strat index)-l)

if strat_pres(i) > stratpres(i-1) && strat_pres(i) >
strat_pres(i+l) && f(strat_index(i)) > bw_markerfreq(k) &&
f(strat_index(i)) < bw_marker_freq(k+1)

num_peaksl(k) = num_peaksl(k)+1;
end

end
end

num_peaks2 = zeros(size(bw_max_freq));

for k = 1:(length(bw_markerindex)-1)
for i = 2:(length(strat index2)-1)

if strat_pres2(i) > strat_pres2(i-1) && strat_pres2(i) >
strat_pres2(i+l) && f(strat_index2(i)) > bw_markerfreq(k) &&
f(strat index2(i)) < bw_marker_freq(k+1)

numpeaks2(k) = num_peaks2(k)+1;
end

end
end

%%%%%%%%%.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%0000 0 00 000 0000 0000 000 0000 0000 000



%%%%%%%%%%%8&%%%%%%%o%%%%%O%%%%%%%%.%%%%%%%%%

k = 1;

for i = 2:length(bw_marker index)
bw(k) = bw_marker_freq(i)-bw_marker_freq(i-1);
Q(k) = bw_max freq(k)/bw(k);
modal_densl(k) = num_peaksl(k)/bw(k);
modal_dens2(k) = num_peaks2(k)/bw(k);
if modal densl(k) == 0

modaldensl(k) = 1/bw(k);
end
if modal dens2(k) == 0

modaldens2(k) = 1/bw(k);
end
k = k+l;

end

for k = 1:length(bw_maxfreq)
areal(k) = sum(data(bw marker index(k):bw marker index(k+l)))*dt;

end

%%%%%-%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%

for k = 1:length(bwmaxfreq)
spikinessl(k) = 0;
spikiness2(k) = 0;
if (bw_max_freq(k)-f(bw_marker index(k))) == 0

spikinessl(k) = (bw_max_pres(k)-data(bw_marker_index(k+l)))./(-
bw_max_freq(k)+f(bw_marker_index(k+l)));

else
spikiness2(k) = (bw_max pres(k)-

data (bw_marker_index(k)))./(bw_max freq(k)-f(bw_markerindex(k)));
end
spikiness(k) = max([spikinessl(k) spikiness2(k)]);

end

for k = 1:length(bw_maxfreq)
if bw_max pres(k) == data(bw_marker_index(k+l))

noisiness(k) = (bw_max_pres(k))./(data(bw_marker_index(k)));
end
if bw_maxpres(k) == data(bw_marker_index(k))

noisiness(k) = (bw_max_pres(k))./(data(bw_marker_index(k+l)));
end
if bw_maxpres(k) -~= data(bw_marker index(k)) && bwmax_pres(k) -=

data(bw marker index(k+l))



noisiness(k) =
(bw_maxpres(k))./(data(bw marker index(k+l))/2+data(bw marker index(k)
)/2);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%ooo%%%%%%%%%%%%%.%%%............oooo

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%
%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0 . . % %0 0. 0 0 0 .... %0. 0. 0. . .08 0. 0 % 00. 0. 0 % 0. 0. 0. 0 .0 0 0 0 0

area_threshold = multiplier4*max(areal);
ampthreshold = multiplier5*max(data);

bw width threshold = 100;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%....

garea = sum(data)*dt;
gstd = std(data);
g_num peaksl = sum(num_peaksl);
g_num_peaks2 = sum(num_peaks2);
gmodal_densl = g_num_peaksl/(max (f)-min(f));
g_modal_dens2 = g_num_peaks2/(max(f) -min(f));
g_max_pres = max(data);
g_max_new = max(data) ./max(data_true);
g_num_pointsl = length(strat_freq);
g_num_points2 = length(strat_freq2);

% %%~ %~%%%%% %%%%% %% %%%%%%%

k = 1;

f valuel = [1;
f value2 = [];
f value3 = [I;
f value4 = [];

f value6 = [];
f value7 = [];
f value8 = [];

f freq = [];
fQ = [];
f bw= [];
f modal densi = [];
f modal dens2 = [];
f area = [];
f_spikiness = [];
f noisiness = [];
f_num_peaksl = [];



fnum_peaks2 = [];
fmax_pres = [];

for i = 1: length(bw_max_freq)
% if bw_max_pres(i) > bw_threshold
% if spikiness(i) > spikiness_threshold

if areal(i) >= area threshold jI bwmax_pres(i) >=

amp_threshold
% if bw(i) > bw width threshold

f_freq(k) = bwmax_freq(i);
f bw(k) = bw(i);
f_Q(k) = Q(i);
f modal densl(k) = modal densl(i);
f modal dens2(k) = modal dens2(i);
fspikiness(k) = spikiness(i);
f noisiness(k) = noisiness(i);
f area(k) = areal(i);
f_num_peaksl(k) = num peaksl(i);
f_num_peaks2(k) = num_peaks2(i);
f_maxpres(k) = bw_maxpres(i);

f valuel(k) =
f value2(k) =
f value3(k) =
f value4(k) =

Q(i).*modal densl(i);
Q(i) .*modal dens2(i);
lO*log(Q(i). *modal_densl(i));
10*log(Q(i).*modal_dens2(i));

f_value5(k) = (areal(i)./g_area);
f value6(k) = (bw_max_pres(i)./max(data));
f value7(k) =

(areal(i)./g_area).*(bw_max_pres(i)./max(data));

k = k+l;
end

end
end

end
end

g_num_features = k-l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%

id bw = bw/sum(bw);
id_area = areal/g_area;
idmax = bwmaxpres/max(data);

%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%% %% %

a_bwQ = sum(Q.*idbw);
a bw modal densl = sum(modal densl.*id bw);
a bwmodaldens2 = sum(modaldens2.*idbw);
abwspikiness = sum(spikiness.*id_bw);
a bw noisiness = sum(noisiness.*idbw);



a bw valuel = sum(Q.*modal densl.*id bw);
a bw value2 = sum(Q.*modal dens2.*id bw);
a bw value3 = sum(l0*log(Q.*modaldensl).*id_bw);
a bwvalue4 = sum(l0*log(Q.*modal_dens2).*id_bw);

a areaQ = sum(Q.*idarea);
a area modal densi = sum(modal densl.*id area);
a area modal dens2 = sum(modal dens2.*id area);
aareaspikiness = sum(spikiness.*id_area);
a area noisiness = sum(noisiness.*id area);

a area valuel = sum(Q.*modal densl.*id area);
a area value2 = sum(Q.*modal dens2.*id area);
a areavalue3 = sum(10*log(Q.*modal_densl) .*idarea);
a areavalue4 = sum(10*log(Q.*modal_dens2).*id_area);

a maxQ = sum(Q.*idmax);
a max modal densl = sum(modal densl.*id max);
a max modal dens2 = sum(modal dens2.*id max);
a_max_spikiness = sum(spikiness.*id max);
a max noisiness = sum(noisiness.*id max);

a max valuel = sum(Q.*modal densl.*id max);
a max value2 = sum(Q.*modal dens2.*id max);
a maxvalue3 = sum(l0*log(Q.*modal_densl).*id_max);
a max value4 = sum(l0*log(Q.*modal_dens2).*id max);

marker data =
struct ( 'mfreq',bw_marker_freq, 'mpres',bw_marker_pres, 'slfreq',strat_fre
q,'slpres',strat_pres, 's2freq',strat_freq2,'s2pres',strat_pres2);

global_data =
struct('area' ,g_area, 'std',g_std,'peaksl',g_num_peaksl, 'peaks2',g_num_p
eaks2,'modaldensl',g_modal_densl,'modaldens2',g_modal_dens2, 'max',g_max

_pres, 'loop',g_max_new, 'num_pointsl ',g_num_pointsl, 'num_points2',g_num_
points2, 'features',g_numfeatures);

feature data =
struct('freq',f_freq, 'Q',f Q,'bw',fbw, 'modaldensl',f_modal_densl, 'moda
idens2',f modal dens2,'area',f area, 'spike',f_spikiness, 'noise',fnoisi
ness,'numpeaksl',f_num_peaksl, 'numpeaks2',f_num_peaks2, 'max',f_max_pres
,'valuel',f valuel,'value2',f value2,'value3',f value3,'value4',f value
4,'value5',f value5,'value6',f value6,'value7',f value7);

averagebw_data =
struct('Q',a bw Q,'modaldensl',a bw modal densl, 'modaldens2',a bw modal
dens2, 'spike',a_bw spikiness, 'noise',a bw noisiness, 'valuel',abwvalu

el,'value2',a bw value2,'value3',a bw value3,'value4',a bw value4);
average_area_data =
struct('Q',a area Q,'modaldensl',a area modal densl, 'modaldens2',a area
modaldens2, 'spike',aarea spikiness, 'noise',a area noisiness, 'valuel'



,a_area_valuel,'value2',a_area_value2,'value3',aarea value3,'value4',a
_areavalue4);
average max data =
struct('Q',a_max_Q,'modaldensl',amaxmodal densl,'modaldens2',a max mo
dal_dens2,'spike',a max spikiness,'noise',a max noisiness,'valuel',ama
x_valuel,'value2',a_max_value2,'value3',amaxvalue3,'value4',amaxval
ue4);

average_data =
struct('bw',average bwdata,'area',average areadata,'max',averagemax_
data);

target_identifier =
struct('marker',marker_data,'feature',featuredata,'global',globaldata
,'average',average data);

6 % % P % % % % %% 6%%% % % % % .% % 6 S % % % 9 % 16 % %?6% % % 6
smoother = 3;
nuclear = 250;

f true = f;
datatrue = data;

% working siagnal

if length(strat_freq2) > nuclear
data = binavg(data,smoother);
f = f(l:smoother:length(data)*smoother);
'nuke'
close all

[target_identifier] =
id_compute_loop_new_JD(f,data,ftrue,datatrue,multiplierl,multiplier2,
multiplier3,multiplier4,multiplier5,global_data);
end



function [predicted,Pd,FalseAlarm] =
svm_avg_butter(targetl_id,target2_id,trashbag_id,foamcup_id, sodacanid,
crushedcan_id,pepsibottle_id,cylinderid,order,slack,func)

[predicted_temp,alpha,bias,variables,Y,Pd_temp,False_Alarmtemp] =
svm_tally_order_butter(targetl_id,target2_id,trashbagid,foamcup_id,sod
acan_id,crushedcan_id,pepsibottle_id,cylinder_id,order,slack,func);
predicted = predicted_temp;
Pd = Pdtemp;
False_Alarm = False_Alarm temp;



function [predicted,alpha,bias,variables,Y,Pd, False Alarm] =
svm_tally_order_butter(targetl_id,target2_id,trashbag_id,foamcup_id,sod
acanid,crushedcanid,pepsibottle_id,cylinderid,order,slack,func)

global pl
pl = order;

[variables,trial,result] =
svm_id_process_butter_JD(targetl_id,target2_id,trashbag_id,cylinder_id,
sodacan_id,pepsibottle_id,foamcup_id,crushedcanid);

Y=result;

for i = l:length(result)
if i == 1

[nsv alpha bias] =
svc(variables(i+l:length(result),:),Y,func,slack,O);

predicted =
svcoutput(variables(i+l:length(result),:),Y,variables(i,:),func,alpha,b
ias,0);

end
if i == length(result)

[nsv alpha bias] = svc(variables(l: length(result)-
1,:),Y,func,slack, );

predicted = svcoutput(variables(l:length(result)-
1,:),Y,variables(i,:),func,alpha,bias,O);

end
if i -=1 && i -= length(result)

[nsv alpha bias] = svc(variables([l:i-I
i+l:length(result)],:),Y,func,slack,O);

predicted = svcoutput(variables([l:i-i
i+l:length(result)],:),Y,variables(i,:),func,alpha,bias,0);

end
charlie(:,i) = alpha;
delta(i) = bias;
echo(i) = predicted;

end

predicted = echo;
alpha = charlie;
bias = delta;

targets = 0;
clutter = 0;

t_right = 0;
twrong = 0;
c_right = 0;
cwrong = 0;

for i = l:length(result)
if result(i) == 1

targets = targets+l;
if predicted(i) == result(i)



tright = t_right+l;
else

t_wrong = twrong+l;
end

end
if result(i) == -1

clutter = clutter+l;
if predicted(i) == result(i)

c_right = c_right+l;
else

c_wrong = c_wrong+l;
end

end
end

predicted = predicted';

[result predicted trial];

Pd = t_right/targets;

False_Alarm = cwrong/clutter;



function [variables,trial,result] =
svmidprocess_butter_JD(targetlid,target2 id, trashbagid,cylinder_id,
sodacan_id,pepsibottle_id,foamcup_id,crushedcanid)

[train variables,train trial,train result,test variables,testtrial,tes
t result] =
svmidprocess_2008_JD(targetlid20,target2 id20,trashbag_id20,cylinder

_id20,sodacan_id20,pepsibottle_id20,foamcup id20,crushedcanid20)

% [test variables,test trial,test result] =
svmid_process_2008_JD(targetlidl4,target2_idl4,trashbag_idl4,cylinder
_idl4,sodacan_idl4,pepsibottle_idl4,foamcup idl4,crushedcan idl4)

% [test variables,test trial,test result] =
svmdata_2008_JD(targetl_id,target2_id,trashbag_id,plate_id,sodacan_id,
pepsibottle_id,foamcupid)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% %%%%%%%%%%%%%%%

x variables = [];
x trial = [];
x result = [];

x_id = targetl_id;

k = 1;
for i = l:length(x_id(:))
% for j = l:length(x_id{i}.feature.freq)

xvariables(k,:) = svm variables_helper(x id{i});

x trial(k) = i;
x result(k) = 1;
k = k+l;

% end
end

targetl_ variables = x variables;
targetl_trial = x_trial;
targetlresult = x_result;

x variables = [];
x trial = [];
x result = [];

x_id = target2_id;

k = 1;



for i = 1:length(x_id(:))
for j = i:length(x_id{i}.feature.freq)
x_variables(k,:) = svm_variableshelper(x_id{i});

x trial(k) = i;
x result(k) = 1;
k = k+l;

% end
end

target2 variables = x variables;
target2_trial = x_trial;
target2_result = x_result;

x variables = [];
x trial = [];
x result = [];

x_id = cylinder_id;

k = 1;
for i = l:length(x_id(:))
% for j = 1:iength(x_id{i}.feature.freq)

x_variables(k,:) = svmvariables_helper(x_id{i});

x trial(k) = i;
x result(k) = -1;
k = k+l;

% end
end

cylinder variables = x variables;
cylinder trial = x_trial;
cylinder result = x_result;

x variables = [];
x trial = [];
x result = [];

x id = sodacan id;

k = 1;
for i = l:length(x_id(:))
% for j = 1:length(x_id{i}.feature.freq)

xvariables(k,:) = svmvariables helper(xid{i});



x trial(k) = i;
x result(k) = -1;

k = k+l;

% end
end

sodacan variables = x variables;

sodacan trial = x trial;

sodacan result = x result;

x variables = [];
x trial = [];
x result = [];

x id = crushedcanid;

k = 1;
for i = l:length(x_id(:))
% for j = 1:length(x_id{i}.feature.freq)

x_variables(k,:) = svm_variables_helper(x_id{i});

x trial(k) = i;
x result(k) = -1;

k = k+l;

% end
end

crushedcan variables = x variables;

crushedcan trial = x trial;
crushedcan result = x result;

x variables = [];
xtrial = [];
x result = [];

x_id = foamcupid;

k = 1;
for i = l:length(x_id(:))
% for j = l:length(x_id{i}.feature.freq)

x_variables(k,:) = svm_variables_helper(x_id{i});

x trial(k) = i;
x result(k) = -1;



k = k+l;
% end
end

foamcup variables = x variables;

foamcup trial = x_trial;

foamcup_result = x_result;

x variables = [];
x trial = [];
x result = [];

x_id = trashbagid;

k = 1;

for i = l:length(x_id(:))
% for j = 1:length(xid{i).feature.freq)

x_variables(k,:) = svm_variables_helper(x_id{i});

x trial(k) = i;

x result(k) = -1;

k = k+l;

% end
end

trashbag_variables = x_variables;
trashbag_trial = x_trial;
trashbag_result = x_result;

x variables = [];
xtrial = [];
x result = [];

x_id = pepsibottleid;

k = 1;

for i = l:length(xid(:))
% for j = 1:length(x_id{i}.feature.freq)

x_variables(k,:) = svm_variableshelper(x_id{i});

x trial(k) = i;
x result(k) = -1;

k = k+l;

% end
end



pepsibottlevariables = x variables;
pepsibottle trial = x trial;
pepsibottle result = x result;

x variables = [];
x trial = [1;
x result = [1;

%%%%%%%%%% % ~~%%%% %....%%%%%%%%%%%
%%5

n=l;
m=l;

xvariables = targetl_variables;
x_trial = targetl_trial;
x_result = targetl_result;

for i=l:length(x_trial)
variables(n, :)=xvariables(i,:);
trial(n,l)=x trial(i);
result(n,l)=xresult(i);
n=n+l;

end

xvariables = target2_variables;
x_trial = target2_trial;
x_result = target2_result;

for i=l:length(xtrial)
variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);
result(n,l)=x result(i);
n=n+l;

end

xvariables = pepsibottle variables;
x_trial = pepsibottle_trial;
x_result = pepsibottle_result;

for i=l:length(xtrial)



variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);
result(n,l)=xresult(i);
n=n+l;

end

x variables = trashbag_variables;
x_trial = trashbag_trial;
x_result = trashbag_result;

for i=l:length(x trial)
variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);
result(n,l)=x result(i);
n=n+l;

end

x variables = foamcup_variables;
x_trial = foamcup_trial;
x result = foamcup_result;

for i=l:length(x trial)
variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);
result(n,l)=x result(i);
n=n+l;

end

x variables = crushedcan variables;
x trial = crushedcan trial;
x result = crushedcan result;

for i=l:length(xtrial)
variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);
result (n,l)=xresult(i);
n=n+l;

end

x variables = sodacan variables;
x trial = sodacan trial;
x result = sodacan result;

for i=l:length(xtrial)
variables(n,:)=x variables(i,:);
trial(n,l)=x trial(i);



result (n,l)=xresult(i);
n=n+l;

end

x_variables = cylinder variables;
x_trial = cylinder_trial;
x_result = cylinder_result;

for i=l:length(xtrial)
variables(n, :)=x variables(i,:);
trial(n,l)=x trial(i);
result(n,l)=x result(i);
n=n+l;

end



function [x_variables] = svmvariables_helper(x_id)

for i = 1:length(x_id.feature.freq)
if xid.feature.area(i) == max(xid.feature.area)

'freq', 'Q', 'bw', 'modaldensl', 'modaldens2', 'area','spike', 'noise','numpe
aksl','numpeaks2','max','valuel','value2','value3','value4', 'value5','v
alue6', 'value7'

FAl = xid.feature.area(i);
FA2 = xid.feature.modaldensl(i);
FA3 = xid.feature.modaldens2(i);
FA4 = x_id.feature.spike(i);
FA5 = x id.feature.noise(i);
FA6 = x_id.feature.numpeaksl(i);
FA7 = x_id.feature.numpeaks2(i);
FA8 = xid.feature.max(i);

FAV1 = x id.feature.valuel(i);
FAV2 = x id.feature.value2(i);
FAV3 = x id.feature.value3(i);
FAV4 = x id.feature.value4(i);
FAV5 = x id.feature.value5(i);
FAV6 = x id.feature.value6(i);
FAV7 = xid.feature.value7(i);

end

if x id.feature.max(i) == max(x id.feature.max)

'freq', 'Q','bw', 'modaldensl', 'modaldens2','area','spike','noise','numpe
aksl','numpeaks2','max','valuel','value2','value3','value4','value5','v
alue6', 'value7'

FM1 = x id.feature.area(i);
FM2 = x id.feature.modaldensl(i);
FM3 = xid.feature.modaldens2(i);
FM4 = x_id.feature.spike(i);
FM5 = xid.feature.noise(i);
FM6 = x_id.feature.numpeaksl(i);
FM7 = xid.feature.numpeaks2(i);
FM8 = x id.feature.max(i);

FMV1 = x id.feature.valuel(i);
FMV2 = x id.feature.value2(i);
FMV3 = x id.feature.value3(i);
FMV4 = x id.feature.value4(i);
FMV5 = xid.feature.value5(i);
FMV6 = x id.feature.value6(i);
FMV7 = x id.feature.value7(i);

end
end



'area ','std' pe'as peeaks2 ,'modaldens' , 'modaldens2 ''max pre ',' ma
x new','um Cc intsl ', 'num points2', 'features')

G1 = x_id.global.area;
G2 = x_id.global.std;
G3 = x_id.global.peaksl;
G4 = xid.global.peaks2;
G5 = x_id.global.modaldensl;
G6 = xid.global.modaldens2;
G7 = xid.global.max;
G8 = x_id.global.loop;
G9 = x_id.global.num_pointsl;
G10 = x_id.global.num_points2;
G11 = x id.global.features;

'Q', 'modalens , ldens2','sp E ,'  ois ' ,'val u'l , 'vaiue , 'value
'value4' ;

BW1 = x id.average.bw.Q;
BW2 = x_id.average.bw.modaldensl;
BW3 = x_id.average.bw.modaldens2;
BW4 = x_id.average.bw.spike;
BW5 = xid.average.bw.noise;

BWV1 = x id.average.bw.valuel;
BWV2 = xid.average.bw.value2;
BWV3 = x_id.average.bw.value3;
BWV4 = x_id.average.bw.value4;

Al = x id.average.area.Q;
A2 = x id.average.area.modaldensl;
A3 = x id.average.area.modaldens2;
A4 = xid.average.area.spike;
A5 = x id.average.area.noise;

AV1 = x id.average.area.valuel;
AV2 = x id.average.area.value2;
AV3 = xid.average.area.value3;
AV4 = x_id.average.area.value4;

M1 = x id.average.max.Q;
M2 = x_id.average.max.modaldensl;
M3 = x id.average.max.modaldens2;
M4 = x_id.average.max.spike;
M5 = xid.average.max.noise;

MV1 = x id.average.max.valuel;
MV2 = x id.average.max.value2;
MV3 = x_id.average.max.value3;
MV4 = x id.average.max.value4;



% x variables = [FA5 FA6 FA7 FAV3 FAV4 FAV5 FM5 FM6 FM7 FMV1 FMV2 Gl G3

G4 G7 G10 G11 BW1 BWV4 Ml];

x variables = [FA4 FM4 G1 G11 G7 BW4 A4 AV4 MV4] ;
% feature area value 4 feature max value 4 global area # features, BW

avg 4
% area spike avg area 4 mass avg 4

% x variables = [FAV1 FMVI BWVI AV1 MVI FAV2 FMV2 BWV2 AV2 MV2 G1 G2 G3

G4 G10 Gill];

% x variables = [FAVI FMV1 BWVI FAV2 FMV2 BWV2 GI G2 G7];



function [ts_new,start_marker,end_marker,problem] =
tau calc 2008 JD(ts,fl)

fs = 50000;

marker = floor(.95*length(ts));

if marker > fs*120
marker = fs*120;

end

temp = 0;
temp2 = 0;
temp3 = 0;
i = marker;

problem = 0;

while temp == 0
k = 1;
1 = 1;

if i > length(ts)-2
temp = 1;
problem = 1;
'Problem! '
marker2 = i;

end

if ts(i) > ts(i+l) && ts(i) > ts(i-1)
while temp2 == 0

if ts(i+k) >= ts(i+k+l) && ts(i+k) >= ts(i+k-l)
temp2 = 1;
distance = k;

else

k = k+l;
end

end
end

step = floor(fs/fl)-1;

if k > step
temp = 1;
marker2 = i;

end

temp2 = 0;
temp3 = 0;
i = i+1;

end



endmarker = marker2;

backstep = floor(.99*6000000);
start marker = end marker-backstep+l;

if start marker < 1

start marker = 1;
problem = 1;

end

ts new = ts(start marker:end marker);



function [f,p] = accel_FFT(ts, dt, bf, accel, cf, ph, nf);

%[f,pl = accel FFT(ts, dr, bf,
.ff p] accel FFT(ts, 1/ '22e3~i ! r.D.. ;?.. ~.. ,

accel, of,
" 11000,]

%OUTPUTS
%f = desired frequency range

%p = fft output (velocity amplitude or acceleration)

%ts = time series
%dt = data samipling time step
%bf = desired output frequency band
%accel = t, in.tegrate acceleration to velocity in time domain
accel v, take fft of acceleration, then divide by 2pif in freq

do ma in
%accel = a, fft pf acceleration
%accel = 0, compute instantaneous vel.ocit in time domain.
%ph = phase flag, 1 = p out in complex format:, anything else g.ives
absoiuIe
%value

%cf = cf*ie-3; %multiply by calibration factor (which needs t be
convert ed from mV to I,/s^ 2C

ts = detrend(ts,'linear');
ts = (ts-mean(ts))/cf; %acceleration
if accel == 't'

ts = dt*cumsum(ts); %integrate acceleration to get velocity .
>m'icrons/ sec

%[b,a]=butterV3,.05, high')
%ts :- filtfilt (b,a,ts);
%plot (t.s)
%pause

end
if accel == 'o'

ts = dt*ts;
end

nSamp = length(ts);

if nf == 0
N = fftLength(nSamp);
ts = ts(nSamp-N:nSamp);
nfft = N; %over sample

else
N = nSamp;
nfft = nf;

end

Tmax = N*dt;

i win = boxcar nff t)
6 s,f] - pwelch(ts,win,nfft/2,nfft 1/dt;,
% logiog(f,abs(s 

ph, nf);
'v', 104 4



% pause

if length(bf) > 2
window = hanning(length(ts));
ts = ts.*window/.5;

end

stemp = fftshift(fft(ts,nfft) ) *dt/Tmax;
f = [0:-l+length(stemp)/2] / (dt*nfft);
s = 2*stemp(l+length(stemp)/2 : length(stemp));

if ph == 1
p = s;

else
p = abs (s);

end

if accel == 'v'
p = p./(2*pi*fl);

end

if bf(2) ==
return

end

if bf(1)
fl =

== 0

1;
else

fl = findindex(f,bf (1));
end

if bf(2) > f(length(f))
fh = length(f);

else
fh = findindex(f,bf(2));

end

f=f(fl:fh);
p=p(fl:fh);
06 ----------------------------------------- - - - - - - - - - - - - - -

function findex = findindex(f,f0);

%findex = findindex(f,f0);

= max(find(f<=f0));
= min(find(f>=f 0)) ;
= abs(f(fl)-fO);
= abs(f(fh)-fO);

if(dl < d2),
f index =

else

end

f l;

f index = fh;



function N = fftLength(nm);

ntemp = 0;

k = 0;

while ntemp < nm

ntemp = 2^k;

k=k+l;
end

N = 2^(k-2);

if N > 2^22

N = 2^22;

end

88



function ch = get_channel(file_in, chan, gain, sample_rate, nchannels);

%ch = get_channel(file_in, chan, gain, sample_rate, nchannels);

%function to grab a channel of data from a .bin file

%read entire vector unless otherwise hardcoded
file = dir(file_in);
bytes_per_samp = 2;
tot bytes = file.bytes;
time_end = tot_bytes/bytes_per_samp/(samplerate*nchannels);
timestart = 0;

for i = 1:length(chan)
[data, errout] = readiotech(file_in, chan(i), time_start,

time_end, nchannels, sample_rate);
ch(:,i) = data/2^16*gain; %V
clear data

end

%[psd, freq] = periodogram(data,
blackman(prod(size(data))),prod(size(data)),sample rate);

%plot(freq, 10*lo10gl(psd));

%specgram(data, samplerate, sample_rate)
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