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ABSTRACT
A model autocrine cell system was constructed by transfecting the genes for

transforming growth factor alpha (TGFa) and its receptor (epidermal growth factor receptor,
EGFR) into a cell line normally lacking both, mouse B82 fibroblasts. The human TGFa gene
was transfected into both EGFR-positive and EGFR-negative B82s cells using a two-plasmid
tetracycline inducible vector, permitting both autocrine and paracrine cell systems. The full-
length TGFct transmembrane protein was correctly transported to the cell surface and 99% of
the TGFx cleaved and secreted into the extracellular media as the mature 5.5 kDa TGFa
protein. A 100-fold range in TGFx secretion expression is achieved by altering medium's
tetracycline concentrations.

Validation of anchorage-dependent autocrine cell computer modelling was achieved
experimentally for both extracellular bulk ligand concentrations and receptor / ligand complex
levels. High ligand expression rates enabled extracellular ligand accumulations, measured by
TGFca ELISAs, to remain independent of cell density and addition of anti-receptor blocking
antibodies. At lower secretion rates, both cell density and blocking antibody additions were
important parameters in receptor-mediated ligand uptake.

The autocrine model was also validated by development of a novel assay to quantify
receptor ligand complexes. Molecular Devices Cytosensor measurements of cellular metabolic
rates were correlated to receptor complexes via free EGF in 1125 EGF binding experiments and
Cytosensor experiments. Using the Cytosensor enabled precise measurements of TGFoa
induction in autocrine cells, complex levels as a function of TGFx secretion rates and inhibition
of receptor complexes as a function of competing antibodies. It was determined experimentally
and mathematically that blocking antibody inhibited autocrine receptor complex formation
around 1 nM and was a 1000x more effective inhibitor than decoy antibodies. An indication of
intracellular receptor / ligand binding was found in B82R' / secreted mature EGF as addition of
blocking antibodies could not inhibit receptor complex signalling compared to autocrine B82R ÷ /
transmembrane TGFa.

Further investigations using these engineered cell systems should help yield an
improved understanding in regulation of wound healing, tissue regeneration, and cancer
progression facilitated by autocrine factors.

Thesis Supervisor: Douglas A. Lauffenburger
Title: J. R. Mares Professor of Chemical Engineering



Acknowledgments

This research was funded by NSF Biotechnology Program, Engineering Directorate,

Division of Biological and Critical Systems.

I would like to thank my advisor, Doug Lauffenburger, for his advice, support, and

insight during the course of this work. Also, I would like to thank him for the opportunity to

travel to various research labs for the advancement of this research and my expertises.

I would like to thank the Lauffenburger lab for their support and suggestions throughout

this research. A special thanks goes to Lily Chu and Cartikeya Reddy as my "links to the

engineering world" for keeping me up-to-date, giving advice, sending forms and supplies,

dealing with administrative problems, and being "surrogate Greg" to Laura while I was in Utah.

I can not thank you both enough.

I would also like to thank Steve Wiley, Lee Opresko, Patrick Burke, Becky Worthylake,

Birgit Will-Simmons, and Maggie Woolf along with the rest of the University of Utah

Pathology Department. The Wiley lab's support, advice, and help have been immeasurable

towards completing this thesis. Allowing me to use their lab space, materials, and time has

been greatly appreciated. Little did Steve realize when accepting me into his lab for "a half of a

semester," it would become 30 months over several years. Thank you very much.

Also, I would like to thank Laura Walker, undergraduate at MIT, working with me on

my thesis. Her time, effort, and organization was immeasurably in completion of this thesis in

the development of the Cytosensor assays. Her dedication to the project while I was away in

Utah greatly enhanced the scope of this research.

Last, but not least, I would like to thank my parents for a lifetime of love,

encouragement, and support, for without, I would have never succeeded.



Table of Contents

Chapter 1: Introduction and Background ................................................... 11

1.1 Growth Factors and Cell Function .............................................. 11

1.2 Transforming Growth Factor Alpha (TGF) ................ .................. 13

1.3 Epidermal Growth Factor Receptor .............................. 15

1.4 Control of Autocrine Systems ..................................................... 17

1.5 Mathematical Modelling of Autocrine Systems .................................. 18

1.6 Expression System for Autocrine Ligand ...................................... 20

1.7 Cell Microphysiometer Assay for Autocrine Ligand Binding ................... 22

1.8 Thesis Overview .................. ............ ............................. 24

F igures................................................ .. ...... ...... .................... 26

Chapter 2: Modelling Autocrine Cell Receptor / Ligand / Antibody Interactions ........ 48

2.1 Revising Anchorage-Independent to -Dependent Model ......................... 48

2.2 Computer Modelling Predictions .............................. 49

Tables .......................................... 52

Figures ...................................................................... .. 55

Chapter 3: Experimental Methods - Ligand Characterization ................................. 59

3.1 Materials .......................... ............... .................... 59

3.2 Making pUHD10.3 / TGF .................. ..................................... 60

3.3 Transfection of DNA into B82 Cells ........................... ........... 61

3.4 Selection of TGFot Secreting Clones ................... ................. 61

3.5 Detection of TGF .................................................................. 62

3.6 Determining Cellular Processing of TGFot Protein .............................. 63

3.7 TGFa Secretion Time Course from Paracrine Clones ........................... 64

3.8 Tetracycline Concentration Effect on TGFc Secretion .......................... 65

3.9 Cell Density Effect on TGFu Secretion ......................................... 66

3.10 Creation of sEGF Clones ................ ........................................ 66

Tables ........................................ ..... ............ 68

Figures ................ .... ............... ................... .. 70



Chapter 4: Results - Ligand Characterization ................................ 76

4.1 Overview of Experiments ........................................................ 76

4.2 Making pUHD10.3 / TGF ...................................................... 76

4.3 Selection of TGFa( Secreting Clones ............................................. 77

4.4 Determining Cellular Processing of TGFox Protein .............................. 78

4.5 TGF( Secretion Time Course from Paracrine Cells ............................. 78

4.6 Tetracycline Concentration Effects on TGFo Secretion ......................... 79

4.7 Cell Density Effects on TGFct Secretion ................. ........................ 80

4.8 Creation of B82R+ normal and mutated / sEGF autocrine clones ............... 81

T ab les .............................. ....... .. ............................ 82

Figures................ ....... ................................ 86

Chapter 5:

5.1

5.2

5.3

5.3a.

5.3b.

5.3c.

5.4

5.5

5.6

5.7

Chapter 6:

6.1

6.2

6.3

6.4

6.4a.

6.4b.

6.4c.

6.5

6.6

Methods for Ligand - Receptor Complex Characterization ..................... 93

General Protocol for Testing Cells on the Cytosensor ........................... 93

B82R' ECAR Response as a Function of mAb225 and mEGF ............. 94

Correlating Cytosensor's ECAR to Receptor / Ligand Complex Levels.......95

1125 Binding - Receptor / Ligand Complexes .................................... 95

Cytosensor ECAR Output .................. .................................... 95

Equating ECAR to Receptor / Ligand Complexes .............................. 96

Measuring B82R' / TGFct Induction .............................................. 96

Tetracycline Gradient on Autocrine B82R' / TGFx Cells ....................97

Antibody Inhibition of Receptor / Ligand Complex on B82R' / TGFt ....... 97

Blocking Antibody Inhibition of Receptor Complexes on B82R+ / sEGF.....98

Results - Ligand / Receptor Complex Characterization .......................... 99

Overview of Experiments ...................................................... 99

General Cytosensor Runs .......................................................... 99

B82R' ECAR Response as a Function of mAb225 and mEGF .............. 100

Correlating Cytosensor's ECAR to Receptor / Ligand Complex Levels.......101

1125 Binding - Receptor / Ligand Complexes ................... ................. 102

Cytosensor ECAR Output ..................................... .................... 102

Equating ECAR to Receptor / Ligand Complexes ................................ 104

Measuring B82R' / TGF( Induction ............................................ 104

Tetracycline Gradient on Autocrine B82R÷ / TGFcx Cells ....................... 106



6.7 Antibody Inhibition of Receptor / Ligand Complex on B82R+ / TGF(o ....... 107

6.8 Blocking Antibody Inhibition of Receptor Complexes on B82R* / sEGF.....109

Figures......................................................................... 111

Chapter 7:

7.1

7.2

7.3

7.4

Appendix A

Appendix B

Appendix C

Appendix D

References

Discussion and Future Study ..................................................... 1..34

Overview ................................................................................ 134

Summary of Results ............................................................... 134

Discussion ........................................ .................................. 137

Future Study .................. ............... ............................. 138

.................. ................. ............................ ....................... 14 1

........................................ ............................. .................. 144

..... .......... ..................... .... ... ........ .........146

............................................................. .......................... 15 7

........................................................................... 170



List of Tables

Chapter 2: Modelling Autocrine Cell Receptor / Ligand / Antibody Interactions

Table 2.1 Autocrine model equations - Blocker Antibody ........................ 52

Table 2.2 Autocrine model equations - Decoy Antibody .......................... 53

Table 2.3 Autocrine model nomenclature and parameters values ............... 54

Chapter 3: Experimental Methods - Ligand Characterization

Table 3.1 Molecular weight standards used for G-50 fine column ............... 68

Table 3.2 Time course points for TGFx secretion from paracrine B82 cells...69

Chapter 4: Results - Ligand Experiments

Table 4.1 Comparison of autocrine TGFot / EGFR cells .......................... 82

Table 4.2 Detection of secreted and membrane bound TGF .................... 83

Table 4.3 Mutant B82 EGFR trafficking and affinity parameters .............. 84

Table 4.4 Artificially engineered cell systems ........................... ........85



List of Figures

Chapter 1:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 1.9

Figure 1.10

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Chapter 2:

Figure

Figure

Figure

Figure

Introduction and Background

Ligand secretion pathways ........................................ 26

TG Fct precursor ....................................................... 27

Amino acid relationship between members of the EGF family....28

Schematic representation of hTGFcL structure ....................29

Epidermal growth factor ligands and receptors family ............. 30

EGF receptor domains ............................................... 31

Receptor tyrosine kinases ........................................... 32

Inhibition of phosphorylation by anti-receptor monoclonal

antibodies .............................. .................................33

Relationship between EGF receptor occupancy and mitogenic

response.................................................. 34

Experimental data on ligand decoy's and receptor blocker's

affect on autocrine cell stimulation ................................... 35

Autocrine cell model schematic - decoy antibody ......... ........36

Autocrine cell model schematic - blocker antibody ........ ... 37

Decoy receptor effects on cell receptor complex levels.............38

Receptor antibody effects on cell receptor complex levels ....... 39

pUHD 15.1 ....................... .................................... 40

pU H D 10.3 ................................. ......................... 41

Two plasmid schematic ............................................... 42

Schematic of ligand - receptor signalling detection by

Molecular Devices Cytosensor ....................................... 43

Schematic drawing of Cytosensor ................................... 44

Representation of Cytosensor measurement and output............45

Predicted metabolic response of paracrine and autocrine cells.....46

Artificially engineered B82 TGFu family .................. ......... 47

Modelling Autocrine Cell Receptor / Ligand / Antibody Interactions

Autocrine computer models with blocker antibodies .............55

Modelling predictions - Varying ligand secretion rates.............56

Modelling predictions - Blocker versus Decoy antibodies ......... 57

Modelling predictions - Bulk ligand concentrations ................ 58

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

2.1

2.2

2.3

2.4



Chapter 3:

Figure

Figure

Figure

Figure

Figure

Figure

Chapter 4:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Chapter 6:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

Experimental Methods - Ligand Characterization

pM TE4 ....................................................... .......... 70

pXER ..................................................................... 71

Bluescript II KS+ Plasmid .............................................72

pR E P 8 .................................................................... 73

pB S/TG Fa w t ......................................................... 74

pUHD 10.3 / TGFa ...................................................... 75

Results - Ligand Characterization

pUHD 10.3 / TGFa Digest ........................................ 86

EGFR / TGFx expression at similar cell density ...................87

TGFa molecular weight .......................................... 88

TGFx time course ..................................................... 89

Effect of tetracycline concentration on TGFa secretion ..........90

Tetracycline gradient on autocrine clone #1 .......................... 91

Experimental bulk ligand concentrations ............................. 92

Results -Ligand / Receptor Complex Characterization

Experimental raw and rate data ...................................... 111

B82R' control cells - Cytosensor EGF response curve .......... 112

Cytosensor measurements - B82R ÷ with EGF and mAb225 ...... 113

Overview ECAR to Complex - B82R' / 1st plasmid ............. 114

Overview ECAR to Complex - uninduced B82R ÷ / TGFa ........ 115

Overview ECAR to Complex - induced B82R + / TGF ........... 116

1125 Binding - B82R ÷ / 1st plasmid ................ ............... 117

1125 Binding - uninduced B82R' / TGFc ............................ 118

1125 Binding - induced B82R' / TGF .............................. 119

Cytosensor - B82R / 1ist plasmid .......................... 120

Cytosensor - uninduced B82R' / TGF( ............................. 121

Cytosensor - induced B82R' / TGFa ................................ 122

ECAR to Complex Correlation - B82R' / 1st plasmid ............123

ECAR to Complex Correlation - uninduced B82R÷ / TGFc ...... 124

ECAR to Complex Correlation - induced B82R' / TGFc .........125

Induction of B82R ÷ / TGFo cells on Cytosensor ................. 126

B82R' / TGFu induction measured on the Cytosensor ......... 127



Figure 6.18

Figure 6.19

Figure

Figure

Figure

6.20

6.21

6.22

Figure 6.23

Tetracycline gradient affects on B82R' / TGFc cell ECAR ....... 128

Representative Cytosensor run - induced B82R' / TGFu

with blocking antibodies ............................ ................. 129

Compilation of B82R+ / TGFca competing antibody additions .... 130

Control experiment - mAb225 and cell stimulation .............. 131

Control experiment - TGFuc neutralization with

anti-TGFc antibody ......... ........... .............. 132

Comparison of autocrine cell systems - TGFx vs. sEGF ........ 133



Chapter 1: Introduction and Background

Cell functions such as proliferation and migration are important in physiological and

pathological situations, including wound healing, cancer, and tissue regeneration. Cellular

interactions in these processes are often regulated by growth factor receptors and their ligands

(Bennett and Schultz 1993; ten Dijke and Iwata 1989; Kumar et al. 1992). When the receptor

and its ligand are produced by the same cell, it is called an autocrine cell. This situation is found

in many different cell lines, such as lymphocytes, fibroblasts, and primary tumors. (Derynck

1992; Morishige et al. 1991; Sporn and Roberts 1992; Sporn and Todaro 1980). Mathematical

analysis of the autocrine network have identified key molecular and cellular parameters

governing the dynamics of receptor / ligand complexes as well as cell signaling. Important

parameters include autocrine ligand secretion rate, cellular density, receptor binding and receptor

trafficking rate constants (Forsten and Lauffenburger 1992a). These parameters can be

systematically altered with cells accessible to the manipulation of the receptor and ligand genes.

The research in this thesis deals with the development and characterization of this sort of model

autocrine system, for the purposes of testing the importance of key parameters and elucidating

control mechanisms governing cell responses to autocrine factors.

1.1 Growth Factors and Cell Functions

Metabolic processes in the cell can be maintained through the uptake of amino acids,

essential vitamins, nutrients and salts in serum free media, however, only upon the addition of

growth factors will quiescent cells begin cell division or mitosis (Bennett and Schultz 1993).

Growth factors are produced and secreted from a variety of cells including platelets,

keratinocytes and fibroblasts. Although a multitude of cells express growth factors (ligands),

the growth factors interact with their high affinity receptors via only four pathways (Figure

1.1). The endocrine and paracrine pathways involve the production and transport of the

secreted ligand to either distant or adjacent cells, respectively. The juxtacrine pathway is similar

to a paracrine system, but the ligand binds adjacent cells while remaining membrane-bound. In

the last pathway, the autocrine system, the ligand is secreted and bound by the same cell. Note

that if a subset of the autocrine cells' receptors become internalized (down-regulated) or are

inhibited from binding the ligand, autocrine cells become paracrine cells.

Upon growth factor / receptor binding, a cascade of events occur leading to the uptake

of Ca2+, phosphorylation of proteins, and eventually, the synthesis of DNA and cell

proliferation (Carraway and Cerione 1993; Gill et al. 1987; Kumar et al. 1992).

Overproduction of the receptor and / or its ligand in an autocrine pathway could lead to over-



stimulation of the cell and runaway cell proliferation. One growth factor, transforming growth

factor alpha (TGFat) and it receptor, epidermal growth factor receptor (EGFR) has been found

over-expressed in several cancers. Over half of the mammary carcinomas and most squamous,

hepatomas, melanomas, glioblastomas and renal carcinomas express this enhanced synthesis

autocrine pathway (Derynck 1992).

Because growth factors are important in cell proliferation and migration, clinical

strategies that modulate growth factor activities have been receiving attention as methods for

promoting wound healing and inhibiting cancer. Treatment of chronic wounds increase health

care costs because it requires extended hospital stays and half of the amputations in the United

States are a result of ulceration (Meyer-Ingold 1993; Roberts 1993). Thus, the use of growth

factors to promote cell proliferation and migration could speed healing, decrease patient's

discomfort, shorten hospital stays and reduce amputations. These growth factors could be

added exogenously or via gene therapy. One particular study used transfected insulin-like

factor-I (IGF-I) keratinocytes, promoting increased epithelium growth in vivo (Eming et al.

1996). While secretion of IGF-I in epithelia is normally paracrine (fibroblast to keratinocytes),

this study created an autocrine growth system to show IGF-I role in epidermal proliferation.

Other autocrine studies utilizing TGFx and TGF3 have been performed in transgenic mice

(Sellheyer et al. 1993; Vassar and Fuchs 1991), showing these cytokines are also important

autocrine mediators of epidermal homeostasis.

At the opposite end are attempts to inhibit cancer cell proliferation. As mentioned, some

cancer cell lines over-express growth factors and / or growth factor receptors. High levels of

human epidermal growth factor receptor or HER1, has been found in a significant fraction of

epidermoid head and neck carcinomas, breast cancer, and epidermal carcinomas (Fabricant et al.

1977; Filmus et al. 1985; Hendler et al. 1985). Some of these carcinomas, A431 and MDA

MB-468, also have been shown to produce TGFa, classifying them as autocrine (Derynck et al.

1987; Ennis et al. 1989). Over-expression of a related receptor, Neu / HER2, is associated with

poor prognosis in breast cancer, ovarian cancer, and lung carcinoma (Kern et al. 1990; Kraus et

al. 1987; Slamon et al. 1987; Slamon et al. 1989; Varley et al. 1987; van der Vijver et al. 1987).

When a growth factor and its receptor are produced by the same cell, at abnormally high levels,

there is the potential for loss of regulation. While, several clinical trials have attempted to affect

wound healing and tumor progression by modulating growth factor activities, their results have

been unclear (Meyer-Ingold 1993; Mulshine et al. 1992). In most of these studies, the protein

(ligand or antibody) was used without an understanding of half-lives, secretion rates, ligand /

receptor dynamics, and effective concentrations at the target site. Experimental studies in this



thesis as well as computer modelling should help increase our understanding of autocrine cell

systems and aid in the design of related clinical treatments.

1.2 Transforming Growth Factor Alpha (TGFa)

Epidermal growth factor (EGF) was first discovered by Stanley Cohen (Cohen 1962)

when studying a nerve growth promoting protein of the mouse submaxillary gland. This

protein promoted precocious eyelid opening and teeth eruption of newborn mice. Later isolation

and characterization of the protein established that EGF is synthesized as a large precursor of

1207 amino acids (160 kD), containing eight EGF-like repeats and one full length EGF

sequence which is cleaved into the secreted 53 amino acid (6 kD) protein (Bell et al. 1986; Scott

et al. 1983). EGF has been shown to be an effective inhibitor of gastric acid and pepsin

secretions with high levels of protein detected in the urine, mammary fluids, saliva, and

prostatic fluids (Carpenter and Wahl 1990).

EGF's sister protein was discovered when analyzing polypeptides from mouse sarcoma

virus-transformed cell medium which induced anchorage independent growth of normal rat

kidney (NRK) cells on soft agar, a characteristic of transformed cells (DeLarco and Todaro

1978; Todaro et al. 1980). Upon further purification of the medium, two proteins were

isolated, transforming growth factor alpha (TGFa) and beta (TGFI). TGFo is able to bind

epidermal growth factor's receptor (EGFR), but can only transform NRK cells in the presence

of TGF3, which cannot bind EGFR (Anzano et al. 1982). Thus, it is the synergistic effect of

these two proteins that leads to the reversible transformation of the NRK cells. Since its

discovery, TGFx has been found in many cancer cells, but also in several "normal" cells like

epithelial and gastric intestinal mucosa cells (Beauchamp et al. 1989; Valverius et al. 1989),

macrophages (Madtes et al. 1988; Rappolee et al. 1988a), in the brain (Wilcox and Derynck

1988b), and in the pituitary (Kobrin et al. 1988).

TGFx is a 50 amino acid protein (5.6 kDa) derived from a 160 amino acid glycosidic

transmembrane precursor (25 kDa) (Carpenter and Wahl 1990; Feild et al. 1992). Shown in

Figure 1.2, the transmembrane precursor consists of a 39 amino acid N-terminal signal

sequence with an Asn24 N-glycosylation site, the mature TGFo protein and a 71 amino acid

carboxyl terminal transmembrane tail. The TGFx protein is a member of the epidermal growth

factor (EGF) family (Figure 1.3) which besides EGF (Cohen 1962), includes heparin - binding

EGF (Higashiyama et al. 1992), amphiregulin (Shoyab et al. 1989), betacellulin (Shing et al.

1993), and heregulin (Holmes et al. 1992; Wen et al. 1992). The EGF family is characterized

by the CX 7CX 4-5CX,0 13CXCXC motif where X is any non-cysteine amino acid. (Carpenter

and Wahl 1990). TGFx shares about 40% homology with EGF, but within its own TGFc



family, there is up to 90% amino acid homology between human and rat TGFct (Carpenter and

Wahl 1990). Nuclear magnetic resonance studies along with homology and site-directed

mutagenesis studies suggest that the TGFc structure is similar to EGF.

A schematic representation of TGFx is shown in Figure 1.4. The mature TGFca protein

is composed of several anti-parallel 3 sheets and a tight turn in the middle of the protein. These

3 sheets and tight turn align the two terminals to opposite sites of the protein and has been

suggested to construe the binding domain for the EGF family (Campbell et al. 1990; Hoeprich

et al. 1989). However, chimeric TGFa/EGF studies with chicken EGF receptor (cEGFR)

indicate that the B-loop 1-sheet is not only a structural motif, but may be a binding site for the

TGFo-cEGFR complex (Richter et al. 1995). Analysis of site-directed mutagenesis on TGFca

and EGF proteins show that the six cysteines along with Gly 19, Va133, Tyr38, and Gly40 are

highly conserved structural amino acids while Phel5, Phel7, Arg42 and Leu48 appear to be

important EGF receptor binding sites (Feild et al. 1992). Site directed mutagenesis with these

amino acids result in a decrease of ligand-receptor affinity, ranging over three orders of

magnitude.

The ligand-receptor affinity is a function of the binding and dissociation rate constants

for ligand binding to its receptor, commonly referred to as Kd (equilibrium dissociation

constant). Human EGF's and TGFa's affinity for the human EGF receptor is 1 nM (Ebner and

Derynck 1991). While, both TGFx and EGF have similar affinities for human EGFR, TGFc

is a 100x fold better agonist for chicken EGFR than EGF ligand (Lax et al. 1988a). This

preference for TGFx is likely due to a bulky hydrophobic amino acid between the fourth and

fifth cysteines (valine 33) at the "hinge" site, compared to EGF's hydrogen bond donor

(asparagine 33). Betacellulin and heparin-binding EGF also have hydrophobic residues

(isoleucine 33) with comparable affinity for chicken EGFR as TGFc, while amphiregulin and

heregulin are more similar to EGF (lysine 33). This suggests a sub-grouping of EGF family

proteins into TGFac and EGF -like sub-classifications (Puddicombe et al. 1996).

A major difference between TGFac and EGF is the presence of five histidine amino acids

in TGFuc and two histidines in EGF making the isoelectric points (pl) 4.6 for EGF versus 5.9

for TGFa. The isoelectric point difference may explain ligand-receptor trafficking dynamic

changes resulting in reduced receptor degradation and constant ligand recycling rate in the

presence of TGFa, especially at lower intercellular complex levels. (Ebner and Derynck 1991;

French et al. 1995). This difference may also explain why TGFo is a more potent agonist for

migration and monolayer formation in keratinocytes (Barrandon and Green 1987), increased

arterial blood flow (Gan et al. 1987), bone resorption (Stern et al. 1985), and hepatocyte

growth (Brenner et al. 1989).



1.3 Epidermal Growth Factor Receptor

Members of EGF-like ligand family discussed earlier all bind to receptors in the EGF

family. These receptors are labeled HER1 (Cohen and Ushiro 1980; Cohen et al. 1982), HER2

(King et al. 1985), HER3 (Kraus et al. 1989), and HER4 (Plowman et al. 1993a) for Human

Epidermal growth factor Receptor. As seen in Figure 1.5, all the ligands except heregulin bind

to HER1 while heregulin binds to HER3 and 4. Over-expression of HER2 is a poor prognosis

of cancer, leading to an intensive search for its ligand. During this search, heregulin was

discovered and originally thought to be HER2's ligand as ligand addition causes HER2

phosphorylation (Holmes et al. 1992; Wen et al. 1992). Later, it was determined that heregulin

initiated heterodimerization between HER3 or 4 with HER2, resulting in HER2 phosphorylation

and activation (Carraway and Cantley 1994; Carraway et al. 1995; Plowman et al. 1993b).

While HER2, 3, and 4 are structurally homologous to HER1, there are subtle

differences between the receptors: i.e. to date, no ligand has been found for HER2; HER3 and

4 have closer extracellular homology (-65%) to each other than to the other receptors (-43%);

HER3 does not have intrinsic kinase activity, but binds several different SH2 proteins which do

not interact with the other three receptors (Carraway and Cantley 1994); and all receptors except

HER1 are endocytosis impaired (Baulida et al. 1996). Also, heregulin-induced mitogenesis will

occur in NIH 3T3 cells transfected with HER3 or HER4. However, heregulin-induced cell

transformation was achieved only upon co-transfection of HERI or HER2 with HER3 or

HER4. This transformation correlated with receptor transphorylation (Zhang et al. 1996).

The EGF receptor, HER1, is a 170 kDa transmembrane glycoprotein with intrinsic

protein tyrosine kinase activity (Carpenter and Wahl 1990). The receptor, shown in Figure 1.6,

is composed of four domains: the extracellular, transmembrane, juxtamembrane and

cytoplasmic domains. The extracellular domain consists of 621 amino acids and has two

dominant structural features: 51 cysteine residues (compared with only nine cysteines in the

cytoplasmic domain) and twelve potential N-linked glycosylation sites. The cysteines are

predominantly located in two regions (134-313, 446-612) (Ullrich et al. 1984) which appear to

cooperate in forming a single high-affinity EGF binding site (Gill et al. 1987). The

transmembrane region of the receptor spans residues 622-644 and may function in transmitting

the ligand binding signal to the cytoplasmic domain (Gill et al. 1987). Controversy exists as to

whether the signal is transmitted intramolecular through the transmembrane or intermolecular

with EGFR dimerization (Yarden and Schlessinger 1987). However, several studies have

shown that EGF / EGFR protein signaling can occur in the absence of EGFR dimerization

(Carraway and Cerione 1993). The juxtamembrane region directly following the



transmembrane region contains thirteen highly basic amino acids and has an important

regulatory site, threonine 654, which upon phosphorylation decreases the receptor's affinity for

its ligand (Davis 1988; Lund et al. 1990).

The 539 amino acid cytoplasmic domain contains the catalytic domain and several

regulatory domains. The tyrosine kinase domain from residues 663 to 957 is similar to several

other receptor tyrosine kinases, Figure 1.7 (Czech et al. 1990; Pawson and Schlessinger 1993).

An important amino acid in this domain is Lysine 721 which is required for ATP binding.

Mutations of this amino acid results in failure to mediate phosphatidyl inositol turnover, Ca 2 +

intake, Na+/H+ exchange, DNA synthesis, EGF-stimulated tyrosine kinase activity, receptor

autophosphorylation and internalization (Czech et al. 1990; Moolenaar et al. 1988; Wiley et al.

1991). Another important amino acid in the kinase domain is residue 743. A single nucleotide

mutation changing the amino acid from valine to glycine diminishes the ability of the EGFR to

phosphorylate itself and other proteins by 5 fold and 90%, respectively (Fowler et al. 1995;

Luetteke et al. 1994). The phenotype of this mutation in mice is very similar to TGFao deficient

mice exhibiting skin and eye abnormalities. The domain which regulates ligand induced

internalization is residues 993-1022. Sequential truncation of amino acids from this region

reduces EGFR internalization down to the basal rate of normal membrane turnover (Chang et al.

1993; Chen et al. 1989). The carboxyl terminal residues 1022-1186 function as the

autoregulatory domain and contains four of the five tyrosine autophosphorylation sites -

residues 1068, 1086, 1148 and 1173 (Chang et al. 1993). The effect of autophosphorylation

on receptor kinase activity is controversial, but site-directed mutations of 1068, 1148, and 1173

had only a minor effect on kinase activity (Bertics and Gill 1985; Downward et al. 1984;

Honegger et al. 1987). The domain containing residues 984-996 is the actin binding domain

which mediates interactions believed to be responsible for high affinity binding (den Hartigh et

al. 1992). Occupancy-induced lysosomal targeting of the EGF receptor has been isolated to the

945-991 region where the sequence YLVI, at residues 954-958, as been previously proposed as

a lysosomal targeting motif (Guamier et al. 1993; Opresko et al. 1995). The EGFR lysosomal

targeting region was recently used in a yeast two-hybrid expression library to find EGFR's

lysosomal sorting protein named sorting nexin-l (SNX1). SNX1 contained a region of

homology to yeast vacuolar sorting protein and its over-expression decreased EGFR surface

concentrations (Kurten et al. 1996).

The importance of EGFR in embryonic development is dramatically demonstrated in

EGFR knockout mice. One group developed two strains of knockout mice. The first strain

died at mid-gestation due to placental defects and the other strain lived to 3 weeks with skin,

kidney, brain, liver, and gastrointestinal tract abnormalities (Threadgill et al. 1995). Also



determined was the important role played by EGFR in trophectoderm development (the first

epithelial layer to form in mammalian embryos), blastocoel formation by the trophectoderm, and

implantation (Wiley et al. 1995). A review of EGF / TGFct and their receptor can also be found

in Boonstra or Carpenter (Boonstra et al. 1995; Carpenter and Wahl 1990).

1.4 Control of Autocrine Systems

As described earlier, the autocrine pathway occurs in many different cell lines ranging

from primary human tumors such as multiple myeloma (Kawano et al. 1988), adult T-cell

leukemia (Niitsu et al. 1988), colon and esophageal carcinomas (Sun et al. 1994; Yoshida et al.

1990) to normal cells such as macrophages, lymphocytes, and fibroblasts (Heldin and

Westermark 1990; Wong and Wahl 1991). Normal autocrine cells transformed by transfection

of SV40 large T antigen remain pathologically similar to parental cells (Tsao et al. 1996). It

required the further mutation / mis-regulation of cell mechanisms by additional transfection of v-

Ha-ras into cells to become highly tumorigenic (Valverius et al. 1989).

With this slight change in cellular regulation, an autocrine cell changes from responding

to wound healing signals to unbridled proliferation. This connection between two extremes is

summarized by two reciprocal quotes (Sporn and Roberts 1992): "'a wound is a tumor that

heals itself' (Haddow 1972) , and 'tumors are wounds that do not heal'" (Dvorak 1986). Thus,

while autocrine factors have been associated with cancer, these growth factors are important in

tissue repair and wound healing to breakdown collagen, fibroblast migration, and formation of

new collagen and vessels (Sporn and Roberts 1986). To quote: "The difference between the

involvement of these peptides in carcinogenesis and tissue repair appears to depend more

strongly on the context and degree of their expression and activity, rather than on their mere

presence or absence. Only when regulation is lost, does pathology result (Sporn and Roberts

1992)."

One method to inhibit the autocrine ligand-receptor signaling pathway and restore

equilibrium to a misregulated autocrine system is addition of antibodies against the EGF

receptor (Gill and Lazar 1981; Modjtahedi et al. 1993a; Modjtahedi et al. 1993b; van de Vijver

et al. 1991). In Figure 1.8a, van de Vijver shows the addition of 20 nM (-3 pg/ml) monoclonal

anti-EGFR 528 or 225 antibodies to A431 cells decreases EGFR tyrosine phosphorylation to

30% +/- 10% basal level. As seen in Figure 1.8b, the receptor mass remains constant, thus the

phosphorylation decrease resulted from blocking TGFox / EGFR binding with antibodies and

not degradation of protein. Note, that the TGFao-EGFR Kd, a measure of ligand-receptor

affinity, is about 1 nM, therefore, they were using a twenty fold excess of antibody.

Modjtahedi's group also showed they could completely inhibit TGFu / EGFR binding in neck



carcinoma and breast carcinoma cells using 100 nM of rat monoclonal anti-EGFR antibodies.

An important finding from van de Vijver's paper, is that exogenously added antibodies can

inhibit the binding of TGFa to its EGFR receptor, suggesting that TGF(c-EGFR binding does

not occur during receptor / ligand biosynthesis, intracellular processing, and vesicular secretion.

In Vijver's paper, addition of anti-receptor antibodies reduced receptor phosphorylation

due to the inhibition of receptor-ligand binding. As prolonged phosphorylation leads to DNA

synthesis and proliferation, the question should be "what is the relationship between receptor

occupancy and mitogenic response?" One group calculated there was a linear relationship

between steady-state EGF receptor occupancy and the mitogenic response in fibroblast cells

(Knauer et al. 1984). Knauer's graph, Figure 1.9, shows low EGF receptor occupancy can

induce a mitogenic response, and in fact, maximum mitogenic response is achieved with less

than 25% of total receptor occupancy. Other researchers have studied the effects of autocrine

cell proliferation upon the addition of anti-receptor blocking and anti-ligand decoy antibodies

(Rodeck et al. 1990; Yamada and Serrero 1988). Some of their key findings are presented in

Figure 1.10. In Figure 1.10a, the proliferation of a series of carcinoma cell lines was

completely inhibited upon addition of 30 nM anti-EGFR monoclonal antibody 425, interrupting

the cell's EGF / TGFx autocrine loop. Figure 1.10b shows the addition of micromolar anti-

ligand decoy antibody concentrations resulted in the decreased cell growth of autocrine insulin-

dependent teratoma cells to sixty percent normal. Although system parameters were not

determined in these experiments, the overall trends in receptor phosphorylation, ligand binding,

and cell proliferation indicate the feasibility of using antibodies to inhibit the formation of

receptor / ligand complexes. Therefore, in order to attain complete inhibition of EGFR

signaling and mitogenic response, an analysis of the parameters affecting ligand-receptor

binding should be performed.

1.5 Mathematical Modelling of Autocrine Systems

Mathematical modeling is an ideal technique to determine which cellular parameters are

important for interrupting the autocrine pathway. An early model analyzed cellular and

environmental parameters', such as inoculum cell density and carrier beads versus culture

dishes, importance on regulating mammalian autocrine cell growth. To obtain similar cell

growth rates with increasing microsphere radius required a linearly proportional increase in

initial number of autocrine cells seeded. A second observation was greater inoculum cell

density / unit area was required to achieve similar growth rates for spherical microcarriers

versus flat tissue culture dishes (Lauffenburger and Cozens 1989). This model was based on

autocrine platelet-derived growth factor (PDGF) cells, modelling ligand production, diffusion,



binding, and cell proliferation. Some differences between this model and current experimental

system is the assumption of infinite bulk medium (therefore, no extracellular bulk ligand

concentration variable) and no competing antibodies. Another disadvantage is the use of cell

proliferation as the dependent variable. Experimentally, cell proliferation must be recorded

periodically over several days and the increasing cell density's effect on other cellular

parameters would be difficult to quantitate.

A second group evaluated the antibody concentration required to neutralize gastrin-

releasing peptide (GRP) autocrine growth factor's effect on small cell lung cancer (Mulshine et

al. 1992). It was determined that 160 mg anti-GRP decoy antibody would reduce receptor

occupancy below 10% for a 1 kg tumor in vivo. Some problems with this model are steady

state calculations (thus, no difference between autocrine cells and receptor cells "bathed" in

ligand), assumption of no proliferation below 10% receptor occupancy (see Knauer et al.,

1984), no difference between local cell environment versus bulk medium and based on in vivo

whole body assay versus in vitro culture dish experiments.

Another model analyzed competition between decoy antibodies and surface receptors

(Goldstein et al. 1989). The experimental system used 2,4-dinitrophenyl (DNP) aminocaproyl-

L-tyrosine (DCT) as the ligand. Monoclonal anti-DNP antibodies were used as a decoy

antibody and a cell receptor by anchoring the antibody to rat basophilic leukemia cell's high

affinity FcE receptor. Experimental data and computer modelling indicated that 2.4 jgM decoy

antibody was required to inhibit DCT rebinding to cells containing 6x105 receptors.

Deficiencies with this model include: not an autocrine system (ligand exogenously added),

quasi-steady state equilibrium assumptions, no internalization and degradation of receptor /

ligand complexes or normal receptor trafficking. They do have an implied screening length,

separating receptor / ligand binding at the cell surface from ligand in the bulk medium. An

advantage with this system is using the same antibody as both decoy and receptor plus the

ability to easily manipulate receptor concentrations by varying amount of anti-DNP antibody

bound to cells.

Computation work based on the interleukin 2 (IL2) system, a well studied autocrine T

lymphocyte system (Duprez et al. 1985; Smith 1990) has been performed by Forsten and

Lauffenburger (Forsten and Lauffenburger 1992a; Forsten and Lauffenburger 1992b; Forsten

and Lauffenburger 1994a). Forsten's papers perform mathematical calculations on autocrine

ligand binding using solution decoys and receptor blocking antibodies as competitors to

receptors / ligand binding. In Kim Forsten's computer model shown in Figure 1.11 (decoy)

and Figure 1.12 (blocker), known IL2 values for the ligand and receptor secretion rates, ligand

and receptor binding kinetics, diffusion rates, and degradation rates were used. By varying the



parameters values for cell density, ligand secretion, diffusion, ligand-receptor affinity and

solution decoys, she was able to analyze their effects on receptor complex numbers.

Computer modelling indicate two inhibition regimes exist when using competing soluble

receptor decoys on autocrine cells (Figure 1.13a). The first stage of inhibition occurs at low

decoy concentrations and is a function of the ligand's diffusion limitations into the bulk

medium. The second plateau of inhibition results from the diffusion limitations of the soluble

receptor decoy into the cell receptor's binding "domain." At this point, the cell receptor and

soluble receptor compete directly for freshly synthesized and receptor-released ligand. The

location of these plateaus with respect to soluble receptor concentration is a function of the cell

density and ligand secretion rates. According to the model, every 10 fold increase in cell

density requires a similar 10 fold increase in soluble decoy receptor concentration to achieve the

same inhibition level of receptor complex numbers. Also, increasing secretion rates means a

similar increase in decoy receptor concentrations to maintain similar receptor complexes levels

(Figure 1.13a and b).

A second method for inhibiting receptor - ligand binding uses blocking antibodies

against the receptor as mentioned in section 1.4. In Figure 1.14a, receptor-ligand complex

levels were predicted as a function of cell density and anti-receptor blocking antibodies

concentrations (Forsten and Lauffenburger 1992b). When comparing this figure against Figure

1.13a, there are a few noticeable differences such as the lack of a second plateau and inhibition

of receptor complexes at different inhibitor concentrations. Interruption of the receptor complex

is preempted in the soluble decoy model compared to the receptor blocking model due to the

depletion of soluble decoys by ligand binding as they diffuse into the proximal secretion layer.

This diffusion and "effective" proximal ligand decoy concentration causes the second plateau

and orders of magnitude increase in antibodies required to achieve complete ligand binding

inhibition when compared to receptor blocking antibodies (Figure 1.14b). A possible problem

with this model besides anchorage-independence and 1L2 versus EGF / TGFuo / EGFR cell

systems is the lack of intercellular receptor / ligand sorting between degradation and recycling

pathways upon internalization of complexes. However, these computer models reflect the need

for an experimental understanding into cellular parameters such as cell density and ligand

secretion rates to prevent unregulated proliferation of cancerous cells.

1.6 Expression System for Autocrine Ligand

DNA expression vectors are utilized to promote the expression of a foreign gene in a

transfected cell under constitutive or inducible control. A review of different enhancers and

promoters controlling / promoting the expression of proteins from expression vectors can be



found in Gene Transfer and Expression - A Laboratory Manual by Michael Kriegler (Kriegler

1990). There are several promoters and enhancers used in expression vectors which

constitutively express the desired gene, some of the more common ones include SV40 and

hCMV. SV40 enhancer was the first enhancing DNA sequence discovered, derived from the

viral DNA SV40 (Banerji et al. 1981; Moreau et al. 1981). However, the SV40 enhancer is

very complex (three functional units) and subject to positional effects and has cell type specific

dependencies on cellular factors. The second enhancer is human cytomegalovirus (hCMV)

which is about 400 base pairs long, has little cell-type or species preference and several fold

more active than SV40 (Boshart et al. 1985).

In contrast to the number of constitutive promoters and enhancers, there are very few

which regulate gene expression. Two of the most common ones are metallothionein (Palmiter et

al. 1982) and mouse mammary tumor virus (Huang et al. 1981; Lee et al. 1981).

Metallothionein promoter is induced by the addition of heavy metals or phorbol esters.

Typically, these vectors have high basal expression in the absence of metal and modest

induction of gene expression upon addition of metal (Palmiter et al. 1982). An adjustment of

the ratio between metal-responsive elements and basal-level elements had a best case 200 fold

induction (McNeall et al. 1989). Mouse mammary tumor virus promoter has glucocorticoid-

responsive elements which are induced by addition of dexamethasone. Utilization of this

promoter resulted in low protein expression (unpublished observation).

To obtain a high and controllable protein expression from cells, a two plasmid

transactivator expression system under tetracycline control was used (Gossen and Bujard

1992). This plasmid system was constructed so that protein expression levels could be

gradually induced from low to high expression with the adjustment of tetracycline

concentrations. The first plasmid (pUHD 15.1), shown in Figure 1.15, contains a gene

sequence which fuses the tet repressor protein to the activating domain of herpes simplex virus

virion protein 16. The fused protein, tetracycline-controlled transactivator (tTA), is

constitutively expressed using the human cytomegalovirus (hCMV) promoter / enhancer

regulatory region. The second plasmid, (pUHD 10.3), shown in Figure 1.16, has a hCMV

minimal promoter created by removing the enhancer region via PCR from the normal hCMV

DNA sequence. In addition, seven inserts of the 19 bp inverted repeat sequence for the tet

operator from Tn10 were added upstream of the hCMV minimal promoter, creating the fused

protein's binding site. The 19 bp repeat sequence is 5'- TCTCTATCACTGATAGGGA-3'.

Following the tet operators and hCMV region is the polylinker and SV40 polyadenylation

regions. A schematic of the two plasmid system is shown in Figure 1.17. The tTA protein

from the first plasmid is sensitive to low tetracycline concentrations and in the presence of



tetracycline can not stimulate mRNA transcription on the second plasmid. However, in the

absence of tetracycline, the tTA protein promotes RNA polymerase binding, leading to RNA

transcription and protein synthesis.

1.7 Cell Microphysiometer Assay for Autocrine Ligand Binding

A method for observing autocrine receptor / ligand complex levels can be achieved by

measuring extracellular acidification rates (ECAR) using Molecular Devices Microphysiometer /

Cytosensor and correlating its data to receptor complex numbers obtained from 1125 EGF

binding experiments. The production of acidic metabolites occurs via glycolysis of glucose to

lactic acid or glucose oxidization to CO2 by respiration. At physiological pH, these weak acids

dissociate, yielding two to six H+ per glucose molecule. Normal cultured fibroblast cells have a

very active glycolysis rate, accounting for about 80% of the secreted protons or around 108

protons per second (McConnell et al. 1992). The Cytosensor can also detect intracellular pH

regulation via the sodium-hydrogen exchange pump independent of glucose pathways.

Chemicals inhibiting this ion exchange pump are choline (increases intracellular proton

concentration) and amiloride (inhibitor of Na+-H + exchange system). The secondary signalling

pathway is another contributor to extracellular pH changes and can be interrupted using

genistein (inhibit tyrosine kinase activity), forskolin and cholera toxin (increase cAMP), or

staurosporine (inhibits protein kinase C). Both the sodium-hydrogen exchange pump and

secondary signalling pathway are regulated by receptor / ligand signalling, thus, changes in

complex levels affect cell metabolic rates in shown in Figure 1.18.

The Cytosensor detects small changes in extracellular hydrogen proton concentration

(rms error < 0.001 pH units) using a light-addressable potentiometric sensor (LAPS) (Owicki et

al. 1990). A schematic of the LAPS is shown in Figure 1.19a. The surface of the silicon

nitride insulator contains silanol and silamine groups which titrate as a function of pH (zero

charge at pH 3.5). Using an amplitude-modulated light-emitting diode (LED), a charge

separation results in a compensatory capacitatively coupled movement at the sensor's insulator

surface which is detected by the ammeter. As increasing potential is applied to the solution, the

depletion layer collapses, inhibiting the photocurrent. Thus, a plot of photocurrent (Ip) versus

applied potential (T) is obtained with a characteristic inflection point (d2Ip / dT 2 = 0) defined as

(YT p). As the sensor's surface potential depends on solution pH, changes in the inflection

point correlates to extracellular pH changes. The instrument's pH response to surface potential

is 61 mV per pH unit at 37 OC, sweeping over 1000 mVs. Shown in Figure 1.19b, medium is

pumped by peristaltic pump through a debubbler-degasser to the sensor chamber. Cells are pre-

attached to a membrane insert and in diffusive contact with the LAPS sensor.



The pH change is ascertained over defined time periods by briefly halting the flow of

medium over cells to generate the Ip - T graph (Figure 1.20a). Measuring 'pip once a second

for 20 seconds when the pump is off creates a Tpip versus time graph from which a linear best

fit line gives the cell's H+ secretion rate (Figure 1.20b). The medium's flow is resumed and the

entire pump cycle repeated every few minutes. A plot of cells' acidification rate over time

shows the response of cells to additives (Figure 1.20c).

Original Cytosensor applications include measuring cellular apoptosis as a function of

chemotherapeutic drugs, metabolic poisons (i.e. carbonylcyanide chlorophenylhydrazone), and

various irritants (i.e. dimethyl sulfoxide, acetone, benzalkomiun Cl) (Parce et al. 1989).

Receptor-mediated responses were measured as a function of growth factor additions and

competing antibodies (Owicki et al. 1990) along with secondary pathway transduction

elucidation via probes for G proteins (i.e. cholera toxins, forskolin, protein kinase C inhibitors

(staurosporine), tyrosine kinase inhibitors (genistein)) (Molecular Devices Corp. 1994). More

recent Cytosensor applications are variations of the same experiments including anti-infective

saponins on fungi and bacteria (Okunji et al. 1996), different agonists on dopamine D2 and D3

receptors (Boyfield et al. 1996), peptide ligands or anti-idiotypic antibody on B-lymphoma cells

(Renschler et al. 1995), or HER2 / HER3 metabolic response upon heregulin additions (Chan et

al. 1995). Hypothesizing that extracellular acidification should correlate directly with receptor /

ligand complex levels, it was believed that Cytosensor utilization could be expanded to studying

receptor complexes quantitatively.

Having described the Cytosensor inner workings and previous applications, predictions

on autocrine cell responses to varying ligand concentrations and inhibitors can be formulated.

Shown in Figure 1.21a, it is predicted that autocrine B82R + / TGFx autocrine cells'

extracellular acidification rates will increase as a function of increasing ligand expression as

receptor / ligand signalling complexes correspondingly increase. Addition of antibodies to cells

stimulated by ligand, exogenously added or endogenously secreted, would decrease cell's

ECAR as shown in Figure 1.21 b. Experiments can be performed on two different types of

autocrine cells, this thesis's autocrine B82R' / TGFox cell system (TGFoc synthesized as

transmembrane precursor and cleaved into a mature protein) and an autocrine B82R' / sEGF

(sEGF is synthesized as a mature protein). B82R' / sEGF's ECAR should be higher than

autocrine TGFcx cells, because TGFct must be cleaved at the surface before it can diffuse and

bind to the EGF receptor, allowing more chances for antibody inhibition, whereas sEGF could

bind before surface expression. Autocrine ligands and receptors are secreted in close proximity,

increasing their effective concentrations, whereas, exogenously added ligands and antibodies

must diffuse through the bulk medium before competing for receptor binding. Thus, both



TGFc and EGF autocrine cell's advantage should result in a higher ECAR versus non-autocrine

cells in the presence of antibody.

As Cytosensor's output is a metabolic rate and experimental values in terms of ligand

concentrations / receptor-ligand complexes / free receptor levels, an experiment relating

Cytosensor's data to these variables must be performed. A calibration between Cytosensor

output and receptor / ligand complexes can be obtained using radioactive ligand equilibrium

binding data. Two experiments would be performed, one with radiolabelled ligand data (bound

ligand versus free ligand) and one with Cytosensor data (extracellular acidification rate versus

free ligand). The Scatchard equation from equilibrium binding data (Scatchard 1949) can be

solved from its more common form (Eq. 2.1) for free ligand concentration as shown in equation

2.2.

C / L = - C / Kd + Rt / Kd Equation 2.1

L = C * Kd / (Rt - C) Equation 2.2

After determining the constants, Kd and Rt, Equation 2.2 can be substituted into an analogous

fit of the Cytosensor's ECAR versus free ligand graph. The combined equation eliminates free

ligand, leaving bound ligand (complexes), metabolic rate and grouped constants.

By combining these techniques, the Cytosensor can be utilized to quantify an antibody's

ability to interrupt an autocrine loop. Autocrine receptor / ligand complex formation may be

inhibited by addition decoy and blocking antibody concentrations. Since ECAR is proportional

to receptor complex levels, Cytosensor's data can be replotted as receptor complex levels versus

antibody concentrations. Cytosensor data would be compared to computer model data depicted

in Figure 1.14b predicting blocking antibody superiority over decoy antibody in receptor /

ligand complex inhibition. Thus, a relationship between Cytosensor data and receptor complex

levels will allow analysis of computer models and experimental results.

1.8 Thesis Overview

Computer modelling has indicated methods for inhibiting the autocrine signalling

pathway; however, only a few uncontrolled experiments have been performed on this system.

Some of the experimental problems are cell systems which make more than one ligand for the

EGF receptor or a single, constitutive, ligand production rate. In order to examine methods for

interrupting the autocrine pathway, I have developed an artificial autocrine and paracrine TGFa

cell system using mouse B82 L cells, which do not have endogenous EGF receptors nor EGF

family ligands.

The transmembrane TGFa gene sequence was spliced into the second plasmid of the

two plasmid tetracycline system and transfected into EGF receptor-positive and -negative cells



via calcium precipitation. TGF( secreting cells were isolated using histidinol selection,

subcloning and ELISAs. With the successful transfection of TGFc into these cells, I obtain

single ligand-receptor dynamics. Figure 1.22 shows how the cells were developed and which

plasmids were utilized to construct an B82 EGF receptor-positive and -negative TGFc

expression system. Nomenclature throughout the thesis will refer to autocrine and paracrine

cells using EGF / TGFa ligands with and without their receptor, EGFR. B82R' / TGFa

autocrine cells refer to the normal, same cell, receptor / ligand expression as defined in Figure

1.1. While a true paracrine cell system has ligand expressing cells and ligand receiving receptor

cells, all further references to a paracrine cell refer only to the ligand expressing cell, B82 EGFR

negative (R) / TGFa.

The two plasmid system enables the regulation of TGFc expression levels before,

during and after experiments. Studies in which tetracycline concentrations were varied

demonstrate the ability to incrementally and precisely adjust TGFx expression. TGFct was

characterized using Sephadex column separation and membrane extraction, showing that the

transfected B82 cells secrete mature TGFa. Having characterized the TGFca expression

system, experiments were performed on the cells to test model predictions on bulk ligand

concentrations as a function of cell density and receptor / ligand complexes as a function of

competing antibodies. Bulk ligand measurement as a function of cell density and ligand

secretion rates indicated the importance of cell density and blocking antibodies when performing

ligand accumulation / secretion experiments to obtain a "true" measurement of ligand secretion

rates. The effect of ligand secreting rates verifies predictions that at high secretion, bulk TGFx

concentrations would be independent of ligand uptake by its receptor, while dependent at lower

secretion rates.

To quantify autocrine receptor / ligand complex accurately, an experimental system was

developed using a modified 1125 binding assay and Molecular Devices Cytosensor. These

measurements validated model predictions indicating blocking antibody's superiority over decoy

antibodies for inhibiting autocrine receptor / ligand complexes. Further experiments between

autocrine cells expressing either transmembrane TGFac or mature EGF indicate the possibility of

intracrine signalling in EGFR / EGF autocrine cells. Finally, the effect of increasing ligand

expression levels in autocrine cells on receptor down-regulation and desensitization were

studied. Thus, the bioengineered, experimental, autocrine cell system enabled a systematic

study of cellular parameters which regulate cell signaling, gaining insights into the mechanisms

of cancerous cell growth.
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Figure 1.1: Ligand secretion pathways. Endocrine secretion: The ligand is secreted from

the source cell and travels via the bloodstream to a target celi. Paracrine secretion: The

source and target cells are in close proximity. Autocrine secretion: The target cells secretes

its own ligand. Juxtacrine secretion: The source cell secretes membrane-bound ligand and

by the adjacent target cell. (Adapted from Forsten and Lauffenburger, 1992a)

A



ggggKKggg KKKKKggg
I

C
I

K

C

Ci

Figure 1.2: TGFo precursor.: The arrows indicate the cleavage sites used to excise

the 50 amino acid mature TGFcx protein from the 160 amino acid precursor. The

mature protein is shown in bold. Glycosylation occurs on the asparagine residue of the

NST triplet. (Adapted from Brackmann et al., 1989)
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Figure 1.3: Amino acid relationship between members of the EGF family.

Heregulin sequence begins with amino acid 175 of the proHRGx protein, while the other

polypeptide sequences are numbered relative to the mature form's NH 2 terminal. Conserved

sequences between the proteins are denoted in bold highlight. Disulfide bonds are indicated by

solid lines at the bottom. Residue numbering for EGF is shown at the top. Legend numbers in

parentheses indicate percent homology with human TGFoX. (Adapted from Shing et al., 1993;

Carpenter and Wahl, 1990)

Legend:

A: Human EGF(40%) E Human Amphiregulin (26%)
B: Mouse EGF (32%) F: Human Heparin Binding-EGF (32%)

C Human TGFca (-) G Mouse Betacellulin (50%)

ID Rat TGF ax (90%) H: Human Heregulin ax (30%)
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Figure 1.4: Schematic representation of hTGFo structure. Dot-filled circles

are possible conserved EGF receptor binding sites. Hatch-filled circles are possible

conserved TGFc structural amino acids. Conserved cysteines are shown with bold

circles and linked via disulfide bridges indicated by solid lines. (Adapted from

Feild et al., 1992)
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Figure 1.5: Epidermal growth factor ligands and receptors family.

Where EGF is epidermal growth factor, TGFc is transforming growth factor

alpha, EGFR is epidermal growth factor receptor, HER is human EGFR, and

NDF is neu differentiation factor (heregulin).
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Figure 1.6: EGF receptor domains. Mutation of 721 to methionine abolishes kinase

activity. Mutation of 654 to alanine decreases the affinity of EGFR for its ligands and 743

mutation to glycine results in wav-2 phenotype. Sequential deletion of the fragments 1, 2

and 3 from the COOH terminal results in the loss of endocytic function. NPXY motif is

similiar to the LDL receptor internalization code, where Y* indicates tyrosine

phosphorylation sites. (Adapted from Chang et al., 1993 and Opresko et al., 1995)
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Figure 1.7: Receptor tyrosine kinases. Distinct families of receptor tyrosine kinase

families as classified by Ullrich and Schlessinger, 1990. Identified structures are:

tyrosine kinase domain (dotted boxes), transmembrane domain (solid box), cysteine-rich

domains (stripped box), immunoglobulin-like domains (semi-circles), acid domain (open

box), fibronectin III domain (checkered box). (Adapted from Fantl et al., 1993)
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Figure 1.8: Inhibition of phosphorylation by anti-receptor monoclonal antibodies.

Graph A: A431 cells cultured in P32 for 16 hours with or with antibodies 225 and 528.

Maximum phosphorylation response obtained with the culturing of A431 cells with EGF.

Graph B: 170 kD bands exised from graph A and resolved on two-dimensional gel.

Graph C: A431 cells cultured in P32 or S35 with or without antibody 528 for 16 hours.

(Adapted from Van Der Vijver et al., 1991)
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Figure 1.9: Relationship between EGF receptor occupancy and

mitogenic response. Dependence of maximum DNA synthesis rate on the number

of total occupied receptors. (Adapted from Knauer et al., 1994)
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Figure 1.10: Experimental data on ligand decoys' and receptor blocker's affect on autocrine

cell stimulation. Graph A: Inhibition of autocrine EGF/TGFR carcinoma cell proliferation in the

presence of increasing receptor blocker antibody concentrations. Graph B: Inhibition of autocrine

insulin-related factor teratoma cell proliferation in the presence of increasing ligand decoy

antibodies. (Adapted from Rodeck et al., 1990 and Yamada et al., 1988)
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Figure 1.11: Autocrine cell model schematic - decoy antibody.

(Adapted from Forsten and Lauffenburger, 1992a)
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Figure 1.12: Autocrine cell model schematic - blocker model.

(Adapted from Forsten and Lauffenburger, 1992b)
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Figure 1.13: Decoy receptor effects on cell receptor complex levels. Graph A: Effect of

varying cell density on receptor - ligand complex levels. Graph B: Effect of varying ligand

secretion on receptor - ligand complex levels. (Adapted from Forsten and Lauffenburger,

1992a)
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Figure 1.14: Receptor antibody effects on cell receptor complex levels. Graph A: Effect

of varying cell density on receptor - ligand complex levels in the presence of receptor

antibodies. Graph B: Comparison of receptor antibodies versus soluble decoy receptors at a

cell density of 105 cells/ml. (Adapted from Forsten and Lauffenburger, 1992b)
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Figure 1.15: pUHD15.1. First plasmid of the tetracycline controlled two plasmid system.

(Adapted from Gossen and Bujard, 1992)
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Figure 1.16: pUHD10.3. Second plasmid of the tetracycline controlled two plasmid

system. (Adapted from Gossen and Bujard, 1992)
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Figure 1.18: Schematic of Ligand / Receptor signalling detection by Molecular

Devices Cytosensor.
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Figure 1.22: Artificially engineered B82 TGFo family. A schematic

of plasmids required to create a paracrine and autocrine TGFao cell system.
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Chapter 2: Modelling Autocrine Cell Receptor / Ligand / Antibody Interactions

2.1 Revising Anchorage-Independent to -Dependent Model

Described in chapter 1.5 was mathematical modeling work applied previously to IL-2

autocrine system for T-lymphocytes, which are anchorage-independent cells growing in

suspension (Forsten and Lauffenburger 1992a; Forsten and Lauffenburger 1992b; Forsten and

Lauffenburger 1994a). However, the B82R' / TGFox autocrine system is anchorage-

dependent. Therefore, the existing model was modified from an anchorage-independent to -

dependent cell situation. Figure 2.1 is a schematic illustration of the suspended autocrine cell

with anti-receptor blocking antibodies (Forsten and Lauffenburger 1992b) while indicating

important variables and parameters. Figure 2.1b is a schematic converting the anchorage-

independent autocrine cell model to an anchorage-dependent cell situation with its additional

relevant parameters indicated. The model equations for anchorage-dependent autocrine cells are

listed in Table 4.1 (blocking antibody), Table 4.2 (decoy antibody), Table 4.3 (nomenclature).

The anchorage-dependent LSODE programs are listed in Appendix C and D for blocking and

decoy antibodies, respectively. Both models' parameter values were changed from IL-2

receptor system to EGF receptor system.

The secretion layer was determined to be the distance at which ligand flux becomes

radial (Berg 1983), remains the same between suspension and anchored models. However,

anchored cells have an advantage over suspended cells in that they are closer together in a 2D

environment versus 3D environment. This close proximity of cells and cell-cell interactions

suggests an intermediate boundary layer between the anchorage substratum and the bulk

medium, represented by an intermediate volume parameter, V,. Computer simulations with

varying volume heights shows little effect on ligand concentrations and selected to be 25 jim

(Forsten and Lauffenburger 1992a). Thus, bulk volume, V,, is the total volume minus cell,

secretion, and intermediate layer volumes. As all calculations are based on volume per cell, the

bulk volume and intermediate volumes need to be determined on a cell basis. T, cell area (cm 2 /

cell), is a parameter based on assuming an evenly dispersed cell population on a defined surface

area. V, is calculated as intermediate boundary height times T, minus cell and secretion layer

volumes. VB is equal to T times the difference in medium height and intermediate boundary

layer height in a culture dish. Extra diffusion terms are required for ligand and antibody

trafficking between the intermediate boundary layer, secretion layer and bulk volumes. Thus,

the following terms must be included in Equations 6, 7, 5, and 3 in Table 2.1 and similar

substitution in Table 2.2:



-A L ( LB - Li) { la} -A ( B B - B) { lb}

AL(Li-L ) {lc} AB(Bi-B ) {ld}

where:

AiL = (1 DL TP2) / 6, t {2a} AiB = (H DB Y2) / 8,t {2b}

AL = 2 H DL (a + 8) {2c } AB = 2 H DB (a + 8) {2d}

2.2 Computer Modelling Predictions

There are several different venues when analyzing B82R' / ligand autocrine cell

signalling models; however, in this thesis, two directions were chosen: receptor / ligand

complex levels and extracellular bulk ligand concentrations. The first is receptor / ligand

complex levels. Figure 2.2 shows model predictions of cell receptor / ligand complex numbers

as a function of anti-receptor blocking antibody concentration and ligand secretion rates for

plated cells. Note that the receptor-ligand complex level are low compared to the total number

of receptors available. However, only a small proportion of the total steady state receptors are

required to initiate a mitogenic response (Knauer et al. 1984), at least in fibroblasts, as

discussed in chapter 1.4 and shown in Figure 1.7. As seen and intuitively predicted, receptor /

ligand complex levels increase with increasing ligand secretion rates, i.e. more ligand available

allows formation of more complexes. Another important aspect of this graph is at what

blocking antibody concentration completely inhibits receptor / ligand complexes. The model

predicts a concentration of 1 nM blocking antibody will inhibit cell surface receptor / ligand

complexes to essentially zero.

Figure 2.3 illustrates modelling predictions on the effect of anti-ligand decoy and anti-

receptor blocking antibody additions to plated B82R' / ligand autocrine cells. As discussed in

chapter 1.5 and Figure 1.11, blocking antibodies are predicted to be a superior inhibitor of

receptor / ligand complexes compared to decoy antibody. Here again, it requires nearly 1,000

times more decoy antibody to completely inhibit receptor / ligand complexes. Changing the

model from IL-2 to EGF also prominently affects decoy antibody's curve as to what level of

inhibition will occur. In IL-2's curve, decoy antibodies started to inhibit complex as soon as

blocking antibodies did, but had a second plateau over a large change in decoy antibody

concentrations. In EGF autocrine cell model predictions, there was an offset in complex

inhibition compared to blocking antibodies before complexes rapidly drop with a slope similar

to blocking antibody's curve to zero. This difference in the curves is a result of ligand / receptor

affinity and diffusion. IL-2's equilibrium dissociation constant, Kd , is 0.031 nM (Wang and



Smith 1987), while EGF's Kd is 1 nM. Both ligands have a kon rate constant, 0.1 tM-' sec';

however, kff varies between the two by 1,000 fold. Thus, the antibodies are able to inhibit

receptor / ligand complexes at an earlier concentration and mask the diffusion plateau when

comparing differences between EGF and IL-2 receptor systems.

The next venue for modelling analysis is extracellular bulk ligand concentrations or the

amount of ligand that escapes cell receptor binding and accumulates in the extracellular bulk

medium. Extracellular bulk ligand concentration predictions on a per cell basis are plotted as a

function of cell density in Figure 2.4a, for ligand synthesis rates of 30 and 6200 molecules /

cell-minute and other parameter values given in the figure legend. These ligand secretion rates

correspond to experimental data to be discuss in Chapter 4.7. One prediction is, at low cell

densities, per-cell ligand levels should be similar regardless of blocking antibodies, but as cell

density increases, per-cell ligand levels will decrease in the absence of antibody. This

"clearance" is due to endocytic degradation mediated by binding to cell receptors (Will et al.

1995). Upon addition of blocking antibodies (at a concentration of 20 p.g / ml, or

approximately 100 nM), ligand levels increase compared to cells without antibody. In the

presence of blocking antibody, receptor-mediated ligand uptake is inhibited and extracellular

bulk ligand concentrations remain constant regardless of cell density.

A second observation is a predicted difference in ligand clearance between low and high

synthesis rates. At a low synthesis rate, ligand is rapidly lost from the medium at high cell

densities. At a high ligand synthesis rate, ligand levels begin to decrease at the same cell density

in the absence of antibody, but significantly less loss occurs at higher cell densities when

compared to the low ligand secreting cells. This difference is due to competing ligand synthesis

and receptor-mediated ligand degradation rates. At the higher ligand secretion rates, autocrine

cells are simply creating more ligand than they can bind and degrade, becoming "pseudo-

paracrine" cells (Will et al. 1995).

A common method of analyzing bulk ligand concentrations is to plot total ligand

concentration per plate as shown in Figure 2.4b. Using this analysis, ligand accumulation

increases linearly with increasing cell population in both the presence and absence of blocking

antibodies at high ligand secretion rates. At lower secretion rates, ligand accumulation is also

linear in the presence of antibody, due to the prevention of receptor-mediated ligand uptake and

reaches an equilibrium between ligand uptake and secretion in the absence of blocking antibody.

Both methods are valid, allowing the experimenter to analyze and interpret the data via two

different methods.

These results underscore the necessity for measuring bulk ligand concentrations at

defined (preferable low) cell densities and in the presence of sufficient blocking antibody in



order to reliably determine the ligand synthesis rate. Otherwise, one would obtain an incorrect

ligand synthesis rate, underestimating the fraction of ligand taken up by cell receptors. This

suggestion is consistent with the one previous examination of this topic, for the IL-2 T-

lymphocyte system (Claret et al. 1992). In that work, it was found that 25-50 nM of anti-IL-2R

blocking antibody was required to permit 1L-2 to escape from secreting cells at maximal levels.

The IL-2 synthesis rate can be estimated under these conditions to be approximately 300

molecules/cell-minute. These findings compare favorably with model predictions (Figure 2.2)

that roughly 10-100 nM of an anti-receptor blocking antibody (possessing affinity on the order

of 1 nM for the receptor) would be required, blocking a sufficient fraction of cell surface

receptors and permitting a substantial amount of synthesized ligand to escape into the bulk

extracellular medium. We note that this estimate depends on the cell density used by Claret et

al. -- which was not reported in their study -- being sufficiently great (see Figure 2.4) that cell

uptake of synthesize ligand in the absence of blocking antibody is indeed significant. Such an

uncertainty reiterates the need to quantify key system parameters in order to properly interpret

experimental findings.

This sort of mathematical modeling approach yields important insights concerning which

molecular and cellular variables and parameters govern autocrine loop behavior. With an

experimentally validated model, further detailed questions can be asked regarding regulation of

autocrine signaling and consequent cell responses, not only allowing more rational design of

therapeutic interventions but also deeper insight into fundamental biological mechanisms. A

particularly intriguing issue, for instance, is the relationship between the level of autocrine

ligand found in the extracellular environment and the functional significance of an autocrine

loop. More precisely, it is typically considered that autocrine signaling is most important when

a large concentration of autocrine ligand is found in the bulk medium, because this condition

represents a "community" effect signal representing cell density (Alberts et al. 1994).

However, it is alternatively conceivable that the most physiologically effective autocrine

regulation occurs when very little ligand escapes into the extracellular medium. In this case,

instead of reflecting information merely about cell density, the autocrine loop serves to give the

secreting cell data about the molecular components present in its very local neighborhood; this

can be termed a "sonar" effect. Thus, it will be crucial to be able to relate measurements of

extracellular autocrine ligand concentration to other key parameters of the autocrine loop in order

to properly understand the role of an autocrine loop in cell and tissue regulation.



Table 2.1: Autocrine model equations - Blocker antibody

dR / dt = -kR + Vr - kon L*R + koffC - 2kB onB*R + kB,ffY - (kc/sa)RY + 2kcoffY 2

dC / dt = kon L*R - koffC - keC

V* dB* / dt = -2kB onB*R + kB ffY + A*B(B , - B)

dY / dt = 2kaonB *R - kBoffY - k Y + 2kcoffY 2 - (kc / sa) R Y

V* dL* / dt = -konL*R + kBffC + A*L(L, - L*) + Q

V, dL, / dt = -A'L(LB - Li)

V, dB, / dt = -NB(B, - Bi)

V, dL, / dt = -A*L(L , - L*) + A'L(L - L,)

V, dB,I /dt = -A*B(B , - B*) + A'B(BB - Bi)

dY 2 / dt = (kc/ sa)R Y - 2kcofY 2 - k2Y 2

where:

A*L = 2HDL(a + 6)

A'L = RDLI'2 i 61nt

Initial Conditions:

R/Ro= 1.0

C / Ro = 0.0

B* / B, = 1.0

Y / Ro =0.0

L* / Kd = 0.0

L, / Kd = 0.0

BB /B,= 1.0

L,/Kd = 0.0

B,/ B = 1.0

Y, / Ro = 0.0

A * = 2HDB(a + 6)

A'B = 7rDBTY 2 / lnt

Surface Receptors:

Surface Complexes:

Secretion Layer Antibody:

Bound Receptor / Antibody:

Secretion Layer Ligand:

Bulk Media Ligand:

Bulk Media Antibody:

Intermediate Media Ligand:

Intermediate Media Antibody:

Receptor/Antibody/Receptor

All receptor initially unbound

No complexes

homogeneously distributed blocker concentration

No initial binding

secretion has not begun

secretion has not begun

homogeneously distributed blocker concentration

secretion has not begun

homogeneously distributed blocker concentration

No initial binding

where Kd is equilibrium dissociation constant and Bt is receptor blocker concentration

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.



Table 2.2 Autocrine model Equations - Decoy antibody

dR / dt = - konLR + koffC - ktR + V
dC / dt = konL*R - koffC - keC
V* dL* / dt = - k L*R + krC + 2ks,,X*V* - 2ks ,L*S*V *- V*kS,,L*Y* + V*ksoffY*

+ A*L (L, - L) + Q
4. V* dS* / dt = -2V*kSonL*S* + V*kSoffY* + A*s (S,- S*)

5. V*dY* / dt = 2ksonS*L*V* - kSoffY*V* - kSonY*L*V* + 2kSoffXV * + A*s(Y , - Y*)

6. V* dX* / dt = V*ksonL*Y* - 2V*ksoffX* + A*s(X, - X)

7. V dLB / dt = -2VBksonLBSB + VksoffY, + 2koffXBV, - ksonYLV, - A'L(LB - L i)

8. V, dS, / dt = -2VksonLBSB + VBksoffYB - A' s (SB - S,)
9. V, dYB / dt = 2 ksonSLVB - ksffYVB - ksonYLBVB + 2ksoffXBVB - A's(YB - Yi)
10. Vi dL, / dt = 2ksoffX,V, - 2konL,S,V, - ViksoL,Yi + VksoffY, - A*L(L , - L*) + A'L(LB - L,)

11. Vi dS, / dt = -2konL,SiV, + ksoffY,V, - As*(S , - S) + A's(SB - S,)
12. V, dY, / dt = 2konL,SiVi - ksoffY,V, - ksonY,L,Vi + 2ksoffXi V , - A s (Yi - Y) + Y s(Y, - Y,)
13. V, dX, / dt = V,konL,Y, - 2V,kSoffX, -A s (X,- X) + A's(XB - Xi)
14. X, = [S, (V* + V, + VB) - (S* + Y* + X*)V* - Vi(S, + X, +Y,) - VB(SB + Y,)] / VB

where:
A*L = 2IrDL(a + 8)
AL = 7tDL 2 

/ 6nt

Initial Conditions:
R /R o =1.0
C / Ro = 0.0

L* /Kd = 0.0
S' / S = 1.0
Y* / S, = 0.0
X*/ S = 0.0
LB / Kd = 0.0

S, / S, 1.0

YB / S, = 0.0

L, /Kd = 0.0

S,/ St = 0.0
Y, / St = 0.0

X, / St = 0.0

XB / S, = 0.0

A*s = 2·tDs(a + 6)
's = 0Ds 2/2 ,nt

Surface Receptors:
Surface Complexes:
Secretion Layer Ligand:
Secretion Layer Antibody:
Secretion Layer Bound L / Ab:
Secretion Layer Bound L / Ab / L:
Bulk Media Ligand:
Bulk Media Antibody:
Bulk Media Bound L / Ab:
Intermediate Media Ligand:
Intermediate Media Antibody:
Intermediate Media L / Ab:

Intermediate Media L / Ab / L:
Bulk Media Bound L / Ab / L:

All receptor initially unbound

No complexes

secretion has not begun

homogeneously distributed decoy conc.

secretion has not begun

secretion has not begun

secretion has not begun

homogeneously distributed decoy conc.

secretion has not begun

secretion has not begun

homogeneously distributed decoy conc.

secretion has not begun

secretion has not begun

secretion has not begun

where Kd is equilibrium dissociation constant and S, is ligand decoy concentration



Table 2.3 Autocrine model nomenclature and parameter values

Starbuck etal., 1990

Kd = 4.7 nM

kon = 0.34 min. -'

kon = 1.2e-13 cm 3 / site-min.

kon S,B = kon

kon S,B = kon

Ro = 100,000 # / cell

kt = 0.03 min. -'

ke = 0.3 min.-'

Forsten etal., 1992a,b

k, = k,
k 2 = ke

8 = 2e-5 cm

8,,, = 25e-4 cm

a = 5e-4 cm

DL = 9e-5 cm 2 / min.

Ds,B = 2e-5 cm 2 / min.

kc = 480e-10 cm 2 / min-molecule

kcoff = 60 min-'

Experimental Conditions

parea = 28.3 cm 2

plvol = 5 cm3

xheight = plvol / parea

T = parea / cell density, cm 2 - cell

VB= P * (xheight - ,n)

Vcell =5e-10 cm3 / cell

V* = 6.5e-11 cm / cell

V I= Int - Vcell- V*

Q = 30 - 6,000 # / cell - min.

Vr= Ro* kt

sa = 7.85e-7 cm

Receptor / Ligand Equilibrium Dissoc. constant

Receptor / Ligand Dissociation rate constant

Receptor / Ligand Association rate constant

Antibody - Antigen Dissociation rate constant

Antibody - Antigen Association rate constant

Initial receptor number

Constitutive internalization rate constant

Ligand-induced internalization rate constant

Internalization rate const., Antibody / Receptor

Induced internalization rate constant, Ab / Receptor / Ab

Secretion layer thickness

Intermediate layer thickness

Cell radius

Ligand diffusion constant

Antibody diffusion constant

Antibody / Receptor cell diffusion

Receptor / Antibody / Receptor dissociation

60 mm dish plate area

Media volume

Height of media in plate

Distance between cells - Homogeneously spread
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Figure 2.2: Modelling predictions - Varying ligand secretion rates. Effect of

varying ligand secretion rate on receptor / ligand complex levels in the presence of

anti-receptor blocking antibodies. Cell density is le6 cells / 60 mm plate. Ligand

secretion rates: 30 (squares), 300 (triangles), 2000 (circles), and 6200 (diamonds)

molecules / cell - minute.
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Figure 2.3:

Comparison of

Modelling predictions - Blocker versus Decoy antibodies.

receptor antibodies (squares) versus ligand decoy antibodies (circles)

at a ligand secretion rate of 6,000 molecules / min. Cell density is 107 cells / plate.
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Figure 2.4: Modelling predictions - Bulk ligand concentrations. Anchorage

dependent autocrine cell model predictions of extracellular ligand concentrations as a

function of cell density, ligand secretion rates, and blocking antibody concentrations.

Ligand secretion rates are 30 (squares) and 6200 (circles) molecules / cell - minute. A.

Bulk ligand concentrations as molecules / cell. B. Bulk ligand concentrations as

molecules / plate. Antibody concentrations are 0 {-17 log} (solid) and 20 {-6.7} (open)

gig / ml. Parameter values listed in Table 2.3.



Chapter 3: Experimental Methods - Ligand Characterization

3.1 Materials

pUHD 15.1 and pUHD 10.3, shown in Figure 1.15 and 1.16, respectively, were made

by Manfred Gossen and Hermann Bujard (University of Heidelberg, Heidelberg, Germany)

and used with permission. pMTE4 (transmembrane TGFx cleavable protein), shown in Figure

3.1, was kindly provided by Dr. Rik Derynck (University of California-San Francisco, San

Francisco, CA). The EGF receptor plasmid (pXER) in Figure 3.2 and B82 mouse fibroblast

cells containing pXER were made and kindly provided by Dr. Gordon Gill (University of San

Diego, San Diego, CA). The B82 EGF receptor and receptor minus cells containing

pUHD15.1 (1st plasmid) was made and kindly provided by Dr. Birgit Will-Simmons

(University of Utah, Salt Lake City, UT). The Bluescript II KS+ plasmid, Figure 3.3, was

obtained from Strategene. pREP8 in Figure 3.4 was purchased from Invitrogen and modified

into pR8 by Dr. Birgit Will-Simmons with the removal of the EBNA-1 and OriP (epstein barr

virus origin of replication) segments to prevent episomal replication and allow for incorporation

into chromosomal DNA.

The restriction enzymes and DNA modifying enzymes were purchased from Gibco

BRL, New England Biolabs and Boehringer Mannheim. Bovine calf serum was purchased

from Hyclone. Dulbecco-Volt Modified Eagle Media was purchased from Gibco BRL.

Methotrexate, geneticin sulfate (G418) and histidinol were purchased from Sigma. The

monoclonal antibodies 225 and 528 were produced and purified from hybridomas in Steve

Wiley's lab. TriReagent (used fro RNA isolation) was purchased from Molecular Research

Center, Inc.

PBS/EDTA solution is 2.7 mM KCL, 1.5 mM KH 2PO 4, 137 mM NaCl, 8.1 mM

Na 2HPO4, 0.6 mM EDTA, 17 mg/liter phenol red. PBS/EDTA/trypsin is 90% PBS/EDTA and

10% of 0.5% trypsin solution in Ca/Mg free PBS.

B82 cells containing pUHD15.1 were selected and cultured in Dulbecco-Volt Modified

Eagle Media with 10% bovine calf serum, 1 mM glutamine, 100 units/ml penicillin and 2.5

gtg/ml streptomycin. Selection was achieved and maintained with 600 gtg/ml G418. Medium

for the B82 cells containing pXER (B82R') used dialyzed bovine calf serum (6-8000 MWCO in

PBS) and 1 pM methotrexate to maintain selection on pXER.

B82 cells containing pUHD 15.1, pUHD10.3 / TGFu and pR8 were selected and

cultured in a specially made medium containing a subset of amino acids (except histidine), salts,

vitamins, 10% bovine calf serum, 1 mM glutamine, 100 units/ml penicillin and 2.5 gg/ml

streptomycin. See Appendix A for detailed listing of components and concentrations. Selection



was achieved and maintained with 600 gg/ml G418, and 800 gM histidinol. Suppression of

TGFuc secretion was achieved with 1-2 gg/ml of tetracycline. Medium for cells with pXER also

contained dialyzed bovine calf serum and 1 pM methotrexate to maintain selection.

3.2 Making pUHD10.3 / TGFx

The 2nd plasmid, pUHD 10.3, contains pBR322 ColEl and f3-lactamase antibiotic

resistance segments, a regulatory region with tetracycline operators, multiple cloning sites, and

a SV40 polyadenylation sequence.

The TGFc plasmid, pMTE4, contains the signal sequence, mature TGFo protein

sequence and TGFc cleavable transmembrane sequence. The plasmid uses the SV40/DHFR

resistance segment for selection and a early SV40 promoter for constitutive TGFu expression.

The entire TGFc sequence was removed from pMTE4 with a HindIII digest. The 800 bp

fragment was placed into an unique HindIII site in Strategene's Bluescript II KS+ plasmid in

the T7 to T3 orientation as shown in Figure 3.5.

The entire TGFot wild type sequence was cut from the Bluescript KS+ II/TGFx plasmid

with XhoI and EcoRI. Before digesting the plasmid with EcoRI, the linear plasmid (cut with

XhoI) was blunted with a Klenow enzyme fragment. The Klenow was disabled by heating at

75 0 C for 10 minutes before adding EcoRI restriction enzyme to remove the TGFou insert.

pUHD10.3 was prepared by digesting the plasmid with BamHI, blunting with Klenow enzyme

and finally digesting with EcoRI to provide a sticky end for the TGFac insert. The DNA

fragments were isolated by running a 1% agarose gel, isolating the correct DNA segments and

purified by Millipore filters. The concentration and molecular weight of the DNA was measured

by running a 1% agarose gel. The DNA concentrations were determined to be 50 ng/pl for the

800 bp TGFc insert and 15 ng/pl for the 3 kbp pUHD10.3. One hundred ngs of the two DNA

pieces were ligated together in a 6:1 molar ratio overnight at 16 o C with 1 unit of T4 ligase.

The following morning, all of the ligated DNA was added to 100 pls of competent

DH5 bacteria and stored on ice for 30 minutes in a 10 ml Falcon tube. The bacteria / DNA

mixture was heat shocked for 90 seconds at 42 oC before returning to ice for 2 minutes. Eight

hundred pls of SOC media (2% bactotryptone, 0.5% yeast extract, 10 mM NaCI, 2.5 mM KC1,

10 mM MgCl 2, 10 mM MgSO 4, 20 mM glucose in ddH20) was added to the bacteria and

incubated for 45 minutes at 37 oC before streaking the bacteria onto LB/ ampicillin (100 gg/ml)

plates to grow overnight at 37 oC. Three ml LB / ampicillin minipreps of individual bacteria

colonies were grown overnight and the plasmid isolated using Promega's Wizard Miniprep.

The purified plasmid was checked for the presence of the TGFX insert using PstI enzyme as the

TGFc insert contains two sites, 50 bp apart, while pUHD10.3 does not contain a PstI



restriction site. A 1% agarose gel of the cut DNA showed that four of the twelve minipreps had

the TGFuc insert due to the less mobile linear plasmid running slower than the uncut supercoiled

pUHD 10.3 without the TGFca insert. The bacteria from miniprep #3 was grown in 200 mls LB

/ ampicillin and pUHD 10.3 / TGFx (Figure 3.6) purified using Promega's Wizard Maxiprep.

3.3 Transfection of DNA into B82 Cells

The transfection of the B82 cells were accomplished using a CaPO4 / DNA precipitate

solution placed on a sparse cell population (Kriegler 1990; Wigler et al. 1979).

The day before DNA transfection, approximately one million B82R+ / pUHD15.1 and

B82R' / pUHD15.1 cells are plated into separate 60 mm Coming dishes containing normal

medium. The next day, 30 gg of pUHD 10.3 / TGFx and 10 gg of pR8 were mixed into 250

•ls of nanopure water. The DNA was sterilized with 250 gl chloroform, mixed and then

centrifuged at 10,000x g for 2 minutes. The top aqueous / DNA layer was combined with 500

gls of 2x HBS (HEPES Buffered Saline: 10 mM KC1, 11 mM Glucose, 1.4 mM Na2HPO 4,

171 mM NaCl, and 42 mM HEPES), 200 gls of nanopure (sterile) water and 50 ptls of 2.5 M

CaCl2. After mixing and standing at room temperature for 30 minutes, 500 Rls of the CaP0 4 /

DNA precipitate solution was added to the B82R' / pUHD15.1 and B82R- / pUHD 15.1 cells in

normal medium.

After 24 hours, the CaP04 medium was removed and the cells rinsed with PBS/EDTA.

Nonselective medium was added to the plates for 24 hours to allow the transfected cells to

become histidinol resistant. On the second day, the medium was removed, the cells were rinsed

with PBS/EDTA and trypsinized. All the cells from each transfection were passed at a 1:4

dilution into 60 mm Coming dishes containing selective medium (histidinol, G418, tetracycline

and no histidine (His- media)). On the third day, the selective medium was removed and the

cells washed with PBS/EDTA to remove dead cells before adding fresh selective medium to the

plate. The selective medium was replaced about every three days until colonies appear

(approximately 200-1000 cells per colony). The colonies were isolated using Bellco 8 x 8 mm

glass cloning cylinders and transferred into an individual well of a Falcon 24 well plate

containing selective medium. Cells found to produce secreted TGFc were maintained and

cultured in the presence of selective medium.

3.4 Selection of TGFc Secreting Clones

The cells were grown from the Falcon 24 well plates into 3 wells of a 12 well Falcon

plate - uninduced, induced and founder cells. Upon cell confluence, TGFa expression was

induced by the removal of tetracycline-containing medium and replaced with tetracycline-free



medium. The following day, induced and uninduced cell medium was replaced, respectively,

with fresh tetracycline-free medium and tetracycline medium, beginning the 24 hour secretion

period. The tetracycline-free medium was added a day early to remove the tetracycline

suppression, thus enabling the measurement of steady-state TGFao production. The B82R' /

pUHD15.1 / pUHD10.3 - TGFo medium additionally contained 10 jgg/ml of anti-EGFR

monoclonal antibody 528 to prevent receptor-mediated TGFX uptake.

At the end of the 24 hour period, one ml of medium was saved and the remaining

volume recorded. The saved media was placed into a 1.6 ml centrifuge tube and spun at

17,000x g for 10 minutes to remove cell debris. The medium supematant was stored at -70 o C.

Cell number was determined using a Coulter Counter Model ZBIO10 with a 0.5 ml counting

volume and threshold setting at 1 to 15 gm.

3.5 Detection of TGFx

The detection of TGFc in the medium was performed using an Oncogene Science (OS)

TGFao ELISA kit. The ELISA kit uses a sandwich enzyme immunoassay specific to TGFa,

using pre-coated polyclonal goat anti-TGFx wells and goat anti-TGFa secondary biotinylated

antibody. The binding of streptavidin-horseradish peroxidase to the secondary antibody

allowed for the detection of TGFao by catalyzing the conversion of o-phenylenediamine

dihydrochloride from a colorless chromophore to an amber chromophore. The 490 nm

absorbance was measured using Molecular Devices spectrophotometer Model 250 and

Biometallics, Inc ASoft 1.8 Vmax software. Quantification of TGFo present was obtained

using the six TGFo concentration standards in the ELISA kit.

Medium samples were removed from -70 o C and thawed on ice before removing a 55 gtl

aliquot and adding it to a 55 itl aliquot of the 1:20 diluted OS secondary antibody. The OS

ELISA wells were rinsed with 200 pls of lx OS rinse buffer before adding 100 gls of the

medium sample / antibody mixture. After a 3 hour room temperature incubation, the wells were

washed three times with lx OS wash buffer and rinsed twice with lx OS rinse buffer. A 100

gls 1:100 dilution of streptavidin-horseradish peroxidase was added to each well and incubated

for 30 minutes at room temperature. The wells were washed and rinsed again (as above) before

adding 100 gtls of the o-phenylenediamine solution. The reaction was incubated in the dark for

45 minutes before stopping with 100 jtls of 4 N sulfuric acid and solution absorbance measured

at 490 nm.

Medium samples, antibody, and streptavidin-horseradish peroxidase were diluted in

assay buffer provided by Oncogene Science. The OS TGFao standards were diluted in

unconditioned medium. The o-phenylenediamine tablet was diluted in substrate buffer provided



by Oncogene Science. Concentration and composition of buffers was not provided in the OS

ELISA kit. The TGFc standards were 0, 50, 250, 500, 750 and 1000 pg/ml.

3.6 Determining Cellular Processing of TGFx Protein

Twelve 100 mm Coming dishes were plated at a cell density of 1:10 with paracrine cells

in tetracycline-free medium. After 24 hours, the medium was removed, cells washed with lx

PBS/EDTA and 5 mls of serum-free tetracycline-free medium added to each dish. After 6 days,

all of the medium was collected and placed on ice. The medium was concentrated using an

Amicon concentrator with a YM 3000 MWCO (molecular weight cut off) membrane filter. The

medium was further concentrated in several 2 ml capacity Amicon centricons with 3000 MWCO

by spinning at 7,000x g for four 2 hour periods. Both methods were performed on ice or at 4

TC. The medium volume was concentrated from 60 mls down to 1 ml using these two methods.

The final concentration of TGFc was determined to be 160 ng/ml by Oncogene Science TGFo

ELISA.

The molecular weight of the TGFt was determined using a meter G-50 fine Sephadex

column, calibrated with the appropriate standards. 622 gls (100 ngs) of the concentrated TGFo

was added to the mixture of protein standards in Table 2.1 and 59 gls of pure glycerol for a total

volume of 1181 ptls.

The protein/glycerol solution was added to a small PBS buffer head on top of the G-50

column. The protein was eluted into the beads before a larger buffer head was added. The

column ran at 40 mls per hour with the effluent running through a spectrophotometer/chart

recorder and into a fraction collector. The spectrophotometer/chart recorder was set at 280 nm

absorbance, 6 cm/hr chart speed with a 0.5 absorbance range. The fractions were collected in 5

minute aliquots over 9 hours. Immediately after running the column, the fractions were assayed

for TGFkx protein using the Oncogene Science TGFac ELISA kit.

Cellular processing of the TGFc protein was also confirmed by determining the

concentration of TGFz in the medium and cell membrane. Two Coming 60 mm dishes

containing either autocrine or paracrine TGFx B82 cells were grown to 50% confluence before

washing the cells with PBS/EDTA. Tetracycline-free medium was added to the cells and grown

for 24 hours at 37 oC. The cells' medium was replaced with fresh tetracycline-free medium

after washing the cells with PBS/EDTA to begin the 24 hour secretion period. As always,

medium for the autocrine cells contained 10 gg/ml of anti-EGFR monoclonal antibody 528 to

prevent the uptake of TGFo by the EGFR receptor. At the end of the 24 hour secretion period,

one ml of medium was saved from each cell type and the remaining volumes recorded. The



saved medium was placed into a 1.6 ml microcentrifuge tube and spun at 17,000x g for 10

minutes to remove cell debris. The medium supernatant was stored at -70 o C.

The membrane TGFo was extracted as follows. An extraction buffer was made with

800 jils 25 mM CHAPS, 10 gls of 400 mM sodium iodoacetate, 10 kls each of pepstatin,

leupeptin, chymostatin, and aprotinin (all at 10 mg/ml) and diluted to 1 ml with ddHO. The

cells were rinsed three times with PBS / EDTA before adding 250 gls of extraction buffer to

each plate. The cells were scraped off the dish and placed in a 1.6 ml microcentrifuge tube on

ice. The dish was rinsed with 250 gls of extraction buffer and added to the microcentrifuge

tube. After incubating for 15 minutes on ice, the samples were spun at 17,000x g for 15

minutes to remove debris. The supernatant was transferred to a new tube and stored at -70 oC.

Cell number was determined by counting a similarly plated cell dish using a Coulter

Counter Model ZBIO10 with a 0.5 ml counting volume and threshold setting at 1 to 15 jim. The

0.5 mls of trypsinized cells were diluted in 1.5 mls of medium to inhibit further cell

trypsinization and degradation before adding 18 mls of PBS to count the cells.

3.7 TGFa Secretion Time Course from Paracrine Cells

Cells from three confluent 60 mm Coming dishes were plated into thirty 60 mm Coming

dishes at a cell density of 1:10 in tetracycline-containing medium. The cells were allowed to

settle and grow in the dishes for 24 hours before removing the medium and washing the cells

with lx PBS/EDTA. Five mls of tetracycline-free medium was added to all thirty plates to

begin the time course experiment at time equal zero hours. A "pseudo" pulse/chase experiment

was also performed by adding tetracycline-containing medium to half of the dishes after the cells

were in tetracycline-free medium for 12 hours to induce the expression of TGFo.

At each time point, one dish was used for medium sampling and extracting RNA, while

another dish were used to determine cell density. At the correct time, one ml of medium was

collected from a dish, spun at 17,000x g for 10 minutes at 4 oC before storing the supernatant at

-20 oC. One ml of TriReagent was added to the dish and cells lyzed for 10 minutes before

collecting the TriReagent/cell extract in a 1.6 microcentrifuge tube and storing at -20 oC. Upon

completion of time course experiment, the TriReagent and medium samples were transferred to -

70 oC storage. Cell number was determined as described before using the Coulter Counter

Model ZBIO10. The time points for this experiment are shown in Table 2.2. Conditioned

medium's TGFc concentration was determined later by Oncogene Science TGFa ELISA

The asterisk symbol (*) and bold print denotes when fresh medium was added to cells

for the next 24 hour period. The 24 hour replacement of fresh medium was done to maintain



cells in a constant, non-depleting environment of nutrients, growth factors, etc. and were

applicable in a constant concentration of tetracycline.

3.8 Tetracycline Concentration Effect on TGFa Secretion

The uninduced autocrine B82R' / TGFo and paracrine B82R" / TGFac cells were plated

into a 6 well Falcon plate. The following day, cell medium were replaced with a tetracycline

containing gradient to begin the induction of TGFa. 24 hours later, cell medium was replaced

with fresh medium containing the same tetracycline gradient to start the 24 hour secretion

experiment. The tetracycline gradient was 500 gg/ml, 100 ng/ml, 10 ng/ml, 2 ng/ml, 1 ng/ml,

200 pg/ml. Normal suppression of TGFox secretion was achieved using 1 gg/ml, therefore,

these concentrations represent a 500/1, 1/10, 1/100, 1/500, 1/1000, 1/5000 gradient,

respectively. Medium for autocrine cells also contained 10 gg/ml of anti-EGFR monoclonal

antibody 528 to prevent TGFa uptake by the EGF receptor.

At the end of the 24 hour period, one ml of medium was saved and the remaining

volume recorded. The saved medium was placed into a 1.6 ml centrifuge tube and spun at

17,000x g for 10 minutes to remove cell debris. The medium supernatant was stored at -70 o C.

Conditioned medium's TGFx concentration was determined by Oncogene Science TGFo

ELISA

Due to the low number of cells present, cell density was determined using a

hemocytometer. The resuspended trypsinized cell solution was placed in the hemocytometer

and cell number per 4-9 squares counted depending on cell concentration. The average number

of cells per square multiplied by 10,000 gives cell concentration as number / ml.

This experiment was repeated by plating 250,000 autocrine B82R+ / TGF(o clone #1

cells into eighteen 60 mm Coming dish giving a 3 plate replicate with six different tetracycline

concentrations. 24 h later, TGFu expression was pre-induced by addition of a tetracycline

gradient to the cells. The tetracycline gradient was 10, 1, 0.1, 0.01, 0.001, and 0 gg / ml. The

next day, the 24 hour experiment was begun by replacing cell medium with fresh medium

containing the tetracycline gradient and 10 tg / ml blocking anti-EGFR antibody 225. At the

end of the 24 hour period, one ml of medium was saved and the remaining volume recorded.

The saved medium was placed into a 1.6 ml centrifuge tube and spun at 17,000x g for 10

minutes to remove cell debris. The medium supernatant was stored at -70 o C. Conditioned

medium's TGFx concentration was determined by Oncogene Science TGFc ELISA. Cell

number was determined using a Coulter Counter Model S/STD IIA and Multisizer II with a 0.5

ml counting volume and threshold setting at 9.3 jim to out. Trypsinized cells were diluted in



medium to inhibit further cell trypsinization and degradation before adding Isoton II solution to

count cell number.

3.9 Cell Density Effect on TGFa Secretion

B82R' (pXER) / pUHD15.1 / pUHD 10.3 - TGFa / pR8 (autocrine clone #1) cells were

serially diluted (two fold dilutions per point) into sixty 60 mm Coming dishes from 0.02-1 x

106 cells / dish as four sets (15 dishes / set). Triplicate cell density replicate points are done at

5e5, 6e4, and 8e3 cells / dish. On the next day, two sets were induced for the expression of

TGFax by removal of tetracycline from the medium. Following an additional 24 h incubation,

fresh medium containing tetracycline or tetracycline free medium was added to the cells with or

without 20 jtg / ml monoclonal anti-receptor 225 as appropriate, giving the following

experimental conditions: induced cells with mAb225, induced cells without mAb225,

uninduced cells with mAb225 and uninduced cells without mAb225. The amount of antibody

added was constant and not adjusted for cell density or receptor number.

24 hours later, one ml of conditioned medium was removed, spun at 17,000x for 10

minutes to remove cell debris and stored at -20 oC. Conditioned medium's TGFa concentration

was determined by Oncogene Science TGFac ELISA

Cell number was determined using a Coulter Counter Model S/STD IIA and Multisizer

II with a 0.5 ml counting volume and threshold setting at 9.3 gm to out. Trypsinized cells were

diluted in medium to inhibit further cell trypsinization and degradation before adding Isoton II

solution to count cell number. Varying amounts of medium and Isoton II solution was used to

dilute cell numbers at high cell density and maximize cell number at low cell densities during cell

counting for counting on the Coulter Counter.

3.10 Creation of sEGF clones

Creation of B82R' wild type / sEGF and B82R / sEGF clones was performed by Dr.

Birgit Will-Simmons (Will et al. 1995). Normal EGF is synthesized as a transmembrane

protein (170 kDa) and the mature protein (6 kDa) is enzymatically cleaved into the medium upon

surface expression. The EGF gene sequence used by Dr. Will-Simmons is the mature protein

or secreted EGF, hence the term sEGF. The gene sequence was constructed by Niyogi's lab

(Engler et al. 1988) for expression in E. Coli. To obtain mammalian expression, Dr. Will-

Simmons switched EGF's bacteria signal sequence with EGFR's mammalian signal sequence.

The new EGF construct was then placed into pUHDO1.3, 2nd plasmid of the tetracycline

controlled expression system, creating pUHD10.3 / sEGF. The plasmid was co-transfected

with pR8 (histidinol resistance) into B82 EGFR positive and negative cells previously



transfected with pUHD15.1neo, the first plasmid of the tetracycline controlled expression

system.

During this thesis work, pUHD10.3 / sEGF was transfected into several B82 cells

containing mutated EGF receptors (A654, M721, M721A654, A647) (Lund et al. 1990; Wiley

et al. 1991). These mutated EGFR B82 cells were previously transfected with pUHD 15.1 neo,

allowing control of sEGF expression. All transfections done by Birgit and myself with

pUHD10.3 / sEGF and pUHD15.lneo into B82 cells used the method of Wigler as described

earlier in section 3.3

Detection of EGF was achieved by sandwich ELISA similar to TGFot's. Monoclonal

anti-EGF antibody HA (gift from Katsuzo Nishikawa, Kanazawa Medical University, Japan) in

PBS / 0.02% sodium azide (PBSN) at 5-10 gg / ml was used to coat the 96 well ELISA wells.

ELISA wells were rinsed with 0.05% Tween-20 in PBSN after every addition. ELISA wells

were blocked with 10% horse sera in PBSN (blocking buffer). A rabbit polyclonal sera

directed against EGF was used as a secondary antibody diluted 1:100 in blocking buffer.

Alkaline phosphatase-conjugated goat anti-rabbit antibody (Sigma) was used as the tertiary

antibody at a dilution of 1:6000. Detection was achieved by using 1 mg / ml dinitrophenol

(Sigma) in 10 mM diethanolamine and 0.5 mM MgCl 2, pH 9.5. The reaction was quenched

with 0.1 M EDTA after 4-10 minutes. Solution absorbance was read at 405 nm using

Molecular Devices spectrophotometer Model 250 and Biometallics, Inc ASoft 1.8 Vmax

software. All solution volumes were 50 uls except 200 uls of blocking buffer was used to

block ELISA plate. The ELISA plate was incubated overnight at room temperature to coat

ELISA with monoclonal antibody HA and overnight again to block ELISA plate with 10%

horse sera. The medium samples and antibody incubations were 2 hours at room temperature.



Table 3.1: Molecular weight standards used for G-50 fine column.

Protein MW Size Amount Volume
(kDa) (mgs) (gls)

Albumin 66 2.5 100
Carbonic Anhydrase 29 1 100
Cytochrome C 12.4 1 100
Aprotinin 6.5 3 200



Time course points for TGFao secretion from paracrine B82 cells.

The asterisk symbol (*) and bold print denotes when fresh media was added to the cells for

the next 24 hour period.

No Tetracycline Pulse/Chase (Tetracycline added)

0 hour
4 hours
8 hours
12 hours 0 hour (Addition of Tetr. Media)
18 hours 6 hours
24 hours * 12 hours

1 8 hours
36 hours 24 hours *
48 hours * 36 hours
60 hours 48 hours *

60 hours

Table 2.2:
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Figure 3.6: pUHD10.3 / TGFa. The prepro transmembrane TGF(x inserted in the 2nd

plasmid of the tetracycline controlled two plasmid system.



Chapter 4: Results - Ligand Characterization

4.1 Overview of Experiments

The objective of this chapter was to develop an autocrine and paracrine TGFa - EGFR

cell system. In order to achieve this goal, several sequential short term obstacles had to be

overcome. These obstacles included placing the TGFx gene under the control of an inducible

high expression, plasmid system, transfecting the plasmid into a TGF(o negative cell line and

characterizing the expression of the recombinant TGFx. The TGFca gene was obtained from

Rik Derynck (University of California-San Francisco) and placed into the two plasmid

tetracycline controlled expression system obtained from Gossen (University of Heidelberg).

The two plasmid system was then transfected into mouse B82 L cells which do not have

endogenous EGF receptors or TGFa. Transfection of the EGF receptor into B82 L cells by

Gordon Gill (University of San Diego) enables the development of both an autocrine and

paracrine cell system. TGFc expressed from these two cell systems were characterized by

analyzing protein's molecular weight size, location, and secretion levels. A time course

experiment tested the kinetics of TGFa expression from the two plasmid system. The

utilization of these cells for testing theoretical models was determined by measuring the affect of

tetracycline concentrations and cell densities on TGFx secretion levels.

4.2 Making pUHD10.3 / TGFx

As stated in chapter 3.2, Bluescript II KS+ / TGFx wt was cut with XhoI, blunted with

Klenow and the TGFx wt insert excised with EcoRI. pUHD10.3 was cut with BamHI,

blunted with Klenow and cut with EcoRI to match the TGFac insert ends. The DNA pieces

were gel isolated and ligated together to create pUHD10.3 / TGFo wt (Figure 3.6). After

transforming bacteria, minipreps of individual colonies were grown up and the DNA isolated.

The presence of the TGFct insert in the second plasmid was done by digesting the DNA with

PstI. The PstI restriction site is not in the second plasmid while in the TGFx insert there are

two sites, 50 bp apart. Therefore, a comparison between supercoiled and linear DNA can be

made to determine the insert's presence.

Four bacteria colonies were determined to have the UHD10.3 / TGFa wt plasmid.

Miniprep #3 was used to inoculate 200 mls of LB / ampicillin and the plasmid purified using

Promega's Wizard Maxiprep. The DNA was checked to insure the insert's presence. A EcoRI,

PstI, NcoI and SmaI digest compares a circular pUHD 10.3 to a linearized pUHD 10.3 / TGFo.

A HindIII cut linearizes pUHD10.3 and removes the TGFu insert from pUHD10.3 / TGFa.

Multiple RsaI sites in the TGFc insert and pUHD10.3 indicate the insert presence by comparing



size differences of the small DNA fragments. The 1% agarose gel is shown in Figure 4.1. It

appears that not enough NcoI enzyme was added to the DNA to insure cutting, however, the

remaining enzymes (EcoRI, HindIII, PstI and SmaI) gave the expected band sizes. A

comparison of linearized DNA size by EcoRI and SmaI demonstrates that the second plasmid

contains the insert. PstI and RsaI cut inside TGFx insert sequences and shows that the insert is

TGFax. Excision of the TGFot insert using HindIII indicates that the TGFx fragment is the

correct size.

4.3 Selection of TGFa Secreting Clones

After passing cells transfected with pUHD10.3 / TGFa and pR8 into selective histidine

minus / histidinol medium, the cells were allowed to grow / die for several days with regular

changing of selective medium. The surviving cells grew into colonies from an individual cell

and were isolated using cloning rings. Seventy-two possible autocrine and paracrine clones

were isolated by cloning rings and placed into 24 well plates. From these 72 clones, 28

paracrine clones and 12 autocrine clones continued to grow. Three paracrine clones were also

isolated and grown up from a second pUHD10.3 TGFox / pR8 DNA transfection. The forty

three successful clones were tested for expression of TGFa and determined that 9 clones were

positive (5 autocrine and 4 paracrine).

The induction range of clones expressing TGFa was determined by measuring TGFo

secretion rates at similar cell densities. Cells were grown in either the presence (repressed) or

absence (induced) of tetracycline. B82R' / TGFac autocrine cell media also contained 20 gg/ml

anti-EGFR antibody 225 to prevent TGFcx uptake by the EGF receptor. As shown in Figure

4.2, the autocrine clones displayed both high TGFao expression levels as well as a wide,

dynamic, induction range. For example, the secretion rate of autocrine clone #9 increased from

0.14 to 41 ng/106 cells per 24 h (- 10-3000 molecules/cell-minute) upon removal of tetracycline,

roughly a 300-fold increase. The second highest expressor, autocrine clone #1, displayed a

roughly 25-fold induction (from 1.5 to 36 ng/10 6 cells per 24 h (-100-2700 molecules/cell-

minute)). The paracrine clones displayed a lower level of induced TGFot secretion

(approximately 8 ng/10 6 cells per 24 h, or 600 molecules/cell-minute) and with only a 5-fold

induction range. Shown in Table 4.1 is several other different cell lines expressing autocrine

EGFR / TGFa ranging from 0.4 to 50 ng / million cells - day. Thus, not only does the newly

created autocrine EGFR / TGFuc cell system expresses TGFot within the range of other common

autocrine cells, its expression of TGFox is regulated by tetracycline.



4.4 Determining Cellular Processing of TGFa Protein

Figure 4.3 shows the results of running paracrine's concentrated medium over a G-50

fine column with molecular weight standards. TGFc concentration in the fractions was

determined by Oncogene Science TGFc ELISA. Elutions of the molecular weight standards

monitored at 280 nm is re-plotted from the strip chart recorder data. The figure shows two

TGFc peaks (6 kDa and 31 kDa) eluting off the column. The predicted molecular weight size

for correctly processed, mature, secreted TGFt is 5.6 kDa. Therefore, within the resolution of

this column, TGFa is correctly processed from the 25 kDa transmembrane TGF(o into the

mature protein. The 31 kDa TGFct peak could be derived from two different sources. This

peak could be some secreted transmembrane TGFx which had not been cleaved or an

aggregation of mature TGFo from the Amicon concentrating steps. A resolution between these

two possibilities has not been pursued, but could be resolved by running a denaturing SDS

polyacrylamide gel and protein detection by Western. If the peak was an aggregate, proteins

would denature and run at 6 kDa. If the protein was transmembrane TGFo, the protein would

run at 31 kDa. This avenue of experiments was not pursued as a clear majority of the protein

was the correct molecular weight size, showing that TGFc was correctly processed.

After determined TGFo was correctly processed into its extracellular medium, it was

questioned how much TGFa was secreted into the medium versus retained in the cell membrane

after 24 hours. Samples from the cell membrane and media were analyzed for TGFx

concentration using the Oncogene Science TGFx ELISA kit. As shown in Table 4.2, over 99%

of TGFot is cleaved from the membrane and secreted into the medium. This secretion indicates

that cleavage of TGFa from its membrane bound precursor is neither inhibited nor a rate

limiting step in B82 cells. There could be another reason for low TGFa protein detection in

membrane samples. The miscelle / TGFox sample would be sterically hindering one of the two

anti-TGFuc ELISA antibodies from binding, thus no TGFt would be detected. Western SDS-

Page gels would refute or confirm this possibility. However, as this result was not central to

the thesis, it was not pursued.

4.5 TGFa Secretion Time Course from Paracrine Cells

A time course experiment was performed to gain an understanding of TGFc secretion

kinetics from paracrine cell lines. Figure 4.4 shows the secretion of TGFR from an induced

paracrine cell line compared to a "pulse / chase" experiment from paracrine cells induced for 12

hours and then maintained in tetracycline medium for another 60 hours. There are two clear and

interesting results from this experiment. The first result is the induction of paracrine cells. The

cells quickly responded to removal of tetracycline, producing significant quantities of TGFo



within 4 hours. Over the 60 hour period, the accumulative amount of TGF( in the medium was

fairly constant with respect to time.

The second interesting result from this experiment was that TGFx production rate in the

pulse / chase induced cells did not start to decrease when compared to fully induced cells until

48 hours after the re-introduction of tetracycline. This result would seem to indicate that TGFc

mRNA might be fairly stable, allowing the production of TGFc protein long after new TGFc

mRNA translation was inhibited by the addition of tetracycline. To check this explanation,

would require running mRNA samples from each time point in a ribonuclease protection assay

(RPA) and to determine if the TGFa mRNA remained constant after the addition of tetracycline

for 48 hours. However, to ensure all future experiments with uninduced autocrine B82R' /

TGF( cells are truly uninduced for the expression of TGFa, cells will be continuously cultured

in tetracycline containing medium.

4.6 Tetracycline Concentration Effects on TGFo Secretion

As described in chapter 3.8, the cells were plated into individual wells of a 6 well plate.

The cells were induced for a day before beginning the 24 hour secretion experiment. As

always, autocrine cell medium contained 10 jgg/ml of monoclonal anti-EGFR 528 antibody for

the 24 hour secretion period. The cell density was determined by Coulter Counter. TGFa

concentrations were determined using a TGFx ELISA and stated on a per cell basis. The effect

of tetracycline concentration on TGFa secretion for paracrine and autocrine cells is shown in

Figure 4.5. The figure shows that the cells' TGFa secretion levels can be controlled by

adjusting tetracycline concentrations in the medium. Also, it appears that the autocrine cell has a

tighter "off' control, however, the autocrine cell density might have an affect as the autocrine's

density is about an order of magnitude less than the paracrine's density. TGFx expression in

the paracrine and autocrine cells ranged from 10 to 40 ng / million - 24 hours (500 to 3,200

molecules / cell-minute) and from 0.01 to 1.2 jtg / million - 24 hours (700 to 79,000 molecules /

cell-minute), a 4 fold and 110 fold increase, respectively. This induction should give an

experimenter an excellent range to measure what effect ligand secretion has on receptor

downregulation and receptor-ligand complex levels with respect to cell density, ligand decoy

and receptor blocking.

A review of secretion rates during this experiment and others, one realizes that TGFoc

expression is an order of magnitude higher than other experiments. This tetracycline experiment

was performed in a 6 well Falcon plate with very few cells (autocrine cells contained around

10,000 cells / 35 mm dish - 1,000 cells / cm 2) versus other experiments at 1,000,000+ cells / 60

mm dish (35,000 cells / cm 2 ). The importance of cell density will be discussed in the next



section; however, another problem occurs when dividing TGFa concentration in the medium by

a small cell numbers with possible large errors (counted by hemacytometer) to give a false,

high, absolute number. Thus, while tetracycline can regulate TGFc expression, the absolute

TGFct expression may be suspect.

The experiment was repeated at a later date with replicates to test tetracycline's regulation

of TGFa expression and is shown in Figure 4.6. The experiment was performed as before on

B82R' / TGFc autocrine clone #1 cells. Tetracycline concentration was varied from 10 to

0.001 and 0 pg / ml in medium containing 10 gg / ml blocking antibody 225. TGFc

expression was inhibited down to 0.01 gg / ml tetracycline. Expression began between 0.01

and 0.001 ug / ml tetracycline, increasing 12 fold. The total expression range between

uninduced to induced autocrine clone #1 cells was 70 fold. Also this time, the expression rate

was in the "normal" regime of 100 to 6000 molecules / cell-minute versus the previous

experiment. The error in the last experiment was most likely due to multiplying TGFa

concentration by a low and inaccurate cell density.

4.7 Cell Density Effects on TGFo Secretion

Confirmation of theoretical predictions from chapter 2 is found in the experimental data

shown in Figure 4.7a and b. Induced and uninduced TGFx expression was measured in

autocrine clone #1 as a function of competing antibodies and cell density. As described in

chapter 3.9, B82R' / TGFct autocrine clone #1 cells were serially diluted from 0.02-1 x 106

cells / 60 mm Coming dishes into four sets of 15 plates (9 dilutions with triplicates at 500,000,

62,500, and 7,812 cells / dish dilutions). The induction range in this experiment was 200 fold

changing from 30 to 6200 molecules / cell-minute upon removal of tetracycline. At each cell

density, half of the dishes received 20 gg/ml anti-EGFR blocking antibody 225 to determine

whether the inhibition of TGFuo uptake would vary as a function of cell density.

As shown in Figure 4.7a, at a high ligand synthesis rate of -6200 molecules/cell-

minute, TGFc levels were not increased upon addition of blocking antibodies. This data

contrasts with data obtained at the low ligand synthesis rate of -30 molecules/cell-minute in

uninduced cells. At lower ligand secretion rate, TGFc levels drop sharply to background levels

in the absence of blocking antibody. Upon addition of EGFR blocking antibody, TGFc uptake

is reduced and maintained a fairly constant level until higher cell density.

Figure 4.7b is plotted as total bulk ligand concentrations. As in Figure 2.5, ligand

accumulation increases with increasing cell populations in the presence of antibody at the higher

secretion rate. Upon removal of the antibody at the lower secretion rate, ligand accumulation

does not occur, similar to Figure 2.5. Thus, experimental findings are both qualitatively and



quantitatively consistent with model predictions that the effectiveness of receptor-blocking

antibodies is strongly dependent on both cell density and ligand synthesis rate.

4.8 Creation of B82R ÷ / sEGF Clones and Mutant Receptors

As described earlier in Chapter 3.10 and Will et al., 1995, Dr. Will-Simmons

constructed a mature, secreted, form of EGF - termed sEGF. sEGF's expression plasmid is

pUHD10.3 / sEGF in the two plasmid tetracycline-controlled expression system. She

transfected the plasmid into B82 cells which already contained pUHD15.1 neo and were EGFR

wild type positive or negative, creating B82R' wild type / sEGF and B82R- / sEGF. Dr.

Gordon Gill has also constructed several mutated EGFR plasmids and transfected them into

B82R cells (Chen et al. 1989). These receptor have different affinity and trafficking properties

as shown in Table 4.3 (Lund et al. 1990; Wiley et al. 1991).

During the course of the thesis, there was an interest in looking at how these receptor

affinity and trafficking changes would affect autocrine ligand / receptor interactions. Thus,

pUHD15.1 neo and pUHD10.3 / sEGF was transfected into several mutant EGFR cell lines.

These mutated EGFR cell lines were A654, M721, A654M721, and A647. Shown in Table 4.4

is a compilation of all existing TGFa and sEGF expression systems in normal / mutated EGFR

positive and negative B82 cells. The clones have a variety of TGFo and sEGF expression

levels, however, ligand expression are all similar with nanogram expression. Also, the

detection of ligand was not performed at similar cell density, but represents values obtained

during clonal selections. Thus, a multiple of expression systems exist, allowing an unlimited

number of hypotheses to be experimentally tested.



Comparison of Autocrine TGFx / EGFR cells

Secretion Rate
nL / million cells - day

Autocrine clone #1

A431

MDA468

MCF-7

Ishikawa

MDCK / TGFx 1-16

1-40

10 *'

50

5.2

2.4

0.4 *2

Rheiss et al., 1991

Hamburger and Pinnamaneni, 1992

Fontana et al., 1992

Gong et al., 1992

Dempsey and Coffey, 1994

Note: Referenced cells (except Dempsey and Coffey) did not use blocking antibodies to prevent

ligand uptake by the receptor.

*1 TGFo concentration given as ng/ml, assumed a 10 ml volume.

*2 Assuming cell doubling every day from initial cell density given.

Cell Type Reference

Table 4.1



Detection of secreted and membrane bound TGFao

Cell Type Source pg/million cells % Membrane/Media

Autocrine #1 Membrane 120
Media 25400 0.47

Paracrine #22 Membrane 3
Media 9160 0.04

Table 4.2:



Mutant B82 EGFR trafficking and affinity parameters

Cell 

TVpe

Control +PMA

Wt

A654

M721

A654M721

C' 1022

C'1022A654

I-Int., H-Aff.

I-Int., H-Aff.

L-Int., H-Aff.

L-Int., H-Aff.

I-Int., H-Aff.

I-Int., H-Aff.

L-Int., L-Aff.A647

L-Int., L-Aff.

I-Int., L-Aff.

L-Int., L-Aff.

L-Int., L-Aff.

L-Int., H-Aff.

L-Int., H-Aff.

L-Int., L-Aff.

where:

I-Int. - High ligand induced receptor internalization
L-Int. - Low constitutive membrane turnover receptor internalization
H-Aff. - High receptor / ligand binding affinity
L-Aff. - Low receptor / ligand binding affinity

Source:

Lund et al., 1990; Wiley et al., 1991

Cell Tvne- ---- ---

Table 4.3:



Artificially engineered cell systems

Cell Type
EGFR+/TGFo
EGFR-/TGFcx

EGFR /sEGF
EGFR-/sEGF

EGFR' Mutations
A654/sEGF
M721/sEGF
M721A654/sEGF
A647/sEGF

salP mids

pXER/pUHD 15. 1/pUHD 10.3-TGFa/pR9
pUHD 15.1 I/pUHD 10.3-TGFa/pR9

pXER/pUHD 15.1 /pUHD 10.3-EGF/pR9
pUHD 15.1 /pUHD 10.3-EGF/pR9

pXER/pUHD 15. 1/pUHD 10.3-EGF/pHyg.
pXER/pUHD 15. 1/pUHD 10.3-EGF/pHyg.
pXER/pUHD 15. 1/pUHD 10.3-EGF/pR9
pXER/pUHD 15.1/pUHD 10.3-EGF/pHyg.

# of Clones

Induced
5 1 -40
4 .5-10

2 5 - 200)
2 2-40 •

6 (2)

12 (2)

15 (2)

1

5 -8
1 - 10
1 - 140
150

Induction is reported as ng/million cells/24 hours.

Will et al., 1995
Not all clones tested at this time

(1)
(2)

Plasmids

Table 4.4



Legend:
Lane 1: MW Standards

Lane 2: Uncut pUHD10.3/TGFu
Lane 3: Blank
Lane 4: pUHD10.3 w/Ncol

Lane 5: pUHD10.3/TGFt w/ NcoI

Lane 6: pUHD10.3 w/EcoRI

Lane 7: pUHD10.3/TGFu w/EcoRI

Lane 8: pUHDIO.3 w/RsaI

Lane

Lane
Lane

Lane

Lane

Lane

Lane

Lane

9:
10:
11:

12:

13:

14:

15:
16:

pUHD 10.3/TGFa w/RsaI

MW Standards
pUHD10.3 w/HindIII

pUHD I0.3/TGFao w/HindIII

pUHD10.3 w/PstI

pUHD 10.3/TGFcx w/PstI

pUHD10.3 w/SmaI

pUHD IO.3ITGFox w/SmaI

Figure 4.1: pUHD10.3 / TGFu Digest. Characterization of the TGFot 2nd plasmid using

several restriction digest enzymes.
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Figure 4.2: EGFR / TGFu expression at similar cell density. Induced TGFu

expression by removal of tetracycline shown as shaded. Uninduced TGFx expression

repressed by continuous tetracycline in cell medium shown as solid. Half of the plated

cells were pre-induced for TGFt expression by removal of tetracycline from the medium.

24 hours later, tetracycline-containing and tetracycline-free media was added to the

appropriate wells and TGFo concentrations were allowed to accumulate for 24 hours. In

addition, autocrine medium contained 10 ptg / ml mAb 528 to prevent ligand uptake by

EGFR. Cell density averaged 900,000 cells / 60 mm dish.
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Figure 4.3: TGFao Molecular Weight. Determination of TGFa's molecular weight

in conditioned medium using a G-50 Sephadex column. Conditioned medium from

B82R- / TGF( cells were concentrated using Amicon filters before adding to a 100x G-

50 Sephadex column. Appropriate molecular standards were run simultaneously with the

conditioned medium. Fractions were collected every 5 minutes and measured via A280

nm for total protein and TGFox ELISA.
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Figure 4.4: TGFa time course. Uninduced B82R- / TGFx clone #22 cells were

plated and allowed to attach for 24 hours. TGFo expression was induced by

replacing all of the cell plates' medium with tetracycline free medium (squares).

Conditioned medium was removed at times indicated and cell number determined.

Half of the cell plates medium were switched back to tetracycline containing media

at 16 hours (diamonds)
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Figure 4.5: Tetracycline controlled TGFcx expression. Plated cells were pre-

induced for TGFu expression by addition of fresh medium containing the tetracycline

gradient for 24 h. The next day, fresh medium containing the tetracycline gradient was

placed on the cells and TGFu concentration allowed to accumulate for 24 h. 10 pgg / ml

monoclonal antibody 528 was added to each well to prevent ligand uptake by EGFR.

Autocrine cell density was -10,000 cells / 35 mm dish. Paracrine cell density was

-120,000 cells / 35 mm dish.

'I - -
I I l I

-
-

r



PAGES (S) MISSING FROM ORIGINAL



S7-

o
o 5-
E

LL 4-
(3
I-

-3--J

0-j 2
3 4 5 6 7

Log (Cell # / Plate)

B. 15

z 14-

13 o0

" 12- *o
- 0

0 11-
E

u 10- O O *

9-

-8-

7 I I I

3 4 5 6 7

Log (Cell # / Plate)

Figure 4.7: Experimental bulk ligand concentrations. B82R+ / TGFa clone #1

induced (circles) and uninduced (squares) ligand concentrations were tested as a

function of cell density and ligand epxression levels. TGFcx expression occurred with

20 ýtg / ml anti-EGFR monoclonal antibody 225 (open) and without antibody (solid).

A. Bulk ligand concentration as molecules/cell. B. Bulk ligand concentration as

molecules/plate.

00 *o 0 o

0
0 %o

SI 1i

r.



Chapter 5: Methods for Ligand-Receptor Complex Characterization

The last two chapters characterized and examined B82R÷ / TGFa autocrine cells in terms

of ligand expression. However, ligand expression is only half of the story. Binding of ligand

to its receptor is an important cellular initiator and regulator of cell proliferation and migration as

mentioned in chapter one. It has also been observed large fractions of carcinomas have an over-

expressed autocrine loop. In these carcinomas, one or both of the ligand and receptor pair is

over-expressed. How this over-expression affects cellular signalling and proliferation is not

clearly understood. Does increased ligand and receptor lead to increased signalling? or does the

cell regulatory machinery adjust to a new threshold? Previous research in the group analyzed

several important parameters' affect on receptor / ligand complex inhibition as a function of

blocking and decoy antibodies in a mathematical autocrine model. Having developed autocrine

receptor/ ligand expression cell lines, model predictions can be validated and new hypotheses

tested. Autocrine cell parameters which may be varied experimentally are: ligand secretion rate

(controlled by tetracycline concentrations), ligand secretion trafficking (synthesizing

transmembrane precursors or mature protein), receptor trafficking rate (mutant EGFR receptor

cells), receptor / ligand affinity (different ligands / mutated ligands). In these next two chapters,

methods and results from Cytosensor experiments analyzing the first two parameters will be

addressed as a function of blocking antibody and / or decoy antibody concentrations.

First, a method for measuring and quantifying ligand - receptor levels needed to be

developed. Molecular Devices Cytosensor determines cells' metabolic rate by measuring

changes in extracellular pH. The cells' metabolic rate can be increased by adding ligand to a

cells' medium. Upon ligand binding to its receptor, signalling is initiated through the secondary

pathway to increase cellular metabolic activities such as glycolysis and respiration. The ligand /

receptor complex signal is amplified at each step in the secondary pathway, creating a large

signal from a small initial source of complexes. For this detection method to work, the receptor

/ ligand binding step must be the rate-limiting step which would appear on a graph of metabolic

rate vs. EGF as a dose dependent response to EGF concentrations.

5.1 General Protocol for Testing Cells on the Cytosensor

Since B82 mouse fibroblast cells are an anchorage dependent cell line, the cells must be

plated one day prior to running an experiment on the Cytosensor to allow for attachment of the

cells to the transwell membrane. Quarter of a million (250,000) cells are seeded into each

transwell (Coming Transwell #3402 - 3 gm pore size, 12 mm diameter) in normal growth

medium (See Chapter 2 for each cell type's appropriate media). Plating cells in serum free



conditions using D/H/B (Dulbecco-Volt Modified Eagle Media, 25 mM HEPES and 1 mg / ml

BSA, all from Sigma) resulted in dead cells with little or no metabolic activity. One day after

plating cells (experiment day), cell transwells are prepared for placement on the Cytosensor.

First, a spacer (50 gtm high, 6 mm inner diameter, #R7026B - Molecular Devices) is placed in

the transwell's medium directly over the cells. On top of the spacer is placed a transwell insert

(3 Itm pore size, looks like a mini-transwell, fitting flush inside the original transwell, #R7025 -

Molecular Devices). One ml running buffer to each insert cup completes assembly, creating a

self-contained cell chamber of 1.4 gls. Cell / transwell assembly is placed in Cytosensor silicon

sensor chambers and equilibrated for 2-3 hours in DV/cyto buffer (Dulbecco-Volt Modified

Eagle Media with 2.59 gram / liter sodium chloride and 0.1 mg / ml BSA, no sodium

bicarbonate) at a 100 gls / minute flowrate. Pump cycle with all experiments are 30 seconds on

and 30 seconds off. ECAR is measured during the "pump off' period for 20 seconds, starting

8 seconds into the "pump off" period.

All protein samples are diluted in DV/cyto buffer to proper concentration before placing

samples on the Cytosensor. Use of BSA in buffer prevents sample protein from sticking to the

tubing's wall and loss of signal. Signal aberrations resulting from concentrated protein

solutions and their buffers (high antibody concentrations at 100 ýtg / ml) are eliminated by

dialyzing protein in DV/s (DV/cyto without BSA) buffer for 24 hours. Protein concentration is

re-measured using Sigma's BCA protein concentration determination assay (Procedure TPRO-

562 using B9642 Bicinchoninic Acid and C2284 Copper (II) Sulfate Pentahydrate).

Once cell metabolic activity or extracellular acidification rate (ECAR) achieve a steady

state baseline, the experiment is begun. Cells are exposed to EGF or TGFa additions until

achieving maximal ECAR (about 10 minutes) after which the ligand is removed and cells

allowed to acquire a new steady state baseline. In experiments with antibodies, cells are

allowed to re-establish steady state ECAR before exposing them to a 30 minute challenge with

competing antibodies.

5.2 B82R' ECAR Response as a Function of mAb225 and mEGF

B82R' cells were seeded into transwells following the normal protocol and allowed to

grow overnight. Cells were equilibrated in DV/cyto buffer on the Cytosensor before beginning

the experiment as normal. Once cells reached steady state ECAR, each cell lane was re-

equilibrated in the presence of 0, 0.01, 0.1 or 1 pgg/ml anti-receptor blocking antibody mAb225.

Next, a stepwise gradient of mEGF was added to each lane with antibody and maximal ECAR

peaks recorded. The mEGF gradient was 0.1, 1, 10, and 100 ng/ml. After each EGF addition,



cells were allowed to re-equilibrate their ECAR while in the continuous presence of anti-EGFR

blocking antibody 225.

5.3 Correlating Cytosensor's ECAR to Receptor / Ligand Complex Levels

5.3a. 1125 Binding - Receptor / Ligand Complexes

B82R / 1st plasmid or B82R+/ TGFa cells were seeded at approximately 100,000 cells

/ 35 mm Coming tissue culture dishes (#25000) in normal growth medium. Day 2, if induced

B82R+ / TGFc autocrine cells were required, induction was achieved by removal of

tetracycline-containing medium and replacing it with tetracycline-free medium. Day 3, cell

medium was switched from normal growth medium to D/H/B buffer 3 hours before beginning

the experiment. The experiment was begun by removing D/H/B buffer and replacing it with 1125

EGF diluted in D/H/B buffer. Cells were placed in a 37 'C water bath incubator for 10 minutes

to allow binding of 1125 EGF to EGFR. After 10 minutes, cells were placed on ice and 1125 EGF

medium immediately removed. One half ml of cell medium was saved and counted in a Packard

Bell (Cobra Model) Gamma Counter to determine free 1125 EGF concentration. Cells were then

washed three times with lx WHIPS (1 mg / ml PVP, 130 mM NaC1, 5 mM KC1, 0.5 mM

MgC12-6H 20, 1 mM CaCl 2-2H 20, 20 mM HEPES) to remove excess free ligand. Bound

ligand concentrations were determined by lyszing cells with IM NaOH for 10 minutes and

determining radioactive counts of cell lysates plus a Ix WHIPS rinse in the Gamma Counter.

The data was plotted as bound ligand (complexes, # / cell) versus free ligand (ng / ml).

5.3b. Cytosensor ECAR Output

B82R' / 1st plasmid or B82R' / TGFa cells were seeded at 250,000 cells per transwell

in normal growth medium as usual. When measuring induced B82R' / TGFuo autocrine cells,

cells were plated into the transwell in tetracycline-free growth medium for overnight expression.

Cells were equilibrated to steady state ECAR on the Cytosensor in DV/cyto buffer containing 1

gg / ml tetracycline for uninduced autocrine cells and without tetracycline for induced autocrine

cells. Equilibrated cells were exposed to a mEGF concentration gradient of 0.1, 0.3, 0.6, 1.2,

2.5, 5, 10, 25, 50 ng / ml. A method was devised to alternate EGF additions to a particular cell

lane so that each lane "saw" a large increase in EGF concentrations to minimize receptor

downregulation. Thus, additions were performed as follows:

Lane A: 0.1, 1.2, 10 ng / ml EGF

Lane B: 0.3, 2.5, 25 ng / ml EGF

Lane C: 0.6, 5, 50 ng / ml EGF



Lane D: Blank - Background / Baseline

After each EGF addition, cells were allowed to re-equilibrate their ECAR to steady state

before the next ligand addition. Exposure to EGF was minimized by immediate removal of

EGF from cells as soon as peak ECAR was reached - determined by the "leveling" off of

ECAR. Cytosensor data was plotted as peak ECAR (%) versus free ligand (ng / ml).

5.3c. Relating ECAR to Receptor / Ligand Complexes

A best fit line was determined for each curve (1125 EGF and Cytosensor) using

KaleidaGraphTM 3.0 and Scatchard equation (Equation 5.1) (Scatchard 1949). Rearranging the

equation and solving for 1125 EGF (L) in terms of complexes (C) and two parameters (affinity

constant, Kd , and total receptor number, R,) gave Equation 5.2.

C / L = - C / Kd + R,/ Kd Equation 5.1

L = C * Kd / (Rt - C) Equation 5.2

After determining the constants, Kd and Rt, Equation 5.2 was utilized for an analogous

fit of the Cytosensor's ECAR versus free ligand graph, substituting L0.5 for Kd and ECARm

for Rt. A relationship between ECAR and complexes was derived via two methods. The first

method involved using discrete free ligand concentrations and calculating predicted ECAR and

complex numbers from the best fit data. Plotting the two predicted variables together and using

equation 5.2 for a best fit line (replacing R, with ml, grouped variable 1, and Kd with m2,

grouped variable 2) resulted in the desired correlation between ECAR and complexes. The

second method involved mathematically solving equation 5.2, ECAR vs. free EGF and

complexes vs. free EGF equations, for free EGF. Substituting one equation in the another and

solving for ECAR vs. complexes, gave:

ECAR = [C * ECARmax * Kd / (Kd - L0 5)] / [ Lo05 * Rt / (Kd - L0 5) + C] Equation 5.3

5.4 Measuring B82R'/TGFx Induction

Uninduced B82R' / TGFa autocrine cells were seeded as normal at 250,000 cells per

transwell in normal growth medium with 1 jgg / ml tetracycline and allowed to grow overnight.

On Day 2, cells were equilibrated as normal on the Cytosensor in DV/cyto running buffer with 1

jgg / ml tetracycline medium. Upon obtaining steady-state ECAR baseline, the following

conditions are imposed - one condition per lane:



a. No tetracycline and no antibody 225 (Induced - Antibody)

b. No tetracycline and 1 gg / ml antibody 225 (Induced + Antibody)

c. 1 •tg / ml tetracycline and no antibody (Uninduced - Antibody)

d. 1 gg / ml tetracycline and 1 gg / ml antibody 225 (Uninduced + Antibody)

The experiment was run with these conditions for at least 7 hours, allowing TGFot to be

synthesized, expressed, and captured by EGFR.

5.5 Tetracycline Gradient on Autocrine B82R'/TGFu Cells

Uninduced B82R÷ / TGFao autocrine cells were seeded at 250,000 cells per transwell in

normal tetracycline-free growth medium and allowed to grow overnight and induce TGFca

expression. TGFoa expression was repressed in two transwells by addition of 1 plg / ml

tetracycline. TGFa expression was partially inhibited in the third well by addition of 5 ng / ml

tetracycline (0.5% of fully uninduced cells). The fourth well remained tetracycline free,

allowing full induction of TGFx expression. On Day 2, the same tetracycline concentration

was continued in DV/cyto running buffer and cells allowed to reach a steady-state ECAR as

normal. Upon obtaining steady-state, 10 ng / ml mEGF was added to one of the two uninduced

cells, semi-induced cells, and fully induced cells lanes (lanes B, C, and D). The other

uninduced cell lane (A) was used as background / baseline. Upon reaching maximal ECAR,

mEGF was removed and cells allowed to re-equilibrate their ECAR before adding 10 gg / ml

blocking Ab225 to lanes B, C, and D while lane A remained baseline ECAR. The antibody was

left on the cells for a minimum of 30 minutes to ensure obtaining steady state ECAR.

5.6 Antibody Inhibition of Receptor / Ligand Complex on B82R' / TGF(

Uninduced B82R' / TGFao autocrine cells were seeded at 250,000 cells per transwell in

normal growth medium and allowed to grow overnight. TGFo expression was induced during

passage by plating the cells in tetracycline-free medium. On Day 2, cells were equilibrated as

normal in DV/cyto running buffer without tetracycline on the Cytosensor before beginning the

experiment. After reaching steady state ECAR, cells were exposed to 10 ng / ml mEGF in

DV/cyto until maximum ECAR was reached, usually in 10 minutes. This EGF addition was to

insure all cells responded similarly. After measuring peak ECAR, cell ECAR was re-

equilibrated to steady state before adding an antibody gradient and ECAR decline recorded.

Antibody / cell incubation proceeded for at least 30 minutes to insure reaching a new steady-

state ECAR. Three antibody concentrations were tested at a time while the fourth lane received

no antibody and served as the background / baseline lane.



5.7 Blocking Antibody Inhibition of Receptor Complexes on B82R' / sEGF

The same procedure performed in section 5.6 were used with autocrine B82R÷ / sEGF

cells constructed by Dr. Birgit Will-Simmons (Will et al. 1995). Again the procedure is:

Uninduced B82R' / sEGF autocrine cells were seeded at 250,000 cells per transwell in

normal growth medium and allowed to grow overnight. sEGF expression was induced during

passage by plating the cells in tetracycline-free medium. On Day 2, cells were equilibrated as

normal in DV/cyto running buffer without tetracycline on the Cytosensor before beginning the

experiment. After reaching steady state ECAR, cells were exposed to 10 ng / ml mEGF in

DV/cyto until maximum ECAR is reached, usually in 10 minutes. This EGF addition was to

insure all cells responded similarly. After measuring peak ECAR, cell ECAR was re-

equilibrated to steady state before adding an antibody gradient and ECAR decline recorded.

Antibody / cell incubation proceeded for at least 30 minutes to insure reaching a new steady-

state ECAR. Three antibody concentrations were tested at a time while the fourth lane received

no antibody and served as the background / baseline lane.



Chapter 6: Results - Ligand / Receptor Complex Characterization

6.1 Overview of Experiments

Having described methods for receptor - ligand complex detection and quantification in

the previous chapter, the results of these experiments are discussed here. Cytosensor ECAR

readings were shown to be EGF concentration-dependent, allowing a correlation between

cellular metabolic rate as detected by the Cytosensor and receptor - ligand complexes as

measured by 1125 EGF binding studies. The successful correlation between ECAR and ligand /

receptor complex and high signal to noise ratio on the Cytosensor is important because earlier

work using anti-phosphotyrosine Westerns and ELISA incurred low signal to noise ratios,

making complex level quantification difficult (data not shown). Having to perform cell lysates

and multi-day preparations is another disadvantage with Westerns and ELISA, whereas

Cytosensor data is real-time with living cells.

Using the Cytosensor, uninduced autocrine B82R' / TGFcX were placed on the machine

and its ECAR increased upon induction of TGFx expression over a seven hour period. This

ECAR signal was reduced if cells were in the presence of competing anti-receptor blocking

antibody. Finally, both autocrine B82R' / TGFao and B82R* / sEGF cells were exposed to

various antibody concentrations and antigen specificity to determine the proteins' affect on cell

ECAR. These studies prove the superiority of blocking antibodies over decoy antibodies on

B82R÷ / TGFo cells, achieving receptor / ligand inhibition at 1,000 fold less concentration.

However, anti-receptor antibodies were unable to inhibit autocrine B82R' / sEGF cells'

signalling complexes as these cells express an intracrine signalling pathway.

6.2 General Cytosensor Runs

The Molecular Devices Cytosensor measures the cells' extracellular pH every second

during the experiment as described in section 1.7. Briefly, silanol and silamine groups on the

surface of the silicon chip develop a surface potential as a function of pH. By applying an

increasing external potential to the media, an amplitude-modulated light-emitting diode induced

depletion layer collapses, inhibiting photocurrent electron flow in the silicon chip. A plot of

current versus applied potential gives an inflection point characteristic of the solution's pH.

Two regimes of extracellular pH detection and measuring occur in a Cytosensor experiment.

When running buffer is continuously flowing over cells, changes in extracellular pH remains

constant because the buffer's resonance time (1.7 seconds) is too short for cells to significantly

acidify their buffer. However, once the buffer flow is stopped, cell acidification of extracellular

buffer is detectable. The extracellular buffer acidification is measured over several seconds,



typically 20, before resuming buffer's flow. This on / off flow cycle is repeated every minute.

By measuring the slope of pH reading versus time when the buffer is not flowing gives cell

metabolic rate or extracellular acidification rate (ECAR). An example of the raw data measuring

pH as a function of time is shown in Figure 6.1 a.

Side products such as lactic acid and HCO3- are produced during cell breakdown of

glucose to energy in glycolysis and energy utilization during respiration. At physiological pH,

both lactic acid and HCO 3- dissociate, yielding two to six H' per glucose molecule. A cell's

metabolic rate can be increased (addition of growth factors or phorbol esters) or decreased

(addition of competing antibodies or chemicals inhibiting tyrosine kinase and protein kinase C

activity). Figure 6.lb shows a typical response of B82 EGF receptor positive cells to an

growth factor addition (EGF). The curve is normalized to extracellular acidification rates before

addition of EGF and expressed as a percent change in baseline. Normalizing ECAR data is

done because each cell lane has different absolute metabolic rates, but relative changes in

normalized ECAR are similar.

After about 6 to 10 minutes, cells' metabolic rate peaks and starts dropping off. During

the experiments, cells are switched off growth factors after reaching peak ECAR back to normal

running buffer, minimizing receptor exposure to growth factors and allowing multiple growth

factor exposure cycles. The data is analyzed by recording maximal ECAR per EGF addition

and plotting ECAR as a function of EGF (Figure 6.2). This graph reveals that B82R' cell

ECAR response has a dose dependent response to EGF. At low EGF concentrations, the slope

of ECAR to EGF additions is fairly linear, however, at higher EGF concentrations, the ECAR

response is saturating. The curve also indicates that EGF binding to its receptor is the rate

limiting step and that the secondary signalling pathway is not rate limiting due to the dose

dependent response to EGF. A further test proving the secondary signalling pathway was not

rate limit was the addition of PMA (phorbol ester - activating protein kinase C). Cells' ECAR

response was 6 times greater to 1 gM PMA compared to 20 ng / ml EGF (data not shown).

6.3 B82R' ECAR Response as a Function of mAb225 and mEGF

Presented in Figure 6.3 is B82 EGF receptor positive cells challenged with EGF and

anti-receptor blocking antibody mAb225. Addition of monoclonal antibody 225 does not

initiate receptor signalling (discussed later), but does compete for the same binding site on

EGFR as EGF and TGFa. B82R' cells were equilibrated on the Cytosensor in the presence of

varying blocking antibody concentrations until steady state ECAR. Next, varying

concentrations of EGF were added until obtaining peak ECAR, upon which EGF was removed

and cellular ECAR allowed to re-stabilize before adding a new EGF concentration. All buffers
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and samples added to the cells contained blocking antibody, thus maintaining its concentration

throughout the experiment.

The EGF response curve in the absence of antibody shows the dose dependent response

of B82 EGFR positive cells to EGF as previously discussed. However, addition of blocking

antibody inhibited EGF - EGFR binding and signalling, shifting the B82R ÷ ECAR response

curve rightward. The graph can also be analyzed by observing cellular response with 1 ng / ml

EGF and as a function of increasing blocking antibody concentrations. B82R' cell response is

near maximal without antibody, however, is inhibited upon addition of antibody. A hundred

fold increase in antibody concentration, at a thousand fold greater concentration than EGF,

completely inhibits EGF from binding to EGFR. Thus, the Cytosensor provides a method for

measuring receptor / ligand complex inhibition as a function of antibody concentrations.

6.4 Correlating Cytosensor's ECAR to Receptor / Ligand Complex Levels

In the previous experiments, changes in receptor / ligand levels were detected as a

function of ligand and antibody concentrations. However, Cytosensor output is in terms of

extracellular acidification rate or ECAR. Computer models and predictions are in terms of

receptor / ligand complexes. Thus, a correlation between ECAR and complexes was required.

Published data indicated feasibility of measuring ligand dose-dependent responses on the

Cytosensor (Pitchford et al. 1995) and recognizing that the same dose-dependent result occurs

in 1125 EGF equilibrium binding experiments, it was hypothesized a correlation between ECAR

and complex could be obtained. A compilation of data discussed in sections 6.4a, b, and c for

B82R* / 1st plasmid, uninduced and induced autocrine B82R' / TGFa cells is presented in

Figures 6.4, 6.5, and 6.6. The immediate observation is the dose dependent, saturating

response to EGF in both Cytosensor and I125 EGF data. With I"25 EGF, the only event

measured is ligand binding to its receptor. In Cytosensor data, a multitude of events occur,

affecting metabolic rates and Cytosensor output. These events include ligand binding to its

receptor and a cascade of kinases interactions and signalling. A dose dependent EGF response

on the Cytosensor indicates downstream secondary messenger signalling is not rate-limiting and

solely dependent on complex numbers.

6.4a. 1125 Binding - Receptor / Ligand Complexes

Presented in Figures 6.7, 6.8, and 6.9 are the results from 1125 EGF binding

experiments. Originally, I125 EGF binding experiments were performed at 4 oC and free ligand

allowed to incubate on the cells for 3 hours. To match Cytosensor experiments, the binding

experiment was performed at 37 'C and allowed to incubate for 10 minutes. Cells were then
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transferred immediately to ice and its medium removed. After washing cells multiple times with

lx WHIPS, they were lysed and total complexes measured. Cells were lysed because

Cytosensor ECAR output represents both surface and internal signalling complexes. After

converting 1125 binding data from radioactive counts (cpm) to complexes (molecules / cell) and

free ligand (ng / ml), the data was plotted and a best - fit line determined using equation 6.1.

C = L * Rt / (Kd + L) Equation 6.1

Two parameters were determined using this equation, receptor / ligand equilibrium

constant, Kd, and total receptor number, R,. The receptor number between cell lines were fairly

similar, within 40,000 receptors, since B82R+ / 1st plasmid are the parental strain of autocrine

B82R' / TGFa cells. Thus, an abnormal clone, in receptor number, was not selected during

TGFu plasmid transfection into B82R+ / 1st plasmid cells. The gradual reduction in receptor

number going from B82 R+ / 1st plasmid cells to induced autocrine B82R+ / TGFx cells may be

indicative of increased ligand levels down-regulating receptor numbers. The difference between

B82 R / I1st plasmid and autocrine cells could be a clonal effect, but not between uninduced and

induced autocrine cells as they are the same cell clone - only a difference of induction states.

The second parameter was Kd. This value was 10.5 ± 0.7, 11.4 + 1.1, 11.5 + 1 ng / ml

for B82 R+ / 1st plasmid, uninduced autocrine and induced B82 R' / TGFo autocrine cells,

respectively, or similar within experimental error. An average of 11.1 ng / ml equates to 1.84

nM binding affinity constant, within published EGF / EGFR Kd of 1-2 nM (Ebner and Derynck

1991).

6.4b. Cytosensor ECAR Output

The second part to correlating complex number and ECAR is obtaining ECAR versus

free ligand concentrations. This was accomplished by measuring changes in cell's ECAR as a

function of free ligand concentrations. When working with induced autocrine cell, its medium

was tetracycline-free overnight to induce TGFu expression. After equilibrating the cells to

steady state ECAR on the Cytosensor, a gradient of EGF (similar range as performed with 1125

EGF) was added to each Cytosensor lane. Immediately after obtaining a peak ECAR or after 10

minutes of EGF exposure, the EGF was removed and cells allowed to return to baseline

metabolic rates before beginning another EGF addition. Since EGF was sequentially added to

cells, relatively large jumps in EGF concentrations were performed to minimize effects of

previous EGF on later additions. Thus, cells saw a 10 fold increase in EGF versus doubling

ligand concentrations at each measurement. The concentration jumps were accomplished by

exposing a Cytosensor / cell lane to every third EGF concentration in the gradient profile.
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Maximum ECAR was recorded at each EGF addition and plotted as ECAR versus EGF. The

data was curve fit to equation 6.1 replacing R, with ECARmax and Kd with L05.
Results from Cytosensor experiments are shown in Figures 6.10, 6.11, and 6.12. The

data points are far more random compared to 1125 EGF data. This variance is likely due to

measuring a result through multiple secondary pathway signals, inaccuracies in ligand

concentrations, and comparing experiments over several months. Cytosensor ligand

concentrations were diluted down to predicted values. Whereas in 1125 EGF experiments, EGF

concentrations were measured and calculated based on radioactive counts. The worst fit data

was with B82R' / 1st plasmid, however, it was caused mostly by one experimental series. If

that series is removed, the fit improves from R2 = 0.59 to 0.75. The uninduced and induced

curves were a fairly good fit with R2 = 0.85 and 0.79, respectively.

In this experiment, both parameters vary in interesting patterns. There is a large, 50%,

drop in grouped ECARm upon TGFox expression induction. It is difficult to infer the

decrease's significance. ECARm can be considered a function of receptor number or total

signalling complexes similar to parameter R, in 1125 EGF data. It would be expected that R+ / 1st

plasmid cells, having no ligand expression, would have a similar ECARm value as low

expressing, uninduced autocrine B82R' / TGFx cells. However, B82R' / 1st plasmid's

ECARm is significantly different and smaller than uninduced autocrine cells. Eliminating the

three high outliers in both R' / 1st plasmid and induced autocrine data shifts ECARm to 42 and

25, respectively (data not shown), thus, removal of the outliers only magnifies the differences

between uninduced and R' / 1st plasmid cells.

The second parameter is ligand concentration at half maximally ECAR, or L0 5. This

parameter increases with increasing ligand expression. Since receptor / ligand affinity, K d, was

the same between cell lines (Section 6.3a), the increase in L05 could be a result of receptor

desensitization. Therefore, higher concentrations of exogenous ligand are required to obtain

similar signalling / metabolic responses with increasing ligand secretion rates. Removal of

outliers discussed in the previous paragraph does not change this observed L 05 differential. The

numbers change from 10.8 + 3.6 to 9.4 ± 2.9 in the induced autocrine data and doesn't change

in R' / 1st plasmid data (2.1 ± 1 to 2.1 ± .81) while uninduced autocrine cells L0 5 remains 4.5

± 1 (data not shown).

6.4c. Relating ECAR to Receptor / Ligand Complexes

After performing the 1125 EGF and Cytosensor experiments and obtaining best fit

equations, the equations were linked via variable free EGF to derive a correlation between
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ECAR and complex numbers. This correlation can be derived by two methods as described in

section 5.3c.

A best fit line using equation 5.3 was plotted for all three cell types in Figures 6.13,

6.14, and 6.15 with experimental data. To plot experimental data, free ligand concentrations

from each experiment were converted into predicted ECAR or complexes via the corresponding

graph's best fit equation. Thus, experimental free EGF concentrations from 1125 EGF

experiments (experimental free EGF and experimental complexes) were converted to predicted

ECAR using the equation from Cytosensor ECAR vs. free EGF data and plotted as predicted

ECAR vs. experimental complexes.

The ECAR versus complexes graphs' curves become linear with increasing TGFot

expression. This observation goes back to the Cytosensor data described in section 6.4b when

receptor desensitization occurs with increasing TGFcc expression. Thus, in a cell line which

has not seen ligand, i.e. B82R4 / 1st plasmid cells, short ligand exposure times to cells results in

receptor / ligand signal saturation at high ligand concentrations. Compared to cells continuously

in the presence of TGFcx (i.e. autocrine), receptor desensitization has already occurred and

apparently allows a linear signal response thereafter. One argument could be that exogenously

added EGF concentrations is significantly smaller than autocrine TGFx secretion rates, masking

the effect of EGF. However, 0.1 ng / ml exogenously added EGF corresponds to

approximately 7,000 molecules per cell - minute. Induced autocrine TGFa cells express

approximately 3,000 - 7,000 molecules per cell - minute. Calculations and Cytosensor chamber

sizing parameters are in Appendix B.

Finally, an experimental system has been created to accurately, quantitatively, in real

time, measure hard-to-detect receptor / ligand complexes. Also, Cytosensor output in terms of

ECAR can be successfully correlated back to receptor / ligand complexes using correlation

experiments with free ligand on both Cytosensor and 1125 binding experiments.

6.5 Measuring B82R+/ TGFu Induction

The previous experiments discussed in Chapter 6 measured B82 EGFR cell responses to

addition of blocking antibodies and / or EGF, however, the goal of this thesis was to measure

receptor / ligand interactions in autocrine cells as a function of competing antibodies. Therefore,

the following experiment was performed with autocrine B82R+ / TGFc cells to demonstrate

how well the Cytosensor could differentiate between varying TGFo secretion rates. Briefly,

uninduced autocrine B82 R+ / TGFa cells (medium containing 1 jig/ml tetracycline) were plated

onto transwells and allowed to attach overnight. The uninduced autocrine cells were placed on

the Cytosensor and allowed to equilibrate their metabolic rates in normal DV / cyto running
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buffer containing 1 p~g/ml tetracycline. After obtaining steady state ECAR, the following

conditions were imposed:

1. Induced Autocrine cells: No tetracycline

2. Induced Autocrine cells: No tetracycline + 1 gg / ml blocking antibody 225

3. Uninduced Autocrine cells: 1 glg / ml tetracycline

4. Uninduced Autocrine cells: 1 pLg / ml tetracycline + 1 gg / ml blocking antibody 225.

These experiments were run seven - eight hours, allowing TGFa expression into

extracellular medium and binding to EGFR. Each cell chamber's ECAR was recorded at seven

hours and normalized to uninduced autocrine cells with 1 gg / ml blocking antibody 225. This

baseline was chosen as it has smallest ECAR reading due to little ligand expression and receptor

- ligand complex formation was inhibited. A typical TGF( induction experiment with autocrine

B82 R+ / TGFc cells is shown in Figure 6.16. As seen, induced cells' metabolic rate start

increasing after about 5 to 6 hours, corresponding to the average time it takes for a cell to

transcribe DNA to RNA, translation RNA to protein and secrete that protein in the extracellular

medium (Bringman et al. 1987). After this initial ECAR increase, cells establish a new

metabolic equilibrium.

The difference in ECAR response to TGFx induction and receptor / ligand complex

inhibition can be quantitated more clearly in Figure 6.17. Induced autocrine cells' ECAR

readings increased 16% compared to uninduced autocrine cells with blocking antibody. The

induction is also significant between uninduced cells and induced cells (one standard deviation)

and addition of blocking antibodies significantly reduced induced cells' ECAR levels by

inhibiting TGFc from binding EGFR. Thus, this experiment showed that measurements of

autocrine TGFa expression induction and inhibition autocrine signalling by blocking antibodies

can be measured on the Cytosensor.

6.6 Tetracycline Gradient on Autocrine B82R÷/TGFo Cells

One reason for using the tetracycline - controlled, two plasmid expression system is the

ability to control TGFc expression levels between "off' and "on" by adjusting tetracycline

concentrations in the medium. This induction "gradient" for TGFox expression was analyzed in

section 3.5 by measuring extracellular ligand concentrations as a function of tetracycline

concentrations. However, the Cytosensor provides an ability to measure receptor complex

levels as a function of ligand expression. Briefly, uninduced autocrine cells were plated into

Cytosensor transwells and allowed to attach overnight. A tetracycline gradient was added to
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induce TGFx expression overnight and achieve steady state ligand expression for the

experiment. Two transwells were designated as uninduced cells containing 1 gg / ml

tetracycline to its medium. One transwell was designated as semi-induced cells by addition of 5

ng / ml tetracycline to its medium (200 fold less tetracycline) and the last well designated as fully

induced autocrine cells tetracycline - free medium.

A representative graph of these experiments is plotted in Figure 6.18a. Upon addition

of 10 ng / ml EGF to each of the equilibrated autocrine cells, a difference in ECAR response can

be observed. There was a slight decrease (5% difference) in peak ECARs between uninduced

cells and semi-induced cells upon addition of EGF. A significant change in ECAR response

occurs when induced autocrine cells received EGF, giving a 35% decrease compared to

uninduced autocrine cells. This ECAR response differential between semi-induced and fully

induced autocrine cells compared to uninduced autocrine cells highlights the receptor

desensitization which occurs upon ligand induction. As seen in section 6.4a, autocrine cell

receptor numbers were fairly similar between the two ligand expression levels (16% decrease),

thus, at least half of the changes in ECAR must be due to desensitization of the EGF receptor.

Uninduced autocrine cells have very few receptor - ligand complexes compared to fully

induced autocrine cells as uninduced cells produce little to no TGFo ligand. Thus, upon

addition of high blocking antibody concentrations, one would expect a drop in ECAR

corresponding to initial complex levels. As seen in Figure 6.18b, fully induced autocrine cells'

ECAR dropped the most, due to the increased number of initial signalling complexes present

compared to uninduced autocrine cells upon antibody addition. Since semi-induced autocrine

cells' initial complex levels were in-between induced and uninduced cells, its ECAR drop

naturally falls between fully induced and uninduced autocrine cell's ECAR in the presence of

antibody. Thus, this experiment demonstrates receptor desensitization and initial receptor -

ligand complex levels can be quantified on the Cytosensor.

6.7 Antibody Inhibition of Receptor / Ligand Complex on B82R'/TGFca

The next experiment tests the central hypothesis of this thesis that blocking antibodies

are superior inhibitors of receptor / ligand complexes compared to decoy antibodies. Computer

modelling indicates that blocking antibodies inhibit receptor / ligand complex formation at much

lower antibody concentrations. One reason is unbound decoy antibody concentrations are

"diluted" by binding to extracellular bulk ligand, decreasing the antibodies' effective diffusion

gradient to the cell surface where it competes directly against EGFR for TGFa.

Briefly, uninduced autocrine B82R ÷ / TGFuc cells were plated in Cytosensor transwells

overnight to allow cell attachment. TGFoa expression was induced overnight to obtain steady
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state ligand expression by removal of tetracycline from the medium. The induced autocrine cells

were equilibrated on the Cytosensor in normal DV/cyto running buffer without tetracycline until

their ECAR reached a steady state. Ten ng / ml mouse EGF was added to each lane and peak

ECAR observed to ensure all cell lanes behaved similarly. Immediately upon reaching peak

ECAR, EGF was removed from the cells and their ECAR allowed to re-adjust back to baseline.

Upon establishing a baseline, varying concentrations of blocking antibody 225, decoy anti-

TGFox antibody, or neutral rabbit IgG were added to each cell lane and decreases in ECAR

measured for at least 30 minutes. An typical experiment is shown in Figure 6.19.

Shown in Figure 6.20 is a compilation of all antibody experiments on autocrine B82R' /

TGFca cells. Blocking antibody concentrations were varied over five orders of magnitude

resulting in no effect to total receptor / ligand binding inhibition. Inhibition of autocrine B82R+ /

TGFct binding was achieved at 1 nM blocking antibody, corresponding to predicted

concentration in the mathematical model. Also predicted by the model was blocking antibody's

superiority over decoy antibodies. Addition of high decoy antibody concentrations, around 900

nM, only slightly affected autocrine signalling, meaning nearly 7000 times more decoy antibody

was required to achieved the same inhibition as blocking antibodies. Both antibodies have a K d

equal to EGF / EGFR's Kd of 1 nM (Mendelsohn et al. 1987; Technical Support 1995).

Several control experiments were performed to ensure these antibody effects were

specific to receptor / ligand complex inhibition and not nonspecific events. Addition of

nonspecific rabbit IgG at 100 gg / ml did not affect cells' metabolic rate, indicating that

reduction in ECAR upon addition of blocking antibodies is specific to the inhibition of autocrine

receptor / ligand complex formation and not a random antibody effect. Another control

experiment ensured that addition of blocking antibody 225 did not stimulate or inhibit cell

signalling in control B82 R' or autocrine B82R+ / TGFc cells. The experiment is shown in

Figure 6.21. Antibody 225 was added to cells which did and did not receive a prior dosage of

EGF. Antibody 225 did not stimulate cell metabolic rates through receptor binding and no

decrease in ECAR occurred upon addition of blocking antibody after an EGF challenge. The

second part of the experiment proved that the decrease in ECAR upon addition of antibody was

not due blocking previously added exogenously bounded EGF (these complexes already

disappeared), but by preventing autocrine ligand TGFu binding.

One possible explanation for experimental decoy antibody's inability to successfully

inhibit receptor - ligand complex formation is the antibody could recognize and bind TGFo• but

not prevent it from binding to EGFR. In other words, it would be a recognition antibody, but

not a neutralizing antibody. Two large molecules (170 kDa - receptor and 150 kDa - antibody)

could successfully bind a small protein (5.5 kDa), the premise of sandwich ELISAs. Thus, an
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experiment was performed to prove anti-TGFco decoy antibody was a neutralizing antibody.

One Cytosensor transwell was plated with B82R' and three transwells were plated with induced

autocrine B82R' / TGFuo cells and allowed to attach overnight. The following day, ten gg / ml

TGFuo was added to each equilibrated cell lane and maximum ECARs recorded. Immediately,

after obtaining peak ECAR, TGFo was removed and ECARs returned back to baseline. Next,

the following conditions were applied:

1. B82R+ - 10 tg / ml decoy antibody + 10 ng / ml TGF(

2. Induced Autocrine - 50 gg / ml decoy antibody

3. Induced Autocrine - 50 gg / ml blocking antibody

4. Induced Autocrine - blank

As seen in Figure 6.22b, addition of blocking antibody inhibited autocrine receptor /

ligand binding while addition of decoy antibody did not. Addition of TGFa alone to B82R'

cells increased ECAR (Figure 6.22a - triangles), however, complete inhibition of signalling was

achieved upon addition of TGFx and decoy antibody (Figure 6.22b - triangles), proving that

the decoy antibody is a neutralizing antibody.

A more nuanced comparison between experimental (Figure 6.20) and mathematical data

(Figure 2.3) reveals a difference in initial receptor / ligand levels. Receptor / ligand complex

levels are predicted to be around 6%, however, experimental calculations determined receptor

complex levels are closer to 60%. A few potential explanations can be offered. First, one

assumption when correlating receptor / ligand levels for autocrine cells is a one to one

relationship exists between increasing ECAR upon addition of EGF and decreasing ECAR upon

addition of competing antibodies. Since both proteins affect signalling pathway at the same

point (receptor), the relationship should hold. If not, the data would suggest a 10 fold

difference exists between signal induction and degradation.

A secondary possibility is cell density affecting receptor complex levels during the

correlation experiments. During these experiments, cell density was around 350,000 cells / 35

mm dish for the 1125 EGF binding experiment and an estimated 400,000 cells / 12 mm transwell

for the Cytosensor experiment. The difference is cell coverage is nearly an order of magnitude

(-3 % and -30%, 1l25 and Cytosensor, respectively). At a higher cell density, receptor number

could be further down-regulated and desensitized on the Cytosensor compared to I125 cells.

This desensitization would change the slope of ECAR versus complexes curve lower, meaning

more complexes are required to achieve similar ECAR. However, there is an argument against

this possibility upon analysis of uninduced and induced autocrine Cytosensor data (Figure 6.1 1
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and 6.12). Assuming a ten fold increase in density was similar to a ten fold increase in ligand

expression or at worst case nonlinear and greater, the autocrine ligand induction was 200 fold,

yet the maximum ECAR only decreased by half upon ligand induction and receptor

desensitization, not a 10 fold discrepancy.

A third, and more likely, reason for the difference between experimental data and

computer predictions is a subtle difference between EGF and TGFu proteins. Autocrine

computer modelling assumes all receptor / ligand complexes are internalized and degraded in the

lysosome. This is a valid assumption for EGF. But, while both proteins have similar KdS at

physiological pH, TGFct is more pH sensitive and dissociates from its receptor as pH decreases

(TGFx - 6 nM to 400 nM and EGF - 3 nM to 80 nM as pH goes from 7.4 to 6.0). Thus, at

endosomal pH, TGFca is mostly unbound, allowing receptor recycling back to the cell surface

(Engler et al. 1988; French et al. 1995). Once, the receptors are back on the cell surface, they

can quickly rebind ligand forming new signalling complexes. This recycling means less EGFR

downregulation, faster recovery of binding following endocytosis, and therefore, increased

receptor / ligand complex number along with enhanced mitogenic potency (Engler et al. 1988;

Reddy et al. 1996). In addition, more ligand may be recycled as well at lower intercellular

complex levels. Differences between EGF and TGFa's endosomal trafficking could help

explain why both bulk ligand concentrations and receptor / ligand complexes are higher than

predicted by computer modelling.

6.8 Blocking Antibody Inhibition of Receptor Complexes on B82R'/sEGF

Autocrine B82R ÷ / TGFo's ligand is synthesized as a 25 kDa transmembrane precursor

and expressed to the cell surface before the extracellular mature protein (5.5 kDa) is

enzymatically cleaved into the medium. Autocrine B82R' / sEGF, constructed by Dr. Birgit

Will-Simmons, is synthesized as a mature 6 kDa protein and secreted directly out to the

medium. Studies in Dr. Steve Wiley's lab (University of Utah, Salt Lake City, Utah) and Dr.

Jeff Morgan's lab (Shriner's Burn Institute, Cambridge, MA) indicate the inability of blocking

antibodies to inhibit cell growth and migration in HMEC 184 and human keratinocytes cells

upon transfection of sEGF into these EGFR positive cell lines (personal communications). It is

hypothesized that sEGF and EGFR are secreted to the cell's surface in the same secretion

vesicles and able to bind together before reaching the cell surface. To maintain normal receptor

membrane turnover (0.03 min. -') for 100,000 receptor would require synthesizing 3,000 new

receptor / cell-minute. Both induced B82R' / TGFcx and B82R' / sEGF autocrine clones can

secrete over 6,000 ligand molecules / cell-minute. Thus, all of the receptors could be bound,

signalling and immediately internalized upon reaching the cell's surface with an autocrine B82R'
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/ sEGF cell. As transmembrane TGFx is bound to the secretory vesicle's surface and has a

precursor NH, end, it would be sterically hindered from binding EGFR present in the secretory

vesicles of autocrine B82R+ / TGFac cells.

The inability of blocking antibody 225 to inhibit autocrine B82R' / sEGF receptor -

ligand signalling is shown in Figure 6.23. Addition of 300 glg / ml blocking antibody 225 to

autocrine B82R' / TGFo cells would ensure complete and total inhibition of signalling;

however, when added to autocrine B82R' / sEGF cells resulted in only a 4% change from

baseline, similar to inhibition achieved with 0.02 gLg / ml (15,000 times less antibody) on

autocrine B82R' / TGFoa cells. Since both ligands bind similarly to EGFR, the difference

would appear to be sEGF's ability to intracellular bind EGFR before cell surface expression,

thus preventing blocking antibody from binding extracellularly.
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Figure 6.1: Experimental raw and rate data. Equilibrated B82R + were exposed to 20 ng /

ml mEGF (circles / cbtted line) or not (squares, solid line) for 8 minutes at 6. Graph A. Raw

data readings used to determine ECAR in graph B between points a and P. Graph B. Rate

data for B82R + cells.
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Figure 6.2: B82R+ control cells - Cytosensor EGF response curve.

Equilibrated B82R+ cells were exposed to a gradient of mEGF on Molecular

Devices Cytosensor. Data plotted as log in the figure and linear in the insert.
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Figure 6.3: Cytosensor measurement - B82R + with EGF and mAb225.

B82R+ cells were equilibrated in the presence of 0 (squares), 0.01 (cross), 0.1 (circle),

and 1 (triangle) gtg / ml anti-EGFR antibody 225. Upon equilibration, the cells were

exposed to indicated EGF gradient.

113



I-,
W

XC.)0
v,
a)x
03

E
o
C-

Free EGF (ng / ml)

0 20 40 60 80 100

Free EGF (ng / ml)

0 2 4 6 8 101214

Complexes (# / 104 cells)

Figure 6.4: Overview ECAR to Complex

1125 mEGF Gradient binding experiment.

- B82R + / 1st plasmid. Graph A.

Graph B. mEGF Gradient on

Cytosensor. Graph C. Correlation of ECAR to Complexes.
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Figure 6.5: Overview ECAR to Complex - uninducedB82R+ / TGFoa. Graph A.

1125 mEGF Gradient binding experiment. Graph B. mEGF Gradient on Cytosensor.

Graph C. Correlation of ECAR to Complexes.
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Figure 6.6: Overview ECAR to Complex - Induced B82R + / TGFoc. Graph

A. 1125 mEGF Gradient binding experiment. Graph B. mEGF Gradient on

Cytosensor. Graph C. Correlation of ECAR to Complexes.
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1125 Binding - B82R + / 1st plasmid. After incubating cells with D/H/B

media for 3 hours, cell were incubated with 1125 EGF for 10 minutes. Media was

removed and cpm counts defined as free ligand. Cells were lysed with 1 M NaOH and

cpm counts defined as bound ligand.
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Figure 6.8: 1125 Binding - Uninduced B82R+ / TGFc. Autocrine clone #1's

TGFct expression was repressed by 1 jgg / ml tetracycline containing media. After

incubating cells with D/H/B media for 3 hours, cell were incubated with 1125 EGF for

10 minutes. Media was removed and cpm counts defined as free ligand. Cells were

lysed with 1 M NaOH and cpm counts defined as bound ligand.
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Figure 6.9: 1125 Binding - Induced B82R + / TGFax. Autocrine clone #1's TGF(c

expression was induced overnight by removal of tetracycline. After incubating cells

with D/H/B media for 3 hours, cell were incubated with 1125 EGF for 10 minutes.

Media was removed and cpm counts defined as free ligand. Cells were lysed with 1 M

NaOH and cpm counts defined as bound ligand.
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Figure 6.10: Cytosensor - B82R + / 1st plasmid. After equilibrating cells on the

Cytosensor in DV / cyto running buffer for about 3 hours, cells were sequentially

exposed to increasing concentration of a mEGF gradient.
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Figure 6.11: Cytosensor - Uninduced B82R+ / TGFa. Autocrine clone #1's

TGFoa expression was repressed by 1 jgg / ml tetracycline containing media. After

equilibrating cells on the Cytosensor in DV / cyto running buffer for about 3 hours,

cells were sequentially exposed to increasing concentration of a mEGF gradient.
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Figure 6.12: Cytosensor - Induced B82R + / TGFa. Autocrine clone #1's TGFo

expression was induced overnight by removal of tetracycline. After equilibrating

cells on the Cytosensor in DV / cyto running buffer for about 3 hours, cells were

sequentially exposed to increasing concentration of a mEGF gradient.
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Figure 6.13: ECAR to Complex Correlation - B82R+ / 1st plasmid. Correlation of

B82R+ / 1st plasmid cell data and equation plotted together. Line plot is obtained by

combining best fit equations from Figures 6.7 and 6.10. Data obtained from same plots,

free ligand concentration was converted into predicted ECAR or complexes and plotted

against corresponding experimental ECAR or complexes.
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Figure 6.14: ECAR to Complex Correlation. - Uninduced B82R + / TGFo.

Correlation of uninduced autocrine clone #1 data and equation plotted together.

Line plot is obtained by combining best fit equations from Figures 6.8 and 6.11.

Data obtained from same plots, free ligand concentration was converted into

predicted ECAR or complexes and plotted against corresponding experimental

ECAR or complexes.
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Figure 6.15: ECAR to Complex Correlation - Induced B82R + / TGFa cells.

Correlation of induced autocrine clone #1 data and equation plotted together. Line

plot is obtained by combining best fit equations from Figures 6.9 and 6.12. Data

obtained from same plots, free ligand concentration was converted into predicted

ECAR or complexes and plotted against corresponding experimental ECAR or

complexes.
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Figure 6.16: Induction of autocrine B82R + / TGFoc cells on Cytosensor.

Equilibrated autocrine clone #1 cells were induced (circle) or remained uninduced

(squares) at time equal zero. Cells were also in the presence (open) or absence

(solid) of 1 gg / ml anti-EGFR 225 during the experiment. Only every 10 minute

data point is plotted for clarity.
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Figure 6.17: B82R+ / TGFa induction measured on Cytosensor.

Uninduced B82R+ / TGFct autocrine clone #1 cells were equilibrated on the

Cytosensor before beginning experiment. Above indicated conditions were imposed on

each cell lane and Cytosensor run for seven hours. ECAR readings at seven hours are

recorded and shown. Data for each run is normalized to uninduced autocrine cell lane

with blocking antibody. Anti-EGFR 225 blocking monoclonal antibody concentration

was I tg / ml.
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Figure 6.18: Tetracycline gradient affects on B82R + / TGFx cell ECAR.

Autocrine B82R+ / TGFca clone #1 cells were plated onto Cytosensor transwells at

varying tetracycline concentrations (ligand expression). Uninduced cells were at I [tg

/ ml tetracycline (squares and diamonds). Semi-induced cells were at 5 ng / ml

tetracycline (circle) and fully induced tetracycline free (triangles). One uninduced

cell line was control cells receiving no additions (squares). Graph A. Addition of 10

ng / ml mEGF. Graph B. Addition of 10 ýtg / ml monoclonal anti-EGFR blocking

antibody 225.
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Figure 6.19: Representative Cytosensor run - induced autocrine B82R + / TGFuc

with blocking antibodies. Equilibrated autocrine clone #1 cells were exposed to 10

ng / ml mEGF for 10 minutes. After re-equilibration, the cells were challenged with

0.0 (squares), 0.02 (diamonds), 0.1 (circles), and 20 (triangles) jtg / ml anti-EGFR

blocking antibody 225. For clarity, a 30 minute span during re-equilibration was

omitted (*) and only every 2 minute Cytosensor data point is plotted.
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Figure 6.20: Compilation of B82R + / TGFcx competing antibody additions.

Equilibrated autocrine clone #1 cells were challenged by the addition of varying

concentrations of anti-EGFR blocking antibody 225 (squares), anti-TGFR decoy

antibody (diamonds), and non-specific rabbit IgG ("x"). Cytosensor ECAR was

converted to complex number using correlation equation from Figure 6.15.
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Figure 6.21: Control experiment - mAb225 and cell stimulation.

Equilibrated B82R+ / 1st plasmid (circle) and B82R + / TGFo (square) autocrine

clone #1 cells were challenged with 10 gg / ml anti-EGFR blocking antibody 225

after addition of 10 ng / ml mEGF (clear). One set of each cell type did not

receive mEGF (solid).
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TGFa antibody. B82R + (triangle) and autocrine B82R+ / TGFc cells (square,

circle, diamond) equilibrated on the Cytosensor. Graph A. All cells were exposed

to 10 ng / ml TGFa. Graph B. 50 Rlg / ml decoy antibody anti-TGFaC was added

to one autocrine cell lane (circle). 50 jLg / ml decoy antibody was also added in

combination with 10 ng / ml TGFo to B82R+ . 50 jlg / ml blocking monoclonal

anti-EGFR antibody was added to one autocrine cell lane (diamond).

autocrine received no additions (squares).
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Figure 6.23: Comparison of autocrine cell systems - TGFo vs. sEGF.

Autocrine cells B82R+ / TGFct (squares) and B82R+ / sEGF (circles)

equilibrated in the Cytosensor were challenged with a blocking anti-receptor

antibody 225 concentration gradient.
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Chapter 7: Discussion and Future Study

7.1 Overview

The purpose of this thesis was to gain a quantitative understanding of receptor - ligand

complex inhibition as a function of key cellular parameters in autocrine cells by addition of

competing antibodies. This objective was accomplished by developing a B82R' & - / TGFca

expression cell system, characterizing the TGFc expression system, and validating model

predictions on extracellular ligand concentration and receptor / ligand complex numbers. To

this end, the bioengineering autocrine EGFR / TGFc cell provided a 100 fold induction range

(tens to thousands molecules / cell minute) via tetracycline control with constitutive EGFR

expression. Testing of model predictions prove the importance of creating a protocol standard

in the literature for measuring ligand secretion rates at one cell density in the presence of

competing antibody. At high cell densities, it was found that addition of antibody was

important at low ligand secretion rate, while less important at higher cell secretion rates.

Measurement of receptor / ligand complexes using Molecular Devices Cytosensor showed

blocking antibodies could inhibit receptor / ligand complexes at a thousand (1000x) fold less

concentration than decoy antibodies. Finally, usage of Cytosensor indicated the possible

existence of an intracrine signalling pathway in autocrine EGFR / sEGF cells as blocking

antibodies were unable to inhibit receptor / ligand formation.

7.2 Summary of Results

Using a TGFx plasmid from Derynck (University of San Francisco) and the

tetracycline-controlled two plasmid system (pUHD 15.1 and pUHD10.3) from Gossen and

Bujard (University of Heidelberg), an inducible TGFc plasmid (pUHD10.3 / TGFa) was

constructed. The TGFu second plasmid was transfected into B82 receptor positive and

negative cells already containing pUHD 15.1. Under histidinol selection, clones were isolated

and examined for TGFL protein secretion. Several clones were discovered to produce TGFa,

resulting in the successful development of an inducible autocrine and paracrine TGFoa cell

system. The autocrine clones are composed of B82R' (pXER) / pUHD15.1 / (pR8) -

pUHD10.3 TGFc( wt, while the paracrine clones are B82R- / pUHD15.1 / (pR8) - pUHD10.3

TGFox wt (Figure 1.22). Autocrine clone #1 and paracrine clone #22 were chosen for further

characterization as initial results indicated that these two cell lines had high TGFu expression.

These two clones were found to have a broad protein expression range upon induction. The

suppression of TGFox synthesis is obtained with the addition of tetracycline, a bacterial

antibiotic, at low concentrations. Varying tetracycline concentration in the medium results in a
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corresponding adjustment in TGFx secretory rates. TGFct protein expression was induced 4

(paracrine) to 100+ (autocrine) times higher than basal levels upon removal of tetracycline.

Using high and low TGFcx expressing clones and varying tetracycline controlled TGFcX

expression, an expression system spanning several orders of magnitude is attainable (Figure

4.2, 4.5 and 4.6). The ability to adjust TGFcx levels enables one to determine the effect of

ligand secretion rates on receptor complexes as modeled in Figure 2.2 and experimentally

shown in Figure 6.18.

An experiment was done to verify the correct processing of TGFca. Paracrine medium

was run over a Sephadex G-50 column and the fully processed, 5.5 kDa, mature TGFcx protein

was eluted from the column (Figure 4.3). This result indicates that the B82 cells have the

elastase-like enzyme necessary for cleaving the mature TGFo from the transmembrane protein

(Pandiella et al. 1992). Investigations revealed that 99% of TGFcx is secreted into the medium,

suggesting that the protein is correctly folded and processed through the ER and Golgi to the

cell surface (Table 4.2). The experiment also shows that protein cleavage from the cell surface

does not seem to be a rate-limiting step. TGFcx accumulation rapidly increased in extracellular

medium upon the removal of tetracycline (Figure 4.4). However, the slow inhibition of TGFx

expression upon reintroduction of tetracycline indicates the presence of very stable messenger

RNA, meaning that cells must be continuously grown in tetracycline containing medium to

insure uninduced TGFa expression is truly repressed during experiments.

After characterizing TGFoa expression in B82R' " / TGFx cells, mathematical model

predictions as to the effect of ligand secretion rates, cell density, and antibody additions on

extracellular ligand concentrations were tested. Seen both experimentally and modeled (Figures

4.7 and 2.4), high ligand secretion rates renders extracellular ligand concentrations independent

of cell density and blocking antibodies. The amount of ligand secreted overwhelms receptor-

mediated uptake as ligand uptake is insignificant to the total amount secreted into the medium.

However, at lower secretion rates, receptor-mediated ligand uptake becomes significant,

resulting in large ligand loss from the medium. This data indicates the importance of measuring

and reporting not only the "observed" ligand secretion rate, but important parameters such as

cell density, plate size, and blocking antibody usage.

Original modelling predictions were done on receptor / ligand complexes as a function of

several different autocrine parameters including ligand / receptor affinity, ligand secretion rates,

and decoy anti-ligand antibodies versus blocking anti-receptor antibodies. Upon demonstrating

that the bioengineered B82R' / TGFcx autocrine cell system could test model predictions on

ligand concentrations, the next step was to experimentally test receptor / ligand complex

predictions. The first problem was how to measure complex levels. Prior methods involved
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lysed cells, several days of preparation, and westerns or ELISAs to detect phosphotyrosine

levels as an indicator of activated receptor / ligand complexes. A problem with this approach

was high noise to signal ratios, not real time, and cell lyzing altering cell environment and

protein interactions. Thus, it was hypothesized that Molecular Devices Cytosensor

measurements of cell metabolic rates could be correlated to receptor / ligand complex levels. As

shown in Figures 6.4, 6.5, and 6.6, both 1125 EGF binding experiments and Cytosensor

response experiments had a dose dependent response to the addition of free EGF. Thus, a

correlation could be made equating ECAR to complexes.

Next experiments dealt with Cytosensor sensitivity measurements - could the

Cytosensor quantify antibody inhibition of receptor ligand complexes, measuring cellular

response to addition of antibody and induction of TGFx expression? The experiment depicted

in Figure 6.3 shows that addition of blocking antibody 225 shifted B82R 's EGF ECAR

response rightward. Induction of TGFt expression is a long term event usually requiring long

accumulation times before ligand detection. However, the Cytosensor works by continuously

flowing medium over cells, washing away accumulation of metabolites and protein. Could the

Cytosensor detect TGF( secretion? Uninduced autocrine clone #1 cells were placed on the

Cytosensor and induced. After 7 seven hours, a clear difference could be discerned between

uninduced and induced cells along with differences upon addition of antibody (Figures 6.16 and

6.17). This experiment was carried one step farther by measuring differences in receptor /

ligand complex levels and receptor desensitization as a function of ligand secretion rates (Figure

6.18). Addition of exogenous EGF to cells expressing varying TGFc secretion levels shows

that receptor desensitization occurs as receptor downregulation does not account for all of the

decrease in receptor signalling (Figure 6.8 and 6.9).

The central tenet of this thesis was that decoy antibodies could not inhibit receptor /

ligand complexes as well as blocking antibodies. This hypothesis was tested in Figure 6.20.

Induced autocrine clone #1 cells were placed on the Cytosensor and varying concentrations of

antibody added. As shown, blocking antibody inhibited receptor / ligand complexes at the

expected concentration (1 nM) and inhibited these complexes over a thousand (1000x) times

better than decoy antibodies. Proving that these results are not artifacts: addition of IgG did not

affect complex levels, addition of antibody 225 does not receptor signalling in B82R' cells

(Figure 6.21) and the decoy antibody is a neutralizing antibody (Figure 6.22).

Other researchers observed that blocking antibodies were unable to inhibit cell migration

and proliferation upon transfection of sEGF into EGFR positive cells. It was hypothesized that

sEGF could intracellularly bind EGFR whereas transmembrane TGFa could not. Thus, in

sEGF cells, receptors were secreted as ligand / receptor complexes whereas TGFac positive cells
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had to first cleaved the protein before it diffused to EGFR and bound, allowing inhibition by

addition of blocking antibodies. This hypothesis was tested by addition of blocking antibody

225 to B82R' / sEGF cells placed on the Cytosensor. As expected, inhibition of signalling in

autocrine sEGF cells was not achieved. In fact, it took about ten thousand (10,000x) times

more antibody to achieve the same, barely perceptible, decrease in signalling compared to

B82R' / TGFxo cells (Figure 6.23).

7.3 Discussion

Our artificial, bioengineered autocrine cell system has been developed, characterized,

and used to test several modelling predictions. Important advances from this research have

come from three key findings.

The first finding is the necessity for quantitative standards in ligand characterization.

When a ligand is found to be expressed in an autocrine fashion, its extracellular concentration is

normally reported qualitative as a Western gel band. Further characterization of the autocrine

system and ligand expression may quantify that expression by reporting extracellular ligand

concentration. However, this experiment is not performed in a standard manner and all of the

crucial information not reported in the literature. Variance in protocol usually include large or

small volumes, one or several day incubation of conditioned medium, with or without

competing antibodies, sub-confluent or over-confluent cells. As predicted by computer

modelling and shown experimentally, all of these parameters have important ramifications on

extracellular bulk ligand concentrations. Measuring conditioned medium, incubated over cells

for several days, leads to the question: what cell density does one use to equate ligand

expression on a per cell basis? low or high density? Figures 2.4 and 4.7 proved the necessity

of adding competing antibodies to prevent receptor-mediated ligand uptake, especially for a low

expressing autocrine cell at high cell density. A second question is: at what plate coverage does

cell density become important? At a cell density greater than 100,000 cells / 60 mm dish or a

less than 1% cell plate coverage, ligand concentration begins to decrease even in the presence of

competing antibodies. A reason for this phenomenon is cells are becoming close enough to

interaction with each other and begin to uptake ligand secreted by other cells before the ligand

can escape to the extracellular bulk medium. This nonlinearity at which small surface coverage

substantial changes global variables has been found before. A cell with 10,000 receptors

reaches half maximum ligand diffusive flux at a surface coverage of 0.02% (Lauffenburger and

Cozens 1989). Half-maximal probability of autocrine ligand capture occurs at a receptor surface

coverage of 0.2%, assuming a 1 nm protein diameter (Forsten and Lauffenburger 1994b).
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The second finding is the substantial disparity in effectiveness of blocking versus decoy

antibodies on autocrine complexes. Figure 2.3 and 6.20 reveals that decoy antibodies do not

inhibit receptor / ligand complexes as effectively as blocking antibodies. It was determined that

a thousand times more decoy antibody was required. As monoclonal antibody can cost a dollar

/ microgram and dosing patients for anti-cancer therapy requires milligrams, a thousand fold

increased antibody requirement is significant. For example, three clinical trials have been

initiated for anti-tumor therapy, two using antibodies against the receptor (Divgi et al. 1991;

Modjtahedi and Dean 1994) and one using an antibody against the ligand (Mulshine et al.

1992). A technological advance with this research indicates the futile and prohibitive costs in

anti-ligand decoy antibody therapy and should not continue without extreme extenuating

circumstances.

The third finding is the possibility of an intracrine pathway, which appears to exist in

autocrine B82R' / sEGF cells, but not in autocrine B82R' / TGFx cells. The occurrence of the

intracrine signalling pathway is likely due to the lack of a transmembrane tail in sEGF cells

which if present would prevent ligand / receptor binding by spatial and steric separation. The

intracrine pathway has been proposed and seen experimentally before (Bejcek et al. 1989;

Dunbar et al. 1989; Keating and William 1988). These studies modified endogenous cytokines

such as IL-3 and PDGF by adding the endosomal retention signal, KDEL, to the C-terminus.

Thus, the protein was unable to be secreted to the extracellular medium and the cells retained

high biologic activity in the presence of antibodies. Additional studies in Dr. Wiley's lab

(University of Utah) show EGFR positive cells can proliferate and migrate in the presence of

blocking antibodies upon transfection of sEGF (personal communications). These cytokines

are important cellular regulators of cell pathology and attempts to inhibit receptor / ligand

complexes via competing antibodies is useless if intracrine signalling pathway exists.

Thus, it is hoped that elucidating autocrine receptor / ligand interactions with itself and

cellular environment by understanding what cellular parameters are important in autocrine ligand

/ receptor regulation in this and future research will lead to increased understanding in cellular

signalling, proliferation and migration regulation in wound healing and cancer therapy.

7.4 Future Work

How autocrine cells relate to its environment and what signals cells provide to its

neighbors is the next logical and important question to ask. An autocrine cell can secrete several

different ligands into its extracellular medium, i.e. there are five (5) different ligands in the EGF

family which can bind to the same receptor. How does a cell recognize the different ligands and

the signal it might represent? EGF and TGFuo are enzymatic cleaved into the medium and binds
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its receptor (neighbor or same cell) without extracellular matrix interaction. HB-EGF and

amphiregulin can interact with and become entrapped in the extracellular matrix before diffusing

and binding to its receptor. Plus, HB-EGF remains mostly cell-associated until PKC activation

(receptor / ligand binding) promotes enzymatic cleavage (Goishi et al. 1995). A further

question is: does receptor affinity, down-regulation and / or desensitization play a role in a

cell's interaction with its environment? For example, increased A431 cell - cell contact upon

formation of multicellular spheroids resulted in decreased receptor levels and activity compared

to subconfluent monolayers (Mansbridge et al. 1992).

To answer these questions in a systematic and quantitative fashion, there are several

existing and potential cell systems and assays available. There are over a hundred different

mutated EGFR positive B82 cells created by Dr. Gordon Gill (University of San Diego) which

have altered receptor trafficking and ligand affinity parameters. Table 4.3 shows a select list of

mutated receptors. A comparison of results obtained with A654 and M721 cells would indicate

internalization importance to receptor / cell interaction with its environment, while performing

the experiment in the absence or presence of phorbol esters would indicate receptor / ligand

affinities importance. Dr. Steve Wiley (University of Utah) has constructed several chimera

proteins composed from mature EGF with EGF COOH tail, EGF NH 2, and HB-EGF ends.

These chimeras would indicate how a ligand interactions with its receptor in the absence and

presence of competing extracellular matrix. Another level of complexity is incurred by the

intermixing of mutated receptors, chimera ligands and "traditional" EGF ligand family, some of

which has already been created and listed in Table 4.4.

Several different assays exist to measure how an autocrine cell interactions with its

environment. Mixed cell populations of receiver (receptor only positive) cells and donor cells

(receptor positive or negative with ligand expression) can be tested on the Cytosensor with or

without extracellular matrix. Using these mixed cell populations, differences in ligand capture /

escape between paracrine and autocrine cells could be analyzed as a function of receptor

trafficking, ligand / receptor affinity, ligand expression, and ligand / extracellular matrix

binding. Another readout system is 32D (Pierce et al., 1988) or EP170.7 (Higashiyama et al.

1992) which are EGF dependent cells in the absence of IL-3. These cells would function as the

receiver cell, plated with mixed autocrine or paracrine cell populations expressing the desired

receptor / ligand construction discussed earlier. Increased receptor phosphorylation or 'H

thymidine uptake would indicated amount of ligand escaping from extracellular matrix and / or

autocrine receptor to the extracellular medium.

Utilization of these receptor / ligand constructions with Cytosensor or receiver cells

would further elucidate what information does an autocrine cell's ligand or ligands / receptor
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system provide to that cell and its neighbors about their environment. By increasing our

understanding of how this information is presented, recorded, and acted upon by autocrine cells

strengthen our ability to design better wound healing and anti-cancer therapies.
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Dulbecco's Modification of Eagles's Media (DMEM)

Amino Acid Stock-lOOX
L-arginine (HCL)
L-glutamine
Glycine
L-isoleucine
L-leucine
L-Lysine.HC1
L-phenylalanine
L-serine
L-threonine
L-tryptophan
L-tyrosine
L-valine

mg/L media
73.00
584
30.0
104.8
104.8
146.2
66.00
42.00
95.2
16.00
71
93.6

g/L stock
0.73
5.84
0.30
1.05
1.05
1.46
0.66
0.42
0.95
0.16
0.71
0.94

CM Stock--100X mg/L media g/500 ml stock
L-Cystine 48.00 0.48
L-methionine 30.00 0.60

Vitamin Stock--100X mg/L media g/100 ml stock
D-Ca pantothenate
Choline chloride
Folic acid
i-Inositol
Nicotinamide
Pyridoxal.HCI
Riboflavin
Thiamin.HCI

Ca.Fe.Mg Stock--10X mg/L
CaC12 .H,O
FeC13
MgSO 4 .7H20

media
264.9
0.25 umol
200.0

g/2L stock
5.30
5 umol
4.00
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4.00
4.00
4.00
7.00
4.00
4.00
0.40
4.00

0.080
0.080
0.080
0.140
0.080
0.080
0.008
0.080



Main Salt Stock-10X
KCI
NaCI
NaHCO 3
NaHPO 4 .2H 20
D-glucose
Phenol Red Sodium Salt
Sodium pyruvate

mg/L media
400.0
6400
3700
141.3
4500
15.00
110.0

DMEM His minus
Main Salt Stock
CaFeMg Stock
Amino Acid Stock
CM Stock
Vitamin Stock
Serum
Penicillin/Streptomycin Stock
Glutamine Stock

Water or Other Additions
Total

Other Additions:
Tetracycline Stock
Histidinol Stock
G418 Stock

Stock
500 gg/ml
3 mM
60 mg/ml

Addition/500 ml
1 mli
133 gl
5 mls

Final Conc.
1 jIg/ml
800 giMol
600 jgg/ml
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stockg/2L
8.00
128
74
2.83
90
0.30
2.2

50 mls
50 mls
50 mls
25 mls
5 mls
50 mls
5ml
5ml

260 mls
500 mls
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Comparison of Cytosensor EGF to secreted TGFa

Cytosensor EGF:

Flow chamber volume:

Flowrate:

Cell density:

Transwell diameter:

Transwell area:

Spacer diameter:

Transwell area:

Cell # in spacer:

10 ng / ml

2.8 gI (100 gm high, 6 mm ID spacer)

100 gls / minute

500,000 # / transwell (seeded at 250,000)

12 mm

113 mm 2

6mm

28.3 mm 2

(28.3 / 113) * 500,000 = 125,000 cells

(10 ng / ml) * (100 gl / min) * (nMol / 6045 ng) * (ml / 1000 gl) * (mole / le9 nmole)

* (6.02e23 molecules / mole) * (1 / 125,000 cells) equals

800,000 molecules / cell minute

Autocrine cell at 50 ng / million cells - 24 hours:

(50 ng / le6 cells - 24 hours) * (hr / 60 minutes) * (nMol / 6045 ng) * (mole / le9 nmole)

* (6.02e23 molecules / mole) equals

3,500 molecules / cell - minute
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c Main.f Program for Plated Cells - Blocker Model
c

implicit real*8 (a-h,o-z)
parameter (nvar=10,iliw=20+nvar,ilrw=22+9*nvar+nvar**2)

dimension iwork(iliw),rwork(ilrw),x(nvar)
character* 1 tab

common/bunny/del,gam,sig,chi,alp,z 1,z2,theta,theta2
common/bunny/ome,beta,xmu,eps,phi,xnu,epsint

external fex,jex

tab = CHAR(9)

sexp = 2.0d0

do 15, k = 1,35
sexp = sexp + 0.5d0

x(1) = 1.0dO
x(2) = O.OdO
x(3) = O.OdO
x(4) = 1.0dO
x(5) = 0.OdO
x(6) = 1.0d0
x(7) = 0.OdO
x(8) = O.OdO
x(9) = 0.OdO
x(10) = 1.0d0

! Step Function for Antibody Conc.

! Do Loop for Antibody Conc. Grad. around LSODE

Receptor, r
Receptor-Ligand Complex, c
Secretion Layer Ligand Conc., Istar
Secretion Layer Antibody Conc., bstar
Bulk Volume Ligand Conc., lbulk
Bulk Volumn Antibody Conc., bbulk
Bound Antibody-Receptor #1, sri
Bound Receptor-Antibody-Receptor #2, sr2
Intermed. Ligand Layer, lint
Intermed. Antibody Layer, bint

initialize Isode parameters

itol = 1
rtol = le-6
atol = le-6
itask = 1
istate = 1
iopt = 0
Irw = ilrw
liw = iliw
mf = 21

tstart = 0.0
tend = 1440.0
tstep = 3.0

xkt = .03d0

Start 0 minutes
End 24 hours
Time interval - minutes

! Constitutive Internalization Rate Constant
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value for EGF
xkt = .0046d0

value for 1L2
minA^-

xkoff = 1.4d-2
value for IL2
min^ - 1

xkoff = .34d0
value for EGF kr

xkoff = .85d0
value for koff EGF based on

tstart = tstart*xkoff
tend = tend *xkoff
tstep = tstep *xkoff

c
c --- set parameter values

pi = 3.141592653589793d0

! EGF / EGFR Disassoc. Rate Constant

intrinsic kon and KD

! Dimensionalize Time

xke = .3d0 ! Receptor-Ligand Induced Int
value for EGF

xke = .0462d0
value for IL2
minÂ-

xkon = 1.2d-13 ! EGF/EGFR Association Rat
cmA3/site*min
7.2d7 (value for kf EGF from Cindy) MA- 1 min^ - 1)

xkon = 3.0d-13
cmA3/site*min
value for kon intrinsic for EGF

xkon = 3.09d- 12
cmA3/site*min
value for IL2 (1

xkd = xkoff/xkon
sites/ml

c
a = 5.0d-4

c cm
xfu = 5.0d-6

c cm
xfuint = 25.0d-4

c cm
prad = 3.0dO

c cm
plvol = 5.0dO

c cm^3
parea = pi*prad**2

c cm^2
xheight = plvol / parea

ernaliz. Rate Constant

e Constant

.86d9 M^- 1 minÂ- 1)

! Receptor-Ligand Equil. Constant

! Cell Radius

! Cell Boundary Layer =(4*pi*aA2/N)A.5

! Intermed. Layer

! 60 mm cell dish radius

! Volume of Media added to plate

! cell plate/dish surface area

! Determine Media height in a plate
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c cm
sa = 4.0d0*pi*a*a
avago = 6.02d23

c sites/mol
ro = 100000.0d0

site/cell
value for B82 cells in paper

dens = 1.0d5
--11 1--1 •A.

etalp/llec

vr = xkt*ro
* __1 e _

teis /cell min

q = 5000.0d0
* 1

teis /cell min

c
dl = 9.0d-5

c cmA2/min
dist = (prad**2 / dens)**0.5

c cm
c

spacer = pi*dist*dist
c cm^2 / cell

vcell = 4.0d0*pi*a**3/3.0d0
c cmA3/cell

vstar = 4.0d0*pi*((a+xfu)**3
c cmA3/cell

vi = spacer * xfuint - vstar - v(
c cmA3/cell

vb = spacer * (xheight - xfuinl
c cm^3/cell

! Cell Surface Area
! Avago. #

! Initial # of Receptors

! Cell Density

! Receptor Synthesis - Based on Receptor Intern.

! Ligand Secretion Rate

! Ligand Media Diffusion Rate

! 1/2 dist. btwn cells

! area for dist calc.

! Cell Volume

)/3.0d0 - vcell ! Cell Secr. Layer Vol.

cell ! Intermed. Volume

t) ! Bulk Media Vol.

c --- Properties of IgG

db = 2.28d-5
cmA2/min
(3.8d-7 cmA2/s)

! Antibody Media Diffusion Rate

c -- assume same koffa and kona as cellular receptor

xkoffa = 0.34d0
minA^-

xkoffa = xkoff
min^-1

xkona = 1.2d-13
cmA3/site*min

xkona = xkon

xkda = xkoffa/xkona

! Antibody-Receptor Dissoc. Rate Constant

! Antibody-Receptor Assoc. Rate Constant

! Antibody-Receptor Equil. Constant
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xkl = xkt ! Ab-Receptor Internalization Rate Const.
c rate of single bound antibody-receptor [srl]
c

xk2 = xke ! Recept-Ab-Recept Internal. Rate Const.
c rate of double bound antibody-receptor [sr2]
c

xkc = 480d-10 ! Recept. Cell Diffusion for Ab. Complex
c cm ^ 2/min*molecule
c

xkcoff = 60.0d0 ! Recept. Cell Diffusion for Ab. Complex
c min^-1
c

st = 10.d0**sexp ! Ab Conc. Added to Media (Sexp=Step fct)
c site/cm^3 cell
c (this corresponds with a vb of 9.9d-5 cmA3/cell)
c (corresponds with Id9site/cell (200d-6g/ml))
c
c --- Dedimensionaled Variables
c

del = ro*xkc/(sa*xkcoff)
c

gam = xkt/xkoff
c

sig = q/(vstar*xkd*xkoff)
c

chi = st/xkda
c

alp = xkona/xkon
c

zl = xkl/xkt
c

z2 = xk2/xkt
c

theta = 2.0d0*pi*(a+xfu)*dl/(xkoff*vstar) ! 2 for plated cells, norm=4
c

theta2 = dl*spacer / (xfuint*xkoff*vstar)
c

ome = xke/xkoff
c

beta = xkoffa/xkoff
c

xmu = ro/(vstar*xkd)
c

eps = vstar/vb
c

epsint = vstar/vi
c

phi = db/dl
c

xnu = xkcoff/xkoff
c
c --- Dedimensionalized Variables
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c

C

c

C

C

C

C

C

c

c

CCC

c ---
c

1

eta = x(1)
rho = x(2)
us = x(3)
xlams = x(4)
u = x(5)
xlam = x(6)
psis = x(7)
psi = x(8)
uint = x(9)
xlamint = x(1O)

Dimen. Receptor
Dimen. Recep.-Ligand Complex
Dimen. Secretion Layer Ligand Conc
Dimen. Secr. Layer Ab Conc.
Dimen. Bulk Media Ligand Conc.
Dimen. Bulk Media Ab Conc.
Dimen. Bound R/Ab #1
Dimen. Bound R/Ab/R #2
Dimen. Intermed. Ligand
Dimen. Intermed. Ab.

time = alpha/xkoff

write(94,21) time,tab,x(1 ),tab,x(2),tab,x(3),tab,x(4),tab,
1 x(5),tab,x(6),tab,x(7),tab,x(8),tab,x(9),tab,x(10)

21 format(10(e 14.6,al),e 14.6)

if(istate .It. 0) then
print *,'istate = ',istate

stop
end if

4 continue

sexpm = sexp -20.2d0 ! Initial Ab Conc. (log)
c moles/liter

write(93,20) sexpm,tab,x(1),tab,x(2),tab,x(3),tab,x(4),tab,
1 x(5),tab,x(6),tab,x(7),tab,x(8),tab,x(9),tab,x(10)

20 format(10(e 14.6,al),e 14.6)

print *, iwork(l 11),iwork(12),iwork(13)

15 continue
end
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eta = r/ro
rho = c/ro
us = lstar/xkd
xlams = bstar/st
u = lbulk/xkd
xlam = bstar/st
psis = [srl]/ro
psi = [sr2]/ro

uint = lint/xkd
xlamint = bint/st

begin integration

do 4, alpha=tstart,tend+1 .d-5,tstep
call Isode(fex,nvar,x,tstart,alpha,itol,rtol,atol,itask,istate,

iopt,rwork,lrw,iwork,liw,jex,mf)

15 

continue

end



c Func.f Program for Plated Cells - Blocker Model
c

subroutine fex(nvar,t,x,f)
c

implicit real*8 (a-h,o-z)
common/bunny/del,gam,sig,chi,alp,z 1 ,z2,theta,theta2
common/bunny/ome,beta,xmu,eps,phi,xnu,epsint

c
dimension x(nvar),f(nvar)

c
c --- calculate function residuals
c

eta = x(1)
rho = x(2)
us = x(3)
xlams = x(4)
u = x(5)
xlam = x(6)
psis = x(7)
psi = x(8)
uint = x(9)
xlamint = x(10)

c
c The actual functions
c

f(1) = -us*eta + rho -eta*gam -2.0d0*beta*chi*xlams*eta
1 +beta*(psis+2.0d0*psi) - xnu*del*eta*psis + gam

c
f(2) = us*eta -rho*(ome+1.0d0)

c
f(3) = -xmu*us*eta + xmu*rho +theta*(uint-us) +sig

c
f(4) = -2.0d0*alp*xmu*xlams*eta

1 + xmu*alp*psis*(1.OdO/chi)
1 + phi*theta*(xlamint-xlams)

c
f(5) = -theta2*eps*(u-uint)

c
f(6) = -theta2 *eps*phi*(xlam-xlamint)

c
f(7) = 2.0d0*beta*chi*xlams*eta -beta*psis +2.0d0*xnu*psi

1 -gam*z *psis -xnu*del*eta*psis
c

f(8) = xnu*del*psis*eta - psi*(2.0d0*xnu + z2*gam)
c

f(9) = -theta*epsint*(uint-us)+theta2*epsint*(u-uint)
c

f(10) = -theta*phi*epsint*(xlamint-xlams)
1 +theta2*phi*epsint*(xlam-xlamint)

c
return
end
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c Jacob.f Program for Plated Cells - Blocker Model
c

subroutine jex(nvar,t,x,ml,mu,dfdx,nrpd)

implicit real*8 (a-h,o-z)

common/bunny/del,gam,sig,chi,alp,z 1,z2,theta,theta2
common/bunny/ome,beta,xmu,eps,phi,xnu,epsint

dimension x(nvar),dfdx(nvar,nvar),dgdx( 10,10),f(10),g(10)
c

c --- calculate the Ox10 jacobian

eta = x(1)
rho = x(2)
us = x(3)
xlams = x(4)
u = x(5)
xlam = x(6)
psis = x(7)
psi = x(8)
uint = x(9)
xlamint = x(10)

dfdx(1,1) = -us -gam -2.
dfdx(1,2) = 1.OdO
dfdx(1,3) = - eta
dfdx(1,4) = - 2.0dO*bet
dfdx(1,5) = O.OdO
dfdx(1,6) = O.OdO
dfdx(1,7) = beta - xnu*c
dfdx(1,8) = 2.0dO*beta
dfdx(1,9) = O.OdO
dfdx(1,10) = O.OdO

.OdO*beta*chi*xlams -xnu*del*psis

a*chi*eta

lel*eta

dfdx(2,1) = us
dfdx(2,2) = -(ome + 1.OdO)
dfdx(2,3) = eta
dfdx(2,4) = O.OdO
dfdx(2,5) = O.OdO
dfdx(2,6) = O.OdO
dfdx(2,7) = O.OdO
dfdx(2,8) = O.OdO
dfdx(2,9) = O.OdO
dfdx(2,10) = O.OdO

dfdx(3,1) = -xmu*us
dfdx(3,2) = xmu
dfdx(3,3) = -xmu*eta - theta
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dfdx(3,4) = O.OdO
dfdx(3,5) = O.OdO
dfdx(3,6) = O.OdO
dfdx(3,7) = O.OdO
dfdx(3,8) = O.OdO
dfdx(3,9) = theta
dfdx(3,10) = O.OdO

c

dfdx(4,1) = -2.0dO*alp*xmu*xlams
dfdx(4,2) = O.OdO
dfdx(4,3) = O.OdO
dfdx(4,4) = -2.0dO*alp*xmu*eta -phi*theta
dfdx(4,5) = O.OdO
dfdx(4,6) = O.OdO
dfdx(4,7) = xmu*alp/chi
dfdx(4,8) = O.OdO
dfdx(4,9) = O.OdO
dfdx(4,10) = phi*theta

c
dfdx(5,1) = O.OdO
dfdx(5,2) = O.OdO
dfdx(5,3) = O.OdO
dfdx(5,4) = O.OdO
dfdx(5,5) = -theta2*eps
dfdx(5,6) = O.OdO
dfdx(5,7) = O.OdO
dfdx(5,8) = O.OdO
dfdx(5,9) = theta2*eps
dfdx(5,10) = O.OdO

c
dfdx(6,1) = O.OdO
dfdx(6,2) = O.OdO
dfdx(6,3) = O.OdO
dfdx(6,4) = O.OdO
dfdx(6,5) = O.OdO
dfdx(6,6) = -theta2*eps*phi
dfdx(6,7) = O.OdO
dfdx(6,8) = O.OdO
dfdx(6,9) = O.OdO
dfdx(6,10) = theta2*eps*phi

c
dfdx(7,1) = 2.0dO*beta*chi*xlams - xnu*del*psis
dfdx(7,2) = O.OdO
dfdx(7,3) = O.OdO
dfdx(7,4) = 2.0dO*beta*chi*eta
dfdx(7,5) = O.OdO
dfdx(7,6) = O.OdO
dfdx(7,7) = -beta -gam*z1 - xnu*del*eta
dfdx(7,8) = 2.0dO*xnu
dfdx(7,9) = O.OdO
dfdx(7,10) = O.OdO

c
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dfdx(8,1) = xnu*del*psis
dfdx(8,2) = O.OdO
dfdx(8,3) = O.OdO
dfdx(8,4) = O.OdO
dfdx(8,5) = O.OdO
dfdx(8,6) = O.OdO
dfdx(8,7) = xnu*del*eta
dfdx(8,8) = -2.0dO*xnu -z2*gam
dfdx(8,9) = O.OdO
dfdx(8,10) = O.OdO

c

dfdx(9,1) = O.OdO
dfdx(9,2) = O.OdO
dfdx(9,3) = theta*epsint
dfdx(9,4) = O.OdO
dfdx(9,5) = theta2*epsint
dfdx(9,6) = O.OdO
dfdx(9,7) = O.OdO
dfdx(9,8) = O.OdO
dfdx(9,9) = -theta*epsint-theta2*epsint
dfdx(9,10) = O.OdO

c
dfdx(10,1) = O.OdO
dfdx(10,2) = O.OdO
dfdx(10,3) = O.OdO
dfdx(10,4) = theta*phi*epsint
dfdx(10,5) = O.OdO
dfdx(10,6) = theta2*phi*epsint
dfdx(10,7) = O.OdO
dfdx(10,8) = O.OdO
dfdx(10,9) = O.OdO
dfdx( 10,10) = -theta*phi*epsint-theta2*phi*epsint

c
c - calculate the jacobian
c
c dx = 1.d-06
c zero = 1.Od-06
c
c call fex(nvar,t,x,f)
c
c do 2, j= 1,nvar
c
c if (abs(x(j)).lt.zero) then
c dxx = dx
c else
c dxx = dx*x(j)
c endif
c
c x(j) = x(j) + dxx
c
c call fex(nvar,t,x,g)
c
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c x(j)=x(j) -dxx
C

c do 1, i = 1,nvar
c dgdx(i,j) = (g(i)-f(i))/dxx
c 1 continue
c 2 continue
C

c
c do 4, i=l,nvar
c write(8,*) (dfdx(i,j), j=l,nvar)
c write(8,*) (dgdx(i,j), j=l,nvar)
c

c write(8,*)
c 4 continue
C

return
end

156



Appendix D

157



c Main.f Program for Plated Cells - Decoy Model

implicit real*8 (a-h,o-z)
parameter (nvar= 13,iliw=20+nvar,ilrw=22+9*nvar+nvar**2)

dimension iwork(iliw),rwork(ilrw),x(nvar)
character*1 tab

common/bunny/gam,sig,chi,alp,z,theta,ome,beta,xmu,eps
common/bunny/theta2, epsint

external fex,jex

tab = CHAR(9)

sexp = 2.0d0

do 15, k = 1,35
sexp = sexp + 0.5d0

x(1) = 1.OdO
x(2) = 0.OdO
x(3) = 0.OdO
x(4) = 1.0d0
x(5) = O.OdO
x(6) = 0.OdO
x(7) = O.OdO
x(8) = 1.Od0
x(9) = O.OdO
x(10) = O.OdO
x(1) = 1.0d0
x(12) = 0.OdO
x(13) = O.OdO

! Step Function for Antibody Conc.

! Do Loop for Antibody Conc. Grad. around LSODE

Receptor, r
Receptor-Ligand Complex, c
Secretion Layer Ligand Conc., lstar
Secretion Layer Antibody Conc., sstar
Secretion Layer Lig / Ab, ystar
Secretion Layer Lig / Ab / Lig, xstar
Bulk Layer Ligand Conc., lbulk
Bulk Layer Antibody Conc., sb
Bulk Layer Lig / Ab, yb
Int. Layer Lig Conc., lint
Int. Layer Antibody Conc., sint
Int. Layer Lig / Ab, yint
Int. Layer Lig / Ab / Lig, xint
Bulk Layer Lig / Ab / Lig, xb

initialize Isode parameters

itol = 1
rtol = le-6
atol = le-6
itask = 1
istate = 1
iopt = 0
Irw = ilrw
liw = iliw
mf = 21

tstart = 0.0
tend= 1440.0

! Start 0 minutes
! End 24 hours
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! Time interval - minutes

xkt = .03d0 ! Constitutive Internalization Rate Constant
value for EGF

xkt = .0046d0
value for IL2
minA- 1

xkoff = 1.4d-2 ! EGF / EGFR Disassoc. Rate Constant
value for IL2
minA^-

xkoff = .34d0
value for EGF kr

xkoff = .85d0
value for koff EGF based on intrinsic kon and KD

tstart = tstart*xkoff ! Dimensionalize Time
tend = tend *xkoff
tstep = tstep *xkoff

c --- set parameter values
pi = 3.141592653589793d0

xke = .3d0
value for EGF
minÂ- 1

! Receptor-Ligand Induced Internaliz. Rate Constant

xkon = 1.2d-13
^cm3"./sitemnun

value for EGF

xkd = xkoff/xkon
siLes/L1ll

a = 5.0d-4
c cm

xfu = 5.0d-6
c cm

xfuint = 25.0d-4
c cm
c

prad = 3.060
cm

plvol = 5.0d0
A•

cm .5/plate

parea = pi*prad**2
A

! EGF / EGFR Association Rate Constant

! Receptor-Ligand Equil. Constant

! Cell Radius

! Cell Boundary Layer = (4*pi*aA2/N)A.5

! Intermed. Layer Height

! 60 mm cell dish radius

! Volume of media added to plate

! Cell dish surface area
cm2/plate
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xheight = plvol / parea ! Determine media height in a plate
cm

ro = 100000.OdO
site/cell
value for EGf

dens = 1.0d7
cell/plate

q = 5000.0d0
site/cell*min

dc = 9.0d-5
cm^2/min

! initial # of Receptors

! Cell Density

! Ligand Synthesis Rate

! Ligand Media Diffusion Rate

sa = pi*a*a ! projected cell surface area
cm^2/cell

dist = (prad**2 / dens)**0.5 ! 1/2 dist. btwn cells
cm

spacer = pi*dist*dist ! area of dist.
cmA2/cell

vcell = 4.0d0*pi*a**3 / 3.0d0 ! Cell Volume
cmA3/cell

vstar = 4.0d0*pi*((a+xfu)**3)/3.0d0 - vcell
cmA3/cell ! Cell Secr. Layer Volume

vi = spacer * xfuint - vstar - vcell
cmA3/cell

vb = spacer * (xheight - xfuint)
cmA3/cell ! C

c
c --- Properties of IgG

ds = 2.28d-5
cm^2/min
(3.8d-7 cmA2/s)

! Intermed. Volume

ell Bulk Volume

! Antibody Media Diffusion Rate

c -- assume same koffa and kona as cellular receptor

xkoffa = .34d0
minÂ-

xkoffa = xkoff
min^ - 1

xkona = 1.2d- 13
cm^3/site*min

! Antibody-Ligand Dissoc. Rate Constant

! Antibody-Ligand Assoc. Rate Constant
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xkona = xkon
c

xkda = xkoffa/xkona ! Antibody-Ligand Equil. Constant
c

st = 10.dO**sexp ! Ab Conc. Added to Media (Sexp=Step fct)
c site/cm^3 cell
c (this corresponds with a vb of 9.9d-5 cmA3/cell)
c (corresponds with 1d9site/cell (200d-6g/ml))
c
c --- Dedimensionaled Variables
c

gam = xkt/xkoff
c

sig = q/(vstar*xkd*xkoff)
C

chi = st/xkda
c

alp = xkona/xkon
c

z = ds/dc
c

theta = 2.0d0*pi*(a+xfu)*dc/(xkoff*vstar)
c

theta2 = dc*spacer / (xfuint*xkoff*vstar)
C

ome = xke/xkoff
c

beta = xkoffa/xkoff
c

xmu = ro/(vstar*xkd)
c

eps = vstar/vb
c

epsint = vstar / vi
c
c --- Dedimensionalized Variables
c

c eta = r/ro
c rho = c/ro
c us = lstar/xkd
c xlams = sstar/st
c phis = ystar/st
c psis = xstar/st
c u = lbulk/xkd
c xlam = sb/st
c phi = yb/st
c psi = xb/st
c uint = lint/xkd
c xlamint = sint/st
c phint = yint/st
c psint = xint/st
c
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- begin integration

do 4, r=tstart,tend+1.d-5,tstep
call Isode(fex,nvar,x,tstart,r,itol,rtol,atol,itask,istate,

1 iopt,rwork,lrw,iwork,liw,jex,mf)

eta =
rho =
us =
xlams =
phis =
psis =
U =

xlam =
phi =
uint =
xlamint=
phint =
psint =

x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(ll1)
x(12)
x(13)

psi = eps+ 1.0dO+eps/epsint-eps*(xlams+psis+phis)-eps/epsint
*(xlamint+psint+phint) - (xlam+phi)

time = r/xkoff

write(94,21) time,tab,x(1),tab,x(2),tab,x(3),tab,x(4),tab,
1 x(5),tab,x(6),tab,x(7),tab,x(8)

format(8(e 14.6,al ),e 14.6)

if(istate .It. 0) then
print *,'istate = ',istate
stop
end if

c

4 continue
c

sexpm = sexp -20.2d0
c moles/liter

write(93,20) sexpm,tab,x(1),tab,x(2),tab,x(3),tab,x(4),tab,
1 x(5),tab,x(6),tab,x(7),tab,x(8),tab,x(9),tab,
1 psi

20 format(10O(e 14.6,al),e14.6)
c
c
c print *, iwork(11),iwork(12),iwork(13)
c
c --- format statements
c
c

15 continue
end
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c Func.f Program for Plated Cells - Decoy Model
c

subroutine fex(nvar,t,x,f)
c

implicit real*8 (a-h,o-z)
c

common/bunny/gam,sig,chi,alp,z,theta,ome,beta,xmu,eps
common/bunny/theta2,epsint

c
dimension x(nvar),f(nvar)

c

c --- calculate function residuals
c

eta = x(1)
rho = x(2)
us = x(3)
xlams = x(4)
phis = x(5)
psis = x(6)
u = x(7)
xlam = x(8)
phi = x(9)
uint = x(10)
xlamint= x(11)
phint = x(12)
psint =x(13)

c
psi = eps+ 1.OdO+eps/epsint-eps*(xlams+psis+phis)-eps/epsint

1 *(xlamint+psint+phint) - (xlam+phi)
c
c The actual functions
c

f(l) = -us*eta + rho -gam*eta + gam
c

f(2) = us*eta -rho*(ome+1.0d0)
c

f(3) = -xmu*us*eta + xmu*rho +2.0d0*chi*beta*beta*psis/alp
1 -2.0dO*chi*beta*us*xlams - beta*chi*phis*us
1 +chi*beta*beta*phis/alp + theta*(uint-us) +sig

c

f(4) = -2.0d0*alp*xlams*us +beta*phis +z*theta*(xlamint-xlams)
c

f(5) = 2.0d0*alp*xlams*us - beta*phis -alp*phis*us
1 +2.0d0*beta*psis +z*theta*(phint-phis)

c
f(6) = alp*phis*us-2.0d0*beta*psis +z*theta*(psint-psis)

c
f(7) = -2.0d0*beta*chi*xlam*u + beta*chi*beta*phi/alp

1 +2.0d0*beta*beta*chi*psi/alp-beta*chi*phi*u
1 -theta2*eps*(u-uint)

c
f(8) = -2.0dO*alp*xlam*u +beta*phi -z*eps*theta2*
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(xlam -xlamint)
c

f(9) = 2.0dO*alp*xlam*u - beta*phi -alp*phi*u
1 + 2.0dO*beta*psi-z*eps*theta2*(phi-phint)

c
f(10) = 2.0dO*beta*chi*beta*psint/alp - 2.0dO*uint*xlamint

1 *beta*chi-uint*phint*beta*chi+beta*chi*beta*phint/alp
1 - theta*epsint*(uint-us) + theta2*epsint*(u-uint)

c
f( 11) = -2.0d0*alp*uint*xlamint + beta*phint - epsint*theta

1 *z*(xlamint-xlams) + epsint*theta2*z*(xlam-xlamint)
c

f(12) = 2.0dO*alp*uint*xlamint - beta*phint - alp*phint*uint
1 + 2.0dO*beta*psint - theta*epsint*z*(phint-phis)
1 + theta2*epsint*z*(phi-phint)

c
f(13) = alp*uint*phint - 2.0dO*beta*psint - theta*epsint*z

1 *(psint-psis) + theta2*epsint*z*(psi-psint)
c
c

return
end
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c Jacob.f Program for Plated Cells - Decoy Model
c

subroutine jex(nvar,t,x,ml,mu,dfdx,nrpd)
c

implicit real*8 (a-h,o-z)
c

common/bunny/gam,sig,chi,alp,z,theta,ome,beta,xmu,eps
common/bunny/theta2, epsint

c
dimension x(nvar),dfdx(nvar,nvar),dgdx(13,13),f(13),g(13)

c

c --- calculate the 13x13 jacobian
c

eta = x(1)
rho = x(2)
us = x(3)
xlams = x(4)
phis = x(5)
psis = x(6)
u = x(7)
xlam = x(8)
phi = x(9)
uint = x(10)
xlamint= x(1 1)
phint = x(12)
psint = x(13)

c
psi = eps+ 1.OdO+eps/epsint-eps*(xlams+psis+phis)-eps/epsint

c 1 *(xlamint+psint+phint) - (xlam+phi)
c
c

dfdx(1,1) = -us -gam
dfdx(1,2) = 1.OdO
dfdx(1,3) = - eta
dfdx(1,4) = O.OdO
dfdx(1,5) = O.OdO
dfdx(1,6) = O.OdO
dfdx(1,7) = O.OdO
dfdx(1,8) = O.OdO
dfdx(1,9) = O.OdO
dfdx(1,10)= O.OdO
dfdx(l,l11)= O.OdO
dfdx(l,12)= O.OdO
dfdx(l,13)= O.OdO

c
dfdx(2,1) = us
dfdx(2,2) = -ome - 1.OdO
dfdx(2,3) = eta
dfdx(2,4) = O.OdO
dfdx(2,5) = O.OdO
dfdx(2,6) = O.OdO
dfdx(2,7) = O.OdO
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dfdx(2,8) = O.OdO
dfdx(2,9) = O.OdO
dfdx(2,10)= O.OdO
dfdx(2,11)= O.OdO
dfdx(2,12)= O.OdO
dfdx(2,13)= O.OdO

c
dfdx(3,1)= -xmu*us
dfdx(3,2) = xmu
dfdx(3,3) = -xmu*eta-2.0dO*chi*beta*xlams-theta-beta*chi*phis
dfdx(3,4) = -2.0dO*chi*beta*us
dfdx(3,5) = -beta*chi*us +chi*beta*beta/alp
dfdx(3,6) = 2.0dO*chi*beta*beta/alp
dfdx(3,7) = O.OdO
dfdx(3,8) = O.OdO
dfdx(3,9) = O.OdO
dfdx(3,10)= theta
dfdx(3,11)= O.OdO
dfdx(3,12)= O.OdO
dfdx(3,13)= O.OdO

c
dfdx(4,1) = O.OdO
dfdx(4,2) = O.OdO
dfdx(4,3) = -2.0dO*alp*xlams
dfdx(4,4) = -2.0dO*alp*us - z*theta
dfdx(4,5) = beta
dfdx(4,6) = O.OdO
dfdx(4,7) = O.OdO
dfdx(4,8) = O.OdO
dfdx(4,9) = O.OdO
dfdx(4,10)= O.OdO
dfdx(4,11)= z*theta
dfdx(4,12)= O.OdO
dfdx(4,13)= O.OdO

C
dfdx(5,1) = O.OdO
dfdx(5,2) = O.OdO
dfdx(5,3) = 2.0dO*alp*xlams - alp*phis
dfdx(5,4) = 2.0dO*alp*us
dfdx(5,5) = -beta -alp*us -z*theta
dfdx(5,6) = 2.0dO*beta
dfdx(5,7) = O.OdO
dfdx(5,8) = O.OdO
dfdx(5,9) = O.OdO
dfdx(5,10)= O.OdO
dfdx(5,11)= O.OdO
dfdx(5,12)= z*theta
dfdx(5,13)= O.OdO

c
dfdx(6,1) = O.OdO
dfdx(6,2) = O.OdO
dfdx(6,3) = alp*phis
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dfdx(6,4) = O.OdO
dfdx(6,5) = alp*us
dfdx(6,6) = -2.0dO*beta - z*theta
dfdx(6,7) = O.OdO
dfdx(6,8) = O.OdO
dfdx(6,9) = O.OdO
dfdx(6,10)= O.OdO
dfdx(6,11)= O.OdO
dfdx(6,12)= O.OdO
dfdx(6,13)= z*theta

c
dfdx(7,1) = O.OdO
dfdx(7,2) = O.OdO
dfdx(7,3) = O.OdO
dfdx(7,4) = -eps*2.0dO*beta*beta*chi/alp
dfdx(7,5)= -eps*2.0dO*beta*beta*chi/alp
dfdx(7,6)= -eps*2.0dO*beta*beta*chi/alp
dfdx(7,7) = -2.0dO*beta*chi*xlam - beta*chi*phi-theta2*eps
dfdx(7,8) = -2.0dO*beta*chi*u-2.OdO*beta*chi*beta/alp
dfdx(7,9) = -1.OdO*beta*chi*beta/alp -beta*chi*u
dfdx(7,10)= theta2*eps
dfdx(7,11 )= -2.0dO*eps*beta*beta*chi/(alp*epsint)
dfdx(7,12)= -2.0dO*eps*beta*beta*chi/(alp*epsint)
dfdx(7,13)= -2.0dO*eps*beta*beta*chi/(alp*epsint)

c
dfdx(8,1) = O.OdO
dfdx(8,2) = O.OdO
dfdx(8,3) = O.OdO
dfdx(8,4) = O.OdO
dfdx(8,5) = O.OdO
dfdx(8,6) = O.OdO
dfdx(8,7) = -2.0dO*alp*xlam
dfdx(8,8) = -2.0dO*alp*u -z*eps*theta2
dfdx(8,9) = beta
dfdx(8,10)= O.OdO
dfdx(8,11)= z*eps*theta2
dfdx(8,12)= O.OdO
dfdx(8,13)= O.OdO

c
dfdx(9,1) = O.OdO
dfdx(9,2) = O.OdO
dfdx(9,3) = O.OdO
dfdx(9,4) = -2.0dO*beta*eps
dfdx(9,5) = -2.0dO*beta*eps
dfdx(9,6) = -2.0dO*beta*eps
dfdx(9,7) = 2.0dO*alp*xlam - alp*phi
dfdx(9,8) = 2.0dO*alp*u - 2.0dO*beta
dfdx(9,9) = -beta -alp*u -2.0dO*beta -z*eps*theta2
dfdx(9,10)= O.OdO
dfdx(9, 11)= -2.0dO*beta*eps/epsint
dfdx(9,12)= z*eps*theta2 - 2*beta*eps/epsint
dfdx(9,13)= -2.0dO* beta*eps/epsint
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dfdx(10,1) = O.OdO
dfdx(10,2) = O.OdO
dfdx(10,3) = theta*epsint
dfdx(10,4) = O.OdO
dfdx(10,5) = O.OdO
dfdx(10,6) = O.OdO
dfdx(10,7) = theta2*epsint
dfdx(10,8) = O.OdO
dfdx(10,9) = O.OdO
dfdx(1 0,10) = -theta*epsint - theta2*epsint-2*xlamint*beta*chi-phint*beta*chi
dfdx(10,11) = -2.0d0*uint*beta*chi
dfdx(10,12) = -uint*beta*chi + beta*chi*beta/alp
dfdx( 0,13) = 2.0dO*beta*chi*beta/alp

dfdx(11,1) = O.OdO
dfdx(11,2) = O.OdO
dfdx(11,3) = O.OdO
dfdx(11,4) = epsint*theta*z
dfdx(11,5) = O.OdO
dfdx(11,6) = O.OdO
dfdx(11,7) = O.OdO
dfdx(11,8) = epsint*theta2*z
dfdx(11,9) = O.OdO
dfdx(11,10) = -2.0d0*alp*xlamint
dfdx( 11,11) = -2.0d0*alp*uint -epsint*theta*z -epsint*theta2*z
dfdx(11,12) = beta
dfdx(11,13) = O.OdO

dfdx(12,1) = O.OdO
dfdx(12,2) = O.OdO
dfdx(12,3) = O.OdO
dfdx(12,4) = O.OdO
dfdx(12,5) = theta*epsint*z
dfdx(12,6) = O.OdO
dfdx(12,7) = O.OdO
dfdx(12,8) = O.OdO
dfdx(12,9) = theta2*epsint*z
dfdx(12,10) = 2.0dO*alp*xlamint - alp*phint
dfdx(12,1 1) = 2.0dO*alp*uint
dfdx(12,12) = -beta - alp*uint-theta*epsint*z-theta2*epsint*z
dfdx(12,13) = 2.0d0*beta

dfdx(13,1)
dfdx(13,2)
dfdx(13,3)
dfdx(13,4)
dfdx(13,5)
dfdx(13,6)
dfdx(13,7)
dfdx(13,8)
dfdx(13,9)

= O.OdO
= O.OdO
= O.OdO
= -theta2*epsint*z*eps
= -theta2*epsint*z*eps
= -theta2*epsint*z*eps + theta*epsint*z
= O.OdO
= -theta2*epsint*z
= -theta2*epsint*z
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dfdx(13,10) = alp*phint
dfdx(13,11) = -eps*theta2*z*epsintlepsint
dfdx(13,12) = alp*uint - eps*theta2*epsint*z/epsint
dfdx(13,13) = -2.0dO*beta-theta*epsint*z-theta2*epsint*z

1 -eps*theta2*epsint*z/epsint
c
c - calculate the jacobian
c
c dx = 1.d-06
c zero = 1.0d-06
c
c call fex(nvar,t,x,f)
c
c do 2, j= 1,nvar
c
c if (abs(x(j)).lt.zero) then
c dxx = dx
c else
c dxx = dx*x(j)
c endif
c
c x(j) = x(j) + dxx
c
c call fex(nvar,t,x,g)
c
c x(j)=x(j) -dxx
c
c do 1, i = l,nvar
c dgdx(i,j) = (g(i)-f(i))/dxx
c 1 continue
c 2 continue
c
c
c do 4, i=l,nvar
c write(8,*) (dfdx(i,j), j=l,nvar)
c write(8,*) (dgdx(i,j), j=l,nvar)
c
c write(8,*) ' '
c 4 continue
c

return
end
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