
Expanding the Capabilities of the ELVIS

Using Component Switching

by

Bryant J. Harrison
S.B., Electrical Engineering and Computer Science,

2007

iLab
MASSACHUSETS INSTITUTE

OF TEC'N.Ot"O0'y

NOV 132008 1

M.I.T.,
M.I.T.,

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author
Department of Electrical Enginering and Computer Science

May 23, 2008

Certified by...
JesUis A. del Alamo

Professor of Electrical Engineering
Thesis Supervisor

Accepted by.
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ARCHIV

Expanding the Capabilities of the ELVIS iLab Using

Component Switching

by

Bryant J. Harrison

S.B., Electrical Engineering and Computer Science, M.I.T., 2007

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

iLabs are online laboratories that allow users to access, control, and perform real
experiments remotely through the Internet. Users are able to access laboratory ex-
periments whenever and wherever they want, bypassing the problem of acquiring
expensive equipment and waiting in long queues to use the equipment. iLabs al-
low students to complement their theoretical calculations and results with real data,
providing them with a better understanding of engineering concepts. The ELVIS
iLab was developed using the National Instruments Educational Laboratory Virtual
Instrumentation Suite, a low cost, all-in-one electronics workstation that can be soft-
ware controlled. ELVIS iLab is currently in the second version and this thesis explains
the modifications made to the first version to add an additional power supply and
switching capabilities. These changes increase the quantity, flexibility, and variety
of experiments that can be created and provides the possibility of more challeng-
ing assignments for students. It also facilitates easier sharing between courses and
institutions.

Thesis Supervisor: Jesus A. del Alamo
Title: Professor of Electrical Engineering

Acknowledgments

I would like to thank my thesis supervisor, Prof. Jesus del Alamo, for giving me

the opportunity to work on this great project. Over the years, Prof. del Alamo

has been very supportive of my extracurricular endeavors that involve education and

technology in the developing world that ultimately enabled me to work on the iLab

Africa project. I feel very fortunate to have the opportunity to work on something

meaningful to me that has a significant impact on people across the world. The

experience has been rewarding and has had a strong influence on my future career

path.

I am extremely grateful for all of the assistance and support over the years from

Kimberly DeLong, James Hardison, Judson Harward, Adnaan Jiwaji, David Zych,

and the entire MIT iLabs team. I would also like to thank Samuel Gikandi, my

predecessor on the ELVIS iLab, for his guidance early in the project. Their help has

been critical to bringing my work into a reality.

Finally, I would like to thank the teams at Obafemi Awolowo University, Univer-

sity of Dar es Salaam, and Makerere University for their help and guidance throughout

the project. The ideas and challenges they presented always kept me motivated and

inspired. They also provided incredible hospitality during my visits to their campuses

and made me feel at home, allowing me to focus on our work while traveling.

Contents

1 Introduction 13

1.1 Background on iLabs 14

1.2 Background on iLab Africa Project 15

1.3 Background on National Instruments ELVIS 17

1.4 Overview of Thesis 19

2 Inspiration for Developing Version 2.0 of the ELVIS iLab 21

2.1 Backbone of the ELVIS iLab:

iLab Shared Architecture 21

2.1.1 Service Broker 22

2.1.2 Laboratory Equipment 24

2.1.3 Lab Server 25

2.1.4 W eb Client 25

2.2 Previous Work on ELVIS: Version 1.0 25

2.3 ELVIS Version 2.0 Background and Overview 28

3 ELVIS Version 2.0 Detailed Design 31

3.1 Laboratory Equipment 31

3.2 XML Specification Documents 33

3.3 Lab Server 36

3.3.1 LabVIEW 36

3.3.2 OpAmpInverter.vb 39

3.3.3 Validation Engine 40

3.3.4 Experiment Engine 40

3.3.5 Lab Server Management 41

3.3.6 Resource Permission Manager 46

3.4 Web Client 46

3.5 Testing and Deployment 50

4 Conclusions and Recommendations for Future Work 53

4.1 Conclusions 53

4.2 Recommendations for Future Work and Development 54

A LabConfiguration.xml 57

B Experiment Specification.xml 59

C ExperimentResult.xml 61

List of Figures

1-1 Timeline for deployment of iLabs. 15

1-2 Educational Laboratory Virtual Instrumentation Suite (NI ELVIS)

workstation .. . 18

1-3 Screenshot of the function generator and oscilloscope instruments run-

ning simultaneously from the ELVIS software suite. 19

2-1 iLab Shared Architecture. 22

2-2 Screenshot of MIT iLab Service Broker. This page indicates the groups

a user is a member of and the iLab clients the user has access to. . . 24

2-3 Screenshot of web client for the ELVIS iLab version 1.0. The schematic

is a representation of an operational amplifier with a user configurable

function generator (FGEN) and an oscilloscope channel (SCOPE). . . 27

2-4 iLab from Obafemi Awolowo University that incorporates switching.

Students have some flexibility in wiring different configurations together. 29

3-1 NI ELVIS software suite. Users can control the different instruments

from this user friendly panel 32

3-2 NI SWITCH software. Each switch can be opened and closed manually

through this software.................. 34

3-3 Diagram of the lab server. The lab server has back-end code, an admin-

istrative interface, and database. It communicates with the laboratory

equipment and the service broker. 37

3-4 Flowchart of LabVIEW code. 38

3-5 The built-in variable power supply and DAQ VIs in RunFGEN.vi... 39

3-6 General Information page for a setup. It contains a list of the terminals

and components for easier viewing. 44

3-7 Terminal Definition page on administrative interface. Here a terminal

or component is defined with user specified values....... 45

3-8 Client with unconfigured FGEN, COM, and SCOPE instruments. . . 48

3-9 After clicking on a configurable instrument the user is given options

for the parameters of the instruments. 49

3-10 After selecting values for an instrument, the box icon changes into a

schematic representation of the instrument. 49

List of Tables

3.1 Database tables of ELVIS iLab and brief descriptions of their purpose. 41

3.2 Columns and data types of the SetupTerminalConfig table. Columns

marked with * were created for version 2.0. 43.

Chapter 1

Introduction

Any well-rounded science or engineering education will provide students with expe-

rience in theoretical as well as practical applications of concepts. To achieve the

learning of the practical aspects, students must have access to laboratory equipment

to conduct experiments. However, often students cannot get the necessary experience

in traditional laboratories due to several limiting factors.

Laboratories require high initial startup costs, significant maintenance costs, and

manpower to staff the facilities. This results in laboratories being underequipped

and understaffed, and in the worst cases, non-existent. This leads to overcrowding

of facilities or absence of experimental assignments, and students fail to get the un-

derstanding of the difference between theory and reality. Some equipment may be

fragile, complicated, or burdensome, making the setup of the equipment overshadow

the actual learning of the concepts. Students also have free reign to use the equip-

ment as they want, opening the possibility of them damaging equipment if they input

incorrect or excessive parameters.

Furthermore, traditional laboratories are inefficient and the equipment is often

underutilized because they are limited to use during times when the facilities are

open. This is often not when students prefer to work. Also, some equipment may

only be useful for a few assignments in a course, and either goes unused outside of

the time periods it is needed for a course or is not purchased in the first place because

costs exceed the benefits and available funding.

1.1 Background on iLabs

iLabs is an attempt to bridge the challenges and inefficiencies of using traditional

laboratories. Conceived at MIT in 1998, iLabs is the concept that the traditional

laboratory experience can be virtualized and aspects of the traditional laboratory

can be accessed remotely through the Internet. Laboratory equipment communicates

with a computer that works as a server and the user opens a web-based client to

control the equipment. The user interface looks like simulation software, but the user

defined parameters are actually communicated to the equipment, the experiment is

run on-demand, and real data is transmitted back to the user.

There are several benefits of iLabs over traditional laboratories. Since the labo-

ratories are remotely accessed by students, they do not need to be physically in the

laboratory. They can do their labs at their own convenient location and can access

them at any time of the day. Students do not need to spend unnecessary time waiting

for equipment availability, as the system automatically queues student requests on

a first-come, first-served basis, and each experiment just takes seconds to execute.

Students do not need to spend hours debugging or working with faulty components

and equipment. iLabs greatly reduces the cost of a laboratory, because only one piece

of equipment needs to be acquired and many users can share it. The sharing can

expand beyond a campus and be shared across the world to students at other insti-

tutions. Institutions can create their own laboratories based on their curricula and

different learning and teaching styles, and strengths and share them elsewhere. For

example, a university with an excellent nuclear engineering department can develop a

laboratory and share it with a university with a less endowed department, increasing

the educational opportunities of those students.

iLabs is not perfect a replacement for a traditional laboratory. Students still do not

get to experience the touch and feel of equipment or gain the valuable skills of setup

configuration and debugging. iLabs are best suited as a supplement to exercises that

may still include hands-on laboratory assignments or as a replacement in situations

where no other options are available.

Over the past 10 years, several iLabs have been developed at MIT (Figure 1-1).

They have ranged from civil engineering to electrical engineering and are used in

courses in the undergraduate and graduate levels.

1998
Microelectronics Device
Characterization

2003
Polymer Crystallization

2004
Dynamic SignalAnalyzer

2001
2006
ELMS Electronics Lab

Heat Exchanger 2003
Shake Table

Figure 1-1: Timeline for deployment of iLabs.

iLabs have been used in 18 universities throughout Africa, Asia, Australia, Europe,

and the United States. Several of these universities are developing their own unique

iLabs. With the help of these universities, the iLabs concept is spreading throughout

the world as an important teaching and learning tool. [4]

1.2 Background on iLab Africa Project

One major partnership of the MIT iLab project has been with universities in Africa.

Starting in 2005, the MIT iLab project, in conjunction with the Carnegie Corporation

of New York, formed a partnership with three African universities: Makerere Uni-

versity (MUK) in Kampala, Uganda, Obafemi Awolowo University (OAU) in Ile-Ife,

Nigeria, and University of Dar es Salaam (UDSM) in Dar es Salaam, Tanzania. [1]

This partnership came out of the finding that the iLabs technology is suitable for

use in sub-Saharan Africa and that it can help alleviate some of the problems that are

faced in academic institutions. These findings were exposed during a feasibility study

conducted between 2003 and 2004 that sought to determine whether iLabs could be

useful in sub-Saharan Africa and what challenges existed in utilizing and developing

the technologies.

The results showed that there was a definite opportunity for iLabs technology to

be utilized effectively. Many of the advantages of the iLab system matched well with

the needs and limitations of the universities. Due to limited resources, laboratory

equipment is scarce in many universities and students are often robbed of experience

with experimentation as a result. With iLab, a university can purchase one piece of

equipment or just access equipment housed at MIT so that scores of students can per-

form experiments. The study found that the curricula matched well with the concepts

being taught with existing iLabs for courses like electrical engineering and physics,

so iLabs could be used immediately without much modification. The flexibility and

relative ease of changing experiment setups also allows for universities to match iLabs

to their curricula even further. Faculty and students showed enthusiasm and desire

for iLabs.

However, there were several barriers identified as well. Because of East Africa's

lack of a high bandwidth fiber optic cable connection to the Internet, countries rely on

slow and expensive connections to the Internet via satellite. [9] As a result, accessing

the iLabs located at MIT is not ideal due to the bandwidth constraints. Although an

iLabs setup only requires one piece of laboratory equipment for a class of students,

this can still be cost prohibitive as some components can cost on the order of tens of

thousands of dollars. To work around these issues, several modifications need to be

developed to the traditional iLabs system. Integrating lower cost equipment that can

still support basic functionality is one solution to the price issue. By deploying iLabs

components on the high speed local campus networks, connection to the Internet is

less of a limiting factor. [2]

While there is a general curriculum match and interest from faculty and students,

there needs to be deeper involvement to ensure the laboratories meet the universities'

pedagogical needs and there is solid collaboration and exchange of ideas. The iLab-

Africa partnership was formed with three main goals in mind to achieve success in the

integration of iLabs into sub-Saharan Africa. First, the utilization of iLabs housed

at MIT in courses in the partner universities. By using existing laboratories, iLabs

could have an immediate impact in teaching and learning, while having minimal setup

and investment costs. The second goal is to create and develop iLabs for the African

universities. These new iLabs would be developed by teams of faculty, students,

and staff from the universities, and will address the specific needs of the university's

curriculum. This will create an international research network with localized hubs

across Africa. The final goal is to foster the development and use of iLabs through

student and staff exchanges. Since 2004, these exchanges have taken place multiple

times between all four universities resulting in training, exchanging of ideas, discussion

of best practices, and a better understanding of the needs, capabilities, and challenges

of each university. [2]

1.3 Background on National Instruments ELVIS

The iLab-Africa teams have been primarily focusing on electronics laboratories us-

ing the National Instruments Educational Laboratory Virtual Instrumentation Suite

(NI ELVIS) as the base technology for the development of new iLabs (Figure 1-2).

ELVIS is an all-in-one electronics platform that combines twelve instruments that can

perform measurement and signal generation functions. These instruments include an

oscilloscope, digital multimeter, function generator and an arbitrary waveform gen-

erator. A removable prototyping board is connected to the device to allow users to

wire circuits and connect the various instruments. The platform can be controlled

like traditional electronics equipment by using hardware knobs and switches or by

connecting ELVIS to a computer and using a LabVIEW based software suite that is

provided (see Figure 1-3). Because it is supported in LabVIEW, programmers have

access to many virtual instruments that can represent actual pieces of hardware. The

hardware expands beyond just the controls of the ELVIS system as LabVIEW can

integrate well with many other National Instruments products. [8]

Figure 1-2: Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) work-
station.

ELVIS was designed for use in university education. It is an ideal platform because

all of the components a student needs for basic electronics experiments are in the

device. There is no need to manage and learn to use multiple devices. The ELVIS

is portable and more compact than traditional instruments, making it ideal for the

limited space available for laboratory equipment.

There are also precedents for ELVIS being used in university level education. The

ELVIS is being used in the Bioelectronics Project Laboratory (course number 6.121)

at MIT. [7]Other universities such as Georgia Institute of Technology and Vanderbilt

University use ELVIS in teaching some of the required electrical engineering courses.

[6]

Beyond the advantages the ELVIS has in academia, it is appropriate for use in sub-

Saharan Africa given the cheaper price. The ELVIS bundle with a digital acquisition

card retails for $1,999 in the United States at the current time. While this is still
expensive for some institutions, using the iLab technology, one platform can be shared

among many students, making the cost per student significantly lower than traditional

co eqc! ,c Wiwrme

O4, a~c -so :

ICOADO Stwt'" ~ Ub
5tv FmQA ky

maon~

......

Figure 1-3: Screenshot of the function generator and oscilloscope instruments running
simultaneously from the ELVIS software suite.

separate laboratory components.

1.4 Overview of Thesis

This thesis is about the development of a version 2.0 of the ELVIS iLab originally

developed and deployed in 2006 by Samuel Gikandi. It includes a description of

the additions that were made to the version 1.0 of the ELVIS iLab to include more

functionality and flexibility. It also includes work completed while on exchange at

UDSM and MUK.

Chapter 2 will focus on the reasons for creating a new version of the ELVIS iLab.

It includes a discussion of the general structure of an iLab based on the iLab Shared

Architecture (ISA). Chapter 2 also delves into an overview of the original version of

the ELVIS iLab and the shortcomings and new ideas that sparked the development

of a second version.

Chapter 3 goes into the details of the design for ELVIS iLab version 2.0. It includes

information about all aspects of the ELVIS iLab: hardware, server, and the web-based

client. The improvements for version 2.0 will be discussed as well as the limitations

that still exist.

Chapter 4 will be the conclusions drawn from the research and development of

the ELVIS iLab version 2.0. It will also discuss the outlook of the ELVIS iLab and

make recommendations for future development and use.

Chapter 2

Inspiration for Developing Version

2.0 of the ELVIS iLab

The first iteration of the ELVIS iLab aimed to incorporate new, low-cost equipment

in to the existing iLab architecture. It is important to understand the underlying

iLab architecture the ELVIS iLab is a part of. To maintain consistency, version 2.0

of the ELVIS iLab continued using the same architecture as version 1.0 and previous

iLabs.

2.1 Backbone of the ELVIS iLab:

iLab Shared Architecture

Since the first iLab was conceived in 1998, there have been several iterations of the

iLab architecture. The first microelectronics iLab consisted of a Java web client

communicating directly with hardware connected to a server. In 1999 as other lab-

oratories were being developed in different engineering disciplines, each laboratory

was created with its own unique structure. Seeing the inefficiencies in this process,

it was decided in 2001 to create a more standardized architecture that was generic

and modular enough to work with many different laboratories and streamline the

development process. [4]

The ISA consists of essentially four parts: web client, service broker, lab server,

and lab equipment (Figure 2-1).

Campus
network - Intern -:: :: : , ..

Lab Server
Client Service Broker

Lab Equipment

Figure 2-1: iLab Shared Architecture.

2.1.1 Service Broker

It is worth mentioning the service broker first, as this component is the heart of the

ISA and is the main differentiator between the new architecture and the previous

versions of iLab. The service broker is middleware developed in 2002 to simplify iLab

management and provide some modularity for development. The service broker is a

web-based portal that mediates communication between a client and an iLab server.

Much of the information is passed as XML documents. Because it uses relatively

generic function calls, one service broker can handle multiple clients and servers and

stores the relevant information for all of them. The service broker is laboratory

independent, so new iLabs are created around the service broker and utilize the same

function calls provided in the service broker API. The service broker also stores user

accounts. With this function users can be organized into groups (perhaps by course)

and can have permissions set by an administrator to see different iLab clients (see

Figure 2-2). For example, a student in a civil engineering course could have the shake

table iLab exposed to them, but not the microelectronics iLab. Experiment data is

stored through the service broker as well. Students and administrators can retrieve

all of information (configurations, results, date/time information) for experiments

that have been submitted. Each institution can have its own service broker for easy

management of user accounts and laboratory resources or they can share.

There are two types of service brokers: batched and interactive. The batched

service broker allows users to see the configuration of an experiment and specify what

parameters they want to input to the equipment without using any of the equipment

resources. This allows several users to do these steps simultaneously. Once a user

has specified their parameters, they submit them to the lab server. Users can access

the equipment one at a time, so there is a queuing system to ensure the person

that submits a specification first is served first. After the user's specification is finally

passed to the equipment, the execution time is only a few seconds, immediately freeing

up the equipment for the next user on the queue. Given each user only needs a few

seconds of the equipments time, this is a good model for large scale classes. Students

can also access the laboratory whenever they find the time and are not under any time

pressure in which to complete an assignment. However, a jam with a long queue can

occur if too many students try to access the experiment at the same time (e.g. a large

amount of students wait until an hour before a deadline to complete the assignment).

The interactive broker gives users exclusive, uninterrupted, and continuous access

to laboratory equipment. Users sign up for time blocks in which they will be the

other person allowed to dynamically control the laboratory equipment in real time.

While the real-time control is certainly an advantage over the batched architecture,

time is a limiting factor and the interactive laboratories may not scale as well in some

scenarios (e.g. a time intensive experiment and a large class size). Students may also

be pressured to finish their experiments in their given time slots. Since every student

schedules their own time slot, there is not the possibility of long queues preventing

access to the equipment in a timely manner.

The ELVIS iLab version 2.0 uses the batched architecture because it was modified

from version 1.0 and the microelectronics iLab, which predates the interactive archi-

tecture. It is also a more appropriate design for use in the developing world. There is

a need for the most students to access laboratories. Many students do not have access

to the Internet 24 hours a day-the electricity is frequently out, students do not have

access to computer laboratories outside of school hours, and many must go to Internet

cafes to get access in the evenings. The Internet connection is also slow and unreli-

able, so the bandwidth intensive interactive laboratory may lag and a student may

lose their connection part way through the process, causing them to have to schedule

another time and restart the experiment. These constraints and unpredictable events

would make scheduling student access time for an interactive experiment a logistical

nightmare. The batched experiments can allow students to configure their experi-

ments at any time without blocking access to other students. When the student is

ready to submit, they will only use a few seconds to access the equipment. If they

ever lose access to the Internet during their experiment configuration or submission,

the time to resubmit their information is minimal. [4]

Selectthe group you would like to use for this sesson.

Available Groups and Labs More fnfermation

S -Administrators You aereoquested memerstlp Ithe

Webtaelopn - a test group forweblab developers

* poraelectronicWeblabClassicCAr - a classic-sl interface tothe MIT Microelectrnfics
Weblab

* ucroelectronicsWeblb Graptlical Cie - a graphical interface to the MIT Microelectronics
Weblal

* McraelectrocsWeb rapcal Dew lmet) - Mielectronics 6e0 raphical
* amic Signal AnalyzrLab Client -A graphical interfaceto tle M rI ynamic Signal Anaer

WebL tb
* Diunlic Si"nalanlyzer Delogpert Cierit - DSA Chlenconnection to development Lab

Server
* webab4drycliest -
* ELVIS Lab Ceat - ELYIS Board Laib lent

* tcroekIctronicsSimulator - perform charactertzabon experments on simulated
mticroelectronics devices

* ELVISCliA (Develraent)- ELMS BoardLab Client

* Veblab 7.0 test cart -test installation forwebtlb 70 client development
* ikcroelestrnics Dwe Charcteaon aliorLab Caev. 7.- -Anewchent version for the

Figure 2-2: Screenshot of MIT iLab Service Broker. This page indicates the groups
a user is a member of and the iLab clients the user has access to.

2.1.2 Laboratory Equipment

Theoretically any laboratory equipment that can communicate with a computer can

be modified into an iLab. As long as the API is exposed to a programmer, the

functionality can be called by the server.

2.1.3 Lab Server

The lab server is a laboratory specific part of the ISA that interacts directly with

laboratory equipment. A lab server can interact with multiple service brokers si-

multaneously. The lab server accepts requests from a user for specification of values,

parses the information, and submits them to the laboratory equipment. It then passes

the results back through the service broker to the user.

Another function of the lab server is to serve as an administrative interface. The

desired configuration of a laboratory is stored on a laboratory administration page

and this information is passed to the user when they open the iLabs client. It also

stores a log of experiment execution requests and manages administrator accounts.

One challenge that arises in developing a lab server is that it essentially needs to be

reprogrammed for each device that is connected to it. For example, each device will

have unique procedures to access its functionality; these will need to be included in

the execution engine. Parsing and validation of the XML documents that are passed

through the service broker will also need to be modified based on the information

that will need to be included. Chapter 3 will discuss the individual components that

were modified for version 2.0.

2.1.4 Web Client

The final component of the ISA is the web client. The web client is the user inter-

face for interacting with the experiment. The client is a representation of what the

laboratory hardware is doing so this will also be laboratory specific. For example,

a basic electronics laboratory will have a schematic drawing of the circuit that has

been wired on a prototyping board.

2.2 Previous Work on ELVIS: Version 1.0

The first version of the ELVIS iLab was completed in 2006 by Samuel Gikandi as part

of his Master of Engineering thesis at MIT. [3] Gikandi integrated the ELVIS into the

iLab Shared Architecture by modifying the previous lab server and client code from

the microelectronics iLab. The modification of the existing code is quite apparent as

the ELVIS iLab still resembles the microelectronics iLab. A user will be comfortable

using both of the web clients.

Gikandi exposed two of the twelve instruments from the ELVIS in version 1.0 of

the iLab: the function generator and one channel of the oscilloscope. In the web

client (see Figure 2-3) the user is presented with a schematic drawing of the circuit

that is wired on the prototyping board. The user then has two instruments that must

be configured. The first is the function generator (FGEN) instrument. The user can

specify the amplitude, waveform type (sine, square or triangle), frequency, and DC

offset. The second configurable instrument is the output channel (SCOPE). For this

instrument the user specifies the sampling rate and sampling time. The specifications

are then sent through the service broker to the lab server where the ELVIS functions

are called. The results are then passed back along the chain and displayed to the user

in graphical form on the client. [3]

For this first iteration of the ELVIS iLab, there were limitations on the design.

Since only the FGEN and one channel of the SCOPE are exposed, only a small range

of circuits can be implemented. There is also a variable (DC) power supply and

two arbitrary waveform generators available on the ELVIS. Another limitation is the

number of experiment setups that can be available concurrently. Since there is only

one input and one output, a laboratory administrator can only wire the input and

output channels to one circuit at a time. Every time a new circuit or component

is needed, someone needs to remove the existing one and wire a new setup. This

maintenance is not ideal for a system that is designed to be shared among different

courses and universities that will not necessarily have the same assignments and setups

simultaneously. There is also not much freedom for the student and their opportunity

to experiment is limited. A student can only specify values for the FGEN and SCOPE.

They cannot change the configuration of the circuit (e.g. change the value or position

of a resistor) and see how the output changes. Being able to change the components

of the circuit in addition to the input and output would greatly add to the educational

Corf ion Measuemnt Sbe~ups. ResAs Help

opAmp

100K

S- -Tracking

I -i - ___ _ 1_

X A near Aau ca e

Java Appl Widow

Figure 2-3: Screenshot of web client for the ELVIS iLab version 1.0. The schematic is a
representation of an operational amplifier with a user configurable function generator
(FGEN) and an oscilloscope channel (SCOPE).

UntitledMI NI-ELISpebla

value of the iLab. Version 1.0 did not fully exploit the capabilities of the ELVIS and at

MIT and the African universities there has been a desire to expose more functionality

and increase the flexibility of the ELVIS iLab.

2.3 ELVIS Version 2.0 Background and Overview

The desire to remove the limitations in ELVIS iLab version 1.0 has been the inspiration

for developing a second version of the ELVIS iLab. Version 2.0 picks up from where

Gikandi left off and essentially adds to and modifies his code base. There are two

main features that have been added to create version 2.0: switching and an additional

power supply.

The additional power supply from the ELVIS that has been added is the variable

power supply. For version 2.0 a DC power supply that operates between -12 and +12

volts is at a laboratory administrator's disposal for inclusion in circuits. It can provide

a constant signal in the -12 and +12 volt range. This can be used in conjunction with

or instead of the function generator.

Integrating switches into the ELVIS iLab architecture was inspired by work done

at OAU on the iLab project. OAU used a software controlled switch to allow students

to select six different configurations of operational amplifier circuits. [31 The student

is presented with a schematic of the circuit that displays an operational amplifier and

the resistors. The students select the desired configuration (e.g. inverting amplifier)

from a drop down list. The student must then draw wires between components for

the desired circuit configuration. (see Figure 2-4) Once they have completed wiring,

the iLab checks to make sure the student wired it correctly before submitting it to the

lab server for execution. This enhances the student's educational experience, as they

get to experiment with different configurations and learn by trial-and-error without

putting equipment at risk.

Version 2.0 uses the same software controlled 100-channel switch that is used

at OAU, but presents the information differently to the user in the client. Instead

of showing components and no wires, ELVIS iLab version 2.0 displays wires with

Plese slect new Lab
cmnfigurationhere

Prm m me U,-'M

39k

Quick Hints

1 If the experiment area on the left Is
empty, you probably do not have the
Microsofl .Net Fraewok installed.
Please download it HERE and
install it.

2 Ensurethatyou read the
introductory document here before
carrying out this experiment

3. To make a connection from a
node, click on it and select "connect
to'. Then, click the node you want to
connectto

4. To disconnect a connection
between two nodes, click on either

Osilloscqe of em and selecfOIsconnec
from. Then dlick on the other node.

sbod~s I Dionect

Figure 2-4: iLab from Obafemi Awolowo University that incorporates switching. Stu-
dents have some flexibility in wiring different configurations together.

Opeatonl~npiferWela

546ezsue'V--

e ---

generic components that need to be configured (similar to the FGEN and SCOPE

instruments from version 1.0 in Figure 2-3). The user must select the values for each

component (e.g. a 100 ohm resistor or a 15 nF capacitor). Each of these components

are physically wired on the board, but connected to the circuit with different switches.

Like the OAU approach, this forces the student to think about how to create circuits

instead of just having the circuit already properly wired for them. Switches can

also be associated with different circuit setups, so sharing power supplies and output

channels is possible. Unlike the OAU approach, my approach does not require error

checking to ensure a student has wired something correctly. The wires are already

in place, and the student has a limited selection of circuit components that can be

chosen. In the OAU design in Figure 2-4, the user is given resistor values can only

wire it in an inverting configuration. In my design a user can be given an operational

amplifier with multiple resistor values (so they can modify the gains) and would not

necessarily be restricted to just an inverting amplifier configuration. This allows for

more possible circuits and a more extensive educational experience.

The changes to ELVIS iLab version 1.0 required modification the lab server and

client code and the addition of new hardware. The next chapter will go into detail

on exactly how this was accomplished.

Chapter 3

ELVIS Version 2.0 Detailed Design

This chapter gives a detailed outline of version 2.0 and the modifications made to

create the new version. The changes and additions to version 1.0 were substantial in

all aspects of the architecture with the exception of the service broker. There is also

a brief discussion of testing and deployment of the system.

3.1 Laboratory Equipment

Version 2.0 consists of two pieces of hardware: the NI ELVIS academic bundle and a

switching system. The NI ELVIS consists of twelve instruments the user can use either

through the NI ELVIS software suite (see Figure 3-1) or through virtual instruments

in LabVIEW. The ELVIS station consists of the actual instrumentation in a box and a

removable prototyping board. The ELVIS station connects to a computer through the

NI PCI-6251 digital acquisition (DAQ) card. For version 2.0, the function generator,

oscilloscope, and variable power supply are utilized.

The specifications for the ELVIS are somewhat of a limiting factor. The function

generator can generate signals between +/- 2.5V in three different waveform types

(sine, square, triangle wave) in the frequency range between 5 Hz to 250 kHz. Through

our experience, the ELVIS is not very accurate at relatively low voltage ranges (30-

40 mV). There are inaccuracies in the amplitude and the offset. After unsuccessfully

troubleshooting the problem through calibration, noise from within the ELVIS device

Figure 3-1: NI ELVIS software suite. Users can control the different instruments from

this user friendly panel.

32

must be an issue.

The variable power supply is actually made from two separate channels: one that

provides DC voltages between -12V and OV and another that ranges between OV

and +12V. Finally, the oscilloscope channels can measure voltages in a range of +/-

10V at a maximum rate of 500 kHz. There are eight channels capable of measuring

voltages, but only two are used in order to measure the input signal and the output

signal. This is a limitation in this design, and not a limitation of the ELVIS.

The switch is the software controlled National Instruments SCXI-1169 switch.

The module consists of 100 single pole, single throw (SPST) mechanical switches.

This can be used to potentially have 100 different components available in a circuit;

however there is limitation in how many can actually be used. The prototyping board

is small and each switch requires two nodes, therefore it would be difficult to fit 100

switches on the board at the same time. For my implementation I used a NI LFH200

bare wire cable routed through a NI TBX-50 screw terminal block that can only

support 25 switches. Wires are connected from the terminal block to the prototyping

board. The wires are very thin, so they tend to come loose. For this reason, the

ELVIS and the switch should be placed in a safe location where accidental contact is

unlikely.

The switch, much like the ELVIS, can be controlled through a standalone software

suite (see Figure 3-2) or through virtual instruments in LabVIEW. Since the switches

are mechanical, they have a limited lifespan. Therefore, monitoring the usage of each

switch and periodically testing them is necessary. The switches can be monitored

through the software suite.

3.2 XML Specification Documents

Communication between the client and server via the service broker is done with

three XML documents: LabConfiguration, ExperimentSpecification, and Experimen-

tResult. These three documents are crucial to start with in the development process

because their structures dictate what and how information is represented, accessed

Figure 3-2: NI SWITCH software. Each switch can be opened and closed manually

through this software.

34

and stored in the client and server.

The LabConfiguration XML file (see Appendix A) contains information about the

active setups 1 for a laboratory. It contains basic information about each setup such

as the name, file path for the image representation, and a brief description. It then

goes on to list all of the terminals and their information such as name, pixel location

of the icon, and maximum values. When a user launches a laboratory client from the

service broker a request is sent to the server to generate this file from the database.

From this XML file, the client will display the schematic drawing and place the user

configurable components on the client.

The ExperimentSpecification XML file (see Appendix B) is a document that con-

tains the user's desired values for the experiment. After the user launches the client

they are given the options for configuring the instruments. The user selects the op-

tions for parameters like amplitude, waveform type, and sampling time. After error

checking (for values that may be outside of the allowed range or data type), these

values are put into an XML file and sent to the lab server where they are parsed and

executed on the laboratory equipment.

Finally, the ExperimentResult XML file (see Appendix C) contains the data from

the experiment. This file is generic and does not need to be changed to reflect

the switching capability or the variable power supply since it only cares about the

measured input and output values.

LabConfiguration and ExperimentSpecification needed to be changed to account

for two new instruments: the variable power supply (DC) and switchable components

(COM). Switchable components can theoretically be any instrument on the ELVIS

such as the function generator, variable power supply, or oscilloscope. They can also

not be instruments at all-resistors, capacitors, or any other components found in a

circuit. To maintain consistency with version 1.0, the FGEN and SCOPE instrument

types were kept in the XML structure. For version 2.0, DC and COM were added. DC

is actually very similar to FGEN, except there are fewer user configurable parameters

1Having a setup active means the laboratory administrator has wired a circuit setup and has
made it accessible to users. An inactive setup is not presented to the user as a circuit to configure.

like frequency and waveform type. The only information needed is the DC voltage

value. The COM instrument is a little more complicated since it can theoretically

be any arbitrary component. A COM instrument does not have any functionality

itself, but rather just a terminal number to keep track of it and a pixel location. Its

children in the XML format are called subCOMs. These subCOM children share a

common pixel location, but may different component types. For example, a COM

may be made up of two subCOMs with a resistor type and one subCOM with a

capacitor type. This structure allows for a terminal to have multiple components

associated with it and can expand to different components and instruments in the

future. The implementation in version 2.0 only allows for circuit components and not

ELVIS instruments.

3.3 Lab Server

The lab server consists of three main components: the back-end code, database,

and web-based administrative interface. Figure 3-3 outlines in detail how the three

components interact with one another, the laboratory equipment, and the service

broker. The back-end code is broken down further into individual modules that will

be explained in further detail in this chapter.

3.3.1 LabVIEW

LabVIEW is a graphical programming language that assists in performing measure-

ment and automation. LabVIEW contains virtual instruments (VIs), which are

built-in functions that represent instruments that can either be simulations or ac-

tual pieces of hardware, such as oscilloscopes or function generators. [5] I developed

in LabVIEW 8.2 Professional Development Edition because it includes the ability to

compile dynamic-link libraries (DLLs) which are necessary to call VIs from outside

of LabVIEW.

The code in LabVIEW is a VI that is made up of several subVIs, which are modular

pieces that perform more specific functions. Figure 3-4 is a detailed breakdown of

Back-end code
r - -1

_ _ _ _ --

Administrative
Interface

Database

Figure 3-3: Diagram of the lab server. The lab server has back-end code, an adminis-
trative interface, and database. It communicates with the laboratory equipment and
the service broker.

how the subVIs interact with one another in the ELVIS iLab code.

Figure 3-4 breaks the LabVIEW VI into three layers. Layer 1 is the highest layer

and is the VI that the DLL is created from. When the DLL is called, all of the

values that are needed to run the ELVIS (such as amplitude, waveform type, switch

information, etc.) are passed through a wrapper function. The first step in Switch.vi

is it takes a string that consists of which switches should be opened and closed. This

string is then parsed and the information is passed on to the first of its four sub-

VIs (MainSwitch.vi) located in layer 2. In MainSwitch.vi the switch is initialized

and the switches that have been designated closed are closed. After waiting for the

switches to debounce, communication with the switch is closed. InitializeELVISup-

date.vi and CloseELVIS.vi are built-in VIs that initialize and close communication

with the ELVIS station. FGEN.vi is a VI created for version 1.0. It houses all of

the main ELVIS functions and is made up of three subVIs. InitializeFGEN.vi and

CloseFGEN.vi open and close communication with the ELVIS function generator,

respectively. RunFGEN.vi is the heart of the LabVIEW code. The values that the

LdUV ICVVY ce

1

-- 1--~

2

-p

3 1

Figure 3-4: Flowchart of LabVIEW code.

user specifies through the DLL function call are passed from layer 1 down to the

RunFGEN VI. Here they are passed on to the built-in LabVIEW VIs for the DAQ

and FGEN. The DAQ always samples at 100 kHz, but there is a decimator function

that resamples at the rate the user specified in the client, and returns the desired

number of samples. The FGEN VI is called with the user specified amplitude, fre-

quency, waveform type, and DC offset. Version 2.0 now includes the DC variable

power supply (VPS). The VPS has two different channels: one for voltages in the 0

to +12 V range and one for the 0 to -12 V range. To simplify things for the user,
a case structure is surrounding the VI (Figure 3-5) to determine whether the user

specified value is positive and negative, and then routing this value to the correct

channel.

The DLL is compiled from Switch.vi, where it allows you to select which of the

parameters should be exposed in a generic function. These parameters are exposed

by selecting "connectors" (anything that can be configured by a programmer, such as

Supply+, Supply-, Device Name, etc. in Figure 3-5). There is a major limitation in

the number of connectors that can be chosen. Each VI can only support 30 connectors.

I ,t~rtclnJ,,~,

!

m

I-- 1 T-
I,

7

I[C-l

1

DAQ Assistant
data

error out

error in

Figure 3-5: The built-in variable power supply and DAQ VIs in RunFGEN.vi.

This is an issue with the addition of the switches, because one implementation choice

could be to have a separate connector for each switch number. This would limit the

number of switches that can be exposed. The workaround for this is to use only

one connector by using a string that has each element of the string corresponding

to a switch (element 0 corresponds to switch 0). The elements in the string would

be "1" if the switch is closed, "0" if it is opened. This implementation conserves

connectors, and in the future all parameters could be passed in a single string instead

of as separate parameters.

3.3.2 OpAmpInverter.vb

OpAmpInverter is a misnomer-this is actually the code that wraps around the Lab-

VIEW DLL and calls the function. This class imports the DLL and creates a RunEx-

periment function which executes the ELVIS VIs with the user specified values. This

value also receives back from the ELVIS the data from the DAQ device as a single

array. This array needs to be broken down into its three components (input func-

tion generator voltage, input DC variable power supply voltage, and output voltage).

These are passed back to the client and displayed in a graph for the user.

It

3.3.3 Validation Engine

The validation engine serves three main functions. It parses the experiment speci-

fication (which changed), ensures there are proper permissions, and validates it for

correctness before allowing the experiment engine to call its runExperiment function.

The parsing and validation steps had to be modified for version 2.0 to account for the

new XML structure. The validation engine is compiled into a DLL and run when the

user submits an experiment to the service broker.

3.3.4 Experiment Engine

The experiment engine is an executable that runs in the background of the lab server

waiting for activity from the service broker. When the service broker passes a request

from user to see a certain laboratory, a LoadJob function is called and creates the

XML lab configuration file from information in the lab server database (see Appendix

A). This function needed to be modified for version 2.0 to account for the DC and

COM instrument types that were included in the new LabConfiguration XML file. It

passes this file back through the service broker to the client where it is parsed and

further steps are taken to display the information to the user.

The experiment engine also waits for experiments to be submitted from users

via the service broker. The experiment specification created by the client when the

user submits a valid experiment is first parsed by the ParseExperimentSpec. This

function removes the relevant information from the XML document and loads the

values into local variables. These are passed to a runExperiment function which

creates an instance of the OpAmpInverter class and calls its RunExperiment function

with these variables.

I added a getSwitchNums function to handle the switching. As mentioned before,

only 30 arguments can be supplied to a LabVIEW function so I had to use one string

argument which contains all of the information for the 25 switches. This function

gets the switch numbers from the database of all of the components in the user's

specification. It forms a comma separate values of switches that should be closed. It

then translates this to a string of 25 "0" characters and replaces an element with a

"1" if the corresponding switch is to be closed. This 25 character string is passed as

an argument to the runExperiment function.

3.3.5 Lab Server Management

The lab server is managed by an administrator through a web interface that inter-

acts with the lab server database. Overall the database has been extended and the

web interface reorganized to account for the switching and variable power supply

functionalities.

The database is a modified version from the Microelectronics iLab. It was cre-

ated using Microsoft SQL Server. The database is used for tables as well as stored

procedures that are used in conjunction with the administrative web interface.

The relevant tables for the ELVIS iLab are below with brief descriptions of their

purpose.

Table 3.1: Database tables of ELVIS iLab and brief descriptions of their purpose.
Table Name Modified in V2.0? Brief Description
ActiveSetups No Keeps track of which setups are active/accessible
Brokers No Keeps track of service brokers and passkeys for authentication
ClassToResourceMapping No Maps usage classes to resources and keeps track of permissions
JobRecord No Keeps tracks of jobs submitted, current status, execution time and results
LoginRecord No Keeps record of logins for admin interface
Resources No What functions (e.g. ability to manage a setup) & experiment setups can be accessed
Setups Yes Stores image location, # terminals used, switches needed for setup
SetupTerminalConfig Yes Stores information about terminal (see Table 2)
SiteUsers No Stores info on user accounts for the admin interface
UsageClasses No Stores guests and administrators; serves to group together for control of resources
WebMethodRequestLog No Logs methods that have been called like GetExperimentStatus, GetLabConfiguration, etc.

Since most of the tables were generic enough that they did not need to be changed

for version 2.0, I will only go into detail on the two tables that needed modification

for switching: Setups and SetupTerminalConfig.

Setups needed a new column (setupswitches) to handle a multiple setups scenario

with switches. If there is a case where multiple experiment setups are desired, and

certain switches must be thrown (i.e. if there is sharing of the function general in

the setups) and the user will not have the ability to change the switches, then the

setupswitches column will be used. Any switches that must be thrown are input as a

comma-separated value list of the switch numbers. These will be added to the switch

string that is created in the experiment engine.

SetupTerminalConfig stores the information for each terminal and component that

is needed for the lab configuration. Crucial information like the location of the im-

age and maximum values allowed for instruments are kept here. This table needed

four columns added to handle switching. The column setupterm_id was added to

create a unique identification number for a component. In version 1.0, number served

this purpose, as there was only one component (FGEN or SCOPE) per terminal and

the terminal number sufficed. Now in version 2.0, the structure allows for multiple

components to exist at a single terminal. So there needs to be a terminal number so

components can be identified as being at the same location, but they need to be distin-

guished from one another as well. All terminals and components have a setuptermid.

The switch_id column keeps track of the order of components for a terminal that has

multiple components. This is mainly for listing them on the web interface page in

some sort of order. The switch_num column contains the comma-separated values of

the switch numbers that need to be thrown to get the component. The subCOM-

Type is the type of component that is connected. There are predefined choices to the

administrator (resistors, capacitor, inductor, open circuit, short circuit, other-all

in a horizontal or vertical orientation for the image) but it can be expanded in the

future if necessary. Finally, isswitch is just a Boolean value that the administrator

selects to indicate whether the terminal uses switches. This is for error checking and

robustness.

The web interface was changed for aesthetic and functional reasons, but any user

of the version 1.0 interface will find it familiar. In version 1.0 there were only two ter-

minals (FGEN and SCOPE) so all of the information for those terminals such as pixel

location, maximum values, etc. could be displayed on the same page. But in version

2.0 there is the possibility of more than two terminals, and multiple components for

each terminal. This information could be very difficult and confusing to read all on

one page, especially if components are not added to existing terminals in order. For

version 2.0 there is a table that displays all of the terminals and components in order

Table 3.2: Columns and data types of the SetupTerminalConfig table. Columns
marked with * were created for version 2.0.

Column Data Type Column Name Data Type
setup_id int max.samplingtime float
number int maxsamplingrate float
name varchar maxoffset float
xpixelloc int max-points float
ypixelloc int setupterm-id* int
maxamplitude float switchid* numeric
maxcurrent float switchnum* varchar
instrument float subCOMType* varchar
datecreated datetime isswitch* bit
datemodified datetime

and allows the user delete or view more information about the terminal/component

individually (see Figure 3-6).

When a user chooses to create or view a terminal or component, the setup screen

is basically the same screen as in version 1.0 with added options for switches (see

Figure 3-7). Now the user can indicate whether a terminal uses switches, what the

switch numbers are. If the terminal is a component (such as a resistor), the user can

choose the component the orientation the image should be on the client.

Another aspect related to the tables and the web interface is the stored procedures

that alter the database after a user makes a command. There are several procedures

that perform functions like add brokers, copy setups, and delete terminals, but these

have been largely unchanged. The only procedure that has been changed for version

2.0 is AddSetupTerminal. This procedure creates a new instrument terminal (similar

to a node on a circuit) with the values entered by the user (in Figure 3-7) and adds it

to a setup. It also updates information in the Setup table such as number of terminals

used, date modified, etc. AddSetupTerminal needed to be modified to account for the

five new columns that were added in the SetupTermConfig table. A new procedure

that is modeled after AddSetupTerminal was created to handle the situation where

a component is created and added to a terminal. AddTerminalComponent needs the

same information as AddSetupTerminal, but needs to check if a terminal already

General Information

Name: ELVIS Votge Divider

Switches for
Inputs/Outputs (CSV):

Terminals Used: 3

Experiment Setup Imane: (Remove Ima

Date Created. Jul 9, 2007 21:43 Date Modifie: Apr16, 2O0 17:42

Update I Copy Setup I Delete Setup

Output Voltage
3.3'K

2.2K
1.32K

SCOPE
COM
COM
COM

View I Delete

View I Delete

View I Delete

Figure 3-6: General
and components for

Information page for a setup. It contains a list of the terminals

easier viewing.

.......

..

Experiment Setup Management

Terminal Dlinition

Name: 12.2K _

Horizontal Location (pils):

Maximum Voltage Amplitude (*- V

Maximum Frequency (Hz)

Maximum Sampling Rate (For input terminals)

Instrument: [bM i_

Vertical Location (pixel):

Maximum Voltage Offset (+/- V)

Maximum Current (+- A)

Maximum Sampl Time orinut

terminals, in secs)

Maximum Number of Samples (For input tarminals) [

Switch? R Switch Number-

if COM, select COM Type: Hori.R

Det Created: Apr 7, 200 18:40 Dete Modified: Apr 7,208 4&40

Update Component I Delete Component I Back to Setup

Figure 3-7: Terminal Definition page on administrative interface. Here a terminal or

component is defined with user specified values.

exists, and if it does adds the component using the same terminal number. If this is

the first component of a terminal it needs to create a new terminal.

3.3.6 Resource Permission Manager

The final portion of the lab server worth mentioning is the resource permission man-

ager (RPM). This works with service brokers and manages, creates, and removes their

associations with the lab server. It also handles site users, groups, and deals with

permissions. These are generic functions that interact mostly with the service broker,

so they did not need to be changed.

The main components of the RPM that needed to be changed are the functions

that work with the administrative interface. The RPM takes the values that the

user inputs in the administrative interface and passes them on to the database's

stored procedures. It opens a connection with the lab server database and executes

the stored procedures on the values the user specified. Since AddSetupTerminal

and AddTerminalComponent procedures were modified and created, respectively, for

version 2.0, the RPM needed to be changed. The AddSetupTerminal function in the

RPM needed to be changed to include the new switch parameters and pass the values

to the stored procedure. AddComponent is a new function and needed to be created

in order to pass the values to the AddTerminalComponent stored procedure.

There is also a GetLabConfig function that needs modification. The function

opens a connection with the database and pulls the configuration information from

the Setup and SetupTerminalConfig tables. It then puts this into a string in XML

format. Because of the change in the XML LabConfiguration document, this function

needed to be modified to include the DC and COM instrument types.

3.4 Web Client

A user specifies experiment values, submits those values, and receives the results

through the web client. The version 2.0 client is based on the ELVIS version 1.0

client, which was created from the microelectronics client. The client is written using

Java and has a modular structure that could be reused. I wanted to keep the same

structure and reuse previous code to maintain consistency and it would be backwards

compatible with version 1.0. The generic graphing, xml, and server interface packages

that were derived from the Microelectronics client could be used without modification.

Much of the back end functionality of the client was kept. The client has options to

do things like save and retrieve experiments and view data as a comma-separated

table.

The user experience in the client is virtually the same as it was in version 1.0.

When the user launches the client, the LabConfiguration XML document is sent

from the server. The client has classes that parse the information from the LabCon-

figuration and create instrument objects that store the information. The schematic

image is displayed to the user along with configurable instruments that are repre-

sented by red icons (see Figure 3-8). The user then clicks on each of the instruments

and specifies their desired values in the popup dialog boxes (see Figure 3-9). Once

all of the instruments have been configured the user submits the experiment. It is

checked for correctness first to ensure all instruments have been configured with valid

values (data type and within the allowed ranges). Once the check has been passed,

the ExperimentSpecification XML is created and sent to the server to be parsed and

executed.

After the server runs the experiment it receives the input and output data, puts

the results in the ExperimentResult XML document, and sends them back to the

client. The client then parses the XML and graphs the data.

As mentioned in this chapter, two of the XML documents were modified and this

had an effect in the client. The ExperimentSpecification.java class, which creates the

XML document and the LabConfiguration.java class, which parses the LabConfigu-

ration XML sent from the server, needed to be changed to reflect the new structure

of the XML documents.

The client package, which contains the majority of the user interface code, needed

to be modified substantially. Classes like Instruments and Terminals needed to be

modified in order to handle the new DC and COM types. These existing instrument

ConuELration Measurement Setups Resuts Help

ELVIS Votage Divider 4I

FGEN SCOPE

Y1 Axis:
lNorte v

Scale:
Linear

2autoscale

Tracking

VY2 Axis:

Scale
Linear ;

autoscale

Scale: Lnear -ruto ale

-J-av ----Applet Window
Java Applet Ww ~s~::;; Ii--::: i: i I ::_:: : : ::::-::::11:~ fow: :::: :

Figure 3-8: Client with unconfigured FGEN, COM, and SCOPE instruments.

!~
I

----7 ~I--

------,

;;;;;;-

I-----

10 Untited - MIT NI ELVS Webtd" ;;;;; ---- :-:--- -- ;i-~~ --;-i~'~~~i:-:-;'; i i-;:~;-:--'--- ' :~--;";~ -; -- -

X Axis: None v,

Temperature: unowniI
V'7 Avk-

Figure 3-9: After clicking on a configurable instrument the user is given options for

the parameters of the instruments.

ELVIS Vodage Divider

a

FGEN SCOPE

Temperat-re: u io-wnTTTTIvTi
Figure 3-10: After selecting values for an instrument, the box icon changes into a

schematic representation of the instrument.

ELVIS Vdtage Dider

wQ

I

SCOPE

SCOPE

VI AV-k.

GAisaru-~

classes and their associated methods (FGEN, SCOPE) needed to be modified because

they now possess more characters such the unique setuptermid. I created new classes

for DC and COM that contain most of the same methods as the FGEN and SCOPE

types.

In SchematicPanel.java the schematic drawing is displayed to the user along with

the icons for the user configurable instruments. This needed to be extended to include

the DC and COM instrument images. The process of displaying these images is a

source of hard-coding that limits the possible COM types without changing and

compiling the client code. The COM types are currently restricted to a resistor,

capacitor, inductor, open circuit, short circuit, and an arbitrary "other" type.

3.5 Testing and Deployment

The entire system has been tested for three main scenarios. The first scenario is the

traditional version 1.0 setup, where there are no switches used. Version 2.0 still works

in this case and therefore is backwards compatible. A university that does not have

the switch hardware can still use this version to run their old experiments and can use

it to build new experiments that utilize the variable power supply. Another scenario

is with one setup with multiple components. Switches are connecting components

to the rest of the circuit. This performed well, although in one instance it appeared

that the switches were not closing or resetting in time before the power supply was

run. For this reason I added a delay between the switch initialization and the then

the initialization of the ELVIS. This appears to have solved the problem. The third

scenario is having multiple setups active and available to the users. In this case

two setups share the function generator and an output channel by using switches

to connect them to the different circuits. This is accomplished by using the setup

switches option in the lab server management page. I was able to switch between two

setups and perform experiments successfully. The system has not been load tested

with multiple users yet, so this must be performed before it is deployed for use in a

class.

When the system is ready for deployment the client is packaged as a JAR file

and can be stored on the service broker computer. The lab server code needs to be

overwritten on existing servers since most of it has been changed for version 2.0. The

database will also need to be rebuilt using a new script. The lab server and client

can be registered on the service broker using the existing process.

Chapter 4

Conclusions and Recommendations

for Future Work

ELVIS iLab version 2.0 is a drastic improvement over version 1.0, but there are

still opportunities for the iLab to be expanded and improved in order to enrich the

educational experiences of students.

4.1 Conclusions

ELVIS iLab version 2.0 has expanded the capabilities of the existing ELVIS iLab that

is being used worldwide in courses. It adds the variable power supply instrument from

the ELVIS workbench and, with additional hardware, the capabilities of component

switching. Adapted from version 1.0, ELVIS iLab version 2.0 keeps in the iLab

tradition of modularity and code reuse. This will be useful for future development

and as more features are added.

There are several benefits to the new functionality. ELVIS iLab now can have

multiple setups available to users simultaneously, allowing more options for the stu-

dents, less maintenance for administrators, and easier sharing within and between

universities. The ELVIS iLab can be used in the same courses it is currently used in

at MIT, but because there can be multiple setups on each prototyping board now,

other universities can have their own custom experiments on the same ELVIS station.

Switching can make experiments more interesting and educational because students

have more options and flexibility in configuring instruments. Having to choose the

values of more components such as resistors and capacitors can make the assignments

more challenging for advanced courses.

4.2 Recommendations for Future Work and De-

velopment

While the variable power supply has been added, there are still a total of twelve

instruments on the ELVIS station. This leaves nine instruments that have not been

exposed in the ELVIS iLab architecture. Currently the Bode analyzer is being devel-

oped by students at MIT and UDSM. The arbitrary waveform generator, which has

two channels that are capable of generating virtually any sort of waveform, is in the

final stages of development as well. While these will significantly expand the types of

experiments and analyses that can be performed within the ELVIS iLab, there is still

the digital domain that has not been explored in detail by any iLab team. This would

be a logical next in development of a new version. This would probably deviate from

version 2.0, at least in terms of the client as representation of digital circuits is much

different from the analog circuits used in versions 1.0 and 2.0.

There is another recent development that should be incorporated into this new

version of the ELVIS iLab. Since I began development, the ELVIS iLab version 1.0 has

been modified significantly at the LabVIEW level. Overall functionality has remained

largely the same, but the code has become easier to use and more parameters for the

oscilloscope are exposed by using LabVIEW's built-in Express VIs instead of Low

Level VIs. Instead of using three or four low level VIs at different levels to control

the ELVIS instruments, they can be controlled using one Express VI. These should

be combined in order to maintain consistency and to simplify the LabVIEW code.

Another potential development that may help as more functionality is added from

the ELVIS is to use fewer arguments in the LabVIEW DLLs. As mentioned in Chapter

3, LabVIEW can only support 30 connectors which can be exposed through a DLL. It

may be beneficial to use the approach used for setting the switch positions in version

2.0 by providing a string argument that contains all of the parameters to control the

ELVIS. Instead of having separate connectors and arguments for amplitude, frequency,

DC offset, etc., they can all be in a delimited list and passed as one string argument

and parsed in LabVIEW. Only one connector would need to be used instead of many.

This may be necessary as the number of instruments used on the ELVIS increases

and the potential for incorporating other National Instruments (such as the switch

hardware) devices is explored further.

Finally, in spirit with the intellectual sharing nature of the iLab project, a more

collaborative effort with the other development teams across the world, particularly

in Africa would be beneficial. Team development is needed to get everyone on the

same level and would greatly speed development through exchange of best practices

and division of labor. It can also create more specific labs for needs and expand

sharing of the iLabs once they are complete.

Appendix A

LabConfiguration.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE labConfiguration SYSTEM "http://ilab-labview.mit.edu/LabServer/xml/labConfi

<labConfiguration lab="MIT ELVIS Weblab" specversion="0.1">

<setup id="5">

<name>Sample Circuit</name>

<description>A Sample Circuit for V2</description>

<imageURL>http://localhost/labServer/setuplmages/genericimage.gif</imageURL>

<terminal instrumentType="FGEN" instrumentNumber="1" setupTermID="1">

<label>Input Waveform</label>

<pixelLocation>

<x>121</x>

<y>94 </y>

</pixelLocation>

</terminal>

<terminal instrumentType="SCOPE" instrumentNumber="2" setupTermID="2">

<label>Oscilloscope</label>

<pixelLocation>

<x>195</x>

<y>156</y>

</pixelLocation>

</terminal>

<terminal instrumentType="DC" instrumentNumber="3" setupTermlD="3">

<label>DC Waveform</label>

<pixelLocation>

<x>180</x>

<y>120</y>

</pixelLocation>

</terminal>

<terminal instrumentType="COM" instrumentNumber="4" setupTermID="O">

<label></label>

<pixelLocation>

<x>100</x>

<y>130</y>

</pixelLocation>

<subCOM subCOMType="horizR" instrumentNumber="4" setupTermID="4">

<label>100 K</label>

</subCOM>

<subCOM subCOMType="horizR" instrumentNumber="4" setupTermID="5">

<label>200 K</label>

</subCOM>

</terminal>

</setup>

</labConfiguration>

Appendix B

Experiment S pecificat ion.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentSpecification SYSTEM "http://ilab-labview.mit.edu/labServer/xml/e

<experimentSpecification lab="MIT NI-ELVIS Weblab" specversion="0.1">

<setupID>1</setupID>

<terminal instrumentType="FGEN" instrumentNumber=" 1" setupTermID="1">

<vname download="true" >VIN</vname>

<iname download="true">IIN</iname>

<mode>V</mode>

<function type="WAVEFORM">

<waveformType>SINE</waveformType>

<frequency>100</frequency>

<amplitude>0.5</amplitude>

<offset>0.1</offset>

</function>

</terminal>

<terminal instrumentType="SCOPE" instrumentNumber="2" setupTermID="2">

<vname download="true">VOUT</vname>

<iname download="true">IOUT</iname>

<mode>V</mode>

<function type="SAMPLING">

<samplingRate>100</samplingRate>

<samplingTime>O.O1</samplingTime>

</function>

</terminal>

<terminal instrumentType="DC" instrumentNumber="3" setupTermID="3">

<vname download="true">DCIN</vname>

<iname download="true"></iname>

<mode>V</mode>

<function type="DC">

<dcAmp>1</dcAmp>

</function>

</terminal>

<terminal instrumentType="COM" instrumentNumber="4" setupTermID="O">

<vname download="true">100 K</vname>

<iname download="true"></iname>

<mode></mode>

<function type="subCOM" setupTermID="4">

<subCOM>horizR</subCOM>

</function>

</terminal>

</experimentSpecification>

Appendix C

ExperimentResult .xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentResult SYSTEM "http://ilab-labview.mit.edu/labServer/xml/experime

<experimentResult lab="MIT NI-ELVIS Weblab" specversion="0.1">

<datavector name="VIN" units="V">0.1,0.2,0.3,0.4,0.5</datavector>

<datavector name="VOUT" units="I">1,2,3,4,5</datavector>

</experimentResult>

Bibliography

[1] 2008. http://www-mtl.mit.edu/ alamo/iLabKick-offMeeting.htm.

[2] Jesus del Alamo. Realizing the Potential of iLabs in sub-Sahara Africa, 2005.
http://www-mtl.mit.edu/ alamo/del%20Alamo.pdf.

[3] Samuel Gikandi. ELVIS iLab: A Flexible Platform for Online Laboratory Ex-
periments in Electrical Engineering. Master's thesis, Massachusetts Institute of
Technology, 2006.

[4] V. Harward, Jesus del Alamo, and Steven Lerman. The iLab Architecture: A Web
Services Infrastructure to Build Communities of Internet Accessible Laboratories.
Proceedings of the IEEE, 2007.

[5] National Instruments. Getting Started With Lab VIEW, 2007.
http://www.ni.com/pdf/manuals/373427c.pdf.

[6] National Instruments. Universities Using NI ELVIS, 2008.
http://www.ni.com/academic/ni_elvis/universities-usingnielvis.htm.

[7] Soumyajit Mandal. Course Info, 2008. http://stellar.mit.edu/S/course/6/sp06/6.121/courseMateria

[8] National Instruments. NI ELVIS, 2008. http://www.ni.com/academic/nielvis/.

[9] John Odyek. East Africa: Submarine Network to Lower Internet Costs, 2008.
http://allafrica.com/stories/200804230084.html.

