
The Growth and Microstructural Characterization of ZnSe/GaAs Quantum
Wells and Double Heterostructures

Jody Lee House

S.M.E.E., Massachusetts Institute of Technology 1994

Submitted to the Department of Electrical Engineering in partial fulfillment of the

requirements for the degree of

Science Doctorate

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1997

© Massachusetts Institute of Technology 1997

Signature of Author:
Ji J Department of Electrical Engineering

September 12, 1997

Certified by:

Esther & arold Edgerton
Professor Leslie A. Kolodziejski

Associaterofessor of Electrical Engineering
" __ _jpervisor

Approved by:
Professor Arthur C. Smith -

Chair of the Committee on Graduate Students

MARk 2719Q Z5 !P



The Growth and Microstructural Characterization of ZnSe/GaAs
Quantum Wells and Double Heterostructures

by

Jody Lee House

Submitted to the Department of Electrical
Engineering on 10 September, 1997 in partial

fulfillment of the requirements for the degree of
Science Doctorate

Abstract

Dielectric quantum wells composed of ZnSe barriers with a GaAs well have the potential
to increase the excitonic binding energy in the GaAs to 25 meV. The fabrication of such a
heterostructure has a potential application for high-speed (sub-picosecond switching
times) optical switches for 1.3 gm light. The epitaxial growth and characterization of
ZnSe/GaAs quantum wells and double heterostructures are investigated in this study. The
double heterostructure is grown by molecular beam epitaxy. During fabrication, the
material is characterized by reflection high energy electron diffraction. Ex situ, the
ZnSe/GaAs double heterostructure is characterized optically via photoluminescence,
microstructurally by a combination of electron microscopy and x-ray diffraction
techniques, and compositionally by energy dispersive x-ray spectroscopy. Control
structures composed of ZnSe/III-V materials and all III-V materials also contribute to an
understanding of the complete ZnSe/GaAs double heterostructural properties.
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1. Introduction

Speed, size, and sensitivity are the measures of quality for communications electronics.

Photonic devices composed of compound semiconductors have proven to be fast, small,

and less susceptible to electromagnetic interference than electronic devices. However, the

sensitivity of the compound semiconductor-based photonic devices varies with

temperature. Photonic devices comprised of ZnSe/GaAs QWs holds promise for reducing

the effects of temperature on device performance.

This study includes the analysis of ZnSe/III-V heterostructures, ZnSe/GaAs double

heterostructures (DBHs), and all-III-V heterostructures. The final goal of the study was to

understand the formation of the ZnSe/III-V heterointerface from a microstructural

perspective. However, a complete investigation of the ZnSe/GaAs heterostructure

involves four aspects besides microstructural analysis; epitaxial growth, optical and

electrical characterization, composition analysis, and theoretical analyses. To some degree,

all five aspects of the study of the ZnSe/GaAs system are present in this body of research.

The combined results from each of these processes provide a better understanding of

properties of the mixed II-VI/III-V heterostructure. Where relevant, the results from the

collaborative efforts of David Dougherty will be presented [1].

For photonic devices that require quantum confinement, the temperature-related

sensitivity is largely a function of the excitonic binding energy in the region of carrier

confinement. In general, these photonic devices are composed of III-V compound

semiconductors that have been extensively studied in order to optimize the excitonic

binding energy in quantum confined layers. In 1989, Kumagai and Takagahara sought to

push the limits of the excitonic binding energy in GaAs by proposing the fabrication of

GaAs QWs with ZnSe barriers [2]. Such a ZnSe/GaAs QW heterostructure would have an

increased excitonic binding energy of 25 meV as compared to the AlGaAs/GaAs QW

heterostructure value of 15 meV for a 25 A thick GaAs QW. This increase in the excitonic



binding energy yields room temperature carrier dynamics that have excitonic

contributions. The increase in excitonic binding energy in the ZnSe/GaAs QW system is in

part due to the large difference in the dielectric constant between the ZnSe (7.6) and GaAs

(12.9). The smaller ZnSe dielectric constant has the advantage of confining an optical

signal within the GaAs material.

The large excitonic binding energy is not the only interesting property of the ZnSe/GaAs

QW system. There is a large difference between the band-gap energy of ZnSe (2.67 eV)

and GaAs (1.43 eV). A heterostructure of a thin layer of GaAs (1 - 100 nm) surrounded

by ZnSe "barriers" has a large potential well in the valence band for holes in the GaAs (-

leV, depending upon whose theory is invoked). The electrons are similarly confined,

albeit with much smaller barriers (- 200 meV). Such large potential barriers for the holes

result in a number of possible confined energy states that the holes can have in the GaAs

[2, 3]. When such a ZnSe/GaAs DBH is excited, either electrically or optically, the

transitions of holes between these confined levels (intersubband transitions) in the valence

band can be detected. Furthermore, by coupling several ZnSe/GaAs DBHs into a

superlattice structure the density of hole intersubband transitions can be engineered to

achieve a large signal at the optical communications wavelength of 1.3 tm (-0.8 eV).

The potential to achieve high-speed optical switching with devices comprised of

ZnSe/GaAs QWs is the motivation for this thesis. The fabrication and optimization of the

ZnSe/GaAs QWs, and the optical measurement of carrier confinement in the GaAs are the

experimental challenges. The combination of the ability to manipulate a GaAs/ZnSe

superlattice to achieve a significant population of holes traversing across inter-valence

band states at the optical fiber communications wavelength of 1.3 jim, coupled with the

large variation in the other optical properties of GaAs and ZnSe (including a variation in

the index of refraction of -1), make the mixed II-VI/III-V heterostructure a candidate for

high-speed optical switching (switching times of < 1 picosecond). Further, ZnSe and GaAs

have very similar lattice constants (0.25% lattice mismatch), which enables the materials to

be grown epitaxially to form a heterostructure. However, the fabrication of ZnSe/GaAs



DBHs and QWs is complicated by the large difference in the optimal growth parameters

for ZnSe and GaAs.

The individual bulk properties of both ZnSe and GaAs are well understood. However, a

ZnSe/GaAs DBH cannot entirely be considered a stack of independent materials. At the

interfaces between the ZnSe and the GaAs there is a complex interaction between the

constituent species of each respective layer. For example, III-V heterostructures that

employ layers of GaAs and AlGaAs have characteristics related to how abrupt the

transition is between the two semiconductors [4, 5]. If the interfacial region is wide or

rough, the resultant electronic and optical properties of the heterostructure are degraded.

Essentially, the interfacial transition region has to be treated as another layer in the

heterostructure.

In the ZnSe and GaAs case, the two materials are composed of elements with different

valences, which affect the heterointerfacial properties. As one material is formed on top of

the other, the bonding of the four different elements can have several orientations.

Theoretically, an abrupt interface can be formed with interfacial layers of Ga, Zn, Se, and

As; in this instance, an electronic imbalance results and an associated electric field creates

a carrier-depleted region for stability. On the other hand, if a few transitional monolayers

are formed, the heterostructure is no longer entirely ZnSe and GaAs, and the interfacial

region contributes to the electronic and optical properties of the overall structure.

The fabrication of a ZnSe/GaAs QW is complicated by the difference in the optimal

growth parameters between ZnSe and GaAs. In this study, the heterostructures are

fabricated by molecular beam epitaxy (MBE). MBE is a proven method for obtaining high

quality single crystal semiconductor heterostructures with monolayer control of the planar

dimensions. Fabrication of ZnSe/GaAs QWs by MBE has the advantage of being able to

control and monitor the heterointerface formation. However, the challenge remains in

addressing the different growth parameters for the two materials while producing a

heterostructure that is of high quailty both microstructurally and optically. This thesis



investigates the fabrication of the ZnSe/GaAs QW heterostructure by MBE, and evaluates

the heterostructure by optical and microstructural characterization.

1.1 Overview of dissertation contents

A literature review on the fabrication and characterization of the heterostructure systems

related to the ZnSe/GaAs QW is presented in Chapter Two. The fabrication and

optimization of ZnSe/GaAs QWs, DBHs, and related all-III-V heterostructures are

discussed in Chapter Three, followed by the optical characterization of these

heterostructures by photoluminescence in Chapter Four. Chapter Five is a summary of the

results from both the fabrication and optical characterization of the ZnSe/GaAs QWs and

DBHs and proposes a set of explanatory hypotheses. A discussion of the two approaches

taken to address each hypothesis is also given in Chapter Five as an introduction to the

microstructural analysis presented in the second part of this thesis. Compositional analysis

of the ZnSe/GaAs QWs and DBHs by energy dispersive x-ray spectroscopy is contained in

Chapter Six. Long-range microstructural characterization by triple-axis x-ray diffraction

measurements follows in Chapter Seven. The final set of experimental results, where the

ZnSe/GaAs QWs and DBHs are examined by transmission electron microscopy are

presented in Chapter Eight. The experimental results are synthesized in Chapter Nine, with

the combined results discussed in relationship to the hypotheses presented in Chapter Five.

Finally, recommendations for future work are made.

Two appendices have been added. Appendix 1 is a description of the transmission electron

microscopy sample preparation procedure. Appendix 2 is a description of the surface

preparation efforts for the ZnSe substrates.



2. Literature Review

The series of experimental techniques developed for this study of ZnSe/GaAs DBHs was

based on current theoretical and experimental results in the field. To provide some

background into the approach taken in this study of ZnSe/GaAs DBHs, the following

sections discuss the research presented in the scientific literature on the material

fabrication and some of the issues associated with semiconductor heterostructures.

2.1 Material Fabrication

The ZnSe/GaAs mixed heterostructures in this study are fabricated by molecular beam

epitaxy (MBE). The details and optimization of the MBE growth process for each material

and for the corresponding heterostructure have been studied in the literature. The different

stages of growth are the nucleation of ZnSe on GaAs, the growth of ZnSe, the nucleation

of GaAs on ZnSe, and the growth of GaAs. Each stage of growth is discussed below

along with supporting relevant information.

2.1.1 Nucleation of ZnSe on GaAs

GaAs is a natural choice of substrate material for ZnSe-based devices, as it has a similar

lattice constant to ZnSe, is inexpensive, and is consistently of high quality. Because the

GaAs substrate has a clean and fairly defect-free oxidized surface, it can be directly loaded

into the growth system. Upon thermal- or hydrogen-driven oxide removal, a GaAs buffer

layer is grown on the substrate at a temperature close to 600 0 C. The buffer layer has been

shown to improve the quality of the crystal structure of the subsequent semiconductor

layers.

The above procedure is fairly well accepted within the II-VI and III-V semiconductor

growth community. The controversy to be addressed is the method for the nucleation of

the highest quality ZnSe on the GaAs layer. The arguments surround the proper starting

III-V surface stoichiometry and the ZnSe nucleation sequence. The study of the nucleation



of ZnSe on III-V semiconductor materials, such as GaAs, is of interest because there are

two instances of ZnSe nucleation on a III-V layer in the ZnSe/GaAs quantum well

heterostructure. First, there is the growth of ZnSe upon the substrate buffer layer which

can be InGaP, GaAs, or InGaAs, depending upon the experiment. The second ZnSe

nucleation occurs on the GaAs QW layer surface. In both cases, the literature was studied

in order to decide upon the best possible procedure for the nucleation and growth of ZnSe

on GaAs.

At the onset of this study, the researchers of the epitaxial growth of compound

semiconductors had realized the following:

* an As-terminated or As-rich GaAs surface was optimal for ZnSe nucleation [6-9];

* Ga diffuses into ZnSe at elevated temperatures [10];

* a Ga-rich GaAs surface leads to the formation of a Ga(As,Se) compound for a few

monolayers at the onset of ZnSe nucleation [10, 11];

* from an interface state density perspective, a Ga-rich GaAs surface at the onset of

ZnSe nucleation results in the lowest number of interface states [12, 13].

The formation of a potentially non-FCC type lattice (as would be the case for a Ga(As,Se)

compound) for even a few monolayers at the ZnSe/GaAs heterointerface is undesirable for

the successful growth of a GaAs QW with optical emission capability, because it

complicates the expected confinement properties theoretically expected of a

semiconductor quantum well. Also, the potential for Ga diffusion into the ZnSe layer

would mandate that the ZnSe/GaAs QW would be modulation doped at the interfaces.

2.1.2 Nucleation of GaAs on ZnSe

The growth of GaAs on ZnSe is complicated by the large difference in the optimal growth

temperature for GaAs (- 600'C) and ZnSe (- 300'C). A variety of approaches has been

used to nucleate and grow GaAs on ZnSe, with the common approach being that the

growth temperature of the substrate for the initial GaAs growth is reduced from that of

the standard growth temperature. Unfortunately, when a semiconductor is not grown at



the optimal temperature, the possibility of impurity incorporation, defect and vacancy

generation, and three-dimensional growth increases.

Several approaches to the growth of GaAs on ZnSe surfaces have been presented in the

literature and were investigated in order to understand the range of growth parameters and

the resultant GaAs properties. First, there has been an effort to grow GaAs

"microcrystals" on the ZnSe surface [14, 15]. Second, ZnSe has been studied as a buffer

layer between a GaAs layer and a Si substrate [16, 17]. Third, GaAs has special properties

when grown at substrate temperatures at or below 250 0 C, and these characteristics have

led to the study of low-temperature GaAs (LT-GaAs). Finally, there has also been a

serious effort to grow high quality GaAs layers on ZnSe for ZnSe/GaAs/ZnSe single

quantum wells (QWs). A survey of the results of each of these four efforts is given in the

following sections.

2.1.2.1 Growth of GaAs microcrystals on ZnSe

The growth of GaAs microcrystals on ZnSe was motivated by the formation of low-

dimensional structures for electron confinement [14, 15]. In work presented by Chikyow,

et al, both a Zn- and a Se-rich surface were studied as the starting ZnSe surface

stoichiometries for GaAs nucleation. The surface stoichiometry was determined using the

reflection high-energy electron diffraction (RHEED) patterns, where a c(2x2) pattern is

indicative of a Zn-rich surface and a (2x1) pattern corresponds to a Se-rich surface. In all

cases [14, 15], roughly one monolayer of Ga was deposited on the ZnSe surface at a

substrate temperature of 2000 C. Arsenic was introduced into the growth chamber and

allowed to incorporate the Ga atoms, resulting in GaAs molecules. Microcrystals (or

pyramids) of GaAs formed as a result of these processes. The size and orientation of the

GaAs crystal were a function of the ZnSe starting surface stoichiometry; smaller GaAs

crystals formed on a Zn-stabilized surface.



2.1.2.2 ZnSe as a buffer layer between a GaAs layer and a Si substrate

Historically, there has been an interest in using compound semiconductor materials to

integrate materials with optical emission capabilities with silicon-based technology. This

ability would enable the integration of optoelectronic and photonic devices with VLSI

technology. One approach to the integration of compound semiconductors and Si is the

epitaxial growth of GaAs on Si. Unfortunately, the lattice mismatch between the two

materials is large enough that only very thin layers of GaAs can be grown on Si before

strain-relieving defects form in the GaAs. A conceivable solution to this issue has been

studied by Romano, et al [17], and Bringans, et al [16], in the use of ZnSe as an interlayer

between GaAs and Si. The ZnSe interlayer is more ionic than GaAs, and the generation of

defects during lattice relaxation in the compound semiconductors is expected to be

concentrated in the ZnSe layer.

Romano and Bringans took different approaches to the growth of GaAs on the ZnSe

surface. In one case, standard MBE growth of GaAs was initiated on a Zn-stabilized

surface at 2000 C [17]. The growth temperature was ramped to 500'C during the course of

20 nm of GaAs growth. In the second case, GaAs was deposited at room temperature by

solid phase epitaxy and then the substrate temperature was ramped to 500'C to anneal the

GaAs [16]. Beginning the growth of GaAs on the ZnSe surface below 2000 C has

implications on the electronic quality of the GaAs. Also, if the GaAs is deposited at room

temperature, the first 8 nm of the GaAs are polycrystalline. It is important to note,

however, that the cross-sectional TEM analysis of these heterostructures does show

evidence of high-quality GaAs away from the ZnSe/GaAs heterointerface. The nucleation

of GaAs on ZnSe was successful, in that the GaAs was structurally of high-quality away

from the heterointerface.

2.1.3 ZnSe/GaAs/ZnSe Quantum Wells

Along with specific studies of the formation of the ZnSe/GaAs and the GaAs/ZnSe

interface, there has been prior work on the growth and characterization of ZnSe/GaAs

QWs. Two separate efforts by researchers in Japan have been made to form high quality



GaAs QWs with ZnSe barriers. In one case, the entire heterostructure was grown by a

combination of migration enhanced epitaxy (MEE) and solid phase epitaxy (SPE) in a

single MBE chamber [18-22]. In the other case, the growth was completed by metal-

organic vapor phase epitaxy (MOVPE) at atmospheric pressure in a single growth reactor

[23-25]. The MOVPE-grown ZnSe/GaAs QWs were grown by raising the ZnSe growth

temperature to between 450'C and 550'C. The GaAs "well" material was grown at the

same temperature as the ZnSe.

These heterostructures were investigated by cross-sectional TEM, x-ray diffraction, Auger

spectroscopy, Nomarski phase-contrast microscopy, and photoluminescence. The

microstructural results demonstrate that the growth procedure results in heterostructures

of fairly high crystal quality. This is demonstrated by intense and well-defined satellite

peaks in the x-ray diffraction rocking curve [24, 25]. The cross-sectional TEM also shows

a defect free region of the heterostructure [23-25]. In one instance, Fujita, et al, present

photoluminescence data that they attribute to an optical signal from 100 nm of GaAs

grown between 300 nm Zn(S)Se barriers, as a function of annealing temperature.

Unfortunately, the accurate identification of the source of the optical signal from this

heterostructure is complicated because its energy range and intensity are both similar to

that of a defect-band often seen in ZnSe-based material that has a sufficiently high

impurity level. Given the growth conditions of this study, it is possible that such an

impurity level did exist in the ZnSe layers.

In another study of ZnSe/GaAs QWs, the heterostructures were grown by MEE. In MEE,

the substrate is exposed alternately to the equivalent of one full monolayer of coverage of

each constituent source. For example, GaAs is grown by opening the Ga shutter for an

amount of time that has been determined to provide a full monolayer coverage on the

substrate. Next, one monolayer of As is deposited on the substrate surface. The GaAs well

material was nucleated by first depositing two atomic layers of As at room temperature,

followed by the introduction of the equivalent amount of Ga. The MEE growth was

continued at 250C (or ramping from 250 0 C to 4000 C) for the remainder of the GaAs



growth. It seems that this approach deposits at least two atomic layers of LTGaAs at the

GaAs on ZnSe heterointerface. These heterostructures were assessed microstructurally via

x-ray diffraction, cross-sectional TEM [18-20, 22] and RHEED. During the growth of

these heterostructures, the RHEED pattern was either weak or spotty [22]. However, the

x-ray diffraction results indicate the presence of a uniformly high-quality structure as

indicated by narrow Bragg peaks and interference fringes [18, 20, 21]. There was some

effort to assess the interface quality using SIMS and Auger spectroscopy, though the

spatial resolution of both characterization methodologies is below that necessary to

measure the interfacial properties accurately [19]. The optical properties of the GaAs QW

were measured by low-temperature photoluminescence measurements, and appear to be

very close in energy to the band-edge of the GaAs substrate [18, 20].

2.1.4 Low-temperature GaAs

The study of low temperature GaAs (LTGaAs) is relevant to the investigation of

ZnSe/GaAs QWs in that the disparity in the optimal growth temperatures of ZnSe and

GaAs, as well as the approaches to the nucleation of GaAs on ZnSe reported in the

technical literature, place the growth of GaAs in or close to the regime of LTGaAs. The

growth of LTGaAs is usually at a substrate temperature ranging from 200'C to 300'C,

with a range of As:Ga ratios [26-37]. LTGaAs is characterized by a short carrier lifetime

(sub-picosecond) that results from the incorporation of excess arsenic during the growth.

The additional As atoms reside interstitially in the GaAs lattice, sitting close to the

normally present As atoms with a projected displacement of roughly 0.03 nm [26, 37]. In

general, the optical properties of LTGaAs are such that there is no measurable level of

photoluminescence across the energy band-gap, although there is evidence of deep-level

low-temperature photoluminescence at 0.8 eV [33, 35, 38-40]. This is largely a function

of the low carrier lifetime [41].

There is some evidence that the properties of LTGaAs are tied to the ratio of As:Ga used

during the GaAs growth [31-34, 42, 43]. Essentially, the closer the LTGaAs As:Ga

growth ratio is to 1:1, the longer the carrier lifetime in the material as grown. This is a



logical result, since the presence of excess arsenic in the lattice behaves as a defect of the

GaAs with a measured non-ionized impurity band of 0.2 eV width centered 0.5 eV from

the top of the conduction band [44].

The details on the properties of GaAs when it is grown near and within the regime of low

temperature GaAs have bearing on the understanding of the properties of the ZnSe/GaAs

QWs under investigation. Table 2-1 lists the measured carrier lifetimes of GaAs grown

with a beam equivalent pressure (BEP) ratio of 10 [41] (where a BEP of 3 is roughly

equivalent to an As:Ga ratio of 1:1 [34]). The carrier lifetime of GaAs grown even at a

slightly lower temperature (4000 C) is much shorter than that of GaAs grown under

optimal conditions. The further degradation of the carrier lifetime for GaAs grown at

lower temperatures should be considered in conjunction with the issues associated with

growing a high-quality optical GaAs QW with ZnSe barriers.

580
400
350
300
260
200
190

> 1 nsec
65
62
60
58

< 0.4
< 0.4

Table 2-1. Carrier lifetimes (t) for GaAs grown at different temperatures (Tsub) [41].

Table 2-2 gives the results of x-ray diffraction studies of GaAs grown at a reduced

temperature with different ratios of the As to Ga in the growth reactor [28, 34]. The

presence of an extra Bragg feature in an x-ray rocking curve indicates that there is a

periodicity of the atomic planes other than that of the standard GaAs lattice. This feature

can result from strain in the lattice or compositional shifts. For the case of LTGaAs, the

excess arsenic incorporated into the lattice alters the lattice constant and shows up as a

compressively-strained feature compared to the GaAs substrate. The intensity and FWHM

(or the integrated intensity) of the extra x-ray feature seems to dissipate as stoichiometric

growth conditions are approached.



As to Ga BEP
20
10
6
5
4
3

A(arcsec) FWHM (arcsec)
-160 60

............. ... .. ............ ..- --------- -------- ......-200 100
-100 100
-75 100
-75 100
0 25

Table 2-2. Effect of As to Ga BEP on the structural properties of LTGaAs [28, 34]. A corresponds to the shift in the
LTGaAs Bragg peak from the GaAs substrate Bragg peak. The full width at half maximum (FWHM) is for the
LTGaAs Bragg peak. The growth temperature (Tsub) is also given.

The prior sections represent the survey of the experimental work that has been done on

ZnSe/GaAs QWs. This information is important because it led the starting point of the

present experimental work on the growth of the mixed ZnSe/GaAs heterostructures.

2.2 Analysis at the heterointerfaces

In addition to the experimental research on the fabrication of ZnSe/GaAs heterostructures,

there were research efforts to tackle some of the problems associated with a mixed

ZnSe/GaAs heterointerface (as well as the heterointerfaces of other semiconductor

material systems). One issue addressed was the energy-band alignment between ZnSe and

GaAs. A related issue was the type of interface that forms between the two materials and

the properties of that interface. Finally, the limitations in the material fabrication that

ultimately determine the heterostructure properties were also explored. Relevant

information available in the technical literature follows. In some cases, experimental

methods were used to find solutions to these questions, though the work still falls into the

theoretical realm.

2.2.1 Energy-band alignment

When two different semiconductor materials are joined to form a single heterostructure

(which in the present study was done by MBE), there is often a discontinuity in the band-

gap energy of the heterostructure. It is important to have an understanding of how the two

different band-gaps align at the heterointerface in order to have a sense of the carrier

dynamics within the heterostructure. There are several theories of how semiconductor

band-gaps align [45-51]. The theories on the energy-band alignment agree that an

Te11b (OC)
225
200
250
250
250
250

_1___1~___~__~~~_~~~~~_~~~



interfacial dipole results in charge transfer between the two materials which must be

accounted for by more than the electron affinity rule. The electron affinity rule assigns the

energy band alignment between two materials according to the relative separation of the

conduction band levels for each material from a reference vacuum energy level (the energy

required to completely remove an electron from the material). The theoretical work

presented specifically on the ZnSe/GaAs heterointerface predicts an energy-band

alignment that results in a valence-band offset (AEv) ranging from 0.83-1.09 eV. The

range of the predicted valence-band offset for the ZnSe/GaAs system is partially

determined by the use of a range of material constants for both materials. This range in

material parameters for ZnSe is due to an incomplete understanding of the electronic

properties of bulk ZnSe. At a more fundamental level, many of the energy-band alignment

theories assume that the heterointerface is comprised of all III-V or all group IV elements.

This issue is discussed more thoroughly below, as it also affects the thickness of the

heterointerface.

2.2.1.1 ZnSe/GaAs energy-band alignment

To date, extensive experimental research has been carried out on the formation of the

mixed interface formed in a ZnSe/GaAs heterostructure. These efforts have tried to

provide an understanding of the nature of the stoichiometry of the II-VI/III-V

heterointerface and the alignment of the electronic energy bands across the

heterostructure. Work by Nicolini, et al, [52] ascertained that the ZnSe/GaAs

heterointerface can have four permutations, each with a different energy band alignment.

Figure 2-1 presents an illustration of the atomic arrangement for the four cases with the

valence band-offsets given below each one.
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Figure 2-1. Illustration showing possible atomic arrangements of Zn, Se, Ga, and As at the ZnSe/GaAs
heterointerface and the corresponding valence band-offsets [52].

The Nicolini group was also able to identify and control the energy-band alignment

between ZnSe on a GaAs(001) surface which was As-stabilized as represented by a (2x4)

surface reconstruction. The valence-band offset was measured to be a function of the ratio

of Se to Zn in the growth reactor [52-57]. ZnSe nucleated on GaAs in highly Se-rich

conditions will have a smaller valence-band offset (as small as 0.6 eV) than when

nucleated in Zn-rich conditions (as large as 1.2 eV), as is shown in Figure 2-2 [53]. These

results were also found to be independent of GaAs doping and/or surface reconstruction

although this study did not thoroughly cover the spectrum of doping and starting surface

reconstruction for each ratio of Zn:Se tested [52].

Bonanni, et al, studied the effect of the ratio of Zn:Se during ZnSe growth on the

ZnSe/GaAs energy-band alignment. The value of the valence-band offset (AEv) was

derived from x-ray photoemission spectroscopy (XPS) measurements of the binding

energies of the constituent elements for the heterostructures. In Figure 2-2, AEv is

measured as a function of the thickness of ZnSe grown on GaAs [53]. The first 2 nm of

the ZnSe in the ZnSe/GaAs heterostructures in this study were grown with Zn:Se ratios

ranging from 0.1 to 10. The remainder of the ZnSe layer was grown under stoichiometric

conditions. As shown, the energy-band alignment can be engineered by setting the ratio of

Zn:Se during the ZnSe growth within the first 2 nm.
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Figure 2-2. XPS-derived values of AEv for ZnSe-GaAs(001) heterostructures as a function of the thickness of the

overall ZnSe layer. Solid symbols denote data obtained from the first 2 nm of ZnSe. Open symbols denote data
obtained after deposition of a ZnSe overlayer with BPR=l. Similar symbols (diamonds, squares, circles, and
triangles) denote data obtained in the same experimental run with a Zn-rich nucleation (topmost section), or Se-rich
nucleation (bottom-most section). Average values of AE=l1.05± 0.05 eV for samples with Zn-rich nucleations, and

AEv= 0.58± 0.05 eV for Se-rich nucleations are indicated by horizontal lines [53].

The effect of the growth ratio of Zn:Se on the ZnSe/GaAs energy-band alignment is

further presented by Nicolini, et al [52]. In this work, the stoichiometry and doping

concentration of the GaAs surface were varied in conjunction with a range of Zn:Se ratios

during the ZnSe growth. A summary of the results on the energy-band alignment for this

set of ZnSe/GaAs heterostructures is shown in Figure 2-3. The graph of AEv as a function

of the Zn:Se ratio shows that the starting GaAs stoichiometry or doping concentration

does not contribute to the energy-band alignment between ZnSe and GaAs.
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Figure 2-3. Experimental valence band offset (AEv) for ZnSe interfaces fabricated on GaAs(001) substrates with
different type of doping. Unless noted otherwise, the substrate reconstruction was As-stabilized 2x4. The offsets are
plotted as a function of the Zn:Se ratio R observed for each interface in the early growth stage (at a ZnSe coverage of
0.3 nm) [52].

The experimental work on the energy-band lineup between a layer of ZnSe grown on

GaAs addresses one of the problems associated with the heterointerface of a II-VI/III-V

material. However, the same group of researchers relied on a 2 nm thick ZnSe nucleation

layer to engineer the energy-band alignment of the subsequent structure successfully. This

choice has ramifications for the interfacial quality when the ZnSe nucleation layer is grown

under extreme Zn:Se ratios.

2.2.2 Interface roughness

For a quantum well heterostructure, an abrupt transition between the different layers is

desired for several reasons. First, if the heterointerface is abrupt, the properties of the

heterostructure are easier to understand once the bulk properties of each layer are known.

Second, if the final destination of the heterostructure is within an optoelectronic or

photonic device, a more abrupt heterointerface implies a more precise optical signature.

Finally, once an abrupt heterointerface has been achieved and the growth parameters

optimized, the heterostructure can be built with reproducible characteristics.
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All semiconductor heterostructures have interface quality issues. For a stack of

semiconductors with alternating layers consisting of group V elements of P or As, there is

an issue of interdiffusion of phosphorus into the neighboring layer [58, 59]. In the growth

of AlGaAs on GaAs, the formation of the heterointerface is complicated by the difference

in optimal growth temperatures (AlGaAs, -800 0 C). This has a degrading effect on the

interface roughness and purity [60, 61]. In all III-V heterostructures, the use of growth

interruption (of a few minutes) between layers of different material types has been studied

to optimize the interfacial roughness [60-66].

The ZnSe/GaAs heterostructure is complicated by the different valences of the four

elements at the heterointerface. Gallium has been shown to act as a donor-type dopant in

ZnSe [67-69]. Similarly, zinc has been shown to dope GaAs. There has also been

documentation of surface-exchange of Se with As atoms on the GaAs surface, to form a

Ga(As)Se compound [11, 70, 71]. All of these results indicate that there is the possibility

for interfacial diffusion between ZnSe and GaAs.

The orientation of the growth surface also affects the interfacial properties. The (001)

compound semiconductor surface is polar, in that there is a periodic absence of one of the

surface dimers [72]. For the case of GaAs, this has been shown to be manifested by the

absence of every fourth arsenic dimer [73]. For ZnSe, the surface is more complicated. A

Se-rich surface (as indicated by a (2x1) surface reconstruction) is terminated with Se

dimers with the same periodic absence of the fourth dimer as in the GaAs case. However,

in the Zn-rich case, the Zn dimers are unstable due to excessive back-bonding strain, and

the surface is terminated in a half-monolayer of Zn [74, 75]. As a result, the formation of

the ZnSe/GaAs heterointerface is complicated by the different types of stable (001)

surfaces for each material. Theoretically, a truly abrupt heterointerface formed by GaAs in

its most stable form (As-stabilized) and ZnSe in its most stable form (Zn-rich) would

result in interfacial charge.



2.3 Summary

The complexity of the ZnSe/GaAs heterostructure has been illlustrated. The fabrication of

the mixed structure is complicated by a mismatch in the optimal growth temperatures for

ZnSe and GaAs. Furthermore, the formation of a ZnSe/GaAs/ZnSe single QW requires

engineering of the growth of GaAs on ZnSe while remaining outside of the regime of

LTGaAs.

The electronic properties of the ZnSe/GaAs heterostructure are discussed on both the

theoretical and experimental levels. In all cases, the energy-band alignment between the

materials has been shown to vary greatly depending upon the growth parameters. The

theory behind energy-band alignment of a compound semiconductor heterostructure

assumes, in part, an abrupt heterointerface, and the issues associated with this assumption

have been surveyed. The probability of interfacial diffusion and/or the presence of

interfacial charge has been discussed.



3. Material fabrication

The II-VI and III-V compound semiconductor materials studied were grown by molecular

beam epitaxy. The epitaxial growth process and the system employed are presented in the

subsequent sections, followed by a discussion of the optimal growth procedure for ZnSe

and GaAs. The initial description of ZnSe and GaAs growth aids the understanding of the

growth of the complete ZnSe/GaAs/ZnSe heterostructure. Each compound semiconductor

has a unique set of optimal growth parameters. The optimal growth parameters for a

heterostructure composed of different material systems requires some engineering of these

conditions to achieve the best quality material from both an optical and electrical

perspective. The final sections of this chapter present the results on the growth and

optimization of the ZnSe/GaAs DBH.

3.1 Description of method: GSMBE and MBE

Molecular beam epitaxy (MBE) is a commonly used method of building heterostructures

by controlling the formation of each atomic layer. Molecular beams of the source materials

are generated when the source temperatures reach a point at which the material vaporizes.

The amount of each material in the growth chamber at a given time can be controlled by

changing the source temperature and then analyzed by measuring the beam fluxes. The

molecular beams impinge upon a heated substrate and bond to the surface if the bond can

be electronically formed. This entire process occurs in an ultra-high vacuum environment

(base chamber pressure is - 1x10 -'0 Torr) to ensure that the only atoms which interact

with the substrate surface are from the desired source materials. The critical parameters in

this process are the chamber pressure, the source temperatures and fluxes, and the

substrate temperature.

Various forms of molecular beam epitaxy employ either solid elemental, gaseous hydride,

or metal-organic source materials with known vapor pressures. In this study, for the

growth of ZnSe, solid elemental Zn and Se are used as the source materials, whereas for



the growth of GaAs and all III-V semiconductors, solid Ga (or group III source) is used

with the gaseous hydride arsine (or phosphine) as the group V source. The two materials

are grown in separate chambers that are interconnected. Transfers between the two

chambers are performed in an ultra-high vacuum environment. The epitaxial growth

system employed in this environment is described below.

3.2 System Description

The experimental system employed for the epitaxial growth of the ZnSe/GaAs DBHs is

basically a combination of stainless steel cavities (or chambers) welded together and

connected to a hierarchy of pumps to maintain the inside pressure at or below 10-0 Torr.

Access to the inside of the growth system is made possible by a series of valves which

allow for samples to be loaded into the chamber without altering the base system pressure.

There are also a number of viewports throughout the system to aid in transferring the

sample and monitoring the sample during analysis or growth. Finally, a number of

attachments are fed through the stainless steel walls via a system of bolted flanges that are

sealed at the chamber/flange interface by either copper or aluminum gaskets. Every

attachment to the growth system has a specific purpose, as does each chamber of the

growth system. The following paragraphs describe more thoroughly each part of the

growth system.

The overall growth system consists of six interconnecting chambers; a transfer chamber,

two introduction chambers, a II-VI compound semiconductor dedicated reactor, a III-V

compound semiconductor dedicated reactor, and an analytical chamber (Figure 3-1).

Centered in the transfer chamber, a robotic arm allows the samples to be maneuvered

between each connecting chamber.
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Figure 3-1. Schematic showing the growth system. Shown are the II-VI growth reactor, fI-V growth reactor,
analytical chamber, transfer chamber, and the supporting equipment necessary to maintain an ultra-high vacuum and

to monitor for toxic gases.



The introduction chamber consists of two separate vacuum chambers. These two areas

share a cryogenic pump allowing only one chamber to be pumped at a time. The first

contains a heater and a platform for desorbing the residual acids and water from the

surface of a clean sample block or holder prior to loading a substrate. The second chamber

acts as a load lock for the clean substrate and sample block prior to the introduction into

the transfer chamber which is connected through a gate valve. From the introduction

chamber, the carrier and sample are transported into the transfer chamber using the

robotic arm in the transfer chamber. Inside the transfer chamber, a clean sample block with

a mounted sample can be baked at another bake station to desorb water.

The III-V chamber has a buffer chamber which acts as another load lock for the sample

prior to being loaded into the III-V growth reactor. The buffer chamber allows for in situ

transfer between the growth reactors and the analytical chamber via the transfer chamber.

Two growth chambers are used for the growth of the III-V layers and the II-VI layers: a

Riber 32P gas-source MBE (GSMBE) system for the growth of III-V compound

semiconductors, and a chemical-beam epitaxy (CBE) system for the growth of ZnSe. The

different families of compound semiconductors are grown in separate systems to avoid

cross-contamination during the respective film growth. As the growth chambers were

manufactured by different companies, the details of each tend to differ. However, each

system is equipped with a substrate heater, a thermocouple and a pyrometer to measure

the substrate temperature, effusion cells containing ceramic crucibles sitting in heaters for

each solid element employed in the growth, cracking cells for removing the hydrogen from

the hydride molecule for the gas sources, an ion gauge for measuring source fluxes, and an

electron gun and phosphorus screen for reflection high energy electron diffraction

(RHEED) analysis. Both chambers utilize liquid-nitrogen-cooled shrouds or traps to

minimize the background pressure during growth. A cryso-shroud is used in the III-V

chamber to thermally isolate the cells, while the II-VI chamber uses water cooling since

the cells operate at lower temperatures.



In the II-VI chamber, the sample is suspended by a rotating platform under the substrate

heater in the center of the reactor. The substrate heater can be raised and lowered to allow

for sample transfers. A quartz crystal oscillator sits at the substrate holder to measure the

source fluxes close to the sample surface. The elemental sources are directed upward

towards the substrate surface. Each source's flux can be interrupted by manually

controlled shutters.

In the III-V chamber, the sample is connected to a rotating stage with a fixed separation

from the substrate heater. The elemental sources and the cracking cells are aimed at the

substrate, and are mechanically shuttered. An ionization gauge is used to determine the

source fluxes at the substrate surface prior to growth.

Both growth reactors employ RHEED analysis to evaluate the quality of the substrate

surface at all stages of the growth. The RHEED pattern is formed by focusing a 10 keV

electron beam at a shallow angle onto the substrate (< 2' from the sample's surface)

causing the electrons to diffract according to the crystal structure. The desired pattern is a

series of well defined dots. The primary forward scattered beam has the additional

property that in the case of layer-by-layer growth, the beam intensity oscillates with the

same period as the material growth rate. RHEED intensity oscillations are usually taken at

the onset of growth, when the growth surface is smooth.

3.3 Calibration of the growth environment

The growth parameters for a semiconductor depend upon the types of sources employed

and the surface kinetics of the material grown. There are five stages of interaction of the

constituent species of a compound semiconductor with the growth surface: adsorption,

migration, desorption, reaction and incorporation. The substrate temperature must be low

enough such that it is thermodynamically feasible for the sources to adsorb, migrate along

the sample surface, and become incorporated before the sources are desorbed. Hence, the

optimal growth temperature for a semiconductor material is a function of the vapor

pressure of the constituent element(s). Since Ga and As2 have much lower vapor pressures

than Zn and Se, the GaAs growth temperature is much higher than that of ZnSe.



3.3.1 GaAs growth

The growth of GaAs begins with the removal of the native oxide on the GaAs substrate

surface. The oxide is removed by heating the substrate to 620'C while observing the

RHEED surface reconstruction. A background pressure of roughly 10-5 Torr of As2 is

maintained to protect the surface as the oxide is removed. Usually, the oxide-free GaAs

surface shows a (2x4) reconstructed surface on the RHEED screen, which indicates that

-75% of the GaAs surface is occupied by As and is As-stabilized. A summary of the GaAs

RHEED patterns is given in Figure 3-2.

GaAs is typically grown at a temperature of 580'C - 600C. Growth is initiated by

opening the Ga cell shutter, as there is already a background pressure of As2 in the system.

The (2x4) RHEED pattern remains throughout the GaAs growth. RHEED intensity

oscillations are measured to determined the growth rate. Once the layer has reached the

desired thickness, the Ga cell shutter is closed. When the substrate temperature is reduced

to roughly 4000 C following growth, the GaAs surface transforms to an As-rich surface as

indicated by a c(4x4) RHEED surface reconstruction.
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Figure 3-2. RHEED patterns of ZnSe and GaAs surface reconstructions. ZnSe (2xl) and c(2x2) patterns are shown.

GaAs (2x4) and c(4x4) patterns are shown.

3.3.2 ZnSe growth

The ZnSe material studied was grown on either GaAs or ZnSe substrates. When a GaAs

substrate is used, the starting surface is either a GaAs or an InGaP buffer layer. When a

ZnSe substrate was used, the substrate surface must be treated in situ before growth can

begin. Upon direct entry into the growth reactor, the ZnSe substrate shows a faintly

streaky bulk surface RHEED reconstruction. The presence of a RHEED pattern indicates

that any oxide on the ZnSe surface is thin. Auger electron spectroscopy revealed that the

ZnSe substrate surface in fact had less oxygen than it did carbon. As a result, a starting

surface treatment of hydrogen plasma cleaning is performed to remove the carbon. Once

the ZnSe surface is prepared, the growth of the subsequent ZnSe layer is the same as for

the growth on the III-V surface.

For ZnSe, the sources are usually set by adjusting the cell temperatures and measuring the

corresponding molecular beam flux with a crystal oscillator to achieve a Se-rich surface

during growth. ZnSe is typically grown at a substrate temperature between 280'C and

ZnSe (2x1)



300'C. The ZnSe nucleation begins by manually opening the Zn and Se shutters

simultaneously. During the ZnSe growth the substrate surface exhibits a Se-rich (2x1)

RHEED reconstruction. RHEED intensity oscillations are measured to determine the

growth rate. Once the layer has reached its desired thickness, the Zn and Se cells are

shuttered off, and the substrate heater is raised away from the sample. At this point, the

ZnSe surface becomes Zn-rich, as indicated by a c(2x2) surface reconstruction. A

summary of the ZnSe RHEED patterns is given in Figure 3-2.

Table 3-1 summarizes the evolution of the RHEED pattern during the oxide removal and

the GaAs and ZnSe growth process.

Start Surface End Surface RHEED Pattern T,,, C
GaAs oxide on substrate Oxide off bulk 620
GaAs (sub) GaAs (epi) 2x4 580-600
GaAs ZnSe Se-rich 2x1 280-300
ZnSe Se-rich ZnSe Zn-rich 2x2 280-300

Table 3-1. Typical RHEED patterns during the course of GaAs and ZnSe epitaxial growth.

3.4 Growth rate and stoichiometry

The dependence on the growth rates and stoichiometries of the GaAs and the ZnSe layers

on the elemental and hydride source parameters were determined by a combination of

system calibration using control samples and in situ characterization using RHEED

intensity oscillations. The ZnSe material was grown under standard conditions, and the

calibration of the stoichiometry using control samples is given in more detail elsewhere

[76-84].

3.4.1 ZnSe growth rate

The barrier layers in the ZnSe/GaAs heterostructure are thin enough that the short growth

duration results in a compromise between achieving RHEED intensity oscillations and a

uniform film growth via rotation of the sample. In general, the RHEED oscillation

measurement was attempted on the first barrier layer to measure the ZnSe growth rate for

a given set of Zn and Se beam fluxes (as measured by a water-cooled crystal oscillator

located at the substrate position). The first ZnSe barrier layer was nucleated on a smooth



III-V buffer layer surface grown under standard conditions, allowing for a higher

probability of measuring RHEED intensity oscillations. The second ZnSe barrier layer was

nucleated on a reduced-temperature GaAs layer, and although a c(4x4) GaAs surface

reconstruction was achieved for this layer, when RHEED intensity oscillations were

attempted, the fluctuation in the specular beam intensity was within the noise range of the

detection system. As a result, an effort was made to maintain the II-VI growth parameters

measured for the first ZnSe barrier layer in order to achieve a similar growth rate for the

second ZnSe barrier layer. Cross-sectional TEM results show that the thickness of the

ZnSe barriers in a given heterostructure vary by 10%.

3.4.2 GaAs growth

Unlike ZnSe, the epitaxial growth of GaAs at the standard substrate temperature of 580 0C

is not self-limited by monolayer coverage of the constituent species. On a GaAs surface at

standard MBE growth temperatures, the Ga atoms have a unity sticking coefficient. The

As2 molecules, require the presence of vacant bonds on Ga atoms to react with the GaAs

surface and are otherwise thermally desorbed from the substrate surface. As a result, the

two-dimensional growth of GaAs is Ga-limited at a standard growth temperature. A

RHEED intensity oscillation measurement of a high-quality GaAs growth surface reflects

the rate of Ga growth. However, the ratio of As2:Ga during the GaAs growth can also

affect the final layer quality. This is particularly the case for the reduced temperature

GaAs, as the increased possibility for excess As2 incorporation can lower the carrier

lifetime in the GaAs. Hence, it is important to understand the growth rate of GaAs as a

function of the Ga cell temperature and the AsH3 flow rate. As the GaAs was also grown

at reduced temperatures, the growth rates are also studied as a function of temperature.

3.4.2.1 AS2 incorporation rate

The As2 dependence of the GaAs growth rate was studied as a function of the AsH 3 flow

rate (sccm) and the growth temperature. When a flow of AsH 3 results in a growth rate of

As2 on the GaAs surface that is equivalent to the growth rate of GaAs at a given flux of

Ga, the As2:Ga ratio is 1:1. To measure the growth rate as a function of AsH 3 flow rate, a

smooth GaAs(100) surface was heated to around 600 0 C with a surface (2x4) RHEED



reconstruction. An optical fiber attached to a photomultiplier tube was centered at the

specular beam of the RHEED pattern. Ten monolayers of Ga were deposited on the GaAs

surface, during which time the RHEED pattern disappeared and a diffuse background level

of scattering was visible. At this point, the AsH 3 shutter was opened allowing for the As2

to bond with the Ga atoms on the GaAs surface. The specular beam both recovered in

intensity and oscillated with a cycle time of one monolayer of GaAs growth. Upon the

growth of ten monolayers of GaAs the oscillations stopped and the surface exhibited a

(2x4) RHEED reconstruction. The data points in Figure 3-3 indicate the growth rate

determined by the period of the RHEED intensity oscillations from the As2 contribution to

the GaAs growth rate. As expected, the growth rate increases with increasing AsH3 flow.
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Figure 3-3. Growth rate as a function of the AsH 3 flow rate in the growth reactor as measured by RHEED intensity
oscillations.

The contribution of As2 to the growth rate of GaAs was also studied as a function of the

substrate temperature. The motivation for this measurement was to understand how the

As2 would interact with the GaAs surface at reduced growth temperatures, which would

help in establishing stoichiometric GaAs growth conditions. To measure the contribution

of As2 to the GaAs growth rate as a function of substrate temperature, the same procedure

was followed in the comparison of GaAs growth rate as a function of AsH 3 flow except

the AsH3 flow was kept constant at 0.07 sccm (the minimum flow rate that can be

maintained by the mass flow controller) and the substrate temperature was varied. As the

substrate temperature was reduced, between As2 oscillation measurements, the GaAs



substrate temperature was raised to around 6000 C to anneal and smooth the surface. The

smoother GaAs surface was necessary for detecting RHEED intensity oscillations.

Figure 3-3 shows the relationship between the contribution of As2 to the GaAs growth

rate and the substrate temperature. The data shows that the growth rate of GaAs becomes

independent of substrate temperature temperatures below 550 0C (at an AsH 3 flow of 0.07

sccm). Compared to the growth rate at the standard growth temperature of 600'C, the

growth rate levels off to a value that is 30% higher (0.475 gm/hr).
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Figure 3-4. GaAs growth rate as a function of substrate temperature (°C). RHEED intensity oscillations resulting

from As2 incorporation were used to measure this relationship as Ga has a unity sticking coefficient on the GaAs

surface over the range of temperatures measured

The combination of the results from the AS2 oscillations as a function of AsH3 flow and

substrate temperature can be used to calculate the conditions under which stoichiometric

GaAs can be grown at reduced temperatures. The Ga incorporation rate is also needed to

make this calculation.

3.4.2.2 Ga incorporation rate

The Ga incorporation rate is the limiting factor in the growth of GaAs at the standard

growth temperature. Therefore, RHEED intensity oscillations of GaAs growth at 6000 C

as a function of Ga cell temperature directly measures the contribution of Ga to the GaAs

growth rate. The GaAs growth rate was measured with a similar arrangement to that for

the As2 oscillations, except both the As2 and Ga shutters were open during the RHEED
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oscillation measurement. Figure 3-5 shows the relationship between the Ga cell

temperature in 'C and the growth rate. The relationship is non-linear with roughly a

doubling in the growth rate for a 20' - 30' increase in cell temperature.
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Figure 3-5. Growth rate as a function of the Ga temperature (oC) as measured by RHEED intensity oscillations.

3.4.2.3 GaAs stoichiometry determination

The previous three measurements of the As2 incorporation rate as a function of AsH 3 flow

and substrate temperature, and the Ga incorporation rate as a function of the Ga cell

temperature can be combined to determine the ratio of Ga:As2 for reduced temperature

GaAs growth. The ratio is calculated by the following equation:

Ratio Ga RGa (TG ) RAs 2 (3500 C)

As2 RAs2 rA) RAS2 (6000 C)

where R is the growth rate, T is the cell temperature, and r is the AsH 3 flow. The results of

this calculation are shown in Figure 3-6 as a function of Ga cell temperature for an AsH 3

flow of 0.07 sccm.
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Figure 3-6. Ratio of Ga:As 2 as a function of Ga temperature for an AsH 3 flow of 0.07 sccm. The substrate temperature

is between 350 0 C and 400 0 C.

The calibration process for the growth of reduced temperature GaAs led to the

determination of a growth rate of 0.4 gm/hr with a Ga cell temperature of 875 0C and an

AsH 3 flow rate of 0.07 sccm for stoichiometric, or 1:1. growth conditions at a reduced

growth temperature.

3.5 Epitaxy of ZnSe/GaAs/ZnSe

The following sections discuss the fabrication of the ZnSe/GaAs mixed heterostructure by

epitaxial growth. A general description of the growth method is given, as well as the

specifics of the method used in this study. The issues regarding optimization of the growth

of the GaAs "well" material are presented, followed by a discussion of the nucleation of

GaAs on ZnSe. The growth-related results are presented for the optimized growth of the

entire ZnSe/GaAs/ZnSe DBH, including the growth parameters and sequence. Also, the

surface RHEED pattern during the growth is shown. Characterization of the

heterostructures after growth are presented in subsequent chapters.

3.5.1 GaAs quantum well material

Due to the disparity in optimal growth temperatures for ZnSe and GaAs, the effects of

reducing the GaAs growth temperature have been investigated. The difference in the

growth temperatures is an issue in the formation of a high-quality ZnSe/GaAs QW

because the GaAs QW layer is optimally grown at a high enough temperature to destroy

the quality of the lower ZnSe barrier layer.



The limits to achieving high quality optical GaAs material while preserving the ZnSe

barrier layers have been probed. It was important to isolate the GaAs growth temperature

effects from the issues associated with the formation of the II-VI/III-V heterointerfaces in

the ZnSe/GaAs QW heterostructure. GaAs/InGaP multiple quantum well (MQW)

structures were grown with the GaAs at a temperature that would preserve the ZnSe layer

quality. The GaAs/InGaP MQW heterostructure grown under standard conditions have

been extensively studied [85]. A GaAs/InGaP MQW structure has been used to show the

presence of low temperature photoluminescence for GaAs material grown at 3500C with

an As:Ga ratio of 1:1. At low growth temperatures, an As:Ga ratio of 1:1 is expected to

be optimal for achieving a high quality GaAs crystal structure [30-34].

As the ultimate goal of the study of ZnSe/GaAs heterostructures is to fabricate photonic

devices, the GaAs material must be of high optical quality. The reduced growth

temperature employed for the growth of the GaAs approaches the regime of low

temperature GaAs (LTGaAs). LTGaAs currently has the interest of the semiconductor

research community due to its ability to eliminate backgating effects in transistors as well

as to fabricate high-speed photoconductors [86-88]. The characteristic feature of LTGaAs

is the incorporation of excess arsenic during the growth of the material. When LTGaAs is

annealed near 6000 C, the excess arsenic forms a fairly uniform distribution of precipitates.

The resultant carrier lifetimes are significantly reduced (sub-picosecond) in LTGaAs as

compared to standard GaAs [89]. Also the absorption profile for LTGaAs is

characteristically less abrupt at the band-edge [90]. Both properties can be potentially

related to the presence of excess As in the material.

For the formation of ZnSe/GaAs DBHs, an attempt was made to inhibit the incorporation

of excess As in the reduced temperature GaAs by adapting the As:Ga ratio. It is possible

that the properties of the reduced temperature GaAs are a combination of those seen for

the LTGaAs and standard GaAs. The investigation of the reduced temperature GaAs

requires the integration of research results from the fields of photoluminescence,

compositional analysis, and microstructural analysis, including cross-sectional TEM and

high resolution double crystal x-ray diffraction.



3.5.2 Nucleation of GaAs on ZnSe

Another component of the fabrication of the ZnSe/GaAs DBH studied is the nucleation of

GaAs on ZnSe. Because the initial stages of nucleation involves several monolayers of

GaAs, the affected material has been named the nucleation layer. Past literature on the

nucleation of GaAs on ZnSe has employed standard MBE with a substantially reduced

growth rate and migration enhanced epitaxy (MEE) [7, 18-22, 24, 25, 91]. These methods

have been also repeated in the CBE laboratory as starting points for future research.

However, in both cases, the resultant GaAs material was of poor quality from a

microstructural perspective. A third method for nucleation was employed in which the

GaAs was nucleated on a Zn-stabilized ZnSe surface using a high arsenic over-pressure

with monolayer control of the growth for the first 10 monolayers (single layer MBE or

SM-MBE). Figure 3-7 shows the surface morphologies over a 100 l.m2 area of the three

different methods of nucleating GaAs on ZnSe as determined via atomic force microscopy

(AFM) of the sample surface.

80 nrr 250

IV 111

standard MBE MEE SM-MBE

Figure 3-7. AFM images of the surface of 250 nm of GaAs grown on ZnSe by the three different methods: standard
MBE, MEE, and the optimized SM-MBE. The z-axis denoting surface height is scaled to according to the roughness
of the respective sample.

Based upon the results of the initial study of the nucleation of GaAs on ZnSe, a standard

methodology for the growth of further heterostructures was established. In an effort to

minimize the amount of GaAs in the heterostructure grown in the regime of LTGaAs, the

substrate temperature was raised as soon as a streaky GaAs surface reconstruction was

evident. This type of RHEED pattern was indicative of a complete coverage of GaAs on
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the ZnSe surface, and occurred after 3 monolayers of material were deposited at 2500 C

with an As:Ga ratio of 12:1. At this point, the substrate temperature was ramped to

300'C, which further annealed the GaAs surface. An additional 3 monolayers of GaAs

were deposited at this point, after which the As:Ga ratio was reduced to 3:1, and the

substrate temperature was raised to 3500 C. Four monolayers of GaAs were deposited one

at a time. Finally, the As:Ga ratio was reduced to 1:1, and the remainder of the GaAs layer

was grown at 350 0 C in stoichiometric conditions. This growth procedure is summarized in

Figure 3-8. The first 10 monolayers of GaAs constitute the nucleation layer in the GaAs

on ZnSe heterostructure. Figure 3-9 shows the RHEED patterns corresponding to the

three transition points in the GaAs nucleation layer: the 3 rd,
6 th , and 9 th monolayers.

open

Ga shutter

closed

AsH 3 flow

TGa

Tsub

6 sec

1sccm

0.05 
seem

8750C
8400C

3500C
3000C2500C

~- ----~ .~-~ ~*,,~-|

3 ML 6 ML 10 ML time, thickness

Figure 3-8. Growth sequence for the nucleation of GaAs on a ZnSe surface.

The growth sequence indicated in Figure 3-8 achieves two-dimensional growth because

the Ga atoms are always in the presence of an abundance of As in the growth reactor.

This limits the formation of Ga pools, or bonding between Ga and Se which would

ultimately result in the formation of a Ga(Se) compound. The low growth temperature at

the onset of the growth is necessary both to protect the ZnSe surface reconstruction,

maintaining a smooth starting surface for GaAs nucleation, and to lower the Ga mobility.

The monolayer-by-monolayer growth rate was very low, with a 6 second deposition time



for one monolayer of Ga and an interval of several minutes during which the surface

RHEED pattern was documented. The subsequent RHEED patterns in Figure 3-9

demonstrate a significant improvement over the results presented in the scientific

literature.

However, the presence of even three monolayers of GaAs grown in non-stoichiometric

conditions at 2500 C will affect the ultimate optical properties of the QW. Such material is

estimated to have a carrier lifetime of roughly 50 picoseconds (as compared to 1 nsec for

high-quality GaAs). This characteristic has implications for the optical properties of the

heterostructure and will be discussed in later sections.

Figure 3-9. RHEED pattern of GaAs surface at the 3, 6 and 9 monolayer thickness on ZnSe. Reconstruction of the

GaAs layer is apparent after 6 monolayers of growth, a full c(4x4) reconstruction is evident after 9 monolayers of

GaAs growth.

3.5.3 The ZnSe/GaAs double heterostructure

The third stage of the investigation of the ZnSe/GaAs DBH involves the whole structure,

incorporating the results from the optimization of the reduced temperature GaAs and the

nucleation of GaAs on ZnSe. There are several competing factors which ultimately control

the final properties of the mixed heterostructure. The heterovalent interfaces have the

potential to create local electric fields which can control the location of carriers in the

heterostructure. The theoretical model of an abrupt II-VI/III-V heterointerface shows the

excess of one charge (either positive or negative depending upon interfacial stoichiometry)

for each unit cell. This uncompensated charge is the source of any interfacial electric

fields, and has the potential to control carrier dynamics across the heterostructure. In



addition, the nucleation procedures at the two heterojunctions can result in a variety of

energy-band alignment profiles. The potential for interdiffusion of the constituent species

at the heterojunctions can further alter the energy band alignment and change the amount

of interfacial excess charge.

The full ZnSe/GaAs/ZnSe QW was grown, unless otherwise indicated, by a standard

growth sequence. The first ZnSe layer was nucleated on the III-V buffer layer surface at a

substrate temperature ranging from 280 0 C - 3000 C, with a slightly Se-rich Zn:Se ratio.

For the first 60-90 seconds of ZnSe growth, the Se source was shuttered off from the

growth reactor and Zn was deposited on the III-V surface. The surface RHEED

reconstruction at this point usually remained the same, with an increase in the intensity of

the primary diffraction spot. Next, the Se-shutter was opened and ZnSe growth was

initiated. Within 30 seconds, the reconstruction transformed to a (2xl) pattern. RHEED

intensity oscillations were taken, indicating a growth rate of roughly 0.5 gm/hour. After

the growth of a 50 nm ZnSe layer was complete, the substrate heater was immediately

removed from the substrate and ramped to 100°C to maintain a smooth ZnSe surface.

The ZnSe surface reconstruction would change from a slightly Se-rich (2xl) pattern

present during the ZnSe growth to a Zn-rich c(2x2) pattern once the source shutters were

closed.

After the ZnSe growth, the substrate temperature is reduced to 1500 C. When sufficiently

cool enough for transfer to the III-V growth reactor, the sample is transferred in situ. By

maintaining the elemental sources at the proper temperature for growth and the gaseous

hydrides at the proper flows, the III-V growth reactor was always ready for the growth of

GaAs, apart from the substrate temperature. Since the substrate temperature was low, the

ZnSe surface reconstruction was barely detectable upon immediate introduction into the

III-V system. As the substrate temperature was ramped to 250 0 C, the reconstruction

began to appear, and the c(2x2) surface reconstruction remained in roughly 50% of the

growths. In other cases, a (2x1) reconstruction was evident, possibly indicating that the

surface was interacting with As atoms in the III-V growth reactor.



At this point, the nucleation of GaAs was initiated and carried out as previously discussed,

using SM-MBE. Once the nucleation layer was complete, the GaAs was grown by

standard MBE, at a substrate temperature of 350 0 C with an As:Ga ratio of 1:1. The

surface reconstruction during this growth, c(4x4), indicated an As-rich surface. Once the

growth of the GaAs layer was complete, the substrate temperature was lowered, and the

sample was transferred back into the II-VI growth reactor.

The ZnSe growth for the second ZnSe barrier layer was performed just as the first,

although the starting growth surface was always a c(4x4) GaAs surface. RHEED intensity

oscillations were achieved during the growth of the ZnSe layer on only one occasion.

Hence, the growth rate from the first layer was referred to in setting the growth time for

the second ZnSe layer.

The formation of the ZnSe/GaAs DBH by MBE growth was grown with the general

procedure outlined in the above sections. However, this process did not result in a

heterostructure with the optical quality required to produce photoluminescence from the

central GaAs layer. An attempt was made to optimize the nucleation layer, and these

results follow.

3.5.3.1 Optimization of nucleation layer

Due to the lack of a photoluminescence signal detected from previously grown

ZnSe/GaAs single quantum well structures, the nucleation of the GaAs on the ZnSe has

been examined. The 250 0 C grown GaAs has a short carrier lifetime and ultimately limits

the optical properties of the quantum well. Four samples were grown in an attempt to

probe the quality of the nucleation layer under different conditions. In addition, two

samples were grown to probe the relationship between the final GaAs QW growth

temperature and the structural quality of the ZnSe/GaAs QW. A summary of the samples

and the growth conditions are provided in Table 3-2 for reference.



Table 3-2. Nucleation study sample descriptions: nucleation layer thickness,
RHEED reconstruction.

GaAs QW growth temperature, and final

In the first case, the 250 0 C nucleating layer was removed, and nucleation was performed

at 350 0 C. The resultant surface diffraction pattern showed an unreconstructed GaAs layer

with a strong fishnet pattern. The fishnet pattern became evident within 1 monolayer,

indicating a rough surface Figure 3-10.

Figure 3-10. An example of the fishnet pattern seen during the nucleation of the GaAs on the lower ZnSe barrier
layer without the nucleation layer.

In the second case, 1 ml of 250'C GaAs was nucleated on the ZnSe surface. The

remainder of the GaAs layer was grown at 3500 C, with 4 monolayers of SM-MBE. While

this case showed no fishnet pattern, the surface never reconstructed and a spotty bulk

pattern remained. The spotty bulk RHEED pattern for the GaAs surface is a slight

improvement over the fishnet pattern, however the pattern is still not indicative of a two-

dimensional growth surface.

# Sample ID Nucleation layer GaAs QW Growth Final RHEED

thickness (ML) T (oC)

1 z302r345 0 350 fishnet

2 z306r358 1 350 spotty bulk

3 z307r356 2 350 spotty faint c(4x4)

4 z304r351 3 350 c(4x4)

5 z308r357 3 400 c(4x4)

6 z313r368 3 450 fishnet bulk

7 z305 0 no QW



In the third case, 2 monolayers of 2500 C GaAs were nucleated on the ZnSe surface. The

remainder of the GaAs was grown at 350'C, with the first 3 monolayers by SM-MBE. In

this instance, a c(4x4) reconstructed surface was visible after the 2nd monolayer was

deposited and the substrate was ramped to 3500 C. However, the final reconstruction

showed broad integer order streaks along with the reconstruction. The presence of integer

order streaks in the RHEED pattern for the GaAs indicates that the surface is showing

signs of two-dimensional reconstruction. However, the broadening of the streaks indicates

surface roughness.

In the last case, 3 monolayers of 250 0 C GaAs were nucleated on the ZnSe surface. As in

the previous growth, c(4x4) reconstruction was visible by the completion of the ramp to

350 0 C. The final RHEED pattern showed a reconstructed As-rich surface, and was

somewhat of an improvement over the previous case.

Based upon these four experiments, the successful nucleation of GaAs on ZnSe requires 3

monolayers of GaAs grown at 2500 C. It seems that full surface coverage of the ZnSe

occurs at this point. This result is further supported by atomic force microscope

measurements of the surfaces of the samples grown for this nucleation study.
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Figure 3-11. AFM measurements of the root-mean square (RMS) and mean surface roughness over a 1 mm square
area of the ZnSe/GaAs QW samples from the nucleation study as a function of the number of monolayers (ML's) of

GaAs deposited at 250 0 C.



This series of nucleation studies was expanded by increasing the temperature of the GaAs

grown beyond the first three monolayers. The remainder of a 6 nm GaAs single quantum

well was grown at 4000 C and 4500 C. The resultant RHEED reconstruction was an

improvement upon the same structure grown at 3500 C. However, at the 400'C

temperature, the reconstruction of the 3 monolayers of GaAs grown at 2500 C showed a 3-

fold reconstruction in the [011] direction and a 4-fold reconstruction in the [001]

direction. This suggests either Zn diffusion into the three monolayers or a Ga-rich surface.

For the growth at 450'C, the starting surface of 3 monolayers of GaAs grown at 250'C

showed a spotty bulk diffraction pattern. Two monolayers of GaAs were grown at 4500 C

by single layer MBE with an As:Ga ratio of 3:1. The resultant RHEED pattern remained

spotty. The remainder of the 6 nms of GaAs was grown by standard MBE. The surface

diffraction during this growth was bulk with a fishnet pattern. The results from this

experiment suggest that although 3 monolayers of the LTGaAs are sufficient to cover the

ZnSe surface, they are not sufficient to avoid the formation of islands as the substrate

temperature was raised. Atomic force microscopy (AFM) measurements of the surface of

the ZnSe/GaAs QWs with the GaAs well material grown at different substrate

temperatures shows a marked increase in the surface roughness as the growth temperature

increases (Figure 3-12).
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Figure 3-12. Atomic force microscope surface roughness results from the ZnSe/GaAs QWs that were grown with a
variation in the final growth temperature of the GaAs well material.
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In summary, the successful growth of a "two-dimensional" GaAs single quantum well with

ZnSe barriers requires the presence of a low-temperature GaAs nucleation layer. The

nucleation layer is grown by single layer MBE, with a high As:Ga ratio of 12:1 at 250 0C.

The dimensions of the nucleation layer depend upon the ultimate temperature of the GaAs

grown for the remainder of the quantum well width. A layer of 3 monolayers is sufficient

to achieve full surface coverage of the ZnSe when followed by growth of GaAs at 350 0C

or 4000 C. However, for GaAs grown at 450'C, the 3 monolayer nucleation layer forms

islands and does not provide a smooth starting surface.

3.6 Summary

The fabrication of ZnSe/GaAs QWs and DBHs by molecular beam epitaxy has been

presented. Background information regarding the optimal growth conditions for the ZnSe

and GaAs layers and the growth system employed was given. This was followed by the

calibration of the III-V growth parameters.

Next, the nucleation of GaAs on ZnSe was examined; three methods were compared. The

highest quality GaAs layer resulted when a methodology called single monolayer MBE

(SM-MBE) was employed. The SM-MBE GaAs nucleation requires an AS2 over-pressure

maintained in the growth reactor and the equivalent of single monolayer exposures to Ga

followed by short anneals of the surface. The substrate temperature begins at 250'C and,

by the tenth monolayer, is ramped to 3500 C. The As2 :Ga ratio is varied from 12:1 to 1:1

by the tenth monolayer. By the third monolayer of GaAs nucleation, the surface RHEED

pattern exhibits integer order beams. RHEED surface reconstruction appears by the sixth

monolayer, indicating a c(4x4) As-rich GaAs surface, and remains throughout the GaAs

layer growth. The ten monolayers of GaAs that are grown by SM-MBE constitute the

nucleation layer. The remainder of the GaAs layer was grown at 3500 C under

stoichiometric conditions.

The epitaxial growth of the entire ZnSe/GaAs QW and/or DBH follows the standard

parameters for ZnSe growth and the SM-MBE parameters for the GaAs layer. The growth



of the ZnSe layers was initiated by 60 seconds of Zn exposure and followed by MBE

growth under slightly Se-rich conditions (as indicated by a (2x1) RHEED surface

reconstruction. The sample was transferred in situ between the growth reactors for each

layer. The GaAs layer was nucleated on the lower ZnSe barrier layer by SM-MBE for the

first ten monolayers and then grown by MBE at 350'C for the remainder of the layer.

A series of 6 nm ZnSe/GaAs QWs were grown with variations in the GaAs nucleation

layer thickness and the substrate temperature of the GaAs QW growth. Four QWs were

grown with the number of monolayers of GaAs grown at 250'C varied from 0 monolayers

to 3 monolayers. RHEED patterns monitored during the GaAs growth indicate that the

highest quality GaAs layer resulted when the full 3 monolayers were deposited. The

substrate temperature of the GaAs QW growth was varied in three heterostructures from

350 0 C to 4500 C. The RHEED patterns of the GaAs layer during the growth indicate that

the highest quality GaAs QW resulted when the substrate temperature was either 350 0 C or

4000 C. Atomic force microscope measurements of the surface of the 6 nm ZnSe/GaAs

QWs show similar trends in the surface roughness to the results from the RHEED surface

analysis.



4. Optical characterization

One of the motivating forces behind the study of ZnSe/GaAs quantum wells (QWs) is the

ability to excite an optical signal from the GaAs well material or detect an optical signal

directed at the GaAs well material. It is important to have an understanding of the optical

properties of the materials grown in this study; two simultaneous efforts were made to

investigate the optical properties of the ZnSe/GaAs QWs. Work by David Dougherty

investigated the carrier lifetime and the photoreflectance of the ZnSe-on-GaAs

heterointerface, as well as in the ZnSe/GaAs single QW [1]. Secondly, an investigation

was made of all heterostructures grown by a technique called photoluminescence (PL)

which is presented in this study.

Photoluminescence serves as a non-destructive optical measurement of a semiconductor

material that has a direct energy band-gap. During the course of the measurement, an

excitation source such as a laser is focused upon the sample surface at a known angle.

The photonic excitation penetrates the semiconductor surface according to the absorption

length of the material and excites the electrons in the sample to higher energy levels.

Depending upon the time of electron decay back to the equilibrium energy level, the

electrons either emit a photon characterized by an energy equal to the energy difference

between the excited state and the equilibrium state, or the electron is absorbed into a non-

radiative recombination site which decreases the PL signal from a material. In the instance

that the electron non-radiatively recombines, the photonic excitation serves to provide

energy for the recombination. For this study, the measurement was made at low-

temperatures (10 K). At higher temperatures, the PL signal from a material would be

reduced by the thermal ionization of impurities and dopants in the ZnSe and GaAs layers.

The following sections describe the information that can be obtained from a PL

measurement, the PL system, and the results from the optical measurements made on the

materials in this study.



4.1 Information to be obtained from PL

The photoluminescence of a material has three important characteristics: the optical

energy, the intensity of the signal, and the full width at half maximum (FWHM) of the

signal. The following paragraphs discuss the information provided by these different

parameters.

The optical energy of a PL feature is indicative of the energy states in the material. For

example, the PL of a semiconductor often shows a feature near or at the band-gap energy.

Impurity doping in the semiconductor will shift the band-gap feature energy to a lower

level since the impurity band in a semiconductor sits inside the energy band-gap. Strain in

a semiconductor material will cause the light and heavy hole energy bands to separate

energetically by a few meV, and the band-gap energy-related PL feature will be split

according to the degree of strain. For quantum well structures, the first electron and hole

confinement levels are detected using PL. The energies of the confined carrier states are a

function of the width of the potential well in a QW (i.e. the width of the GaAs). Hence,

the peak PL energy of a QW gives some information about the thickness of the well

material.

The intensity of the PL signal is a function of both the experimental set-up and the material

being measured. The angle of impingement from the excitation source, as well as the

excitation power density will affect the depth over which the sample signal can be

detected. Also, the low-temperature measurement of the sample allows for more intense

band-edge related PL features. With the optimization (or at least the consistent operational

set-up) of the angle of impingement, the power density, and the measurement temperature,

the changes of the PL signal intensity across different semiconductor samples is a function

of the sample quality. At one extreme, PL signal intensity at the band-edge is reduced by

impurity states and non-radiative recombination sites. At the other extreme, the band-edge

related PL signal is reduced by a high incidence of free-exciton generation and

recombination. Free-excitons are electron-hole pairs that form with a few meV, and are

free to move around the material once formed. As a result, the probability of optical



emission is reduced as the free-exciton moves away from the original site of the photonic

excitation.

The FWHM of the PL feature of a semiconductor is related to the quality of the material.

A broadened feature means that there is a range of energies over which the electrons can

recombine. In a QW structure, broadening often indicates that the well material is not of

uniform thickness, or that the heterointerfaces are rough. For a single layer of

semiconductor material, the FWHM of the PL features can indicate that there is an

impurity band of energy levels within the energy band-gap.

All three properties of a PL signal are important in the study of the ZnSe/GaAs QW. The

energy of the PL signal is indicative of both the presence of electron and hole confinement

and the thickness of the well material. The intensity of the PL signal provides information

regarding the purity of the materials in the heterostructure. Finally, the FWHM of the PL

signal provides information about the structural uniformity of the QW and the impurity

levels in the heterostructure.

4.2 System description

The experimental set-up for the photoluminescence measurement is divided into four

subsystems: temperature control, optical pumping, optical detection, and data acquisition

(Figure 4-1). The first of these, temperature control, consists of a closed-cycle compressed

helium Janis cryostat. The cryostat is evacuated to less than 10-4 Torr with a combination

of a mechanical roughing pump and a molecular drag pump. The cryostat is capable of

maintaining a stable temperature of 10 K. Several samples are simultaneously mounted

inside the cryostat. The sample temperature is monitored and controlled, with a range of

10 K to 330 K, using a silicon diode attached to the base of the sample holder.

Simultaneously mounting multiple samples has several advantages. Not only is the

experiment less time-consuming, the conditions under which the PL data is taken are

assuredly the same for each sample. This allows for a more accurate comparison of the



energies and intensities of the PL features, especially when the measurements are taken

over a range of temperatures.

The PL system was calibrated for power density and chromatic aberration. The details of

this calibration process are presented in [92].

Chopper

Sample

Figure 4-1. The photoluminescence system used in this study.

4.2.1 Optical Pumping

The sample is optically pumped by a laser beam. Three different types of lasers were

implemented in this study: a 325 nm He-Cd laser (for II-VI and large band gap III-V

materials), a 632.8 nm He-Ne laser (for narrow band gap III-V materials), and a 514.5 nm

Ar laser (for narrow band gap III-V materials). The laser emission energy must be larger

than the band gap energy of the material in order to excite electrons across the band gap.

The power density can be varied from a few mW/cm2 to hundreds of W/cm2 by changing

the laser spot diameter on the sample's surface. The laser power can also be varied using

neutral density filters. Both the He-Cd and the He-Ne lasers are similar in power (- 8

mW), but the He-Ne laser has a slightly larger spot size than the He-Cd laser. The Ar laser

has up to 6 Watt emission capability with a variable spot size.

The lasers travel similar paths to the sample. First, the beam passes through an optical

chopper and is focused with a lens onto the sample surface. A large power loss occurs

mainly at an interference filter, which transmits about 25% of the primary laser line. An

example of the final laser power at the sample surface for a He-Cd or He-Ne source is

around 0.45 mW, and the spot diameter is approximately 300 gm, corresponding to a



power density of 0.64 W/cm2 . The laser is optically chopped to create a modulated signal

at the sample surface. As a result, it is possible to differentiate between the PL signal and

any spurious noise at the data acquisition stage.

4.2.2 Optical Detection

The optical detection subsystem consists of two lenses, a Hamamatsu photomultiplier tube

or a silicon photodetector, and a 1/2 meter Jarrell Ash spectrometer. The luminescence

from the sample surface is collected using two lenses. The first lens collects and collimates

the luminescence from the sample. The second lens focuses the luminescence onto the slits

of the spectrometer. The spectrometer is scanned over a range of wavelengths. As the

spectrometer passes a wavelength corresponding to the luminescence, the light leaves the

spectrometer at a second set of slits. A photomultiplier tube detects and amplifies this light

with a gain of up to 106. The wavelength calibration of the spectrometer is made by

collecting a second harmonic laser line from the He-Cd laser at 650 nm.

4.2.3 Data Acquisition

The signal from the photomultiplier tube and the corresponding wavelength setting of the

spectrometer are collected in the data acquisition subsystem. This part of the PL system is

primarily a lock-in amplifier, a preamplifier, and a computer. The frequency of the optical

chopper is sent to the lock-in amplifier, along with the signal from the photomultiplier tube

(which has been first sent through a preamplifier-amplifier). For a given time constant, the

lock-in demodulates the signal from the photomultiplier tube and sends the average to the

output and, eventually, to the computer. This process reduces the level of background

noise, and allows for the detection of signals as small as 1 gV. The analog output of the

lock-in amplifier is digitized by a computer equipped with an analog-to-digital converter.

The data over a given range of wavelengths is analyzed with the aid of computer software

[93].

The resulting PL spectra are an indication of the optical quality of the material. Changes in

the PL parameters (measurement temperature and excitation power density) can be used



to study different effects in the PL, such as the introduction of increasing levels of ionized

impurity levels contributing to the optical signal of a material as the PL temperature is

increased.

4.2.4 System Limitations

The spectrometer has a resolution limitation on the order of 0.8 nm, or 4 meV at energies

near 2.7 eV and 3 meV at energies near 2.4 eV when the slit width used is 50 jim. For a

higher resolution system (with a 1 meter spectrometer), the FWHM for the same feature

has been reported to be as small as 0.3 meV [94]. However, the spectrometer in the PL

system has an optimal resolution of 0.2 nm, or 0.6 meV, for narrower slit widths. Closing

the slits further reduces the collected luminescence to the extent that the noise in the

detection and acquisition electronics exceeds and distorts the PL signal. Hence, a

compromise between resolution and signal level is maintained with a less than optimum slit

width. The set-up described in the previous sections is nearly identical to that used in [92].

4.3 Results

The following sections provide the experimental results from the PL measurements of the

materials investigated in the study of ZnSe/GaAs heterostructures. The PL of multiple

GaAs quantum wells with InGaP barriers is presented, with the GaAs grown at different

temperatures. These results are followed by the PL of ZnSe grown on GaAs. Finally, the

full ZnSe/GaAs/ZnSe mixed heterostructure results are provided. In all cases, the results

are given in comparison to PL spectrum provided in the technical literature.

4.3.1 Measurement of control structures

Multiple GaAs quantum wells with InGaP barriers were grown to study the properties of

GaAs grown at a reduced temperature. These results were compared with PL data

presented in the literature by Seifert, et al of a multiple QW of InGaP/GaAs (see Figure 4-

2) [95]. In Figure 4-2 the x-axis denotes energy (eV) and the y-axis denotes the intensity

(arbitrary units). Each peak in the PL spectra originates from a different layer in the

InGaP/GaAs multiple QW, as a function of either material composition or thickness. The



thickness of each QW is labeled above the corresponding PL feature. As shown,

luminescence is detected from each quantum well as the thickness of the well is varied.

The GaAs substrate peak and InGaP buffer layer PL is also visible. Siefert's data also

shows broadening in the narrower QWs of 3 monolayers and 1 monolayer (1 monolayer is

- 0.28 nm). This broadening is a function of excitonic interaction with irregular interfaces.

The excitonic diameter in GaAs is roughly 10 nm.

1.4 1.5 1.0 1.7 1.8 1.9 2.0
ENERGY (eV)

Figure 4-2. The 6 K PL spectra of GaAs/GaInP QWs. The thickness of each QW is given above the corresponding PL

feature in units of nm unless otherwise noted. The FWHM (meV) of the QW PL features are superimposed on the

corresponding feature. Also shown are the PL features from the GaAs substrate and the GaInP barrier layers [95].

In order to understand the optical properties of the GaAs grown at reduced temperatures,

for this study a series of InGaP/GaAs multiple QW structures were grown, where the

substrate temperature was stepped down in 50'C increments from the standard InGaP

growth temperature of 470 'C to 250 'C, at an As:Ga ratio of 1:1. The PL results for the

heterostructures are shown in Figure 4-3 and Figure 4-4. The GaAs QWs were grown

with decreasing widths such that the PL feature energy corresponding to the first confined

state would shift to a higher energy. Hence, each QW was grown at a different thickness

and substrate temperature, enabling direct characterization of the GaAs grown at each

substrate temperature.
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Figure 4-3. The 10 K PL of InGaP/GaAs MQW showing PL from GaAs grown at 350'C. A PL feature is seen from
each QW grown at incrementally lower substrate temperatures. The intensity of the luminescence from the 1.5 nm
QW grown at 350'C has been magnified 5x.

Figure 4-3 shows the 10 K PL from an InGaP/GaAs multiple QW consisting of a 9, 6, 3,

and 1.5 nm thick QW grown at 470 'C, 400 'C, 375 0 C, and 350'C, respectively. The

presence of PL from the first confined state of the 1.5 nm thick GaAs QW indicates that at

an As:Ga ratio of 1:1, the GaAs material has a long enough carrier lifetime to achieve a

detectable level of radiative recombination. This result is further supported from the PL

spectrum of a 9, 6, 3 and 1.5 nm InGaP/GaAs multiple QW heterostructure with the QW's

grown at substrate temperatures of 470'C, 350 0 C, 3000 C, and 250 0 C respectively (Figure

4-4).
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Figure 4-4. The 10 K PL of InGaP/GaAs MQW showing luminescence from GaAs grown at 350 0 C and 300 0 C. A PL

signal is seen from the GaAs QWs grown at substrate temperatures as low as 3000 C. The feature from the 3 nm QW

grown at 300'C is significantly weaker than that of the rest of the PL spectra, magnified by a factor of 100. The PL

from both the substrate and the InGaP barriers and buffer layer are also shown. The low energy feature at and energy

of 1.39 eV is believed to result from type II energy-band alignment between the InGaP and the GaAs resulting from

the growth of the InGaP at the same reduced temperatures as the GaAs.

In Figure 4-4, the PL signal is not detected for GaAs grown at 2500 C, and the signal from

the material grown at 300'C is less-intense than the optical signal from the GaAs grown at

350'C by two orders of magnitude. While the presence of an optical signal from GaAs

grown at 3000 C is encouraging, the small signal intensity suggests a deterioration in the

quality of the GaAs material. The reduced signal intensity could also suggest that the

InGaP/GaAs heterointerfaces are rough. However, the FWHM of the PL signal for the 3

nm QW is not significantly broadened, which would be expected in the case of interfacial

roughness [66].

Based upon the PL results from the InGaP/GaAs multiple QW's, achieving GaAs of

optical quality as a function of substrate temperature at stoichiometric growth conditions

has a lower limit of roughly 300'C. This limit has implications on the optical properties of

the ZnSe/GaAs QWs in this study. It is encouraging that the bulk of the GaAs material in

the ZnSe/GaAs QW is grown at 3500C under stoichiometric conditions, because this



material has been shown to be of optical quality. However, the marked reduction in the PL

intensity at 3000 C suggests that the GaAs nucleation layer in the ZnSe/GaAs QW, grown

at substrate temperatures from 250'C to 300'C is not of optical quality. The combination

of the low substrate temperature and the off-stoichiometric conditions moves the GaAs

nucleation material away from the conditions necessary to achieve a long carrier lifetime

and a low impurity level for a PL signal. This result is supported further by work by

Missous, et al [87, 88]. Since the nucleation layer is thin (6 monolayers), however, its

presence is not believed to be the only determinant in the optical properties of the

ZnSe/GaAs heterostructure from the GaAs well layer.

4.3.2 Measurement of ZnSe/III-V interface

Work by Franciosi, et al indicates a correlation between the PL signal of the ZnSe band-

edge and the ratio of Zn:Se used during the nucleation of ZnSe on GaAs [57]. This

relationship is demonstrated in Figure 4-5, where the peak energy and the line-shape of the

PL feature changes according to the Zn:Se ratio during the ZnSe growth. However, fairly

thick layers of ZnSe (1.5 tm) were analyzed in this study.

In comparison, in this thesis the ZnSe in the ZnSe/GaAs DBHs is seldom thicker than 50

nm. The rationale behind this choice was to maintain a heterostructure that was well below

the critical thickness of ZnSe on GaAs (-180 nm), and thus to avoid the issue of strain

relaxation between the ZnSe and the GaAs in the characterization of the heterostructures.

The PL signal from such a small layer will be significantly less intense and more difficult to

analyze.
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Figure 4-5. Photoluminescence spectra at 18 K emphasizing the extrinsic emission in ZnSe-GaAs(001)

heterostructures grown with different Zn:Se beam pressure ratios [57].

Figure 4-6 shows a typical 10 K PL spectrum at the ZnSe band-edge from a ZnSe/GaAs

QW. In this case, the QW was 6 nm thick. The band-edge feature is fairly weak, about 3

orders of magnitude below the optical signal from a ZnSe layer that is 1 im thick. In

comparison to the results shown in Figure 4-5, the fairly symmetric lineshape of band-edge

ZnSe PL feature is conducive with the Se-rich growth conditions for the ZnSe/GaAs

QWs.

The FWHM of the PL feature (12.7 meV) is roughly double that of the FWHM of a single

ZnSe layer grown under optimal conditions on a GaAs substrate (-5 meV) [96]. The PL

signal from the ZnSe/GaAs QW originates from both ZnSe barrier layers. The broadening

in the FWHM for the band-edge signal could come from the top barrier contribution to the

PL signal, since the starting surface for the growth of this ZnSe layer is rougher as a result

of the reduced temperature GaAs well growth. Figure 4-7 shows the PL spectra from 100

nm of ZnSe grown on InGaP. The FWHM (as indicated on Figure 4-7) of the band-edge

PL feature for this ZnSe layer is closer to that of a thicker ZnSe layer. Because the ZnSe

layer thickness is the same as the combined thickness of the two ZnSe barriers in a

ZnSe/GaAs QW, it provides a useful comparison for determining the origin of the PL

feature broadening shown in Figure 4-6. The PL intensity in both cases is similar,



indicating that the ZnSe in the ZnSe/GaAs QW is not significantly reduced by non-

radiative recombination sites which would reduce the radiative emission from the ZnSe.
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Figure 4-6. Typical PL spectra from the ZnSe band-edge for a ZnSe/GaAs QW. The FWHM of 12.7 meV is broader
than that for thicker ZnSe layers or for single ZnSe layers grown on U-V surfaces.
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Figure 4-7. The 10 K PL spectra from 100 nm of ZnSe grown on InGaP. The FWHM of 6.6 meV is closer to the
FWHM from the band-edge PL of thicker ZnSe layers grown on II-V layers than that originating from a ZnSe/GaAs
QW.

The thin ZnSe barrier layers in the ZnSe/GaAs QWs did not exhibit a PL signal solely

from the band-edge. A defect band centered at an energy ranging from 2.15 eV to 2.3 eV

with an intensity of the same order of magnitude of the band-edge PL feature was evident

as well. The defect band offers evidence of a deep-level impurity within the ZnSe energy

gap. Thin ZnSe layers grown on InGaP do not exhibit the same defect-related PL feature.

750 -

500

250

2.

12.7 meV

: 1

_______sl^~__l_~____l_______lInnn

I I



The defect-band in the ZnSe/GaAs QW PL is hypothesized to originate from the bottom

ZnSe barrier. This analysis is supported by the resultant FWHM of the defect band PL

feature as a function of the final growth temperature of the GaAs well material (see Figure

4-8). The FWHM of the defect-band feature increases with increasing GaAs substrate

growth temperature. The higher substrate temperature effectively anneals the lower ZnSe

barrier layer and generates a broader band of impurity states within the ZnSe energy-gap.

The higher growth temperature of the GaAs well material is expected to reduce the

surface roughness of the GaAs surface for the top ZnSe barrier layer. Hence, it would be

expected that the PL feature from this layer would be improved by higher GaAs growth

temperatures.
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Figure 4-8.The FWHM of the ZnSe defect band PL feature increases as a function of the final GaAs growth

temperature for a 6 nm GaAs QW with ZnSe barriers.

The optical properties of the ZnSe layers in the ZnSe/GaAs QWs and DBHs have been

investigated by low-temperature PL. A band-edge signal indicates that the ZnSe layers in

combination are of fairly high optical quality. However, the FWHM of the band-edge

feature is broadened in comparison to the band-edge feature of a 100 nm ZnSe layer

grown on InGaP. The broadening is believed to originate from the top ZnSe barrier layer,

as a result of the rough starting surface of the GaAs well material upon which the ZnSe

barrier was nucleated. A deep-level impurity band is also evident in the ZnSe PL from the

ZnSe/GaAs QWs and DBHs. Since the defect band feature broadens with the final growth



temperature of the GaAs well, the bottom ZnSe barrier layer is believed to be the primary

source of this PL feature.

4.3.3 PL of GaAs (ZnSe on reduced temperature GaAs)

In order to understand the interaction of the reduced temperature GaAs layer with the

ZnSe barriers, heterostructures were grown with GaAs sandwiched between one layer of

ZnSe and one layer of InGaP. The InGaP material was selected because the PL of the

reduced temperature GaAs QWs with InGaP barriers indicated that the InGaP/reduced

temperature GaAs heterointerface was of high enough quality to achieve luminescence

from the first confined state of the GaAs QW. In the first case, heterostructures of a 50

nm ZnSe barrier grown on a GaAs QW of either 6 nm or 100 nm thickness on a 1.5 tm

InGaP layer were grown. In the case of the heterostructure with the 100 nm GaAs layer,

an InGaAs layer was grown before the InGaP layer to block luminescence from the GaAs

substrate.

Low temperature PL measurements of the 100 nm heterostructures using an argon laser

excitation source with a wavelength of 514.5 nm indicate luminescence from the reduced

temperature GaAs material (Figure 4-9). However, the PL from the reduced temperature

GaAs has an intensity that is 3 orders of magnitude lower than that of the InGaP PL

feature. For the case of the 6 nm GaAs heterostructure, there is no evidence of a PL signal

from the reduced temperature GaAs. Figure 4-10 shows the 10 K PL from the 6 nm GaAs

heterostructure, indicating PL from the GaAs band-edge and the InGaP buffer layer.
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Figure 4-9. 10 K PL from a ZnSe/GaAs 100 nm/InGaP/InGaAs heterostructure. Features from all of the 1-V layers

are detected, however the luminescence from the reduced T 6 nm GaAs layer is less intense by 3 orders of magnitude

than the PL from the InGaP features.
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Figure 4-10. 10 K PL spectra of a ZnSe/GaAs 6 nm/InGaP heterostructure. Features from the GaAs substrate and the

InGaP buffer layer are present.

The combined results from the 100 nm and the 6 nm GaAs heterostructures indicate that

the thickness of the reduced temperature GaAs material is important in achieving a

detectable level of luminescence. It is important that the "well" material in these two

heterostructures was grown without the nucleation layer, as the GaAs was grown on

InGaP. Hence, the interface that is potentially limiting the successful detection of PL from

the reduced temperature GaAs is the one formed by the growth of ZnSe on reduced

temperature GaAs.
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4.3.4 PL of GaAs (reduced temperature GaAs on ZnSe)

The PL properties of a GaAs layer grown on ZnSe were also investigated. An InGaP cap

layer was grown on the surface of the GaAs material in order to ensure that the GaAs

material was not depleted due to surface states which would reduce the GaAs PL

efficiency. Two heterostructures were investigated with a 6 nm and a 100 nm thick GaAs

layer sandwiched above a 50 nm ZnSe layer and below a 50 nm InGaP layer. The PL

spectrum of the 6 nm GaAs heterostructure shows luminescence from the reduced

temperature GaAs, with an intensity that is 2 orders of magnitude less than that of the PL

from the GaAs substrate. The PL spectrum for the 100 nm GaAs heterostructure is

complicated by the InGaAs buffer layer, which overlaps the expected PL feature energy of

the reduced temperature GaAs. As a result, it is difficult to ascertain whether or not a PL

feature can be detected from the reduced temperature GaAs in the 100 nm GaAs

heterostructure. However, measuring PL from the reduced temperature GaAs in the 6 nm

GaAs heterostructure indicates that the nucleation layer does not have far reaching effects

on the optical properties of the GaAs QW.
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Figure 4-11. The 10 K PL spectra of an InGaP/GaAs 6 nm/ZnSe/GaAs substrate heterostructure. Features from both
the GaAs substrate and the reduced temperature GaAs are shown.

Up to this point in this study, the results have been presented regarding the optical quality

of the reduced temperature GaAs measured by low temperature PL using InGaP/GaAs

multiple QW structures. The reduced temperature GaAs has been shown to be of optical

quality when grown at substrate temperatures as low as 3000 C under stoichiometric



conditions. The ZnSe in the ZnSe/GaAs QW structure has also been evaluated by PL. The

ZnSe barrier layers have exhibited both band-edge luminescence and a deep-level impurity

band. The band-edge luminescence is slightly broader than a single 100 nm ZnSe layer

grown on InGaP, and this broadening is believed to result from the nucleation of the ZnSe

on the reduced temperature GaAs "well" layer. The defect band PL feature has been

shown to result from deterioration of the ZnSe layer quality during the elevated substrate

temperature of the GaAs QW.

The optical properties of the reduced temperature GaAs QW layer have also been

evaluated in conjunction with each ZnSe barrier layer. A ZnSe/GaAs/InGaP

heterostructure shows PL spectra originating from the reduced temperature 100 nm GaAs

layer. However, there is no evidence of a PL signal from the reduced temperature 6 nm

GaAs layer. The results from these two ZnSe/GaAs/InGaP heterostructures indicates that

the properties of the ZnSe on GaAs interface affects the reduced temperature GaAs layer

for at least 6 nm. The inverted heterostructure, InGaP/GaAs/ZnSe, has a detectable level

of PL from the reduced temperature GaAs for a 6 nm GaAs layer thickness. This result

indicates that the nucleation layer does not have far-reaching effects on the optical

properties of the reduced temperature GaAs layer.

4.3.5 PL of ZnSe/GaAs QWs and DBHs

Based upon the PL results presented thus far, a logical progression in the study of the

ZnSe/GaAs QWs would be to probe for luminescence from the central GaAs layer with

ZnSe barriers. PL measurements have been taken of a series of ZnSe/GaAs QWs and

DBHs:

* GaAs layer thickness ranging from 3 nm - 100 nm

* 8 nm ZnSe/GaAs QWs grown on ZnSe and GaAs substrates

* 100 nm ZnSe/GaAs DBHs grown on ZnSe and GaAs substrates

* p- and n-type doped 3 nm ZnSe/GaAs QWs

* p-type delta-doped heterointerfaces in a 3 nm ZnSe/GaAs QW



* nucleation layer thickness ranging from 0 monolayers to 3 monolayers in a series
of 6 nm ZnSe/GaAs QWs

* GaAs QW growth temperature ranging from 350 0 C to 450'C in a series of 6 nm
ZnSe/GaAs QWs

Regardless of the central GaAs layer dimensions, the growth parameters for the GaAs, the

substrate type, and the doping in the QW- no PL signal was detected from this layer.

4.4 Summary

The key result in this chapter is the unexpected absence of PL detected from the central

GaAs layer in the ZnSe/GaAs QWs and DBHs. Each part of the ZnSe/GaAs QW and/or

DBH has been separately shown to be of optical quality except for the first 3-6

monolayers of the nucleation layer. The ZnSe barrier layers exhibit band-edge

luminescence and, in some instances, a defect band. The presence of the defect band is a

function of the quality of the ZnSe/III-V layer heterointerface.

A PL signal from the GaAs QW material grown at 350'C under stoichiometric conditions

is detected when the QW is grown with InGaP barriers. InGaP/GaAs multiple QWs with

GaAs material grown at temperatures below 350 0 C under stoichiometric conditions show

a decreasing GaAs optical signal intensity (compared to the InGaP buffer layer PL signal

intensity) exceeding the lower detection limit for GaAs grown at 2500 C. It is expected that

deviations from a 1:1 As2 :Ga ratio during the reduced temperature GaAs growth will

further deplete the PL signal intensity.

Both InGaP/GaAs/ZnSe and ZnSe/GaAs/InGaP heterostructures show a detectable level

of PL from the central GaAs layer. When the lower barrier layer is ZnSe, band-edge PL is

detected from the GaAs layer only for a thick 100 nm layer. However, PL from a 6 nm

GaAs QW heterostructure with a ZnSe upper barrier layer and an InGaP lower barrier

layer is detected. Thus, effects of the nucleation layer have been shown not to significantly

impact the optical properties of a GaAs layer as thin as approximately 20 monolayers.



5. Summary of material fabrication and optical

characterization

This chapter begins with a summary of the results of the growth and optical

characterization of the ZnSe/GaAs QWs and DBHs. The absence of an optical signal from

these heterostructures is surprising, and in the middle of the chapter a set of five

explanatory hypotheses are postulated. Finally, two approaches for examining these

hypotheses are described; the latter is that used in this thesis.

5.1 Growth optimization

The growth of the ZnSe/GaAs QW and DBHs was achieved using a combination of MBE

for the ZnSe layers and GSMBE for the III-V layers. Two challenges to the optimization

of the ZnSe/GaAs QW are the mismatch in the optimal growth temperatures for the ZnSe

and GaAs (280 0 C and 580 0 C, respectively), and the nucleation of the GaAs layer on the

lower ZnSe barrier layer. A methodology defined as single-monolayer MBE (SM-MBE)

was developed to nucleate the GaAs layer on the lower ZnSe barrier layer. The remainder

of the GaAs QW layer was grown by standard MBE, but at a reduced substrate

temperature of 350 0 C with a modified Group III-to Group V ratio. The ZnSe barrier

layers were grown by standard MBE, with the nucleation of the ZnSe on the III-V layer

initiated by 60 seconds of Zn introduction into the growth reactor before the onset of

ZnSe growth.

5.2 Optical properties: PL

The optical properties of the ZnSe/GaAs QWs and DBHs were probed by low-

temperature photoluminescence (PL) measurements. The key result from this analysis was

the unexpected absence of an optical signal from the central GaAs layer when ZnSe

barriers were employed, regardless of the thickness of the GaAs layer. Similarly grown

GaAs was shown to luminesce when InGaP barriers layers were used. The ZnSe was



shown to exhibit band-edge luminescence, but also included a defect band feature

indicating a deep level present in the thin ZnSe layers. The defect band is possibly a partial

indication of the quality of the interface of the ZnSe layers with the III-V layers.

5.3 A set of hypotheses

Five explanatory hypotheses for the absence of a PL signal from the ZnSe/GaAs QW are

presented. Each hypothesis presumes that a different characteristic of the heterostructure

dominates. These characteristics are: interfacial roughness or interdiffusion, GaAs carrier

lifetime, energy-band alignment, heterovalent interface properties, and defects and

dislocations throughout the heterostructure.

5.3.1 Interfacial roughness or interdiffusion

The quality of a semiconductor heterointerface is crucial to the optical properties of the

heterostructure. For a heterostructure composed of III-V compound semiconductors, such

as InGaP and GaAs, an ideal heterointerface is both abrupt in the growth direction and flat

along the growth front (as exhibited in Figure 5-1). An abrupt heterointerface does not

possess any transitional monolayers composed of a combination of all of the constituent

elements from the materials at either side of the interface. When such a transitional layer

does exist, the heterointerface is considered interdiffused, and the transitional layer can

contribute to the PL for the heterostructure by adding a feature corresponding to the

transitional layer. For the ZnSe/GaAs heterostructure, an interfacial layer composed of the

four constituent elements would have the potential to form a compound with a different

lattice structure, such as Ga2Se 3 which has a defect Wurzite lattice structure [11]. A non-

FCC layer at the heterojunctions of the ZnSe/GaAs QW would both alter the energy-band

structure and contribute to defects in the rest of the QW.



interdiffused rough

Figure 5-1. Schematics of the different possible conditions of the ZnSe/GaAs interface: abrupt, interdiffused, and

rough.

A transitional layer at the ZnSe/GaAs heterointerface could also be composed primarily of

either GaAs or ZnSe, with a high level of unintentional doping [97, 98]. For a GaAs-

dominated transitional layer, the material can be acceptor impurity doped by interdiffused

Zn. A ZnSe-dominated transitional layer can be donor impurity doped by interdiffused

Ga. In either case, a high level of doping at the heterojunction between ZnSe and GaAs

results in an electric field as the highly doped region interacts with the undoped layers.

The electric fields bend the energy-band across the ZnSe/GaAs heterointerface which can

inhibit carrier confinement in the GaAs QW [97].

A rough heterointerface, has been shown to affect the PL properties for QWs composed

of III-V compound semiconductors [61, 65, 66]. The PL measurement probes the first

confined state for both the electrons and holes in a QW. The confined energy for both

carrier types is a function of the QW width. A modulation along the growth plane will

effectively create a series of QWs of different widths along the length of the QW. As a

result, the confined energies for the electrons and holes vary across the growth plane of

the heterostructure, and the PL from the QW will thus have a range of energies. For

interfacial roughness in a QW grown under two-dimensional conditions, the modulation in

the growth plane would be on the order of a few atomic layers, and the PL from the QW

would show one broadened, less intense feature [95]. A decrease in PL signal intensity

from a single QW with rough or interdiffused heterointerfaces could push the feature

below the level of detection.

abrupt



5.3.2 Carrier lifetime in the GaAs QW material

The carrier lifetimes of GaAs and ZnSe grown under optimal conditions are both roughly

1 nsec. This is sufficient for carriers generated by the optical excitation in the PL

measurement to radiatively recombine. However, materials grown with a high

concentration of impurities, defects, or vacancies, can have a shortened carrier lifetime

driven by non-radiative recombination, which can degrade or eliminate the respective PL

feature. As previously discussed, GaAs grown under non-stoichiometric conditions at

reduced temperatures has a significantly lower carrier lifetime (- 50 psec for GaAs grown

at 3000 C).

Both the nucleation layer and the GaAs QW material in the ZnSe/GaAs QW are grown at

reduced temperatures. The nucleation layer was grown under non-stoichiometric

conditions at a reduced temperature. The first three monolayers of GaAs are deposited at

250 0 C with an As2 :Ga ratio of 12:1. It is expected that the carrier lifetime of these three

monolayers is below the time required for PL detection because of the absence of PL from

GaAs grown at 2500 C under stoichiometric conditions in an all III-V-based QW structure.

The subsequent three monolayers of GaAs in the nucleation layer are grown at 3000 C with

an As2 :Ga ratio of 3:1. PL has been demonstrated from GaAs grown at 300'C with an

As 2 :Ga ratio of 1:1, although the signal intensity is very weak indicating that the non-

stoichiometric GaAs grown at 300 0 C will not produce a detectable level of PL. The

growth conditions for the bulk of the GaAs QW (350 0 C and an As2 :Ga ratio of 1:1) have

been shown to result in GaAs material characterized by PL that is within an order of

magnitude of intensity of GaAs grown by standard conditions. While PL has been

measured from InGaP/GaAs multiple QWs with the GaAs grown at 3500C and As 2 :Ga

ratio of 1:1, the combined properties of the nucleation layer and the GaAs QW could be

sufficient to decrease the PL signalfrom the GaAs QW below the detection limit.

5.3.3 Type II energy-band alignment

Up to this point, an assumption has been made that the energy-band alignment at the

ZnSe/GaAs and the GaAs/ZnSe interfaces is type I. A type I heterojunction allows carrier



confinement in both the conduction and valence bands, as shown in the schematic for a

ZnSe/GaAs QW with type I energy-band alignment in Figure 5-2 (a). However, in the

instance of a type II energy-band alignment, only one type of carrier would be confined in

a ZnSe/GaAs QW. In the schematic in Figure 5-2 (b),the holes are confined in the GaAs

valence band, but there is now a barrier to electrons. For a heterostructure in this state,

carriers generated across the GaAs band-gap would fall first to the lower energy level in

the ZnSe conduction band, and then decay to the ZnSe valence band or tunnel to the GaAs

valence band. In either case, the PL signal from the central GaAs layer would be

eliminated.
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Figure 5-2. Schematic of energy-band diagram for a ZnSe/GaAs/ZnSe QW with type I (a) and type II (b) alignments.

There has been an extensive effort to determine the energy band alignment for the ZnSe on

GaAs heterostructure. It is logical that the ZnSe-on-GaAs heterointerface in the

ZnSe/GaAs QW aligns in a similar manner to that of ZnSe-on-GaAs grown at the optimal

temperature of 580 0 C. However, little is known about the alignment of the GaAs on ZnSe

heterointerface. The study of the InGaP on GaAs heterostructure has been shown to

exhibit type II energy band alignment when the InGaP is grown at an elevated temperature

[99]. It is conceivable that the unique growth conditions under which the GaAs layer is

nucleated on the ZnSe could form a similar type II interface.
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5.3.4 Heterovalent interface properties

If the ZnSe/GaAs interface is abrupt, the mismatch in the valences of the four elements

will result in a sheet of electronic charge at the heterojunction. The electronic charge

would be negative for an abrupt Ga-Se interface, and positive for an abrupt Zn-As

interface [100]. According to electromagnetic field theory, the electric field that would

result from a sheet of charge would be bound only by the surface/air interface of the

heterostructure. The presence of such a field at two interfaces would either act to cancel

the effects of the fields as they meet at the center of the QW, or would act to reinforce the

overall field strength in the heterostructure. In either case, the presence of a strong electric

field will alter the energy band of the heterostructure, and has the potential to deplete the

area probed by the PL measurement of carriers faster than the carriers can radiatively

recombine.

Kassel, et al, has measured an interfacial charge of roughly 1x1012 cm -2 for ZnSe/GaAs

single heterostructures grown under optimal conditions [97]. Similar results have been

found in the work by Dougherty [1]. To date, the GaAs/ZnSe heterostructure has not been

probed to for interfacial charge. Local carrier depletion caused by heterointerfacial

charge has the potential to eliminate or reduce the radiative recombination in the

ZnSe/GaAs QWs and DBHs.

5.3.5 Dislocation and defects throughout the heterostructure

Crystal uniformity in the ZnSe/GaAs heterostructure is necessary to achieve an optical

signal from the material. Defects such as vacancies that are incorporated during the

growth can generate deep impurity levels in the band-gap of both the ZnSe and the GaAs.

Larger defects, such as threading and misfit dislocations, can also generate deep levels

within the heterostructure, but are more likely to be traps for non-radiative recombination.

The ZnSe-on-GaAs heterostructure has been extensively studied by the blue-green laser

community in an effort to eliminate the occurrence of dislocations that spread during

lasing, and cause a laser to self-destruct. The types of defects which are known to form at

the ZnSe/GaAs heterointerface, and propagate into the ZnSe are fairly well understood.



Strain-reducing misfit dislocations in the form of 600 partial dislocations increase in

density as the ZnSe layer approaches the critical thickness. Threading dislocations have

also been identified to nucleate as a function of the ZnSe stoichiometry and the growth

domain (two- or three-dimensional). Stacking faults have been shown to originate close to

the ZnSe/GaAs heterointerface.

The defect structure for the GaAs-on-ZnSe heterointerface has not been thoroughly

examined, and is expected to be strongly correlated with the GaAs nucleation process.

The comparison of the different approaches to nucleating GaAs on ZnSe was made during

the growth by assessing the RHEED surface pattern. Atomic force microscope

measurements of the post-growth surface have shown complementary results to the

RHEED surface pattern, indicating that the SM-MBE method to the nucleation of GaAs

on ZnSe yields superior results to the other approaches taken. However, a full assessment

of the ZnSe/GaAs QW microstructure needs to be made to understand the defects which

interrupt the crystal uniformity of the heterostructure and, hence, decrease or eliminate

the PL signal intensity from the GaAs well.

5.4 Description of approach to assessing each hypothesis

Each of the five hypotheses for explaining the absence of an optical signal from the GaAs

QW material requires further analysis of the ZnSe/GaAs QWs. Two analytic approaches -

optical and microstructural -- have been taken to probe the heterostructures. Optical

analyses can provide further information regarding the carrier lifetime, energy-band

alignment, and interfacial charge; this approach has been taken by David Dougherty [1].

Microstructural analyses can identify crystal imperfections such as defects, and interfacial

roughness or interdiffusion. Three types of microstructural analysis were used to probe the

ZnSe/GaAs QWs, and the results are presented in the second part of this thesis.

5.4.1 Optical analyses

The optical properties of the heterostructures have been studied by Dougherty to assess

the energy-band alignment, the carrier lifetime and the presence of heterointerfacial

electric fields. The methods employed include pump-probe measurements to measure the



carrier lifetimes in both the ZnSe and the GaAs layers. He also assessed the

heterostructures, using a combination of photoreflectance and electroreflectance to

measure both the energy-band alignment and the magnitude and orientation of interfacial

electric fields. The preliminary analysis from these measurements revealed the complexity

of probing low-dimensional multi-layer semiconductor heterostructures. As a result, the

major part of Dougherty's complete analysis was completed on a the single ZnSe on GaAs

heterostructure [1]. The experimental results from the ZnSe/GaAs QWs were not

completely analyzed.

An important result from the work by Dougherty is the measurement of the electric field at

the ZnSe-on-GaAs heterointerface, as a function of the GaAs doping and starting surface

reconstruction. The results from these measurements are shown in Table 5-1. For the

pseudomorphic ZnSe/GaAs heterostructures, the electric field is directed from the GaAs

layer towards the ZnSe layer, due to a negative interfacial charge. The interfacial electric

field increases with increasing n-type doping, as does the valence band offset. In

conjunction with the theory by Kley, the negative interfacial charge corresponds to an

abrupt Ga-Se interface [100]. In all cases, Dougherty measured a Type I energy-band

alignment at the ZnSe-on-GaAs heterointerface. His results are for ZnSe/GaAs

heterostructures grown in the same experimental system as the ZnSe/GaAs QWs in this

study.



Sample

z222
z223
z 194
n44
n24
z350
i44
i24

z345

Thickness

0.12
0.12
0.10
0.10
0.10
0.50
0.10
0.10
0.50

Table 5-1. Summary of interfacial field and valence band offset for a ZnSe-on-GaAs heterostructure as a function of

ZnSe thickness, GaAs doping (n-type=ND, semi-insulating=SI), and GaAs starting surface reconstruction [1].

5.4.2 Microstructural analyses

The second approach to probing the ZnSe/GaAs heterostructures further is that of

microstructural analysis, which is the work presented in the second part of this thesis. A

combination of RHEED, atomic force microscopy, optical microscopy, electron

microscopy, analytical electron microscopy and x-ray diffraction measurements have been

used to probe for defects, interfacial width and interfacial coherence.

5.5 Microstructural analysis of ZnSe/GaAs heterostructures

The microstructural aspects of the ZnSe/GaAs QWs grown with a range of parameters

and physical dimensions are examined using three different analytic techniques. Each of

the three techniques provides a different type of information regarding the properties of

the ZnSe/GaAs heterostructure. The first, energy dispersive x-ray spectroscopy, measures

the spatial composition of the heterostructure and can probe for interdiffusion at the

heterojunctions. The second technique, triple axis x-ray diffraction, probes the crystal

uniformity within an area defined by a probe diameter of 1 mm. Finally, transmission

electron microscopy provides information regarding the cross-section of the

heterostructure with the capability of imaging the crystal lattice.

GaAs
doping
(cm -3)

ND=7x 10 7

ND=8X10' 7

ND=6x10' 7

ND=lxl0'8

ND=lxl0'8

ND=lxlO' 8

SI
SI
SI

GaAs
reconstruction

4x4
4x4
4x4
4x4
2x4
4x4
4x4
2x4
4x4

Electric field

(V/cm)
2.2x10 5

2.3x10 5

1.0x105

8.8x105

7.8x10 5

9.5x10 5

4.2x10 4

3.5x10 4

2.8x10 4

Charge
sign

-

Offset

(meV)
160
180
180
NA
NA
250
110
110
NA



5.5.1 Comparison of methods

In order to understand the spatial resolution and probe depth for each method it is

necessary to compare the different types of probes implemented in this study of

ZnSe/GaAs QWs (see Table 5-2).

For the case of the photoluminescence measurements, optical excitation was employed

using a combination of ultra-violet, red, and green light generated by a He-Cd, a He-Ne,

and an argon laser, respectively. In all cases, the probe diameter was focused to a diameter

of roughly 300 gm. The different optical sources have different absorption lengths in the

ZnSe/GaAs QW, but probe no more than the top 2 gm of the sample. During growth,

RHEED surface analysis was achieved with a low-energy, 10 keV, electron beam of

diameter of roughly 1mm. The electron beam for the RHEED analysis impinges upon the

sample surface at a low angle of 2', and does not probe much more than 10 nm into the

sample as a result.

For the microstructural analysis, an x-ray source and an electron source are implemented.

The x-ray source generated from the K line for Cu is three orders of magnitude shorter in

wavelength than the optical sources employed in the PL measurement. The x-ray source is

directed upon the sample surface close to the Bragg angle, and has a varying degree of

material penetration as the sample is rotated. However, the x-ray beam probes roughly 10

jim into the sample. The x-ray beam diameter is large enough, 1 mm, to probe almost an

"infinite" number of unit cells in the heterostructure. The combination of the large beam

diameter with the small wavelength for the x-ray source yields a high spatial resolution, so

the x-ray measurement is important for assessing the defect structure over a long-range.

The final two probes are electron beams used in the scanning transmission electron

microscope and the transmission electron microscope. As high energy electrons are

employed, the wavelength of the probe is short enough to allow for a spatial resolution

capable of discerning the atomic lattice. For both measurements, the actual spatial

resolution is limited by the chromatic and spherical aberrations in the electro-magnetic

lenses. The electron beam for both measurements is capable of passing through up to 1



gtm of material; however, thinner material is used to reduce the contribution of inelastic

scattering to the measurement.

The different types of probes employed in the microstructural analysis are both

complementary to the optical probes and to the RHEED electron beam. X-ray analysis can

be expected to provide insight into the heterostructure over an area larger than the area

probed by the PL measurement. The results from the RHEED surface analysis during the

growth can be combined with the electron microscope measurements to understand and to

assess the growth process for the ZnSe/GaAs QW.

Probe type X (nm) Probe diameter Probe angle
He-Ne laser 632.8 300 tm 00 - 100

Argon laser 514.5 300 pm 00 - 100

He-Cd laser 325 300 pm 00 - 100

RHEED e-beam 0.122 1 mm 20

X-ray Cu K 0.154 1 mm OB

STEM (EDS) e-beam 0.0025 1 nm 00

TEM e-beam 0.0027 1 nm - 10 pm arbitrary

Table 5-2. Different types of probes implemented in this thesis and the probe dimensions, given in wavelength (X)

and probe diameter.

The analyses of the ZnSe/GaAs QW by x-ray and electron beam probes both rely upon

diffraction of the probe by the atomic planes. In the following section, diffraction is

discussed in direct relationship to the heterostructures analyzed in this study.

5.5.2 Introduction to diffraction

This section begins with a basic introduction to diffraction theory as applied to the ZnSe

and GaAs crystal structures.

There are two different approaches to explaining the diffraction process: kinematical and

dynamical. Kinematical diffraction theory assumes that diffraction is a result of single

scattering events, and, thus, the crystal is either very small or the periodicity of the crystal

structure is disrupted by imperfections. Dynamical diffraction theory allows for multiple

scattering incidents contributing to the total diffraction process, and assumes a fairly



perfect crystal. Separately, both theories do not represent the experimental reality for the

ZnSe/GaAs heterostructure. The discussion on diffraction is, as a result, given at a basic

level with a more thorough explanation of some of the processes important to

understanding the microstructural analysis presented in this thesis. Detailed descriptions of

kinematical diffraction and dynamical diffraction can be found in several texts on the topic

[101-103]. In the microstructural techniques employed, the quantitative analysis of the

defect structure is based upon kinematical diffraction theory. Otherwise, dynamical

diffraction theory applies more readily to the interpretation of the results.

Diffraction occurs when an electromagnetic wave impinges upon a crystal with a

periodicity that exceeds the wavelength of the incident wave. The nature of the diffraction

is a coherent form of scattering of the electromagnetic wave determined by the geometry

of the material symmetry and periodicity. The diffracted wave is at its most intense when

the excitation source is directed upon the material at an angle such that the path length of

the electromagnetic wave is the same for the interaction with neighboring lattice planes or

points. This relationship is defined by Eq. 1, where d is the lattice plane or point spacing, k

is the wavelength of the incident excitation source, and 0 is angle of incidence. When 0 is

half of the full diffraction angle, it is called the Bragg angle.

A = 2d sin 0 Eq. 1

The Bragg intensity is a function of the crystal orientation. For the [001] growth plane, the

Bragg angle of a GaAs layer is 33.026', and for a ZnSe layer is 32.9250. For the

ZnSe/GaAs heterostructure, the material is readily probed parallel, or perpendicular, to the

growth surface (100). A schematic of a GaAs substrate is shown in Figure 5-3, with the

crystallographic directions labeled. A cross-sectional view of a heterostructure is also

shown, with the crystallographic directions labeled. As can be seen in Figure 5-3, the

growth of the ZnSe/GaAs QWs is in the [100] direction. The basic crystal structure is

zinc-blende cubic so natural cleavage { 110 } planes exist.
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Figure 5-3. Crystallographic orientation of a GaAs (100) wafer, as seen from the surface and from the cross-section.

In x-ray diffraction measurements, the sample surface is probed by rotating the surface

with respect to the x-ray beam. Variations in the diffraction intensity from the Bragg angle

for the constituent layers in a heterostructure can be studied to understand the strain,

defect density, and composition of the heterostructure.

For electron beam excitation, the electron beam is either aligned close to the [100] crystal

axis in plan-view, or close to the [110] crystal axis in cross-sectional view. Cross-sectional

alignment is useful for looking edge-on at the different layers in a heterostructure as

shown in Figure 5-3. The interaction with the electron beam in either orientation is such

that strong diffraction of the electrons by the periodic array of atoms occurs when the

excitation is incident at the Bragg angle. A diffraction pattern characterized by a three-

dimensional array of reciprocal lattice points related by Fourier transform to the crystal

lattice results from the interaction of the electron beam with the crystal structure. The

electron diffraction patterns for both sample orientation are shown in Figure 5-4, where

the labels on the patterns correspond to reciprocal lattice points. Each reciprocal lattice

point corresponds to a set of crystal planes. The forward scattered beam is the spot

labeled 000.
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Figure 5-4. Electron diffraction patterns for GaAs in the [001] and the [011] directions.

Diffraction of x-rays from lattice planes parallel to the growth direction (100) is strongest

for the (004) reciprocal lattice point. The (004) reciprocal lattice point is the first strong

Bragg condition for the growth plane, although there is also an (002) reciprocal lattice

point which is much weaker. The presence of an (002) reciprocal lattice point is unique to

compound semiconductors. The (002) reflection is forbidden in single element zinc-blende

crystal structures, such as Si. The difference in the structure factors for Zn and Se and for

Ga and As allow for a weakly diffracting spot, which can be taken advantage of when

studying compound semiconductor heterointerfaces. The relative intensities of the

diffraction spots shown in Figure 5-4 indicate the orientation of the sample with respect to

the electron beam. If the electron beam is slightly off the [001] or the [110] crystal axis,

the Bragg condition for different lattice planes will be more likely to be satisfied, and the

corresponding reciprocal lattice points will become illuminated. Aligning the sample with

respect to its reciprocal lattice points is necessary to achieve high contrast, to identify

defect type and orientation, and to adequately determine the physical dimensions of the

heterostructure.

The information from the diffraction resulting from both x-ray and electron beam

excitation can be used to assess the microstructure of the ZnSe/GaAs QW heterostructure.
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Subsequent sections present the methodology and the results for compositional analysis by

energy dispersive x-ray spectrometry and crystal quality by triple-axis x-ray diffraction and

transmission electron microscopy. Each experimental technique is discussed in the section

in which the data is presented.



6. Energy dispersive x-ray spectroscopy

Compositional analyses of semiconductor heterostructures are useful for identifying

interdiffusion at the junction of heterolayers and the stoichiometry of each compound

semiconductor layer. A technique which provides a high degree of spatial and

compositional resolution is energy dispersive x-ray spectroscopy (EDS). This method is

especially useful when used in conjunction with transmission electron microscopy. The

following sections describe the approach taken to the compositional study of the

ZnSe/GaAs QWs and DBHs using EDS. The goal of this study was to verify if there was a

measurable amount of interdiffusion at the heterointerfaces between ZnSe and GaAs. Any

measurable amount would indicate an amount of interdiffusion large enough to limit the

optical properties of the GaAs QW.

A discussion of the method for EDS measurements is provided below with a description

of the system that is used. The spatial and compositional limits to the measurement are

investigated for the specific elements: Zn, Se, Ga, and As. The results from the

measurements of the interfaces of ZnSe/GaAs QWs, DBHs, and all group III-V structures

are compared. Finally, the relationship between the results from the compositional

measurements and the heterointerfacial quality for the ZnSe/GaAs QWs is discussed.

6.1 Description of method for EDS

Energy dispersive x-ray spectroscopy (EDS) is a standard analytical tool that is part of a

scanning transmission electron microscope (STEM) or a TEM. The measurements in this

study were made in a VG HB603 STEM operating at 250 kV. An electron beam is

generated from a tungsten field-emission tip, with a probe size of about 1 nm and current

of about 10-10 Amps. During analysis, the sample sits in the column of the STEM at a

vacuum of 10-9 Torr. The sample is illuminated by an incident electron beam that is

rastered across the surface. A 30 mm2 Si(Li) x-ray detector placed at an angle of 20' from



the sample surface detects x-rays which are emitted from the sample in the energy range of

0 keV to 20 keV. The energy resolution of the detector is 138 eV at an energy of 5.9 keV.

An x-ray that is detected from the sample as a result of interaction with the electron beam

can be a result of two types of interactions with the resident atomic species. In one

instance, an atomic species in the sample is ionized by the electron beam. The excited ion

then decays to the ground state by emitting an x-ray photon. In the other case, energy is

released in the form of an x-ray from the electron beam during an interaction with the

nucleus of an atom in the sample. The EDS spectra in this case has a continuous

background level called Bremsstrahlung radiation. The combined EDS spectra shows the

Gaussian-shaped features which occur at energies related to the elemental composition of

the sample superimposed on the background level. For the samples studied in this work,

the K , K., and L x-rays are collected (Table 6-1). Other spurious features are often

present in the EDS spectra including escape peaks which appear 1.74 keV below the

characteristic energies of the elements in the sample.

Table 6-1. Transition energies for K., K,, and L for the constituent elements for the semiconductors of interest.

There is not a 1:1 correlation between the intensity of a given x-ray feature and the

chemical composition. The x-ray detector is not uniformly sensitive over the full detection

range of x-ray energies. Furthermore, if the sample has variations in thickness across the

area of interest, the relative intensities of the x-ray features partially reflect these

variations. The scattering in the sample by the electron beam increases with increasing

sample thickness and thus increases the x-ray counts.



The composition of a given sample is determined by collecting x-rays for a set amount of

time (long enough to exceed the noise level and short enough to avoid sample or electron

beam drift effects) over a set area. Figure 6-1 demonstrates EDS results for both a layer of

ZnSe and a layer of GaAs measured by holding the electron beam at a single point on the

material surface for 300 seconds. The features in Figure 6-1 indicate the presence of the

Ka and K, lines for Zn, Se, Ga, and As.
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Figure 6-1. EDS measurements of GaAs and ZnSe, showing features for Ga, As, Zn, Se, and Cu. Also present are
detectable levels of C, Si and Fe. The features to the left of the Cu peaks correspond to escape peaks resulting from
x-ray interaction with the detector.

The elements of primary interest for ZnSe and GaAs are Zn, Se, Ga and As. The features

corresponding to each of these elements in comparison to the background level shown in

Figure 6-1 indicates that the Ka features are not of equal intensity. The differences in

intensity do not necessarily reflect non-stoichiometric growth conditions. The sensitivity of

the detector and the x-ray efficiency of each element must also be taken into

consideration. However, this study is primarily interested in the spatial composition of the

ZnSe/GaAs QW, because the relative intensities of the respective elemental features do
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not contribute to this information. Other features in the EDS spectra shown in Figure 6-1

indicate the presence of Cu, C, Si, and Fe. The Cu originates from the grid upon which the

sample is mounted. The C and Si are contaminants present both in the STEM column and

on the sample. The presence of Fe is a result of the interaction with electrons and the walls

of the STEM. The small peaks to the left of the Cu features are examples of escape peaks

resulting from x-ray interaction with the detector. The downward slope in the EDS

spectrum is a function of the Bremsstrahlung radiation caused by interactions between the

electron beam and the atomic nuclei.

As the electron beam is transmitted through a sample, the emitted x-rays provide

compositional information in the form shown in the EDS spectra in Figure 6-1. The

information of primary interest is the compositional make-up of a ZnSe/GaAs

heterostructure across the interfaces between the ZnSe and GaAs layers. An

understanding of the theoretical limits of the EDS measurement are necessary to

successfully assess the interfacial regions. Both the spatial resolution and the minimum

mass detectable by the EDS measurement are a function of the materials being measured,

the thickness of the sample, the electron beam diameter, and the x-ray detector resolution.

The subsequent sections present the analysis of the beam spread caused by sample

thickness effects in conjunction with the finite dimensions of the electron beam and

resultant spatial resolution as a function of material thickness. This is followed by a

discussion of the minimum detection level possible for the elements of interest for a

sample of a given thickness.

6.2 Beam spread and minimum detection

The spread in the electron beam as it impinges upon a material has been approximated by a

single-scattering model [104]:

- 3

b = 7.2 1 x 10 t 2 (cm) Eq. 2
o A



In the above expression, t is the material thickness in units of cm, Z is the atomic number,

Eo is the beam energy in keV, p is the material density in g/cm3 , and A is the atomic weight

in g/mole. When the parameters are estimated for ZnSe, GaAs, and InGaP, the beam

spreading versus the thickness of the material results in the behavior shown in Figure 6-2.

For comparison, the beam spread for iron is also given, as this is a common standard for

EDS comparisons.

0 10 20 30 40 50 60
thickness nm

70 80 90 100

Figure 6-2. Beam spreading of the electron beam versus material thickness for ZnSe, GaAs, InGaP, and iron as
calculated using the single-scattering model. The lines for ZnSe and GaAs overlap.

The overall spatial resolution for the EDS measurement is a combination of the beam

diameter and the beam spreading. This is expressed in the following equations:

Rmax =(b 2 + d 2 )

d+Rmax
R = ma

Eq. 3

Eq. 4

where Eq. 3 represents the resolution (R,,,a) accorded to an electron beam (of diameter, d,

beam spread, b) that has propagated through a sample of finite thickness. Eq. 4 takes the

average of the top surface resolution and the bottom surface resolution.

R-
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Figure 6-3. Spatial resolution of EDS measurement for ZnSe, GaAs, InGaP and iron.

Figure 6-3 shows a plot of the spatial resolution for the EDS measurement as a function of

the sample thickness for ZnSe, GaAs, InGaP and iron. For very thin samples, thinner than

10 nm, the spatial resolution degrades by only 2% for an order of magnitude increase in

the sample thickness. However, extrapolating the curve in Figure 6-3 for another order of

magnitude increase in sample thickness, the spatial resolution will degrade by 50%. The

samples for the EDS study have been studied by phase contrast imaging in the TEM, and

in order to achieve this condition, the sample thickness needs to be on the order of 8 nm.

Therefore, it is believed that the spatial resolution for the EDS measurement is between

1.0 nm and 2 nm.

6.2.1 Minimum detection

The minimum level of detection of a given material can be defined by the minimum mass

fraction (MMF). The MMF is the smallest concentration of an element in weight

percentage or parts per million that the EDS measurement can detect.
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Figure 6-4. Minimum concentration of an element detectable as a function of the background intensity level and the
integrated peak intensity (Ir) for Zn, Se, Ga, and As. The values for each element are grouped together according to
the integrated peak intensity.

The minimum detectable level for each of the elements in ZnSe and GaAs is a function of

the ratio of the background intensity to the integrated peak intensity for a given element.

The background intensity is directly proportional to the sample thickness (as well as the

beam current and detection time). Figure 6-4 shows in part this relationship for a fairly

low integrated intensity ranging from 5 to 500 counts. The minimum detection level

becomes less correlated with the background and integrated intensity as the integrated

intensity approaches 500 counts, reaching a lower limit of roughly 7x10 19 atoms/cm3. In

comparison to concentration levels often considered in semiconductor device design, this

lower limit would be a very high level of doping. The diamond cubic lattice structures of

ZnSe and GaAs have a molecular density of roughly 1x10 23 molecules/cm3 . For a sample

that is 8 nm thick, at the lowest limit of detection would correspond to the contribution of

10 atoms; for a sample that is 80 nm thick the lower detection limit corresponds to 100

atoms. Thus, a thicker sample is better for the detection of small concentrations of a

material (although the spatial resolution is degraded with a thicker sample).

Given the analysis of the spatial resolution and the minimum mass detectable by the EDS

measurement, interdiffusion at semiconductor interfaces would only be detected if the

o Ir=500m Ir=50 a Ir=250+Ir=5



interface had a width of a few nanometers. The interdiffusion at the heterointerface, to be

detected, would have to be at least on the order of 2% of the molecular composition of

the material for a sample 8 nm thick. These lower limits on the EDS measurement are

sufficient to provide useful information on the heterointerfacial quality of the ZnSe/GaAs

QWs. The approach to investigating these heterostructures is presented in the following

sections.

6.3 Data acquisition

The EDS spectra shown in Figure 6-1 for ZnSe and GaAs are used as the basis for the

acquisition of compositional data from an area of the sample. The energy-ranges defined

by the FWHMs of the K. features for Ga, As, Zn, and Se are monitored by the data

acquisition system to determine the count-rate for each element during a linescan. As the

electron beam is moved across the sample, the data acquisition program selectively

measures the number of counts for each window. Two types of data are taken in this

manner, a two-dimensional compositional map and a one-dimensional linescan. The

linescan is more useful for quantitative analysis of the elemental composition of the sample

with respect to translation across the sample. The compositional map is useful for the

qualitative assessment of the composition of the specimen.

Compositional maps of small regions of both a ZnSe/GaAs 6 nm single quantum well

(z302) and a 100 nm DBH (z255) were taken, in an effort to assess the "quality" of the

heterostructure both parallel and perpendicular to the growth direction (see Figure 6-5).

These two samples were selected because the TEM for each is very different, and the

narrower GaAs region could serve to aid in experimentally evaluating the spatial

resolution of the EDS measurement.

Any modulations in the composition perpendicular to the growth direction potentially

indicate that the films were not successfully grown in a two-dimensional manner. Overlap

in the spatial composition of the Zn and Se with the Ga and As elements is also an

indicator of diffusion at the heterointerfaces.
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Figure 6-5. Compositional maps of a 6 nm (z302) and a 100 nm (z255) ZnSe/GaAs QW. The maps indicate the
presence of Zn, Se, Ga, and As.

In Figure 6-5 the white bands in the left-hand set of images for both z255 and z302 are

representative of the elemental concentrations of Zn (on top) and Se (on the bottom) from

50 nm ZnSe barrier layers. The EDS maps for sample z255 were taken at a different

magnification from those of sample z302 in order to include the entire DBH in the map.

As can be seen, there is a slight undulation in the top ZnSe layer in sample z302. Similar

variations are present in z255, although not visible at the magnification the compositional

map was taken. However, the spatial modulation of the composition at the

heterointerfaces for sample z255 originates at the bottom III-V buffer layer upon which

the heterostructure was grown. It is interesting that the undulation in this case propagates

up through the entire structure.

Sample z255 shows very little overlap between the white bands representative of Zn and

Se and the bands representative of Ga and As. In contrast, z302 shows the potential for a

large overlap in the presence of ZnSe and GaAs in all layers. The background noise in the

Ga and As plots for z302 is a function of Bremsstrahlung radiation which creates a

fluorescence continuum during the EDS measurement. The background level is not as

------------ -------- -- ---- -



evident in z255 because the region of the sample where the measurement was taken is

thinner than the region of the sample over which the compositional map was taken for

z302.

The compositional maps of the 6 nm and 100 nm ZnSe/GaAs QW structures shown in

Figure 6-5 provide support for the EDS measurement as a feasible method for

understanding the quality of the ZnSe/GaAs heterointerface region on a compositional

basis. The 6 nm heterostructure shows the presence of a spatial modulation of the

heterointerface perpendicular to the growth direction as well as some overlap between the

constituent species of the ZnSe and the GaAs at the heterointerface.

Further assessment of the interfacial regions of the ZnSe/GaAs QWs are made using

linescan analyses. All III-V heterointerfaces of InGaP/GaAs are also studied to compare to

the ZnSe/GaAs interface as a base case for the EDS linescan measurement. The III-V/III-

V heterointerface is expected to be abrupt, since the InGaP/GaAs heterostructure has been

optically characterized by PL and shown to be of high quality. The lack of or the

broadening of a PL signal from the InGaP/GaAs heterostructure would indicate a rough

heterointerface.

The subsequent sections provide the linescan data from both the III-V and the II-VI/III-V

heterostructures. First, the method by which the linescan data is processed is presented for

an all III-V heterostructure. Next, the linescan data from a ZnSe/GaAs QW and the

method by which the heterointerfaces are assessed are presented. Finally, the results are

given from the linescan data for all of the heterostructures.

6.4 EDS linescans

The EDS linescans were taken by selecting an area of the sample of interest, scanning

across the region, and sampling 128 data points for the elements that are preselected using

the data from Figure 6-1. The number of data points is sufficient to ensure that several

points are detected across an interface. The dwell time for each data point was set

between 1 and 5 sec. A compromise exists in setting the dwell time. A longer dwell time



can produce a larger count level, and larger signal-to-noise ratio. However, a longer dwell

time also results in increased surface contamination of the sample and an increase in the

likelihood of sample or electron beam drift during the linescan. All of the negative results

of an increased dwell time reduce the resolution of the EDS measurement. Hence, a

variety of dwell times were chosen, depending on the signal from the sample (which is

directly a function of the sample thickness).

The raw data from a linescan of an InGaP/GaAs multiple QW of well widths 2 nm and 4

nm are shown in Figure 6-6. The composition for the K, lines of As, Ga, and P are shown.

The In composition is measured from the La line. Two QWs can be detected in the

linescan, most clearly defined by studying the As composition. The upward trend in the

signal intensity with increasing depth indicates that the sample was becoming thicker as

the scan progressed. The analysis of the heterointerfaces between the InGaP and the GaAs

is complicated by the noise in the EDS spectra.
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Figure 6-6. Linescan of an InGaP/GaAs multiple QW showing the presence of In, Ga, As, and P. The two GaAs QWs
are 2 nm and 4 nm thick. The linescan is directed into the sample, as the depth increases, the substrate is approached.

The same sample was compositionally analyzed by EDS by taking a number of 3 minute

long EDS spectra at 1 nm steps. This point-by-point approach is believed to result in

higher compositional resolution without the issues of beam drift associated with long

dwell time linescans, as each data point is selected by the STEM operator. However, a

r _~_



degree of subjectivity exists in the data taking as there is a human component involved.

The point-by-point data taken for the same InGaP/GaAs multiple QW measured in Figure

6-6 is shown in Figure 6-7. The resulting compositional results are somewhat clearer than

the linescan in Figure 6-6, and the QWs are easier to discern by the analysis of the In, P,

and As compositions. The Ga composition for this heterostructure is difficult to use for

the assessment of spatial transitions, as all of the layers in the heterostructure have Ga. It

is also important to note that the In and P compositions fall to a lower minimum in Figure

6-7 than in the linescan data from the same sample. This indicates that the compositional

resolution of the linescan is exceeded at the small QW widths (2 nm and 4 nm).

Because the point-by-point method of taking the compositional data was so subjective and

still appeared to have a similar amount of noise fluctuation, the linescan approach to

taking EDS data was followed for the remainder of the samples studied. The limitations on

the compositional resolution in the linescan data are considered in the analysis of the data.
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Figure 6-7. Compositional measurement of the 2 nm and 4 nm InGaP/GaAs multiple QW shown in Figure 6-6. The
data was taken by measuring the integrated intensity of each element on a point-by-point basis. As the depth
increases, the substrate is approached.

In order to better interpret the linescan data, a 3 point average of the data was applied 5

times. This filtering served to reduce the noise fluctuations in the data, as shown in Figure

6-8. Now, the QWs in the InGaP/GaAs heterostructure are more readily discerned, and



the heterointerfaces can be analyzed. The filtering method does not significantly alter the

count/depth aspect ratio of the data.
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Figure 6-8. Filtered linescan EDS results from the 2nm and 4 nm InGaP/GaAs multiple QW. The linescan is directed
into the sample, as the depth increases, the substrate is approached. The linescan data was filtered with a 3 point
average applied 5 times. The shaded areas denote the regions where the GaAs QWs are believed to be.

The remainder of the EDS linescan data that will be discussed have been filtered in the

same manner as in Figure 6-8. Since the goal of the compositional measurements by EDS

was to assess the heterointerfaces of the ZnSe/GaAs QWs for the possibility of

interdiffusion, the next section discusses how the heterointerface has been defined in

relation to the data. The results for the different sample scanned are also presented.

6.5 Data Analysis

In order to assess the abruptness of the heterointerfaces in ZnSe/GaAs QWs, a uniform

methodology needs to be applied for all types of samples. The linescan data in Figure 6-8

of an InGaP/GaAs multiple QW heterostructure show an increase in the As composition,

accompanied by a decrease in the In and P compositions over regions believed to be

occupied by GaAs. There is a region over which a transition occurs from material

compositionally defined by the presence of In, Ga, and P to material compositionally

defined by Ga and As. It would be logical to define this region as the heterointerface, with

100



a finite width. This, however, implies that the heterointerface of the InGaP/GaAs multiple

QW heterostructure is not abrupt.

In comparison, the linescans of ZnSe/GaAs QWs with a GaAs layer thickness of 3 nm and

100 nm also show a similar region of transition (Figure 6-9 and Figure 6-10). In Figure 6-

9, the region where the GaAs is believed to be according to the compositional profile is

shaded gray. The transition region is shaded to an increasingly lighter tone. The transition

from a GaAs to ZnSe is of a finite width, as with the InGaP/GaAs linescan data. The

linescan data in Figure 6-9 show a similar limitation in the resolution in the EDS

measurement as shown in Figure 6-8, as the Zn and Se compositions never fall to a

background count level within the region believed to be the GaAs QW. In comparison,

analysis of the wider 100 nm ZnSe/GaAs double heterostructure shown in Figure 6-10

indicates that the GaAs QW layer is in fact devoid of Zn and Se at levels within the

detection limits of the EDS measurement. A quantitative assessment of the interface

regions was carried out to better understand these results.
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Figure 6-9. Linescan measurement of a 3 nm ZnSe/GaAs QW. The shaded background area indicates the presence of

the GaAs QW, and the region over which the heterointerface is believed to occur.
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Figure 6-10. Filtered EDS linescan data for a ZnSe/100 nm GaAs DBH. The linescan is directed into the sample, as
the depth increases, the substrate is approached. The GaAs region is shaded gray, and the heterointerfacial region is
shaded incrementally from gray to white.

6.5.1 Definition of heterointerfacial thickness

The heterointerface was defined as the region over which the derivative of the elemental

composition profile exceed 1.5 counts. This definition is more clearly shown in Figure 6-

11 showing the As linescan data for the 100 nm ZnSe/GaAs DBH from Figure 6-10 along

with the derivative of the data. A standard approach to defining transitions from one

material to another is to take the 3% of and 97% of maximum values over the range of

variation. A more generous definition for the heterointerface was used both to account for

noise in the linescan and to avoid issues associated with the sample thickness variations

across the scan area. As the linescan data for the ZnSe/GaAs QWs are studied in

conjunction with InGaP/GaAs multiple QWs, the comparison of the widths of the

heterointerfaces are more relevant than the absolute width in this study. Hence, the

approach taken in defining the heterointerface shown in Figure 6-11 is a consistent

methodology which can be used to compare across different samples.
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Figure 6-11. Determination of interface width for 100 nm ZnSe/GaAs DBH for As. The heterointerface is defined as

the region over which the change between adjacent data points is greater than 1.5 counts. The change in As

composition (AAs) is superimposed on the As composition. The linescan is directed into the sample, as the depth

increases, the substrate is approached.

The interfacial width has been measured from the EDS linescan data for each of the

constituent elements detected. The following sections present the results from the analysis

of each of these elements in relation to the types of heterostructures.

6.5.2 Interfacial widths as measured by EDS

A series of samples of different materials and QW widths were investigated using EDS

linescans. The samples and the linescan information are summarized in Table 6-2. In all of

the samples measured, there are two interfaces of interest: the interface closest to the

substrate (the lower interface) and the interface closest to the sample surface (the upper

interface). Each of the samples studied has a GaAs layer, and hence at least one interface

can be assessed by the Ga and As spatial composition. This commonality allows for

comparison across the different heterostructures. Using the interface definition described

in Figure 6-11, the linescan from each sample has been analyzed to see if there is a

difference between the interfacial widths for the different material systems.
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Sample Structure I Dwell Time Magnification
r239 InGaP/ 9 nm GaAs/InGaP i 5 sec 500K
r292 InGaP/ 4 nm GaAs/InGaP 5 sec 1M
r485 A1GaAs/ 10 nm InGaP/GaAs 1 sec 1M
z272 ZnSe/ 3 nm GaAs/ ZnSe 1 sec 2M
z276 ZnSe/ 3 nm GaAs/ZnSe 1 sec 2M
z302 ZnSe/ 6 nm GaAs/ZnSe 3 sec 500K
z255 ZnSe/ 100 nm GaAs/ZnSe 5 sec 500K

Table 6-2. Summary of samples compositionally measured using EDS linescans, the structure of the samples, the
dwell time per data point for the linescan and the magnification at which the linescan was taken.

The analysis of the EDS data accounts for differences in sample thickness and the dwell

times used during the measurements. To a first approximation, if the measured count level

from a sample for a given element is double that of another sample measured using the

same dwell time then the thickness of the sample with the higher count level is twice that

of the sample with the lower count level. There is also, to first approximation, a one-to-

one correlation between the dwell time per data point and the count level. Hence, for

sample r239 shown in Table 6-2, the dwell time is 5 sec per data point and would be

expected to have a five-fold increase in As composition over sample r485 with a 1 sec

dwell time per data point. The data was normalized for these different measurement

conditions, first for dwell time. The normalization is important for clarifying whether or

not sample thickness affects the measured value for the heterointerfacial width.

6.5.3 Comparison of GaAs-on-ZnSe and ZnSe-on-GaAs interfaces

For the ZnSe/GaAs QW structures, the nucleation conditions at each interface were

different and the linescan data were studied to see if this difference was apparent in the

composition profile. The compositional data for each of the ZnSe/GaAs QWs studied was

converted to an interface width at both the upper and lower interfaces. To simplify the

comparison, the interface width for the upper interface was subtracted from the interface

width for the lower interface. If the upper interface is larger than the lower interface,

subtracting the data would result in a positive value, and visa versa.
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The data as a function of the GaAs QW width for the ZnSe/GaAs QWs is shown in Figure

6-12. The x-axis is plotted on a log scale in order to better differentiate the thinner QWs

and the 100 nm DBH. The difference in the interface widths appears to be a function of

the element studied. However, there is not a correlation between the interface width and

the type of interface (upper or lower). In three out of the four cases measured, the Zn and

Se show interfacial behavior that is counter to the results from the Ga and As linescans.

For example, for the 6 nm QW, the Zn and Se show a slightly thinner upper interface

while the Ga and As show a wider upper interface.
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Figure 6-12. The subtraction of the interface widths from the upper and lower interfaces of a ZnSe/GaAs QW is

plotted as a function of QW width. The data is shown from Zn, Se, Ga and As compositional data. There is no direct

correlation between the type of interface and the interface width.

6.5.4 Comparison of ZnSe/GaAs and III-V/III-V heterointerfaces

The heterointerfaces for all of the samples studied were plotted as a function of the QW

width in Figure 6-13. The As and Ga compositions are plotted for the upper (u) and lower

(1) interfaces with the solid symbols representing the measured interfacial width of the III-

V/III-V heterointerface and the open symbols representing the ZnSe/GaAs

heterointerfaces. For the narrower QWs, the heterointerfacial width does not show any

relationship between the type of interface, the materials at the interface or the interface

width. There does not appear to be a strong relationship between the heterointerfacial

width and the QW width for the ZnSe/GaAs heterointerface.
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Figure 6-13. Interface thickness in nm as a function of well width for all samples studied. Solid symbols are for IlI-
V/III-V heterointerfaces and open symbols are for ZnSe/GaAs heterointerfaces. The u and 1 denote the upper and
lower heterointerface. The x-axis is plotted on a logarithmic scale to better differentiate amongst the data points from
the narrower QWs. The plots indicate that there is no relationship between the QW width and the interface thickness,
regardless of the heterostructure materials.

For the narrower QWs, of QW width 9 nm or less, the heterointerfacial width ranges from

3 nm to 20 nm. The 3 nm minimum heterointerfacial width is still much broader than

expected for an abrupt semiconductor heterointerface, where the expected value would be

1 nm or less. Because the minimum heterointerface width is broader than expected, the

possibility for sample thickness effects to contribute to the measured value for the

heterointerface has been investigated. The same results in Figure 6-13 are plotted as a

function of the relative thickness of the sample during the EDS linescan measurement as

determined by the maximum count level for the respective element. These results are

shown in Figure 6-14, and show a correlation between the measured interface width and

the sample thickness.
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Figure 6-14. Interfacial width as determined from the spatial composition of As and Ga as a function of the relative

sample thickness. The solid symbols represent the results from the III-V/I-V samples and the open symbols are from

the ZnSe/GaAs samples. The upper (u) and lower (1) heterointerfaces are represented by diamonds and squares

respectively. The results indicate that the interfacial width is largely a function of the relative sample thickness.

The relationship between the sample thickness during the EDS measurement and the

interfacial width can be an indication of spatial resolution issues or of interfacial

roughness. The electron beam spread, as previously discussed, reduces the effective spatial

resolution of the EDS measurement. This is a conceivable result as the relative sample

thickness range varies by an order of magnitude (as shown in Figure 6-14). Interfacial

roughness is less probable for the InGaP/GaAs heterostructures probed, as the optical

properties for these structures are indicative of high quality interfaces. Therefore the

explanation for the trend seen in Figure 6-14 is believed to be a change in the spatial

resolution as a function of beam spread.

The interface width as measured by the Zn and Se spatial compositions is shown in Figure

6-15. The relationship between the interfacial width and the QW width is shown in the

left-hand plot. The relationship between the interfacial width and the relative sample

thickness is shown in the right-hand plot. The upper heterointerface is denoted by the open

symbols and the lower heterointerface is denoted by the solid symbols. A similar upward

trend exists in the interfacial width as a function of QW width as shown in the data from

the Ga and As spatial compositions in Figure 6-15. An upward trend does exist between

the relative sample thickness and the interfacial thickness.
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Figure 6-15. Interface width of ZnSe/GaAs heterointerface as measured by Zn and Se compositions as a function of
QW width and the relative sample thickness. The letters u and 1 denote the upper and lower heterointerfaces. The x-
axis is plotted on a logarithmic scale to differentiate amongst the data points from the narrower QWs. The plots show
that the interface width is more strongly a function of the sample thickness than it is a function of the QW width.

It is difficult to determine whether the increase in the interfacial width as a function of an

increase in the relative sample thickness shown in Figure 6-15 is a function entirely of

beam spread or if there is a component of interfacial roughness contributing to this trend.

As previously discussed, the upper and lower ZnSe/GaAs heterointerfaces were nucleated

under different conditions. As the GaAs QW in these heterostructures was not grown

under optimal conditions for GaAs it is plausible that the upper heterointerface would be

rougher. The upper interface does appear to be slightly thicker than the lower interface as

the relative sample thickness increases. However, the difference is fairly small, and the

argument for beam spread affecting the spatial resolution cannot be discounted.

To better assess these results, a further study was done in which a ZnSe/GaAs

heterostructure was annealed to ensure that interdiffusion occurred at the junction

between the ZnSe and GaAs. The analysis of this heterostructure follows.

6.6 Diffusion: annealing study

The EDS linescan spectra of the ZnSe/GaAs QWs did not show conclusive evidence of

interdiffusion at the ZnSe/GaAs interfaces. The degree of interdiffusion was measured in

relation to the interfacial width of an InGaP/GaAs heterointerface. It is unclear whether

the interfacial width for all of the structures measured corresponds to an interface that is
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truly abrupt or if the spatial resolution of the EDS measurement has been reached. As a

result, a ZnSe on GaAs sample was fabricated under conditions such that diffusion of the

constituent species would occur at the ZnSe/GaAs interface in order to assess the practical

detection limits of the EDS measurement.

For this experiment, a 100 nm ZnSe layer grown on a GaAs buffer layer with a starting

c(4x4) surface reconstruction was compositionally analyzed by EDS (sample z369). Two

pieces of sample z369 were also annealed at 6000 C: one for 20 minutes, the other for 60

minutes, to force interdiffusion at the ZnSe/GaAs interface for the EDS measurement.

Compositional maps and linescans of each sample were taken and compared. For the

linescan data, three scans of each sample were taken at different locations along the thin

area of the sample at a magnification of 500K with a dwell time of 1 sec per data point.

Figure 6-16 shows an example of an EDS linescan from each sample, showing GaAs-to-

ZnSe transition from left-to-right. The count level for the unannealed sample is roughly

three times higher than that for the annealed case. The increase in the counts indicates that

the area of the sample measured in the unannealed linescan is thicker than the area of the

sample measured for the annealed case. In both scans shown in Figure 6-16, the

downward trend in the count level also indicates that the sample is becoming thinner.
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Figure 6-16. Linescan measurements of 100 nm of ZnSe on GaAs, showing the composition of Zn, Se, Ga and As.

The count level decrease both of the linescans reflects the rapid change in the sample thickness.

All of the linescan data taken from z369 show the sample becoming thinner over the range

of the linescan measurement. The analysis of the ZnSe/GaAs heterointerfacial is made by
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the same process as that applied to previous EDS linescan data. For samples z369, the

heterointerface width was defined as the region over which the change in the count level

between two adjacent pixels exceeded 1.5 counts. Figure 6-17 shows linescan results for

the Zn composition as a function of depth across a ZnSe/GaAs heterointerface. The

change in the count level between adjacent pixels is superimposed. The left-hand y-axis

shows the Zn count level and the right-hand y-axis shows the change in the Zn count level.

The interface width is defined by the vertical dotted lines in Figure 6-17 which correspond

to the range over which the change in the Zn level exceeds 1.5 counts.
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Figure 6-17. Method for determining the interfacial width for the ZnSe/GaAs single heterostructure. The EDS
linescan data for Zn is shown, along with the change in the Zn counts as a function of depth from the ZnSe surface.

The ZnSe/GaAs interfacial widths measured from the EDS linescans for the unannealed

and the annealed samples of z369 appear to be strongly dependent upon the thickness of

the sample. The relative sample thickness at the location of the EDS measurement is

determined from the maximum count level of the constituent elements. To a first

approximation, doubling the sample thickness would double the x-ray count level for a

given element in the EDS measurement. Figure 6-18 illustrates the interface width results

as a function of the relative sample thickness for all cases of z369. The closed symbols are

from linescan data for the unannealed z369 and the open symbols are from the linescan

data for the annealed z369. In spite of the high-temperature anneal of z369, the
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ZnSe/GaAs heterointerface does not appear to be significantly wider than that of the

unannealed sample.
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Figure 6-18. Interface width of ZnSe/GaAs heterojunction as measured by an EDS linescan as a function of the

thickness of the sample during the measurement. The solid symbols are for the unannealed sample, the open symbols

are for the annealed sample.

6.7 Summary

The compositional study of ZnSe/GaAs QWs by EDS has shown the limitations in the

combined spatial and compositional resolution for the measurement. The theoretical

resolution for the EDS measurement for a sample 8 nm thick is 1.015 nm. However, for

an order of magnitude increase in sample thickness, the resolution degrades to 4.5 nm.

The variation in spatial resolution over the expected range of sample thickness is high.

The minimum mass fraction has been calculated for a range of background intensities and

integrated peak intensities corresponding to a specific element in the EDS measurement.

For a high ratio of integrated peak intensity to the background intensity (of -100), the

composition detection lower limit is lx1020 crn 3.For an element in an 8 nm thick region of

ZnSe or GaAs, and an electron beam diameter, this corresponds to the detection of 100

atoms of the respective element. In theory, the EDS measurement should be able to detect

the presence of an element with this incidence in the sample.

Compositional maps of the cross-section of ZnSe/GaAs QWs indicated interdiffusion for

the narrower QW, as well as interfacial roughness. The interdiffusion was represented by a
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compositional overlap of the Ga and As atoms into the ZnSe barrier regions. The interface

roughness appeared as a modulation of the surface or interface along the growth plane.

The results from the compositional maps supported the theoretical analysis of the

feasibility of the EDS measurement to provide insight into abruptness of the ZnSe/GaAs

heterointerface.

However, EDS linescans taken across the cross-section of a series of ZnSe/GaAs,

GaAs/ZnSe, III-V/GaAs heterointerfaces demonstrated the spatial and compositional

resolution limits of the measurement. Spatial resolution limits for QW widths of less than 4

nm were shown in the measured presence of elements that are part of the barrier layers in

the QW, contradicting the high-quality low-temperature PL signal measured from the QW.

When a 100 nm ZnSe/GaAs DBH was compositionally evaluated by EDS, the central

GaAs layer proved to be devoid of Zn and Se, indicating that the EDS measurement could

spatially resolve the larger physical dimensions. Efforts to improve the spatial resolution

were complicated by electron beam and sample drift.

Experimentally, the compositional resolution of the EDS measurement was shown to be

worse than the theoretically calculated values. The limits to the compositional resolution

were exhibited by the linescan measurement of a 100 nm thick ZnSe layer grown on a

GaAs buffer layer that had been prepared three different ways: unannealed, annealed at

600'C for 20 minutes, and annealed at 600'C for 60 minutes. The cross-sectional bright

and dark field images for the unannealed heterostructure indicate a high-quality

ZnSe/GaAs interface. The sample that had been annealed for 20 minutes showed a high

density of interfacial defects resulting from the relaxation of ZnSe on the GaAs and

complicated by temperature induced defects. The sample annealed for 60 minutes showed

a broad band of contrast near the region believed to be the heterointerface between the

ZnSe and the GaAs. The region of different contrast between the ZnSe and the GaAs

layers is believed to be strongly interdiffused. The interfacial widths of each of the three

samples were compositionally assessed by linescan. In spite of the large variation in the

heterointerfaces for the three samples, the heterointerface width was similar for all the of

the samples.
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In light of the compositional and spatial resolution limits probed in the experimental work,

the fact that no relationship was found between the interfacial width and the materials on

either side of the interface is not surprising. Instead, the heterointerfacial width has been

shown to be directly related to the sample thickness during the measurement. The relative

sample thickness was calculated to first approximation by comparing the count rate and

the dwell time per data point. It is believed that this relationship would be more strongly

presented if the effects of drift in the electron gun current were also incorporated into the

analysis.

Because EDS is highly sensitive to sample thickness, a comparison was made for the

interfacial width resulting from linescan data taken deliberately at different points on the

same sample. When the sample is prepared for EDS analysis, there is a wedge shape to the

area of interest. As a result, the sample thickness during the EDS measurement is strongly

dependent upon the location on the wedge at which the linescan is taken. Taking a few

linescans across regions of varying thickness allows for the comparison of the interfacial

width as a function of relative thickness across different sample sets. This practice also

eliminates the effects of the method of preparation of the samples, which result in a range

of sample thicknesses, from the measurement.

As a technique for assessing the abruptness of semiconductor heterointerfaces, the EDS

methodology lacks both the spatial and compositional resolution necessary. The

information from the compositional maps is misleading when compared to the results from

linescan data. The limitations of the EDS measurement are summarized by the comparison

of the ZnSe layer grown on GaAs before and after annealing. In spite of the visible

interdiffusion at the heterointerface after a 60 minute anneal, the ZnSe/GaAs

heterointerfacial width is comparable to that of the unannealed sample.
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7. Triple axis x-ray diffraction

Triple axis x-ray diffraction (TAD) measurements are used to assess the crystal quality in

the ZnSe/GaAs DBH system on a more macroscopic basis than possible with TEM and

HRTEM imaging. With a spatial resolution of -1 mm and an absorption depth of roughly

10 tm, the TAD measurement provides insight in the statistical nature of the defect

structure in the area probed. The diffuse scattering of x-rays taken during an x-ray

rocking curve indicates the nature and presence of interfacial misfit dislocations by

monitoring the strains present in the heterostructure, as shown in a recent study by

Goorsky, et al [105]. The ZnSe/GaAs DBHs are probed using TAD to achieve a more

macroscopic understanding of the defect structure in the materials. The following

paragraphs provide a brief introduction to the types of data taken with the TAD

measurement. Since the actual data are presented in subsequent sections, the background

information necessary to assess the results is given first.

There are three different types of data acquired using the TAD measurement: 0/26 scans,

o scans, and reciprocal space maps. A schematic of the relationship between the types of

scans and the reciprocal lattice vectors is shown in Figure 7-1. The 0/20 scans are made by

rotating the sample and the detector with respect to the x-ray beam. When a Bragg angle

for the sample is intersected during the rotation, the scattering from the x-ray beam is

detected. A Gaussian-shape feature results. The angular location, intensity, and FWHM of

the features in a 0/20 scan are important. For a sample with multiple layers of different

materials, the location of the peaks can be used to determine the layer thicknesses and

composition. The in-plane lattice constant (a) can be determined for the different layers.

The relative intensity of the different features in a 0/20 scan is representative of the layer

thickness or the uniformity of a given layer across its thickness. The layer uniformity is

also defined by the FWHM of the features in the 0/20 scan. Any broadening of a peak is a

measure of the crystallinity of the material in the sample. For the ZnSe/GaAs QWs, the
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0/20 scans are useful indicators of layer thickness and the degree of strain relaxation in the

heterostructure. When an InGaP or an InGaAs buffer layer is grown between the substrate

and the ZnSe/GaAs QW, the 0/20 scan is also used to determine the alloy composition and

the strain imposed on the rest of the heterostructure by the buffer layer.

rf"cw 1 1

Figure 7-1. Schematic of reciprocal space measurement of the [001]-[110] cross-section of a substrate (S) and a

strained layer (L). Typical reciprocal space scans in this study are made centered about the 004 reflection, however,

the 224 reflection is also useful for evaluating layer tilt [106].

An c scan is made by rotating the sample in the x-ray beam at the Bragg angle defined by

the material in the sample. In general, an o scan of the materials studied contains one

feature. The intensity and FWHM of this feature provide insight into the defect structure

and any fluctuation in a1 of the layer (the lattice constant perpendicular to the growth

direction). The o scan is useful for assessing the layer uniformity from a lattice constant,

mosaic, and/or defect perspective by comparing the integrated intensity of the data across

a set of samples fabricated using different conditions.

A reciprocal space map (RSM), in its most basic form, is a series of 0/20 and W scans

which results in a two-dimensional map of the reciprocal space vectors, q, and q,. The

RSMs can be taken about different reciprocal lattice points to assess layer tilt and
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asymmetry in the crystal structure. However, the RSMs in this study are all taken about

the (004) diffracted beam. The mechanics of taking RSMs sometimes leads to acquisition

times that are longer than the x-ray beam stability. As a result, larger rotational steps and

shorter dwell times are used in RSMs for each data point than in 0/20 scans and co scans.

The data from an RSM are therefore more qualitative and provide a fairly graphic

comparison of different samples.

The following sections present analyses of the ZnSe/GaAs QWs using all three types of

data. A brief description of the physical system employed is given. Some of the system

limitations are discussed at this point. A comparison of 0/20 scan data with simulated

results follows. The 0o scan results are then presented in an analysis of the diffuse

scattering in relationship to the material parameters. Finally, the details behind the RSM

data acquisition and results are given for the ZnSe/GaAs QWs. All of the data that is

presented are compared to the base case of a GaAs substrate.

7.1 System Description

A Bede D3 high-resolution diffractometer and a sealed tube Cu K. source with generator

settings of 40 kV and 150 mA is employed for the TAD measurements (see Figure 7-2).

The x-ray beam is directed through a channel-cut collimator and a 111 Si crystal

monochromator which selects a single wavelength of x-rays and collimates the beam with

a resultant divergence of roughly 12 arcsec. The second axis is the sample, which is

mounted on a stage that can be rotated with respect to the x-ray beam and the x-ray

detector. The x-rays are detected by an EDR detector. Between the detector and the

sample, further selection of the x-ray beam is completed by a third crystal axis of 111 Si.

The third axis allows for the diffracted beam to be filtered in order to achieve a more

highly selective probe of the sample structure.
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Figure 7-2. Schematic of the Bede D3 x-ray system. The first and third axes are 111 channel-cut Si crystals. The

second axis is the sample. Before passing through the first axis, the x-ray beam is collimated by 111 channel-cut Si.

7.1.1 Curvature calibration

During the TAD measurement, the sample is mounted on a metal plate using either wax or

crystal bond. Depending upon the mounting conditions, the sample has the potential to

bow around the joint between the plate, the mounting material, and the sample.

Furthermore, strain between layers in a heterostructure can be reduced by deformation of

the substrate. The combination of these two effects results in some curvature across the

sample, which causes broadening in the FWHM of the Bragg features. To understand the

results from both the 0/20 and the co scans, the degree of curvature and the amount of

broadening that this curvature causes needs to be determined. The 0/20 results for a GaAs

wafer were measured and compared to a simulation for an ideal GaAs wafer. The

curvature on the simulation was increased until the data matched in FWHM. This match

required a curvature of 25 arcseconds, which resulted in broadening a simulated GaAs

feature from 7.5 arcsec to 26 arcsec in FWHM. The amount of curvature for all of the

samples probed is not expected to be the same, and this inconsistency poses one of the

difficulties in understanding TAD results. However, as all of the measurements were made

with a similar method of mounting the sample onto the holder, and the sample size was

fairly uniform, to a first approximation, an assumption is made that the wafer curvature

does not vary significantly.
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7.2 Results from 0/20 scans

The 0/20 scans of the ZnSe/GaAs QWs contribute to the understanding of the physical

dimensions of the heterostructure in the growth direction, the degree of relaxation in the

layers, and the alloy composition of any ternary layers in the heterostructure (InGaP or

InGaAs). A typical 0/20 scan of a ZnSe/GaAs QW is shown in Figure 7-3; in this case the

GaAs well width is 100 nm. The data in the 0/20 scans were taken with a rotational step

size of 2 arcsec and a dwell time per data point of 2 sec. The primary feature in the 0/20

scan corresponds to the GaAs substrate peak. As can be seen, the scan axis is usually set

to zero at the maximum value in order to compare the angular separation between the

substrate and the rest of the layers in the heterostructure.

A combination of simulation and direct measurement from the 0/20 scan have been used

to understand the physical dimensions of the ZnSe/GaAs DBH. When fringes are

discernible in the data, as shown to the left of the GaAs peak in Figure 7-3, the width of

the QW can be determined by the fringe period according to Eq. 5 [107]. The simulation

of the 0/20 scan was performed using RADS, a simulation program based upon dynamical

diffraction theory [108].

A
p - in Eq. 5

t sin 8B
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Figure 7-3. TAD 0/20 scan of a 100 nm ZnSe/GaAs/ZnSe DBH. The black line indicates the experimental data, and

the gray line the simulation of the heterostructure. The spacing of the fringes can be used to directly determine the

GaAs layer thickness.

Based upon the fringe spacing in Figure 7-3 (130 arcsec), the actual GaAs width is 87 nm.

This is within 4 atomic layers of the desired layer thickness for the GaAs. Because the

fringe spacing is inversely related to the layer thickness, for narrower ZnSe/GaAs QWs,

the 0/20 scans show much broader fringes. For example, a 3 nm ZnSe/GaAs QW would

have a fringe spacing of 340 arcsec. As a result, a comparison of the FWHM of the ZnSe-

related feature in the ZnSe/GaAs heterostructure for different QW widths would reflect

little beyond the changing thickness in the GaAs layer.

A comparison of the FWHM of the feature peaks in a 0/20 scan for ZnSe/GaAs QWs

grown with the same physical dimensions would provide insight into the uniformity of the

lattice constant and diffracting planes for the respective layers. The FWHM of a GaAs

0/20 scan has a theoretical limit of roughly 10 arcsec. Any broadening beyond the

theoretical value is attributed to system limitations, curvature across the sample, strain

between the different layers, and a misorientation of the crystal structure such that the

Bragg condition is met over a wider angular range. For materials that are grown with
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strain between different layers, the FWHM of a layer feature broadens when it begins to

relax, and then narrows again once it has reached its natural lattice constant. The

relationship between the FWHM of both the GaAs and the ZnSe features for 6 nm

ZnSe/GaAs QWs where the GaAs QW was grown at different substrate temperatures is

shown in Figure 7-4. As shown, with increasing substrate temperature, the FWHM of the

GaAs feature becomes narrower. This improvement in the FWHM of the material is

expected as the GaAs is grown at temperatures approaching the standard growth

temperature of 580 0 C. At first consideration, the narrowing of the FWHM of the ZnSe

feature with increasing GaAs growth temperature might also represent an improvement in

the crystal quality. However, the reduction in the FWHM of the ZnSe feature could also

indicate that the growth of GaAs at higher temperatures on the first ZnSe barrier layer has

effectively energized relaxation mechanisms (i.e. interfacial defects). The ZnSe material for

the GaAs QW material grown at the highest growth temperature is potentially relaxed.
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Figure 7-4. FWHM of the GaAs and the ZnSe features in TAD 0/20 scans as a function of the final GaAs growth
temperature. As shown, the FWHM of the respective features decreases with increasing final substrate temperature.
For each growth temperature, the 0/20 scan was taken with the sample in two orientations, 90' apart.

Further analysis of the x-ray diffraction measurements of the 6 nm ZnSe/GaAs QWs is

necessary to understand the reduction in the FWHM of the ZnSe with increasing GaAs

QW growth temperature. The 0/20 scans can be used to provide further insight, as the

data can offer information about the strain between two layers by studying the peak

separation. If the ZnSe shows decreasing strain with increasing GaAs growth temperature,

the ZnSe barrier layer has relaxed.
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7.2.1 Strain determination between the ZnSe and the GaAs

The degree of strain between a semiconductor layer and the substrate can be probed by

first measuring the difference in the lattice constant between the two materials

perpendicular to the growth direction (a,). The change is measured relative to the

substrate lattice constant. The Bragg angles for the substrate peak, 0,= 33.0260, and the

layer peak, 01, can be determined from the 0/20 scan. The relationship between the change

in the lattice constant, a1, and the angular location of the x-ray features is given in Eq. 6

[106].

(Aa sin 0,S s-in-1 Eq. 6
a sin 0l

The perpendicular lattice constant for ZnSe can be determined from Eq. 6 and applied to

Eq. 7 to determine the fractional strain, e,. between the two layers. The calculated lattice

constant for ZnSe is compared to the known lattice constant of the GaAs substrate. The

results from this calculation are shown in Figure 7-5 both as a function of the final GaAs

QW growth temperature and the width of the QW for a series of ZnSe/GaAs QWs. A fully

relaxed ZnSe layer on GaAs would have 0% strain.

a± - a,
E = Eq. 7

a s

As can be seen, the strain between the GaAs and ZnSe is lower for the ZnSe/GaAs QW

with the GaAs grown at the higher substrate temperature. This result fits with the

argument that the ZnSe barrier layer is relaxed compared to the GaAs substrate. The lack

of correlation between the degree of strain between the ZnSe and GaAs and the GaAs QW

width also indicates that the growth of the QW at a substrate temperature of 3500 C is

sufficiently low to protect the first ZnSe barrier layer.
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Figure 7-5 Strain % between the ZnSe and the GaAs layers based upon 0/20 scans. The strain % is plotted as a
function of the final GaAs substrate temperature (°C) and GaAs QW width (nm). For the plot of the strain as a
function of QW width, the type of buffer layer employed is represented by the symbols. A solid symbol corresponds
to a GaAs buffer layer and an open symbol corresponds to an InGaP buffer layer.

In summary, the results from the 0/20 scans indicate that high quality ZnSe/GaAs QWs

have been grown. For the standard growth conditions, the layers are shown to be

pseudomorphic to the GaAs substrate regardless of QW width. Increasing the GaAs

growth temperature in the ZnSe/GaAs QW has also been shown to decrease the critical

thickness of the lower ZnSe barrier layer.

7.3 Results from co scans

TAD o scans were made by rotating the sample about the angles associated with the

Bragg features measured in the 0/20 scans and fixing the detector position in place while

rotating the sample. The data were taken with a rotational step of 2 arcseconds and a

dwell time per data point of 2 seconds. The (o scan GaAs wafer was measured in two

different orientations with respect to the x-ray beam. The results from the GaAs wafer,

shown in Figure 7-6, indicate that a minimum level of diffuse scattering from a

semiconductor material has, on average, a FWHM of 13.5 arcseconds. In comparison, the

w scans from the same 100 nm ZnSe/GaAs/ZnSe DBH measured by 0/20 scans in Figure

7-3 are much broader, as indicated by the plots shown in Figure 7-7.
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Figure 7-6. TAD co scan results of a GaAs substrate at two different
schematics on each plot. The FWHM of each scan is also indicated.
each orientation.

orientations to the x-ray beam as indicated by the
The data are normalized to the peak intensity for

The wo scans shown in Figure 7-7 and Figure 7-8 show a directional variation in the

lineshape of the data for a 100 nm ZnSe/GaAs DBH. The results in Figure 7-7 are

measured at the Bragg angle for GaAs, while the results corresponding to the ZnSe layers

are shown in Figure 7-8. If the (o scans were made in all four possible <110> directions,

the second smaller peak that appears in one of the wo scans for both the ZnSe and the

GaAs would move to the other side of the central peak.

0 100 200 300

o (arcsec)

-300 -200 -100 0

(o (arcsec)

Figure 7-7. TAD co scan results for a 100 nm GaAs layer and the GaAs substrate in a ZnSe/GaAs/ZnSe DBH taken in

two orientations to the x-ray beam. Schematics of the sample orientation with respect to the x-ray beam are shown

in each graph. The data are normalized to the peak intensity for each scan.
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Figure 7-8 TAD co scan results from the ZnSe barrier layers in a 100 nm ZnSe/GaAs/ZnSe DBH for two different
orientations with respect to the x-ray beam (as indicated by the schematics in each graph). The data are normalized
to the GaAs peak intensity in each orientation.

The ZnSe feature in both (o scans is roughly 1% as intense as the GaAs related feature.

The reduction in intensity is a function of the layer thickness. The total ZnSe layer

thickness in all of the ZnSe/GaAs QWs is roughly 100 nm. The x-ray diffraction

measurement probes the top 10 [tms of semiconductor material before absorption of the x-

ray beam reduces the probe intensity to the noise level. Hence, it is logical that the ZnSe

layer has a significantly smaller feature intensity. It is interesting, however, that the

FWHM of the ZnSe o scans is close to that of the GaAs material. This similarity in the

FWHM of the four scans for the primary feature indicates that the GaAs co scan features

are not dominated by substrate effects, whereby the FWHM would be about half as large

as the measurements from the ZnSe/GaAs QW. For the remainder of the o scan analysis,

the results from the GaAs material in the ZnSe/GaAs QWs are presented as the quality of

the GaAs directly affects the quality of the rest of the heterostructure. The signal intensity

from the ZnSe layers in these heterostructures is so low and sensitive to variations in the

layer thicknesses that comparison across samples is complicated.

7.3.1 Diffuse scattering

Assessing the FWHM of the (o scan features is not sufficient to determine the degree of

kinematical diffraction due to lattice imperfections in the TAD measurement. A better
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approach is to determine the excess diffuse scattering in the material as a measure of

crystal quality. The diffuse scattering is defined by Eq. 8 [109]:

s,,max
Iexcess = Sm ,net,(Sx (S, = 0))dsx  Eq. 8

where the variables, s, and s, represent the reciprocal lattice vectors. The equation for

Iexcess evaluates the integrated intensity of an o scan, as represented by sx with the z-axis of

the crystal set to zero, or the Bragg peak angle for a given layer. The minimum level of

diffuse scattering is set to subtract the dynamic scattering from the layer. In a method used

by Goorsky, et al [105], the minimum diffuse scattering is defined as the integrated

intensity of a GaAs wafer. The maximum diffuse scattering is determined by the

instrumentation limits. The subsequent results present data that have taken the approach of

Goorsky, et al, where the analysis of o scans is generally made by normalizing the data to

the peak intensity of the results from a high-quality bulk GaAs substrate.

If the growth of the ZnSe/GaAs QWs is a strong function of the quality of the GaAs layer,

it would be expected that the diffuse scattering from the GaAs and the top ZnSe barrier

layer would be reduced with increasing GaAs QW width. This improvement would be a

result of increased growth time allowing the material to anneal into a smoother final layer.

The GaAs QW can be considered a partially mosaic layer, because the growth temperature

of 350 0 C is not sufficient to allow for a complete Ga migration on the GaAs surface to

eliminate steps and pyramids. This hypothesis is tested in the TAD 0 scan measurements

of a series of ZnSe/GaAs QWs with a range of QW widths. The diffuse scattering is

calculated in the form of integrated intensity normalized to a GaAs substrate C scan. The

results from this analysis are plotted in Figure 7-9. For each sample measured, the o scan

was taken in two orientations with respect to the x-ray beam, 90' out of phase. The

integrated intensity results for the GaAs layer do reflect the expected behavior. The

integrated intensity decreases with increasing GaAs QW width.
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Figure 7-9. Integrated intensity of the GaAs feature in an o scan using TAD as a function of GaAs QW width. The
data are normalized to the peak value of an o scan from a GaAs substrate.

Analysis of the integrated intensity for the ZnSe/GaAs QW as a function of the GaAs

growth temperature was also studied. In the presentation of the 0/20 results, the higher

growth temperature was shown to have energized the lower ZnSe barrier to relax. The

diffuse scattering should reinforce this argument, by increasing with an increase in the

GaAs growth temperature as well. The integrated intensity of the set of 6 nm ZnSe/GaAs

QWs as a function of the GaAs QW growth temperature is shown in Figure 7-10. The

diffuse scattering from the GaAs material does increase with increasing growth

temperature. The upward trend in the diffuse scattering for the GaAs as a function of

GaAs QW growth temperature supports the previously presented 0/20 data for the same

samples, since the quality of the lower ZnSe barrier layer would affect the quality of the

GaAs QW layer.
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Figure 7-10. Integrated intensity of the GaAs feature in an o scan using TAD as a function of the final substrate

temperature (°C) during the growth of 6 nm GaAs QWs. The data are normalized to the peak value of an o) scan

from a GaAs substrate.

The final set of ZnSe/GaAs QWs studied were the series of 6 nm QWs grown with a range

of nucleation layer thicknesses. The nucleation layer is up to 10 monolayers of GaAs

deposited on the lower ZnSe barrier layer. For these samples, the diffuse scattering from

the GaAs in this heterostructure would be expected to decrease with a thicker nucleation

layer. Based upon RHEED analysis during the nucleation of GaAs on ZnSe, full surface

coverage of GaAs was not achieved until the third monolayer of deposition. Without this

full coverage of GaAs, the remainder of the GaAs would have been grown in a more

three-dimensional fashion, on GaAs islands. As a result, the mosaicity of the GaAs QW

layer would be increased, as represented by the discontinuity of the material across the

growth islands. The diffuse scattering in the TAD co scans is expected to reflect this

imperfection in the samples grown with thinner nucleation layers. In Figure 7-11 the

diffuse scattering for this set of samples is plotted as the integrated intensity as a function

of the number of monolayers of GaAs deposited at 2500 C. For the GaAs material, the

diffuse scattering does decrease with the thicker nucleation layer.
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Figure 7-11. Integrated intensity of GaAs 0o scan features from TAD measurements as a function of the number of
ML's of GaAs deposited at 2500C for a 6 nm GaAs QW. The data are normalized to the peak value of the o scan
results from a GaAs substrate.

7.3.2 Dislocation density

The excess diffuse scattering in the ZnSe/GaAs QWs is a function of the dislocation

density in the material. Although, while measuring the strain between the ZnSe and GaAs

layers from the 0/20 scans, the QWs were shown to be pseudomorphic to the GaAs

substrate misfit dislocations are still probable at the ZnSe/GaAs heterointerface. Goorsky,

et al, has determined that the TAD measurement is sensitive to dislocation densities of 1

gmn'. In measuring the diffuse scattering and correlating it to the dislocation densities

measured by plan-view TEM, Goorsky also has determined the relationship between the

excess diffuse scattering and the dislocation density (p,) to be:

p1 = 0.57(AN - 1) Eq. 9

where AN is the excess integrated intensity of the GaAs feature of an 0o scan, and p, is

measured in units of gmf-.Applying the same equation to the excess integrate intensity

measured for the ZnSe/GaAs QWs results in a range of misfit dislocation densities of 1 -

10 gm'. The relationship in Eq. 9 is relevant to the ZnSe/GaAs QW and DBH systems as

Goorsky derived the equation based upon the diffuse scattering of GaAs. However, the

potential does exist for the excess integrated intensity to be increased by wafer curvature
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or rotational resolution and the multiplier, 0.57, might be specific to Goorsky's

measurement.

The relationship between the sample orientation during the x-ray measurement and the

misfit dislocation density was investigated by taking o scans for two different orientations:

the beam in the [011] or the [011] and the beam in the [011] or the [011] directions. The

same trend is seen across all of the ZnSe/GaAs QW data sets: the misfit dislocation density

is two times higher with the sample aligned such that the x-ray beam is parallel to the

[011] direction. An example of this trend is shown in Figure 7-12. These results are unique

to the x-ray diffraction measurement, as the area over which the sample is probed is large

enough to see such low levels of dislocation densities. TEM analysis of these samples has

the potential to look "between" dislocations at higher magnifications.

10A
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,
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Well width (nm)

Figure 7-12. Dislocation density as a function of the ZnSe/GaAs QW width for both orientations measured. The
dislocation density is higher when the x-ray beam was aligned parallel to the [011] direction.

To summarize, the data and analysis of the diffuse scattering for the ZnSe/GaAs QWs

have indicated that the growth procedure for the heterostructure was optimized with

respect to the nucleation layer and the GaAs growth temperature. The results also support

the analysis of the 0/20 scans, which suggested that the growth of the GaAs at a

temperature of 450 0C would force the lower ZnSe barrier layer to relax. The dislocation
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density was calculated using the analysis presented by Goorsky, et al, with the end result

that the ZnSe/GaAs QW shows evidence of a preferential direction for misfit dislocation

formation.

The next step in the microstructural characterization of the ZnSe/GaAs QWs by TAD is to

measure the (004) reciprocal space maps around the Bragg angles for the GaAs and ZnSe

layers. These results are presented in the subsequent section.

7.4 Reciprocal space maps

The reciprocal space mapping (RSM) capability with the TAD measurement is a powerful

tool for assessing the composition, strain, and defect density of a stack of materials. The

ZnSe/GaAs QWs were initially assessed by this technique before the higher-resolution

0/20 and o scans were taken in order to achieve a qualitative understanding of the relative

quality of the QWs fabricated under different conditions. The details of the data

acquisition and conversion to in-plane and perpendicular reciprocal lattice vector values

follow. Next, the base case measurement of a GaAs substrate is presented. Finally, the

RSMs for a series of ZnSe/GaAs QWs are shown and compared.

RSMs are taken by scanning the sample multiple times with small increments in 6/20 and

o, ultimately rotating the sample through a full two-dimensional region that incorporates

both the Bragg angles of GaAs and ZnSe and the diffuse scattering associated with all of

the layers in the ZnSe/GaAs QW heterostructure. The 0/20 axis was scanned in 5 arcsec

steps, and the Co axis was scanned in 10 arcsec steps. The dwell time for each data point

was 1 second. In comparison to the 0/20 scan and the o scan results previously presented,

the rotational resolution of the RSMs is reduced. This limitation arises because the data

acquisition time inhibits smaller rotational steps. In general, the 0/20 scan range was 1700

arcsec and the o scan range was 600 arcsec, resulting in a 7 hour data acquisition time.

For a longer data acquisition time, x-ray beam and sample drift become more of an issue.
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7.4.1 Conversion of 0/20 and w data to s, and s,

The in-plane and perpendicular reciprocal lattice vectors, s, and sz, can be determined from

the following relationships [106]:

2
s = -sin 0 sin(w - 0) Eq. 10

2
s z  sin Ocos(w - 0) Eq. 11

where 0 and o values come from the 0/20 and the o scans. The x-ray wavelength, k, is

1.54 A.

7.4.2 Base case: GaAs substrate

Two reciprocal space maps (RSMs) of a GaAs wafer manufactured by American Crystal

Technology (AXT) were taken in the (004) orientation. The sample was aligned to the

incident x-ray beam such that the beam was perpendicular to a sample edge, in a <110>

direction, with the two (RSMs) taken with a 90' change in sample orientation. The RSMs

from the GaAs sample were taken to assess the x-ray system performance in probing a

high quality single crystal (see Figure 7-13). The contour maps for each orientation of

GaAs are plotted to show 7 orders of magnitude of intensity on a logarithmic scale. The

most intense contour is located in the center of the plot. The star-shaped profile of the

contours demonstrates the large dynamic range in intensity of the RSM; the diagonal

streaks result from diffraction from the analyzer crystal and the x-ray optics. The GaAs

RSMs were plotted with axis dimensions that will be used for the ZnSe/GaAs QW RSMs.

These plots enable a comparison to be made in the magnitude and breadth of the diffuse

scattering between the GaAs substrate and the QWs.
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Figure 7-13. (004) RSM of a GaAs substrate in with the sample aligned to the x-ray beam in two
900 apart.

orientations that are

The RSMs from the GaAs substrate shown in Figure 7-13 indicates that the diffuse

scattering about the (004) reciprocal lattice point is symmetric. The FWHM of the features

in both the sx and the s, direction are the same for both orientations. The diminished

angular resolution for the RSM measurement due to the larger rotational step is also

indicated in a slight broadening (of 2 arcesc) at the FWHM of the GaAs feature along the

Sz axis.

The next sections present a series of RSMs for a 100 nm ZnSe layer grown on GaAs, a

ZnSe/GaAs 100 nm DBH, and a ZnSe/GaAs 8 nm QW. The comparison to be made for

this set of samples is the effect of the addition and width of the central GaAs layer on the

TAD (004) RSM.
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7.4.3 Data: ZnSe/GaAs heterostructures

The results from the (004) RSM of a 100 nm ZnSe layer on GaAs are shown in Figure 7-

14. The contour map is plotted on a log scale, with 7 orders of elevation. The ZnSe layer

is shown clearly centered around 0.703 A-' on the sz axis. The diffuse scattering in one

direction is slightly broader than in the other. The broadening is evident in both the ZnSe-

and the GaAs-related features, at 0.703 and 0.707 1/angstrom respectively.

Z369mp2 Z369mpl

60 0
d o

sx 1/angstrom sx 1/angstrom

Figure 7-14. (004) RSMs of a 100 nm ZnSe layer on a GaAs buffer layer and substrate with the x-ray beam aligned in
two orientations, 900 out of phase.

In comparison, the RSMs from two orientations of a 100 nm ZnSe/GaAs DBH plotted

with the same range for the contours shows little evidence of broadening between the two

different maps (see Figure 7-15). The variation between the two orientations occurs along

the sz direction, the direction of the perpendicular reciprocal lattice vector. The addition of

a 100 nm thick GaAs layer between the ZnSe layer adds fringes to the ZnSe-related

feature with a period discussed in a previous section. The splitting of the features shown
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previously in the w scans is also evident in the left-hand RSM, along the s, axis. The

splitting runs through the entire RSM.
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Figure 7-15. (004) RSMs of a 100 nm ZnSe/GaAs DBH, with the x-ray beam aligned at two orientations 900 out of

phase.

The RSMs for a third heterostructure, an 8 nm ZnSe/GaAs QW, are shown in Figure 7-

16. In these maps, the diffuse scattering is a function of the sample orientation to the x-

ray beam. In the left-hand plot, the GaAs-related feature is close in lineshape to that of

the GaAs substrate. However, the right-hand plot of the same sample, with a 90' rotation

with respect to the left-hand plot, indicates a significant broadening in the GaAs feature.

The feature corresponding to the ZnSe layer is similar in shape to the feature for the ZnSe

layer in Figure 7-14. However, broadening also exists in the diffuse scattering of the left-

hand plot. The broadening is an indication of a higher density of misfit dislocations, as

discussed in a previous section. The RSM for this sample provides further support for

analyzing the GaAs feature as a route to understanding the entire heterostructure, since

the broadening appears to occur throughout the RSM.
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Figure 7-16. (004) RSMs of an 8 nm ZnSe/GaAs QW with the x-ray beam aligned in two orientations, 900 out of
phase.

The fringes in the ZnSe feature seen in the 100 nm ZnSe/GaAs DBH (Figure 7-16) are not

as evident in the RSM for the 8 nm ZnSe/GaAs QW since the fringe spacing is much

larger for the narrower GaAs layer. The small feature at 0.702 ' marks the onset of the

second fringe related to the presence of the GaAs QW. The fringe intensity is low, and

subsequent fringes are below the range of detection.

The RSMs for the three different ZnSe/GaAs heterostructures indicate that the degree of

diffuse scattering is not directly a function of the presence of a GaAs QW. The single

ZnSe on GaAs heterostructure shows a large degree of diffuse scattering, and an

orientational dependence on the magnitude of scattering. In comparison, the two

ZnSe/GaAs heterostructures probed with a central GaAs layer, of thickness of either 100

nm or 8 nm, show a GaAs-related feature with a degree of diffuse scattering that

approaches that seen in the GaAs substrate. The 8 nm QW also shows a directional
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dependence on the sample orientation for the magnitude of the diffuse scattering, and this

result has been discussed previously in the analysis of the (o scan results.

7.4.4 RSMs of GaAs on ZnSe

Thus far, the RSMs of the ZnSe/GaAs heterostructures have not shown a large deviation

from the base case of a GaAs substrate. The limitations on the angular resolution as a

function of the data acquisition parameters also limit the degree to which quantitative

analysis can be made on the RSMs. Instead, the results from the straight one-dimensional

scans have provided a great deal of insight into the properties of the ZnSe/GaAs QWs as a

function of the growth parameters. In an effort to take advantage of the very graphic

results the RSMs provide, the set of GaAs grown on ZnSe heterostructures were probed

to see if a more significant comparison could be made amongst the samples. Following are

the (004) RSMs of GaAs on ZnSe heterostructures nucleated by three different

conditions: MBE, MEE, and SM-MBE. The RSMs for these three samples are plotted

with a slightly larger scale on the sx axis.

The RSMs for the 250 nm GaAs layer nucleated on ZnSe by standard MBE are shown in

Figure 7-17. For both orientations of the sample measured, the feature intensity is weak

and broad for both the ZnSe and the GaAs layers. In this instance, the GaAs layer is both

thick and defective enough to dominate the properties of the GaAs-related feature.

Though there does appear to be some dependence upon the sample orientation and the

lineshape, it is more important to note that the GaAs-related feature is significantly

broader than that of the GaAs-substrate base case.
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Figure 7-17. TAD (004) RSM of a 250 nm GaAs layer nucleated by standard MBE on a ZnSe layer. The signal
intensity is both weak and broad for this sample, in both orientations.

In comparison, when the GaAs layer is nucleated on the ZnSe surface by MEE, the GaAs

and the ZnSe features become more pronounced and the diffuse scattering narrows (see

Figure 7-18). The GaAs-related feature reflects an intense central contribution from the

substrate, but a large degree of diffuse scattering is still present. Based upon the RSMs for

the MBE and the MEE nucleation of GaAs on ZnSe, an improvement in the GaAs quality

appears to have resulted.
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Figure 7-18. TAD (004) RSMs of a 250 nm GaAs layer nucleated on ZnSe by MEE using the methodology of Funato,
et al [24].

The final nucleation sample, GaAs nucleation on ZnSe by SM-MBE shows the highest

quality heterostructure of the three samples studied. The RSMs shown in Figure 7-19 for

both orientations somewhat resemble the RSMs for the 8 nm ZnSe/GaAs QW. The GaAs-

related feature is more intense and the degree of diffuse scattering is reduced in

comparison to the GaAs on ZnSe nucleated by MBE and MEE. The ZnSe-related feature

is also narrow and well-defined. A most encouraging result for the RSMs for this GaAs

on ZnSe heterostructure are the appearance of fringes between the GaAs and the ZnSe

feature, an indication that both the ZnSe-on-GaAs buffer layer and GaAs-on-ZnSe

heterointerfaces are of similar quality.
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Figure 7-19. TAD (004) RSMs of a 250 nm GaAs nucleated on a thin ZnSe layer by SM-MBE. The interface
between the GaAs layer on the ZnSe is of such high quality that fringes appear between the GaAs and the ZnSe
features.

Based upon the results from the three GaAs/ZnSe heterostructures nucleated by different

methods, the RSMs provide a clear comparison of the relative quality for large changes in

the growth parameters.

7.5 Summary

The microstructural analysis of the ZnSe/GaAs QWs by x-ray TAD has provided insight

into the long-range crystal properties of the heterostructures. The 0/20 results were used

to determine the degree of strain and the layer quality for the in-plane reciprocal lattice

vector. The ZnSe/GaAs QWs were shown to be pseudomorphic to the GaAs substrate

except for the instance in which the GaAs QW material was grown at an elevated

temperature of 4500 C. The increased growth temperature for the GaAs is believed to have
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energized relaxation in the lower ZnSe barrier. This result is further supported in the

analysis of the o scan results for the same samples. The excess diffuse scattering was

calculated from the o scan data; it was measured by the integrated intensity of the o) scan

feature normalized to a GaAs substrate peak and then subtracted from the integrated

intensity of a GaAs substrate peak. For an increase in the GaAs growth temperature, the

diffuse scattering for the GaAs layer was shown to increase, indicating a fluctuation of the

perpendicular lattice constant which would be a function of dislocation density or

mosaicity of the crystal structure. A similar increase in the diffuse scattering for

ZnSe/GaAs QWs grown outside the optimized SM-MBE parameters was seen as a

function of the thickness of the nucleation layer. This result is explained in conjunction

with the RHEED patterns of the surface seen during the growth, which suggested that

three-dimensional growth was more likely for the remainder of the growth if no nucleation

layer existed. In the nucleation layer comparison, the cause of increased diffuse scattering

can be attributed to mosaicity of the crystal structure caused by the formation of growth

islands at the onset of the GaAs QW growths. The results from the diffuse scattering were

also used to determine the range and orientation dependence on the misfit dislocation

density in the ZnSe/GaAs QWs as a function of the QW width. The range of misfit

dislocation densities are, to first approximation, between 1 and 10 gtm'. However, the

value of the dislocation density appears to be orientation dependent, with a two-fold

increase of the density along the [011] direction over the [011] direction.

The study of the ZnSe/GaAs heterostructures by (004) RSMs indicated that the relative

quality of the ZnSe/GaAs QWs was comparable to that of a GaAs substrate. The method

appears to be more powerful as a tool to map heterostructures of very different physical

dimensions and parameters. The RSM comparison of the GaAs nucleation on ZnSe by

three different methods provided a graphic representation of the long-range improvement

in the crystal structure when the growth was initiated by SM-MBE.
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8. Transmission electron microscopy

The advent of the transmission electron microscope in the early 20 th century gave

scientists the ability to actually see the physical structure of materials down to the atomic

level. This technological advance has become especially important in the semiconductor

industry as the dimensions of both the materials and devices have shrunk below the

resolution of optical microscopes. For the specific case of semiconductor heterostructure

analysis, transmission electron microscopy (TEM) is used to identify defects and

dislocations within the material with respect to orientations perpendicular or parallel to the

surface of the heterostructure. The dimensions of the lattice planes, heterolayers, and

other features of interest can also be determined.

The TEM analysis carried out in this study was completed at MIT's CMSE Electron

Microscopy facility. Mass and phase contrast imaging was done on a JEOL 200CX with

either a titanium and a LaB6 filament. For higher resolution analysis, the Akashi 002B

electron microscope with a LaB6 filament was used, with a point-to-point resolution of

0.18 nm. In both cases, the operational voltage is 200 kV.

All of the ZnSe/GaAs heterostructures studied were analyzed by cross-sectional TEM. A

ZnSe/GaAs single heterostructure was also studied by plan-view TEM in order clarify the

defect structure visible in the cross-sectional images. The advantages of the cross-sectional

analysis are the determination of the physical dimensions, the assessment of the

heterointerfaces, and the ability to quantify the defect and dislocation density.

The following chapter is divided into two sections; one for TEM analysis and the other for

high-resolution electron microscopy (HREM) analysis. The TEM section contains cross-

sectional bright field images of a combination of ZnSe/GaAs heterostructures and III-

V/III-V heterostructures. The goal of the TEM analysis is to identify the presence of

defects and dislocations throughout the heterostructure as a function of the growth

parameters for the ZnSe/GaAs heterostructures. In the second section of this chapter,
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HREM imaging focuses on the ZnSe-on-GaAs and the GaAs-on-ZnSe heterointerfaces by

imaging the atomic lattice.

8.1 Part I: TEM

The TEM results for the ZnSe/GaAs QWs and related heterostructures are given here.

Material preparation issues are discussed first, and are followed by an assessment of the

optimal bright field imaging condition of ZnSe to differentiate between preparation

artifacts and structural information in the TEM images. Subsequent sections present the

cross-sectional images of the heterostructures grown in the course of the ZnSe/GaAs QW

optimization. The information to be gained from all of these results are: a visualization of

the physical heterostructure, identification of defects in the heterostructure, and a

comparison of the properties of the different heterostructures. All of the images shown in

this section are oriented with the electron beam at or close to the [110] crystallographic

direction.

8.1.1 Material preparation issues

One of the disadvantages of TEM analysis of ZnSe-based heterostructures is the sample

preparation (see Appendix 2). The final process in the sample preparation, argon ion

milling at 4 - 6 kV, determines the properties of the TEM sample. Although the energy of

the argon beam is low in comparison to the electron beam, the argon ions have a stronger

interaction with the material which can result in the formation of dislocation loops. The

ion milling rate is material dependent, although for GaAs and ZnSe the difference is

negligible unless the goal is to achieve lattice imaging. The largest problem with the ion

milling process is the damage caused to the ZnSe material, which is shown in the

subsequent TEM images.

During the ion milling process, the least stringent method was used to minimize material

damage; the angle of impingement of the argon beam and the beam energy were

minimized at 120 and 4 keV, respectively. The low angle of incidence for the argon ion

beam reduces the penetration depth. The low energy reduces the defect formation in the

sample must be thinner than 1 pm to achieve an adequate degree of forward scattering by
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the electron beam. However, for lattice imaging, the sample needs to be roughly 10 nm

thick. The argon ion milling process damages the ZnSe/GaAs heterostructures to the

degree that the material is no longer crystalline at the thinnest parts. Hence, a compromise

exists in achieving high-quality lattice images. The sample must be very thin, but the argon

ion milling process destroys the lattice periodicity of the sample as it becomes very thin.

The imaging conditions for the ZnSe material was partially determined by the ion milling

damage. Dark-field imaging was complicated by the contrast contribution from the

dislocation loops in the damaged ZnSe material. A better approach appeared to be to

image the samples under bright-field conditions (with the forward scattered beam centered

down the optical-axis and in the selected area aperture).

8.1.2 Bright-field two-beam analysis

High contrast TEM images are achieved by minimizing the degree of inelastic scattering

contributing to the sample image. A selected area aperture is placed in the path of the

electron beam to allow selected diffracted beams (or reciprocal lattice points) to form the

final sample image. Contrast is further increased by tilting the sample such that one

diffracted spot is excited resulting in two intense diffraction beams: the forward scattered

000 beam and the excited diffracted beam. An excited diffraction beam corresponds to

satisfying a Bragg condition for a crystal plane, as shown in the images of the electron

diffraction patterns in Figure 8-1 showing the 200 and the 022 two-beam conditions. For

compound semiconductors, the {2001 beams are strongly related to the material

composition, thus establishing a two-beam condition with either of these beams is useful

for maximizing the contrast between the two materials [110, 111].

143



*r

- ;- i: -;- '-*ii

*" *i"

zone-axis 200 022

Figure 8-1. Electron diffraction patterns for the electron beam aligned down the [011] crystal axis, tilted to the 200
two-beam condition, and tilted to the 022 two-beam condition.

Figure 8-2 shows an example of an InGaP/GaAs multiple QW imaged with the sample

titled in the path of the electron beam such that the electron beam is parallel to the (011)

lattice plane or satisfies the 200 or the 022 Bragg conditions. When a Bragg condition is

met, the contrast between the InGaP and the GaAs increases and both materials show

more overall contrast. The contrast within the InGaP and GaAs layers is due to non-

uniformity caused by thickness variations during the sample preparation. Regions in the

images that are dark or light correspond to thicker or thinner areas of the sample.
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Figure 8-2. Bright-field TEM image of InGaP/GaAs multiple QW taken with the electron beam aligned in the [011]
direction, tilted to a 200 two-beam condition, and tilted to a 022 two-beam condition. The two-beam images show a
higher degree of contrast between the InGaP and the GaAs.

When imaging the ZnSe material, the ion milling damage is accentuated when first-order

diffraction beams (the reciprocal lattice points closest to the forward scattered beam) are

excited in achieving the two-beam condition. As a result, the TEM bright-field imaging of

the ZnSe/GaAs heterostructure was done by exciting the second or third order diffraction

beams.

8.1.2.1 Plan-view and cross-sectional analysis of ZnSe grown on GaAs

Initially, all of the heterostructures investigated were studied by cross-sectional TEM.

Plan-view TEM analysis of a single ZnSe/GaAs heterostructure was studied because there

was evidence of a high density of interfacial defects. The ZnSe layer for this

heterostructure is 1 gm, beyond the critical thickness of ZnSe (-150 nm) when grown on

GaAs, and the interfacial defects can be attributed to misfit dislocations formed during

relaxation. In order to demonstrate a defective heterointerface, the combination of cross-

sectional and plan-view TEM bright-field images for the ZnSe/GaAs single heterostructure

is shown in Figure 8-3. Image (a) in Figure 8-3 shows the entire 1 gm ZnSe layer and
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image (b) focuses in on the ZnSe/GaAs heterojunction. The defects at the heterointerface

appear as dark lines of contrast. When imaged in plan-view, the ZnSe/GaAs

heterointerface shows a high density of misfit dislocations aligned along the <011>

directions (see image c). The dark lines in image (c) that run along a diagonal are believed

to be threading dislocations that are bound by (001) planes, and thus seem to zigzag

across the image. The types of defects present at the ZnSe/GaAs heterointerface in Figure

8-3 are typical of this heterostructure [9, 112-118].

0.1 ipm

4 jim

Figure 8-3. TEM of 1 gm ZnSe layer on GaAs. (a) Shows the cross-section of the entire ZnSe layer, (b) cross-section
focuses in on the heterointerface and shows a series of defects, (c) plan-view image of the heterointerface showing a
series of dislocations.

The origin of the majority of the heterointerfacial defects is the relaxation of the ZnSe

layer on the GaAs. The rest of the heterostructures investigated are thin enough that

relaxation is not expected to be a mechanism for defect generation at the heterointerfaces.

Defects are also caused by the formation of the heterojunction, where the initial stages of

nucleation for the ZnSe might not uniformly bond to the GaAs surface.

8.1.2.2 Pseudomorphic ZnSe/GaAs single heterostructure

A thin layer of ZnSe nucleated on GaAs under optimal conditions has a substantially lower

defect density at the ZnSe/GaAs heterointerface than a thicker, relaxed ZnSe layer. Figure

8-4 shows the cross-sectional TEM image of a 285 nm thick ZnSe layer nucleated on
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GaAs: without annealing, after a 20 minute anneal at 6000 C, and after a 60 minute anneal

at 600 0 C. This single heterostructure was previously discussed in regards to measuring

interfacial roughness and interdiffusion by EDS. The unadulterated ZnSe/GaAs

heterostructure shows a clean, defect-free heterointerface. The ZnSe material has little ion

milling damage. However, as the sample is annealed, both the heterointerface and the

ZnSe material becomes increasingly defective. A plot of the defect density along the

heterointerface as a function of the 6000 C anneal time is shown in Figure 8-5. The cross-

sectional images indicate that the heterointerface is markedly altered during the anneal,

which provides further evidence for the limitations of the EDS measurement for the

compositional analysis of the ZnSe/GaAs heterointerface.

(a) no anneal (b) 20 min, 600'C (c) 60 min, 600 0C

Figure 8-4. Bright-field cross-sectional TEM of a thin layer of ZnSe grown on GaAs with: no anneal, a 20 minute

anneal at 6000 C, and a 60 minute anneal at 6000C. The ZnSe layer relaxes when annealed, and becomes more

damaged during ion milling.
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Figure 8-5. Defect density along the ZnSe/GaAs heterointerface as a function of the 6000 C anneal time. The defect
density increases with increasing anneal time.

The cross-sectional TEM analysis of the ZnSe-on-GaAs heterointerface indicates that the

junction can be of high-quality for thin ZnSe layers. Also, the ZnSe material is shown to be

more susceptive to ion milling damage as the material quality degrades. This relationship

suggests that the thinning rate of the ion milling process is dependent on the ZnSe crystal

orientation and quality.

8.1.2.3 Nucleation of GaAs-on-ZnSe

For the study of GaAs nucleation on ZnSe, the GaAs cross-section is expected to show

the same crystal quality that was evident in the RHEED surface pattern during the GaAs

growth. For the three different types of nucleation performed: standard MBE, MEE, and

SM-MBE, the cross-section TEM images are shown in Figure 8-6. A ZnSe/GaAs DBH is

shown for the GaAs nucleation by SM-MBE to demonstrate that the GaAs layer is of high

enough quality for the upper ZnSe layer to be grown in a two-dimensional manner. The

cross-sections of the GaAs-on-ZnSe heterostructures nucleated by standard MBE and by

MEE indicate a high density of defects in the GaAs layer. The defects appear as dark lines

which originate at the GaAs-on-ZnSe heterointerface. For the GaAs grown by MEE, the

layer also shows a noticeable degree surface roughness. The TEM images in Figure 8-6

indicate that from a microstructural perspective, the SM-MBE GaAs nucleation

methodology is superior to that previously reported by Funato, et al. [24, 25, 91].
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(b) (c)

Figure 8-6. Cross-sectional bright-field TEM of GaAs layers nucleated on ZnSe by two different methods: standard

MBE, MEE, or SM-MBE. A complete DBH is shown for the SM-MBE example to show that the top ZnSe layer is

also of high quality.

8.1.2.4 Nucleation layer

Bright field, cross-sectional TEM images of 6 nm ZnSe/GaAs QWs grown with different

GaAs nucleation layers are compared (see Figure 8-7). Shown are QWs grown with: an

elevated GaAs QW temperature of 450'C, a standard SM-MBE nucleation layer, and no

nucleation layer. The cross-sectional image of the sample grown with the standard SM-

MBE nucleation layer shows each layer in the QW clearly. The other two samples imaged

have such a large degree of contrast in the ZnSe barrier layers that the GaAs QW layer is

not discernible. The upper ZnSe barrier layer for the 6 nm GaAs QW grown at 4500 C has

a high density of stacking faults originating at or near the region to believed to be the

ZnSe-on-GaAs heterointerface. Further analysis of this heterostructure also shows that the

stacking faults also originate in the lower ZnSe barrier layer.
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Figure 8-7. Cross-sectional bright-field TEM of 6 nm ZnSe/GaAs QWs grown under three different conditions: (a)
GaAs growth temperature of 450C, (c) standard SM-MBE growth, (d) no nucleation layer. A schematic of the
heterostructure is shown in figure (b). The cross-section of the 6 nm QW grown by standard conditions is of higher
quality than the other two cases.

The large degree of contrast in the ZnSe barrier layers is due to the ion milling process.

The ion mill has both damaged the ZnSe layers and preferentially milled the ZnSe

according to crystal orientation. The 6 nm ZnSe/GaAs QW grown by standard SM-MBE

shown in Figure 8-7c does show small amounts of ion milling damage and can be used as

a comparison to understand the latter interaction of the ion mill with the ZnSe layers. It is

believed that the ZnSe layers are more defective for the two other 6 nm QWs, and this is

manifested by slightly misoriented growth islands in the ZnSe.

Figure 8-8 shows plots of the defect density of both the upper and lower ZnSe layers at

the point of nucleation as a function of the nucleation growth parameters. The defect
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density is a count of the number of point defects that result in the formation of stacking

faults visible in the field of depth of the cross-section. The defect density along the

heterointerfaces decreases with increasing GaAs nucleation layer thickness for both the

upper and lower ZnSe barriers. It is surprising the quality of the lower ZnSe barrier is

relationed to the GaAs nucleation layer thickness and not to the GaAs QW growth

temperature. Instead, the upper ZnSe barrier shows an increasing defect density with

increasing GaAs QW growth temperature.

n upper ZnSe a lower ZnSe
5.10E+05 - 4.10E+05

4.10E+05
C3 3.10E+05

3.10E+05 -

2.10E+05
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Figure 8-8. Defect density at the point of nucleation for the upper and lower ZnSe barriers for a series of 6 nm

ZnSe/GaAs QWs as a function of the nucleation layer thickness and the GaAs QW growth temperature. The defect

density decreases with increasing nucleation layer thickness for both ZnSe barriers. The defect density increases in

the upper ZnSe barrier layer with increasing GaAs QW growth temperature.

The defect density at the upper ZnSe-on-GaAs heterointerface should reflect the defect

density of the lower ZnSe on III-V buffer layer heterointerface because defects are

expected to either propagate upwards through the heterostructure or roughen the GaAs

nucleation surface. For the plot in Figure 8-8 of the defect density as a function of the

GaAs nucleation layer thickness, both of the ZnSe barrier layers have the highest defect

density when there is no nucleation layer. However, the upper ZnSe barrier layer has a

defect density in excess of that of the lower ZnSe barrier layer; which is an indication that

the defects at the upper ZnSe barrier layer on GaAs interface are also related to the ZnSe

nucleation on the GaAs layer.
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8.1.2.5 ZnSe/GaAs dimensions

The roughness seen in the upper ZnSe barrier layer in the ZnSe/GaAs QWs increases with

decreasing QW width. Stacking faults are also more prevalent in the upper ZnSe barrier

layer. The cross-sectional TEM images of ZnSe/GaAs DBHs and QWs with a central

GaAs layer thickness of 100 nm, 40 nm, 6 nm, and 3 nm are shown in Figure 8-9. The

GaAs QW is not visible in the 6 and 3 nm ZnSe/GaAs QWs. It is conceivable that the

GaAs QW is of high quality, just not discernible from the ZnSe barrier layers though it is

possible to differentiate between the upper and lower ZnSe barriers in both QWs.

z255

z264

6 nm

z254

z265

3 nm

Figure 8-9. Bright field cross-sectional TEM of ZnSe/GaAs QWs and DBHs of GaAs layer thicknesses of: 100 nm, 40
nm, 6 nm, and 3 nm. The QW is not visible in the narrower QWs, but there is a visible increase in the roughness of
the top ZnSe barrier layer.
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The defect density at the nucleation plane for both ZnSe barrier layers as a function of the

central GaAs layer width is shown in Figure 8-10. The defect density at the

heterointerfaces shows a slight decrease with increasing GaAs width. However, there is a

large spread in the defect density for the narrow QWs. The upper ZnSe barrier layer does

have a high defect density than the lower barrier layer for the DBHs with wider GaAs

layer thicknesses. The lower ZnSe barrier layer was nucleated on either a GaAs or an

InGaP buffer layer. The defect density of the lower barrier does not reflect the different

nucleation surface.
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Figure 8-10. Defect density at the point of nucleation for both the upper and lower ZnSe barrier layers as a function of

the width of the GaAs layer in a ZnSe/GaAs/ZnSe heterostructure. The defect density is shown to decrease with
increasing GaAs width.

The increase in the defect density of the upper ZnSe barrier layer for the wider DBHs is

counterintuitive. The GaAs surface is expected to be smoother with increasing thickness

because the material has had longer to anneal during the longer growth. However, the plot

of the defect density as a function of the central GaAs layer width only has two samples

grown at the wider width for comparison. The spread in the defect density is conceivably

as large for the wider DBHs as it is for the narrow QWs.
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8.1.2.6 Buffer layers and substrate type

The ZnSe/GaAs DBHs and QWs were grown on several types of surfaces: GaAs, InGaP,

InGaP/InGaAs, and ZnSe. The type of surface the heterostructure was grown on has

microstructural implications, particularly in the case of InGaAs when a large degree of

strain is introduced into the material system. The cross-sectional TEM images of the

InGaP and InGaP/InGaAs buffer layers and the effects these buffer layers have on the

ZnSe/GaAs heterostructure are presented in the next few paragraphs. This discussion is

followed by an analysis of the use of ZnSe as the substrate for the ZnSe/GaAs DBHs.

InGaP buffer layers were grown between the ZnSe/GaAs DBHs and QWs and the GaAs

substrate to eliminate the contribution of the GaAs substrate to the PL of the

heterostructure. The growth parameters of the InGaP layer were established to achieve a

lattice constant in the InGaP that was close to that of the GaAs (49% Ga). Initial TEM

results of the cross-sections of the ZnSe/GaAs heterostructures and the InGaP/GaAs

multiple QWs show a non-uniform InGaP buffer layer, characterized by a periodic

variation in the contrast as shown in the multiple QW InGaP/GaAs heterostructure in

Figure 8-11.

10.3 nm

Figure 8-11. Cross-sectional TEM image of InGaP/GaAs multiple QW of well widths of 1.5 nm and 9 nm. The lower
InGaP material shows a compositional fluctuation with a 10.3 nm periodicity.
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The periodic contrast variation in the InGaP buffer layer has consequences for the

ZnSe/GaAs QW and DBH optical properties. The contrast is a result of a small variation

in the composition caused by a spatial separation of In and Ga in the growth reactor.

During growth, the sample is rotated and thus a "superlattice" of two different

compositions of InGaP results [119].

The fringes in the InGaP can be removed by altering the rotational speed of the sample

during growth, as shown in Figure 8-12. The compositional variation in the InGaP

material grown with the standard rotational speed is below the EDS detection limit, and

TAD x-ray measurements show either a broad InGaP peak or two closely spaced InGaP

peaks. However, even the slight variation in the composition can result in periodic

electron confinement in the regions of the InGaP with a higher percentage of In. A 1 pm

thick InGaP buffer layer with a superlattice period of 10.3 nm will have a more intense PL

signal than an InGaP buffer layer without the periodicity in composition. PL measurements

of ZnSe/GaAs DBHs with a He-Cd laser have an expected probe depth of roughly 300

nm. However, PL from the GaAs substrate at a depth of at least 1 gm from the surface has

been measured. The strong PL from the InGaP buffer layer is believed to have back-

pumped the GaAs substrate. The periodicity in the InGaP composition would have aided

this process.
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10.3 nm

Figure 8-12. Cross-sectional bright field TEM of InGaP grown with two different substrate rotation speeds. The
substrate rotation used for the ZnSe/GaAs QW growth results in InGaP buffer layers with compositional variation due
to the relative proximity of the In and Ga to the sample during growth. The fringes are eliminated by increasing the
speed of rotation.

InGaAs with a low percentage of In (< 6%) were incorporated into the buffer layer

between the ZnSe/GaAs DBH in another effort to eliminate the GaAs substrate PL signal.

However, the use of this buffer layer complicated the heterostructure by adding additional

strain. Post-growth surface analysis of the heterostructures with InGaAs buffer layers

show a cross-hatch visible by optical Nomarski phase-contrast microscopy measurements,

indicating that the InGaAs layer is relaxed. The misfit dislocations which formed during

the InGaAs relaxation propagate upwards through the rest of the heterostructure. A

ZnSe/GaAs DBH with a GaAs thickness of 100 nm shows a defect density in the GaAs of

roughly 1.6x10 4 cm', whereas a similar heterostructure grown on only an InGaP buffer

layer has a defect density below the detection level of the cross-sectional TEM

measurement.

A third attempt to eliminate the contribution of the GaAs substrate from the PL signal

originating from the ZnSe/GaAs DBHs and QWs was to grow the heterostructures on

ZnSe substrates. Currently, ZnSe substrates are not manufactured with the same surface
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quality as the GaAs substrates. The disparity between the two substrate types is partially a

function of the surface oxide that natively forms on the GaAs surface and does not form

on ZnSe. A native oxide protects the substrate surface after it has been chemical-

mechanical polished. Another issue associated with the use of ZnSe substrates is the size

limitation; the area of the ZnSe substrates is 1 cm2 . The quality of substrate degrades close

to the edge, and the ZnSe substrate size results in a very small area for examination.

Careful preparation of the ZnSe substrate surface, followed by the growth of a thick ZnSe

buffer layer was expected to isolate substrate surface effects from the final ZnSe/GaAs

heterostructure. Appendix 2 describes the ZnSe surface preparation methods employed.

The cross-sectional TEM images of a 40 nm ZnSe/GaAs DBH and an 8 nm ZnSe/GaAs

QW are shown in Figure 8-13. The ZnSe substrates in these samples were prepared by a

combination of degreasing, hydrogen plasma cleaning, and thermal cleaning. The

homojunction shows a high density of defects which propagate up to the DBH. However,

there is little evidence of defects originating at the GaAs-on-ZnSe and the ZnSe-on-GaAs

heterointerfaces.

Figure 8-13. Bright field cross-sectional TEM images of a 40 nm ZnSe/GaAs DBH grown on a ZnSe substrate. Figure
(a) shows the entire heterostructure including the homojunction. Figure (b) shows a magnified view of the 40 nm
GaAs layer.
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8.1.3 Summary of cross-sectional TEM results

Cross-sectional TEM bright-field images of the compound semiconductor heterostructures

investigated in this study have been presented. The nature of the ZnSe-on-GaAs

heterointerface was investigated for ZnSe layer that is both lattice-matched to the GaAs

substrate and relaxed. The ZnSe/GaAs interface in the relaxed structure shows a high

density of misfit and threading dislocations both in cross-section and plan-view. Thinner

ZnSe layers that are pseudomorphic to the GaAs substrate show defect-free

heterointerfaces when grown under optimal conditions. Annealing the single

heterostructure was shown to increase both the ion milling damage to the ZnSe during

sample preparation and the density of point defects resulting in stacking faults at the

heterointerface.

Images of a series of 6 nm ZnSe/GaAs QW cross-sections as a function of the GaAs

nucleation layer thickness and the GaAs QW growth temperature show an upper ZnSe

barrier layer more susceptive to ion milling damage. Both the presence of the GaAs

nucleation layer and the growth of the GaAs QW at 3500 C minimize the degree of ion

milling damage that appears in the upper ZnSe barrier layer. The lower ZnSe barrier layer

in the cross-sections studied show the presence of point defects at the ZnSe-on-buffer

layer heterointerface with a density ranging from 1x10 4 to 8x10 5 cm'- . The defects at the

lower ZnSe barrier-on-buffer layer do not appear to be dependent upon to the type of

buffer layer, and are indicative that, in general, the nucleation of the ZnSe on the buffer

layer was not optimal.

The cross-sectional TEM images of ZnSe/GaAs DBHs of 40 nm and 100 nm show defect-

free GaAs layers with a slightly higher defect density at the upper ZnSe barrier layer on

GaAs heterointerface than at the plane of nucleation for the lower ZnSe barrier layer.

Buffer layers were grown between the ZnSe/GaAs DBH and QW to eliminate the

contribution of the GaAs substrate to the PL signal. The InGaP buffer layer has a 10.3 nm

compositional periodicity related to the rate of rotation of the substrate during growth.

The periodicity is believed to have resulted in a superlattice with intensified PL, which
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back-pumps the GaAs substrate. Narrow energy-gap InGaAs buffer layers were also

employed as buffer layers, but even thin layers were shown to relax on the GaAs substrate

and generate defects which reach the ZnSe/GaAs DBHs. Finally, ZnSe/GaAs DBHs were

grown on ZnSe substrates to eliminate the GaAs substrate altogether. The ZnSe substrates

are of a lower quality than the GaAs substrates due to the lack of a native oxide and the

relatively new substrate manufacturing technology. The efforts to prepare the ZnSe

substrate surface were not entirely successful in removing surface contaminants and

providing a defect-free surface. As a result, the ZnSe/ZnSe homojunction is highly

defective and contributes to the defect structure in the ZnSe/GaAs DBH.

8.1.4 Side note: cross-sectional imaging of IIIV compounds

Additional cross-section TEM work was done to investigate III-V compound

semiconductor heterostructures. AlGaAs, AlInGaAs, InGaAsP, and InP have all been

prepared for and analyzed in the TEM. However, the preparation of materials containing

either Al or In is more complicated than the preparation of ZnSe and GaAs. During the

low temperature ion milling process, Al tends to oxidize (the vacuum in the ion mill is low

- 10-6 Torr) and In tends to melt. The oxidation of Al is not surprising, as this is a common

issue in the initial fabrication of the material. However, the implications for the oxidation

are the destruction of the lattice crystallinity and the tendency for the material to fall apart

when it reaches a thickness that is electron "transparent". Materials containing In also tend

to fall apart during the ion milling process. One approach to the fabrication of cross-

sectional samples for Al- and In-containing materials is to rely entirely on mechanical

polishing to reduce the material to a thickness that is appropriate for TEM imaging.

Another issue associated with the imaging of both Al- and In-containing materials is

electron beam damage. During the imaging process the In-based materials appear to

charge under the electron beam. The charging is manifested by bending of the crystal away

from the electron beam. The bending changes the diffraction conditions that were set for

imaging. One way to avoid this issue is to set the diffraction condition for imaging and

focus at a region of the material that is thick enough that it will not bend under the

electron beam. To take an image, move the thinner area of the sample into the electron

159



beam path, reduce the exposure time to account for the sample thickness, and take an

image.

At higher magnifications, beam damage will also occur in both the Al- and In-containing

materials. Under lattice imaging conditions, the beam damage is manifested by the

appearance of either a diffraction pattern showing concentric rings or a bright-field image

showing regions of amorphous materials. The best way to avoid this type of damage is to

reduce the beam voltage. However, the TEMs used in this study operated at a relatively

low voltage of 200 kV. Another option is to prepare a region of the sample for imaging

and then move to another area of the sample a few seconds before taking an image.

8.2 Part II: HREM

The atomic lattice can be resolved using TEM if the proper imaging conditions (to achieve

phase contrast imaging) are established and the sample is thin enough. The proper imaging

conditions require careful alignment of the electron beam down the microscope column,

voltage and current centering, and minimization of the astigmatism in the image caused by

the objective lens and aperture. The sample thickness must be below 50 nm, in order to

minimize inelastic scattering contributions to the image. The electron beam should be

aligned down a zone-axis of the sample. In this study, both the [110] and [001] directions

are employed. The image is formed by the contribution of at least the first order diffracted

beams, although in this study all of the diffracted beams were collected unless otherwise

noted.

The contrast between materials of different chemical composition is lessened when phase

contrast imaging conditions are employed. The interface between ZnSe and GaAs is

difficult to identify at magnifications such that atomic lattice is visible when the standard

sample preparation results in an electron beam directed down the [110] axis. In this

orientation, the contribution of several diffracted beams is as strong for both the ZnSe and

the GaAs. Plots of the diffracted beam intensity as a function of material thickness are

shown in Figure 8-14 for the electron beam oriented in the [110] and the [001] directions.

For the electron beam aligned in the [001] direction, the diffracted beams overlap in
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intensity for each material and there is an intensity difference for each material. For

example, at a thickness of 30 A's, the GaAs diffracted beams are almost twice as intense as

the ZnSe diffracted beams. The HREM image of a ZnSe/GaAs heterostructure that is 30

A's thick oriented with an [001] beam direction would show a more clearly defined

junction between the ZnSe and the GaAs than imaging in the [110] direction or for a

thickness of 50 A's in the [001] direction.
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Figure 8-14. Pendellosung plots of the intensity of the diffracted beams as a function of sample thickness for the
electron beam perpendicular to the [110] and the [001] directions.

The [110] results are intended as a comparison to the bright-field TEM images already

shown. The [001] images will have an increased contrast between the ZnSe and the GaAs,

and can provide more information at the heterointerfaces. The goal of the HREM imaging

of the ZnSe/GaAs QWs and DBHs is to see if each heterointerface is coherent with a low

defect density.

8.2.1 Lattice imaging of the [110] orientation

The ZnSe and the GaAs lattice structure in the [110] direction are very similar as the

lattice constant and plane spacing of the materials is within 0.27%. Contrast between the

two materials due to the different elemental mass is also small, because Zn, Se, Ga, and As

are close in atomic number. Contrast in the HREM images in the [110] orientation is

primarily enhanced by the difference in the ion milling rate for ZnSe and GaAs.

The lattice images of ZnSe and GaAs are shown for two different thicknesses in Figure 8-

15. The thicker GaAs layer shows more contrast, but a less-resolved lattice. Both the

ZnSe and the GaAs images are fairly noisy due to the contributions of inelastic scattering,
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which is improved by applying a high-pass Gaussian filter to the image. Insets in the

filtered images show simulations of each lattice, indicating that the images were taken at a

defocus of -900 A's for a ZnSe sample that is 40 A's thick and a GaAs sample that is 80

A's thick. The original ZnSe and GaAs images are from the same heterostructure, chosen

to show the largest degree of contrast present between the two materials and the

compromise that results due to the reduced resolution for the thicker GaAs sample. The

difference in sample thickness for the ZnSe and the GaAs in the same cross-section

reflects the difference in the ion milling rate for the two materials.

(a) (b)

(c) (d)

Figure 8-15. Lattice images of ZnSe and GaAs with the electron beam oriented down the [110] zone axis. The
original image is shown next to data that has been Gaussian high-pass filtered. In the lower right-hand corner of the
filtered data for both materials, an image simulation is shown corresponding to a 30 nm defocus for a 4 nm thick
ZnSe sample and an 8 nm thick GaAs sample.

The HREM lattice image of a ZnSe/GaAs QW is shown in Figure 8-16(a), with an

enlarged region shown of the GaAs QW and the heterointerfaces in Figure 8-16(b). The
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contrast between the ZnSe and the GaAs is primarily due to a difference in the thickness in

the two materials. The lattice of the ZnSe layers on either side of the GaAs material ranges

from crystalline to amorphous, with regions that are damaged by the ion mill. The lattice

of the GaAs material is fairly uniform across the QW. Both heterointerfaces are coherent,

with a continuous crystal lattice present across the junction between the two different

materials. At the GaAs-on-ZnSe heterointerface, a darker region appears for roughly 8

atomic layers in the ZnSe material. The difference in contrast is potentially a result of: a

surface impurity on the ZnSe barrier layer, such as carbon, strain between the ZnSe and

GaAs layer, or preferential ion milling. The contrast at the ZnSe-on-GaAs heterointerface

is not as pronounced, but the lattice does show a region of discontinuity.

I

/

(a) (b)

Figure 8-16. HREM image of 8 nm ZnSe/GaAs QW in the [110] orientation. The atomic lattice is visible in the image

on the right, showing coherent heterointerfaces.

Figure 8-16(a) shows a flat GaAs-on-ZnSe heterointerface and a rough ZnSe-on-GaAs

heterointerface. A closer inspection of the GaAs lattice shows no evidence of growth

islands which would cause an undulation of the GaAs surface. The small degree of

contrast at the upper heterointerface makes it difficult to accurately quantify the

magnitude of the roughness. If the growth of the GaAs QW began in a three-dimensional
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manner and annealed as the substrate temperature was raised, the undulation at the upper

heterointerface could reflect the GaAs-on-ZnSe nucleation. For a ZnSe/GaAs DBH, the

upper interface undulations are not as pronounced, indicating that the roughness initiated

during the GaAs nucleation on ZnSe is increasingly annealed with a longer growth.

8.2.2 Lattice imaging of the [001] orientation

HREM lattice imaging in the [001] orientation is expected to magnify the contrast

between the ZnSe and the GaAs due to the stronger (002) diffracted beam contributions

to the image. However, the overall intensity of the diffracted beams is weaker in the [001]

orientation, thus counteracting the contrast benefits for a sample of the same thickness as

that imaged in the [110] orientation.

Achieving a high-quality ZnSe/GaAs QW or DBH cross-section has been somewhat

elusive due to the damage caused by the ion mill to the ZnSe layers and the preferential

ion milling for the two materials. The preparation of the samples in the [001] orientation

requires a different procedure from that followed for the samples with a [110] orientation.

The samples are sawed with a diamond-coated wire at a diagonal from the (110) planes.

The [001] cross-sections were then thinned with a combination of polishing and ion

milling. The ion milling rate for the [001]-oriented heterostructures is somewhat slower

than for the [110] cross-sections, although this has not been thoroughly calibrated due to

the equipment not being in an optimal state when those samples were prepared. The end

result, in the preparation, is that the [001] cross-sections are damaged to the point of

being amorphous by the ion mill for larger thicknesses than occurs in the [110] cross-

sections.

The subsequent sections contain images from the HREM imaging of the [001] cross-

sections. First, the lattice images from a ZnSe/GaAs DBH of the ZnSe and the GaAs are

considered separately. This is followed by an examination of the two ZnSe/GaAs

heterointerfaces and an 8 nm ZnSe/GaAs QW. Finally, the heterointerface roughness is

quantified and discussed.
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8.2.3 ZnSe/GaAs [001] lattice imaging

The HREM lattice images of GaAs and ZnSe are shown in Figure 8-18 (b) and (c),

respectively. A two-beam image of the entire cross-section of a 100 nm ZnSe/GaAs DBH

is shown in Figure 8-18 (a). The contrast between the ZnSe and the GaAs layers is not

significantly enhanced by preparing the sample in the [001] orientation. However, the

HREM lattice images show that the lattice is barely discernible for the GaAs and the ZnSe

layers, indicating that the layers are thick (see Figure 8-18 (b) and ( c)). Applying a filter

similar to that in Figure 8-15 does not clarify the presence of the atomic lattice for these

images.

(b) (c)

Figure 8-17. Cross-sectional TEM images of (a) 100 nm ZnSe/GaAs DBH, (b) lattice image of GaAs, (c) lattice

image of ZnSe for a sample in the [001] orientation. The contrast between the ZnSe and GaAs lattice images is not

significantly greater than that for the lattice images for samples oriented in the [110] direction.

The HREM images of the ZnSe-on-GaAs and the GaAs-on-ZnSe heterointerfaces for the

cross-section shown in Figure 8-17 (a) show little contrast between the ZnSe and the

GaAs layers. However, the heterointerfaces are visible, due to a combination of regions of
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darker and lighter intensity. The heterointerfacial images are taken from the same region

of the sample, resulting in some bending across the sample over the range of imaging. As a

result, the diffraction conditions for the two heterointerfaces are different, with the upper

heterointerface slightly bent away from the [001] zone axis. The atomic lattice appears as

diagonal fringes because each diffraction beam is not uniformly contributing to the image.

At the lower heterointerface, the material is slightly thicker, and correctly aligned to the

electron beam. The atomic lattice is not as clearly visible than the lattice imaged in the

[011] orientation in Figure 8-16. In general, there appears to be little gain in obtaining

HREM images of the ZnSe/GaAs DBH in the [001] orientation because of material

preparation limitations.

Figure 8-18. HREM [001] lattice image of the ZnSe-on-GaAs heterointerface and the GaAs-on-ZnSe heterointerface
for the sample shown in Figure 8-17 (a). Thickness variation across the sample results in the upper interface showing
fringes as opposed to the actual lattice.

A HREM image of a complete 6 nm ZnSe/GaAs QW is shown in Figure 8-19. The

dimensions of the region examined are small enough that both the diffraction condition

and thickness across the image are uniform. The atomic lattice is weakly discernible on

either side of the GaAs QW layer, in the ZnSe barriers. The heterointerfaces are evident,

but not as clearly for the ZnSe/GaAs DBH shown in Figure 8-17 and Figure 8-18. In both
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cases, the defect density at the atomic level appears to be below the detection limit for this

type of imaging.

Figure 8-19. HREM [001] cross-sectional lattice image of a 6 nm ZnSe/GaAs QW. The sample is too damaged and

too thick to resolve the atomic lattice.

The results from the [001] HREM cross-sectional imaging of the atomic lattice across the

ZnSe/GaAs DBH and QW do not provide a great amount of information regarding the

defect structure of the heterointerfaces. However, the ZnSe-on-GaAs heterointerface

appears to have a different characteristic image than the GaAs-on-ZnSe heterointerface.

The lower heterointerface appears, in general, as a thin white band with a width of a few

atomic layers. It is unlikely that the white band at the GaAs-on-ZnSe heterointerface is

caused by interdiffusion, as a similar band has been found to appear at a GaAs epilayer on

GaAs substrate homojunction. The origin of the lighter intensity of the heterointerface is

more likely a function of an increased concentration of surface contaminants on the ZnSe

barrier layer or strain between GaAs QW layer and the ZnSe barrier layer. The upper

heterointerface is marked by an undulation along the growth plane accompanied by

regions of lighter and darker intensity (as compared to the lattice away from the

heterointerface). These results are similar to those found for HREM images taken of

samples in the [110] orientation.

8.2.4 Interface roughness and thickness

A quantitative assessment of the ZnSe/GaAs heterointerfaces studied in the [001]

orientation was made by measuring the width of the white band defining the GaAs-on-
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ZnSe heterointerface, and the width of the undulations in the growth planes for the ZnSe-

on-GaAs heterointerface (see Figure 8-20).

Figure 8-20. Schematic of ZnSe/GaAs QW cross-section showing the characteristic upper and lower ZnSe/GaAs
heterointerfaces, and how the width of each interface is defined.

The ZnSe-on-GaAs heterointerface becomes smoother along the growth plane with a

thicker nucleation layer. The width of the GaAs-on-ZnSe heterointerface does not reflect

the thickness of the nucleation layer (see Figure 8-21). The upper ZnSe-on-GaAs

heterointerface appears to be more sensitive to the nucleation and growth parameters for

the GaAs QW. Increasing the temperature of the GaAs QW also increases the roughness

of the ZnSe-on-GaAs heterointerface. Also, as the central GaAs layer width increases, the

upper interface becomes flatter. All of these results are conducive to prior results found

for cross-sections prepared in the [110] orientation.

a lower

a upper

-1 0 1 2
# of ML's at 2500C

Figure 8-21. Plot of the interface roughness measured from HREM [001] lattice images as a function of the nucleation
layer thickness. The GaAs-on-ZnSe interface is represented by the solid symbols, and the ZnSe-on-GaAs interface is
represented by the open symbols.
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The surface roughness of the 6 nm ZnSe/GaAs QWs was measured by atomic force

microscopy (AFM) as a function of both the nucleation layer thickness and the growth

temperature of the GaAs material. The surface roughness should reflect the upper

interface roughness observed in the cross-sections. If the roughness at the upper

heterointerface is enough to generate defects or prohibit two-dimensional ZnSe growth,

the surface of the heterostructure would be rougher than it is at the heterointerface.

However, if the roughness at the upper heterointerface is less severe, the growth of the

upper ZnSe barrier layer could reduce the heterointerfacial roughness by a crystal-

orientation dependent growth rate. The second instance appears to have occurred in the

growth of the 6 nm ZnSe/GaAs QWs, as is shown in the summary plots in Figure 8-22.

The surface roughness is roughly 50% of that measured at the upper ZnSe-on-GaAs

heterointerface.

A RMS A Mean Roughness A RMS A Mean Roughness
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(a) (b)

Figure 8-22. AFM surface roughness measurements of 6 nm ZnSe/GaAs QWs as a function of the GaAs fabrication.
The surface roughness of the heterostructure as a function of the nucleation layer width in monolayers (ML's) is
shown in (a) and as a function of the final GaAs growth temperature is shown in (b).

8.2.5 Summary of HREM imaging results

A series of ZnSe/GaAs QWs and DBHs have been investigated by HREM, to study the

atomic lattice of each layer and heterointerface. The samples were prepared in two

orientations: [110] and [001]. The [110] sample preparation is simplified by the presence
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of natural <110> cleavage planes. However, the [001] sample orientation was expected to

yield a higher degree of contrast between the ZnSe and the GaAs layers due to the larger

contribution of the (200) diffraction beams to the image formation. The combined results

of both types of sample orientations imaged exemplify the issues involved in preparing a

semiconductor heterostructure for high resolution imaging.

The [110] oriented ZnSe/GaAs cross-sections showed a coherent crystal structure across

both heterointerfaces. The GaAs-on-ZnSe heterointerface was demarcated by a dark line

of contrast resulting from either strain between the GaAs and the ZnSe or impurity

contamination present on the ZnSe surface during the GaAs nucleation. The ZnSe-on-

GaAs heterointerface was accompanied by regions of both lighter and darker intensity than

the surrounding lattice. The variations in intensity are expected to be due to a range of

sample thickness, ion milling damage, and strain fields surrounding defect sites. The ZnSe-

on-GaAs heterointerface also varies along the growth plane by several atomic layers, as a

function of the growth conditions of the central GaAs layer.

Similar results were found in HREM images of [001] oriented ZnSe/GaAs cross-sections.

However, the atomic lattice was not as readily imaged in these heterostructures as the

samples tended to become amorphous when in the appropriate thickness range for lattice

imaging. A series 6 nm ZnSe/GaAs QWs were studied by HREM imaging, and the upper

ZnSe-on-GaAs heterointerface was found to have a roughness along the growth plane

according to the nucleation layer parameters and the GaAs QW growth temperature.
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9. Summary and Conclusion

The motivation for the study of ZnSe/GaAs QWs and DBHs was the fabrication of high

speed optical switches. Amongst unique parameters of these heterostructures is the

potential to achieve a large excitonic binding energy; this aides in the room-temperature

device sensitivity. However, several experimental challenges are present in the fabrication

of these heterostructures. This study set out to address these challenges.

The microstructural characterization of epitaxially-grown ZnSe/GaAs QWs and DBHs

supports two hypotheses established to explain the absence of photoluminescence from the

central GaAs layer. Interfacial roughness of the ZnSe-on-GaAs heterointerface and

incorporation of carbon at the lower ZnSe barrier layer surface both appear to contribute

to the reduction of the photoluminescence intensity from the central GaAs layer. The

ZnSe-on-GaAs and the GaAs-on-ZnSe heterointerfaces seem to be abrupt, suggesting that

a layer of interfacial charge could exist to drive carriers away or towards the

heterointerfaces (in spite of the undulation along the growth plane of the ZnSe-on-GaAs

heterointerface). Microstructural analysis does not confirm a third hypothesis, namely, that

a high density of dislocations and defects throughout the heterostructure are acting as

non-radiative recombination centers. The remaining two hypotheses are not addressed in

the microstructural analysis: a low carrier lifetime in the GaAs reduces or eliminates

radiative recombination, and the energy-band alignment is type II which results in a lack of

carrier confinement in the GaAs.

This chapter has four parts. First, an overview of the work is given. Second, an assessment

is made of the five explanatory hypotheses in light of both the microstructural results

presented in this study, and the optical analysis by D. Dougherty. Third, the feasibility of

achieving a detectable level of an optical signal from a GaAs QW with ZnSe barriers is

discussed. Finally, recommendations are made for future research.
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9.1 Overview of results

Both the fabrication and the characterization of the ZnSe/GaAs QW and DBH are

presented in this study. In Chapter Two, a survey of the scientific literature is presented to

establish the starting point for the growth procedures used in the fabrication of the

ZnSe/GaAs QWs and DBHs. The details behind the fabrication and the optimization of the

growth parameters for these heterostructures and the optical characterization follows in

Chapter Three and Chapter Four. The first half of the thesis is concluded with a proposal

of five hypotheses with the potential for explaining the absence of an optical signal from

the central GaAs layer in the ZnSe/GaAs heterostructures, in Chapter Five. The

subsequent chapters contain the experimental results from the microstructural

characterization by three techniques: energy dispersive x-ray spectroscopy (Chapter Six),

triple axis x-ray diffraction (Chapter Seven), and transmission electron microscopy

(Chapter Eight).

The first task was the epitaxial growth and optimization of ZnSe/GaAs QWs and DBHs. A

methodology, defined as single-monolayer MBE (SM-MBE), was developed to nucleate

the GaAs layer on the lower ZnSe barrier layer. The remainder of the GaAs QW layer

was grown by standard MBE, but at a reduced substrate temperature of 350 0 C with a

modified Group III-to-Group V ratio. The ZnSe barrier layers were grown by standard

MBE, with the nucleation of the ZnSe on the III-V layer initiated by 60 seconds of Zn

introduction into the growth reactor before the onset of ZnSe growth. During the growth

of a ZnSe/GaAs QW using this methodology, the RHEED pattern indicated a two-

dimensional growth. The GaAs layer exhibited a c(4x4) RHEED surface reconstruction.

The ZnSe layers exhibited a (2x1) RHEED surface reconstruction during growth, and a

c(2x2) pattern upon growth completion.

The optical properties of the ZnSe/GaAs QWs and DBHs were probed by low-

temperature photoluminescence (PL) measurements. The key result from this analysis was

the absence of an optical signal from the central GaAs layer when ZnSe barriers were

employed, regardless of the thickness of the GaAs layer. Similarly grown GaAs was

shown to luminesce when InGaP barriers layers were used. The ZnSe was shown to
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exhibit band-edge luminescence, but also included a defect band feature indicating a deep

level present in the thin ZnSe layers. The defect band is possibly a partial indication of the

quality of the interface of the ZnSe layers with the III-V layers.

The combination of the microstructural analysis, photoluminescence measurements,

RHEED surface analysis, and AFM measurements show that the epitaxial growth of the

central GaAs layer in the ZnSe/GaAs QWs and/or DBHs has been optimized. The GaAs

nucleation layer is thick enough to allow for full surface coverage; and allows for two-

dimensional growth of the subsequent GaAs QW. However, the growth regime of the

nucleation layer is believed to have resulted in reduced-carrier lifetimes and, thus, is

expected to inhibit radiative recombination from the GaAs material close to the GaAs-on-

ZnSe heterointerface. The GaAs QW is grown at a temperature that is high enough to

achieve GaAs of optical quality, and low enough to avoid relaxation in the lower ZnSe

barrier layer.

The growth of the ZnSe barrier layers appears to be sub-optimal. The procedure followed

for the epitaxial growth of ZnSe was established to replicate the method under which the

highest quality ZnSe was reportedly grown. Although RHEED intensity oscillations of the

lower ZnSe barrier layer were detected and used to measure the ZnSe growth rate, a high

density of stacking faults occur during the nucleation of the ZnSe layer. Hence, in situ

characterization by RHEED is not sufficient to assess the layer quality. The quality of the

upper ZnSe barrier layer reflects both the ZnSe growth procedure and the quality of the

central GaAs layer.

9.2 An assessment of the five candidate hypotheses

The results from the epitaxial growth and the optical characterization led to a further

investigation into the properties of the ZnSe/GaAs QWs and DBHs. This investigation

was based upon five hypotheses that hold promise for explaining the absence of an optical

signal from the central GaAs layer. Each of the hypotheses are reassessed here in

relationship to the microstructural characterization presented in the second half of this

thesis.
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9.2.1 Interface roughness and interdiffusion

For interfacial roughness in a QW grown under two-dimensional

conditions, the modulation in the growth plane would be on the order of a

few atomic layers, and the PL from the QW would show one broadened,

less intense feature [95]. A decrease in PL signal intensity from a single

QW could push the feature below the level of detection.

For the ZnSe/GaAs QWs with GaAs layer thicknesses close to the excitonic diameter (-10

nm), this hypothesis is a legitimate explanation for explaining the absence of PL from the

QW. HREM shows a rough ZnSe-on-GaAs heterointerface for the optimized growth

procedure of about 1.5 nm, or 5 atomic layers. The modulation of the growth plane at the

ZnSe-on-GaAs heterointerface increases with decreasing QW thickness. Hence, a GaAs

QW designed to have a 6 nm QW width has a width ranging from 7.5 nm to 4.5 nm. The

range of first confined energy states for these values of QW widths are 1.55 eV to 1.76

eV. The "periodicity" of the undulations at the upper heterointerface is roughly 25 nm,

well within the dimensions of the optical excitation source (the diameter is - 300 gm).

The ZnSe-on-GaAs heterointerfacial roughness is expected to be a contributor to the

absence of PL in the GaAs QW for GaAs layers have a thickness close to the excitonic

diameter.

The microstructural analysis showed no evidence of strong interdiffusion at the

heterointerfaces in the ZnSe/GaAs QWs and DBHs. The EDS measurements were not at a

high enough spatial and compositional resolution to accurately detect interdiffusion of the

elemental species in the heterostructure. However, in the course of evaluating the EDS

measurement, annealing studies revealed the nature of a grossly interdiffused ZnSe-on-

GaAs heterointerface by bright field STEM imaging. Another set of images taken in the

TEM gave further insight into the nature of the interdiffused heterointerface. In contrast,

the heterointerfaces in the ZnSe/GaAs QWs and DBHs are very different from the

annealed heterointerface as evaluated by TEM imaging. However, the possibility exists

for a doping density level (-lx1018 cn 3) of interdiffusion to be present at the ZnSe/GaAs

heterointerfaces.
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A single monolayer band of either lighter or darker contrast is evident at the GaAs-on-

ZnSe heterointerface, and is also sometimes evident at the GaAs buffer layer on GaAs

substrate homojunction. For the homojunction, the contrast is believed to be due to the

incomplete oxide removal prior to growth. For the GaAs-on-ZnSe heterojunction, the

band of contrast could be due to contamination of the ZnSe formed during the in situ

transfer between growth reactors. The contamination would be primarily carbon, which

could reside at interstitial sites in both the ZnSe and the GaAs, and form a deep level in the

energy band-gap of either material.

9.2.2 Dislocations and defects

The defects that interrupt the crystal uniformity of the heterostructure can

decrease or eliminate the PL signal intensity from the GaAs well.

The dislocation and defect density in the ZnSe/GaAs QWs and DBH has been found to be

comparable to a pseudomorphic heterostructure composed of III-V compound

semiconductors. TAD measurements have shown a directional variation in the misfit

dislocation density; albeit at a low density (- 1x10 4 cm-2). The cross-sectional TEM

measurement has shown a consistent presence of stacking faults at the ZnSe-on-buffer

layer and the ZnSe-on-GaAs heterointerfaces. The GaAs QW and DBH layers do not

show defects originating at the GaAs-on-ZnSe heterointerface. The defects present in the

GaAs layer originate in the lower ZnSe barrier layer, and occur at a density that is less

than the scope of the TEM measurement.

The presence of the stacking faults at the ZnSe-on-III-V layer heterointerfaces explains

the defect band in the ZnSe PL signal from the ZnSe/GaAs QWs and DBHs. However, the

overall defect structure evident in the TEM and the TAD measurements is not present at a

high enough density to eliminate the PL signal from the GaAs QW. Further support comes

from the fact that a PL signal can be measured from 100 nm of ZnSe with a detectable

defect density of stacking faults.
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9.2.3 Heterovalent interfaces

Local carrier depletion caused by heterointerfacial charge has the

potential to eliminate or reduce the radiative recombination in the

ZnSe/GaAs QWs and DBHs.

The ZnSe/GaAs heterointerfaces appear abrupt (although undulating) and coherent in

HREM images of cross-sections in the [110] and [001] orientation. However, the ion

milling damage to the sample and the low contrast between the layers in both orientations

complicates the evaluation of the heterointerfaces. Based upon the preliminary results of

the HREM imaging, it is possible for both sides of the GaAs central layer to be abrupt

enough for a charge imbalance to occur.

For the ZnSe-on-GaAs heterointerface, a sheet of charge has been measured in a

ZnSe/GaAs single heterostructure by a combination of photoreflectance (PR) and

electroreflectance (ER) measurements. The electric field caused by the sheet of charge is

directed from the GaAs to the ZnSe. However, if the line of contrast at the GaAs-on-ZnSe

heterointerface is due to carbon contamination of the ZnSe, it would have different

electrical properties than the ZnSe-on-GaAs heterointerface.

Photoreflectance excitation (PRE) measurements were made of a series of ZnSe/GaAs

100 nm DBHs which had been annealed at 400'C, 5000 C, and 600'C for 10 minutes each.

The PRE measurement in part probes the electric fields present in the heterostructure. The

probe energy of these measurements was held at the El feature (430 nm) for GaAs in

order to study the electric fields in the GaAs material. As the anneal temperature increases,

the electric field strength decreases. The anneal is expected to energize diffusion across

the heterointerfaces. Based upon the PRE measurement, at least one heterointerface in the

ZnSe/GaAs DBH does possess a sheet of charge.

9.2.4 Carrier lifetime

While PL has been measured from InGaP/GaAs multiple QWs with the

GaAs grown at 3500C and As 2 :Ga ratio of 1:1, the combined properties
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of the nucleation layer and the GaAs QW could be sufficient to decrease

the PL signal from the GaAs QW below the detection limit.

The carrier lifetime in the ZnSe/GaAs QWs and DBHs has been measured by D.

Dougherty using a pump-probe technique. Although the data has not been thoroughly

analyzed, a first interpretation indicates that the carrier lifetime exceeds 200 picosecond

(the measurement limit). However, the lineshape of the data from the pump-probe

measurement is similar to that previously seen in carrier lifetime measurements of low-

temperature GaAs. Further analysis is required of these results.

The research by Missous, et al [31, 32], together with PL results of GaAs QWs with

InGaP barriers, shows that lowering the GaAs growth temperature reduces the carrier

lifetime and the PL efficiency. The GaAs nucleation layer is, as a result, believed to inhibit

the generation of PL from the GaAs QW material close to the GaAs-on-ZnSe

heterointerface.

9.2.5 Type II energy band alignment

The unique growth conditions under which the GaAs layer is nucleated on

the ZnSe could form a similar type II interface.

The energy band alignment across the ZnSe/GaAs QWs and DBHs is not probed by the

microstructural analysis. However, optical characterization by Dougherty has measured a

type I energy band alignment for a ZnSe/GaAs single heterostructure. The energy band

alignment of the GaAs-on-ZnSe heterointerface has yet to be measured.

9.3 The feasibility of detecting an optical signal

The feasibility of detecting an optical signal from a GaAs QW with ZnSe barriers is limited

by the optimal epitaxial growth regime for both materials. If the measurement of the

energy band alignment of the ZnSe/GaAs QW were to show evidence of both electron and

hole confinement in the GaAs layer, the optical performance of the QW would be

governed by the quality of each layer and the heterointerfaces. To some degree, the

epitaxial growth of the ZnSe and the GaAs in the heterostructure can be optimized. Prior
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to this study, an abrupt heterointerface was considered to be high quality. However, it is

not clear what optimization means in this case. The properties of the heterointerfaces

when abrupt possess a charge density and corresponding electric field that affects the

optical signal from the QW. To form a heterointerface with a transitional width from one

material to the next is expected to remove the interfacial charge, but has an unknown

energy band alignment.

9.4 Suggestions for future work

There are several directions that can be taken in investigating ZnSe/GaAs QWs and

DBHs. Before proceeding with the experimental research, it would be useful to develop a

theoretical model for the optimal heterointerface for either side of the GaAs QW, and a set

of experiments should be established to test this model. The characteristics in relationship

to the formation of the GaAs-on-ZnSe heterointerface should also be studied

experimentally. The pursuit of optical emission from the GaAs layer in a ZnSe/GaAs QW

can be continued via further research on the fabrication and optical characterization of the

heterostructures. Five aspects of the fabrication that can be manipulated with the potential

to improve the ZnSe/GaAs QWs and DBHs are listed below.

* Grow the entire structure in one system reactor

* Pro: reduce impurity contamination during transfers between growth reactors

* Con: increased possibility of cross-contamination of the constituent species

* Optimize the ZnSe growth

* Pro: reduce interfacial defect density

* Investigate alternative substrates

* Pro: eliminate confusion in the analysis of the GaAs QW layer due caused by

the presence of the GaAs substrate

* Con: high quality, large area substrates of alternate materials are not readily

available
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. Growth interruption and annealing of GaAs QW layer

* Pro: can achieve a smoother GaAs surface

* Con: increased potential for impurity incorporation

* Grow multiple QWs

* Pro: increase the PL intensity contribution from the GaAs QW layers

* Con: relaxation of the ZnSe, longer growth time, more in situ transfers

A plan for evaluating the ZnSe/GaAs QWs and DBHs for the improvements in

performance from each of these would be required. Although, microstructural analysis can

evaluate the impact of each of the listed experiments, cross-sectional TEM and HREM

analysis would be a more powerful technique if the sample preparation could be improved.

This can be done by using either a low energy argon gun during the ion milling process or

a different ion source, such as iodine.

Before pursuing the optimization of the fabrication of the ZnSe/GaAs QWs and DBHs, the

work begun by Dougherty should be completed. A study of the GaAs-on-ZnSe

heterointerface to assess the carrier lifetime, the energy-band alignment, and the interfacial

charge density would provide the necessary information to ensure that a PL signal from

the GaAs QW is possible.
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10. Appendix 1. Preparation of TEM samples

A method for preparing the cross-sectional TEM samples used in this presented here.

Although many of the sub-steps could be used for other material systems, some

modifications might be necessary to avoid damaging the material during preparation.

There are four steps in the preparation. First, two pieces of the sample are epoxied face-

to-face. Next, a piece of substrate material, such as GaAs, is epoxied to the backside of

each sample. This epoxied stack of material constitutes the sample sandwich. The second

step requires thinning and polishing the sample sandwich to a maximum thickness of 60

inm. Third, the thin sample is glued to a copper support grid. Finally, the sample on the

copper grid is thinned with an ion mill until there is a hole in the center.

10.1.1 Step 1: The sample sandwich

1. Clean and cleave two pieces of the sample to be analyzed with dimensions: 3 mm x 1.5

mm.

2. Apply room temperature Mbond 610 epoxy resin to the surface of each sample piece.

3. Press the two sample pieces face-to-face.

4. Allow the epoxy to cure at 200'C for 90 minutes*.

5. Clean and cleave two piece of GaAs (or whatever substrate material was used in the

sample to be analyzed) with dimensions: 3 mm x 1.5 mm.

6. Apply room temperature Mbond 610 epoxy resin to the backside of each sample piece.

7. Press the top surface of one piece of the GaAs substrate to each back side.

8. Allow the epoxy to cure at 2000 C for 90 minutes.

If the samples have indium on the backside, at this point, polish the indium off using 30 jim grit
polishing paper. Rinse the sample sandwich afterwards in water to remove any residue.
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10.1.2 Step 2: thinning and polishing

Mount the sample sandwich to a polishing chuck with crystal bond, or some mounting

compound that can be removed with acetone. The polishing chuck in this instance is a

cylindrical steel ingot roughly 1 cm in diameter. The ingot fits into a larger copper

cylinder. The copper cylinder fits into a top-hat shaped copper polishing stand, with a base

that is roughly 7 cm in diameter. The polishing stand is used to keep the sample parallel to

the polishing surface.

Most of the TEM samples prepared in this study were polished on a series 6 inch diameter

plastic films with aluminum oxide grit of different sizes on one side. The discs were

pressed onto a damp glass plate to hold them flat. Water was sprayed on the polishing

surface while the polishing chuck was manually moved around the disc. The sample was

polished on one side with successively smaller grit sizes until the surface was both flat and

mirror smooth. Then, the sample was removed from and turned over on the steel ingot by

heating the ingot on a hot plate. The same polishing process was repeated, but the end

result was to thin the sample to 60 tms or less. The sample thickness could be determined

with a calibrated optical microscope. In general, the sample is pretty close to 60 gms thick

if the crystal bond used to mount the sample is level with the sample surface.

step grit size
1 30 um
2 15 4m
3 5 tm
4 3 lm
5 0.3 tm

Table Al-1 Order of polishing and grit size used for cross-sectional TEM preparation.

In practice, the damage caused by a certain grit size is said to damage up to a depth of 3x

the grit size into the sample. Therefore, the second side of to be polished should be

polished to a thickness of at least 100 micron with the 30 micron grit, 45 micron with the

15 micron grit, etc.
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10.1.3 Step 3: Mount to a grid

The thin sample sandwich is now mounted to a copper grid. Single 1 jim diameter

aperture grids of roughly 50 gm thick were used in this study. The sample sandwich is still

mounted to the steel ingot by crystal bond. It is important to have sharp tweezers and a

microscope to correctly mount the sample.

1. Put a small amount of Hardman's epoxy resin on the copper grid surface and spread

thin.

2. Place the grid with the shiny side to the sample surface onto the sample centering the

epoxy line across the aperture. Take care not to get epoxy on the sample surface resting

over the hole.

3. Allow the epoxy to cure for about 15 minutes at room temperature.

4. Heat the steel ingot on a hot plate until the crystal bond is watery.

5. Slide the copper grid off the chuck.

6. Soak the copper grid in acetone to remove any residual crystal bond.

10.1.4 Step 4: final thinning of the sample in the ion mill

The final step in cross-sectional TEM sample preparation is to thin the center of the

sample sandwich until a hole is visible. An argon ion mill is used to sputter away the

material in a controlled fashion. Redeposition of the sputtered material is avoided by

maintaining a vacuum in the milling chamber of roughly 10-6 Torr. Uniform ion milling of

the sample is achieved by rotating the sample.

The ion mill can heat the sample to 3000C. For ZnSe and In-containing materials, this

temperature is high enough to actually destroy the material. Hence, care must be taken to

allow the sample to cool the sample in liquid nitrogen during the ion milling process.

The penetration depth of the ion mill is a function of the milling angle, the angle of the ion

guns to the sample surface, and power. In a fashion similar to the polishing and thinning

step for TEM sample preparation, the power of the ion mill is reduced during the course
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of the milling to remove and avoid damage to the sample. The milling angle for the

samples in this study was held constant at 120, which is pretty much the lowest angle the

mill can be used at, and reduces the penetration depth of the argon ions.

When the ion guns on the ion mill are new (< 10 hours used), the milling rate at a

voltage/current setting of 6 kV/1 mA is around 15 microns/hour. At a setting of 4

kV/0.25 mA, the milling rate is around 4 microns/hour. As the guns are used longer, the

argon beams will tend to spread and the milling rate will subsequently decrease. The guns

are changed roughly every 100 hours.

1. Mount the grid and sample onto a stage for the ion mill (Note: there are several

different stages. For cold milling, use the stage with the rectangular copper legs.).

2. Evacuate the milling chamber.

3. Lower the stage into liquid nitrogen. Allow the sample to cool for 20 minutes.

4. Mill for 2.5 hours using the preset current and voltage values are 1.0 mA and 6 kV.

5. If the sample is thinning, a slight indentation in the sample within the grid aperture will

be visible. If this is not visible, continue to ion mill at 1.0 mA/6kV for 30 minutes

increments until the indentation can be seen.

6. Decrease the milling parameters: 4 kV, 0.25 mA. Ion mill for 2 hours, checking every

30 minutes until a hole is visible.

The sample with a hole in the center is ready for TEM analysis if the hole intersects the

center epoxy line where the material of interest is. If the sample does not seem to thinning

at the higher ion milling power, there might be epoxy on the sample surface, or the cover

of the sample holder for the ion mill might not be screwed down tightly enough. In

general, the above procedure will produce cross-sectional TEM samples with regions thin

enough for phase-contrast imaging of the atomic lattice (no thicker than 8 nm).
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Figure Al-1. Fully prepared cross-sectional TEM sample, mounted on a single aperture copper grid.
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11. Appendix 2. ZnSe substrate surface preparation

A series of ZnSe/GaAs QWs and DBHs were grown on semi-insulating ZnSe substrates

manufactured by Sumitomo were used to eliminate the contribution of the GaAs substrate

to the respective PL spectra. The geometry of the ZnSe substrates is either a 25 mm2 or

100 mm2 square cleaved along (011) planes. The substrates are single-side polished with

an average polished surface roughness of 3.24 nm. In comparison, a GaAs wafer from the

same manufacturer has an average surface roughness of 0.43 nm. Both the small geometry

and the rough polished surface of the ZnSe substrates posed limitations on the ultimate

quality of the epitaxially grown ZnSe/GaAs QWs and DBHs.

The ZnSe substrate does not have a thick native oxide which protects the surface from

other impurity contamination. As a result, the ZnSe substrate shows a faint bulk RHEED

reconstruction upon introduction to the growth reactor. Auger electron spectroscopy of

the original substrate surface shows the presence of a O, Cl, C, Zn, and Se. In comparison,

the surface of ZnSe epilayer that has been exposed to the room for several days shows the

presence of O, C, Zn and Se; indicating that the Cl present in the ZnSe substrate is a

remnant of the surface preparation technique followed by Sumitomo. Oxygen is roughly

5% of the surface composition of the ZnSe substrate; while, 25 % and 30% is C.

An investigation into the ZnSe surface preparation by degreasing, etching, thermal

cleaning, and hydrogen plasma cleaning was done to eliminate the presence of O, C, and

Cl. Degreasing was done by agitating the ZnSe substrate in a series of solvents to remove

organic compounds and water from the surface. Etching was done with two different

acids: bromine-methanol and hydrofluoric acid. Both hydrogen plasma cleaning and

thermal cleaning were done in the growth reactor, under an ultra-high vacuum

environment. The hydrogen plasma cleaning was done with a mixture of 85% H2 and

15% Ar directed through a liquid nitrogen cooled plasma generator directed at the

substrate surface. The thermal cleaning was done by heating the substrate. For each
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surface preparation technique studied, Auger electron spectroscopy (AES) measurements

were made of the ZnSe substrate surface to compare the surface composition. The ZnSe

substrate surface was also monitored by RHEED to assess the surface roughness.

The AES results from a ZnSe substrate prepared by hydrogen plasma cleaning (H-

cleaned), thermal cleaning, and degreasing are shown in Figure A2-1. The peak features in

the graphs indicate the presence of a chemical element. Noted on the plots are N, O, C, Cl,

Zn, and Se. The ZnSe substrate that has been hydrogen plasma cleaned has the lowest

percentage of N, O, C and Cl of the three methods shown. However, all three surface

preparation methods do not eliminate the C on the ZnSe surface.

ed4-"

4-
q...

0 200 400 600 800 1000 1200 1400 1600
Energy (eV)

Figure A2-1. Auger electron spectra of ZnSe substrate surfaces as a function of the surface preparation: hydrogen
plasma cleaned, thermally cleaned, and degreased.

The ZnSe substrate surface composition is compared as a function of the surface

preparation in the bar charts in Figure A2-2 showing the fractional composition of C, O,
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and Cl for a substrate: pre-surface preparation, after thermal cleaning, after degreasing,

after hydrogen plasma cleaning. In all cases, the hydrogen plasma clean is the most

successful at removing surface contamination. However, each method does reduce the

amount of 0 and Cl at the surface.

pre- thermal degrease hydrogen
surface clean clean
prep

Figure A2-2. Fractional composition of C, Cl, and O present
preparation method as measured by Auger electron spectroscopy.

on the ZnSe surface as a function of the surface

Etching the ZnSe surface by bromine-methanol or hydrofluoric acid resulted in a surface

that was too insulating to be analyzed by AES. The RHEED surface pattern of the ZnSe

substrates prepared by etching was similar to the ZnSe substrate prepared by the other

methods, showing a streaky bulk reconstruction.

The final ZnSe surface preparation method developed has three steps: degreasing, thermal

cleaning, and hydrogen plasma cleaning. The sample was first degreased, then loaded into

the growth reactor. Next, the substrate was heated to 3000 C for 15 minutes. A hydrogen

plasma was directed at the heated sample surface for 20 minutes. Within 10 minutes of the

hydrogen plasma clean, a (2x1) surface RHEED reconstruction was visible (see Figure ).

In spite of the evidence of a reconstructed ZnSe surface, a high density of defects are

nucleated at the homojunction between the ZnSe substrate and the ZnSe epilayer.
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[011]

Figure A2-3. RHEED surface pattern of ZnSe substrate that has been thermally cleaned at 3000 C and hydrogen
plasma cleaned for 15 minutes, showing a (2x1) surface reconstruction.

The cross-sectional TEM images of the ZnSe/GaAs QWs and DBHs that were grown on

ZnSe substrates show a high defect density at the ZnSe epilayer-ZnSe substrate

homojunction, regardless of the surface preparation technique. When a (2x1) surface

reconstruction was evident after the ZnSe substrate surface preparation, the homojunction

shows the lowest defect density as indicated through qualitative cross-sectional TEM

analysis. However, the defect density in this instance is still high enough to adversely

affect the optical properties of the ZnSe/GaAs QWs and DBHs. As a result, the majority

of these heterostructures were grown on the higher quality GaAs substrates.
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