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Abstract

This thesis proposes a novel structure for robotic navigation with minimal sensing
abilities called the Probabilistic Gap Navigation Tree (PGNT). In this navigation ap-
proach, we create a topological map of the environment based on a previously created
Gap Navigation Tree (GNT) [40]. The "gap" in the gap navigation algorithm repre-
sents a discontinuity in the robotic field of vision. The robot is able to use the gaps
to represent its world as a tree structure (GNT), in which each vertex corresponds
to a gap. Ideally, the robot navigates in the world by following the tree branches
to its desired goal. However, due to the sensor uncertainty, the robot may detect
discontinuities when there are none present, and vice versa. The Probabilistic Gap
Navigation Tree compensates for the measurement noise by sampling from a distri-
bution of the gap navigation trees to obtain the most likely tree given the sensor
measurements, similar to the particle filtering algorithm used in Monte Carlo local-
ization. Therefore, the PGNT allows navigation in an unknown environment using a
realistic rangefinder, as opposed to the ideal sensor model assumed previously. We
demonstrate the ability to build a PGNT in a simulated environment.

Thesis Supervisor: Nicholas Roy
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Autonomous robots have many useful applications, including search and rescue mis-

sions, surveillance operations, and deep-sea or extraterrestrial exploration, among

others. In order to perform these tasks, whether to collect data from the surface of

Mars or to locate a hostage inside a remote building, the robot needs to have an

accurate representation of its surrounding world and an efficient navigation scheme

within this environment. This thesis proposes a mapping approach for a robot ex-

ploring an indoor environment with limited onboard sensing. We create a minimal

representation of an indoor environment that the robot constructs in real-time using

probabilistic techniques commonly used for autonomous navigation. Section 1.1 of

this chapter introduces the problem of autonomous mapping with limited sensing and

motivates the utility of our representation. Section 1.3 describes the key innovation

to mapping presented in this thesis, and section 1.4 outlines the roadmap for the rest

of this document.

1.1 Problems in Autonomous Mapping

One of the fundamental problems within autonomous navigation is the inherent un-

certainty in the robot's position, which increases as it moves through the environment.

In the absence of external global position devices (such as GPS), the robot may have

to rely upon dead-reckoning and internal sensors, a process which results in accumu-



lation of error over time. A map of the environment that is available to the robot a

priori can be used with environmental sensing to provide absolute position fixes and

reduce the error from dead-reckoning. In most applications, a map of the environment

is not readily available, so the robot has to construct one using its onboard sensors

and computational resources, either during exploration, or later in post-processing.

The kinds of maps created by a robot can vary from a topological map, which is a

crude representation that defines connectivity between different places in an environ-

ment [2, 6, 19, 31], to a highly dense (metric) representation that can model walls

as polyhedrons, as finely discretized segments (feature based representation), or as

occupancy grids (gridmap representation) ([7, 27, 37] and many others).

Metric approaches create detailed environmental representations that allow the

robot to disambiguate its position within a global coordinate frame. For example,
figure 1-1 shows a detailed three dimensional map of a corridor based on scan data

obtained by a robot using two SICK laser rangefinders [37]. The metric approaches

can often capture the detailed structure of the environment, and can create high

fidelity models which allow to disambiguate structure and aid in closing the loop

in large cyclic environments. The density of the representation can capture various

landmarks, enabling the robot to easily recognize a place that it has visited previously.

The fine resolution of the metric maps can also be their weakness, creating enormous

complexity. Some metric-based approaches require a very large number of sensor

readings to construct a map and to reliably update robot's position [35].

Figure 1-1: A three dimensional map of a corridor, which was originally obtained
using scan matching dense data from two SICK laser rangefinders. Obtained from
Thrun et al [37].
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The desire for high resolution maps has led to the development of mapping tech-

niques that rely on everything from expensive, high precision laser rangefinders [11],

sonar arrays [22], GPS, monocular and stereovision cameras [5] and so on. However,

these sensors are subject to errors, often referred to as measurement noise. Global

positioning using GPS is not always available for error correction, as the signal can

be lost due to interference in densely populated urban environments or disappear all

together. Dead-reckoning causes the accumulated error to occur in the map. [36].

In contrast to the metric maps, many topological representations are naturally

compact. Topological maps model the coarse structure of the world using connected

graphs, which can be traced back to work by Kuipers [18]. The nodes of the graph

denote locations of interest, while the edges between the nodes signify a direct path

between them. Figure 1-2 shows step by step how an environment can be decom-

posed into a topological graph. The compactness of the graph representation offers

many advantages: easier robotic path planning, more efficient storage, and greater

robustness to errors in internal control since there is usually no need for a complete

knowledge of the robot's position [35].

For applications that do not require a detailed world representation, topological

maps are a natural choice. For example, it is not necessary to have the full 3D map

of figure 1-1 for a robot to safely move from one room in the corridor to another.

Autonomous robots have various applications that need a robust real-time path plan-

ning capability paired with a cheap implementation platform that would use as few

and as cheap sensors as possible while consuming minimal power and computation

time. For this reason, this thesis focuses on robotic navigation with limited sensing

and computational requirements - using just a range sensor and a simple topological

map. The limited sensing problem is an active area of research as witnessed by several

techniques from Rao, Dudek and Whitesides [30], Beevers [3], Tovar et al [40, 41],

Landa et al [20, 21] and others. Chapter 3 discusses in detail the previous works

associated with limited sensing, placing a particular emphasis on the work of Tovar,

Guilamo, Murrieta-Cid and LaValle, on which this thesis is primarily based.

Tovar et al [40, 41] previously described environment representation in terms of a
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Figure 1-2: These images represent how a metric map can be decomposed into topo-

logical representations. (a) Metric map, (b) Voronoi diagram, (c) critical points (lo-

cations of interest), (d) critical lines (connecting locations of interest), (e) topological

regions, and (f) the topological graph. Adapted from Thrun [35]

rooted tree, called the Gap Navigation Tree (GNT). They assume that a robot is a

point object in a simply connected planar environment and that it is equipped with

an infinite range edge detector that is able to extract discontinuities in its field of

view. They named these discontinuities "gaps". As the robot moves around, it is

able to track its position by keeping track of changes in its perception of the gaps,

called critical events. By storing these gaps in a systematic way as leaves in a tree

structure during robotic exploration, the robot is able to encode a globally optimal (in

a Euclidean sense) path through this tree to any point of interest (see Chapter 3 for

further details). Figure 1-3 shows a simple environment and a GNT that represents

the environment at two different robot locations.

Outside of an ideal world, a robot has a fixed radius and its sensors are subject to

noise and range limitations. Additionally, the GNT algorithm assumes that the range

sensor is infinite, which makes its implementation on a real testbed very difficult. The

GNT algorithm does not address what happens when there are no discontinuities to

detect, or when there is an error in the sensor data that suggests discontinuities

'1] 111[ I~ I -I [ I I I I I I I -
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Figure 1-3: This image shows a simple map and two topological representations using
the Gap Navigation Tree. The black dot in the middle represents the robot position.
The dashed lines indicate borders between visible and hidden regions from the robot's
perspective. Adapted from [41], courtesy of Benjamin Tovar.

where none are present. It also assumes that the robot moves slowly enough that

only one critical event happens with each edge detection, which is not always a valid

assumption.

1.2 Thesis Statement

Many mapping algorithms rely on probabilistic methods to cope with sensor uncer-

tainty (for example, [17, 34]). The main problem of the Gap Navigation algorithm

lies in its automatic encoding of all (even false) visibility events into its environment

representation, because it views all observations in a deterministic fashion. Therefore,

we propose a new algorithm, called the Probabilistic Gap Navigation Tree (PGNT)

algorithm, that does not treat sensor measurements as ground truth, but creates

a probabilistic model of the environment representation that is robust to the mea-

surement noise. The PGNT algorithm, which uses a probability distribution over

the maps represented by a set the Gap Navigation Trees, enables navigation in an

unknown environment with a realistic sensor.



1.3 Thesis Contributions

The new probabilistic navigation structure accounts for the uncertainty about the

environment by sampling from the space of possible gap navigation trees based upon

the sensor observations. For each time step, it determines the probability for each

tree sample, and resamples the distribution according to these probabilities. This

approach is based on the particle filter algorithm [38]. Chapter 4 provides a detailed

explanation of the chosen implementation strategy and the optimizations that allow

the PGNT to be a simple, yet robust, topological representation of the indoor envi-

ronments. This algorithm is able to run real time in unknown indoor environment,

as verified by running it CARMEN robotic simulation toolkit [24].

The main contributions of this work are as follows:

* We create a special structure called the Probabilistic Gap Navigation Tree

(PGNT). The Probabilistic Gap Navigation Tree creates a posterior distribution

over trees by sampling the set of possible Gap Navigation Trees, and navigates

according to the most likely tree at each time step. The most likely tree is

determined based on the learned model of how the tree can change at each time

step in combination with current observations of its environment.

* We show that including a limited subset of possible samples of the PGNT,

instead of sampling over the entire state space, reduces the dimensionality of

the problem without significant degradation in performance.

* We apply a solution to the cyclic order preserving cost assignment problem

(COPAP) [10] to predict correspondence between the predicted GNTs and the

GNT constructed using robot's laser range finder measurements. We use the

correspondence to calculate part of the probability weights for the trees.

* We expand the original GNT model to allow for multiple critical events, making

the PGNT more applicable to real environments.

* We demonstrate the functionality of the PGNT by building the navigation struc-



ture using maps from real environments in the CARMEN simulation environ-

ment [24].

1.4 Thesis Outline

The following chapters elaborate on the state of the art in topological mapping tech-

niques, and describe the GNT representation and, in full detail, our approach to

navigation in non cyclic indoor environments.

Chapter 2 gives an overview of the key concepts in probabilistic navigation. It

then introduces the Bayes filter algorithm and one specific implementation the particle

filter algorithm, and explains how they can be used in estimating the robot's state.

Chapter 3 discusses navigation algorithms that have been used for limited sensing,

focusing on the Gap Navigation Tree (GNT) algorithm proposed by Tovar et al [40,

41]. It details the special environmental representation used in this algorithm, how it

changes with the exploration of the environment, and how the robot uses the model

to construct a dynamic data structure for navigation in a simply connected, planar

environment.

Chapter 4 describes the Probabilistic Gap Navigation Tree (PGNT) algorithm

and implementation details. It applies the material presented in Chapters 2 and 3 to

develop the probabilistic framework for the PGNT to address some of the shortcom-

ings of the original GNT approach. It further discusses how a solution to the cyclic

order preserving cost assignment problem [10] is used to match consecutive sequences

of gaps to each other and to derive probability distributions over the environment.

Chapter 5 discusses the implementation details of the PGNT and subsequent test-

ing of the algorithm using three different environments with the CARMEN navigation

toolkit using a scout robot simulator with two SICK laser scanners mounted in the

front and in the rear. It compares the performance of the GNT and PGNT on the

same data sets.

Chapter 6 presents a summary of our work, and expands on the results from

Chapter 5 to discuss possible directions for future research in this area.





Chapter 2

Robotic Navigation

One of the most challenging problem that the robots face is the inherent uncertainty

in the world around them. Every sensor measurement is imperfect, from the rate of

the wheel rotation, to the robot heading direction, to the distances from the robot

to the perceived obstacles. In the absence of localization devices such as GPS, one

approach to describe the trajectory of the robot is by using a probabilistic framework

that assigns a certain likelihood to each state of the robot, and is able to estimate

its current state by incorporating its observations about the world. This chapter

introduces concepts central to robotic navigation using a probabilistic framework.

Section 2.1 introduces the probabilistic models of robot's state and measurements

utilized in the remainder of the thesis. Section 2.2 introduces the Bayes filter, which

is a general algorithm for predicting a robot's state from surrounding observations.

Section 2.3 describes a special type of the Bayes filter called the particle filter, which

forms the basis for the navigation approach proposed in this thesis.

2.1 States, Probabilities and Beliefs

First, it is important to define key terms used throughout this work. The state of

the robot at a time t will be denoted as xt. The state of the robot is defined as the

collection of all aspects of the robot that can impact the future. For a rigid robot

confined to a two dimensional plane, its state can be described through three state



variables - (x,y) coordinates to describe its position in the Cartesian plane and an

angle 0 for its heading direction.

The robot interacts with its environment in several ways. It can take measure-

ments of the environment with a sensor, for example a range scan measurement with

a laser range finder or a sonar. In this discussion, such measurements at a time t will

be labeled zt. The robot can also utilize its control data, such as the robot's velocity,

to move in its environment. This control data will be labeled Ut. Odometers, which

measure the revolution of the robot's wheels, carry information about the change of

state, and thus odometry information can sometimes be also considered as control

data [38].

In the probabilistic framework, we may characterize the probability or the likeli-

hood of the robot being in state xt as p(xtlxo:t-, Zi:t1, ul:t). Since the robot relies

on the measurements and the odometry information to infer its state, this probabil-

ity distribution assumes that the current state xt is a function of all the previous

measurements, of all the previous states and of all the previous and current controls.

Now, we can simplify the distribution by making an independence assumption, which

contends that each future state of the robot is independent of all the previous states,

controls, and measurements, given the current state. Thus, we do not need to explic-

itly keep track of X1:t-2, zl:t-1 and ul:t-1, because they are independent of state xt

given the current state xt-1. The condensed distribution can therefore be written as

follows:

p(xt Ixo:t-I Z1:t-1, Ui:t) = p(xt xt-1, ut) (2.1)

The simplified expression on the right of equation 2.1 is known as the state transition

probability, because it describes the evolution of state xt from the previous state [38].

Using a similar independence assumption, we can construct a likelihood model

for the measurements zt that depends only on the current state, so that all the

measurements are independent given the knowledge of the state sequence:

p(ztlXo:t, Zi:t-1, ul:t) = p(ztlxt) (2.2)



In equation 2.2, the probability distribution on the right is aptly called the measure-

ment probability, because it specifies how the measurements zt are dependent on the

state xt [38].

There are two other important probability distributions that are often used to

describe a robot's perception of its own state. The first is the distribution over the

state that incorporates all the measurement and control information:

bel(xt) = P(xtIzl:t, Ui:t) (2.3)

The distribution shown in equation 2.3 is known as the posterior distribution, or

the belief. The bel(xt) is a sufficient static of the state xt, which means that each

belief distribution sufficiently represents all of the current and previous measurements

and controls. This distribution assumes that the latest measurement zt has been

incorporated into that belief [38].

We can also define the prediction probability distribution, which is the belief before

incorporating the last measurement:

bel(xt) = p(xtzil:t-m, Ui:t) (2.4)

Having an accurate belief of the robotic state is crucial to robotic navigation, since

the state contains all of the sensor and world information. The next two sections

will describe how the belief state is calculated. For a more detailed treatment of the

subject matter, please see Thrun et al. [38].

2.2 Bayes Filter

Armed with the definitions presented in Section 2.1, we can construct a general al-

gorithm for calculating the robot's belief of its own state (equation 2.3), called the

Bayes filter algorithm. It is presented in Algorithm 1.

To help understand the Bayes' filter, we first describe two laws from probability

theory. The first is called the Bayes' rule. It states that an unknown distribution of



the form p(a b) can be calculated if one knows conditional distribution of the form

p(bja), and a prior p(a) :

p(ab) = (bla)p(a)p(alb)= p(b) (2.5)
p(b)

Since the denominator of equation 2.5 does not depend on the variable of interest a,

it can be defined as a multiplicative constant

r7 = p(b)- '. (2.6)

Bayes filter also uses another mathematical law called the Law of Total Probability,

which is used to derive the prior p(a):

p(a) = j (alb)p(b)db (2.7)

In this equation the dependence on variable b is eliminated by integrating the variable

out, or marginalizing over it.

The above two rules play an essential role in the derivation of bel(xt) in Algo-

rithm 1. The Bayes filter takes the bel(xt_l), control ut and measurement zt as

inputs. Line 2 uses the Law of Total Probability to calculate the prior bel(xt) by

integrating over the posterior of the previous state bel(xt1). To compare with equa-

tion 2.7, variable xt takes place of a, and variable xt-1 replaces b. This calculation is

called the control update, or the prediction step of the Bayes' filter.

Line 3 calculates the bel(xt) by applying the Bayes rule to separate the belief

into two measurable quantities: the measurement probability of equation 2.2 and the

prediction probability of line 2, with the normalization constant 7r shown in equation

2.6. In this case, the state xt is analogous to the variable a and the measurement zt is

analogous to the variable b from the equation 2.5. This step is called the measurement

update.

The shortcoming of the Bayes algorithm lies in the integration of line 2, which

requires either a closed form for the state transition probability, or a finite state



Algorithm 1 Bayes Filter Algorithm
Require: Posterior bel(xt-_), control ut and measurement zt

1: for all xt do
2: bel(xt) = f p(xt ut, xt-1) bel(xt-_) dxt-1
3: bel(xt) = qp(ztlxt) bel(xt)
4: end for
5: return bel(xt)

model, so that the integral of line 2 can be approximated as a sum. In practice, that

can only be achieved for a very small set of problems, and therefore many variants of

the Bayes filter were created to make that calculation tractable.

2.3 Particle Filter

The particle filter is an example of a nonparametric Bayes filter. In general, non-

parametric Bayes filters avoid the closed form requirement for the integration in the

prediction step by approximating the beliefs by a finite number of values. In par-

ticular, the particle filter approximates the state space by a finite number of values

called particles, drawn from the posterior distribution bel(xt). The particles are most

densely distributed where the likelihood of the posterior is large, and sparsely dis-

tributed where the posterior is small. Particle filtering is also known as Monte Carlo

localization [29, 39].

Each belief bel(xt) is described by a set of sampled states

Xt := {x 1 ] , 2], ... , M]} (2.8)

where each xt is a state at time t, also known as a particle, and M is the total number

of particles. The full particle filter algorithm is presented in Algorithm 2.

The input to the algorithm is the set of particles from the previous time step,

Xt- 1, control ut and most recent measurement zt. In line 3, the state transition

distribution is sampled to generate m-th particle of the state Xt. In the general case,

a uniform prior is assumed for the initial distribution the particles in the absence of

any information about the environment or the controls. The full sampled set of M



Algorithm 2 Particle Filter Algorithm
Require: Set of particles Xt, control ut and measurement Zt

1: Xt = = 0
2: for m = 1 to M do
3: sample x[m ] e p(xt I ut,x-])

4: wm] = p(zt I n])

5: = X + (m]
6: end for
7: for m =1 to M do
8: draw i with probability o w i]

9: add x i] to Xt
10: end for
11: return Xt

particles xt represent the prediction bel(xt) of the Bayes' filter.

After each sample has been obtained, line 4 assigns each xem] a probability, or

a weight, based on the measurement likelihood at state x m]. The weight wt is also

referred to as the importance factor, and its role is described below. The new weighted

particle is incorporated into the set of Xt in line 5. This new set of weighted particles

now represents the posterior bel(xt) of the Bayes filter.

The next for loop implements the importance sampling, or resampling, part of the

particle filter algorithm. The particles are drawn with replacement from the set Xt

using their weight to determine how likely each particle is to be in the final set Xt.

The new set of M particles will contain multiple copies of the most likely particles

thereby giving higher density to the most likely regions in the belief distribution. In

this process, some particles may completely disappear from the regions of very low

probability. Therefore, through resampling, the distribution bel(xt) is transformed

into the posterior bel(xt) = q p(ztixt ) bel(xt), which is the end goal of the Bayes

filters. The constant 7 is no longer explicitly calculated, but is absorbed into the

algorithm through the sampling process and the calculation of the weights.

Through their sample-based representation, particle filters are able to represent

distributions of arbitrary shape, making them very useful for representing complex

beliefs. However, particle filters require a certain number of samples to represent each

state. This means that the number of particles necessary to represent a distribution



scales exponentially with the number of its estimated states. Therefore, they are

most useful for problems that have a small state space, and must be modified and/or

replaced with an alternative solution for high dimensional problems.





Chapter 3

Limited Sensing

The ability to use non-ideal sensors for robotic navigation with incomplete state in-

formation is relevant in building real-life robots. A reliable robot that uses cheap

sensors, limited power and computational resources would be a convenient and ver-

satile platform for teaching, research, and commercial applications. For this reason,

researchers have long studied theoretical limits of sensing information that a robot

needs to successfully navigate in its environment. The robots that use only bump

sensors and a map, the ones that use finite range lasers without a map, the robots

that use low resolution IR or sonar data for localization are all considered to be a part

of the limited sensing framework, as describes in this chapter. Section 3.1 provides

a general survey of research directions in limited sensing. Section 3.2 is dedicated to

discussing a particular limited sensing navigation approach called the Gap Navigation

Tree algorithm, which lays the foundation for our research presented in this thesis.

3.1 Limited Sensing Algorithms

Limited sensing approaches have taken various forms in literature. For example, lim-

ited sensing for grasping has been studied first by Erdmann and Mason [8]. For a

robotic arm to pick up an object, the object either has to be in the same config-

uration each time, or the arm can use sensory feedback to learn where the object

is. They choose the former approach that does not rely on sensors. They devise a



specific tray tilting strategy which is able to position an initially randomly object

in a completely determined finite configuration after a certain number of time steps.

Although this particular work focuses on grasping, it has been quoted as a basis for

several navigation algorithms with limited sensing [9, 40].

Acar et al. [1] approach the problem of sensor-based coverage using a finite range

detector. Sensor-based coverage is an approach to create a path that passes a detector

over all points of an unknown space. It is useful in fields such as mine detection. Acer

et al. use visibility regions to create an algorithm that navigates the world in two

different visibility regions, ones where the walls are within a range detector reach and

the ones where the sensor range cannot detect all the obstacles. Our thesis is not

concerned with an efficient coverage of the visibility area, but rather with an efficient

navigation approach that creates a path from a start point to a goal.

Rao et al. [30] tackle a global localization problem for a robot that uses only

a finite range sensor and that does not have an initial estimate of its position. To

systematically eliminate uncertainty in the pose of the robot, the robot may to move

several times to gain information about its environment. Rao et al. present an algo-

rithm that creates the shortest-distance path that localizes the robot in a minimum

number of time steps. One limitation of their approach is that they do not consider

sensor noise when constructing their algorithm.

O'Kane and LaValle [26] consider localization in an a priori mapped environment

for robots equipped with a compass and a bump sensor. They prove that it is possible

to construct a path for localization in a simply connected, closed polygonal environ-

ment, and present algorithms for effective localization. They furthermore show that

if the robot does not use a compass, but instead relies on its odometry information

to derive the heading direction, localization becomes impossible.

One of the early approaches for robotic navigation with limited sensing without

a map was introduced by Lumelsky and Stepanov [23]. They proposed the first

formulation of the bug algorithm. The algorithm assumes that the robot is a point,

obstacles can have an arbitrary shape and a finite size, and the environment can be

infinitely large. The information available to the robot comes from its odometry and



a bump sensor. This information is proven to be sufficient for reaching a known target

position, or concluding in finite time that the target cannot be reached. Kamon et

al. [16, 15] have extended the bug algorithm to incorporate range measurements and

exhibit wall following properties, in addition to moving straight towards the goal.

Rajko and LaValle [28] assume the same limited sensing capabilities without a

map as Lumelsky and Kamon, and formulate an algorithm that searches for an un-

predictable moving target in a closed polygonal environment. They prove that the

target will always be detected in finite time. In their work, they demonstrate that

the robot can solve the target finding problem just as efficiently and accurately as a

robot having full knowledge of its environment and perfect sensors.

Beevers [3] published a PhD thesis and several papers on topological mapping with

limited sensing. In Huang and Beevers [14], they propose an algorithm for creating a

topological map using very limited infrared range sensors (80 cm maximum range) in a

closed environment. Their topological map represents the world as a graph, where the

corners of the wall are the vertices of the graph, and the walls are the undirected edges.

In their algorithm, by performing wall following, the robot eventually completes a loop

and returns to the original starting point. By continuing to follow the walls after the

initial loop closing, the robot can disambiguate its location by comparing new sensor

measurements to the previously acquired world representation. In their approach, the

distance travelled to a particular corner may not be optimal, which they attribute to

the limitation of the sensor model used in their work.

In his PhD thesis [3], Beevers developed a model of mapping sensors that he

then combined with a simple mapping algorithm to characterize a set of sensors in

terms of their suitability for mapping. His work focused on simultaneous localization

and mapping (SLAM) with low-resolution sensor measurements. He created a novel

update technique for limited sensing as well as new sampling strategies to improve

particle filtering SLAM in the limiting sensing context.

The Gap Navigation Tree from Tovar et al. [40, 41] is the main subject of the next

section. It creates a topological representation of an environment using a tree, that

allows the robot to navigate with only one sensor that tracks direction and depth of



discontinuities in the robotic field of view. It is the basis for our probabilistic mapping

framework, and it has inspired other related research. For example, Landa et al.'s

[20, 21] work creates a path planning algorithm, in which a group of autonomous

vehicles explores and constructs a map of an unknown environment. Their mapping

approach borrows the concept of the navigation tree, but uses a different method

for creating it based on the sensor measurements. First, they sample from opaque

objects (obstacles) in the environment to create point clouds. They project the point

clouds onto a sphere centered at the observed locations, and perform essentially non-

oscillatory (ENO) interpolation [12] to the projected data. The ENO interpolation

allows the surface curvature to be calculated through approximation of higher order

derivatives. They then use the surface curvatures to determine the boundaries of

the visibility regions, and thus extract edges for the gap navigation tree. Although

applicable to robotic navigation, their focus is defining visibility regions for graphics

and surveillance applications.

Murphy and Newman [25] have used the point cloud sampling of Landa et al

to generalize the Gap Navigation Tree to guide a Simultaneous Localization and

Mapping process. Their navigation approach assumes a noisy range sensor with

limited range. They use probabilistic inference on the point clouds to predict the

location of each gap at every time step. They eliminate appearances of false gaps due

to sensor noise by waiting a few time steps to make sure that the new gap persists

over several measurements. Although our work also utilizes a probabilistic model,

it is different from Murphy's in that we predict all the possible gap navigation trees

based on the navigation model, instead of predicting just the gap locations.

3.2 Gap Navigation Trees

The Gap Navigation Tree structure was introduced by Tovar et al. [40, 41]. In their

navigation approach, the authors try to determine the feasibility of navigating with

minimal sensor information available to the robot. They created the GNT structure

that allows the robot to navigate in a simply connected, closed polygonal environment.
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Figure 3-1: Left: A robot in the environment uses a range sensor to sees areas in blue
and doesn't see areas in white. Right: gaps corresponding to the shown environment.
Image courtesy of Benjamin Tovar [41]

The authors show that without storing any range or heading information for the robot,

they can successfully build a topological map and use it to navigate in an unknown

environment.

3.2.1 Gap Definition

The key idea behind the Gap Navigation Tree is the novel way it represents the envi-

ronment. It divides the environment into regions of visibility, distinguishing between

surroundings the robot can and cannot see. For example, in Figure 3-1, a robot

equipped with a 3600 laser range finder would see the area shaded in blue, but will

not be able to see the white areas because those are occluded. These discontinuities

in the robot's field of vision are called gaps, and the region that is not visible to the

robot is labeled R. The robot is assumed to have a gap sensor that reliably detects the

discontinuities and tracks how these gaps change as the robot moves (not necessarily

a laser rangefinder). The robot does not have any other sensors such as a compass,

odometers, or other range sensors and is not capable of building an exact map of the

environment.

The sequence of gaps that appears in the gap sensor when the robot is at position



x E R is defined as G(x) = [gi,..., g]. If x is on the interior of R, we can assume that

G(x) will be cyclically ordered, which means the sequence [gl ,..., g,] is equivalent to

[gn, g, ..., gn-1]. The subscript of the gi E G(x) is just a label and it does not contain

any angle or depth information.

3.2.2 Gap Navigation Tree Definition

Any environment can be decomposed into regions of similar visibility, within which

navigation always produces the same sequence of gaps G(x). However, due to the

geometry of the environment, as soon as the robot crosses the boundary into another

visibility region, the observed gap sequence G(x) changes. These changes may cause

the gaps gi to appear in the field of view, disappear from it, two gaps may merge to

leave only one gap in their place, or one gap may split to create two gaps. The changes

in the environment can be tracked in a systematic way to create an environmental

representation called the Gap Navigation Tree (GNT). [41].

To motivate the utility of the tree like structure for navigation, we first attempt to

track changes by solely using gap sequence G(x). Assume that the robot moves along

a path 7 : [0, 1] -+ R. Then, for every time step s we can define a gap sequence G(7(s))

that is observed by the gap sensor. At time s = 0, suppose that G(T (0)) = [91, 92, 93].

At some later time step sl, the gap g2 splits into two gaps [g4, g5]. To store that new

information, we remove g92 from the gap sequence, and insert the new gaps in its place

to preserve cyclic ordering, transforming our gap sequence G(T(sI)) = [g91, 94 95, 93].

At an even later time step sl2, 94 and g5 merge, causing yet another update to G. The

update to the sequence can either be labeled as a new gap g6, or it can be labeled as

a combination [g4, g1] to keep track of the underlying structure of the merges in the

sequence G(T(S12)) = [91, [94, 95], 93]. These additions, continuing over the course of

exploration, result in complicated nested expressions in the gap sequence G(T(s)).

A more elegant approach to keeping track of the gaps is to transform the gap

sequence G into a tree structure which will store the information about the changes

in its environment in its nodes. This structure is called the Gap Navigation Tree

(GNT), and has the following properties:



* Every non-root vertex of the GNT represents a gap in G(7(s)) at some time

se [0, 1].

* Every child of the root vertex corresponds to a gap in the most current sequence

G(T(1)), and the children are cyclically ordered in the same way as they appear

in G.

* All vertices that are not children of the root represent gaps that appeared in

G(T(s)) for some s < 1, but have disappeared from the set G(T(1)) due to

merging.

* Children of every non-root vertex v are the gaps that merged to form that

vertex, and appear in the same cyclic ordering as they appeared in G.

The details of the Gap Navigation Tree construction is the subject of the next two

sections.

3.2.3 Gap Navigation Tree Construction Using Critical Events

The Gap Navigation Tree is constructed incrementally as the robot moves through its

environment by storing the critical events from the gap sensor. At the beginning, the

GNT contains the children of the root corresponding to G(-(0)). As the robot moves

along a path 7, the gaps around it can change in the four following ways, forcing an

update to the Gap Navigation Tree:

1. Gap Disappearance: When a hidden section of the environment becomes ex-

posed, a gap defining the hidden section disappears. The leaf corresponding to

that gap is then removed (illustrated in Figure 3-2 (c).

2. Gap Appearance: As the robot moves along, a section that has previously been

visible becomes hidden again due to the environment geometry. In this case,

a gap appears and is added to the GNT as a child of the root, preserving the

cyclic ordering of the original gaps as in Figure 3-2 (a).



3. Gap Merge: Two gaps previously associated with two separate occlusions merge

into one due to the environment geometry and the robot's vantage point. A

new gap is added in their place as a child of the root, while the two previous

gaps are preserved as children of the new gap as shown in Figure 3-2 (b).

4. Gap Split: The opposite of gap merge happens when one occlusion separates

into two as the robot continues to explore the environment. If the original gap

was a childless leaf, it is removed and two gaps are inserted in its place. If the

original gap had children, the children are inserted as children of the root while

the original gap is removed. The latter case is illustrated in Figure 3-2 (d).

Because the measurements as assumed are taken infinitely often, gap merging

and splitting are not discontinuous processes: there exists a measurement such that

(gi - gj) < cVE. This allows us to distinguish between a split and an appearance, and

between a merge and a disappearance events.

By moving and storing critical events, the robot is building a topological represen-

tation that will allow it to navigate in an unknown environment. The robot follows

a specific plan for optimizing the distance traveled, which is the subject of Section

3.2.4.

3.2.4 World Exploration: Building a GNT

The robot explores the environment by choosing one of the gaps, and moving towards

it until it disappears. This motion primitive is called a chase action, and is labeled

chase(g). If a chase motion is performed and the gap being chased disappears, the

entire region behind the gap is now visible. Therefore, the robot finished exploring

that part of the environment and must choose another gap toward which to move. If

the gap chased by the robot splits, the robot chooses yet another gap to chase. The

robot continues chasing gaps until the Gap Navigation Tree is complete.

How does the robot decide when the Gap Navigation Tree is complete? That hap-

pens when all the hidden corners of the environment have been revealed to the robot

at some point during its exploration. To keep track of the explored portions of the
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Figure 3-2: Illustration of the gap critical events and how they influence the tree

structure for (a) Appearance, (b) Merge, (c) Disappearance and (d) Split. Image

courtesy of Benjamin Tovar [41].

environment, each gap is assigned a label: primitive or nonprimitive. Nonprimitive

gaps are all those that split when the robot chases them, thus further expanding the

navigation tree. Primitive gaps are the ones that disappear when chased, forcing the

robot to find another gap to chase. Therefore, the gaps that appear during explo-

ration are labeled as primitive, while all others are labeled as nonprimitive. (The

gaps that appear cannot split any further, because if the robot decide to chase the

gap it must split again). The tree is complete when all the leaves have been labeled
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Algorithm 3 Gap Navigation Tree
Require: Set of gaps G(x)

1: initialize GNT from G(x)
2: while 3 nonprimitive gi E GNT do
3: choose any nonprimitive gk E GNT
4: for each time step s do
5: chase(gk) until criticalevent
6: update GNT according to criticalevent
7: end for
8: end while
9: return GNT

as primitive as the result of exploration.

The algorithm presented in this chapter is formally summarized in Algorithm 3.

The input to the algorithm is the sequence of gaps G(x). The GNT is initialized by

inserting the children at the root of the tree corresponding to each gap gi E G(x).

Lines 2 through 8 show that to navigate in the environment, the robot first chooses a

non primitive gap, then chases it until a critical event happens, and updates the GNT.

If there are more non primitive gaps left, the robot continues exploration; otherwise

it returns the GNT, which, by the above definition is complete.

3.2.4.1 Landmark Encoding

A complete navigation tree contains all the information about the changes in the

visibility regions. To navigate using the tree, the robot first searches the tree for

the appropriate leaf (or vertex) that represents its desire goal, and then follows the

shortest path as dictated by the path through the tree from the root to the vertex.

As an extension to the basic navigation, the robot can be tasked to find certain

landmarks in the environment (for illustration, see Figure 3-3). It can store the object

of interest as a child of the gap that first obscured the object from view. This way,

the gap marks the object location. The authors demonstrate that the shortest path

in a Euclidean sense from one landmark to another can be achieved by traversing the

Gap Navigation Tree.



Figure 3-3: This figure shows how an object is encoded in the GNT. The black dot is
the robot, the blue triangle is the object. In the figure on the left, the object is visible.
As the robot moves, the object becomes hidden by a new gap (middle). The object
is encoded into the tree by being inserted as a leaf of that gap. During navigation,
the landmark will appear as soon as the gap hiding the object disappears during a
chase action. Image courtesy of Benjamin Tovar [41].

3.2.5 Limitations of the GNT

As a foundation of our thesis work, we implement the Gap Navigation Tree using the

CARMEN robotic navigation toolkit [24]. The simulated navigation platform is the

Nomad Scout robot equipped with one front and one rear SICK laser rangefinder,

allowing a 3600 view of the world. In this particular simulation, the laser range is

limited to 5 meters.

A graphical user interface displaying the gaps and their corresponding Gap Navi-

gation Tree as the robot moves around is shown in Figure 3-4. The navigation envi-

ronment is a floor of a building on a University of Freiburg campus obtained from the

Radish dataset [13]. The red outline represents the walls that the laser range finder

detects. The green lines extending from the robot center indicate the positions of the

detected gaps. In the image of the navigation tree on the right, one of the nodes has

two children. These children are a result of a merge in the current time step, and they

are added to the tree as was discussed in Section 3.2.3 and demonstrated in Figure

3-2.

Our attempt to model a simulated world with the GNT proved unsuccessful. The

implementation of the GNT as described by Tovar et al. assumes that we have an

ideal, infinite range gap sensor. Given perfect laser scan data at each time step, the
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Figure 3-4: This is a screen shot of two graphic user interfaces. Figure (a) displays
the environment as seen by the robot (black dot). Red dots represent obstacles, in
this case walls of the corridor with view into some rooms. The gaps are shown as
green lines, and indicate the borders of the visibility region. Each gap has a circle
and a number on top of it, that indicates the node of the navigation tree in (b) to
which that particular gap corresponds.

edge detector could successfully extract the gaps. However, all crude edge detectors,

and even sophisticated laser rangefinders, are susceptible to measurement noise, and

the modeled SICK lasers were no exception. Presence of sensor noise causes the

rangefinder to detect gaps where they do not exist, and the tree to unreliably track

the critical events in the environment.

Additionally, the algorithm suffers from the assumption that the robots are point

features when, in reality they cannot be treated as such. While performing a chase

action, the point assumption may cause the robot to bump into the wall as it is moving

straight for the gap. The robot has to be equipped with a robust wall following

technique to reliably execute its motion.

Another failure mode of the GNT is when the robot measures gaps from a position

close to a wall. The distance between consecutive data points in one laser range scan

further along the wall is large enough to create false gaps with the current GNT

approach. The GNT does not have a reliable mechanism for discarding those gaps.

Another unreal assumption is that, at each gap detection step, there can be only one

critical event, which is not the case with a realistic environment such as the University



of Freiburg map that we use here.

All these limitations suggested a new sensor model can be applied to create a more

robust navigation approach, which is the motivation for our work. We expand the

GNT to include sensor noise in its gap tracker to reliably detect gaps and the changes

among them. We also include the ability to track more than one critical event per

time step. The details of the implementation are the subject of Chapter 4.





Chapter 4

Probabilistic Gap Navigation Tree

The purpose of our work is to establish a navigation approach for autonomous robots

in unknown environment with sensing subject to measurement noise. We utilize an

environment representation called the GNT based on the boundaries of the visibil-

ity regions as described in detail in Chapter 3. Our contribution is centered around

the creation of the Probabilistic Gap Navigation Tree (PGNT) algorithm that would

build an optimal gap navigation tree subject to error in the range sensors. Sec-

tion 4.1 introduces the probabilistic framework for the PGNT and discusses some

other probabilistic navigation techniques from literature. Section 4.2 establishes the

probabilistic framework specific to the PGNT. Section 4.3 discusses the application

of the Cyclic Order Preserving Assignment Problem (COPAP) to correspondences

for tracking changes in the environment as well as assigning probability weight to

each environment representation stored by the algorithm. Section 4.4 gives a detailed

description of the algorithm implementation. Section 4.5 explores an alternative sam-

pling strategy for increasing the efficiency of the PGNT algorithm, while section 4.6

describes a modification of the GNT to allow multiple critical events in the navigation

tree.



4.1 Algorithm Introduction

The PGNT algorithm creates a distribution of the gap navigation trees, in which each

sample is weighted according to the most likely tree based the observed sequence of

gaps at time t. This approach adopts the state update based on the particle filter al-

gorithm introduced in Chapter 2 (with a more detailed treatment in Thrun [38]). The

posterior distribution of robot states is represented as a set of gap navigation trees,

created before the latest measurement has been incorporated. Each gap navigation

tree is assigned a weight based on the most recent laser range scan measurement of

the environment. The posterior is then resampled according to the weights to create

a hypothetical current state, or the belief.

The idea of using probabilistic navigation is far from new. There are numerous

probabilistic approaches for topological maps, for example the work of Ranganathan

and Dellaert [29] that specifically utilizes particle filtering for topological mapping.

In particular the particle filter is used to construct a posterior distribution of all

possible environment topologies given a measurement. Their work even proposes a

method to finding a global metric map from the topological map in post processing,

thus attempting to solve the cyclical mapping in large environments problem that

normally is impossibly using topological mapping approaches.

Bulata and Devy [4] propose an algorithm for robotic exploration in which the

robot must build successive snapshot models from the laser rangefinder, and fuse them

in a global model so that it can localize itself with respect to some global reference

frame. Instead of extracting boundaries of the visibility regions they extract useful

landmarks from local feature groupings, like wall corners, doors, corridor crossings

etc. to create a topological map. They use a form of the Bayes filter called the

extended Kalman filter for their belief updates.

These papers represent just two of voluminous research on this subject, and a more

comprehensive overview of the earlier probabilistic mapping navigation techniques can

be found in [36, 35].



4.2 Defining Probabilities for the PGNT

To generalize the Gap Navigation Tree algorithm to a probabilistic framework, we re-

visit the definitions presented in Chapter 2 and apply them to our mapping approach.

Recall that the Bayes' filter calculates the belief bel(xt) of the robot's state xt, where

the robot's state is its coordinates and heading direction, or the robot's pose. In the

GNT framework, we do not want to estimate the robot's pose at each time step, but

we want to predict the Gap Navigation Tree. Therefore, the state xt is replaced by

the GNT at a time step s (to keep the notation from Chapter 3), which gives

bel(xt) -+ bel(GNT,).

Furthermore, the Gap Navigation Tree is independent of the robot's odometry, so

we can simplify the belief distribution as follows:

bel(GNT,) = p(GNT , I zo:8) (4.1)

Moreover, the current belief of the tree is a sufficient statistic of all previous

trees and measurements, because the automatically encodes the measurements into

its structure. Therefore, we can simplify equation 4.1 to

bel(GNT,) = p(GNT, I zo:,) = p(GNT, I z,) (4.2)

As described in the previous chapter, the measurements that cause the update to

the GNT are the critical events. Critical events, in turn, are calculated from compar-

ing the GNT from the previous time step to the new gap sequence G,. Therefore, we

formally define the measurement probability of equation 2.2 as follows:

p(zt I xt) -- p(G, I GNT,) (4.3)

We represent the bel(GNT,) as a collection of tree instantiations t at time step s:



T I := {t ), t ] , ..., t }M]  (4.4)

By representing the belief as in equation 4.4, we can use the particle filter ap-

proach to estimate the belief at each time step. We rewrite the necessary probability

distributions from Algorithm 2 as follows:

p(xt t ut,*) - p(t I t ) (4.5)

p(zt I n]) -- p(G, I t m ])  (4.6)

Equation 4.5 describes the distribution that is sampled to obtain new trees. Since

we do not incorporate control data, the variable u disappears from the equation. The

probability distribution on the right is the state transition probability for the tree,

which indicates the likelihood of a tree at time step s given m-th particle at the

previous time step s - 1. The way to calculate this probability is describe in Section

4.4.

Equation 4.6 represents the measurement probability of the mth tree, and it echoes

equation 4.3 above. This is the probability used to calculate the weight of each tree,

and we perform the calculation by utilizing Bayes rule:

p(G8 t~n]) = p(tl] G,) p(G,) (4.7)

The probability distribution p(G,) was determined experimentally by driving the

robot around in a simulated environment and counting the number of time steps the

sequence G, stayed the same versus undergoing a change due to a critical event.

The distribution p(tm] I G,) is calculated by utilizing a metric that measures cor-

respondence between the mth tree sample and the most recent gap sequence G,. For

the correspondences, we not only store the latest gaps in the sequence G,, but also

the angular measurements that corresponds to those gaps. The full description of

this method is the subject of Section 4.3.



4.3 Cyclic Order Preserving Assignment Problem

for Correspondences

Cyclic Order Preserving Assignment Problem, or COPAP for short, is a problem of

matching two shape countours to one another while preserving the cyclical ordering,

where the countours are represented by a set of points that do not necessarily have one

to one correspondence. A good mathematical description of the shape correspondence

problem is presented in [10], and a recent optimal solution presented in [10, 33].

This problem is very similar to the problem of corresponding two gap sequences:

we can think of a robotic field of view as a polygon where the gaps are samples on

the viewing boundary. Comparing two sequences of gaps at times s - 1 and s is the

same as calculating the correspondence between two very sparsly sampled polygons.

Figure 4-1 illustrates this concept. In Figure 4-1 (a), two shapes are sampled and

then matched as illustrated by black lines. Notice that one sample on the blue

contour may correspond to more than one sample on the red contour. Figure 4-1 (b),

shows two consecutive gap representations of the environment. They are meant to be

matched or corresponded as described in line 8 of algorithm 4. The problem becomes

to correspond a cyclic set of gaps Gb = [45, 135, 290] from the blue circle to the set

Gr = [46, 136, 291] from the red one. Because this is a cyclic assignment problem, in

a set [g, ... , g b], may be matched to g .

4.3.1 Extracting the Gap Critical Event from the Angular

Gap Positions

The example from Figure 4-1 (b) is going to serve as a reference for explaining how

the solution to the COPAP problem will determine the gap critical events in the tree.

After visually inspecting the image in (b), it is easy to tell how the two sets of gaps

correspond to one another, because in each pair of matching gaps they are very close

together. They are separated by only 10 from each other, while being removed from

neighboring gaps by as much as 156'.



Figure 4-1: This is an analogy between shape matching and gap matching during

gap navigation tree building. Figure a) shows matching the blue shape to the red

shape via black lines. Each line originates and terminates at a sample on the shape

contour. From [10]. Figure (b) displays the environment as seen by the robot (black

dot) analogous to representation in figure 3-1. We want to match the blue circle to

the red one. In this case, the black marks represents the gaps, and the numbers next

to the marks represent angular orientation of the gaps.

The distance between each pair of gaps in the sequences Gb and Gr becomes a

cost metric for whether or not that pair should be formally defined as corresponding

or not. Figure 4-2 illustrates the distance matrix D created for the example problem,

in which every D(i, j) node represents the distance between gaps gb and g7. The cost

of corresponding all the gaps is the sum of individual correspondence costs. If one or

more of the gaps remain unassigned, a certain penalty is added to the sum. The goal

is to match gaps in such as way as to minimize the total correspondence cost, even if

that means that some gaps remain unassigned.

As the robot moves through the environment, the angular positions of the gaps

will change, and new gaps will be added or removed from the environment. If a new

gap suddenly appeared between gb = 450 and gb = 1350, to give the consecutive scan

that looks like gr = [460, 1000, 1360, 2910], it is clear that this critical event is a gap

appearance, because 1000 is far enough away from both 460 and 1360. How far is "far

enough"? A parameter A is chosen to decide whether or not the distance between

the gaps is close enough for the correspondence matching. So if the new gap is closer

than A to one of its neighbors then action is classified as a split, and vice versa for

the gap merge. For most of our environments, A was chosen to be 160.

(b)(a)
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Figure 4-2: This is the distance matrix D(i, j) built using the distances between each
gaps. Each (i, j) pair represents the distance between gaps gi' and g,

Formally, a standard way to solve the COPAP is to first consider the linear order

preserving assignment problem (LOPAP), and then to solve the linear version multiple

times for different starting points. LOPAP looks the same as COPAP except that

it doesn't allow wrap around, so it is not cyclical. There is no wrap around in the

sample problem, so the LOPAP solution will be the optimal one in this specific case

which we present here. The way to solve this problem is to look for the lowest cost

path originating at (0,0) in the distance matrix D.

The solution to finding the lowest cost path can be found in dynamic programming

approaches. Using the distance matrix, a special cost graph C(i, j) is formed in which

the distances from D(i,j) become transition, or correspondence costs of assigning

index i to corresponding index j. If there is no match between the gaps, A is added

to the cost path as a penalty.

Figure 4-3 (a) shows a cost matrix with a filled out bottom row. It is of size

(m+l1, n+1), with the bottom and rightmost rows filled out with a special pattern of

As. The arrows are color coded to show every way in which cost may be computed as

traveling through the matrix: the penalties of A for non matching are shown in black,

while the costs equal to the distances from the D matrix are shown in orange. When

computing the cost of a node C(i,j), if the distance D(i,j) is lower than A then it is

accepted as a cost, and if the distance is above A then the correspondence for that

g3=290



node pair is stored as "does not exist". Figure 4-3 (b) shows the filled out matrix

using A = 16 and values from the sample problem. The minimum cost is highlighted

in green, and shows what is easily seen to a human, which is that the cost of going

through the matrix is minimized when corresponding all the nodes where i = j.

What would happen if our sample problem involved a "wrap around"? This can

happen when a gap moves from 3590 to 10 at the next time step. In this case, the

LOPAP problem would not give the minimum matching because the minimal cost

path to the top node (matching g' to g6) does not give the optimal solution. Figure

4-4 shows a cost matrix with a path to the top node, which shows the total cost of

getting to the top a lot higher than in the previous example, although the distance

metric between the gaps has not changed.

For the cyclical problems, it is therefore necessary to consider more than one

arrangement of the cost matrix. Upon visual inspection of Figure 4-4 (b) we can see

that the optimal matching can be obtained if the top row of the matrix is moved to the

bottom, because then the matrix D from Figure 4-4 (b) would look exactly like the

matrix D from Figure 4-2, which computes the optimal minimal cost path to the top

node. Therefore, the full COPAP problem is solved when the cost matrix is computed

for each cyclical permutation of the rows of the cost matrix. The permutation that

produces the minimum cost path to the top node is the one that is accepted as the

correct solution.

4.3.2 Calculating Measurement Probability

In the particle filtering algorithm, assigning the correct weights to each particle is

crucial to the success of the implementation, because the weight determines how

well the posterior is approximated. The analogous probability function in the PGNT

framework is defined in equation 4.6. The correspondence function helps to determine

how closely related the current gap sequence G, is to the proposed m-th navigation

tree t] , which defines probability p(t,lG,). Using COPAP is possible due to a

modification to the GNT that allows each child in the top node of the GNT to store

an angle associated with that gap.
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Figure 4-3: The two images illustrate the state of the cost matrix in (a) after the first
row is constructed and (b) after substituting for A = 16 and computing the whole

matrix. The path of the optimal match is highlighted in green.
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Figure 4-4: The three images illustrate the cyclical wrap around problem: (a) shows
the robot gap view with gaps, (b) demonstrate the distance matrix D, while (c)
constructs the full cost matrix with the optimal matching is highlighted in green. In
this case, the optimal matching is not the right solution to the problem.
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Several steps are executed to correspond each tree to the sequence G and to

assign the appropriate probability. First, the angles of the children of the root node,

call them Gtree, are extracted from the tree, because they reflect the state of the

environment according to T,. Then, they are matched to the sequence of gap angular

measurements Gangles extracted from the latest scan of the laser rangefinder. If there

is an unmatched gap in Gtree, it is treated as a wildcard, and the correspondence

algorithm matches it in an optimal way to preserve cyclic ordering of the gaps and

producing an optimal cost for the matching.

If after the end of correspondence there are still unmatched gaps, p((tsm] G,)) is

multiplied by a penalty factor for each one, which is a penalty showing that uncorre-

sponded trees are not common. Vice versa, if there are more gaps in the environment

that is found in the vector gtr,ee, the probability is again penalized for each missing

gap to account for the mismatch. The penalty factor was determined experimentally

by running several log files many times.

4.4 PGNT Implementation

The PGNT algorithm implementation is presented in Algorithm 4. The inputs to the

algorithm are the previous set of trees T,_1, the previous measurement G,_ 1, which is

a list of angles corresponding to a sequence of gaps extracted from the previous laser

range scan, and the new measurement G,, which is a sequence of gap angles from the

current range scan.

The gap extraction is a simple procedure in which we compare the distance be-

tween each consecutive pair of points in the laser rangefinder measurement, and de-

clare a gap if the distance between the points is above a certain threshold. The best

threshold depends on the size of the features that need to be resolved. For example,

a low threshold for the gap may enable an extraction of gaps in places where there is

a shallow cavity for the door in a hallway, while a larger threshold may not detect it

due to a large difference required between consecutive measurements to label a gap.

The if statement in line 2 of the PGNT algorithm makes sure that we already



Algorithm 4 Probabilistic Gap Navigation Tree
Require: Previous tree array T,_1 of length M, previous gaps G 8_1 and new gaps G,

1: for i = 1 to N do
2: if (T,_1 = 0) then
3: sample t , p(t~1 G)
4: W[ n ] =1

5: + n]1n

6: else
7: sample t.m] 8p(tm G8 1)
8: w -l = p(tMllG,)) p(G,)

9: T = Ts + (t, w1 m ] )

10: end if
11: end for
12: for i = 1 to M do
13: draw i with probability oc w ]

14: add t i] to T,
15: end for
16: return T

have a previous set of trees to work from: in other words, the algorithm has been

already running for at least one time step. If the set T,_1 does not exist, we proceed

to create the first set of trees deterministically: we extract the gaps from the laser

measurements, and create a list of N identical trees corresponding to those gaps. Each

tree is assigned importance weight of 1.

If the previous array of trees T,_1 is present, we proceed with the particle filter

approach in lines 7 - 9, and sample this posterior to account for all possible changes in

the environment according to the standard gap navigation rules presented in Chapter

3. The discussed gap navigation rules are defined by the four gap critical events -

gap appearance, gap disappearance, gap split and gap merge that can happen at each

time step. In our sampling strategy, we assume that each leaf can either undergo each

one of the gap critical events, or it can remain unchanged. Furthermore, for now we

assume that only one critical event can happen in a tree for a laser scan measurement,

which is the same hypothesis that was declared in the original GNT'. Therefore, each

tree in the original array produces N different trees, where

ILater, in section 4.6 we present a modification to this assumption where we allow multiple gap
critical events to happen at one time step.



N = (number of children in top node) * (5 possible events)

in a new array of hypothetical sampled trees. As the number of children in top node

increases, the number of samples in posterior 7T increases proportionally.

A challenge in building an accurate PGNT is the ability to formulaicly determine

which critical event happened according to the extracted angular gap positions. Due

to the cyclical nature of gap lists, this problem can be compared to the Cyclic Order

Preserving Assignment Problem for shape matching, and solved in the fashion pre-

sented earlier in section 4.3. The algorithm allows each angular measurement from

the previous set of gaps [gl...gn] to be matched to each angular measurement from

the new set [gneW... ne"], returning a set of correspondences between the two sets,

including information about multiple matches and unmatched gaps.

The same algorithm is used to determine how likely is each tree sample, as seen by

the correspond statement in line 8. The results of the correspondence algorithm are

used to compare the children of the root node of each hypothetical tree to the new

sequence of gap angles and assigns a weight based on how closely the tree matches

the observation. The comparison therefore helps to define the probability p(tm] I G8 )

for that sample by assigning penalty values for cases when the tree does not match

the observation. Note that it is multiplied by the probability of the measurement

p(G,), which by the Bayes rule from equation 2.5, which is a distribution from the

update step of the particle filter algorithm, assuming the constant r is absorbed.

After the weights for each sample have been determined, the tree array is resam-

pled in lines 12 through 15. The trees with higher weights now appear more frequently

in the new distribution of trees T,. After the resampling step, all the weights are reset

to 1 and the algorithm repeats.

The computation described above happens fast enough to be performed while the

robot is driving around in real-time when the number of gaps is small and there is only

one critical event per time step. Section 4.5 shows another sampling strategy that

doesn't sacrifice algorithm performance and greatly prunes the number of samples

generated per tree.

The critical innovation in the above approach lies in the probabilities are assigned



to each tree. Therefore, the most likely tree may not have the same number of gaps

as the current measurement, depending on the heuristic chosen for determining the

weights.

4.5 An Alternative Sampling Strategy

In section 4.4, we have outlined a sampling strategy that gives a complete represen-

tation of the tree distribution T, . However, when running exhaustive trials several

observations about the system were made:

1. As the robot drives around, sensor noise mostly manifests itself in creating false

critical events. For example, a gap may split into two for just one or two time

steps, and then merge again without a change in the visibility region.

2. The majority of time robot spends there are no critical events and the gaps stay

the same for several time steps before and after each true critical event occurs.

3. There was never a time observed when the measurement predicts one critical

event while the ground truth dictates another critical event. For example, if the

measurements indicate that a merge has happened, ground truth observation

never indicated a split or an appearance or a disappearance. This observation

is the same for all critical events.

Given these observations and over 200 trials performed with 10 different log files,

a new approach to sampling is devised. Since most of the time the robot's visibility

region doesn't change, the probability of no change is very high, over 90%. If the

correspondence of two gap arrays indicates that the environment has changed through

split, merge, appearance or disappearance, the likelihood of those events happening

is lower than 20%. So during the sample step of algorithm 4 line 7, if a tree sample

is created according to a merge rule at the the first child of its root node while the

measurement says there is a split, the likelihood of that tree is virtually 0.

Therefore, to reduce the dimensionality of the representation, the samples with

really low probability can be discarded in advance, or simply never created. The new



sampling strategy dictates that to create an optimal representation of the environment

assuming only one critical event per time step, it is enough to have two samples in

T, for each one in T- 1: one no-change sample that is transferred unchanged from

T8- 1, and one sample that follows the critical event extracted from the sequence G,

through correspondence. The performance of the algorithm under the new sampling

strategy did not show a visible decrease in the number of trees it built correctly.

4.6 Allowing Multiple Critical Events

In the Gap Navigation Tree approach it is assumed that the robot moves slowly

enough that only one critical event can potentially happen with each new measure-

ment. However, in our simulations, very often there were two, three and even four and

higher critical events with each measurement. Some of these events are a byproduct

of the measurement noise, but some of are critical events that correspond to ground

truth. The problem of incorporating multiple events into the tree representation

requires first, to create a posterior distribution of trees that captures all of the pos-

sible critical events that are happening to the tree considering every combination of

events; and second, to assign the right probability to each tree sample in order to best

approximate the shape of the belief in the resampling step of the PGNT algorithm.

Using the correspondence algorithm, section 4.3 describes how to extract poten-

tial critical events from the measurement data. In fact, the correspondence vector

captures ALL of the critical events that the measurement data suggests. So instead

of extracting just one critical event and its angular position, we can store a vector of

all the critical events and their corresponding places in the tree.

When it comes to creating a hypothetical tree, the alternative sampling strategy

explained in section 4.5 is used. Now that there is more than one potential critical

event, one has to consider all of the possible combinations of critical events that

can be created from the space of critical events suggested by the measurement. For

example, if data suggests that we have a [split, merge, disappearance], then we create

a sample for each of these permutations:



* [split]

* [merge]

* [disappearance]

* [split, merge]

* [split, disappearance]

* [merge, disappearance]

* [split, merge, disappearance]

So in this case, one sample of T,_1 produces 8 hypothetical trees: 7 with modifi-

cations listed above plus 1 unchanged tree. This process is repeated for every tree in

T,_1 for each iteration of the PGNT algorithm.

Assigning the right probability is a lot harder. For the initial try, the probabilities

of the tree with multiple critical events is just a product of the probability for each

event. Thus, for a tree with [split, merge] action,

p(criticalevent = [split, merge]) = p(criticalevent = split)(48)
(4.8)

p(critical_event = merge)

However, because the multiplication involves two decimals much smaller than one, the

probability of the tree undergoing multiple events was reduced to the point where the

tree did not appear in the final distribution Xt. Therefore, this approach was replaced

by the one which assigned a smaller penalty to the trees with multiple events. In the

future, there may be a need for a more sophisticated approach to calculating these

probabilities.



Chapter 5

PGNT Implementation

The purpose of this chapter is to introduce experimental results that were collected

to support the theoretical framework for the PGNT introduced in Chapter 4. Section

5.1 describes the experimental setup and the simulations performed to validate the

PGNT approach. Section 5.2 compares the results of our experiment to the original

GNT and discusses the performance of our algorithm.

5.1 Simulation Experiments

To verify the performance of our algorithm, we have implemented it on a simulated

robot using CARMEN, Carnegie Mellon Robotics Navigation Toolkit [24]. CARMEN

is an open-source collection of software for mobile robot control. It provides basic

navigation abilities including sensor control, obstacle avoidance, localization, path

planning, and mapping. It is able to convert an image of a floor plan, or previously

collected laser scans, into a map that can be navigated by a simulated robot. We

use the toolkit for collecting laser rangefinder sensor data in a specified map, and

storing it into a logfile, which is later processed to create a PGNT. The logfile was

used to allow for superior debugging capabilities. Another version of the software

was created to build the PGNT in real-time without the use of logfile for proof-of-

concept. The maps were obtained from the RADISH data set [13], and modified using

the CARMEN map editor tool box to remove objects from the middle of the rooms



(a) (b)

Figure 5-1: (a) Nomad Scout robot. Image courtesy of University of Amsterdam. (b)

SICK laser rangefinder. Image courtesy of Czech Technical University of Prague

that would violate the assumption of a simply connected environment.

Inside CARMEN, we utilized a model for the robot "scout" carrying two back-

to-back SICK laser rangefinders, enabling a virtual 3600 view of the surrounding

simulated environment as assumed in the GNT and PGNT formulation. The robotic

toolkit creates very realistic simulated models, taking into account actual size, wheel

location, laser location and maximum speed of the robot as it moves. The key sim-

ulation parameters are listed in Appendix 5.A. The simulated robot has a non-zero

radius, so to avoid collisions with walls and ensure continuous data collection, the

robot were driven around manually in the environment to mimic gap following.

Figure 5-1 shows a real robot Nomad Scout as well as a SICK laser rangefinder;

implementing our software on the hardware platforms and performing experiments is

an interesting extension of the current work.

Figure 5-2 shows the implemented graphic user interface that displays a map,

and draws the robot position within a map, the red dots representing the laser range

measurement positions, and the green lines representing gaps with their appropriate

gap names. The GUI on the right in (b) shows the most likely tree that corresponds

to the robot's current position in the environment, and the children of the top 0 node



(a) (b)

Figure 5-2: This is a screen shot of two graphic user interfaces. Figure (a) displays the

group truth map, with the robot inside(black dot). The red dots represent obstacles

that the robot actually sees, and green lines are the gaps. Each gap has a circle and

a number on top of it, that indicates the node of the navigation tree in (b) to which

that particular gap corresponds.

correspond to the gaps seen on the left.

The bulk of experiments was performed using the map shown in Figure 5-2. Be-

cause of its simplicity, it was very easy to deduce the ground truth for what the GNT

should be, and to compare it with output of the algorithm. Due to the nature of

the environment, even when the robot moved at a high speed there was only one

critical event per time step, which simplified the analysis further. The idea for this

map was obtained from an example in Tovar et al [41], in which they demonstrate

a very similar environment and show exactly how the navigation tree is built. For

comparison, that example is reproduced in Figure 5-3.

Several other environments served as our testing platform. One is a floor plan of a

building at the University of Freiburg, Germany, obtained from the RADISH dataset

[13]. The snapshot of one of the tests is shown in Figure 5-5. The image in 5-5 (a)

shows a birds eye view of the floor plan. The image in 5-5 (b) zooms in on the robot

building a PGNT inside the environment, along with the tree in (c) that corresponds

to the time step captured in (b). Another one is the 5300 corridor of Wean Hall at

Carnegie Mellon University in Pittsburgh, which is pictured in Figure 5-4. This is a

real, simply connected indoor environment, and it proved to be the main challenge

of the probabilistic navigation tree. The associated challenged are described in the
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Figure 5-3: The six images illustrate how the navigation tree is build using an idealized
environment. Dashed lines geometrically indicate borders of visibility regions, upon
crossing which a critical event occurs in the GNT. Adapted from Tovar et al [41]

next section.

5.2 Results and Performance

The results show that navigating with the deterministic GNT will always fail to pro-
duce the right tree because it doesn't account for the sensor measurement uncertainty,
nor for the possibility of multiple critical events within one time step. The PGNT
approach proved to be quite successful on the small environment shown in Figure 5-
3. We ran simulations for 15 different log files (log files are easier to analyze), which
contain laser measurement data for a path of a robot inside the environment that
mimics the movements of the robot going through GNT generation. Only 2 of these
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Figure 5-4: These images show (a) the floor plan of the University of Freiburg, (b) a

detail insert showing the robot building a PGNT and (c) the PGNT corresponding

to the image in (b). Thanks go to Cyrill Stachniss for providing this data
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(b) (c)
Figure 5-5: These images show (a) the floor plan of the Wean Hall at Carnegie Mellon
University, (b) a detail insert showing the robot building a PGNT and (c) the PGNT
corresponding to the image in (b)

logfiles failed to generate the correct tree after 10 trials. Two of the logfiles gave a
90% success rate of building a correct navigation tree, while the rest have built a
tree with a 100% success rate after 10 independent trials. The toughest logfile that
contained over 450 time steps was simulated 50 times with an 80% success rate.

While attempting to build a full tree in the University of Freiburg environment, we
have encountered several challenges. The number of gaps appearing at each time step
has increased, which lead us to implement a more efficient sampling approach for the
navigation tree to still allow the algorithm to run in real time. As mentioned earlier,
due to the very sharp angles present in the environment, often there were multiple
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Figure 5-6: Angular resolution as a function of range

critical events present. How we approached the problem of handling multiple events

is described in Section 4.6. However, the solution we found is not sufficient because it

often leads to incorrect environment representation when the multiple events occur.

Another significant problem encountered in our experiments is the limited reso-

lution of the laser rangefinder when resolving walls far away, and when close to the

wall. This concept is illustrated in Figure 5-6. The robot (in blue) is positioned at

the end of a long hallway, and the signals from the rangefinder are shown as dashed

lines. Close to the robot (right above it), there are a lot more measurements per

angle subtended than are far away on the right. At far enough distances, the differ-

ence between consecutive range measurements can become large enough to indicate a

presence of a gap when there is done. Therefore, when using a large enough detection

range , a lot of false gaps are detected that are currently not being processed by the

PGNT in the right fashion. This shortcoming is illustrated in Figure 5-7, where the

robot is located at an end of a hallway, and the SICK range is set to be 15m.

One solution to this problem is to limit the range that we consider for gap naviga-

tion, thus discarding all distance information above a certain range, lets say above 5

m. Now, the only detected gaps are the ones in the near proximity to the robot and

therefore are a lot more likely to be real, or at least follow the probabilistic navigation

rules derived in Chapter 4. However, an additional problem arises due to the robot

not able to see all of the gaps it should see. As the robot moves, more gaps come

into view and they are counted as appearance events. The gaps that are beyond

the limited range of the sensor are counted as disappearance event, and by using the

critical event metric they are deleted from the tree, whereas normally they would

eventually merge into other gaps. Recall that the power of the navigation tree comes



from following branches to the goal, and if even one branch disappears the environ-
ment representation will be incomplete. There is no good heuristic at this moment
to distinguish between a real gap disappearance, which happens when a hidden part
of environment becomes fully visible, or a gap disappearance due to the gap located
outside of laser rangefinder field of view. Therefore, using the range limited laser
rangefinder, although the algorithm is capable of building well defined local trees, it
is unable to fuse them into a bigger picture due to the disappearance from the tree.

In spite of these shortcomings, the PGNT still demonstrated an improvement of
the GNT by mitigating sensor noise. Figure 5-8 shows three different time steps, in
which sensor noise removed and then inserted the same gap into the tree. Under the
deterministic approach, the original gap label would be lost, and replaced by a new
one. While labeling is not a problem, removing a gap from a tree also removes all of
its children that carry important information about traversing the tree.

Figure 5-7: False gaps in the University of Freiburg environment
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Figure 5-8: These images show how the tree moves through the environment at three

different time steps, (a) t1, (b) t2 (c) t 3 . Gap 5 visible in tl disappears, and later

reappears in the same place without causing a critical event in the tree.

lit,

or



5.A Parameters for Scout and SICK laser

Table 5.1: This is
in CARMEN

Robot Parameters

Length 0.6 m
Width 0.46 m
Front laser offset from center 0.25 m
Rear laser offset from center 0.4 m
Minimum approach distance 0.3 m
Minimum side distance 0.1 m
Acceleration 0.2 m/s 2

Deceleration 0.5 m/S 2

Max translational velocity 0.4 m/s 2

Max rotational velocity 0.8 rad/s
Laser Type SICK
Laser angular resolution 10
Laser field of view 1800

a list of essential robot and laser parameters as they are modeled



Chapter 6

Conclusions

The purpose of this chapter is to summarize the key contributions of this thesis and

to describe the areas where additional research will address some of the shortcomings

of the current approach and expand the areas of interest. Section 6.1 provides an

overview of our thesis, while section 6.2 suggests future directions for research.

6.1 Summary

In this thesis, we tried to address an issue of creating a feasible environmental repre-

sentation for a robot with non ideal sensors. As a basis of environment presentation

we borrowed the Gap Navigation Tree, an approach developed by Tovar et al. which

creates a tree structure based on the discontinuities in the robotic field of vision and

which is thoroughly discussed in Chapter 3. At the heart of the GNT is its assump-

tion that the robot has a perfect detector for measuring discontinuities, which is not

true in the real world.

Our work demonstrates the utility of applying probabilistic principles when deal-

ing with noisy measurements in critical sensors available for navigation. We created a

probabilistic representation of the navigation environment based on the particle filter

that is described in Chapter 4. Furthermore, we utilize a solution to a cyclic order

preserving assignment problem to define the evolution of the navigation tree particles,

as well as to calculate the weight for each tree. Chapter 5 describes experiments that



were performed to validate our approach and discusses how the results can be used

in future work.

6.2 Directions for Future Research

Chapter 5 discusses difficulties encountered during implementation that need to be

resolved for the PGNT to be a viable approach for navigation in realistic indoor

environments. Firstly, a reliable approach to navigation when there are multiple

critical events happening at each time step is needed. Right now, it is not clearly

understood how the probability distribution of trees changes when multiple events

are present, and what probabilities should be assigned to the trees produced from

subset of multiple actions.

Secondly, the success of the PGNT implementation relies on the parameters for

gaps to be finetuned for each environment to produce good navigation results. Each

environment has corridors with unique widths and door sizes, the gap threshold has

be set such that all the openings and doors in the environment can be recognized

as gaps to enable the robot to navigate towards the rooms and enter them. An

interesting problem is to create a way for the robot to learn these critical parameters

as it is building the navigation tree, or perhaps to figure out a formula by which those

parameters can be adjusted automatically for any environment.

Thirdly, as discussed in Chapter 5, as with all non ideal systems, we are also

limited by the resolution of the laser rangefinder. There needs to be a reliable way

to distinguish true gaps from the gaps created due to the rangefinder being far away,

and therefore creating false gaps. The already suggested approach of deciding if a

gap is "real" or not by looking at its neighbors has a potential of discarding true

gaps that happen to be in the region of poor angular resolution, and thus should be

evaluated further.

A robust wall following approach should be implemented to make this a truly

autonomous system, and enabling future experiments not only with a variety of indoor

environments, but also on a hardware platform such as the one pictured in Figure



5-1. Tovar et al. have performed experiments on a hardware platform, but they

constructed a fake environment as opposed to navigating in a natural indoor one.

This work also does not address navigation with a more limited laser rangefinder

than an expensive SICK laser that has up to 80 m range. For example, the Hokuyo

laser rangefinder has a much more limited range (reliable only to about 3 m), but it

has a high angular resolution. A natural extension of the work would be to prove if the

gap navigation is possible with a limited range laser, perhaps relying on approaches

such as coastal navigation [32].

In their most recent work, Tovar et al [41] have extended their navigation tree

approach to multiply connected environments. There may be a way to generalize the

PGNT to the multiply connected environments as well, which would extend its utility

even further.

The probabilistic gap navigation tree approach presents a navigation challenge.

Since the most likely tree may not always represent what the robot sees with its laser

range finder, the previous heuristic for the robot navigation needs to be modified.

Recall that in the previous approach, the robot follows the gap until it detects a gap

critical event. With the probabilistic gap navigation tree, a gap critical event, even if

true, doesn't become incorporated into the most likely tree until several time steps,

or laser scans, later. A heuristic for navigation that only relies on the most likely tree

may not be the most efficient one, and therefore it could be an interesting problem

to solve in the future.

Although there are many current proposed approaches to solve the navigation,

mapping and localization problem in two dimensions, few have attempted to deal

with robotics in a 3-D space. An important future research direction could be in

the development an autonomous helicopter that is capable of solving localization and

navigation problems in a multi-dimensional environment using only an onboard 2D-

laser rangefinder as a guide, without relying on GPS. Autonomous indoor air vehicles

are a good platform for minimal sensing navigation, since they have an inherent limi-

tations in payload, which translates few sensors and limited on board data processing

abilities.
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