
SURVIVABILITY THROUGH DYNAMIC RECONFIGURATION

BY

SUBRAMANIAM R. STHANU

B.TECH (HONS.)

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR, 1996

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

© 1998 Massachusetts Institute of Technology
All rights reserved

Signature of Author

I Subramaniam R. Sthanu
April 14, 1998

Certified by

Professor Steven R. Lerman
Director, Center of Educational Computing Initiatives

Thesis Supervisor

Certified by
Dr. Thomas M. Parks

Technical Staff, Information Systems Technology Group,
MIT Lincoln Laboratory

Thesis Supervisor

Accepted by
' - " -Pre'P5Tfeor Joseph M. Sussman

Chairman, Department Committee on Graduate Students

JUN 02193

SURVIVABILITY THROUGH DYNAMIC RECONFIGURATION

BY

SUBRAMANIAM R. STHANU

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

ABSTRACT

Information survivability encompasses many aspects of security and reliability for
computers, communication networks, and information systems in general. In this
research, we propose the use of dynamic reconfiguration as a diversity technique to build
robust systems capable of surviving denial of service attacks. Dynamic reconfiguration
can be of different kinds. Here we focus on dynamically switching among different
configurations, enabling an information system to continue to operate despite successful
attacks against individual network nodes or particular protocols. To demonstrate this
concept, we have developed a prototype collaborative planning tool with a shared
drawing area, a text-based chat area, and voice communication, implemented using the

TM
Java programming language. The prototype focuses on a particular situation in which
our proposed survival strategy can be used and demonstrates a means of implementing
robust systems using our concept of dynamic reconfiguration.

Thesis Supervisor: Prof. Steven R. Lerman
Title: Director, Center of Educational Computing Initiatives and Class of 1922 Professor
of Civil and Environmental Engineering

Thesis Supervisor: Dr. Thomas M. Parks
Title: Technical Staff, Information Systems Technology Group, MIT Lincoln Laboratory

TU Java is a registered trademark of Sun Microsystems Inc.

Dedicated

To

Amma & Appa

On my

23 rd B 'Day.

-3-

Acknowledgments

While "a cast of thousands" may be an overstatement, this document would not have
come into being but for many people - and a few deserve special mention. First of all, I
would like to thank my thesis supervisor, Dr. Thomas M. Parks, for his guidance and the
time he spent towards this document, which I can be proud of for the rest of my life. His
invaluable advice and ideas laid the foundation for this research and steered it towards
completion.

I would like to thank my co-supervisor, Prof. Steven R. Lerman for his valuable
comments on the work and for the support he extended towards me throughout my stay at
MIT. Working at CECI, has been a memorable experience. I would like to thank the
staff and students at CECI, and especially Dr. Judson Harward for his encouragement and
suggestions during my stint at the CECI.

I would like to thank Dr. Clifford J. Weinstein, Director of the Information systems
Technology Group at MIT Lincoln Laboratory, for supporting this research and urging
me towards the completion of this project work. MIT Lincoln Lab was definitely a
gorgeous place to work and a great learning experience. I would like to thank the staff
and students of Group 62 for setting a great work environment.

I would like to thank all my friends at MIT whom I met during the two wonderful years
spent at Boston. I would like to specially mention my roommate Chandra for proof
reading this document, Gangu for the technical discussions, and Rajul for all the care and
encouragement. I would also like to thank Prof. John R. Williams, Cynthia, Jesse and
Linda for their advice and help.

I would like to thank my parents and my brother for their ever-reliable love and affection.
Last but most definitely not the least - "Thank you God for everything ".

-4-

Table of Contents

ABSTRACT 2

ACKNOWLEDGEMENTS 4

TABLE OF CONTENTS 5

LIST OF FIGURES 7

LIST OF EXAMPLES 8

1. INTRODUCTION 11

1.1. Definition of Survivability 13

1.2. Need for Information Survivability 15

1.3. Denial of Service Attacks 17

1.4. Difference between Survivability and Traditional Security/Fault Tolerance 18

1.5. Dynamically Reconfigurable Multimedia Conferencing Tool 20

2. RELATED WORK 21

2.1. Related Work in Information Survivability 21

2.2. Java-based Conferencing Tools 25

3. SURVIVABILITY THROUGH DYNAMIC RECONFIGURATION 27

3.1. Dynamic Reconfiguration 27

3.2. Description of Configurations 31

3.2.1. Unicast Peer-Peer Configuration 32

3.2.2. Client-Server Configuration 35

3.2.3. Multicast Peer-Peer Configuration 37

3.3. Attack Scenario 38

3.4. Summary 40

-5-

4. PROTOTYPE - A SURVIVABLE CONFERENCING TOOL 43

4.1. Components of CollabTool 44

4.1.1. Class CollabComponent 44

4.1.2. The WhiteBoard - wb 45

4.1.3. The ChatBoard - cb 48

4.1.4. The AudioTool - at 49

4.1.5. The ConfigurationManager - manager 53

4.1.6. CollabTool 55

4.2. Design of the Connections in CollabTool 57

4.2.1. InputChannel and OutputChannel Interfaces 58

4.2.2. Class SocketInputChannel and SocketOutputChannel 59

4.2.3. Class PipedInputChannel and PipedOutputChannel 61

4.3. Design of the Client-Server Configuration 63

4.3.1. Class Server 64

4.3.2. Class Handler 65

4.3.3. Class ClientConfiguration 66

4.4. Design of the Peer-Peer Configuration 67

4.4.1. Class MultiInputChannel and MultiOutputChannel 68

4.4.2. Class PeerConfiguration 71

4.5. Design of the Dynamic Reconfiguration 72

4.5.1. Class SwitchInputChannel and SwitchOutputChannel __ 72

4.5.2. Class ConfigurationManager (contd.,) 74

4.6. Summary 75

5. CONCLUSIONS 77

5.1. Research Summary 77

5.2. Future Work and Extensions 78

REFERENCES 81

-6-

List of Figures

Figure 3.1: Logical Configuration of a Unicast Client-Server System 28

Figure 3.2: Physical Configuration of a Unicast Client-Server System 29

Figure 3.3: Black Box Representing the Connection Abstraction 30

Figure 3.4: Peer-Peer Connection between Two Processes 33

Figure 3.5: Fully Inter-Connected Peer-Peer Connection among Five Processes 34

Figure 3.6: Unicast Routing in a Peer-Peer Configuration 35

Figure 3.7: Client-Server Configuration 36

Figure 3.8: Multicast Routing in a Peer-Peer Configuration 38

Figure 3.9: Server Attacked and Disabled 39

Figure 3.10: Reconfigure to Fully Inter-Connected Peer-Peer Configuration 40

Figure 4.1: Screen Shot of the WhiteBoard, wb 46

Figure 4.2: Screen Shot of the ChatBoard, cb 48

Figure 4.3: Screen Shot of the AudioTool, at 50

Figure 4.4: Screen Shot of the ConfigurationManager, manager 53

Figure 4.5: Initial GUI of Coll abTool 55

Figure 4.6: CollabTool Awaiting Connection 56

Figure 4.7: Coll abTool GUI after Connections 57

Figure 4.8: Client-Server Configuration among CollabTools 64

Figure 4.9: Peer-Peer Configuration between Two Processes 68

Figure 4.10: Design of Mul ti InputChannel 70

-7-

List of Examples

Example 4.1: connect method of class CollabComponent

Example 4.2: mouseDragged method of class Whi teboard

Example 4.3: run method of the WhiteBoard thread

Example 4.4: actionPerformed method of class ChatBoard

Example 4.5: run method of Cha tBoard thread

Example 4.6: mousePressed method of class AudioTool

Example 4.7: mouseReleased method of class AudioTool

Example 4.8: Construction of Recorder

Example 4.9: run method of the Recorder thread

Example 4.10: run method of Player thread

Example 4.11: actionPerformed method of class ConfigurationManager

Example 4.12: i temStateChanged method of class ConfigurationManager _

Example 4.13: run method of Configura ti onManager thread

Example 4.14: Interface InputChannel

Example 4.15: Interface OutputChannel

Examole 4.16: Construction of Socke t Inru tChannel

Example 4.17:

Example 4.18:

Example 4.19:

Example 4.20:

Example 4.21:

Example 4.22:

Example 4.23:

Example 4.24:

Example 4.25:

Example 4.26:

Example 4.27:.

Example 4.28:

readObject method of SocketInputChannel

Construction of Socke tOu tpu tChannel

wri teObject method of SocketOutputChannel

Creation of PipedInpu tChannel

readObject method of PipedInputChannel

Creation of PipedOu tpu tChannel

wri teObject method of PipedOutputChannel

run method of Server thread

run method of Handler thread

broadcast method of class Handler

connect method of class ClientConfiguration

wri teobject method of class Mul tiOutputChannel

-8-

45

47

47

49

49

51

51

52

52

52

54

54

54

58

58

59

60

60

60

62

62

62

62

65

65

66

67

69

A v --1

Example 4.29: addChannel method of class Mul tilnputChannel 70

Example 4.30: run method of Mul tiInputChannel thread 70

Example 4.31: connect (String) method of class PeerConfiguration 71

Example 4.32: connect (Socket) methodof class PeerConfiguration 72

Example 4.33: setChannel method of class SwitchInputChannel 73

Example 4.34: readObject method of class Swi tchInputChannel 73

Example 4.35: setChannel method of class Swi tchOutputChannel 73

Example 4.36: writeObject method of class Swi tchOutputChannel 73

Example 4.37: setConfiguration method of class ConfigurationManager_ 74

Example 4.38: connect method of class ConfigurationManager 75

Example 4.39: setChannel method of class ConfigurationManager 75

-9-

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK.

-10-

Chapter One

1. INTRODUCTION

In the realm of networked information systems, the escalation of offensive threats versus

defensive counter measures makes it difficult to build a system that is totally invulnerable

to attack. Attacks on systems can be either internal or external. Sometimes accidents

have an adverse effect on the system similar to the effect of an attack. Three kinds of

analysis can be performed on systems prone to attacks: vulnerability analysis, lethality

analysis and survivability analysis.1 Vulnerability analysis addresses the ease of

attacking or neutralizing the system. For example, in the case of information systems, in

a client-server configuration, vulnerability can refer to the ease of implementing a denial

of service attack on the server. Lethality analysis addresses the impact of an attack on the

system. For example, when the server is subject to a denial of service attack there could

be varying degrees of damage done to the client-server system. Survivability aims at the

'Report on the Background of DARPA's research in the area of Information Survivability --
http://www.darpa.mil/ito/research/is/index.html

- 11 -

robust operation of systems when they are subject to such attacks. Information

survivability involves study of the survivability of large-scale information systems.

Information Survivability is a challenging and relatively new area of research. It deals

with the design of robust information systems that are capable of surviving attacks and

providing continued service in whole or in part, despite intentional or accidental

incapacitation of significant portions of the system. This thesis acknowledges the need

for survivable systems and presents a strategy for building survivable information

systems. A proof-of-concept prototype has been implemented.

In the remainder of this chapter, we discuss the importance of survivability, the

difficulties involved in building survivable systems, and the differences between

traditional security and survivability. In the last section we introduce our prototype

conferencing tool.

Chapter 2 provides an insight into related research in the area of information

survivability. We also examine other available conferencing tools and distinguish them

from our prototype conferencing tool.

Chapter 3 explains our strategy of dynamic reconfiguration for building survivable

information systems. An example scenario, where dynamic reconfiguration can be used

as a survivability strategy against denial of service attacks and the relevant configurations

- 12-

are described. The prototype we have built, a survivable conferencing tool, implements

the dynamic reconfiguration.

In Chapter 4, the elements of the prototype conferencing tool, its design features and the

classes designed to implement dynamic reconfiguration are explained.

In Chapter 5, we conclude with a summary of our work and discuss directions for future

work.

1.1. Definition of Survivability

Survivability has been a difficult term to define. One proposed definition is: the

ability of a system to complete its mission, in whole or in part, in a timely manner,

despite the incapacitation of significant portions of the system by attack, failure or

accident. The US Army defines survivability as the ability to avoid or withstand the

effects of enemy action and continue mission requirements. 2 The term system is used

in a broad sense here, and includes networks and large-scale information systems.

The term mission refers to a set of very high-level or abstract requirements or goals.

Missions are not confined to military settings, because any project has an objective

2 Army Survivability Information Resource Database -
http://surviac.flight.wpafb.af.mil/prodserv/product_guide/armydat.html

- 13-

[EFLLM97]. Information Survivability is the study of survivable information

systems.

For example, if a financial system shuts down for 12 hours during a period of

widespread power outages caused by a hurricane, the system should preserve the

integrity and confidentiality of its data and resume its essential services after the

period of environmental stress is over. If this occurs, then the system can reasonably

be judged to have fulfilled its mission. However, if the same system shuts down

unexpectedly for 12 hours under normal conditions and deprives its users of essential

financial services, the system can reasonably be judged to have failed its mission,

even if data integrity and confidentiality are preserved.

Information Survivability is more than just computer security, safety and fault

tolerance; it is a combination of all three. It encompasses many aspects of security

and reliability for computers, communication networks, and information systems in

general.

Survivability is not an all or nothing phenomenon. There are varying degrees of

surviving. Survivability involves designing fault tolerant systems in which some

faults are caused intentionally by attacks. Survivability has remained a muddled

mixture of different ideas such as reliability, fault-tolerance, safety and availability.

From a measurement standpoint, survivability is no easier to quantify than any of the

- 14-

other characteristics listed above---probably less so, since survivability is a composite

of some or all of the above mentioned ill-defined terms [VMG97].

1.2. Need for Information Survivability

Research in the area of Information Survivability involves developing technologies

that create strong barriers to attack, detect malicious activities, isolate and repel such

activities, and guarantee minimum continued operation of essential and critical

system functions in the face of concerted information warfare attacks.

The need for research in the area of Information Survivability has increased for two

main reasons. First, systems are increasingly interconnected using Internet

technology. Vulnerabilities in this technology or in any connected and networked

system can be exploited from anywhere in the network. Most of the security and

survivability practices to date have been based on a bounded system paradigm that

assumes administrative control over all of the systems' computational and

communication resources. This approach does not support the design of systems that

must survive in an unbounded network domain. By unbounded network domain we

refer to networks such as the Internet that have no central administrative control, no

unified security policy and those in which it is difficult to control the number and

nature of nodes connected to the network. Most of the systems developed today have

to serve in such unbounded domains. A public Web server and its clients may exist

- 15-

within many different administrative domains on the Internet. There is no central

authority that requires all the clients to be configured in a particular fashion as

expected by a Web server. For example, a Web server supporting an E-commerce

application may require some plug-in to be installed on the client in order to support a

secure transaction. Owing to the unbounded nature of the environment, there might

exist a previously installed plug-in that could corrupt, subvert or damage the Web

server [EFLLM97]. Survivability should focus on preserving essential services in

unbounded environments, even when the systems in such environments are

penetrated or compromised [AHH97].

Second, these systems increasingly make use of commercial hardware and software.

Because these commercial products were not designed to be secure, they are easy to

penetrate. Due to the wide use of a few products, most systems are vulnerable to the

same attacks, and many of these attacks are implemented in tools freely available on

the Internet. Popular commercial and public domain software components offer an

attacker a ubiquitous set of targets, with well-known and typically unvarying internal

structure. This lack of variability allows a single attack strategy to have a wide-

ranging and potentially devastating impact. For example, an incident that occurred

in the fall of 1988 illustrates the fact that all systems and networks are, to some

degree, susceptible to attack by destructive programs. On November 2, 1988, a

computer "worm" was introduced into the Internet. It replicated uncontrollably for

several days by taking advantage of a flaw in the E-mail program sendmail.

Eventually, it infected over 6,200 computers nationwide, and overwhelmed the

- 16-

processing capabilities of many infected machines until they failed completely

[JN95]. Thus, commercial technology is not engineered to levels of security and

robustness adequate for building critical information systems.

The construction of large-scale information systems from off-the-shelf components

whose internal structure is well known, combined with the complexity of designing

and implementing software, suggests that no amount of hardening can guarantee the

invulnerability of a system to external attacks [LL97]. This inability to build breach-

proof systems triggers the need to build robust systems resistant to attacks.

1.3. Denial of Service Attacks

Denial of Service attacks can be defined as attacks interfering with the normal

operation of a server, network, or other resources, reducing the capacity of the system

to perform its intended functions. Denial of Service can occur due to an attack

flooding a server with bogus requests. In some cases a server can also be accidentally

flooded with more requests than it can handle, causing the same impact as an attack.

Such attacks are very difficult to detect and thwart. For example, a user can send

several requests to the server, exceeding the server's capacity to handle such requests.

All requests could have false return addresses, so that the server is unable to find the

user when it tries to send a response. The server waits, sometimes more than a

minute, before closing the connection. When it does close the connection, the attacker

- 17-

can send a new batch of forged requests, and begin the process again--tying up the

service indefinitely. On July 18th 1997, a Swedish site that challenged Internet users

to break its Macintosh Web server was hit by a denial of service attack. Hackers not

only blocked surfers from accessing the overseas site but also attacked a well-known

U.S. site - MacInTouch, http://www.macintouch.com. 3 Even as recently as March 3 rd

1998, there were numerous customer reports of malicious network-based, denial of

service attacks launched against their networks.4

1.4. Difference between Survivability and Traditional

Security/Fault Tolerance

Survivability is quite different from traditional security. It is important to realize the

difference between these two terms often used in the context of information warfare.

Computer Security has been traditionally used as a binary term suggesting that at any

moment a system is either safe or compromised [BCK98]. While traditional security

of a system mainly deals with aspects of identification, authentication and

confidentiality through cryptography, survivability of a secure system is its ability to

continue its secure operations in the event of an attack.

3 Hackers attack Mac sites - http://www.info-sec.com/denial/denial_072397a.html-ssi
4 Update on Network Denial of Service Attack - http://www.info-sec.com/denial/denial_030598a.html-ssi

- 18-

Survivable systems are composed of components that collectively accomplish their

mission despite active attacks that might damage significant portions of the system.

Robustness under attack is the essential characteristic that distinguishes survivable

systems from secure systems. Survivability can benefit from computer security

research and provide a framework for integrating security with other disciplines that

can contribute to system survivability [LL97].

Though the concept of survivability includes fault tolerance, it is not equivalent to it.

Fault tolerance relates to the statistical probability of an accidental fault or

combination of faults, not to malicious attack. For example, an analysis of a system

may reveal that the simultaneous occurrence of three statistically independent faults

will cause the system to fail. The probability of the three independent faults occurring

simultaneously by accident may be extremely small, but an intelligent adversary with

knowledge of the system's internals can orchestrate the simultaneous occurrence of

these three faults and bring down the system. A fault-tolerant system most likely does

not address the possibility of the three faults occurring simultaneously, if the

probability of occurrence is below a threshold of concern. A survivable system

requires a contingency plan to deal with such a possibility [EFLLM97].

- 19-

1.5. Dynamically Reconfigurable Multimedia Conferencing

Tool

In this thesis, our primary concern is to design a distributed information system, such

as a collaborative planning tool, that will gracefully degrade and survive denial of

service attacks directed at individual network nodes. We prototype a multimedia

conferencing tool that uses dynamic reconfiguration to achieve this functionality. In

Chapter 3 we explain a scenario in which a system uses dynamic reconfiguration to

switch over to a different configuration or protocol to avoid the effects of an attack.

In Chapter 4 we describe our multimedia conferencing tool that consists of a shared

white-board, a text-based chat area and a means of voice communication. This

prototype, which we shall refer to as "CollabTool" has been built with the ability

to dynamically switch its configuration from a fully interconnected peer-peer

configuration to a client-server configuration. Our prototype could also switch among

several other protocols, though this has not yet been demonstrated. CollabTool

has been built using the object-oriented Java M programming language [AG96] as a

proof-of-concept implementation to test dynamic reconfiguration as a survival

strategy.

Java is a registered trademark of Sun Microsystems Inc.

- 20 -

- -- -- ·

Chapter Two

2. RELATED WORK

In the following sections, we examine related research in the area of information

survivability. We also distinguish other available Java based conferencing tools from our

prototype conferencing tool.

2.1. Related Work in Information Survivability

Developing logically correct software and testing as a means for demonstrating

correctness have been a focus of computer science research during the last two

decades. Unfortunately, present day distributed systems, due to their complexity and

size, preclude both of the above. Real systems have very few specified formal

properties and are generally difficult to test. Developing and demonstrating

survivable distributed systems remains an important research goal [VMG97].

-21 -

Secure systems use cryptography to provide confidentiality, authentication and

integrity for communication between systems. Current research in the field of

computer system security takes a narrow view and focuses on hardening a system

using firewall technology, or other security measures for host protection, in order to

prevent a break-in or other malicious attack. It pays little attention to detection of and

reaction to denial of service attacks. Previous work on operating system security has

been sponsored by defense establishments and has focused on multilevel security that

aims to prevent inappropriate access to various levels of classified information. This

technology is not applicable to commercial applications because this concept of

security is too narrow and rigid to be usable outside defense establishments. 5

At present, systems are rarely designed with security considerations. Security is

generally ignored during design stages and later achieved through post-design patches

or other add-ons. Survivability at the design stage is the only viable approach that

can withstand both the evolution of the system and the evolution of the networked

environment to which the system belongs. Security mechanisms that can be

customized for the varied needs of many sectors, such as financial, business, health-

care and defense, will encourage mainstream vendors to include them, rather than

having to depend on a niche security industry offering add-ons and patches.

5 Report on the Background of DARPA's research in the area of Information Survivability --
http://www.darpa.mil/ito/research/is/index.html

- 22 -

One approach to the design of survivable information systems has been to provide

survivability through redundancy. Ensemble [H98] is a group-ware system being

developed at Cornell University. The project is an effort to build a communication

system with availability, reliability, fault-tolerance, consistency and security. It uses

redundancy as its survivability strategy. But redundancy has its own drawbacks.

Although it is an interesting approach to survivability, redundancy by itself is

insufficient because backup systems will have identical vulnerabilities. A survivable

system would require each backup system to offer equivalent functionality, but to

exhibit significant variance from the others in its implementation. That would thwart

any attempt to compromise the primary system and all the backup systems with a

single attack.

Another approach to survivability has been to provide software diversity based on

software mutation - an automated technique for modifying software at the source-

code level.6 Reliable Software Technologies' research on Analytical Investigation of

Software Mutation for Increased Information Survivability aims at building an

analytical framework describing the vulnerability of distributed programs to repeated

attack. This is used to determine the characteristics that must be built into survivable

software systems and then experiments using their techniques for software mutation

at source-code level are tested.

6 Software Mutation for Information Survivability by RST - http://www.rstcorp.com/mvsec.html

- 23 -

The Multi-Agent Systems Laboratory at University of Massachusetts, Amherst, is

investigating the use of distributed adaptive coordination to enhance survivability

[BLZ98]. They are developing distributed algorithms to recognize and explain the

cause of unacceptable performance of a distributed, multi-agent system. The

explanation generated by the diagnosis algorithms is used by other components of the

agent to reorganize processing and improve performance given current capabilities

and resources. With this approach, they hope to achieve a higher degree of

survivability when there are software errors, hardware malfunctions or hostile attacks.

Run-time reconfiguration (RTR) is another approach to developing scalable and

reliable computing environments. The Reconfigurable Logic Laboratory in Brigham

Young University is investigating development of new programming models and

application interfaces that will support RTR [HW95].

The Infospheres project at California Institute of Technology is investigating

compositional methods of obtaining high confidence dynamically reconfigurable

scalable distributed systems. 7 One focus of their work is the reconfiguration of

objects and the connections between objects while they execute.

These approaches to survivability are vastly different from our proposed survival

strategy of dynamically switching between different configurations.

7 Executive Summary of CalTech Infospheres Project -http://www.infospheres.caltech.edu/infospheres.html

- 24 -

2.2. Java-based Conferencing Tools

Since the advent of Java as a programming language [AG96] a number of distributed

chat tools, shared whiteboard applications and other multimedia conferencing tools

have emerged on the World Wide Web. But not all of these systems are survivable

and robust. Most of them have been developed rapidly and lack the fault tolerance

required of applications used to exchange valuable and confidential information.

Most of them do not even include the simplest of security features in their design.

The Gamelan World Wide Web-site 8 lists a number of such "Network and

Communication" systems. Most of these applications are client-server applications,

probably due to the ease of network programming and implementing server-side

applications in the Java programming language [HHSW97]. In general, the

conferencing tools available have a server actively awaiting connections and clients

connect to this server in order to interact with other clients. Some of the well-known

collaboration tools that follow the client-server architecture include Habanero9 - a

Java based collaborative application developed at the University of Illinois at Urbana

Champaign, and Shaking Hands Collaboration Tools & WebCollab'o - Java based

applications developed at the IBM AlphaWorks.

8 Gamelan - The Official Directory for Java - http://www.developer.com/directories/pages/dir.java.html

9 NSCA Habanero - http://www.ncsa.uiuc.edu/SDG/Software/Habanero/index.html

10 IBM AlphaWorks - WebCollab - http://www.alphaWorks.ibm.com/formula/

- 25 -

An alternative to client-server design is a fully inter-connected peer-peer

configuration. Each participant is connected to every other participant and a central

server is not required. The Personal Chat application developed by Pinguin

Software" has been implemented using this architecture. The CalTech Infospehers

Project group also describes the implementation of a Java based distributed system

that supports peer-peer communication among processes spread across a network

[CRSMR96].

The multimedia conferencing tool we have developed, CollabTool, is a much

simpler tool, but has a survivability mechanism designed into it, which the above

mentioned conferencing tools do not possess. CollabTool has the capacity to

function using both of the above configurations for connectivity among participants

and can also dynamically switch between these two configurations.

1 Pinguin Software - http://bewoner.dma.be/campbell/

- 26 -

Chapter Three

3. SURVIVABILITY THROUGH

DYNAMIC RECONFIGURATION

The following sections introduce our concept of dynamic reconfiguration for building

survivable information systems. We present an example scenario in which dynamic

reconfiguration can be applied to help a system survive denial of service attacks.

3.1. Dynamic Reconfiguration

The configuration of a system usually consists of three parts: the logical

configuration, the physical configuration and the mapping of the logical configuration

onto the physical configuration. A logical configuration defines a set of processes

and their logical communication channels. Logical reconfiguration may involve the

- 27 -

addition or removal of logical processes or communication channels. A physical

configuration consists of a set of processors and physical communication links such

as the hosts, routers and network links of the Internet. Physical reconfiguration may

involve the addition or removal of processors or communication links. The mapping

between logical and physical configurations assigns the processes to processors and

the logical communication channels to physical paths in the network. The following

figures represent a logical configuration of a client-server system (Figure 3.1) and the

physical configuration of the same system (Figure 3.2). In Figure 3.2, the server "S"

is physically mapped on to the same processor as process "A" and routing details are

also explicitly represented.

Figure 3.1: Logical Configuration of a Unicast Client-Server System.

- 28 -

N

-I

Figure 3.2: Physical Configuration of a Unicast Client-Server System.

Reconfiguration is said to be dynamic if the act of modifying the configuration of a

system occurs while the processes are executing and interacting [SG95]. Dynamic

Reconfiguration is a term generally used in conjunction with physical configuration 2,

but we are using the term with reference to the logical configuration or architecture of

the system and its mapping onto the physical configuration of the system. Dynamic

reconfiguration is a powerful technique for building robust and fault-tolerant systems.

In order to survive denial of service attacks; the proposed system must have the

capability to dynamically reconfigure to avoid the effects of an attack. There might

be a decrease in performance and efficiency in this new trade-off configuration, but

12 Reconfigurable Data Acquisition Platform, Acquisition systems - http://www.acqsys.com/

- 29 -

I

the system becomes more robust because it survives attacks that are deadly in the

earlier configuration. The implementation can be such that the processes are

oblivious to the changes made to the configuration.

We can consider our distributed system to be a set of processes connected together in

some fashion. We can represent the connections by a black box as shown in Figure

3.3.

Figure 3.3: Black Box Representing the Connection Abstractions.

The system is designed such that the processes A, B, C, D and E continue interacting

oblivious to the internal details of the black box. The black box could represent a

fully inter-connected unicast or multicast peer-peer configuration among all of the

- 30-

/

processes, or it could represent a client-server configuration. It could represent

different protocols, or different versions of a protocol. Our system design allows

dynamic switching of the contents of the black box in a way that is invisible to the

active processes.

The system can be pre-programmed with several diverse communication

configurations. When a disruptive attack is detected, the black box switches from its

current configuration to another configuration where the impact of the attack will be

less severe and the system can continue to function uninterrupted. For example, if

the server in a client-server system becomes over-loaded or fails due to a denial of

service attack, the system is reconfigured in reaction to the attack; clients disconnect

from the server and use a fully inter-connected peer-to-peer configuration among

themselves. But the denial of service attack has little or no effect on the system in

this configuration, and so the system as a whole is able to survive attacks on the

server.

3.2. Description of Configurations

Distributed information systems can be implemented using one of several different

communication configurations. Each configuration can be implemented using one of

several protocols. Below we describe the design of our distributed information

system, which uses dynamic reconfiguration as a survival strategy. In order to

-31 -

explain the idea of survivability through dynamic reconfiguration we design a robust

conferencing application: a system that helps in collaborative planning and that

continues to function when subject to denial of service attacks. Instead of building

our conferencing tool in just one configuration, such as a typical client-server

configuration, we design it with the ability to continue functioning in another

configuration if required. In this example we discuss survival against denial of

service attacks, but we believe that dynamic reconfiguration can be extended for

design of other fault-tolerant systems and applications subject to different kinds of

situations and attacks [SPL98].

3.2.1. Unicast Peer-Peer Configuration

Peers can be defined as communicating processes that are on the same protocol layer

of the network. The connections between peer processes are peer-peer connections.

In a peer-peer configuration, all communicating network nodes are equals, with no

central control [BG91]. If there are N processes, then each of them has (N-l)

connections to the other processes, requiring a total of N(N-1)/2 bi-directional

connections. Examples of distributed programs in peer-peer configuration include the

Unix utilities Talk and YTalk. YTalk is in essence a multi-user chat program. 13

13 Ytalk man page - http://www2.uchicago.edu/ns-acs/asa/man/ytalk.html

-32-

Let us consider a collection of processes initially connected in a peer-peer

configuration where there is full connectivity among all the nodes. Initially, there are

just two processes, directly connected as peers as shown in Figure 3.4. As other

processes join the ongoing session, more connections are established. The

configuration evolves into a fully inter-connected peer-peer configuration in which

every process is connected with every other process as shown in Figure 3.5.

Figure 3.4: Peer-Peer Connection between Two Processes.

- 33 -

• fi lI

Figure 3.5: Fully Inter-Connected Peer-Peer Connections among Five Processes.

This configuration is robust, for even if one of the processes is attacked and disabled,

the others can continue collaborating uninterrupted because they do not depend on the

attacked process for communication. As the conference proceeds, suitable recovery

actions can be taken at the affected system and it can rejoin the session. But this

configuration does not use bandwidth efficiently because multiple copies of the same

data traverse a single network link as shown in Figure 3.6. Hence, this configuration

does not scale to a large number of participants.

- 34 -

CI
I

I \

/"000'

N

I'll

Figure 3.6: Unicast Routing in a Peer-Peer Configuration.

3.2.2. Client-Server Configuration

Our system is also designed to function in a client-server configuration. A client can

be broadly defined to be a process that requests a service of another process. A server

can be defined to be a process providing services for other processes connected to it

through a network. In a client-server configuration, a server communicates with a

group of clients. The clients depend on the server, and are subordinate to it [BG91].

Group communication is accomplished with multiple unicast connections between the

server and the clients as shown in Figure 3.7. This requires only N bi-directional

- 35 -

connections to support N clients. The Microsoft NetMeeting 14 is an application

following the client-server configuration.

Figure 3.7: Client-Server Configuration.

This configuration makes more efficient use of bandwidth than a peer-to-peer

configuration. But it is not as robust because an attack on the server can slow down

or even halt the entire system. The client-server configuration, being one of the most

common configurations for distributed information systems, needs robustness against

such attacks to be built into it for more reliable service. For example, the server could

14 Microsoft NetMeeting - http://www.microsoft.com/netmeeting/

- 36-

be replicated, and the resulting multi-server configuration would be more robust. But

replicated server systems are beyond the scope of this thesis.

3.2.3. Multicast Peer-Peer Configuration

As designed, our system can also function in a multicast configuration. Group

communication can be accomplished by multiple conventional unicast (point to point)

connections, with the sender establishing separate connections to each receiver, or by

a multicast (multi-point to multi-point) connection. As long as the group is small, the

unicast approach is reasonable. But as the group size increases, the inefficient

utilization of bandwidth can affect performance. Figure 3.6 showed unicast

connections with intermediate routers when they are connected in a peer-peer

configuration.

Multicast is a more scalable approach in which data streams are replicated by routers

within the network instead of requiring each sender to generate redundant data

streams. This utilizes bandwidth better because no more than one copy of each data

stream traverses any link in the network [T97]. Figure 3.8 shows multicast

connections among the same group as in Figure 3.6. The MASH toolkit [M97] is a

good example of an application built in peer-peer configuration using multicast

connections between the nodes.

- 37 -

/

N

Figure 3.8: Multicast Routing in a Peer-Peer Configuration.

3.3. Attack Scenario

A robust system would be designed to function under both peer-peer configuration

and client-server configuration using unicast or multicast routing. As explained, the

client-server configuration is not very fault tolerant. If the server is attacked, (Figure

3.9) then the system fails and the conference is interrupted.

-38-

~I

'Nb*ý

Figure 3.9: Server Attacked and Disabled.

The design of the system allows us to switch to a fully inter-connected peer-peer

configuration in the event of an attack on the server, as shown in Figure 3.10. The

remaining processes can continue with their session uninterrupted. Thus we have a

survivable system that can continue to function even if a part of the system is

incapacitated by an attack. There might be a decrease in performance due to the

reconfiguration but the design is a trade-off between efficiency and survivability.

- 39 -

Figure 3.10: Reconfigure to Fully Inter-Connected Peer-Peer Configuration.

Thus by switching between two different configurations, one of which is more fault-

tolerant but less efficient than the other, the system can survive denial of service

attacks.

3.4. Summary

In this chapter we described a survivable system that uses dynamic reconfiguration as

a strategy to increase robustness. The system was designed to function under

different configurations and protocols, and to switch between them. The next chapter

-40-

\\//

/Z'00ý
1

explains our prototype implementation of a system capable of dynamic

reconfiguration.

In this thesis we concentrate on a system's capability to survive attacks through

dynamic switching of its configuration. There are other aspects of information

survivability, such as the use of encryption for confidentiality, integrity and

authentication, network monitoring and intrusion detection that are beyond the scope

of this thesis. The design of the conferencing tool, explained in the next chapter,

concentrates on the classes required to achieve dynamic reconfiguration.

In our prototype, the CollabTool, we switch between two configurations of peer-

peer and client-server. We explain CollabTool and all its features in detail in the

next chapter. CollabTool has been designed to test if the system can actually

switch from one configuration to another and continue its function in an acceptable

manner.

-41 -

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK.

- 42 -

Chapter Four

4. PROTOTYPE - A SURVIVABLE

CONFERENCING TOOL

In Chapter 2 we introduced our prototype conferencing tool, CollabTool, as one

that has survivability features not present in other conferencing tools. In the

following sections, we describe the various components of the CollabTool and

their function. We step thorough the design of the prototype with illustrations of a

few of the critical methods in important classes and explain how the intended

functionality is achieved. Detailed code for all methods and classes is not provided.

A few screen shots of the prototype are included.

CollabTool is a conferencing tool built using version 1.1 of the Java programming

language [AG96]. It uses dynamic reconfiguration as a survival strategy. It is

designed to function under a fully interconnected peer-peer configuration and a

client-server configuration, and has the ability to switch between these configurations.

- 43 -

The classes designed to implement this switching can be used by other applications to

switch between various configurations and protocols.

4.1. Components of CollabTool

CollabTool consists of:

* wb, a shared whiteboard.

* cb, a text-based chat area.

* at, a platform dependent means of voice communication.

* manager, which manages the configuration and enables connections.

The conferencing tool has been designed to use objects that provide an abstraction of

the underlying complications of network streams.

4.1.1. Class CollabComponent

CollabComponent is a base class from which all the components of the

CollabTool are derived. It is used to set the InputChannel and

OutputChannel for the components of the conferencing tool. Each of the

components of our prototype uses the InputChannel and OutputChannel as

-44 -

their basic interface to network communication. This provides an abstraction of the

actual streams being used for communication. The InputChannel and

OutputChannel are described later in Section 4.2.1. The connect method of the

CollabComponent class sets the InputChannel and OutputChannel as

shown in Example 4.1.

Example 4. I: connec t method of class Col 1 abComponen t.

4.1.2. The WhiteBoard - wb

A whiteboard is a simple drawing utility, commonly supplied as part of collaboration

frameworks to allow users to share a common drawing space. Our whiteboard, wb,

provides a means of graphically representing and sharing ideas. wb uses a canvas on

which participants can draw with the help of a mouse as shown in Figure 4.1.

- 45 -

public void connect(InputChannel in, OutputChannel out) {
this.in = in;
this.out = out;

}

Figure 4.1: Screen Shot of the WhiteBoard, wb.

wb is derived from the CollabComponent class described earlier; it uses an

InputChannel and an OutputChannel for communication with other

whiteboards. A line object that is drawn on the shared canvas in response to

mouse events forms the essence of the whiteboard design. The line object contains

the "x" and "y" coordinates for the starting and ending points of the line segments to

be transmitted to the shared whiteboard.

When the mouse is pressed, the initial position is recorded. When the mouse is

dragged and released, new line objects are created and drawn on the whiteboard

and also sent to all the other instances of the whiteboard through the

-46-

OutputChannel. For example, the mouseDragged method is implemented as

shown in Example 4.2, where "out" is the OutputChannel of wb.

Example 4.2: mouseDragged method of class Whi teBoard.

The objects written to the OutputChannel by one whiteboard are read from the

InputChannel by the other whiteboards connected to it. wb constantly reads

line objects from the InputChannel and displays them on the canvas. The

implementation is shown in Example 4.3, in which "in" is the InputChannel of

wb.

Example 4.3: run method of the WhiteBoard thread.

-47 -

public void mouseDragged(MouseEvent event)
Line line = newLine(event);
board.paint(line);

out.writeObject(line);
}

public void run() {
while (true) {

Line line = (Line)in.readObject();
board.paint(line) ;
Thread.yield() ;

I

4.1.3. The ChatBoard - cb

The ChatBoard, cb is another of the components of CollabTool. cb represents a

simple, text based chat utility that enables participants to exchange text messages.

Figure 4.2: Screen Shot of the ChatBoard, cb.

cb consists of a text input area and a separate text output area as shown in Figure 4.2.

Our simple chat tool allows participants to type messages in the input area that are

transmitted to all the participants and appear on the output area of cb.

Similar to the whiteboard, the cb is derived from CollabComponent; it uses an

InputChannel and an OutputChannel for communication. A message

object is read from the input area and displayed on the output area. cb writes the

message object to the OutputChannel when the Return key is pressed, as shown

in Example 4.4 in which "out" is the OutputChannel of cb, and

"textfield" and "textarea" represent the input area and the output area

respectively.

-48-

public void actionPerformed(ActionEvent event)
String message = textfield.getText();
textarea.append (message);
textfield. setText ("");

out.writeObject(message);
out. flush() ;

Example 4.4: acti onPerformed method of class Cha tBoard.

Objects are read continuously from the InputChannel and displayed on the output

area as shown in Example 4.5, in which "in" is the InputChannel of cb.

public void run() {
while (true){

String message = (String)in.readObject();
textarea.append (message);
Thread.yield() ;

Example 4.5: run method of Cha tBoard thread.

4.1.4. The AudioTool - at

The last conferencing utility of our prototype is a means of voice communication

provided by the AudioTool - at (Figure 4.3).

- 49 -

Figure 4.3: Screen Shot of the AudioTool, a t.

at consists of a button that is released (default position) to listen to incoming audio

and is pressed down while transmitting audio to other participants. Thus at either

records or plays audio at any point of time.

at uses the Unix audio device file, /dev/audio for audio input and output and hence is

not a platform independent implementation. The user must have access to /dev/audio

to use at. The version of Java being used, JDK 1.1,15 provides support for playing

audio only, so we must use /dev/audio to record and play the messages.

at uses an InputChannel and an OutputChannel for communication. The

sound object is created using the AudioClip interface provided in the java.applet

package of JDK1.1. When the audio button is pressed, sound is captured from the

microphone and sent to the network through the OutputChannel. The

mousePressed method is shown in Example 4.6. When the button is released

sound arriving from the network through the InputChannel is played through the

speaker. The mouseReleased method is shown in Example 4.7.

15 JDK 1.1.6 Documentation - http://www.javasoft.com/products/jdk/1.1/docs/index.html

-50-

Example 4.6: mousePressed method of class AudioTool .

public void mouseReleased(MouseEvent event)

recorder. setEnabled(false);
player.setEnabled(true);

}

Example 4.7: mouseRel eased method of class Audi oTool.

at uses two threads, Recorder and Player, to constantly write sound objects

to the OutputChannel and read sound objects from the InputChannel. The

Recorder is created as shown in Example 4.8. The Recorder's run method is

shown in Example 4.9, in which "in" represents the audio device and "out" is the

OutputChannel of at. The Player's run method is illustrated by Example

4.10 in which "in" refers to the InputChannel of at, and "out" represents the

audio device.

-51-

public void mousePressed(MouseEvent event)

player. setEnabled(false);
recorder. setEnabled(true);

}

public Recorder(OutputChannel out)
enabled = false;
this.out = out;

in = new FileInputStream("/dev/audio");
new Thread(this).start();

Example 4.8: Construction of Recorder.

public void run() {
while(true) {

in.read (buffer);

if (enabled) {
SoundBite sound = new SoundBite(buffer);
out.writeObject(sound);
out.flush() ;

}

Thread.yield() ;
}

Example 4.9: run method of the Recorder thread.

public void run() {
while (true) {

SoundBite sound = (SoundBite)in.readObject();

if (enabled) {
sound.play (out) ;

Thread.yield();

Example 4.10: run method of P1 ayer thread.

-52-

4.1.5. The ConfigurationManager - manager

The ConfigurationManager has a text input area for typing the IP address or name of

the machine to which the connection is requested. It has a drop-down menu for

choosing the configuration of the CollabTool as shown in Figure 4.4.

Figure 4.4: Screen Shot of the ConfigurationManager, manager.

As implemented there are two configuration choices: Peer-Peer and Client-Server. It

has a Connect button that establishes connections using the selected configuration

and supplies CollabTool with the InputChannels and OutputChannels

required for the different components to communicate through the network.

manager maintains a list of configurations and switches to a new configuration that

is selected, without interrupting the CollabTool components. It also sends a

message to all the other connected managers when a new configuration is selected.

This is achieved because the manager is also a CollabComponent. Thus it

also accepts configurations sent by other instances over the network. Examples 4.11

-53-

T - -1

and 4.12 illustrate the event handling of CollabTool. The ConfigurationManager

constantly listens to new configurations being selected as shown in Example 4.13.

public void actionPerformed(ActionEvent event){
configuration.connect(address.getText());

Example 4.11: actionPerformed method of
class Configura tionManager.

public void itemStateChanged(ItemEvent event){
if (event.getStateChange() == ItemEvent.SELECTED)

String selection = (String)event.getItem();
out.writeObject(selection);
out.flush() ;

setConfiguration(selection);

Example 4.12: i temStateChanged method of
class Configura tionManager.

public void run() {
while (true) {

String selection = (String)in.readObject();
choice. select (selection);
setConfiguration(selection);
Thread.yield() ;

I

Example 4.13: run method of Configura ti onManager thread.

- 54 -

4.1.6. CollabTool

Class CollabTool creates instances of the conferencing components, the shared

white-board, the chat area and the audio tool and sets up the graphical user interface.

It also adds the ConfigurationManager area that controls the configuration being used

and enables the connections.

Figure 4.5: Initial GUI of Coll abTool.

-55-

Figure 4.6: Coll abTool Awaiting Connection.

The tool is initialized with all of its components disabled and with no default

configuration selected (Figure 4.5). After a configuration is selected, the Connect

button is enabled (Figure 4.6), and after a connection is established the individual

tools are enabled (Figure 4.7).

-56-

WhiteBoard

ChatBoard

- AudioTool

ConfigurationManager

Figure 4.7: Coll abTool GUI after Connections.

4.2. Design of the Connections in CollabTool

In the previous section, we described the various components of CollabTool. For

instances of such CollabTools to communicate with each other under different

configurations, they require network connections to be established among them. In

this section we describe the interfaces and classes that are used for setting up these

connections.

- 57 -

4.2.1. InputChannel and OutputChannel Interfaces

The InputChannel and OutputChannel interfaces provide an abstraction to

hide the details of streams and sockets from the application. They provide a simple

interface that can be used by the components of the conferencing tool.

InputChannel and OutputChannel interfaces are a subset of

ObjectOutput and ObjectInput interfaces provided in the standard java.io

package. InputChannel and OutputChannel prevent the user from writing

and reading anything other than objects. This makes it possible to multiplex objects

received from multiple sources into one InputChannel without damaging the

objects. The InputChannel and OutputChannel interfaces have been defined as shown

in Example 4.14 and 4.15.

public interface InputChannel {
public abstract Object readObject();
public abstract void close();

Example 4.14: Interface Inpu tChannel.

public interface OutputChannel (
public abstract void writeObject(Object object);
public abstract void flush();
public abstract void close();

Example 4.15: Interface Ou tpu tChannel.

-58 -

The individual components, the whiteboard, the chatboard and the audiotool all use

the InputChannel and the OutputChannel. But these are interfaces with a

high level of abstraction and do not actually establish any network connections. The

SocketInputChannel and the SocketOutputChannel classes establish

socket connections.

4.2.2. Class SocketInputChannel and SocketOutputChannel

The SocketInputChannel and the SocketOutputChannel implement the

InputChannel and the OutputChannel interfaces. The

SocketInputChannel provides an InputChannel interface to a Socket (a

class in the standard java.net package that provides a network connection) as shown

in Example 4.16. It has a readObj ect method (Example 4.17) that reads objects

from this InputChannel.

public SocketInputChannel(Socket socket) {
in = new ObjectInputStream(socket.getInputStream());

Example 4.16: Construction of Socke tInpu tChannel .

- 59 -

public Object readObject() {
return(in.readObject());

}

Example 4.17: readObj ec t method of Socke tInput Channel .

The SocketOutputChannel is similar, and provides an OutputChannel

interface to a Socket as shown in Example 4.18 and has a writeObj ect method

(Example 4.19) that writes objects to this OutputChannel.

public SocketOutputChannel(Socket socket) {
out = new ObjectOutputStream(socket.getOutputStream());

Example 4.18: Construction of Socke tOu tpu t Channel.

public void writeObject(Object object)
out.writeObject(object);

Example 4.19: wri teObject method of SocketOutputChannel.

Thus the SocketInputChannel and SocketOutputChannel provide the

connections and streams required to establish a peer-peer connection between two

instances of CollabTool, as shown in Figure 3.4, or client-server connection as

shown in Figure 3.7, but these details are hidden and CollabTool deals only with

an InputChannel and an OutputChannel.

- 60-

The SocketInputChannel and SocketOutputChannel have to be extended

further to achieve a fully interconnected peer-peer configuration among many

instances of the CollabTool (as shown in Figure 3.5). This is achieved though the

MultiInputChannel and the MultiOutputChannel, which are explained

in Section 4.4.1.

4.2.3. Class PipedInputChannel and PipedOutputChannel

The PipedInputChannel and PipedOutputChannel implement the

InputChannel and the OutputChannel interfaces respectively. They are very

similar in function to the SocketInputChannel and the

SocketOutputChannel except that they do not deal with network connections.

Instead they build an ObjectInputStream and an ObjectOutputStream

from a PipedInputStream and a PipedOutputStream respectively. This

enables communication through memory rather than over the network. Examples

4.20, 4.21, 4.22 and 4.23 show the creation of the PipedInputChannel and

PipedOutputChannel and their readObject and writeObject methods

respectively.

-61 -

public PipedInputChannel(PipedInputStream in)
this.in = new ObjectInputStream(in);

Example 4.20: Creation of PipedInpu tChannel.

public Object readObject()
return(in.readObject());

}

Example 4.21: readObject method of PipedInpu tChannel.

public PipedOutputChannel(PipedOutputStream out)
this.out = new ObjectOutputStream (out);

}

Example 4.22: Creation of PipedOu tpu tChannel.

public void writeObject(Object object)
out.writeObject(object);

}

Example 4.23: wri teObject method of PipedOutputChannel .

-62-

4.3. Design of the Client-Server Configuration

Individual instances of CollabTool described in section 4.1 can communicate

among each other, making use of connections established using classes described in

Section 4.2, to operate under different configurations. This section explains the

configurations in which CollabTool can function. For simplicity, CollabTool

has been implemented to communicate under two different configurations: Client-

Server and Peer-Peer, but additional configurations can be implemented using this

framework, if required.

The CollabTool has been implemented to function under the Client-Server

configuration. In this configuration each of the instances of CollabTool is a

client that establishes connections with a central server, as shown in Figure 4.8.

There are 4 connections for each CollabTool, one for each of the

CollabComponents. The Server is designed to accept all the objects from each

of the clients and broadcast these objects to all the clients. The design of this

Server is discussed below.

- 63 -

Server

44C~

Figure 4.8: Client-Server Configuration among Coll abTools.

4.3.1. Class Server

The Server is designed to accept multiple connections from clients. It actively

awaits new connections from clients and assigns a new handler object to each of

the components of the client. Multiple servers are started, one for each component of

the tool. Example 4.24 shows the run method of the Server thread, in which

"server" is the ServerSocket listening for connections and "connections"

is the Vector of connections maintained.

- 64 -

I

--I-~

~j3

~P~C~-

public void run() {
while (true) {

Socket client = server.accept();
new Thread(new Handler(client, connections)).start();

Example 4.24: run method of Server thread.

4.3.2. Class Handler

The handler thread adds the new OutputChannel to the list of

OutputChannels. It reads and broadcasts the objects to all other connected

clients. Example 4.25 illustrates the implementation of the Handler where "in" is

the InputChannel, "out" is the OutputChannel, and "connections" is the

Vector of connections being maintained. Example 4.26 illustrates the broadcast

method of the Handler.

Example 4.25: run method of Handl er thread.

65-

public void run () {
connections.addElement(out);

while (true) {
broadcast (in.readObject());

Example 4.26: broadcast method of class Handler.

4.3.3. Class ClientConfiguration

ClientConfiguration is the class used to create the connections required to

implement the Client-Server configuration. It creates the SocketInputChannels

and SocketOutputChannels that the clients require to communicate with the

Server. The array of SocketInputChannels and

SocketOutputChannels are passed on to the manager - one element in the

array for each component of CollabTool. The connect method of

ClientConfiguration is shown in Example 4.27.

- 66 -

protected void broadcast (Object object) {
Enumeration e = connections.elements ();

while (e.hasMoreElements ()) {

OutputChannel c =(OutputChannel)e.nextElement();
if (c != out) {

c.writeObject(object);
c.flush () ;

}
}

}

protected void connect(Socket socket[]) {
for(int i = 0; i < socket.length; i++) {
out[i] = new SocketOutputChannel(socket[i]);
out[i].flush();
in[i] = new SocketInputChannel (socket[i]);

manager.connect(in,out);

Example 4.27: connect method of class Clien tConfigura t i on.

4.4. Design of the Peer-Peer Configuration

The other configuration that CollabTool has been programmed to operate under is

a fully interconnected peer-peer connection among several instances of

CollabTool. The SocketInputChannel and SocketOutputChannel

are used by each of the components of CollabTool to achieve a peer-peer

connection between two processes as shown in Figure 4.9, which is similar to Figure

3.4, but explicitly shows the separate connections for each of the

CollabComponents.

- 67 -

Figure 4.9: Peer-Peer Configuration between Two Processes.

4.4.1. Class MultiInputChannel and MultiOutputChannel

In a fully inter-connected peer-peer configuration, each instance of CollabTool

must be able to read objects from several other instances of CollabTool and also

write to all other instances of CollabTool as in Figure 3.5.

MultiInputChannel and MultiOutputChannel have been designed to

implement this functionality.

The MultiOutputChannel sends copies of the objects to each of several

OutputChannels. It maintains an internal list of OutputChannels and adds

new OutputChannels to this list when new connections are established.

MultiOutputChannel has a writeObj ect method as shown in Example 4.28.

- 68 -

public void writeObject(Object object) {
Enumeration e = channels.elements();

while (e.hasMoreElements ()) {
((OutputChannel)e.nextElement ()).writeObject (object);

Example 4.28: writeObject method of class Mul tiOutputChannel.

The writeObject method of MultiOutputChannel calls the

writeObject method of each of the underlying OutputChannels. The

MultiOutputChannel's close and flush methods are also passed on to the

underlying channels in a similar manner.

The MultiInputChannel is designed to multiplex streams of objects from

several sources into one InputChannel. Objects arriving from all the other

processes in the conferencing session are presented to each CollabComponent as

a single InputChannel. MultiInputChannel maintains a

PipedInputChannel and a corresponding PipedOutputChannel connected

to it. This pipe provides a buffer for objects that have been received from the network

but not yet read by the application. Figure 4.10 illustrates how the

MultiInputChannel works.

- 69 -

Figure 4.10: Design of Mul ti nputChannel.

As new connections are established, a new thread is started to read objects from the

network and place them in the pipe as illustrated in Examples 4.29 and 4.30. In

Example 4.30, "in" represents one of the InputChannels and "out" represents

the PipedOutputChannel. The readObject and close methods of the

Multi InputChannel are passed on to the underlying PipedInputChannel.

public void addChannel (InputChannel in) {
new Thread(new Copy(in,pipe)).start();

}

Example 4.29: addChannel method of class Mul tilnputChannel .

public void run() {
while (true) {

Object object = in.readObject();
synchronized (out) {
out.writeObject(object);

Example 4.30: run method of Copy thread.

-70-

4.4.2. Class PeerConfiguration

PeerConfiguration is the class used to establish all the connections required to

implement a fully inter-connected peer-peer configuration. Each time the Connect

button is pressed a new connection is established by the connect (String)

method as shown in Example 4.31.

PeerConfiguration uses an array of Sockets, one for each of the four

CollabComponents and creates new SocketInputChannels and

SocketOutputChannels for each socket in the array. Example 4.32 shows the

addition of these SocketInputChannels and SocketOutputChannels to

the MultiInputChannel and MultiOutputChannel that multiplex

multiple channels into one in order to implement the peer-peer configuration. It

passes on the channel arrays to the manager to establish the connections for each of

the CollabTool components.

public void connect(String destination) {
Socket socket[]=new Socket[4];

for(int i = 0; i < 4; i++) {
socket[i] = new Socket(destination, port+i);

connect (socket);

Example 4.31: connect (String) method of class PeerConfiguration.

-71-

protected void connect(Socket[] socket) {

for(int i = 0; i < socket.length; i++) {
addChannel(new SocketOutputChannel(socket[i]));
addChannel(new SocketInputChannel(socket[i]));

}
manager.connect (in, out) ;

Example 4.32: connect (Socket) method of class PeerConfiguration.

4.5. Design of the Dynamic Reconfiguration

CollabTool has been designed to work both in a fully inter-connected peer-peer

configuration and in a client-server configuration. We use dynamic reconfiguration

to switch between these two configurations to make CollabTool survivable.

SwitchInputChannel and SwitchOutputChannel have been designed to

implement the switching.

4.5.1. Class SwitchInputChannel and SwitchOutputChannel

The SwitchInputChannel and the SwitchOutputChannel implement the

InputChannel and OutputChannel interfaces respectively. They are used to

dynamically switch the communication channels used by an instance of the

- 72 -

CollabTool. They have a setChannel method that can be used for this

purpose. The setChannel method can be used at any time to set the channel being

used by CollabTool to communicate. This enables a dynamic reconfiguration

from one configuration, such as a peer-peer configuration, to a different configuration

such as a client-server configuration.

Example 4.33: setChannel method of class Swi tchInpu tChannel.

public Object readObject()
return(in.readObject());

Example 4.34: readObject method of class Swi tchInputChannel.

public void setChannel(OutputChannel out_channel)
out = out_channel;

Example 4.35: se tChannel method of class Swi tchOu tpu tChannel.

public void writeObject(Object obj)
out.writeObject (obj);

I

Example 4.36: writeObject method of class Swi tchOutpu tChannel.

-73-

4.5.2. Class ConfigurationManager (contd.,)

As introduced previously, the ConfigurationManager, manager, provides a

graphical user interface to manage connections. In response to menu selections or

commands received over the network, it creates a configuration object. If a

configuration object is already present, then it switches from the old

configuration object to the new one as shown in Example 4.37. Examples 4.38

and 4.39 illustrate the connect method and the setChannel method required for

it.

Example 4.37: setConfiguration method of
class ConfigurationManager.

- 74 -

protected void setConfiguration(String name)
connect.setEnabled(true);

if (name.equals(peerName)) {
configuration = peer;

else if (name.equals(clientName)) {
configuration = client;

if configuration.isConnected() {
setCh(configuration.getInput () , configuration.getOutput));

public void connect(InputChannel in[], OutputChannel out[]) {
setChannel (in, out);
tool.connect(switchIn, switchOut);

Example 4.38: connect method of class ConfigurationManager.

Example 4.39: setChannel method of
class ConfigurationManager.

4.6. Summary

CollabTool initially appears with all of the components disabled and without any

connections (Figure 4.5). When the user selects a configuration, the Connect

button is enabled (Figure 4.6). When the Connect button is pressed, the

connect (String) method of the selected configuration is invoked (Example

4.31). The IP address or machine name in the text-input area of the manager

- 75 -

public void setChannel (InputChannel in [] , OutputChannel out []) {
for (int i = 0; i < in.length; i++){

if (switchOut[i] == null) {
switchOut [i] = new SwitchOutputChannel (out [i]); }

else {
switchOut[i].setChannel(out[il);

if (switchIn[i] == null){
switchIn[i] = new SwitchInputChannel(in[i]);}

else{
switchIn[i .setChannel(in[il);

}

is passed as the argument to this connect method. The configuration's connect

method opens sockets at four different ports, one for each component of the

CollabTool. InputChannel and OutputChannel interfaces for these

sockets are created (Example 4.32) and passed to the ConfigurationManager's

connect method (Example 4.38). The manager's connect method switches to

the new channels using the setChannel method (Example 4.39) and invokes the

connect method of the CollabTool. The connect method of the

CollabTool in turn invokes the connect method of each of its components. At

this point, the CollabTool can communicate with other CollabTools using the

selected configuration. Once connections required for operation in a peer-peer and a

client-server configuration are established we can toggle between the two

configurations. This ability to switch between the configurations introduces

survivability and fault tolerance into the information system. In this chapter, we

discussed some of the important methods of the classes that implement the prototype.

The classes used for setting up the communication, (the channels) and for

reconfiguration could be reused to build the dynamic reconfiguration capacity into

other such distributed applications and make them survivable information systems.

- 76 -

Chapter Five

5. CONCLUSIONS

5.1 Research Summary

Information survivability encompasses many aspects of security and reliability for

computers, communication networks, and information systems in general. In this

research, we proposed the use of dynamic reconfiguration as a diversity technique to

build robust systems capable of surviving denial of service attacks. We focused on

dynamically switching among different configurations, enabling an information

system to offer resistance to attacks against individual network nodes or particular

protocols. The research did not focus on security issues such as privacy or intrusion

detection. The primary concern was to create network applications that can survive

denial of service attacks. To demonstrate this concept, we implemented a prototype

collaborative planning tool using the Java programming language [AG96]. The

- 77 -

prototype collaborative tools were used to demonstrate and evaluate the concept of

dynamic reconfiguration as a survivability strategy.

In the current prototype, dynamic reconfiguration is still a manual process. Failures

and attacks are not detected automatically, and user intervention is required to switch

configurations. This prototype demonstrates the capability to dynamically switch

between peer-peer configuration and client-server configuration during an active

group communication session. Initially the prototype was also implemented to use

unreliable multicast. The final version of the software did not include a multicast

protocol, as the collaboration tools need reliable multicast. Few Java

implementations of reliable multicast are available [T97] but they were not

incorporated due to time constraints. The capability to control the underlying

network communication system in a manner that is transparent to the application, as

we have done here, is the first step in surviving attacks and system failures.

5.2 Future Work and Extensions

Survivability is a relatively new area of research and a lot more can be done to build

more robust and fault tolerant systems. We first discuss a few logical extensions of

this research work.

-78-

The current prototype demonstrates a reconfigurable communication system. The

reconfiguration has been implemented as a manual process. An intrusion detection

component could be added to automate the reconfiguration process. Other aspects of

network security, such as the use of cryptography for privacy and authentication,

could be addressed to harden the system and make it difficult, but not impossible, to

launch successful attacks. However, because attacks will still be possible, the ability

to dynamically reconfigure is crucial.

Reliable multicast protocols could be added to the collection of configurations. We

could also take advantage of the dynamic capabilities of Java to distribute objects that

represent network connections. This would make it possible to dynamically update

all nodes with code that implements a new protocol. Thus, instead of switching

among several preset configurations, the application could be dynamically updated

with objects that know how to transport themselves across the network with a new

protocol. At present the prototype has been implemented to function in only two

configurations. In future the ConfigurationManager could be implemented to

exchange new Configuration objects defined by the user.

The collaboration tool could be enhanced by adding functionality such as loading

images in the whiteboard, or by adding new components, such as video

communication. Reliability could be enhanced to provide late joiners with data that

they may have missed.

-79-

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK.

- 80-

References

[AG96] Ken Arnold, James Gosling. The Java Programming Language, Addison
Wesley, 1996.

[AHH97] R. H. Anderson, A. C. Hearn, and R. O. Hundley. RAND Studies of
Cyberspace Security Issues and the Concept of an U.S. Minimum
Essential Information Infrastructure, Information Survivability Workshop,
1997.

http://www.cert.org/research/isw97_hypertext/all_the_papers/no 1 .html

[BCK98] L. Bass, P. Clements and R. Kazman. Software Architecture in Practice,
Addison Wesley Longman, 1998.

[BG91] Dimitri Bertsekas, Robert Gallager. Data Networks, 2 nd Edition, Prentice
Hall, 1991.

[BLZ98] Ana L. C. Bazzan, Victor R. Lesser and Ping Xuan. Adapting an
Organization Design through Domain-Independent Diagnosis. Submitted
to ICMAS'98, 1998.

http://dis.cs.umass.edu/research/survive/publications.html

[CRSMR96] K. Mani Chandy, Adam Rifkin, Paolo A.G. Sivilotti, Jacob Mandelson,
Matthew Richardson. A World-Wide Distributed System Using Java and
the Internet, IEEE International Symposium on High Performance
Distributed Computing, 1996.

http://www.infospheres.caltech.edu/papers/chandy_etal/hpdc.html

-81 -

[EFLLM97]

[H98]

[HHSW97]

[HW95]

[JN95]

[LL97]

[M97]

R. J. Ellison, D. A. Fisher, R.C. Linger, H. F. Lipson, T. Longstaff, and
N.R. Mead. Survivable Network Systems: An Emerging Discipline,
Technical Report, Carnegie Mellon University/SEI-97-TR-013, ESC-TR-
97-013, 1997.

Mark Hayden. The Ensemble System, Cornell University, Technical
Report, TR98-1662, 1998.

http://cstr.cs.cornell.edu/TR/CORNELLCS:TR98-1662

Merlin Hughes, Conrad Hughes, Michael Shoffner, Maria Winslow. Java
Network Programming, Manning Publications Company, 1997.

B. L. Hutchings, M.J. Wirthlin. Implementation Approaches for
Reconfigurable Applications, Proceedings of the 5th International
Workshop on Field Programmable Logic and Applications, 1995.

Deborah Johnson and Helen Neissenbaum, eds. The Computer Worm: A
Report to the Provost of Cornell University, Computers, Ethics and Social
Values, Prentice Hall, 1995.

Howard F. Lipson, Thomas A. Longstaff. Survivable Architectures,
Information Survivability Workshop, 1997.

http://www.cert.org/research/isw97_hypertext/front_page.html

Steven McCanne, et al. Toward a Common Infrastructure for Multimedia-
Networking Middleware, International Workshop on Network and

Operating Systems Support for Digital Audio and Video, 1997.

http://www-mash.cs.berkeley.edu/dist/mash/papers/mash-nossdav 9 7 .ps.gz

- 82 -

[SG95]

[SPL98]

[T97]

Bala Swaminathan, Kenneth J. Goldman. Dynamic Reconfiguration with
I/0 abstraction, Department of Computer Science, Washington University,
WUCS-93-21, Revised 1995.

Subramaniam R. Sthanu, Thomas M. Parks, Steven R. Lerman.
Survivability through Dynamic Reconfiguration, Proceedings of the
Second Army Lab Consortium, 1998.

Tie Liao. Lightweight Reliable Multicast Protocol as an Extension to
RTP, Technical Report, Inria Rocquencourt, BP 105, 78153 Le Chesnay
Cedex, 1997.

http://monet.inria.fr/lrmp/lrmp_rtp.html

[VMG97] Jeffrey Voas, Gary E. McGraw, Anup K. Ghosh. Reducing Uncertainty
About Survivability, Reliable Software Tech. Corp., Information
Survivability Workshop, 1997.

http://www.cert.org/research/isw97_hypertext/isw97.html

- 83 -

- 84 -

