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ABSTRACT

Conventional foundation settlement calculation methods are performed assuming
elastic soil behavior. However, soil exhibits non-linear stress-strain properties at
relatively small shear strains. Therefore, large factors of safety are needed, such that the
designed capacity is within the elastic zone of the soil, leading to inefficient designs and
increased costs.

This thesis explores the use of non-linear finite element analyses, to predict the
load settlement response of piled foundations. The accuracy of the non-linear analyses
depends in large part, on the ability of soil models to describe the actual soil behavior. In
order to check the validity, two cases studies are analyzed with finite element analysis
using an elastic-perfectly plastic model to represent free draining, sands and silts, and
Modified Cam Clay to describe soft clay behavior. In the first study, finite element
analysis predicts the capacities and settlement responses of instrumented single piles
tested at Northwestern University in 1989. The second case study considers the rate and
extent of consolidation settlement of a heavy storage building supported by a piled raft in
Oslo, Norway. Both FE and conventional analyses are performed, and the results are
compared and evaluated with measured capacities and settlements.

Results show that the finite element analysis predict consistent and reliable
results. In the first case, the predicted capacities of driven piles are within one percent of
the measured capacity. For the second case, the predicted rate and extent of settlement
are also in good agreement with measured data. However, FE predictions for the stiffness
and capacity of drilled shafts are much too conservative. Results can be improved with
more accurate soil parameters for the models, better understanding of the installation
effects of piles, and more advanced soil models.

Thesis Supervisor: Andrew J. Whittle
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1 Introduction

Conventional pile foundation designs focuses mainly on satisfying the ultimate

capacity criteria, while settlement calculations are performed assuming elastic soil

behavior. Neither methods account for the progressive mobilization of the shaft resistance

as the load level increases, nor the settlements associated with consolidation in low

permeability clay soils. Design loads based on ultimate capacity are adequate when

settlements are not the limiting criterion. However, there are many applications where

piles are used to minimize settlements of raft foundations (e.g. Randolph, 1994). In these

cases, accurate predictions of pile-soil interactions become important in designs, in order

to optimize the number and sizes of piles. In the case of piled rafts, the load is at least

partially supported by the raft and; therefore, bearing capacity is no longer the parameter

controlling the number of piles required. In order to reduce the costs of pile foundations,

a reliable analysis that can predict the complete load-deformation response of piles is

needed. This will lead to the development of settlement based design method, that can

determine the number of piles required to satisfy the settlement criteria. The settlement-

based approach can reduce the number of piles required and ultimately the cost of the

foundation system.

Current settlement analyses are based on solutions that assume linear stress-strain

properties of the soil. However, soils behave non-linearly, and more advanced effective

stress soil models are needed for such analyses. Therefore, this thesis will evaluate the

settlement results of piles and pile group systems analyzed with non-linear soil models.

Models are created and analyzed using a finite element analysis program. Results from



the finite element models are also compared with two case studies. In chapter 2, a

general description of the finite element program and the background information about

the soil models used in the analysis are given. Chapter 3, describes finite element

analyses of the pile loading tests performed at the National Geotechnical Experiment Site

in Northwestern University (Finno, R.J. 1989). Chapter 4 describes further analyses of a

piled raft foundation for a storage building in Oslo, Norway (Anderson, K.H., & Clausen.

1974). The summary and conclusions based on these two case studies are presented in

chapter 5.



Chapter 2 Background and Development of Finite Element Model

2.1 Background of Finite Element

The finite element method (FE) provides a powerful numerical framework for

analyzing pile foundation systems. In contrast to current design methods, which make

major simplifying assumptions for representing pile-soil interactions (e.g. using

equivalent pier representation of pile groups, Fleming et al. 1992). The finite element

method is capable of discretizing the pile (or pile group) soil profile and properties

(including deformation and flow) and pile-soil interface properties. The individual

components (pile-soil) can be modeled by a variety of constitutive laws and hence, enable

detailed study of complex time-dependent interactions (relating to consolidation and

creep of the surrounding soil). In a pile foundation system analysis, elements are used to

represent the different properties of soil layers, piles and pile cap. In order for the model

to represent the system accurately, continuity must be maintained throughout the system,

and the governing equations (equilibrium, constitutive laws and stress-deformation) are

solved while simultaneously satisfying the boundary and initial loading conditions.

Instead of considering only the overall system response, the finite element method

enables engineers to examine the stress-strain behavior at specific locations of the

foundation system in detail. The corresponding disadvantages are

1) FE analyses require large computational power

2) Experience is needed to control the accuracy of the non-linear solution

3) Approximations are necessary to define the FE model for a given site condition (site

properties, models...etc., must all be selected to capture main aspects of project)



2.2 Description of PLAXIS Program

PLAXIS (acronym for PLasticity AXISymmetric) is a 2-D finite element program

designed to solve axisymmetric and plane strain geotechnical design problems involving

groundwater flows, consolidation, foundation engineering, and tunnel construction. This

thesis uses version 6.31 (PLAXIS, 1997), which runs in the MS-DOS operating system.

The program discretizes the soil mass using triangular elements with either 6-

displacement nodes (quadratic displacement interpolations) or 15-nodes (cubic-strain

triangles after Sloan & Randolph, 1981). For 15-noded triangular elements, PLAXIS

calculates cubic distributions of stress and strain, resulting in smooth and accurate stress-

strain distributions using relatively coarse meshes. These high order elements are

especially reliable in modeling undrained incompressible clay behavior. PLAXIS

provides a library of different types of elements for modeling geotechnical problems:

i) Soil Elements (soils and solids)
ii) Interface Elements
iii) Walls, plates & shells
iv) Geotextiles
v) Anchor elements

The program incorporates 5 different constitutive models to define stress-strain

properties of the soil. They are Elastic, Mohr-Coulomb (Elastic-Perfectly Plastic), Soft

Soil, Hard Soil, and Modified Cam-Clay models. In the thesis, only Elastic, Mohr-

Coulomb, and Modified Cam-Clay models are used for the modeling piles and soil strata.

These models will be explained in detail in the following sections. The program has a

simple mesh generator to define the distribution of elements for each problem. This

particular version has a maximum number of 200 15-noded triangular elements.



Interface Elements are used to describe the contacting surface between two

different types of materials. These elements allow the user to define reduced/increased

strength parameters and/or hydraulic conductivity between the two different types of

elements. Interface elements are especially useful when modeling the pile-soil

interactions

Wall, plate and shell elements are designed to model elastic wall and beam

structures. The flexural rigidity and axial stiffness are used to define the elastic

properties of the beam or wall. Mindlin beam theory is used to estimate the shear

deformation of the beam elements. The advantage of these elements (instead of soil

elements) is that mesh lines do not need to be defined according to their placement,

leading to more efficient and compact solutions. The shell elements are equivalent to

walls in plane strain problems and are used in the modeling of pile groups.

Geotextiles and anchor elements are not used in the current modeling of

foundation systems, and are ideal in modeling materials like geomembranes and tieback

systems respectively.

In this thesis, all stress curves are plotted using effective stress invariants, p' and

q', where p' is the mean effective stress, and q is the second invariant of deviatoric stress

which is a measure of the total shear stress within the soil.

p'= oo = (' +a'2 +'3);

1)2
q-= 1j(a - o22 +( a 3) +(U 2 U3)

This thesis uses standard soil mechanics sign convention with stresses in compression.'

The PLAXIS Code uses positive stresses in tension, consistent with other fields of solid mechanics



2.3 Clay Models

In the pile foundation analyses, the following three soil models are used to model

soil and structural elements:

i) Linear Elastic Model
ii) Mohr-Coulomb Model
iii) Modified Cam-Clay Model

The linear elastic model has linear stress-strain relationship, and is therefore ideal

for modeling structural elements where no failure is expected. The elastic modulus, E,

and the Poisson's ratio, v, govern the stress-strain relationship of this model.

Elastic Behavior of Concrete Cylinder under Compression

(psi)
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0
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Axial Strain _

FIGURE 2.1 STRESS-STRAIN RELATIONSHIP OF A CONCRETE CYLINDER WITH ELASTIC MODEL

The Mohr-Coulomb Model is a linear elastic and perfectly plastic model (see

Figure 2.2). The user can specify the strength, and stress-strain properties of the element

through the input of internal friction angle (('), cohesion (c'), elastic modulus (E), and

Poisson's ratio (v). The shear modulus can be obtain through v and E.
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FIGURE 2.2 ELASTIC-PERFECTLY-PLASTIC MODEL FOR A CONCRETE CYLINDER

The relationship of the failure shear stress can be modeled with the Mohr-

Coulomb Criterion and described with Mohr-circles, as shown in Figure 2.3. In order to

verify the results from PLAXIS, p'-q curve of simple isotropic consolidated triaxial

undrained compression model analyzed with PLAXIS is compared with the theoretical

results. The result of a Mohr-Coulomb model (4'=33o, c'=O, o'c=lksf) is shown in

Figure 2.4. In addition to the strength parameters, the hydraulic conductivity both in the

vertical and horizontal directions must be specified for consolidation analyses.
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The Modified Cam-Clay Model, developed by Roscoe and Burland in 1968, is

one of the first generalized, effective stress, soil models. In order to use the Modified

Cam-Clay (MCC) model for finite element analyses, the following input parameters are

required:

i) M = 6sinW'/(3-sin ')
ii) K* = C,/(2.3*(1+eo))
iii) X* = Cc/(2.3*(1+eo))
iv) v = Elastic Poisson's Ratio
v) Ko = o'h initial/O'v initial (for specifying the initial stress)
vi) p'm = The initial yield stress
Where eo is the initial void ratio

A brief explanation of the MCC model is given using the undrained shearing of an

isotropically consolidated soil element as an example. In Figures 2.5, and 2.6, the

effective stress path (p'-q) and the e vs. log p' for a soil with an initial OCR = 1.5 are

shown. The failure shear strength of this model is governed by the Critical State Line

(slope, M= tan-~ q/p'). In the Modified Cam-Clay model, the soil behaves elastically and

exhibits recoverable volumetric strains at all points within the Yield Surface. In the e-log

p' plane, the Loading and Reloading Line (URL) represents all attainable volumes under

03 o2 0l
Normal Effective Stress, ' (ksf) ( 1.25

0



elastic loading and unloading with p'm obtained from the maximum past pressure. The

shape of the Yield Surface (YS) is defined as an ellipse in the p'-q plane, and its location

is determined by the maximum past pressure of the soil. (Since the maximum past

pressure can vary from zero to infinity, there are an infinite number of Yield Surfaces that

can be generated.) The relationship of the YS is given below:

p'm M2 +R 
2

PmPM

R = -
p'

p' (ksf)

..... Critical State Line ,Elastic Stress Path ,-*-Plastic Stress Path

Yield Surface ... Yield Surface Final

FIGURE 2.5 UNDRAINED TRIAXIAL SHEARING OF ELEMENT AT INITIAL OCR =1.5 WITH MCC MODEL
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During undrained shearing at the elastic range, both p' and void ratio (e) remain constant.

This shearing is represented by the vertical stress path (p'= 4ksf) in Figure 2.5. In Figure

2.6, since both e and p' remain constant in the elastic region, point p'i in the log p'-e

plane represents the entire course of undrained shearing within the YS. In the elastic

region, the stress-strain behavior of the soil is described by the following elastic

properties:

E 3 (1- 2 v)p'. G= 3 (1- 2 v)p'

K 2c (1 + v)

However, no elastic straining is generated due to undrained staining. After yielding,

undrained shearing causes the soil to undergo both plastic and elastic straining. The



Normal Consolidation Line (NCL) in Figure 2.6 shows the amount of plastic deformation

undergone. In order to maintain constant volume during undrained shearing, an equal but

opposite amount of elastic deformation must occur.

For Undrained Shearing:

A = Aclasic + A plastic = 0; = e
1+e0

A Eelasic = -c * In p ;i A plas c =-/I* In,

The fraction of plastic volumetric deformation, 6v, to plastic shear deformation, 8yP, is

governed by the (associated) flow rule as the gradient of the yield surface (see Figure

2.5). The stress path during plastic deformation follows the State Boundary Surface

(SBS) from p'i to p'f, which has constant volume throughout shearing (see Figure 2.6).

As the soil undergoes plastic deformation, the maximum past pressure increases from p'm

to p'mf at failure. Therefore, the yield surface expands as plastic deformation occurs

reaching a final position p'm for shearing to critical state conditions. The location of the

SBS for normal-consolidated (NC) soil is characterized by p', (consolidation stress)

which is equal to p'm. However, for over-consolidated (OC) soil, the SBS is

characterized by an equivalent pressure, p'e (shown on Figure 2.6). In Figure 2.6, one

can view the undrained shearing of the OC soil at p's, as part of the undrained shearing of

the NC soil with p'm equals to p'e. The following equations define the SBS in the p'-q

plane.



p' M2, M; m=l
pe M2 +R2 m 1

In order to show how the MCC models behave in PLAXIS, a model is set up to

simulate an isotropic consolidated triaxial undrained compression test. A confining stress

of lksf is applied to clay prior to undrained shearing. In Figure 2.7, the effective stress

(p'-q) path shows that yielding occur at the beginning of the loading and follows the SBS

until failure occur when q is approximately equal to 0.745ksf.

Comparison of MCC in PLAXIS with Theoretical Result

(0

p' (ksf)

MCC Model of CIUC Test SBS YS -- - CSL

FIGURE 2.7 UNDRAINED BEHAVIOR IN CIU TEST ON NORMALLY CONSOLIDATED CLAY USING MCC.
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FIGURE 2.8 STRESS-STRAIN BEHAVIOR IN CIU TEST ON NORMALLY CONSOLIDATED CLAY USING MCC
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The results from PLAXIS follow closely the analytical equations of the MCC SBS, with

undrained shear strength mobilized at large shear strains (as the stress state asymptotes

towards critical state conditions). The non-linear stress-strain response is also shown in

Figure 2.8. From the graphs, one can check the results by back calculating the

parameters. The input and back calculated parameters are summarized in Table 2.1.

Table 2.1 Input and back calculated parameters for CIUC in MCC.

2.4 Validation of Finite Element Modeling Methodology

In order to validate the results on the FE model, trial analyses are first performed

on problems that have published solutions. This section compares the analyses for an

axially loaded pile in an elastic soil with solutions from the load-transfer method

proposed by Randolph & Wroth (1978). Figure 2.9 summarizes the Load Transfer

analyses. Figures 2.10 shows the finite element model used to analyze the behavior of

axially loaded axisymmetric concrete and steel piles in an elastic soil.

Summary of MCC Parameters for CIUC

M (<)' =330) 1.3307

X* 0.08679
K* 0.01604
v 0.277

Theoretical Ginitiai (ksf) 32.7

Back Calculated Parameters

M 1.331

Ginitial (ksf) 32.6
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Figures 2.11 and 2.12 compare the pile head stiffness concrete and steel piles of different

radii with the Load-transfer solutions. The results show very good agreement (within 1%

of differences) between the finite element calculation of normalized pile head stiffness

(QT/(wTroGL), where QT is the load at the tip; wT is the pile head displacement, ro is the

radius of the pile, and GL is the shear modulus of the soil at the pile tip) and results of the

Load-transfer analyses, for a wide range of pile aspect ratio, L/ro. These results confirm

the ability of the FE analyses to predict behavior of piles in elastic soil
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FIGURE 2.11 COMPARISON OF LOAD TRANSFER RESULT WITH PLAXIS FOR CONCRETE PILES
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FIGURE 2.12 COMPARISON OF LOAD TRANSFER RESULT WITH PLAXIS FOR STEEL PILES



2.5 Pile Response in an Elastic-Plastic Soil

This section compares pile response in an element of elastic-plastic soil at a

confining pressure, a,=lksf. The calculations compare two cases: 1) soil is characterized

by the Elastic Perfectly Plastic (EPP) Mohr-Coulomb model with G = 32.7ksf, v=0.277,

and '=33o; and 2) soil is modeled as normally consolidated clay with MCC model. The

parameters used for the MCC model are listed below:

i) M = 1.331 (for '=33 °)
ii) * = 0
iii) P'm = P', = lksf
iv) K* = 0.0848

v) v = 0.277

With constant p'm throughout the MCC model, the stiffness and the strength are

homogeneous at all points. The piles used in the models have length of 20ft and radius of

1.75ft and self-weight stresses are neglected. Loads are then applied under undrained

condition (i.e. no change in void ratio, Ae= 0) at the pile head until failure occurs. Figure

2.13 and 2.14 show the effective stress paths of the EPP and the MCC models, respectively

at a point X adjacent to the pile shaft with depth to pile length ratio, z/L, = 0.725.
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FIGURE 2.13 FAILURE FOR ELASTIC-PLASTIC MODEL
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FIGURE 2.14 FAILURE FOR MMC MODEL

In Figure 2.13, p', the mean effective stress, remains almost constant throughout

shearing. In Figure 2.14, the MCC model exhibits plastic behavior and follows the SBS

during undrained shearing. Both plastic and elastic deformations take place during

shearing in this model because the soil is normally consolidated (initial state of stress is

located at the YS), hence the changes in p' correspond to shear induced pore pressure.

Both models have been set up to have a constant shear modulus of 32.7ksf throughout the

depth of the soil. Figure 2.15 shows the stress-strain response of the EPP model at point

X. The shear modulus remains constant until failure occurs. Figure 2.16 shows the

stress-strain relationship of the MCC model, the modulus decreases as plastic

deformation takes place.
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FIGURE 2.16 STRESS-STRAIN RELATIONSHIP FOR MCC MODEL

Nevertheless, the initial shear moduli of the two models have nearly identical values.

Since both models have analogous modulus in the beginning of the loading throughout

the soil, the pile head stiffness of the two models should also match at the beginning of

the loading. As loading increases, however, the MCC model should have a lower pile

head stiffness caused by plastic deformation. These type of pile head responses are

verified by Figures 2.17 and 2.18, where the settlement of the pile head is plotted against

the applied load on the pile head.
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FIGURE 2.17 PILE HEAD STIFFNESS FOR MOHR-COULOMB MODEL
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FIGURE 2.18 PILE HEAD STIFFNESS FOR MCC MODEL

A further calculation has been carried out for the pile in a normally consolidated

clay layer (using MCC model) with gravity stresses controlled by the buoyant weight.

The mesh is identical from the previous model. The initial stress condition is

summarized in Table 2.2.

Summary of Initial Condition
Depth of clay layer 50 (ft)

Depth to water table 0 (ft)
Surcharge Load, q 0.2 (ksf)

Ko: (o'h/o'v) 0.5
Table 2.2 Initial Conditions for the Pile in NC MCC Model
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FIGURE 2.19 LOAD VS. DISPLACEMENT FOR NORMALLY CONSOLIDATED CLAY IN MCC MODEL
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FIGURE 2.20 UNDRAINED FAILURE IN MCC WITH Ko CONDITION

In this model, the modulus of the soil changes linearly with depth due to gravity stresses.

The pile head stiffness of this model (Figure 2.19) is much more non-linear than the pile

head stiffness in Figure 2.18. Note that the initial stress condition of this model is

different from previous models. The stress path starts at Ko= 0.5 (see Figure 2.20)

instead of q= 0 (Ko= 1) from the previous example.

In addition to examining the pile head stiffness of the pile, the capacities are also

checked and compared with convention calculation method. Conventional calculation

estimates capacity as the sum of skin friction capacity and tip resistance capacity. The

estimated parameters for the conventional calculation are shown below:

Qtoat = Qbf + Q; Q hAh = tip resistance; Q, = f,A =side resistance

q = Ns, + p; N 9; p = -(1+ 2Ko)',o +uo3
f, = aS.; a A 0.3 to 1.1

A b = area of the pile tip; A = Area of the pile shaft



Table 2.3 shows conventional calculations of design capacity (assuming a rigid pile) of

the three piles mentioned above. The values of a depend on Su, and are selected from

three different design curves. The undrained shear strength is based on the theoretical

value of the models. For the first two cases where the pile is embedded in a soil element,

the undrained shear strength is constant throughout, and can obtained from the input

parameters. For the pile embedded in the NC MCC model, the undrained strengths at

different depths are obtained from the equations (given in section 2.3) that define MCC

model. In general the calculated design capacities are slightly higher but they are within

a good range of one another. Table 2.4 shows

from conventional design methods to the ones

the comparison of the capacities calculated

estimated by FE analysis.

Pile radius Length A, A
Properties

(ft) (ft) (ft2) (ft2)
1.8 20.0 9.6 219.9

For o'c = 1ksf
Tip Resistance Skin Friction Capacity

Nc p qb Su a a a a,,vg Qbf Qsf Qtota

(ksf) (ksf) Tomlinson API 1981 O & S (kips) (kips) (kips)

EPP Model 9.0 1.0 7.0 0.67 0.8 0.9 0.8 0.8 67.2 119.9 187.1
MCC Model 9.0 1.0 4.3 0.37 1.0 1.0 1.0 1.0 41.7 81.4 123.0

For Normally Consolidated MCC Model, Ko= 0.5

Skin
Friction
Depth pC po q Su Depth a a a aavg Suv. Qf

(ft) (ksf) (ksf) (ksf) (ft) Tomlinson API 1981 O0 & S (ksf) (ksf)

0.0 0.2 0.3 0.2 0.09
5.0 0.6 0.8 0.6 0.28 0-5 1.0 1.0 1.0 1.0 0.19 10.4

10.0 1.0 1.3 0.9 0.47 5- 10 1.0 1.0 1.0 1.0 0.38 20.8
15.0 1.4 1.8 1.3 0.66 10-15 0.8 1.0 1.0 0.9 0.57 25.9
20.0 1.8 2.3 1.7 0.85 15-20 0.8 0.9 0.7 0.8 0.76 33.2

Tip Resistance Capacity
Nc Su qb Qbf Qsf tot Qtotal

(ksf) (ksf) (kips) (kips) (kips)
9.0 0.9 9.5 91.1 90.4 181.5

Table 2.3 Capacities Design Calculations for Piles in Three Types of Soil Model



Capacity,,gn CapacityFE % Difference

(ksf) (ksf) (ksf)

EPP w/ a' =Iksf 123.0 117.0 4.9

MCC w/ ar' =1ksf 187.1 164.0 12.4
NC MCC 181.5 163.0 10.2

Table 2.4 Comparison of Design Capacities with FE Capacities

2.6 1-D Consolidation

In addition to verifying the soil models in PLAXIS, consolidation predictions

have also been checked. Results from a one-dimensional consolidation analysis on an

elastic soil are compared with Terzaghi's solution. The model in PLAXIS is set up with

the properties listed in Table 2.3. The FE mesh for the model is shown in Figure 2.21.

To replicate 1-D consolidation, an axisymmetric model is used. The left, right and

bottom boundaries do not allow any horizontal displacement, and the bottom boundary

does not allow any vertical displacement. Both the top and the bottom allow the

dissipation of excess pore pressure; therefore, the drainage height, Hd, is half of the total

height of the model.

Mlaeh s CL [ t]

S r -1
0 6 12 18 C+.1 1

FIGURE 2.21 FE MESH FOR 1-D CONSOLIDATION ANALYSIS.
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Consolidation Model Properties

uo, Initial excess 1 (ksf)
pore pressure

k, 0.0003 (ft/day)

Y w 0.0624 (kips/ft3)
Hd, Drainage Height 2.5 (ft)

G 32.7 (ksf)
v 0.3

Table 2.5 Consolidation Parameters for One Dimensional Analysis

From the properties of the model given above, m,, the coefficient of volume change, can

be obtained, and consequently, the equivalent Terzaghi's consolidation solution can be

set up. The solutions of the Terzaghi's 1-D consolidation solution with double drainage

are listed below.

U = 2u k n kA 1,
ue I o (sin MZ)e - "  C,, - ;m,,

m=o0 M m y, Ao,

M = (2m + 1) For Axisymmetric Elastic Model:

2 (1 + v)(1 - 2v)
z depth m,, = E(1-v)

Hd drainage height

Ct
H 2

First, the displacement of a point located at the top of the mesh is computed (see Figure

2.22). The results are similar to the published Terzaghi's solution. In addition the

excess pore pressure along the depth of the model is computed at different time gaps. The

solution (see Figure 2.23) shows that the initial excess pore pressure (0.965ksf) deviates

from the known solution (lksf). In undrained condition, the initial excess pore pressure

should equal to the applied load. However, the FE analysis shows the initial excess pore

pressure is less than the applied load. Therefore, excess pore pressures at mid height

from PLAXIS are also compared with Terzaghi's solution throughout the consolidation



process to examine the degree of deviation. Although the results (see Figure 2.24) from

the two solutions do not match exactly, PLAXIS provides a reasonable estimate of the

pore pressure dissipated within an error of 6% of the initial excess pore pressure. The

discrepancies between computed results and Terzaghi's are caused by the limitations of

modeling incompressible response using finite elements. The maximum Poisson's ratio

allowed in PLAXIS is 0.495, and therefore initial conditions do not match the Terzaghi's

solution (where v= 0.5). The computed excess pore pressure at time,t = 0 is less than the

applied load. In addition, PLAXIS can not model drainage at the edges of the

consolidation boundary precisely, causing the rate of consolidation to differ slightly from

the theoretical solution. According to the software developer, a finer mesh near the top

and bottom drainage boundaries can improve these results.
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FIGURE 2.22 SETTLEMENT VS. TIME AT THE TOP OF THE MESH
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Chapter 3 Analysis of National Geotechnical Experiment Site, Northwestern

3.1 Background and Detail of Testing Program

A series of pile load were performed on four different types of piles at the

Evanston Campus of Northwestern University (Finno et al, 1989). The test piles included

1) HP 14x73 steel pile; 2) 18"-diameter, closed-ended, pipe pile; 3) 18"-diameter drilled

pier installed using the slurry method; and 4) 18"-diameter drilled pier installed with

temporary casing. All four-test piles are approximately 50ft long, and the layout of the

piles is shown in Figure 3.1. A summary of the activities performed in the Northwestern

site is listed in Table 3.1.

Date Activity

24-May-88 Pre-auger 12-in.-diameter hole for 18-in.-diameter pipe pile; drive pipe pile
and HP 14x73 test piles; drive 2 anchor piles (HP 10*42)

25-May-88 Drive remaining 7 anchor piles (HP 10*42)

26-May-88 Install 2 drilled piles

7-Jun-88 Perform 18t load test on HP 14*73

8-Jun-88 Perform lt load test on 18-in.-diameter pile

9-Jun-88 Perform 1' load test on drilled pier (slurry method)

10-Jun-88 Perform 1st load test on drilled pier (cased method)

26-Jun-88 Begin 2 nd set of load tests

29-Jun-88 Complete 2 nd set of load tests

12-Jun-88 Begin 3rd set of load tests

Table 3.1 Summary of Pile Load Test Activities.
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The load tests were performed in three different phases according to the standard

procedures suggested by ASTM D-1143-81 (ASTM, 1994). The first load sequence was

applied two weeks after installation of the piles; a second series at five weeks; and a third

series of load tests were carried out forty-three weeks after installation. The loading is

applied to the piles using a hydraulic jack supported by the loading frame, which in turn

is supported by another nine HP 10*42 anchor piles. Incremental loading is applied to

the pile tip, and the pile is considered to have reached failure when the rate of settlement

exceeds 0.015" per hour and continuous pumping of the jack is required to maintain a

constant load. Therefore, strain gauges are installed along the pile to monitor movements

during loading. Figure 3.2 shows the cross section and the location of the strain gauges

for the driven piles.
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3.2 Subsurface Characteristics and Engineering Properties

The upper twenty-three feet of the soil profile comprise a fine-grained sand (SP) that was

bottom-dumped from barges in 1966 by the University to raise the ground above the

elevation of an adjacent lake. Clamshells were also used to place the sand, but no

standard compaction procedures were performed on the sand. Approximately thirty-

seven feet of NC soft to medium clay (CL) lies underneath the sand. As suggested by
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Finno, (1989), water contents of the soil are a few percents above the plastic limit which

suggest that the clay was originally OC. Nevertheless, placing the sand over the clay

in1966 appears to re-load the (soft to medium) clay back to a normally or very lightly

over-consolidated. Below the NC clay, twenty feet of OC stiff clay (CL) is underlain by

ten feet of hard silt (ML), and the Niagaran dolomite bedrock is beneath the hard silt.

The water table is located at a depth of 13ft and pressures are essentially hydrostatic.

The sand and NC clay stratum have the most influence on the behavior of the

piles, and therefore, extensive site investigations were performed from the top of the sand

stratum down to a total depth of seventy feet. A series of in-situ tests were performed,

including standard penetration test, field vane tests (FV) cone penetration tests (CPT),

piezocone soundings, dilatometer tests (DMT), and M6nard pressuremeter tests (PMT)

are performed throughout the site. Figure 3.2 indicates the location of the tests, and the

results are included in the Appendix A.

Fig. 1. Location Plan

FIGURE 3.3 LOCATION OF IN-SITU TESTS AND SITE INVESTIGATIONS



In addition to in-situ tests, laboratory tests were also conducted on samples of the soft

to medium clay to obtain the pertinent engineering properties. These include consolidation

tests, unconsolidated-undrained (UU) triaxial compression tests, direct shear tests, and KI-

consolidated, undrained (CKoU) triaxial compression and extension tests. All test results are

also included in the Appendix A.

In order model the strength of the clay correctly, the maximum past pressure of the clay

stratum must be determined. From the consolidation test data, the maximum past pressure (a',)

profile was obtained (by Casagrande construction) together with information on the compression

ratio (CR), and recompression ratio (RR) for the clay. The in-situ stresses and maximum past

pressure profile are shown in Figure 3.4. The best estimated line (Finno, 1989) is used in the

following calculations to represent the OCR because the measured maximum past pressures

from oedometer tests were lower than the in-situ effective stresses (a'v). Most of the data for

maximum past pressure are lower than the vertical effective stress profile. This suggests that the

samples originally have maximum past pressures close to the in-situ effective stresses, and

sample disturbances reduce the estimated maximum past pressures below the in-situ vertical

effective stresses. Therefore the over-consolidated ratio is estimated as OCR -1.1.

-1 0 1 2 J 4 5 6 7 (ksf) 8

I

FIGURE 3.4 APPROXIMATE STRESS PROFILE AT NORTHWESTERN NGES



For the stiff clay the stress history profile is back calculated from undrained field

vane strength tests using SHANSEP normalized strength parameters. The relationship

between the undrained shear strength ratio, (S,/c'v), and OCR is described by the

following relation (Ladd & Foott, 1974): SUFV - S(OCR)'
= 

S(OCR)

For the soft to medium clay, both OCR and Suv profiles have been obtained (hence S=

(Su/'vc)Nc = 0.216). However, the OCR profile for the stiff clay layer is not available

because minimal consolidation data were obtained on samples from this stratum.

Assuming m = 0.8 for typical CL clay, the stiff clay has the same normalized parameters

(S and m) as the overlying soft clay, the OCR profile for the stiff clay stratum can also be

determined. Table 3.2 presents the OCR calculation, and Figure, 3.5 illustrates the

estimated OCR profile for NC and OC clay and OCR inputs for the MCC model.

Depth Sun, Estimated o', S
(ft) (ksf) (ksf)

Soft to Medium Clay
29.5 0.66 2.47 0.248
34.4 0.82 2.78 0.277
37.7 0.66 2.98 0.208
41 0.74 3.17 0.220

44.3 0.8 3.36 0.224
47.6 0.82 3.58 0.217
50.8 0.76 3.79 0.191
54.1 0.86 3.97 0.206
57.4 0.68 4.17 0.155

Sva 0.216
Stiff Clay

Back Calculated a'p Estimated OCR Su/a'v,
60.7 1.56 4.37 8.18 1.9 0.357
64 1.42 4.56 7.19 1.6 0.312

66.3 3.58 4.69 22.69 4.8 0.764
-t is assumed to be 120pcf

Table 3.2 Summary of Using SHANSEP to Estimate OCR Profile for Stiff Clay.



Depth vs. OCR

0 1 2 3 0CR 4 5 6 7

40

50

4.

S 60

70

80

90

* Estimated OCR _ Approximate OCR Profile
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In addition to strength properties of the soil, consolidation parameters and elastic and

plastic properties are also obtained from consolidation tests. The hydraulic conductivities

at different depths of the NC soil are back-calculated from the oedometer test data

assuming constant m, for each load increment. Void ratio is assumed to vary linearly with

log kv (hydraulic conductivity in the vertical direction) and the in-situ k, is interpolated

from the best-fit line. The calculations of k, at different depths are included in the

Appendix B, and the k, profile for the soft to medium clay is shown in Figure 3.6.
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FIGURE 3.6 VERTICAL HYDRAULIC CONDUCTIVITY PROFILE AT TEST SITE

Since only a few consolidation tests are performed on the OC clay, k, for OC clay can be

interpolated from the best fit line of water content vs. log k,. The water contents are

obtained from boring samples from OC clay. The best-fit line is plotted in Figure 3.7,

which shows the empirical correlation between water content and hydraulic conductivity.

Finally, elastic and plastic stress-strain parameters of the MCC model are determined by

K* and X* respectively. These parameters are obtained from the average RR and CR

values from the consolidation tests and are assumed constant for soft and stiff clay layers.
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FIGURE 3.7 CORRELATION OF HYDRAULIC CONDUCTIVITY WITH WATER CONTENT

For other soil strata, either correlations from geotechnical publications or in-situ

tests results are used to estimate properties. The elastic modulus of the sand layer is

determined from dilatometer tests, and the sand layer is assumed to be free draining. The

internal friction angle for the sand layer is interpreted from standard penetration tests

performed by Woodward Clyde and STS consultants. The SPT data are corrected from N

to N,16 (Skempton, 1986) with published correlations, leading to a friction angle, 4' =37' .

The calculations are shown in the Appendix B. For the hard silt stratum, the elastic

modulus , the internal friction angle and the hydraulic conductivity are obtained from

correlations (Hasaab, 1951; Hough, 1957; Lambe & Whitman, 1969). The dolomite

bedrock is assumed to have infinite stiffness and free draining. Finally, the soil profile of

the Northwestern site with all the relevant properties is shown in Figure 3.8.
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E = 2152ksf
c=0

#)' =37

-------------- = .119ksf
kv = ift/day

k* = 0.043
K* =0.0086

I'= 280

Yt = .120ksf
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FIGURE 3.8 SOIL PROFILE AND PROPERTIES OF THE NORTHWESTERN TEST SITE

3.3 Analyzing the Pile Load Test of the Northwestern Site

In modeling the pile load tests at NGES, the following steps are taken to fully

understand the how the solutions from current design procedure and FE modeling with

MCC model differ from the actual monitored data:

1) Comprehensive capacity designs are performed on all tested piles.

2) Elastic solutions for single pile are used to estimate initial pile stiffness.
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3) A FE model is set up to estimate the capacity and load-settlement response of

all tested piles.

4) More in-depth analyses are performed to estimate the distribution of stress.

5) Compare design and FE results with monitored data.

3.3.1 Properties of Tested Piles

Since the design and modeling methods used in this thesis are based on solid

cylindrical pile geometries, all properties of non-solid cylindrical piles must be transformed

to represent the equivalent axial stiffness. For the 18" hollow steel pipe pile, the axial

stiffness is much lower than the stiffness of a solid pile therefore the elastic modulus of steel

is multiplied by (area of steel pipe/area of a solid steel pipe). For the 14*73 H pile, the

failure mode is assumed to be rectangular, as shown by the dotted lines in Figure 3.9.

........... .. '

FIGURE 3.9 EXPECTED FAILURE MODE OF H PILE

The H pile is assumed to mobilize the soil between the webs during failure, and

therefore, the soils within provide no addition capacity. Then an equivalent diameter, 4,

of the H pile can be obtained by setting perimeter of the dotted rectangle equal to 7#.eq.

The equivalent axial stiffness of the H pile is obtained using the same method for the

hollow pipe pile. For the concrete drilled piles, no modification is needed since both piles

are solid and cylindrical. The modified pile properties are listed in Table 3.3.

_... - 1 ~3i~-. 1 -...................
F~~~~~~~~~~~~~~~~~..... --



Pipe Pile H Pile 14*73 Drilled Econcrete
(casedlslurry) (ksf)

Thick- Eeq. q Tip Width depth Eq. E 7.2X10 5 Tested Piles
ness Area Length

(ft) (ft) (ksf) (ft) (ft2) (ft) (ft) (ksf) (ft) (ksf) Econcrete (ft)
(ksf)

1.50 0.03 3.6X10 5s 1.50 0.15 1.22 1.13 3.6X10 5s 1.50 7.2X10 6 4.3X106  50
Table 3.3 Properties of Piles Tested in Northwestern NGES.

3.3.2 Piles Capacity Analyses with Current Design Procedure

In order to obtain an approximate understanding of the capacity and the settling

behavior of the pile, and evaluate pile design procedure, the four test piles are analyzed

with current design methodologies. Both capacity and settlement analyses are performed,

and they will be described respectively. The capacity of a single pile can be separated

into two components, 1) skin friction and 2) end bearing. Since all pile tips are located in

the soft to medium NC clay, the bearing capacity of a pile with 0.75 ft radius is relatively

small compared to skin friction capacity2. Therefore, end-bearing capacity is neglected in

the analyses for all four piles.

Skin friction capacities, f,, for driven and drilled piles are estimated with the same

methods but different parameters. However, no distinction is made between H and pipe-

section piles and between the cased drilled or the slurry installed drilled piles since they

all have equal equivalent diameter. For skin friction in the top 23 ft of sand, skin friction

for driven and drilled piles can be estimated with the following procedure proposed by

Poulos & Davis (1980):

fs = -', K, tanS'; q* = 0.750'+10 0(driven pile); q* = 0'-3 0 (drilled pile)

dc / 0 = critical embedment ratio; dc = critical embedment depth;

2 9SAb =Qb= 9(3.5ksf)(0.21)(.44ft2) = 3kips



The critical depth can be obtained using the design chart (Poulos & Davis, 1980) with the

corrected friction angle, 0*. For depth above the critical depth, do, a'v. is equal to the

effective vertical stress, and depth greater than dc has a'v, equal to the effective vertical

stress at the critical depth. Kstan8 can be obtained using the uncorrected friction angle and

the design chart for either driven or drilled piles. Other methods in estimating f, are

suggested by, Vesic (1970), and Tomlinson (1973) and the relative density of the sand is

used in obtaining f, from the design charts.

Skin friction within the clay stratum is estimated using a and P methods.

Nevertheless, it is commonly known that the a methods produce better estimates of f for OC

clays while the 3 methods produce better estimates for NC clay. The a method uses the

undrained shear strength of the soil to estimate f,, while P method uses the pile penetration

length, L, in the clay and the in-situ effective vertical stress to estimate f. For driven piles,

design charts from Tomlinson (1971), API (1981), Peck (1961), and Dennis & Olson (1983)

are used for the a method. For the P method, design charts suggested by Meyerhof (1976)

and Burland (1973) are used for the driven piles. For drilled piles, skin frictions in clay are

only estimated with the average P factor suggested by Kulhawy & Jackson (1989). The

following equations summarize a and P method for estimating skin frictions.

a Method f Method

fs = aSu fs = p' v

a = f(Su) P = f( L)

Results from different design charts are averaged for both a and [ methods to give an

average capacity for the a method and an average capacity for the P method. Finally, the

skin friction capacities for the sand and clay layers are added together, as shown in Table



3.4, to determine the overall capacity of the piles. Details of capacity calculations are

provided in Appendix C.

Driven Qf,, low Qf,,, avg Qfs high Drilled Qf, low Qfs avg Qf high

Piles (kip) (kip) (kip) Piles (kip) (kip) (kip)
Method Vesic Poulos Poulos Vesic
sand 98 115 132 sand 39 47 54

Method a 1 fi f_
clay 58 89 119 clay 317 317 317

Total 156 204 251 Total 356 364 371

Table 3.4 Capacities for Pile Design Using Various Methods.

Although same methods were used to estimate skin friction for driven and drilled piles,

but the empirical parameters have values that are quite different from one another. For

driven piles, skin friction in sand is much higher when compared to drilled piles, as

drilling causes densification of the sand during pile driving. On the other hand, the

parameters for driven piles account for the loosening of sand during drilling; therefore,

the capacity of skin friction in sand is reduced. The shaft resistance of drilled piles is

much higher than for driven piles. This result reflects a bias associated with installation

effects of driven piles (large excess pore water pressure are measured during installation).

3.3.3 Settlement Analysis with Load Transfer Method

Elastic stiffness solutions for single piles, given in section 2.3, are used to estimate

settlements for the tested piles. The original solution for single layer of soil is modified

to incorporate two soil layers, (top sand and the clay layers). The load transfer method

predicts that pile head settlement increases linearly with load, (constant pile head

stiffness). The shear modulus for the two layers are taken from the average results of the



dilatometer tests, and the shear modulus profile is shown in Figure 3.10. Due to the

differences in equivalent axial stiffness, the load transfer solutions for the drilled concrete

piles are slightly different from the driven pile; however, steel pipe and H piles have

nearly identical pile head stiffness. The solutions are presented in Figure 3.11, and

detailed calculations are included in Appendix C.

Shear Modulus, G (ksf)
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FIGURE 3.10 SHEAR MODULUS PROFILE FOR LOAD TRANSFER METHOD
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3.3.4 Finite Element Analysis

In setting up the axisymmetric model for the FE analysis, the mesh is first created

with several considerations in mind. The mesh extends to a depth of 90ft and laterally to

150ft, in order to minimize the effects of boundary conditions on predicted load-

displacement results. The selected boundary conditions do not permit any lateral

displacement at far field lateral boundaries (or centerline) while radial and vertical

displacements are prevented at the base of the mesh. Horizontal mesh lines are created at

the transitions from one soil to the other. Mesh lines are also denser around the pile due

to the high concentration of stresses around that region, and one would also predict

failure to occur close to the pile shaft.

Mh l 2 [E0ft 3

II O 1 2 G E*10] mm

FIGURE 3.12 FINITE ELEMENT MESH FOR THE NORTHWESTERN PILE LOAD TEST ANALYSIS



The pile is represented by a linear elastic model with equivalent stiffness parameters

(Table 3.3). The Mohr-Coulomb model is used to model the top sand and the hard silt at

the base. The clay stratum is divided into four layers with increasing OCR, and all layers

are modeled with the MCC model (Figure 3.8). The initial stress condition is also

required for the FE model. For the sand, and silt layers, it is assumed that Ko = 1. For the

clay layers, the initial condition is derived from empirical equations shown below (Mayne

& Kulhawy, 1982):

K o = (1 - sin 0')(OCR)"'in

Once the model is constructed, loading is applied in increments until failure occurs.

Different loading time rate are also applied to explore the effect of consolidation on the

pile head settlement. Table3.5 summarizes the capacities and the settlements at

maximum loading for the piles. More detailed comparison are presented in the next

section.

Pipe Pile H Pile Drilled Piles
Load Capacity (kip) 232 234 235

Pile Head Settlement 0.439 0.383 0.339
(in)

Table 3.5 Capacities and Settlements of Piles from FE Analyses

3.4 Comparison of Analyzed Results with Measured Data

The capacities and settlements of the piles from the two types of analyses are first

compared with the monitored data. Then the stress distributions from the FE analyses are

compared with data measured along the pile.



3.4.1 Comparison of Pile Capacities

Different predicted capacities are compared with the actual measured short and

long-term capacities in Figure 3.13.
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FIGURE 3.13 COMPARISON OF ESTIMATED PILE CAPACITIES WITH MEASURED CAPACITIES

The measured data shows that the long-term capacities both between the driven

piles and between the drilled piles are within 1% of one another. Nevertheless, the

capacities of drilled piles are 80% higher than the capacities of driven piles. The vast

difference between the capacities of the drilled and driven piles is possibly caused by

installation disturbance. The results in Figure 3.12 also show that FE analysis estimates

the capacities of the driven piles very close to the measured long-term capacity.

However, the FE analyses underestimate the measured capacities of the drilled piles by

__ __ I



more than 40%. The capacities for drilled shafts and driven shafts estimated by FE

analyses are almost identical because the FE model is unable to distinct the pile

installation procedures, and the only difference between drilled shaft model and the

driven shaft model is the modulus of the pile. This parameter should only influence the

settlement of the pile head. For design analysis, the capacities of both driven and drilled

piles are underestimated. For driven piles, the design calculations underestimate the

measured capacity by about 15%. However, the empirical design calculations do

distinguish differences in installation between driven and drilled piles using empirical

correlations. This leads to a decrease in skin friction in the sand and an increase in skin

friction in clay with the P method. The overall effect is an 80% increase in total capacity

from the design capacity of driven. Nevertheless, the design capacity is 13% below the

actual measured capacity.

3.4.2 Evaluating Pile Settlement Results

Settlements are recorded in the 2, 5, and 43 weeks pile loading tests, and the

results of the monitored data are shown in Figures 3.14,15 and 16 respectively. In all

cases, the pile head stiffness reduces as loading increases (due to progressive

mobilization of the shear resistance along the pile shafts), and all of the tested piles are

expected to have similar initial stiffness at the beginning of loading, with only slight

variations due to differences in the axial stiffness of the piles. The Figures show that the

initial pile head stiffness (from about 0 to 50 kips of loading) of the tested piles are

indeed similar to one another in all tests performed. However the data for the 43 weeks

(after installation) tests are much more consistent than those obtained at 2 and 5 weeks.
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The differences between the initial pile head stiffness of the tested piles are mainly

caused by installation. For driven piles, pile driving causes excess pore pressure to build
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up within the clay layer and hence, reduce the stiffness of the surrounding clay.

Therefore, the initial stiffness for driven pile is lower than the drilled piles. The reduction

of the stiffness is controlled by the amount of soil displaced by the pile. Table 3.7 shows

total volume of soil displaced by the pile.

Amount of Displaced Soil
Drilled # Length Displaced Vol.

(ft) (ft) ft (ft) (ft 3)

Pipe Pile 1.5 1 50 49.1
Slurry Drilled Pile 1.5 1.5 50 n/a.
Cased Drilled Pile 1.5 1.5 50 n/a.

H Area Drilled # Length Displaced Vol.
(ff 2) (ft ) (ft) (ft 3)

H Pile 0.15 0 50 7.5
Table 3.6 Volume of Soil Displaced by the Tested Piles

The hollow pipe pile with a cover plate displaces the most amount of soil even when the

pile is installed in a Ift diameter pre-augured hole. Results in Figure 3.14 clearly show

that the pipe pile has the softest stiffness in the load test performed 2 weeks after

installation.

In the FE analysis, an attempt is made to simulate the actual loading schedule in

the test sites. Therefore, loading is applied in increments with a fixed time gap separating

each increment. The FE model analyzes three configurations, which include load rates

that are 1) instantaneous loading, 2) 50kips per 2 hours, and 3) 50kips per 4 hours, of

loading rate. Results for the H pile and the drilled pile (cased or slurry) are shown in

Figure 3.17 and 3.18. Both Figures show that the consolidation settlement is relatively

insignificant with loading less than 100kips, 40% of the failure load of the model

predicts. Significant settlements are generated after the pile is loaded to 150kips and



200kips. Nevertheless, consolidation increases the mean effective stress, p', of the soil,

which in turn increases the stiffness of the soil.
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FIGURE 3.17 SETTLEMENT OF H PILE WITH DIFFERENT TIME RATE LOADING

Pile Tip Settlement of Cased Pile with Different Loading Rate

FIGURE 3.18 SETTLEMENT OF DRILLED PILE WITH DIFFERENT TIME RATE LOADING
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As mention earlier, both elastic and shear moduli of the soil are a function of p'. When

time gaps are increased, both consolidation settlement and the mean effective stress also

increase. Therefore, when two models' pile head stiffness are compared at the same

load increment, the model with larger time gap between each load increment has a higher

stiffness. The results from the model also show that the increased pile head stiffness

helps to compensate for the large increased settlement at the end of each load increment.

Therefore, the final settlement of two different models may not differ significantly. The

actual amount of difference in settlement will depend on the specific time frame. Since

all settlement curves with time rate loading retains the shapes and also the amount of

settlements of the instantaneous loading curves, the settlement comparison between

different analyses will only include the settlement curves from instantaneous loading.

In comparing the settlement results from different analyses, all settlement curves

for the same test pile are plotted on the same axes. Figures 3.19 to 3.22 show the

settlement vs. load curves for pipe, H, slurry and cased piles respectively. In all four

Figures, the load transfer method gives an excellent estimation of the initial pile head

stiffness for the 43 weeks test. For most cases except for the cased drilled pile, the

predicted pile head stiffness is too high for the 2 and 5 weeks load tests. Since the load

transfer method does not take installation disturbance into consideration. However, the

initial pile head stiffness from 2, 5, and 43 weeks tests match extremely well with the

estimated value from load transfer, and the close match is contributed by the low level of

disturbance. First of all, the installation does not displace any soil. In addition, before

installing the concrete pile, a steel casing is installed before concrete is tremied to reduce

the amount of disturbance.



-0.0

-0.

-0.1

-0.

-0.2

Instant Loading Measured 2 weeks

. ." "Measured 5 weeks Measured 43 Weeks

...... . Load Transfer .

FIGURE 3.19 COMPARISON OF SETTLEMENT ANALYSES WITH MONITORED DATA FOR PIPE PILE

Instant Loading - Measured 2 weeks
S. -Measured 5 weeks -4--Measured 43 Weeks

- Load Transfer _ __._I

FIGURE 3.20 COMPARISON OF SETTLEMENT ANALYSES WITH MONITORED DATA FOR H PILE



-1

-- Instant Loading

- -X- - Measured 5 weeks

- Load Transfer

- Measured 2 weeks

- Measured 43 Weeks

FIGURE 3.21 COMPARISON OF SETTLEMENT ANALYSES WITH MONITORED DATA FOR DRILLED SLURRY PILE

. .. . . .. . . . . . . .. .. . .. . . . . .. .

001

Instant Loading
- -X- - Measured 5 weeks

-Load Transfer

- Measured 2 weeks

-- Measured 43 Weeks

FIGURE 3.22 COMPARISON OF SETTLEMENT ANALYSES WITH MONITORED DATA FOR DRILLED CASED PILE



On the other hand, results show that settlements estimated by FE analysis seem to

over predict the amount of settlement. With the MCC model for the NC clay, PLAXIS

predicts load-settlement curves that match better with the 2 and 5 weeks load tests than

43 weeks load test. The low pile head stiffness predicted by FE analysis is mainly caused

by how the MCC model estimates elastic straining. The MCC model uses the

parameters, K* and v, to estimate elastic strains, and the former is obtained from unload-

reload data in 1-D oedometer tests. The value of K does not represent closely the elastic

shear stiffness of clay and may then cause an underestimate of pile stiffness. Since the

initial pile head stiffness is mainly determined by the elastic deformation of the soil,

which in turn is governed by r* in the MCC model, more attention is paid towards the

applicability of K*. From the input K* for the MCC model, the shear modulus to

undrained shear strength ratio, G/Su, can be estimated. The common range G/Su ratio

has been published by geotechnical publications, and can be compared with the values

used in the FE analysis. The values of G/Su used in the NC clay are estimated in Table

3.7.

Location Depth K* Ko ao'~ v p G Su G/Su
(ft) (ksf) (ksf) (ksf)

Top of CL Clay 23 0.009 0.555 2.1 0.3 1.5 76.2 1 76.2
Mid. Embed. Depth in Clay 36.5 0.009 0.555 2.9 0.3 2.0 104.3 1 104.3

Pile Tip 50 0.009 0.555 3.7 0.3 2.6 172.0 1 172.0
Table 3.7 Estimations of Shear Modulus to Undrained Shear Strength

Using NC Boston Blue Clay as the reference CL clay, the range of G/Su (Ladd et. al,

1977) is between 150 to 300 for the factor of safety between 1.5 to 3. This shows that K*



underestimates the stiffness of the clay when the actual factor of safety is above 1.5, (say

Q<250 /1.5 = 166kips). Therefore, several more models for the cased drilled pile were

analyzed with K* reduced or the shear modulus increased to understand the effect on the

initial pile head stiffness. Results, shown in Figure 3.23, clearly shows that the initial

pile head stiffness converges with the measured stiffness as K* is reduced. Furthermore,

even though the pile head stiffness is increased by increasing K*, the capacities of the pile

remain constant throughout. In the MCC model, the capacity is determined by the CSL,

and not by K*. This shows that the critical state line of MCC does predict the capacity of

the driven piles accurately and K* is a the parameter that causes the analyzed response to

deviate from measured response. In analyzing long-term behavior of the driven piles, if

K* is adjusted accordingly, FE analysis can actually predict both the settlement response

and the ultimate capacity of the pile quite accurately. On the other hand, the behavior of

the drilled shafts in this study are far more difficult to estimate, since the installation of

the piles includes the injection of bentonite. Although bentonite is removed before the

concrete is pumped, small percentage of bentonite remains at the interface between the

pile and the clay. The chemical effects at the interface are not modeled in the FE

analyses, but if the percent of strength gain due to bentonite injection is determined in

laboratory testing, then interface elements can be added to the FE model to analyze

drilled shafts more precisely.
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FIGURE 3.23 THE EFFECT OF K* IN PILE HEAD SETTLEMENT

3.4.3 Evaluating Skin Friction Distribution

Based on the measured axial load distributions along the length of the pile, the skin

friction of the test piles can be back-calculated. These values are compared with the

results from FE analysis, and the results are shown in Figure 3.24 to 3.26 for pipe, H, and

drilled piles, respectively. Since the FE model setup for both drilled piles are identical

(cased and slurried pile), all drilled piles data are presented in Figure3.26. Results from

FE analysis shows that the predicted skin friction distributions for driven piles are lower

than the measured values. Therefore, much of the load is transferred to the pile tip and

supported by the end bearing, which compensates the reduced skin friction.

Nevertheless, the general shape of skin distribution predicted by FE analysis matches

with the measured shape for driven piles. Figures 3.27 and 3.28 show the predicted
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amount of loads that are support by skin friction and pile tip for pipe and H pile. Results

clearly show that skin friction from sand and clay support a big portion of the total load

except in the beginning of loading or when load reaches failure. The distributions of the

loads carried by skin friction and end bearing for the drilled piles are shown in Figure

3.29. However, FE analysis does not predict closely the skin friction distribution for the

drilled piles. Although the capacities for the drilled piles are much higher, the measured

total skin friction (approximately 100kips) is slightly lower than the estimated skin

friction (105 kips) from finite element analysis. This suggests that the measured skin

friction maybe incorrect or much of the load may have been supported by the pile tip

(very unlikely). The discrepancies in the skin friction distribution are probably caused by

installation procedures that are not captured by the model.

Limiting Skin Friction for Pipe Pile, f,

-0.50 0.00 0.50 1.00 1.50 fs(ksf)

ID

Load = 50
kips

Load = 100
kips

Load =150
kips

I Load = 200
kips

) Load =233
kips (failure)

Measured
(230kips)

FIGURE 3.24 COMPARISON OF SKIN FRICTION DISTRIBUTION FOR PIPE PILE
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3.5 Summary

Conventional design calculations and FE analyses have been compared with

instrumented pile load test data from the NGES site at Northwester University. Although

the design calculations underestimate the capacity of the drilled piles, the average design

value is much closer than the values obtained from FE analysis. However, FE analysis

seems to better predict the capacity and the skin friction distribution of the driven piles.

The measured capacities for the driven piles are within one percent of estimated value

with FE analysis. Nonetheless, capacity results from design analysis would improve and

approach the measured capacities if end-bearing capacities in clay were also included. In

settlement analyses, both design and FE analyses can not accurately predict the settlement

of a single pile. The merits of load transfer method are its ability to predict the initial pile

head. However, load transfer underestimates settlements at higher loads, and therefore,

higher factor of safety is needed to lower the load within the predictable region of the

curve. Nevertheless, predictable regions are different with different pile and installation

procedure. For the pipe pile, measured settlements exceed the predicted values when the

applied load is over 65% of the pile capacity. However, only 13% of the pile capacity are

needed for the cased drilled, and load transfer will be unconservative for any load higher

than that. For FE analysis, the settlement response predicted is conservative in all cases.

The elastic parameter, K*, for the MCC model underestimates the stiffness of the clay and

may not actually represent the actual response of the soil. However, less conservative

may be obtained if K* is corrected according to the published G/Su data. On the other



hand, FE analysis is able to capture the long-term pile capacity when installation effects

are dissipated. This is shown by its 1% error in estimating the capacity of pipe and H-

pile. The discrepancies between the estimated capacities and the measured capacities of

drilled pile are related to the installation procedure and interface properties that are not

modeled reliably in the analyses. In general, FE analysis with the MCC model will

produce conservative settlement results due to the non-linear relationship between load

and settlement, and the low initial pile head stiffness. However, the load-transfer method

should only be used with high factor of safety in order to produce conservative result. In

capacity analyses, both design and FE analyses predicted capacities that match closely

with the long-term capacities of driven pile. For drilled pile, more understanding of the

pile-soil interface is needed in order to create a more accurate FE model.



Chapter 4 Settlement Analysis of a Storage Building at Jernbanetollsted, Oslo

In addition to calculation for single pile analyses, this chapter describes the use of

finite element analyses for predicting the settlement behavior of a piled raft foundation.

The analyses are then compared with the measured settlement record for 50 year

monitoring period (Anderson & Clausen, 1974). This problem is chosen for the analysis

because it involves long term settlement of a heavily loaded building on a deep layer of

compressible soft clay.

4.1 Background and Details of Site

This case study concerns the settlement of a six-story high storage building that

was constructed in Oslo between 1919 to 1924 (Anderson & Clausen, 1974). The plan

view of the building is shown in Figure 4.1. The structure is separated into two wings, A

and B divided by a contraction joint.

G0m

FIGURE 4.1 PLAN VIEW OF STORAGE BUILDING FOR FINITE ELEMENT ANALYSIS

Therefore, the whole structure can be treated as two separated buildings. The chapter

presents FE calculation for the foundations of building B. The foundation comprises

reinforced concrete slab supported by approximately 2500 wooden piles, with top

diameter 0.15m and length of the piles 9m.



The soil profiles of the site is typical of conditions along the Drammen River in the

Oslo area, comprising a silt crust overlying soft marine clay of moderate sensitivity. The

top fill, placed during the construction period, consists of 3m of sand and gravel. The water

Table also lies at the top of this layer. Beneath the fill, 7m of silty clay overlay 1.5 m of

thin clay crust. The bottom layer is a 68.5m of fairly homogeneous of marine clay. The top

7.5m of the clay has relatively higher plasticity than the rest of the 61m of clay layer. The

bedrock is at a depth of 80m. During the summer of 1968, the Norwegian Geotechnical

Institute (NGI) performed a detailed investigation of the site including, 1) extensive fixed

piston sampling (45mm ) from within one borehole (extending to a depth of 30m); and 2)

three vane borings to a similar depth. Six piezometers were also installed to monitor the

presence of excess pore pressure. Thirty-two consolidation tests were run on the samples

and the results of the geotechnical investigation are shown in Figure 4.2. From

consolidation data and experiences of other sites, it is believed that the 61m of lean clay is

NC and has an OCR close to 1.0. In addition, pore pressure and vertical stresses profiles

after the placement of the 3m fill at different depths are given in Figure 4.3.

FIGURE 4.2 SUMMARY OF THE 1968 NGI GEOTECHNICAL INVESTIGATION IN OSLO
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FIGURE 4.3 PORE PRESSURE AND STRESS PROFILE

4.3 Method of Analyzing Settlement

Finite element analysis will be used to analysis a cross-section of the site. The

cross section located at the middle of building B is shown in Figure 4.1 section 1.1.

Several assumptions are made before proceeding with FE analysis. Since the model is

limited to two-dimensional loading condition while the actual geometry is 3-dimensional,

the predicted settlements should be slightly larger than measured results. The load of the

building is assumed to be similar to 2-D loading strip loading. This assumption is

reasonable for section 1-1 due to the large aspect ratio (length/width) of the building.

Therefore, plane strain instead of axisymmetric analysis are used in this problem. Due to

the symmetry of the problem, only half of the section 1-1 will be analyzed. Figure 4.4

shows the boundary conditions, for deformation and flow, and the section of the

foundation that are modeled in this analysis.
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FIGURE 4.4 SECTION 1-1, DESIGNED SECTION

Figure 4.4 also shows the five different soil layers of soil that will be modeled in FE

analysis. The properties of the soil layers will be discussed later. The bedrock is set at

the base of the finite element model. The dotted section (half of the raft and piles) is not

included in the FE modeling due to the symmetric properties of the problem. For the

flow boundary, drainage is assumed to occur at the top only.

In modeling the piles, it is impossible to model 2500 piles individually. Instead

rows of piles are modeled as equivalent pile wall. For this section, 5 pile walls are used

to model approximately 1250 piles within half of the foundation (or 10 pile walls for the

full foundation). In figure 4.5, an example of the pile wall is shown to illustrate how the
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pile wall represents the piles. The wall in the figure is similar to the one that is used in

the model, except this wall only represents three piles.

The following equation shows the relationship between the modulus of the piles and the

modulus of the 2 pile walls

Eeq. wall Awai = Epile 1,,,Apile 1,n = EA11 + EA1, 2 
+ EA1,3

Eeq. waal 2 Awal= Epile 2,nApile 2, = EA 2 ,1 + EA 2 ,2
+ EA 2,3

Pile 1,2

EA1,2

EA 1,3

Pile 2,3

EA2,3

FIGURE 4.5 EQUIVALENT PILE WALL SETUP

For the FE model, each wall will represent 250 piles, and there are a total of 5 walls in the

model (10 for the whole system).



4.4 Setting up Finite Element Analysis

After determining the methods in modeling the piles and the foundation, the

Finite element model is set up accordingly. First, soil models are determined for the 5

different layer of soil. The following table shows the type of soil model that is used to

represent each soil layer.

Depth (ft) Soil Type Soil Model
0-3 Sand & Gravel Elastic Soil

3-10 Silty Clay MCC
10-11.5 Stiff Clay MCC
11.5-19 Plastic Clay MCC
19-80 Lean NC Clay MCC

Table 4.1 Soil Modeling for FE Analysis

With the soil model determined, the mesh is created. The dimension of the mesh is 70m

by 80m (width by height). Then the width of the mesh was increased until the

displacements of the concrete mat were not affected by the increased width. Finally, the

width of the mesh is selected to be70m, about seven times the width of the section that is

being modeled. The boundary conditions and the flow conditions are setup according to

Figure 4.4.

In modeling the material properties for the pile, raft, and soil, two types of elements are

used, wall and soil elements. Wall elements described in Chapter 2 are used to represent

the pile walls. The typical modulus for timber is used to obtain equivalent parameters for

the wall elements. Table 4.2 summarizes the parameters obtained for the wall elements.

The entire cross section (instead of half) is used to calculate the pile wall properties;

however, this would not influence the pile wall properties.



Entire Section Properties

Total Area Length Width Total # of Piles
(m2) (m) (m) (#)
1579 77.0 20.5 2548

Pile Properties

Epile radiuspile Apile EApile

(kpa) (m) (m2) (kN)
8.27E+06 0.075 0.018 1.46E+05

Pile Wall Properties

Total # of Pile Walls Length,,,, widthw,,, Awall

(#) (m) (m) (m2)

10.0 77 0.15 11.6

Total # of Piles per wall Spacing btw. Pile Wall Ewall eq- Sum (EApile)

(#) (m) (kpa) (kN)
254.8 2.3 3.23E+06 3.73E+07

Table 4.2 Summary of Section, Pile, and Pile Wall Properties.
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FIGURE 4.6 FE MESH FOR THE SETTLEMENT ANALYSIS OF THE STORAGE BUILDING IN OSLO



For setting up the soil models, more soil information is needed to define the parameters

mainly for the MCC model. In order to obtain additional information regarding the OCR

profile and compression index, soil properties proximate to Oslo are examined. Soil

properties at Drammen (Bjerrum , 1967) are particularly useful because Drammen is

located 40 kilometer from Oslo, and the soil profile of the two sites are very similar. One

of the typical soil profiles in Drammen is given in Figure 4.7. This profile is used to

estimate the OCR profile for the silty clay and plastic marine clay layers.

I

a.

FIGURE 4.7 TYPICAL SOIL PROFILE IN DRAMMEN, (BJERRUM, 1967)

The OCR profile for the low plasticity marine clay is estimated to be NC from the

consolidation tests performed by the NGI. For the stiff crust, all parameters are assumed

to be equal to the plastic marine clay, and the OCR for this layer is approximately 3.0.

The stiff crust should not influence the results from the FE analysis since it is relatively

thin compared to all other soil strata and has little settlements during un-reloading. In

addition to the OCR profile, it is also necessary to obtain the hydraulic conductivity of

the soil. Hydraulic conductivity of the soil controls the rate of the dissipation of excess

pore pressure. This in turn will control the rate of settlement. However, no information



was found on this parameter. With no relevant information available, correlation (Lambe

& Whitman, 1969) is used to obtain the range of permeability for naturally deposited

clay. It is noted that naturally deposited clays have permeability ranging from 8.6e-

5m/day to 8.6e-6m/day(1 * 10-7 to 1 * 10cm/sec). Therefore, the FE model will analyze

settlement of the foundation with three different input values of permeability, 8.6x1 0-5,

4.3x10 -5, and 8.6x10-6 m/yr. All other information used by the FE model is shown in

Figure 4.8.
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The initial loading/unloading of the site began at the end of 1919 (see figure 4.9) when

construction began. Excavation of the top fill caused an unloading condition, and the

unloading condition reached a maximum of-5t/m2 by the end of 1920. Then the

construction of the foundation and the structure causes a steady increase of load from -

2t/m2 (1921) to 3.2t/m 2 (1924). After construction, the load remained constant (1924 to

early 1925) until the storage building starts service. With a constant increase of storage,

the live load increases the loading steadily from 3t/m 2 to 9t/m2. Once the storage building

reached the capacity, the dead load remains constant afterwards. Originally, the FE

model is setup to replicate the actual loading condition; however, the length of the

smallest possible time interval is controlled by the hydraulic conductivity of the soil.

With smaller hydraulic conductivity, a larger time interval is necessary for accurate

results. Therefore, the loading condition is simplified as linearly increasing from Ot/m 2

(1922, beginning of recording settlement measurement) to 9t/m2 (1926).
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FIGURE 4.9 ACTUAL AND MODELED LOADING CONDITION



4.5 Comparing FE Settlement Results with Measured Settlements

First the results from the FE analysis will be compared with design calculations to

check if FE results are reasonable. The average degree of consolidation calculated by FE

analysis is plotted with the 2-D consolidation for a strip loading (Poulos & Davis, 1972)

The H/B ratio (height of clay/loading width) used for the design calculation is 10 (the

actual H/B = 8, but solutions are approximately the same). The range of coefficients for

the design analysis are obtained from empirical correlations (DM7, 1982), using the

liquidity index obtained from the boring sample. With liquid index falling between 40%

to 50%, the estimated C, is between 3.2m 2/year to 9.5m 2/year (1-3 to 3-3 cm 2/s). In figure

4.10, results show that FE results (with k, = 4.3e-5m/day) falls close to the estimated

design regions.
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- Cv = 9.5m^2/yr

FE, kv--4.3e-5m/yr

year

FIGURE 4.10 COMPARISON OF AVERAGE DEGREE OF CONSOLIDATION FROM FE ANALYSIS AND PUBLISHED
RESULTS (ANDERSON & CLAUSEN, 1974)

With results from FE analysis obtaining reasonable results, further analyses are

performed to obtain:

------



1) Load Supported by the Piles

2) Estimated Pore Water Pressure at Different Time

3) Settlements Comparison with Measured Data

4) Differential Settlement across the Concrete Mat

4.4.1 Load Supported by the Piles

Since the piles are represented by thin walls in the FE analysis. The total load of

the piles will be estimated by the shear stress on the pile wall multiplied by the area of the

wall. It is not meaningful to present the actual load supported by each pile wall since

they do not represent the load that will be distributed to individual piles. However, it is

interesting to estimate the fractions of load that are supported by the pile foundation, and

by the concrete mat. From the results, summarized in Table 4.3, the piles support

approximately 1/4 of the total deadload at full consolidation.

Total Stress applied Load Supported by Piles Load Support by Raft
(ton/m 2) (ton) (ton)

9.0 3330.6 10875.9
Total Load % of Total Load % of Total Load

(ton) (%) (%)
14206.5 23.4 76.6

Table 4.3 Estimated Load Supported by the Piles.

4.4.2 Estimated Excess Pore Pressure

In order to further verify the results from FE analysis, excess pore water pressure below

the center of the mat (Figure 4.11) and the edge of the mat (Figure 4.12) are checked at

selected time periods. Pore pressure estimated for the year of 1947 (25 yr. after loading

start), 1972 (50yrs after loading start), 1999 (estimation for today), and 2423 (500 yr.



after loading start) are plotted in the figures. The hydraulic conductivity used in the

analysis is the average of the range given in 4.3 (kv = 4.3e-5m/day). The results show

that the distribution of excess pore pressure decreases along depth. This is reasonable,

because the distribution of load applied by the building decreases as depth increases. In

addition, the excess pore pressure at the edge is also checked how excess pore pressure

varies across the width of the building. As expected, Figure 4.12 shows the excess pore

pressure at a given time at the edge of the building is less than the excess pore pressure at

the center of the building. This is caused by decrease of load distributed at the edge of

the building causing a smaller amount of excess pore pressure.
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FIGURE 4.11 EXCESS PORE PRESSURE AT THE CENTER OF THE BUILDING
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FIGURE 4.12 EXCESS PORE PRESSURE AT THE EDGE OF THE BUILDING

4.4.3 Settlements Comparison with Measured Settlements

After verifying the results from PLAXIS, settlement analysis is performed with the model

and compared with the measured data. Measured settlement data were obtained at

various points on the raft for a total of 50 years. There were no measurements on the

piles, and therefore, only the raft settlement results will be compared in this section. The

comparison of the measured data and results obtained from FE analyses with an estimated

range of hydraulic conductivity are shown in Figure 4.13.
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FIGURE 4.13 COMPARISON OF FE RESULTS AT PT. X WITH MEASURED SETTLEMENTS

From the results presented in Figure 4.13. It is apparent that the selection of clay

permeability has a great effect on the settlements at 1973 (at the end of the 50 years of

measurement). It is also clear from the measured settlements that the actual consolidation

settlement on site has not reached the end of consolidation. The measured settlements

match very closely with the calculated results for an assumed k, = 4.3-5m/day to 8.5e-

5m/day. The initial settlement response before 1932 (or 10 yr. after the initial loading) of
Time (year)

the measured results is geI,Ly u,,,,3 U 1LmLLoUa~.uL u.,, L1 .. ,1 VU. This may be related to

the assumed load history (Figure 4.9). For long term settlement behavior, results show

PLAXIS can predict the degree and also the rate of the settlement quite well. The author

has not managed to find any more recent settlement data for the Jernbanetollsted building



(post 1973) and so it is not possible to evaluate predictions of the final consolidation

settlement. Nevertheless, the final consolidation settlement at point X is estimated with

the analyses from PLAXIS, and the results are shown in Figure 4.14. The final

consolidation settlement predicted with different permeability has the same value and is

approximately 1.14 m.

Time (yr)

1972 2022 2072 2122 2172 2222 2272 2322 2372 2422

__ Measured Settlement (cm) -. - kv=8.6e-5m/yr
- .- - kv=5e-8 cm/s - Estimated Final Consolidation Settlement

FIGURE 4.14 ESTIMATION OF FINAL SETTLEMENT AT PT X WITH FE ANALYSIS

An additional settlement analysis has been performed for a raft foundation without the

timber piles. The purpose of this analysis is to illustrate the effect of the piles on the

predicted consolidation settlement. Figure 4.15 compares the FE prediction for the case

of 1) raft supported with piles 2) raft only. The results show that the final consolidation

settlement (1.34m) for the raft with no piles is about 18% higher than the raft supported
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by piles. The larger settlement is caused by an increased of load causing an increase of

dissipated pore pressure. Although more load causes the raft only foundation to settle

more, the time it takes for the raft only foundation to reach final consolidation is

approximately 500 years (year of 2422). This matches with theoretical results and shows

that even when more load is applied to the soil, it takes the same amount of time to

consolidate.
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FIGURE 4.15 PREDICTED SETTLEMENT OF POINT X WITHOUT INSTALLATION OF PILES

4.4.4 Estimating Differential Settlement Center

With FE analysis, differential settlement across the cross-section can also be

estimated. Figures 4.16 to 4.18 show the estimated settlements for different k, from FE

analysis. Once again, the results show the settlement at the center of the building is larger



than the edge, as the excess pore pressure suggested in section 4.4.2. Results also show

that as consolidation settlement increases, differential settlement also increases.

Width (m)

0 2 4 6 8 10 12

-*25 years (1947)

-m- 50 years (1972)

- 100 years, (2022)
--- 500 years, (2422)

FIGURE 4.16 DIFFERENTIAL SETTLEMENT OF CROSS SECTION WITH KV = 8.6E-5M/DAY
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FIGURE 4.17 DIFFERENTIAL SETTLEMENT OF CROSS SECTION WITH KV = 4.3E-5M/DAY
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FIGURE 4.18 DIFFERENTIAL SETTLEMENT OF CROSS SECTION WITH KV = 8.6E-6M/DAY

4.5 Summary of Consolidation Settlement Analysis

Although only limited information on the soil parameters are available, the consolidation

settlement analysis using MCC model produce reasonable results that match very well

with the measured consolidation settlements fifty years after construction of

Jernbanetollsted building in Oslo. Although this does not replicate the actual foundation

geometry, it is a consistent approximation for a planar analysis. A full analysis of the

foundation is beyond the capabilities of PLAXIS and requires a great increase in

computational time. Nevertheless, the predicted range of settlement and degree of

consolidation agree well with measured behavior. In addition, the final consolidation

settlement predicted by Anderson & Clausen (1974), Pfinal = 1.1 m, matches extremely

well with the estimated value from PLAXIS.
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Chapter 5 Summary, Conclusion and Recommendation

This thesis describes the application of finite element analyses for computing the

load settlement response of piled foundations. Finite element models are compared with

measured data for two 'case studies', 1) instrumented load tests on 4 individual piles (2

driven, 2 drilled shafts); and 2) long term response of piled-raft foundation over a deep

layer of soft clay in Oslo. In general, the results from the FE analyses and design

calculations provide reasonable estimates of the measured results. However, FE analysis

in all cases provides more comprehensive information than the conventional design

methods.

For the pile capacity analyses, FE analysis predicts capacity of the driven piles

extremely close to the long-term measured values (within 1%). However, the FE analysis

does not predict the capacity of the drilled pile within reasonable limits (underestimates

by 50%). This is mainly caused by the installation procedure of the drilled pile. With

bentonite slurry injected to the bored hole, chemical reaction may have increased the

capacity. With more data on the effect of how bentonite influence the interface, better FE

model can be used to obtain more accurate result. In analyzing the settlement response of

the piles, FE modeling with MCC model shows that obtain results that match well with

measured short-term settlement response. For driven piles, the predicted results are

extremely close with the measured results at 5 weeks. However, FE analyses are not able

to predict the long-term response for both drilled and driven piles. Results show that the

MCC model does not accurately predict the stiffness of the soil. By modifying the

stiffness of the model, FE can accurately predict both the capacities and the settlement

responses of the driven piles.



For the long-term settlement analyses, FE analysis predicts both the final

consolidation settlement and the rate of settlement very well. With no measured

hydraulic conductivity data, calculations were performed using the common range of k,

for clay, matches the measured settlement 50yrs after loading. The rate of loading also

agrees with the measured response. Even though, no measured result of the final

consolidation settlement is available, the predicted final settlement from FE matches with

results made by engineers.

The results from the two case studies show that FE modeling require good soil

parameters and good soil models. The MCC model using -Kc as the elastic parameter for

stress-strain relationship clearly does not represent the actual behavior. For accurate

results, the parameters can be corrected using reliable sources (for correcting K*, G from

measured can be used). However, this may change the other type of response (e.g.

consolidation) of the soil model. This leads to the importance of development of better

soil model for finite element analysis. More advanced soil models have been introduced

in recent years. For example, the MIT-E3 soil model (Whittle & Kavvadas, 1994) uses

15 soil parameters to describe the behavior of soil under many different conditions

(anisotropy effect, hysteretic response in unloading and loading, ...etc.). With better soil

models and better parameters, more reliable FE predictions can be achieved.

One may question the need of finite element modeling when design analyses

predict results matches with measured data in many cases. Design analyses are mainly

based on simplified theory and empirical data. However, theoretical results often over-

simplified the behavior of soil and interactions between soil and structures. For example,



the load transfer method models both the pile and the soil as elastic material (highly

unrealistic). Empirical design methods are mainly based on the correlation on observed

results with measured parameters. This type of design analyses rarely captures the actual

response of soils and structures. Furthermore, every site and project has different

conditions, and only with FE analysis, one can examine how the results may differ.

Differences in some conditions may not matter, but some may drastically influence the

results. As construction and development becoming more advanced and fast paced, more

in-depth and comprehensive geotechnical design tool is needed. With finite element

modeling, engineer can fully understand and analyze the interactions between soil and

structure that simple empirical and theoretical design solutions do not provide.
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Appendix A

Results of Field and Laboratory Tests

Field Test Result

1) Log of Sample Boring 90
2) Cone Penetration Test 92
3) Piezocone Sounding 96
4) Field Vane Test 98
5) Dilatometer Test 98

Laboratory Test Result

1) Consolidation Test 100
2) Unconsolidated Undrained Triaxial Compression Test 102
3) Direct Shear Test 103
4) CKoU Triaxial Test 103
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3.0 DATA REDUCTION

Measured data consist of depth, time. cone and sleeve
resistance, total load on penetrometer. pore pressure and
penetrometer Inclination. Data are recorded aId plotted at
0.8 Inch intervals, and are presented In Plgiires 2 through
5. The following parameters were computed and are tabulated
at 6 Inch Intervals in Tables I through 3 along with the
measured data:

Prlction ratio (~)

PR - fs/qc * 100:

Overburden normalized cone resistance

qcl - qc(l.0-0.5*log(Sv' ));

Total cone resistance

qt - qc * al(I-Ar)U:

Effective cone resistance

qa - qt - U; and

Pore pressure ratio

Bq - (U-Uh)/(qt-Sv):

(Eq 1)

(Eq. 2)

(Eq. 3)

(Eq. 4)

(Eq. 5)

whareat

fs Is the measured sleeve resistance. In TSP:

qc is the measured cone resistance, In TSP;

Sv is the total vertical overburden pressure. In TSP:

ml Is a reduction factor to adjust pore pressures
measured at the midheight of the cone tip. to those
expected to act behind the cone tip; for soft to firm
cohesive soils this factor Is 0.75 for the
STRATIORAPHICS plezocone;

(I-Ar) Is the portion of the cone tip area over which
fluid pressures reduce cone resistance below full total
stresses, equal to 0.40 for the STRATIGRAPIIICS
plezocone:

U Is the measured pore pressure, in TSF: and

Uh is the calculated hydrostatic pressure, In TSP.
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91EOCONE PARAMETERS

JOB NO: Co88-03
JOB N~ME: 14ORTNWESTERN PILE LOA0 TEST

SOUNDING NO: NulI

I iM I ILMAIrr/l11.,,
THEOTECHNCAL DATA ACQuALUSITO COlP

4W1 TAVI.OR AVNJUE

QIME LLY.LL M1037

WATER TABLE : 15 FT
TOTAL UNIT UT : 0.058 TCF

d 5v
DCPTIM CALCULATED

TOTAL
0OERBURDEN
PRESSURE

(FT) (TSF)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
1:.5
12.0
12.5
13.0
13.5
14.0
14.5

0.03
0.06
0.09
0.12
0.14
0.17
0.20
0.23
0.25
0.29
0.32
0.35
0.38
0.41
0.44
0.47
0.49
0.52
0.55
0.58
0.61
0.64
0.67
0.70
0.73
0.75
0.78
0.81
0.84

Uh Qc U
CALCULATED MEASURED MEASURED
HYDROSTATIC CONE PIEZOCONE
PRESSURE RESISTANCE PORE

PRESSURE
(TSF) (TSF) (TSF)

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

at
CALCULATED

TOTAL
CONE

RESISTANCE
(TSF)

PREPUNCHED TO 4 FT

217.8
240.5
261.7
300.7
286.7
232.8
178.9
153.4
133.4
114.7

95.2
80.9
56.6
47.0
36.4
30.8
32.4
82.5
112.5
158.0
164.8
150.4

0.81
0.21
0.78
1.27
0.98
0.50
0.11
0.01

-0.11
-0.08
-0.08
-0.12
-0. 17
-0. 12
-0.25
-0.25
-0.26
-0. 19
0.11
0. 12
0. 18
0.:5

* NOTE: Data recorded and plotted at 0.06 Ft *nte r-lw

SOUND NG NO: NJ IS

d
DEPTH

5v
CALCULATED CAL

TOTAL NHY
OVERBURDEN PR
PRET) TSSURE

(FT) CT5F)

15.0
15.5
16.0
16.5
17.0
17.5
16.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5

0.87
0.90
0.93
0.96
0.98

1.01
I.07
1.10
1.13
(.16
1.19
1.22
1.25
1.28
1.30
I.34
S1.36
S1.39

1.42
t.45

1.48
1.51
1.54
1.57
1.60
1.62
1.65
1.68
1.71
1.74
1.7
S1.80

1.83
1.86
1.89
1.91
1.94
1.97
2.00

Uh qc U
.CULATED MEASURED MEASURED
ROSTATIC CONE PIEZOCONE

(ESSURE RESISTANCE PORE
PRESSURE

(TSF) (TSF) (TSF)

0.00
0.01
0.03
0.05
0.06
0.08
0.09
0.11
0.12
0.14
0.16
0.17
0.f19
0.20
0.22
0.23
0.25
0.26
0.28
0.30
0.31
0.33
0.34
0.36
0.37
0.39
0.41
0. 42
0.44
0.45
0.47
0.48
0.50
0.51
0.53
0.55
0.56
0.58
0.59
0.61

103.5
121.8
102.8
130.9
118.8
124.7
133.9
116.2
84.9
92. I

121.6
127.6
140.2
196.6
277.8
332.7
297.4
190.4
53.6
4.1

4.0
4.0
4.1
4.2
3.9
3.9
3.9
3.8
3.6
3.7
4.2
6.9

11.1

10. 1
7.1
6.6
5.5
S.5
5.6
4.4
4.5

0. I
0.10
0.17
0.18
0.19
0.05
0.19
0.23

0.21
0.25
0.27
0.55
1.01
0.84
1.75
4.17
4.02

1.15
0.31
2.80
4.24
4.47
4.59
4.99
4.82
4.80
4.80
4.94
4.74
4.64
5.25
4.61
4.00

0.62
3.01
3.72
3.55
4.20
4.40
4.90

as
CALCULATED
EFFECTIVE

CONE

RESISTANCE
(TSF)

Sq
CLCULATED

PORE

PRESSURE
ARTIO

218.0
240.5
261.9
301.0
287.0
233.0
178.9
153.4
133.4
114.7

95.2
80.9
56.6
46.9
36.4
30.7
32.4
82.4
112.5

,56.0
164. 9
:50.4

217.2
240.3
261.2
299.8
286. 1
232.5
178.8
153.4
133.5
114.8
95.3
81.0
56.7
47. i
36.
31.0
32.6
82.6
112.4
157.9
164.7
150. 3

.00

.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

-0.01
-0.01
-0.01

.00

.00

.00

.00

.00

qt
CALCULATED

TOTAL
CONE

RESISTAN4CE
tTSF)

103.6
121.8
102.8
130.9
118.9

124.7
134.0
115.2
84.9
92.2

121.7
127.7
146.5
196.8
276.4
334.0
298.6
190.7
53.7

4.9
5.3

5.4
5.5
5.7
5.3
5.3
5.3
5.3
5.0
5.1
5.8
8.3
12.3
10.3
8.0
7.7
6.5
6.9
5.8
5.9

CALCULA rED
EFFECT IE

CONE
RESISTANCE

T75F)

103.4
121.7
102.7
130.7
118.7
124.6
133.68
116.0
84.7
91.9
121.4

127.2
147.5
196.0
276.6
329.8
294.6
189.6
53.4

2.1
1.1
0.9
0.9
0.7
0.5
0.5
0.6
0.4
0.2
0.4
0.5
3.7
8.3
9.7
5.0
4.0
3.0
2.7
1.3
1.0

PAGE 2

Sq

CALCULATED
PORE

PRESSURE
RATIO

.00

.00

.00

.00

.00

.00
.00
.00
.00
.00
.00
.00

0.01
.00

0.01

0.01
0.01

.00

.00
0.72
1.02
1.06
1.06
1.12

1.18
1.18
1.2&

1.30
1.26
1.19
0.64
0.33
0.01
0.41

0.54
0.64
0.73
1.03
1.09



SOUNDING NO:

d ,
DEPTH CALCU.ATED

TOTAL
OUERSURDEN
PRESSURE

(FT)

35.0
35.5
36.0
36.5
37.0
37.5
38.0
38.5
39.0
39.5
40.0
40.5
41.0
41.5
42.0
42.5
43.0
43.5
44.0

45.0
45.5
46.0
46.5
47.0
47.5
48.0
48.5
49.0
49.5
50.0
50.5
51.0
51.5
52.0
52.5
53.0
53.5
54.0
54.5

2.03
2.06
2.09
2.12
2.14
2.17
2.20
2.23
2.26
2.29
2.32
2.35
2.38
2.41
2.43
2.46
2.49
2.52
2.55
2.58
2.61
2.64
2.67
2.70
2.73
2.76
2.78
2.81
2.84

2.87
2.90
2.93
2.96
2.99
3.02
3.05
3.07
3.10
3.13
3.16

Nu18

.h ac U
CALCULATED MEASURED MEASURED
YODROSTATIC CONE PIEZOCONE
PRESSURE RESISTANCE PORE

PRESSURE

(TSV) (TSF) (TSF)

0.63
0. 64
0.66
0.67
0.69
0.70
0.72
0.73
0.75
0.76
0.78
0.79
0.81
0.83
0.84
0.86
0. 87

0.89
0.91
0.92
0.94
0.95
0.97
0.98
1.00
1.01
1.03
1.05
1.06
1.08
1.09
1.11
1.12
1.14
1.1
1.17
1.19
1.20
1.22
1.23

4.6
5.9
5.6
5.7
5.7
5.8
5.9
5.8
6.3
6.1
5.9
5.6
5.3
5.3
5.4
5.3
5.4
5.3
5.4
S.3
5.3
S.4
5.5
5.7
5.8
6.1
6. I

5.9
5.9

5.8
6.2
5.9
5.9
6.1
G.0
6.0
6.0

S.09
5.98
5.78
5.56
5.786
5.87
6.01
6.18
6.54
6.11
6.11

6.00
6.09
5.95
6.00
6.10
6.13
5.89
6.33
5.99
6.07,
5.18
6.13
6.31
6.52
6.93
6.89
6.99
6.90
6.79
6.56
6.76
6.85
6.67
6.81
6.60
6.70
6.97
6.69
6.97

SOUNDING NO: NuIB

d 5
DEPTH CALCULATED

TOTAL
OUERBURDOEN
PRESSURE

CFT) (TSF)

55.0
55.5
56.0
56.S
57.0
57.5
58.0
58.S
59.0
59.5
60.0
60.S
61.0
61.5
62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0
56.5
67.0
67.5
68.0
68.5
69.0
69.5
70.0
70.5
71.0
71.5
72.0
72.S
73.0
73.5
74.0
74.5

3.19
3.22
3.25
3.28
3.30
3.34
3.36
3.39
3.42
3.45
3.48
3.51
3.54
3.57
3.60
3.63

3.65
3.68
3.71
3.74
3.77
3.80
3.83
3.86
3.89
3.91
3.94
3.97
4.00
4.03
4.06
4.09
4.12
4.15
4.17
4.21
4.23
4.27
4.29
4.32
4. TrI

Uh Qc U
CALCULATEL MEASURED MEASURED
HYDROSTATIC CONE PIEZOCONE
PRESSURE RESISTANCE PORE

PRESSURE
(T5F) (TSF) (TSFi

1.25
1.26
1.28
1.30
1.31
1.33
1.34
1. 36
1.37
1.39
1.40
I . 42
1.43
1.45
1.47
1.49
I.50

1.51
1.53
1.55
1.56
I. 57
1.59
1.61
1.62
1.64
1.65

1.56
1.70

1.72
1.73

1.75
1.76
1.78

1.79
1.81

1.83
1.84
1.67

6.3
6.3
6.1
6.2
6.7
6.8
6.8

9.0
10. 1

9.9
10.1
11.3
9.6
9.9
9.3

9.0
9.2
9. 1
10.1
10.5

9.7
9.8
9.9
10.0
12.8
12.0
13.4
12.4
13.7
17.3
15.6
17.9
30. 1
44.5
53.5
52.3
51.4
56.9
59-.
60.7
Pl .7

7.17
7.11
7.16
7.35
7.34
7.47
8.17

8.42
8.94
9.70
9.73
9.13
9.07
8.80
9.03
9.25
9.22
9.31
9.93
9.63
9.12
10.00
0.05O
8.50
9.76
11.21
10.43
11.48
10.61

8.43
11.59
12.81
17.43
20.44
23.24
21.29
21.90
26.90
25.55
24.56
18.93

Pt
CALCULATED

TOTAL
CONE

RESISTANCE
(TSF)

q.
CALCULATED

EFFECT I E
CONE

RESISTANCE
(TSF)

6.1
7.7
7.3
7.4
7.4
7.6
7.7
7.7

8.3
7.9
7.7
7.4

7.2
7. 1
7.2
7.2
7.3

7.0
7.3
7.1
7.2

6.9
7.3
7.6
7.8
8.2
8.2
8.2
8.0
8.0
7.9
7.9
7.9
8.2
8.0
7.9
8.1
86.1
8.0
8.1

1.0
1.7
1.5
1.8
1.6
1.7
I.7

1.5
1.7
1.8
1.6
1.4

1.1
1.1
1.2

1.1
1.2
1.2
1.0
1.1
1.11.8

1.2
1.3
1.3
1.2
1.3
1.2
1.1
1.2
1.3
1.21.1
1.5

1.2
1.3
1.4
1.2
1.4
1.1

(TSF
r

)

8q
CALCULATED

PORE
PRESSURE

RATIO

1.12
1.11
1.19
1.18
1.08
I .07
1.16
0.86
0.81
0.89
0.87
0.73
0.87
0.82
0.89
0.95
0.93
0.95
0.90
0.84
0.87
0.94
0.93
0.79
0.68
0.84
0.70
0.83
0.69
0.43
0.66
0.63
0.50
0.40
0.38
0.36
0.37
0.41
0.38
0.36
0.27

at
CALCULATED

TOTAL
CONE

RES I STAiCE
TSF)

8.5
8.5
8.2
8.4
8.9
9. I
9.3

11.6
12.8
12.8
13.0
14.0
12.3
12.6
12.1
11.8
11.9
11.9
13.0
13.4
12.5
12.8
12.9
12.5
15.8
15.4
16.5
15.9
16.9
19.8
19.0
21.8
35.3
S0.6
60.5
58.7
57.9
64.9
66.8
68. 1
67.4

CALCULATED
EFFECTIUE

CONE
RESISTANCE

(TSF)

1.3
1.4

.1
1.1
1.5
1.6
1.1I

3.1
3.8
3.0
3.3
4.9
3.3
3.8
3.0
2.6
2.72.6

3.1
3.0
3.3
2.8
2.8

4.1
6.0
4.2
6. I
4.4

6.3
11.4

7.5
8.9
17.9
30.2
37.3
37.4
36.0
38.0
41.2
43.5
48.5

PAGE 3

8q

CALCULATED
PORE

PRESSURE
RATIO

1.09
0.95
0.98
0.93
0.96
0.96
0.96
1.00
0.96
0.95
0.99

1.04
1.10
1.09

. 08
1.11

1.10
1.10
1.13
1.12
1.13
0.98
1.10
1.09
1.09
1.09
1.09
1.11
1.13
1.11
1.09
1.13
.16
1.06
1.14
1.13
1.10
1.15
1.11
1.17

PAGE 4



PROJECT: NORTHWESTERN UNIV.
STS JOB NUMBER: P-4592
BORING NO. 2
OPERATOR: NHS
DATE: 12-14-87

VANE SHEAR RESULTS

DEPTH DEPTH Su Su
(meters) (feet) (tsf) (psf)

REMOLDED REMOLDED
Su (tsf) Su (psf) SENSITIVITY

9.0 29.5 0.33

10.0 32.8

10.5 34.4 0.41

11.5 37.7 0.33

12.5 41.0 0.37

13.5 44.3 0.40

14.5 47.6 0.41

15.5 50.8 0.38

16.5 54.1 0.43

17.5 57.4 0.34

660 0.10 192 3.4

NO READING, POSSIBLE COBBLE OR GRAVEL

820 0.21

660 0.15

740 0.19

800 0.21

820 0.21

760 0.16

860 0.19

680 0.21

18.5 60.7 0.78 1560 0.45

19.5 64.0 0.71 1420 0.44

20.2 66.3 1.79 3580 0.63

POSSIBLE GRAVEL AT 66 FEET

420 2.0

300 2.2

380 1.9

420 1.9

420 2.0

320 2.4

380 2.3

420 1.6

900 1.7

880 1.6

1260

NORTHWESTERN UNIVERSITY

FILE NAME: LAKE FRONT SITE
FILE I4NBER: 1988-1

TEST NO. DMT-1

RECORD OF DILATOIETER TEST NO. DMT-1 (IN PWT BOREHOLE)

USING DATA REDUCTION PROCEDURES IN MARCHETT (ASCEJ-GED,MARCH 80)
O IN SANDS DETERMINED USING SCHMERTNANN METHOD (1983)

PHI ANGLE CALCULATION EASED ON OURGUNOGLU AND NITCHELL (ASCE,RALEIGH COF,JUNE 75)
MwDIFIED MAYTE AND ULNAYUT FORMULA USED FOR 00a IN SANDS (ASCE,J-GED,JUNE 82)

LOCATION: PILE TEST LOCATION FOR ASCE CONGRESS
PERFORMED - DATE: APRIL 30, 1988

BY: MORAD MAHMOUD ,lWDUaX ID CLYDE
CONSULTUNTS AND D&C DRILLING

CALIBRATION INFORMATION:
DAm .13 BARS DOS .32 BARS d .20 Ba
I00 DIA.- 3.70 01 FRICTION RED. DIA.- 4.80 

1 BAR - 1.019 KG/CM2 * 1.044 TSF * 14.51 PSI

A

(BAR)
I ED 1to

(BAR) (BAR)
ND UO G G SV PC

(BAR) (T/ 3) (BAR) (BAR)
m me mm mm* mm

2o 5.00 METERS VSO- 2.500 BARS
1RD WEIGHT* 6.50 ICG/ DELTA/PHI* .50

ANALYSIS USES H20 UNIT WEIGHT = 1.000 T/M3

OCRI O c0 PHI H SOIL TYPE

(BAR) (DEG) (BAR)
We* 0-GW"***". ...*...*..

5.10 6.20 24. .16

6.20
6.40

6.50
6.50

2.50

2.53
2.49

2.58
2.55

1.70

1.70

1.70

1.70
1.70

1.66 2.36 1.42
1.g0 2.42 1.44

1.693 2.39 1.41
1.707 2.54 1.9
1.721 2.51 1.46

END OF SOUNDING

98

Z THRUST

(FT) (KG)

lpl"**we"**

45.67

46.33
47.00
47.67

68.33

.67 .48

.68 .50

.67 .49

.69 .52

.68 .51
26. CLAY

26. CLAY
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DA Free air correction to the "A" reading In bars.

DB Free air correction to the "B" reading in bars.

ZM Conitrol unit reading when systea is vouited (gage zero) In

bars.

ZW Depth to ground water table in meters.

VSO Total vertical overburden stress at depth of first Lest

reading.

Z(I) 'Test reading depth In ft.

A Control unit "A" reading in bars.

B Control unit "B" reading inl bars.

Thirust(l) lThrust force required to advance dilaluuomcter tIro pIlevio us to

current test reading.

UO Pore water pressure in bars

ED Dilatometers modulus.

ID Dilatometer material index.

KD Dilatoameter horizontal stress index

GAMMA Total unit weight of soil.

SV Effective vertical stress.

PC Preconsolidation pressure.

OCR Overconsolldation ratio ,

KO in situ coetfficient of lateral eartlh pressure.

CU Undrained shear strength.

Phi The soil's drained friction angle.

H Tangent drained constrained modulus.
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CONSOLIDATION TEST DATA

SAMPL 15

evert.

(%)
0.8
13
1.9
3.2
4.7
6.6
8.7

11.4

10.0
8-3
0.2
10.0
10.9
11.9
13.7

C,

xl0'rncm/sec

4.35
1.47
0.96
3.60
4.36
8.04
28.9
16.5

26.5
3.70
25.3
37.3
45.7
58.9
69.4

16.1 220.0

SAMPLE 16

vert.

(%)
0.5
0.9
1.5
2.5
3.8
5.9
9.0

12.3
15.7
14.6
12.9

13.3
14.0
15.0
16.4
19.4

SAMPLE 17

C,

xl0o'cm2/sec

5.69

4.47
2.96
4.34
0.78
5.07
7.15
11.8
16.7
5.79

15.0
21.3
24.5
36.0
17.8

vert.

(%)
0.8
1.1
1.8
2.8
3.8
6.0
8.7

11.2

10.1
9.8
9.9
10.2
10.7
11.6
14.1
17.2

C
,  evert.

xl10 4 cm2/sec (%)

7.54
1.40
1.85
1.45
1.94
5.21
10.7
7.3

23.2
3.52
31.1
23.2

36.7
45.1

30.7

1.0
13
1.9
2.9
4.5
6.6
8.7

11.2
14.0
13.1
12.6

12.8
13.3
14.1
15.5
18.3

SAMPLE 18

C,
x104"cm 2/sec

2.38
1.49
1.70
1.55
2.10
5.06
4.81
8.30
14.3
31.5
6.26

13.5
18.2
26.1
30.1
21.1

CONSOLIDATION TEST DATA

SAMPLE 20

vert.

(%)
0.7
1.0
1.8
3.0
4.6
6.9
9.8
13.1
16.7
15.8
14.2

14.5
15.1
16.0
17.3
20.2

Cv

xl0"'cm2/sec

1.51
0.75
1.48
2.31
2.62
5.59
8.59
13.5
14.0
23.2
7.67

14.0
18.4
40.6
24.7
20.6

SAMPLE 21

vert.

(%)
0.9
13
2.4
3.4
5.0
6.0

'10.0
12.7
16.0
15.4
11.3

12.8
14.2
15.4
16.9
19.6

Load

(t/ft2)

1/16
1/8
1/4
1/2
1
2
4
8
16
4
1
1/2
1
2
4
8
16

lSAMPLE 19 SAMPLE 22
Load

(t/f:t)

1/16
1/8
1/4
1/2
1
2
4
8
16
4
1
1/2

8
16
32
"5 tsf

vert.

(%)
0.5
0.8
1.4
2.3
3.9
6.0
8.8
11.9
15.1
14.2
12.8

13.0
13.6
14.4
15.6
18.2

Cv

xl0'cm2 /sec

031
0.87
0.80
3.43
8.22
7.31
8.38
10.0
16.8
33.8
4.71

21.7
26.4
33.8
35.1
!5.5

Cv

xl0"cmr2/sec

3.73
5.85
4.26
5.33
8.61
14.4
10.9
6.72
8.11
26.2
2.55

5.79
15.3
29.8
26.5
18.7

vert.

(%)
0.3
0.3
1.2
2.6
4.8
6.9

11.2
13.5
16.0
15.4
14.2

14.3
14.9
15.5
16.7
19.1

Cv

xl10'cmZ/sec

5.72
1.14
0.98
2.73
4.11
5.57
17.3
10.2
10.9
26.4
5.65

13.0
19.6
14.6
8.01
16.6

100

.



CONSOLIDATION TEST DATA

vrt.

(%)
0.7
12
1.7
2.9
4.5
6.8
9.9
13.2
16.5
15.7
14.3

14.6
15.2
15.9
17.1
20.3

SAMPLE 26

C,
xl0"'cmZ/sec

3.00
6.96
3.68
130
4.45
434
5.65
7.20
12.9
24.9
5.86

15.1
25.3
23.1
33.6
16.3

CONSOLIDATION TEST DATA

SAMPLE 27

vert. C

(%) x10"'cm2 /sec

0.7
1.2
2.1
3.4
5.1
7.5
10.5
13.8
17.2
16.1
14.2
14.6
15.4
16.0
18.0

3.04
2.38
5.35
5.34
5.42
4.91
7.10
8.59
10.2
17.8
5.07
15.9
14.9
23.5
23.8

SAMPLE 28

Evert. C
v

(%) xl0'Cm2/sec

0.7
1.2
2.2

3.7
5.9
9.0

12.6
16.0
20.0
18.1
17.1
17.4
18.2
19.2
20.7

21.1 16.7 24.0

10.2

6.63
17.7
5.97
6.57
8.01
12.5
13.8
24.9
5.58
15.6
19.6
24.9
28.9

SAMPLE 29

vert. CV

(%) xl0''cm2 /sec

3.75
1.48
3.12
4.83
4.88
5.54
7.04
10.0
13.6
24.2
5.95
23.7
14.2
26.5
31.4

SAMPLE 30

wErt. Cv

(%) xl0''cmz/sec

1.6
2.2
3.1
4.1
5.6
7.4
9.4

11.8
14.3
13.6
12.4
12.6
13.1
13.8
14.8

2.19
1.82
2.7

6.38
5.82
6.54
11.1
26.4
20.2
24.3
6.47
19.4
1.3
42.5
39.6

17.6 21.3 19.1 17.3 17.6

* Note New Loads

SAMPLE 23 SAMPLE 24 SAMPLE 25

Load

(t/ft2)
1/16
1/8
1/4
1/2
1
2
4
8
16
4
1
1/2
1
2
4
8
16
32

vert.

(%)
1.6
2.5
3.4
4.9
6.5
8.4
10.7
13.1
15.7
15.1
14.0

14.1
14.6
15.2
16.2
18.5

Cv

xl0'cm2 /sec

2.12
0.37
2.37
2.19
5.10
2.55
6.82
12.3
16.8
25.0
5.25

Cv

xl0"'cm2/sec

1.71
1.56
2.34
2.32
3.60
4.84
5.43
7.44
11.0
28.6
5.15

9.68
28.0
33.1
37.8
19.3

vert.

(%)
0.5
0.8
1.2
2.0
3.3
53
8.3
11.7
15.4
14.3
12.9

(%)
13
1.8
2.8
4.0
5.7
7.9
10.5
13.4
16.4
15.5
14.1

14.4
14.9
15.8
16.9
19.9

C,
x10"'cmz/sec

0.30
1.12
2.53
4.07
2.67
5.71
5.23
7.19
6.60
20.4
6.90

24.6
18.5
20.8
43.8
20.2

23.2
27.5
32.5
39.6
20.0

Load

(t/ft)

1/16
1/8
1/4
1/2
1
2
4
8
16
32
8
2
4
8
16
32
64

Y"



CONSOLIDATION TEST DATA

SAMPLE 31

Evert. C,

(%) x10'cm2/sec

0.9
1.6
2.7
4.0
5.8
7.9
10.0
12.2
14.6
13.9
12.8
13.1
13.5
14.1
15.0
17.2

SAMPLE

evert. C,

(%) x10"4cm 2/sec

SAMPLE SAMPLE

Svert. C, Evert. C,

(%) x10'"cm2/sec (%) x10'cm2/sec

8.65
2.50
8.14
7.13
103
6.58
9.44
14.4
18.0
38.1
7.63
343
38.5
45.1
48.0
21.7

' Note New Loads

UNCONSOLIDATED - UNDRAINED TRIAXIAL
COMPRESSION TEST DATA

SAMPLE DEPTH ( )peak ea c Coments
No. (ft) 2 (%) (%)

(16/ft2
)

15 29.5 532 8.88 1.58

16 32.0 840 6.83 1.74

17 34.5 604 16.07 2.38 Bulge Failure

18 37.0 532 11.74 1.95

19 39.5 625 8.77 1.69

20 42.0 604 8.33 2. "

21 44.5 502 8.33 1.48

22 47.0 573 13.53 2.94 Bulge Failure

25 54.5 522 1.18

(1) Axial Strain at ((, - o3)peak

(2) Axial Strain at 1/2(a, -c 3)peak

102

Load

(t/ft2)

1/16
1/8
1/4
1/2
1
2
4
8
16
32
8
2
4
8
16
321
64



a ,c 138 kPa 132 kP';

Ko  0.5 (Y5

S. 40.5 kPa 30.5 kl'a

Su/ao'v 0.33 0.23

Iu (iniial) 4200 kPa 21,900 kPa

i-cso) 1290 kIPa 10,700 kPa

li k)  410 kPa 750 kPia

INQ'I|: liu(iniial) was taken as sccant

nmodulus at 0.05% straini. loI aund

I ok are also secant moduli.
(peak )

0o 2 4 6 8 10

0.2

hio
04

S0.6

4J 0.8

NOTES : 1. Last consolidation increment held for 24 hours.
2. Rate of horizontal displacement varied from

0.002 to 0.003 mm/min.
3. Specimens taken from tube 19.

RFESUII TS OF DIRECT SHEAR TESTS

8

6

r4Un
Ln

2

'"



Appendix B

Soil Properties Calculation for NGES at Northwestern University

1) Vertical Hydraulic Conductivity

2) Internal Friction Angle for Sand

105

121

104



Load Load Evert AEvert e C, C, m kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2 /s ftz/day (ftz/k) (ft/day)

0.0625 0.125 0.8 0.8 0.5872 4.35 0.014 0.064 5.46E-05
0.125 0.25 1.3 0.5 0.5792 1.47 0.014 0.040 3.41E-05
0.25 0.5 1.9 0.6 0.5696 0.96 0.009 0.024 1.34E-05
0.5 1 3.2 1.3 0.5488 3.6 0.033 0.026 5.43E-05
1 2 4.7 1.5 0.5248 4.36 0.041 0.015 3.80E-05
2 4 6.6 1.9 0.4944 8.04 0.075 0.010 4.43E-05
4 8 8.7 2.1 0.4608 28.9 0.269 0.005 8.80E-05
8 16 11.4 2.7 0.4176 16.5 0.153 0.003 3.23E-05
16 32 \ \ \ \ \ \ \
4 8 \ \ \ \ \ \ \
1 2 10 \ 0.44 26.5 0.246 \ \

0.5 1 8.3 -1.7 0.4672 3.7 0.034 0.017 3.65E-05
1 2 9.2 0.9 0.4528 25.3 0.235 0.009 1.32E-04
2 4 10 0.8 0.44 37.3 0.347 0.004 8.66E-05
4 8 10.9 0.9 0.4256 45.7 0.425 0.002 5.97E-05
8 16 11.9 1 0.4096 58.9 0.548 0.001 4.27E-05
16 32 13.7 1.8 0.3808 69.4 0.645 0.001 4.53E-05
32 64 16.1 4.2 0.3424 220 2.046 0.001 1.12E-04

0.00010

Kv (ft2/day)

- Estimated Kv line

* Virgin Loading

* Unloading

A Reloading

0.3

0.00100

4)

0.00001

Sample 15 eo: 0.6 Depth: 29.5ft

-06.&i
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Load Load Evert AEvert e Cv Cv m k

(t/ft2) (k/ft2 ) (%) (%) *10-4 cm /s ft/day (ft /k) (ft/day)

0.0625 0.125 0.5 0.5 0.64175 5.69 0.080 0.040 2.00E-04
0.125 0.25 0.9 0.4 0.63515 0.032
0.25 0.5 1.5 0.6 0.62525 4.47 0.042 0.024 6.23E-05
0.5 1 2.5 1 0.60875 2.96 0.028 0.020 3.44E-05
1 2 3.8 1.3 0.5873 4.34 0.040 0.013 3.27E-05
2 4 5.9 2.1 0.55265 0.78 0.007 0.011 4.75E-06
4 8 9 3.1 0.5015 5.07 0.047 0.008 2.28E-05
8 16 12.3 3.3 0.44705 7.15 0.066 0.004 1.71E-05
16 32 15.7 3.4 0.39095 11.8 0.110 0.002 1.46E-05
4 8 14.6 -1.1 0.4091 16.9 0.157 0.000 4.50E-06
1 2 12.9 -1.7 0.43715 5.79 0.054 0.003 9.52E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 13.3 0.43055 15 0.140 \ \
4 8 14 0.7 0.419 21.3 0.198 0.002 2.16E-05
8 16 15 1 0.4025 24.5 0.228 0.001 1.78E-05
16 32 16.4 1.4 0.3794 36 0.335 0.001 1.83E-05
32 64 19.4 4.4 0.3299 17.8 0.166 0.001 1.42E-05

-O4

0t

4 0
0.00000 0.00001 0.00010

* Virgin Loading

N Unloading

A Reloading

- Estimated Kv
Line

0.00100

Kv (ft2/day)
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Depth: 32ftSample 16 eo: 0.65



Load Load avert AEvert e Cv  C m kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2/s ft/day (ft /k) (ft/day)

0.0625 0.125 0.8 0.8 0.61696 7.54 0.014 0.064 0.000
0.125 0.25 1.1 0.3 0.61207 1.4 0.013 0.024 0.00002
0.25 0.5 1.8 0.7 0.60066 1.45 0.013 0.028 0.00002
0.5 1 2.8 1 0.58436 1.94 0.018 0.020 0.00002
1 2 3.8 1 0.56806 1.94 0.018 0.010 0.00001
2 4 6 2.2 0.5322 5.21 0.048 0.011 0.00003
4 8 8.7 2.7 0.48819 10.7 0.100 0.007 0.00004
8 16 11.2 2.5 0.44744 7.3 0.068 0.003 0.00001

16 32 \ \ \ \ \ \ \
4 8 \ \ \ \ \ \ \
1 2 10.1 \ 0.46537 23.2 0.216 \ \

0.5 1 9.8 -0.3 0.47026 3.52 0.033 0.003 0.00001
1 2 9.9 0.1 0.46863 31.1 0.289 0.001 0.00002
2 4 10.2 0.3 0.46374 23.2 0.216 0.001 0.00002
4 8 10.7 0.5 0.45559 36.7 0.341 0.001 0.00003
8 16 11.6 0.9 0.44092 45.1 0.419 0.001 0.00003

16 32 14.1 2.5 0.40017 23.5 0.219 0.002 0.00002
32 64 17.2 5.6 0.34964 30.7 0.286 0.002 0.00003

I A

0.00000 0.00001 0.00010

Kv line

-0,

0.00100

K, (ft2lday)
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Load Load Evert AEvert e C, Cv mv k

(t/ft ) (k/ft 2 ) (%) (%) *10-4cm /s ft2/day (ft2/k) (ft/day)

0.0625 0.125 1 1 0.6038 2.38 0.022 0.080 1.10E-04
0.125 0.25 1.3 0.3 0.59894 1.49 0.014 0.024 2.08E-05
0.25 0.5 1.9 0.6 0.58922 1.7 0.016 0.024 2.37E-05
0.5 1 2.9 1 0.57302 1.55 0.014 0.020 1.80E-05
1 2 4.5 1.6 0.5471 2.1 0.020 0.016 1.95E-05
2 4 6.6 2.1 0.51308 5.06 0.047 0.011 3.08E-05
4 8 8.7 2.1 0.47906 4.81 0.045 0.005 1.47E-05
8 16 11.2 2.5 0.43856 8.3 0.077 0.003 1.51E-05
16 32 14 2.8 0.3932 14.3 0.133 0.002 1.45E-05
4 8 13.1 -0.9 0.40778 31.5 0.293 0.000 6.86E-06
1 2 12.6 -0.5 0.41588 6.26 0.058 0.001 3.03E-06
0.5 1 \ \ \ \ \ \ \

1 2 \ \ \ \ \ \ \

2 4 12.8 0.41264 13.5 0.126 \ \

4 8 13.3 0.5 0.40454 18.2 0.169 0.001 1.32E-05
8 16 14.1 0.8 0.39158 26.1 0.243 0.001 1.51E-05
16 32 15.5 1.4 0.3689 30.1 0.280 0.001 1.53E-05
32 64 18.3 4.2 0.32354 21.1 0.196 0.001 1.61E-05

ding

Kv line

073-

072-

OA~

0.00000 0.00001 Kv (ft2lday) 0.00010
0.00100
0.00100
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Load Load Evert Avert e C, Cv mv kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2/s ft2/day (ft2/k) (ft/day)
0.0625 0.125 0.5 0.5 0.592 0.31 0.003 0.040 7.20E-0
0.125 0.25 0.8 0.3 0.5872 0.87 0.008 0.024 1.21E-0
0.25 0.5 1.4 0.6 0.5776 0.8 0.007 0.024 1.11E-0
0.5 1 2.3 0.9 0.5632 3.43 0.032 0.018 3.58E-0
1 2 3.9 1.6 0.5376 8.22 0.076 0.016 7.63E-0
2 4 6 2.1 0.504 7.31 0.068 0.011 4.45E-0
4 8 8.8 2.8 0.4592 8.38 0.078 0.007 3.40E-0
8 16 11.9 3.1 0.4096 10 0.093 0.004 2.25E-0

16 32 15.1 3.2 0.3584 16.8 0.156 0.002 1.95E-0
4 8 14.2 -0.9 0.3728 33.8 0.314 0.000 7.36E-0
1 2 12.8 -1.4 0.3952 4.71 0.044 0.002 6.38E-0

0.5 1 \ \ \ \ \ \ \

1 2 \ \ \ \ \ \ \
2 4 13 \ 0.392 21.7 0.202 \ \

4 8 13.6 0.6 0.3824 26.4 0.246 0.002 2.30E-0
8 16 14.4 0.8 0.3696 33.8 0.314 0.001 1.96E-0
16 32 15.6 1.2 0.3504 35.1 0.326 0.001 1.53E-0
32 64 18.2 3.8 0.3088 15.5 0.144 0.001 1.07E-0

* 4

* Virgin Loading

a Unloading

A Reloading

-Estimated Kv Line

-3

-02-i

K (ft2/day)

0.00010
0.0001000100.00000 0.00001

ample 19 0.6 Depth: 39.5ft

0.00100

i



Load Load Evert AEvert e C, C, m k

(t/ft2) (k/ft 2) (%) (%) *10-4cm2 /s ft /day (ft /k) (ft/day)
0.0625 0.125 0.7 0.7 0.52922 1.51 0.014 0.056 4.91 E-05
0.125 0.25 1 0.3 0.5246 0.75 0.007 0.024 1.04E-05
0.25 0.5 1.8 0.8 0.51228 1.48 0.014 0.032 2.75E-05
0.5 1 3 1.2 0.4938 2.31 0.021 0.024 3.22E-05
1 2 4.6 1.6 0.46916 2.62 0.024 0.016 2.43E-05
2 4 6.9 2.3 0.43374 5.59 0.052 0.012 3.73E-05
4 8 9.8 2.9 0.38908 8.59 0.080 0.007 3.61 E-05
8 16 13.1 3.3 0.33826 13.5 0.126 0.004 3.23E-05
16 32 16.7 3.6 0.28282 14 0.130 0.002 1.83E-05
4 8 15.8 -0.9 0.29668 23.2 0.216 0.000 5.05E-06
1 2 14.2 -1.6 0.32132 7.67 0.071 0.003 1.19E-05

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 14.5 \ 0.3167 14 0.130 \ \
4 8 15.1 0.6 0.30746 18.4 0.171 0.002 1.60E-05
8 16 16 0.9 0.2936 40.6 0.378 0.001 2.65E-05
16 32 17.3 1.3 0.27358 24.7 0.230 0.001 1.16E-05
32 64 20.2 4.2 0.22892 20.6 0.192 0.001 1.57E-05

--.5-

-0--

0.00000 0.00001 0.00010

* Virgin Loading

N Unloading

A Reloading
-Estimated Kv Line

0.00100

Kv (ft2/day)
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Sample 20 0.54 Depth: 42ft



Load Load vert A vert e C, C, mv kv

(t/ft2) (k/ft2) (%) (%) *10-4cm /s ft2/day (ft /k) (ft/day)

0.0625 0.125 0.9 0.9 0.60542 3.73 0.035 0.072 1.56E-04
0.125 0.25 1.3 0.4 0.59894 5.85 0.054 0.032 1.09E-04
0.25 0.5 2.4 1.1 0.58112 4.26 0.040 0.044 1.09E-04
0.5 1 3.4 1 0.56492 5.33 0.050 0.020 6.19E-05
1 2 5 1.6 0.539 8.61 0.080 0.016 7.99E-05
2 4 6 1 0.5228 14.4 0.134 0.005 4.18E-05
4 8 10 4 0.458 10.9 0.101 0.010 6.33E-05
8 16 12.7 2.7 0.41426 6.72 0.062 0.003 1.32E-05
16 32 16 3.3 0.3608 8.11 0.075 0.002 9.71E-06
4 8 15.4 -0.6 0.37052 26.2 0.244 0.000 3.80E-06
1 2 11.3 -4.1 0.43694 2.55 0.024 0.007 1.01E-05

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 12.8 0.41264 5.79 0.054 \ \
4 8 14.2 1.4 0.38996 15.3 0.142 0.004 3.11E-05
8 16 15.4 1.2 0.37052 29.8 0.277 0.002 2.59E-05
16 32 16.9 1.5 0.34622 26.5 0.246 0.001 1.44E-05
32 64 19.6 4.2 0.30248 18.7 0.174 0.001 1.42E-05

* Virgin Loading

-0 Unloading
A Reloading

-Estimated Kv Line

O.3

-0.1

0.00000 0.00001 0.00010 0.00100

K, (ft 2/day)

eo: 0.62 Depth: 44.5ft

'I

Sample 21



Load Load vert AEve e C, C, mv k

(tift2) (k/ft2) (%) (%) *1 0-4cm /s ft/day (ft2 /k) (ft/day)
0.0625 0.125 0.3 0.3 0.5952 5.72 0.053 0.024 7.97E-05
0.125 0.25 0.3 0 0.5952 1.14 0.011 0.000 0.OOE+00
0.25 0.5 1.2 0.9 0.5808 0.98 0.009 0.036 2.05E-05
0.5 1 2.6 1.4 0.5584 2.73 0.025 0.028 4.44E-05
1 2 4.8 2.2 0.5232 4.11 0.038 0.022 5.25E-05
2 4 6.9 2.1 0.4896 5.57 0.052 0.011 3.39E-05
4 8 11.2 4.3 0.4208 17.3 0.161 0.011 1.08E-04
8 16 13.5 2.3 0.384 10.2 0.095 0.003 1.70E-05
16 32 16.1 2.6 0.3424 10.9 0.101 0.002 1.03E-05
4 8 15.4 -0.7 0.3536 26.4 0.246 0.000 4.47E-06
1 2 14.2 -1.2 0.3728 5.65 0.053 0.002 6.56E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 14.3 0.3712 13 0.121
4 8 14.9 0.6 0.3616 19.6 0.182 0.002 1.71E-05
8 16 15.5 0.6 0.352 14.6 0.136 0.001 6.35E-06
16 32 16.7 1.2 0.3328 8.01 0.074 0.001 3.49E-06
32 64 19.1 3.6 0.2944 16.6 0.154 0.001 1.08E-05

0.5

* Virgin Loading

S Unloading

A Reloading

S- Estimated Kv Line

0.00000 0.00001 0.00010 0.00100

K, (ft2/day)
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Load Load Evert Avert e C C, mv kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2 /s ft2/day (ft /k) (ft/day)
0.0625 0.125 1.6 1.6 0.5744 1.71 0.016 0.128 1.27E-04
0.125 0.25 2.5 0.9 0.56 1.56 0.015 0.072 6.52E-05
0.25 0.5 3.4 0.9 0.5456 2.34 0.022 0.036 4.89E-05
0.5 1 4.9 1.5 0.5216 2.32 0.022 0.030 4.04E-05
1 2 6.5 1.6 0.496 3.6 0.033 0.016 3.34E-05
2 4 8.4 1.9 0.4656 4.84 0.045 0.010 2.67E-05
4 8 10.7 2.3 0.4288 5.43 0.050 0.006 1.81E-05
8 16 13.1 2.4 0.3904 7.44 0.069 0.003 1.30E-05
16 32 15.7 2.6 0.3488 11 0.102 0.002 1.04E-05
4 8 15.1 -0.6 0.3584 28.6 0.266 0.000 4.15E-06
1 2 14 -1.1 0.376 5.15 0.048 0.002 5.48E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 14.1 0.3744 9.68 0.090
4 8 14.6 0.5 0.3664 28 0.260 0.001 2.03E-05
8 16 15.2 0.6 0.3568 33.1 0.308 0.001 1.44E-05
16 32 16.2 1 0.3408 37.8 0.352 0.001 1.37E-05
32 64 18.5 3.3 0.304 19.3 0.179 0.001 1.16E-05

mm

.2-

0.00001 0.00010 0.00100

K, (ft2 day)

a!

ding

Kv Line
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Load Load evert AZvet eCv Cv mv kv

(t/ft2) (k/ft2) (%) (%) *10 -4cm2/s ft2/day (ft2 /k) (ft/day)
0.0625 0.125 1.3 1.3 0.58907 2.12 0.020 0.104 1.28E-04
0.125 0.25 1.8 0.5 0.58102 0.37 0.003 0.040 8.59E-06
0.25 0.5 2.8 1 0.56492 2.37 0.022 0.040 5.50E-05
0.5 1 4 1.2 0.5456 2.19 0.020 0.024 3.05E-05
1 2 5.7 1.7 0.51823 5.1 0.047 0.017 5.03E-05
2 4 7.9 2.2 0.48281 2.55 0.024 0.011 1.63E-05
4 8 10.5 2.6 0.44095 6.82 0.063 0.007 2.57E-05
8 16 13.4 2.9 0.39426 12.3 0.114 0.004 2.59E-05

16 32 16.4 3 0.34596 16.8 0.156 0.002 1.83E-05
4 8 15.5 -0.9 0.36045 25 0.233 0.000 5.44E-06
1 2 14.1 -1.4 0.38299 5.25 0.049 0.002 7.11E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 14.4 0.37816 23.2 0.216
4 8 14.9 0.5 0.37011 27.5 0.256 0.001 1.99E-05
8 16 15.8 0.9 0.35562 32.5 0.302 0.001 2.12E-05
16 32 16.9 1.1 0.33791 39.6 0.368 0.001 1.58E-05
32 64 19.9 4.1 0.28961 20 0.186 0.001 1.49E-05

-076

0.00001 0.00010

S Virgin Loading

9- 4 * Unloading

A Reloading

-Estimated Kv Line

0.00100
0.00100

K, (ft2/day)

m i

0.00000

Sample 24 0.61 Depth: 52ft



Load Load Evo, AEvt e C, C, mv kv

(t/ft2) (k/ft2) (%) (%) *1 04cmI/s ft/day (ftz/k) (ft/day)
0.0625 0.125 0.5 0.5 0.6119 0.3 0.003 0.040 6.96E-06
0.125 0.25 0.8 0.3 0.60704 1.12 0.010 0.024 1.56E-05
0.25 0.5 1.2 0.4 0.60056 2.53 0.024 0.016 2.35E-05
0.5 1 2 0.8 0.5876 4.07 0.038 0.016 3.78E-05
1 2 3.3 1.3 0.56654 2.67 0.025 0.013 2.01E-05
2 4 5.3 2 0.53414 5.71 0.053 0.010 3.31E-05
4 8 8.3 3 0.48554 5.23 0.049 0.008 2.28E-05
8 16 11.7 3.4 0.43046 7.19 0.067 0.004 1.77E-05
16 32 15.4 3.7 0.37052 6.6 0.061 0.002 8.86E-06
4 8 14.3 -1.1 0.38834 20.4 0.190 0.000 5.43E-06
1 2 12.9 -1.4 0.41102 6.9 0.064 0.002 9.34E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 13.1 0.40778 24.6 0.229 \ \
4 8 13.7 0.6 0.39806 18.5 0.172 0.002 1.61E-05
8 16 14.6 0.9 0.38348 20.8 0.193 0.001 1.36E-05
16 32 16 1.4 0.3608 43.8 0.407 0.001 2.22E-05
32 64 19.6 5 0.30248 20.2 0.188 0.002 1.83E-05

1

A
-A,--

0.00001

0.7

-O,-

0.00010

* Virgin Loadin
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Load Load E6vert Avert e C Cv my kv

(t/ft2) (k/ft 2) (%) (%) *10-4cm 2/s ft2/day (ft2/k) (ft/day)

0.0625 0.125 0.7 0.7 0.63845 3 0.028 0.056 9.75E-05
0.125 0.25 1.2 0.5 0.6302 6.96 0.065 0.040 1.62E-04
0.25 0.5 1.7 0.5 0.62195 3.68 0.034 0.020 4.27E-05
0.5 1 2.9 1.2 0.60215 1.3 0.012 0.024 1.81E-05
1 2 4.5 1.6 0.57575 4.45 0.041 0.016 4.13E-05
2 4 6.8 2.3 0.5378 4.34 0.040 0.012 2.90E-05
4 8 9.9 3.1 0.48665 5.65 0.053 0.008 2.54E-05
8 16 13.2 3.3 0.4322 7.2 0.067 0.004 1.72E-05
16 32 16.5 3.3 0.37775 12.9 0.120 0.002 1.54E-05
4 8 15.7 -0.8 0.39095 24.9 0.232 0.000 4.82E-06
1 2 14.3 -1.4 0.41405 5.86 0.054 0.002 7.93E-06

0.5 1 \ \ \ \ \ \ \
1 2 \ \ \ \ \ \ \
2 4 14.6 0.4091 15.1 0.140
4 8 15.2 0.6 0.3992 25.3 0.235 0.002 2.20E-05
8 16 15.9 0.7 0.38765 23.1 0.215 0.001 1.17E-05
16 32 17.1 1.2 0.36785 33.6 0.312 0.001 1.46E-05
32 64 20.3 4.4 0.31505 16.3 0.152 0.001 1.30E-05

* Virgin Loading

* Unloading

A Reloading

0.3 - Estimated Kv Line

0.00000 0.00001 0.00010 0.00100

K, (ft2/day)
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Sample 27 eo: 0.61 Depth: 59.5ft

-0.5

* Virgin Loading

.4 a Unloading

A Reloading

- Estimated Kv Line

0.1

0.00100

K, (ft2/day)
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Load Load vert Avert e Cv Cv mv kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2 /s ftz/day (ft /k) (ft/day)
0.0625 0.125
0.125 0.25 0.7 0.7 0.59873 3.04 0.028 0.056 9.88E-05
0.25 0.5 1.2 0.5 0.59068 2.38 0.022 0.020 2.76E-05
0.5 1 2.1 0.9 0.57619 5.35 0.050 0.018 5.59E-05
1 2 3.4 1.3 0.55526 5.34 0.050 0.013 4.03E-05
2 4 5.1 1.7 0.52789 5.42 0.050 0.009 2.67E-05
4 8 7.5 2.4 0.48925 4.91 0.046 0.006 1.71E-05
8 16 10.5 3 0.44095 7.1 0.066 0.004 1.55E-05

16 32 13.8 3.3 0.38782 8.59 0.080 0.002 1.03E-05
32 64 17.2 3.4 0.33308 10.2 0.095 0.001 6.29E-06
8 16 16.1 -1.1 0.35079 17.8 0.166 0.000 2.37E-06
2 4 14.2 -1.9 0.38138 5.07 0.047 0.002 4.66E-06
4 8 14.6 0.4 0.37494 15.9 0.148 0.001 9.23E-06
8 16 15.4 0.8 0.36206 14.9 0.139 0.001 8.65E-06
16 32 16 0.6 0.3524 23.5 0.219 0.000 5.11E-06
32 64 18 2 0.3202 23.8 0.221 0.001 8.63E-06
64 128 21.1 3.1 0.27029 16.7 0.155 0.000 4.69E-06

S A

0.00000 0.00001 0.00010



Sample 28 0.64 Depth: 62ft
Load Load Evert AEvert e Cv C, mv kv

(t/ft2) (k/ft2) (%) (%) *10-4cm 2 /s ft2/day (ft2/k) (ft/day)
0.0625 0.125 0
0.125 0.25 0.7 0.7 0.62852 10.2 0.095 0.056 3.31E-04
0.25 0.5 1.2 0.5 0.62032 \ \ 0.020 \
0.5 1 2.2 1 0.60392 6.63 0.062 0.020 7.70E-05
1 2 3.7 1.5 0.57932 17.7 0.165 0.015 1.54E-04
2 4 5.9 2.2 0.54324 5.97 0.056 0.011 3.81E-05
4 8 9 3.1 0.4924 6.57 0.061 0.008 2.95E-05
8 16 12.6 3.6 0.43336 8.01 0.074 0.005 2.09E-05
16 32 16 3.4 0.3776 12.5 0.116 0.002 1.54E-05
32 64 20 4 0.312 13.8 0.128 0.001 1.00E-05
8 16 18.1 -1.9 0.34316 24.9 0.232 0.000 5.72E-06
2 4 17.1 -1 0.35956 5.58 0.052 0.001 2.70E-06
4 8 17.4 0.3 0.35464 15.6 0.145 0.001 6.79E-06
8 16 18.2 0.8 0.34152 19.6 0.182 0.001 1.14E-05
16 32 19.2 1 0.32512 24.9 0.232 0.001 9.03E-06
32 64 20.7 1.5 0.30052 28.9 0.269 0.000 7.86E-06
64 128 24 3.3 0.2464 17.6 0.164 0.001 5.27E-06

* Virgin Loading

04 Unloading
A Reloading

-Estimated Kv Line

0.3

0 lA

-,&.

0.00000 0.00001 0.00010 0.00100

K, (ft2/day)
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Load Load Evert Avert e Cv Cv m kv

(t/ft2) (k/ft2) (%) (%) *10 4cm2 /s ft2/day (ft2 /k) (ft/day)
0.0625 0.125 0
0.125 0.25 0.7 0.7 0.61859 3.75 0.035 0.056 1.22E-04
0.25 0.5 1.3 0.6 0.60881 1.48 0.014 0.024 2.06E-05
0.5 1 2.3 1 0.59251 3.12 0.029 0.020 3.62E-05
1 2 3.7 1.4 0.56969 4.83 0.045 0.014 3.92E-05
2 4 5.5 1.8 0.54035 4.88 0.045 0.009 2.55E-05
4 8 8 2.5 0.4996 5.54 0.052 0.006 2.01E-05
8 16 10.9 2.9 0.45233 7.04 0.065 0.004 1.48E-05

16 32 14.1 3.2 0.40017 10 0.093 0.002 1.16E-05
32 64 17.6 3.5 0.34312 13.6 0.126 0.001 8.63E-06
8 16 16.3 -1.3 0.36431 24.2 0.225 0.000 3.80E-06
2 4 14.4 -1.9 0.39528 5.95 0.055 0.002 5.47E-06
4 8 14.8 0.4 0.38876 23.7 0.220 0.001 1.38E-05
8 16 15.6 0.8 0.37572 14.2 0.132 0.001 8.24E-06
16 32 16.7 1.1 0.35779 26.5 0.246 0.001 1.06E-05
32 64 18.3 1.6 0.33171 31.4 0.292 0.001 9.11E-06
64 128 21.3 3 0.28281 19.1 0.178 0.000 5.20E-06

0~6

* Virgin Loading

* Unloading

A Reloading

- Estimated Kv Line

0.3

0-2-

0.00000 0.00001 0.00010 0.00100

Kv (ft2/day)
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Sample 30 0.42 Depth: 67ft
Load Load ever AEvt e C, C, mv kv

(t/ft2) (k/ft2 ) (%) (%) *1 0-cm2 /s ft2/day (ft2/k) (ft/day)
0.0625 0.125 0
0.125 0.25 1.6 1.6 0.39728 2.19 0.020 0.128 1.63E-04
0.25 0.5 2.2 0.6 0.38876 1.82 0.017 0.024 2.53E-05
0.5 1 3.1 0.9 0.37598 2.7 0.025 0.018 2.82E-05
1 2 4.1 1 0.36178 6.38 0.059 0.010 3.70E-05
2 4 5.6 1.5 0.34048 5.82 0.054 0.008 2.53E-05
4 8 7.4 1.8 0.31492 6.54 0.061 0.005 1.71E-05
8 16 9.4 2 0.28652 11.1 0.103 0.003 1.61E-05
16 32 11.8 2.4 0.25244 26.4 0.246 0.002 2.30E-05
32 64 14.3 2.5 0.21694 20.2 0.188 0.001 9.16E-06
8 16 13.6 -0.7 0.22688 24.3 0.226 0.000 2.06E-06
2 4 12.4 -1.2 0.24392 6.47 0.060 0.001 3.75E-06
4 8 12.6 0.2 0.24108 19.4 0.180 0.000 5.63E-06
8 16 13.1 0.5 0.23398 25.3 0.235 0.001 9.18E-06
16 32 13.8 0.7 0.22404 42.5 0.395 0.000 1.08E-05
32 64 14.8 1 0.20984 39.6 0.368 0.000 7.18E-06
64 128 17.3 2.5 0.17434 17.6 0.164 0.000 3.99E-06

0
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Performed by Woodward Clyde Consultants

Hammer: Automatic Trip Hammer (assume UK Pilcon)
Weight: 140 Ib
Casing: 4 inch
Falling: 30 inch

DepthMID v AVG N CN CER CRL CS C N1  N6O N1 60 Dr O) ' ) I
)
AVG

(ft) (ksf) (Skempton) (fine sand) (DM7) (Sch, 1978) (De Mello) (Peck)
6 0.714 25 1.47 1 .00 0.75 1.20 1.00 36.85 22.50 33.16 0.78 34 39 40 37 37.5

11 1.309 10 1.21 1.00 0.75 1.20 1.00 12.09 9.00 10.88 0.44 34 35.5 36 30.5 34
16 1.7038 30 1.08 1.00 0.85 1.20 1.00 32.40 30.60 33.05 0.78 34 39 40 37 37.5
21 1.9868 22 1.00 1.00 0.95 1.20 1.00 22.07 25.08 25.16 0.68 34 38.5 40 34.5 36.75

DrAv 0.67 
4)

T AVG 36.4

Performed by STS Consultants Ltd.

Hammer: Automatic Safety Hammer (assume Standard Sampler)
Weight: 140 Ib
Falling: 30 inch

DepthMID 'v AVG N CN CER CRL s CB N 1  N N1 60 Dr 0' ' 0' O'AVG

(ft) (ksf) (Skempton) (fine sand) (DM7) (Sch, 1978) (De Mello) (Peck)
0.5 0.0595 18 1.94 0.90 0.75 1.00 1.00 34.96 12.15 23.60 0.66 34 38.5 40 33.5 36.5
2.5 0.2975 64 1.74 0.90 0.75 1.00 1.00 111.43 43.20 75.21 1.00 34 42.5 36 41 38.375
5.5 0.6545 49 1.51 0.90 0.75 1.00 1.00 73.84 33.08 49.84 0.95 34 42 40 41 39.25
8 0.952 29 1.36 0.90 0.75 1.00 1.00 39.30 19.58 26.52 0.69 34 39 40 35 37

10.5 1.2495 30 1.23 0.90 0.75 1.00 1.00 36.93 20.25 24.93 0.67 34 38.5 40 34.5 36.75
13 1.534 66 1.13 0.90 0.75 1.00 1.00 74.70 44.55 50.42 0.96 34 42 40 41 39.25

15.5 1.6755 72 1.09 0.90 0.85 1.00 1.00 78.36 55.08 59.94 1.00 34 42.5 40 41 39.375
18 1.817 52 1.05 0.90 0.85 1.00 1.00 54.49 39.78 41.69 0.87 34 41 40 39 38.5

20.5 1.9585 59 1.01 0.90 0.95 1.00 1.00 59.62 50.45 50.97 0.96 34 42 40 41 39.25
23 2.1 17 0.98 0.90 0.95 1.00 1.00 16.59 14.54 14.18 0.51 34 36 36 31.5 34.375

DrAvg 0.83 4
'T AVG 37.9

4
'design 37



Appendix C

Pile Design Analysis for NGES at Northwestern University

1) Driven Pile Capacity Estimation

2) Drilled Pile Capacity Estimation

3) Load Transfer Analysis

123

124

125



Side Friction in Sand
O'Design: 37 (degree)

DrDesign: 75 (%)

Pipe Pile H Pile 14*73

Diameter Length Thickness Eeq. Diameter., Length T. Tip Area width depth Eeq

(ft) (ft) (ft) (ksf) (ft) (ft) (ft
2
) (ft) (ft) (ksf)

1.50 50.00 0.03 358333 1.50 50.00 0.15 1.22 1.13 363783

Poulos & Davis
Pipe or H pile

Driven Depth Kstan8' d/B G's fs L Area Qsf

'* d B (ft) (ksf) (ksf) (ft) (ft
2
) (kip)

(degree) 2.50 1.20 1.67 0.30 0.36 5.00 23.56 8.41
37.75 7.50 7.50 1.20 5.00 0.89 1.07 5.00 23.56 25.23

12.50 1.20 8.33 1.34 1.61 5.00 23.56 37.85
17.50 1.20 11.67 1.34 1.61 5.00 23.56 37.85
21.50 1.20 14.33 1.34 1.61 3.00 14.14 22.71

Qsf .btotal 132.06

Design Curves
(Vesic, 1970; Tomlinson, 1973) Pipe or H pile

Dr fs L Area Qst

(%) (ksf) (ft) (ft2) (kip)

75.00 0.90 23.00 108.38 97.55

Skin Friction in Clay
d 28 (degree)

Depth a'vo Su PI p SUcorrected a a a Lembed 3

(ft) (ksf) (ksf) (%) (ksf) (Tomlinson) (API) (Peck) (D&O, 1983 (ft) (Meyerhof) (Burland)

29.5 2.47 0.66 10 1.15 0.76 1 0.95 0.85 0.9 6.5 0.36 0.27
34.4 2.78 0.41 20 1.00 0.41 1 1 0.9 1 11.4 0.355 0.27
37.7 2.98 0.33 23 0.97 0.32 1 1 0.92 1 14.7 0.35 0.27
41 3.17 0.37 18 1.02 0.38 1 1 0.9 1 18 0.345 0.27

44.3 3.36 0.4 16 1.05 0.42 1 1 0.9 1 21.3 0.34 0.27
47.6 3.58 0.41 18 1.02 0.42 1 1 0.9 1 24.6 0.33 0.27
50.8 3.79 0.38 20 1.00 0.38 1 1 0.9 1 27.8 0.325 0.27

Depth L Area aAvg fs Qfs PAVG fs Qfs

Pipe or H pile a Method a Method 3 Method 3 Method

(ft) (f (ft) (ksf) (kip) (ksf) (kip)

29.5 6.5 30.63 0.93 0.70 21.51 0.32 0.78 23.87
34.4 4.9 23.09 0.98 0.40 9.23 0.31 0.87 20.07
37.7 3.3 15.55 0.98 0.31 4.88 0.31 0.92 14.36

41 3.3 15.55 0.98 0.37 5.74 0.31 0.98 15.17
44.3 3.3 15.55 0.98 0.41 6.36 0.31 1.03 15.95
47.6 3.3 15.55 0.98 0.41 6.36 0.30 1.07 16.71
50.8 2.4 11.31 0.98 0.37 4.19 0.30 1.13 12.76

Qts tot 58.27 Q tot 118.91

123

fs low Qf avg Qfs high

(kip) (kip) (kip)
sand 97.55 114.80 132.06

clay 58.27 88.59 118.91
Total 155.81 203.39 250.97



Side Friction in Sand
V'Design: 37 (degree)
DrDesign: 75 (%)

Drilled Pier
Diameter Length E

(ft) (ft) (ksf)
1.50 50.00 720000

Poulos & Davis
Pipe or H pile

Drilled Depth Kstan8' d/B O'vs fs L Area Qsf

* d B (ft) (ksf) (ksf) (ft) (ft2) (kip)
(degree) 2.50 0.40 1.67 0.30 0.12 5.00 23.56 2.80

34.00 6.30 7.50 0.40 5.00 0.89 0.36 5.00 23.56 8.41
12.50 0.40 8.33 1.12 0.45 5.00 23.56 10.60
17.50 0.40 11.67 1.12 0.45 5.00 23.56 10.60
21.50 0.40 14.33 1.12 0.45 3.00 14.14 6.36

QSf subtotal 38.77

Design Curves
(Vesic, 1970; Tomlinson, 1973) Buried Pile

Dr fs L Area Qsf

(%) (ksf) (ft) (ft2) (kip)
75.00 0.50 23.00 108.38 54.19

Skin Friction in Clay
V': 28 (degree)
Ltotal Embed: 27 (ft)

2.03 62.15
2.28 52.68
2.44 38.00
2.60 40.47
2.76 42.89
2.94 45.68
3.11 35.16

Qfs totp 317.01

Qfs low Qfs avg Qfs high

(kip) (kip) (kip)
sand 38.77 46.48 54.19
clay 317.01 317.01 317.01
Total 355.79 363.50 371.21

124

Depth a'vo 3
AVG Depth L Area PAVG fs Qfs

(ft) (ksf) (K&J) Drilled Pile 3 Method 3 Method

(ft) (ft) (ft) (ksf) (kip)
29.5 2.47 0.82 29.5 6.5 30.63 0.82
34.4 2.78 0.82 34.4 4.9 23.09 0.82
37.7 2.98 0.82 37.7 3.3 15.55 0.82
41 3.17 0.82 41 3.3 15.55 0.82

44.3 3.36 0.82 44.3 3.3 15.55 0.82
47.6 3.58 0.82 47.6 3.3 15.55 0.82
50.8 3.79 0.82 50.8 2.4 11.31 0.82



Double Layers Analysis

Lemb QT ro Lsand Lclay Go G1 G2 GL 1 2 )X1  X2 IL1 lgL2 Qbl Wsand Wclay Wtotal

(ft) (kip) (ft) (ft () (ft (ksf) ) (ksf) (ksf) (ksf) (kip) (in) (in) (in)

18" 50 0 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 0.00 0.000 0.000 0.000

Pipe 50 50 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 0.57 0.022 0.004 0.026

Pile 50 100 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 1.14 0.044 0.008 0.052
50 150 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 1.72 0.065 0.012 0.078
50 200 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 2.29 0.087 0.016 0.103
50 250 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 2.86 0.109 0.021 0.129
50 300 0.75 23.0 27.0 717 717 34 34 6.48 3.81 500 10539 0.76 0.25 3.43 0.131 0.025 0.155

Double Layers Analysis

Lemb QT ro Lsand Lclay Go GI G2 GL 41 42 1 12 gLI gIL2 Qbl Wsand Wclay Wtotal
(ft) (kip) (ft) ( (kf) (ft (ksf) ) (ksf (ksf)(ksf) (ksf) (kip) (in) (in) (in)

14*73 50 0 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 0.00 0.000 0.000 0.000
H 50 25 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 0.29 0.011 0.002 0.013

Pile 50 75 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 0.86 0.032 0.006 0.038
50 125 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 1.43 0.054 0.010 0.064
50 175 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 2.00 0.075 0.014 0.090
50 225 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 2.58 0.097 0.018 0.115
50 275 0.75 23.0 27.0 717 717 34 34 6.48 3.81 507 10699 0.76 0.25 3.15 0.118 0.023 0.141

Double Layers Analysis

Leb QT ro Lsand cliay Go G1 G2 GL 51 42 k1 X2 iLj gL2 Qb Wsa.nd Wclay Wtotal
(ft) (kip) (ft) (ft) (ft) (ksf) (ksf) (ksf) (ksf) (kip) (in) (in) (in)

18" 50 0 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 0.00 0.000 0.000 0.000

Bored 50 50 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 0.56 0.014 0.004 0.018

Pile 50 100 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 1.11 0.028 0.008 0.036
(casedor 50 150 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 1.67 0.042 0.012 0.054

slurry) 50 200 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 2.23 0.056 0.016 0.072
50 250 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 2.78 0.070 0.020 0.090
50 300 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 3.34 0.085 0.024 0.108
50 350 0.75 23.0 27.0 860 717 34 34 6.60 3.81 1004 21176 0.53 0.18 3.90 0.099 0.028 0.126
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