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Abstract

A general solution algorithm to the inverse equilibrium problem is derived. The
algorithm finds stiffness coefficients for a given loading and a given set of displacment
constraints. Optimization techniques are employed for the statically indeterminate
case and for the case of partial displacement specification. The applicability of the
method to seismic design of buildings is demonstrated. An inverse eigen-problem is
solved for a stiffness distribution that produces a desired fundamental mode shape.
The stiffness is then scaled based on the magnitude of the excitation with the use of
response spectra. Emphasis is placed on stiffness proportional damping, which can
be generated from the physical placement of dampers.
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Part I

Inverse Problem Algorithms



Chapter 1

Introduction

Historically, the driving constraint on structural design has been strength. This is per-

haps the most crucial constraint on the design, for if a structure fails, the consequences

can be economically devastating and life threatening. The design methodology for

structures has thus evolved into strength based design. Serviceability constraints are

then checked after the design is near completion.

In some cases, however, serviceability constraints drive the design process. Build-

ings that satisfy strength constraints may cause human discomfort and equipment

malfunction. In the case of seismic excitation, limits on the amount of deformation

are necessary to prevent inelastic yielding. The use of sophisticated equipment re-

quires limits on the amount of acceleration and deflection. Human discomfort requires

limits on velocity and acceleration. The work by Connor and Klink [2] contains an ex-

cellent discussion of when serviceability constraints control the design versus strength

constraints. An indepth discussion on serviceability limit states under wind loading

can be found in the article by Griffis [5].

A comprehensive design methodology for motion constraints has been developed

by Connor and Klink [2]. Numerous strategies are presented to limit the amount of

deflection and acceleration a structure may experience. This thesis continues upon

the work of these two authors.

The first part of the thesis is more theoretical in nature. It presents solution

algorithms for the problem we have called the "inverse problem". In short, we solve for



stiffness distributions given displacment constraints and loading, rather than solving

for displacements given stiffness and loading. Shear beams and trusses are discussed

in detail, although the method is applicable to other types of structures. Where

necessary, optimization techniques are implemented.

The second part of the thesis is more practical. It presents a rational design

methodology for limiting the amount of damage a structure may incur during seismic

excitation by use of large-scale linear viscous dampers. The design procedure involves

modifying an inverse algorithm presented in the first part for dynamic excitation. The

particulars of this part are discussed in the introduction for part II.

1.1 Strength Based Design

In a strength based design, the objective is to design a structure that complies with

strength constraints. Typically, the geometry of the structure is defined and trial

member sizes are selected. The stresses can be computed by solving the following

equilibrium equations for displacements:

P = KU. (1.1)

The stresses are checked to see if they comply with the strength constraints, and if

not the members are re-sized accordingly. By iterating on equation 1.1, an acceptable

design may be achieved. The design is then checked to see if it complies with motion

constraints. The underlying assumption is that in most cases, if the structure satisfies

the strength constraints, it will also satisfy the motion constraints. If not, the designer

may arbitrarily scale up the stiffness to satisfy the motion constraints. As motion

constraints on structures become more stringent and increase in number, the designer

will need a new approach to deal with the increased complexity. Motion Based Design

addresses these issues.



1.2 Motion Based Design

The inverse problem algorithms presented in this thesis present a new mathemati-

cal approach to designing structures which are subject to several displacement con-

straints. Rather than using the traditional form of equation 1.1 to calculate displace-

ments for given stiffnesses, we rewrite the system of equations to solve for unknown

stiffness coefficients given displacment constraints and a design loading.

The basis of the inverse algorithms presented in this thesis, is a transformation of

equation 1.1 into the following form that can be solved by Gaussian elimination,

P = BKu. (1.2)

The displacements and any other pertinent information are transformed into a matrix,

B and the unknown member sizes are transformed into a vector of unknown stiffness

coefficients,Ku.



Chapter 2

Formulation of Inverse

Equilibrium Equations

Generating an inverse algorithm is applicable to any structural system for which a

stiffness matrix can be generated. The algorithm is based on the direct stiffness

method and is used to generate equilibrium equations in the inverse form, i.e. with

the stiffness coefficients as the unknowns. The algorithm can be broken down into

two steps. The first step involves forming the displacement matrix Um. The second

step involves formation a matrix containing the geometrical information related to

the element stiffness matrices, Kg and a vector Ku, which contains the unknown

stiffness coefficients.

2.1 Formation of Displacement Matrix

The equilibrium equations for a typical structure are

P=KU (2.1)

where:

* P is the load vector and of size n x 1.

* K is the stiffness matrix and of size n x n, for a structural problem it is symmetric



and non-singular.

* U is the displacement vector and of size n x 1.

* n is the number of unknowns in the system of equations.

The first step in the inverse algorithm involves transforming the matrix K and

vector U into a displacement matrix Um and a stiffness vector Kt.

P = UmKt. (2.2)

where

* P is still of order n x 1.

* Kt contains the entries of the stiffness matrix and is of order 1

* Um is the displacement matrix and of size n x .

* I = 0.5n(n + 1) (number of elements in upper triangular portion of K)

The initial system of equations looks like:

Pi kil k12 k13  "' kin U1

P2 k21 k2 2 k23 "'" k2n U2

P3 k31  k3 2 k33 "'.. k3n U3 (2.3)

pn kn1 kn2 kn3 "' knn Un

In order to transform K into a vector, we need to determine the number of indepen-

dent stiffness entries. This is given by the number of entries in the upper triangle of

K, since it is a symmetric matrix. For an n x n system of equations, there will be 1

unknown stiffness entries..

The size of the matrix Um will be n x 1. This matrix can be filled with the help of

a counter matrix, CM, which mimics the nature of a symmetric matrix. Integers fill

out the upper triangle of K and are then placed in the corresponding lower triangle



such that CM is symmetric . In order to help place stiffness coefficients later, we

form a vector that records the indices of the stiffness coefficients, IV. The following

are examples for 2 x 2 and 3 x 3 matrices:

CM = k kl k2
[ k2 k3

CM=

11V
IV = 12

22

11

12

13

22

23

33

By looking at equation 2.3, we can see that U is multiplied by every row of K.

Hence, in Um all displacements will be present in each row, and in the positions

specified by the integers in the rows of the counter matrix. All other elements will be

zero. For 2 x 2 and 3 x 3 matrices, we will have the following:

U1

0



2.2 Formation of the Stiffness Matrix and Vector

In the previous section, we formed the displacement matrix, Um, and a temporary

vector, Kt, which holds the entries of the stiffness matrix K. The aim of this section

is to expand the vector Kt into a matrix containing geometrical information Kg and a

vector, Ku, containing the unknown stiffness coefficients. By geometrical information,

we mean the member orientation and length. By stiffness coefficients, cross sectional

properties are meant. In the case of beams the stiffness coefficient is given by K, = EI

and in the case of trusses, the stiffness coefficient is given by K, = EA. The formation

of the matrix Kg is based on the direct stiffness method. Thus, the method is

applicable to any element for which a stiffness matrix can be generated.

The dimensions of the matrix Kg are 1 x m, where m is given by the number of

elements that compose the strucutre, i.e. the number of unknown stiffness coefficients.

Each column corresponds to a specific stiffness coefficient, and the rows of each column

correspond to the displacements. Let us fill in this matrix element by element.

For each element, we form the element stiffness matrix. Degrees of freedom which

correspond to zero displacements can be deleted at this stage. We form an index

vector for each element, IVe, similar to the index vector, IV, we formed for the matrix

Kt. For each element, we fill out the corresponding column of Kg. By matching the

index of IVe to IV, we can find the appropriate row to place each entry of the stiffness

matrix. Table 2.1 summarizes the procedure for writing equilibrium equations in the

inverse form. Examples of deriving these equations and methods of solving them are

presented in the next chapter.



Table 2.1: Inverse Algorithm

Step # I Action
1 Form Urn and IV.
2 Loop over elements (for i = 1 to m).

Form Element Stiffness Matrices and IVe.
Place coefficient in column i, and row for
which IVe and IV match, place unknown
stiffness coefficient in row i of Ku.

3 Multiply Um and Kg to obtain B. The
inverse equilibrium equation is P = BKu



Chapter 3

Complete Displacement

Specification

This chapter deals with solution methods to the inverse problem when displacement

constraints are specified for each degree of freedom. There are two general cases for

this type of problem. The first and more trivial is the case of statically determinate

structures. The second, which requires the use of optimality criterion, is the case of

statically indeterminate structures.

3.1 Statically Determinate Structures

For the case of statically determinate structures, the number of unknown stiffness

coefficients, m , is equal to the number of degrees of freedom, n. If m < n, the

structure will contain kinematic degrees of freedom, or will be initially unstable. If

m > n, the structure is statically indeterminate. The size of the matrix B is n x n for

a statically determinate structure. Thus, equation 1.2 can be solved using Gaussian

Elimination. If the specified displacements are feasible, positive solutions exist.

The following example illustrates the procedure for a cantilever shear beam. So-

lution algorithms to the inverse problem for shear beams have been presented by

Nakamura and Yamane [6]. The algorithm was presented for constant mass distri-

bution. Connor and Klink [2] presented a solution for arbitrary mass distribution in



the form of a summation equation. The matrix formulation presented here is much

simpler and the methodology more general.

Example

N

N\

N~

,C
3

,C
2

,C

Figure 3-1: Shear Beam Model

Consider the cantilever shear beam shown in Figure 3-1. The desired deformation

profile is given by U', = { 0.025 0.050 0.075} (m). The loading is given by pT =

{19,600 19,600 19,600} (N). Find the stiffness distribution that produces the desired

deformation profile.

Following the procedure outlined in the previous section, we have:

Step 1

0.025

Um = 0

0

0.050 0.075 0 0 0

0.025 0 0.050 0.075 0

0 0.025 0 0.050 0.075

IV=

33 I



K 1 = [1]kl IVe = [11]

-11

-1 k3

Keep in mind, the columns of Kg correspond to the elements and the rows corre-

spond to the entries defined by IV.

[0.025

0

0

1 1 0

0 -1 0

00 0

0 1 1

0 0 -1

00 1

-0.025 0 kl

0.025 -0.025 k2

0 0.025 k3

We can solve for Ku using Gaussian elimination.

2,232,0001

Ku = 1, 586, 000

784,000

Step 2

K2 = -

K3  -1
-1

111
IVe2 = 12

223
IVe3 = 23

33

Kg =

Step 3

19,6001
19,600

19,6001



For the particular case of a cantilever shear beam, it can be shown that the equilibrium

equations,

p1 -kl +k2  -k2  ... 0 u,

P2 -k2 k2 +k3 .- 0 U2-, (3.1)
Pn 0 0 ..- kn- -un-

can be written in the following general form,

pi U1 U1 - U . 0 - -k-

p2 0 2 - U1 ... 0 ku2 (3.2)

-Pn- 0 0 .. Un -u,_n-1 kun

3.2 Statically Indeterminate Structures

For the case of statically indeterminate structures, the number of unknown stiffness

coefficients, m, is greater than the number of degrees of freedom, n. The size of the

matrix B is n x m. Thus, for a set of feasible specified displacements we have an

infinite number of solutions. The dimension of the solution space is given by m - n.

In order to arrive at a unique solution, we need to impose additional constraints on

equation 1.2. Thus, a set of optimality criterion need to be defined and appropriate

techniques for solving the resulting equations need to be implemented.

In the following example, the inverse equilibrium equations for a statically inde-

terminate truss are derived. The following subsections will then describe techniques

used for arriving at a unique solution. The techniques will be illustrated on the same

example.

Example

Consider the truss shown in Figure 3-2. The desired deformation is given by

{U2 2 U4 1 U4 2 } = {-0.0019 0.0012 -0.0087} (m). The loads corresponding to these nodes

are given by P = {-100 50 -100} (kN). Find the stiffness distribution that achieves

the desired deformations.
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3m

PU
42 42

4

4m

Figure 3-2: Truss for Example 1

Figure 3-2: Truss for Example 1

Step 1

-0.0019

Um =  0

0

0.0012

-0.0019

0

-0.0087 0 0 0

0 0.0012 -0.0087 0

-0.0019 0 0.0012 -0.0087

Step 2

K 1 = [cos2 ]k,

K 2 = [ COS2 21]k 2

IVel = [11]

IVe 2 = [11]

P U
41 411

IV=

11

12

13

22

23

33



1 -COS2 a 3

K3 =
1 COS 03 sin a3

K4 
s in 2 a4

K4 = - cos a4 sin a4

14 si n 2 a4
14 Sl 4

1 COS2 a5
K5 =

15 COS a5 sin a5

•3 COS a 3 sin a 3
1 sin2 a3
13

-1 COS O 4 sin1 O 414

1 COS2 a4
l cos a4sin a 44

I22
IVe3 = 23

33

1 sin 2 a4

COS a4 sin a4 k4
14

1 sin2 a414

-1 C 5 a51si 55 cos a5 sin a5 k2
1 sin2 a515

V 22
IVe5 = 23

33

0 0 0

16 1 16
25 4 125

12 0 -12
25 125

9 0 9
25 125

-0.633
= 0

0

-0.633 0 0 0

0 -0.682 0.300 0.989

0 -0.511 0 -0.7421

IVe 4 =

12

13

22

23

33

Kg -
0 0

0 0

0 0

00 1

Step 3

Pi
P2

-P3

-k5 .



3.2.1 Stiffness Coefficient Specification

One method of introducing additional constraints on the statically indeterminate

equilibrium equations is to specify additional stiffness coefficients. We need to specify

m-n coefficients to arrive at a unique solution. If less than m-n stiffness coefficients

are specified, the techniques (LS and MVLS) described in subsections 3 and 4 can be

applied.

The method of stiffness coefficient specification is based on the fact that the de-

signer may already have this information. Members of a certain size may be more

economical. Other constraints, such as strength, may dictate these member sizes.

The designer may not specify the stiffness coefficients arbitrarily. The members

specified must mathematically correspond to non-pivot columns in the resulting ma-

trix obtained when B is reduced to row-echelon form. Physically, they are members

you can remove without making the truss kinematic.

Example

For the truss in the previous example, the designer has sections with EA = 70, 000

[kN] that are readily available.

When we reduce B to row echelon form, we obtain the following:

-1 1 0 0 0 1

B= 0 0 1 0 1.45

0 0 0 1 6.59

Thus, a feasible choice corresponds to members 2 and 5. By looking at the truss, we

can conclude which are possible choices.



Feasible Choices Non-feasible Choices

1 and 3 1 and 2

1 and 4 3 and 4

1 and 5 3 and 5

2 and 3 4 and 5

2 and 4

2 and 5

Let us choose members

as:

-100 -0.633-
50 - 0 7

-100 -0

1 and 3. The inverse equilibrium equations can be rewritten

0

0,00 - -0.682 70, 000 =
-0.511

-0.633

0

0

0

0.300

0

0 1 rk21
0.989 k4

-0.742 _k5_

k2 87, 890
k4 = 40, 300

k5- 86,5901

3.2.2 Minimum Weight Solution

Another possibility we can use to impose constraints on the equilibrium equations

is a minimum weight solution. We can define a Lagrangian function for a minimum

weight solution and invoke stationarity to solve for the unknown stiffness coefficients

and Lagrangian multipliers. However, we will see that a minimum weight objective

function results in a singular system of linear equations that cannot be solved.

Let the unknown stiffness coefficients be the cross sectional areas of the members.

We can simply multiply the matrix, B, by the modulus of elasticity, E, to achieve

this.

Our optimization problem can be stated as follows:

minimize the objective function



(3.3)w = 1TKup

subject to the following equality constraint

BKu = P.

where

* 1 is a vector containing the member lengths,

* Ku is a vector containing member areas,

* and p is the density of steel.

(3.4)

Using Lagrangian multipliers, we can formulate the following Lagrangian function:

L(Ku, A) = ITKup + AT(BKu - P). (3.5)

Note that the above equation is not quadratic in form. Thus, a minimum solution

may not exist and in fact does not exist as will be shown.

The optimal solution can be found by invoking stationarity of equation 3.5.

OL
= 0, i = 1, .,Im (3.6)

OL
= 0, j = 1,- -,n (3.7)

These stationarity conditions yield the following two equations:

BTA = -lp (3.8)

BKu = P. (3.9)

which can be written in the following matrix form:



0 BT K -Ip (310
B 0 A P

Consider the first set of columns defnined by 0 and B. Since B has at most a rank

of n, we only have n linearly independent columns. The second set of columns defined

by BT and 0 are also of rank n. Hence, the rank of the above matrix is at most 2n.

This is less than the rank of m + n required for the matrix to be nonsingular. We

can conclude that a minimum weight objective function does not impose additional

constraints on our underdetermined system of equilibrium equations.

3.2.3 Least Squares Solution

Another method for solving an underdetermined system equations is the least squares

method. The optimal and unique solution is defined as the solution that minimizes

the sum of the squares of the stiffness coefficients. We can state our objective as the

following optimization problem:

Minimize the objective function

f (k) = K K u  (3.11)

subject to the following equality constraint :

BKu = P. (3.12)

Using Lagrangian multipliers, we can formulate the following Lagrangian function:

L(Ku, A) = l Ku + AT(BKu - P). (3.13)
2u

Since the above equation is quadratic in form, a linear system of equations can be

solved to find the minimum. The linear system of equations can be found by invoking

the stationarity of the Lagrangian function.



dL
= 0, i = 1, .. , m (3.14)

OKui

OL
= 0, j = 1,-.,n (3.15)

These stationarity conditions yield the following two equations:

Ku + BTA = 0 (3.16)

BKu = P. (3.17)

which can be written in the following matrix form:

IBT Ku 0O[ =] (3.18)

The Least Sqaures Solution is elegant mathematically. Physically however, it

tends to eliminate the redundants of statically indeterminate structures. See the

Table 3.1 which summarizes design results for each of the methods presented at the

end of subsection 4. The following subsection develops a solution procedure which

overcomes this.

3.2.4 Mean Valued Least Squares Solution

The mean valued least squares solution overcomes many of the shortcomings of the

least squares solution. It does not eliminate any of the redundants in our indetermi-

nate structure and minimizes the standard deviation of the stiffness coefficients about

their mean value.

The mean value of stiffness coefficients can be defined as follows:

II T = ETKu1  (3.19)

m

where E is a vector of ones of dimension m x 1. We define the following error vector



which represents the amount of deviation from the mean for each stiffness coefficient,

e =[EETI - I]Ku
M

(3.20)

or simply

e = CKu (3.21)

Our objective is to minimize the sum of the squares of the error terms subject to

the equality constraint imposed by the equilibrium equations. We can define the

following Lagrangian function which is quadratic in form. We can expect the solution

of a linear system of equations to minimize this Lagrangian function.

L(Ku, A) = eTe + AT(BKu - P).2

OL
= 0  i = ,, m

= 0, j = 1,- -- ,nOX,

(3.22)

(3.23)

(3.24)

These stationarity conditions yield the following two equations:

CTCKu + BTA = 0

BKu = P.

(3.25)

(3.26)

which can be written in the following matrix form:

CTC B T  Ku

B 0 A

O

P
(3.27)



3.2.5 Results

Results for each of the methods described in the previous section are given in Ta-

ble 3.1.

* SCS ... Stiffness Coefficient Specification

* LS ... Least Square Solution

* MVLS ... Mean Valued Least Squares Solution

Table 3.1: Results for Various Techniques Used to Impose Additional Constraints on
an Underdetermined Set of Equilibrium Equations

SCS LS MVLS
Kul 70,000 78,947 78,947
Ku2 87,890 78,947 78,947
Kua 70,000 61,256 78,750
Ku4 40,300 570 79,723
Ku5 86,590 92,619 80,611



Chapter 4

Partial Displacement Specification

The limitation of the inverse methods described thus far has been that the designer

must specify desired displacements at every degree of freedom. However, only a few

displacements may be of importance, and hence the designer would like a method

which deals with only partial displacement specification. For example, in the case of

a bridge, vertical displacement of the deck may be of importance, while displacement

at other nodes may not. In the case of a building type structure, interstory drift may

be the driving constraint, but vertical displacements may not. This chapter presents

a methodology for dealing with partial displacment specification. The example used

in previous chapters is expanded upon to preserve continuity.

Example

Consider the truss in Figure 3-2. Assume that the only constraint on displacement

is in the vertical direction at node four, (U42 - u3) = -0.0087 m. Find a set of stiffness

coefficients that satisfies this constraint.

4.1 Objective Function

In order to develop some type of criterion for which we may develop a mathematical

model, we need to clearly state our objectives. In the previous chapters, we devel-



oped a robust methodology to deal with both statically determinate and statically

indeterminate structures. In both cases, the equilibrium equations,

P = BKu, (4.1)

had to be satisfied. For the indeterminate case, it was necessary to define an objec-

tive function and introduce the equilibrium equations as equality constraints. The

objective function was only a function of the unknown stiffness coefficients and the La-

grange multipliers, not displacements. Our objective function will now be a function

of all three.

It is not possible to use our previous strategy of writing the unspecified displace-

ments as a vector of unknowns, since equation 1.2 is a nonlinear function of these two

variables i.e. we have multiplication of unknown displacements in B with unknown

stiffness coefficients in Ku. Thus, we clearly need to use some type of iteration strat-

egy to solve for the unspecified displacement coefficients and the unknown stiffness

coefficients.

If we specify a full set of displacements, we have a unique solution for Ku. If we

vary the values of the displacements, we also vary the values of Ku. Thus, let us

define a similar objective function for the case of partial displacement specification to

the objective functions developed in the previous chapters. We have the objectives

of a least squares solution and a mean valued least squares. Before we implement an

optimization scheme, we need to know if our problem is convex.

4.2 Convexity

In Chapter 3, we defined a quadratic (i.e. convex) Lagrangian function for a Least

Squares Solution and a Mean Valued Least Squares Solution, thus we could be sure a

minimum solution existed. This section explores the issue of whether our Lagrangian

function is still convex. Our problem is now a function of u, Ku, A. Let us take the

the Lagrangian function derived earlier for the mean valued least squares response.



f(u, Ku, A) = L(uu, Ku, A) = eTe + AT(BKu - P) (4.2)

A minimum of the above function occurs at

OL = 0, i = 1,...,m (4.3)

OL
DL= 0, j = 1,...,n (4.4)

OL
S= 0, q= 1,*..,r (4.5)

where m is the number of unknown stiffness, n is the total number of degrees of

freedom, and q is the number of unspecified displacements.

Invoking these stationarity conditions no longer results in a linear expression.

(Refer to equation 3.22.) Thus we need to use an iterative strategy to solve this

problem.

For the time being, assume we have an initial feasible full set of displacements.

We can then calculate the set of unknown stiffness coefficients. If we perturb the dis-

placements, we can compute the corresponding perturbations in the objective func-

tion. Using this information, we can obtain sensitivities and select a new set of

displacements. We can use an unconstrained optimization scheme to iterate towards

a minimum of the objective function.

In order to implement an unconstrained optimization scheme based on some sort

of sensitivity analysis, we need to have some sort of idea about the qualitative nature

of the objective function. Does a minimum solution exist i.e. is it convex? If so, are

the stiffness coefficients that satisfy this solution positive?

The technique of meshing is used to visualize the qualitative behavior of our op-

timization problem. Ranges of values are specified for each unspecified displacement.

In the case of a least squares criteria, (see equation 3.13), the solution space may be

convex; however, the minimum of the objective function does not occur where all of
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Figure 4-1: Mesh Plot for MVLS and LS

the stiffness coefficients are positive. See 12 in Figure 4-1. Such a solution has no

physical meaning and results in a stiffness matrix that is not positive definite. In the

case of a mean valued least squares criteria, (see equation 4.2), the solution space is

convex in the region where K u is positive. See 11 in Figure 4-1. Thus, we can use

some sort of sensitivity analysis to find a meaningful solution to this set of equations.

4.3 Optimization Techniques

In this section, we discuss two methods of sensitivity analysis used for unconstrained

optimization. First, Newton's method is discussed. Even though it is rarely imple

mented in practice, it forms the underlying theory for most optimization schemes

based on sensitivity. Second, we discuss and implement a quasi-Newton algorithm

that is much more efficient than Newton's method. The reader is referred to [7] for

an in depth discussion of these and other optimization techniques.

4.3.1 Newton's Method

Newton's method forms the underlying theory for optimization schemes based on

sensitivity analysis. Newton's method for solving systems of nonlinear equations has

a high rate of convergence. However, it is expensive to use because it requires the

computation of the Hessian matrix and the solution of a system of linear equations

34



at each iteration step. All other optimization schemes are based on making some

compromise on Newton's method, usually involving more iteration but less storage

and computation for each iteration step.

Assuming our objective function has a minimum, we would like to apply the first

order necessary condition for a local minimizer:

Vf(uu) = 0. (4.6)

Newton's method solves the above equations by linearizing the above equation and

iterating, which yields Newton's equations:

Uk+1 = Uk + Pk (4.7)

where

Pk - [2f(Uuk) - 1 f(Uuk). (4.8)

4.3.2 Quasi-Newton Methods

There are many quasi-Newton methods available, but they are all based on approxi-

mating the Hessian V 2 f(uk) by another matrix Bk that is available at a lower cost.

The method implemented here is a BFGS update with a backtracking line search.

The complete algorithm is presented in Table 4.1.

The optimization strategy presented is one of the most popular used for solving

systems of nonlinear equations. In order for the strategy to arrive at a sound solution,

many of the particular parameters need to be adjusted. As mentioned previously,

the solution space should be convex in the region where the optimization strategy

is implemented. In the following subsections, the particulars of the optimization

algorithm are discussed.



Table 4.1: Quasi-Newton Method with BFGS Update

Step 1 Specify some initial guess of the solution u.o and an initial Hessian
approximation Bo = I. Note: if we do not update Bo in iteration, we
would be using the method of steepest descent.

Step 2 Use the norm of Sk = Uu(k+l) - Uuk to check for convergence.

Step 3 Solve Bkp = -Vf(Uuk) for Pk-
Step 4 Use a line search to determine Ok and Uu(k+l) = Uuk + ckPk.
Step 5 Compute Sk = Uu(k+1) - Uuk and Yk = Vf(Uu(k+l)) - Vf(Uuk).
Step 6 Use the BFGS update formula to compute

(Bksk)(BkSk)T Y
Bk+1 = Bk - s-Bksk k Ts

sBksk y sk

Step 7 Repeat Step 2

Initial Starting Point

In order to start off our optimization strategy and insure it iterates toward a minimum,

we need a good initial guess for the starting point uo. A poor initial guess, may

start the optimization algorithm in a region where stiffness coefficients found are

negative. In order to avoid this, we can use initial estimates for Ku. Displacement

constraints are placed on the nodes of interest. (Note that these constraints produce

reactions at these nodes, but that is OK since we are only interested in finding an

initial starting point.) We then solve the equilibrium equations P = KU for the

unspecified displacements. We can then be sure that our initial starting point is in a

region for which the stiffness matrix K is positive definite.

Convergence Criteria

In order to terminate the optimization algorithm, convergence criteria needs to be

developed. Since our objective is to find those displacements for which the objective

function is a minimum, we should use the displacements in our convergence criteria.

If the displacement vectors uk and Uk+1 are essentially the same, we can conclude

that the algorithm is in the vicinity of a minimum. Requiring the norm of the vector

Sk < 10-8 has proven to be more than sufficient. For most engineering problems,

accuracy above two decimal places is not necessary.



Derivative Calculations

The optimization algorithm requires that the gradient of our objective function be

calculated. Since we have a set of feasible stiffness coefficients and the corresponding

Lagrangian multipliers, we can calculate the gradient of the objective function at each

iteration step.

Noting the following equality

BKu = KU (4.9)

We can rewrite equation 3.22 as follows,

L(k, A) = lee + AT(KU - P). (4.10)
2

The entries of the gradient are then given by

f 1 A [ TK 1 (4.11)

where the index i corresponds to the row number.

Line Search

With the gradient and the matrix B which provides us with an approximation to the

Hessian, we can solve for a feasible search direction pk. However, we must decide on

the step length ao. Too large of a step length may cause the algorithm to diverge into

a region where the stiffness coefficients are meaningless. Too small of a step length

will compromise the efficiency of the algorithm. Since we have an initial estimate of

displacements, it is reasonable to assume that the maximum step length should be

about one-tenth the order of the initial guess. Again we can use the norm of the

displacement vectors to establish the step size.

Ok = 2- i  i = 3, .. (4.12)
IIPkll

The algorithm for the line search starts with the initial value i = 3. A new



value u. is obtained and the objective function is evaluated at this new point. If the

objective function is lower at the new point, the line search is terminated, otherwise

the search continues.

4.3.3 Results

Consider the example presented at the beginning of the section. After 8 iterations,

the results in Table 4.2 were obtained.

Table 4.2: Results for Truss in Example 1

Initial Guess I Optimal Solution
Kul 60,000 79,780

Ku2 60,000 79,790
Ku3  60,000 79,760
K_4 60,000 79,820

Ku5  60,000 79,860

ul -0.0025 -0.00188
u2 0.0016 0.00124
u3 -0.0087 -0.00870



Part II

Optimal Seismic Design of

Buildings Incorporating the Use

of Linear Viscous Dampers



Chapter 5

Introduction

Motion based structural design is a performance based design paradigm which takes

as its primary objective the satisfaction of performance criteria that involve con-

straints on motion. These constraints are established by considering the effect of

motion on structural damage, non-structural damage, and human and equipment

comfort. Structural damage usually depends on the magnitude and distribution of

displacement, while comfort is related to peak velocity and acceleration. Under ex-

treme loading, structural damage is the key performance measure for seismic design.

Although design codes allow structures to experience damage due to inelastic defor-

mation, the current trend is to reduce the "allowable" damage. This shift is being

driven by the need to control the cost of repair and loss of service, so as to minimize

the life cycle cost.

In motion based design, one is concerned with establishing the optimal distribution

of structural stiffness and deployment of dissipation devices (dampers) and energy

absorption devices (sacrificial structural elements) over the structure to meet the

prescribed motion requirements. Providing adequate structural strength is treated

as a design constraint. The structural parameters are determined from the design

requirements on peak displacement and acceleration and the structure is then checked

for strength. Conventional strength based methods generate initial estimates of the

structural parameters using strength requirements based on factored loads, and then



check whether the deformation and acceleration requirements are satisfied. Iteration is

required with both approaches. however, with the increasing emphasis on controlling

damage, i.e. limiting structural motion, it is of interest to explore the applicability of

the motion based design approach for structures located in seismically active regions.

This part considers the case where the structural system is composed of two

independent systems: (1) a primary structure that supports the vertical loading and

also provides the lateral stiffness; (2) a set of viscous dampers that provide the energy

dissipation mechanism for the earthquake loading.

The focus here is on building type structures where the dampers are incorporated

in the lateral bracing schemes. The effectiveness of this concept depends on the ability

of the primary structure to remain elastic during the motion resulting from a major

seismic event, as well as the dampers not exceeding their energy dissipation capacity.

Recent developments in high strength materials and viscous damper technology have

made this concept more feasible, from both technical and economic perspectives.

The proposed design methodology for dynamic loading, such as seismic excitation,

is based on the premise that the response can be confined to essentially a single

fundamental mode, whose shape can be controlled by suitably distributing stiffness

over the structure. Damping is deployed to minimize the contribution of higher

modes. A combination of scaling of the stiffness and varying the modal damping

ratio is used to regulate the amplitude of the fundamental mode response so as to

satisfy the design requirements on displacement and deformation. By assigning costs

to the stiffness and damping elements, one can asses the total cost and explore the

trade-off between adjusting stiffness versus adjusting damping.

In what follows, we describe the application of the design paradigm to a shear-

beam type building structure. Our design objective for motion is a linear distribution

of lateral displacement over the height, which corresponds to uniform transverse shear

deformation in each story. The design variables are the lateral stiffness and viscous

damping parameters for each story.

The problem of establishing the stiffness distribution which produces a prescribed

mode shape for a shear beam with uniform mass was examined by Nakamura and



Yamane [6]. Connor and Wada [3] extended the development to nonuniform beams

and also included stiffness proportional damping. Later papers by Wada and Hwang

[8] and Connor and Klink [1] dealt with the problem of suppressing the contribution

of the higher modes by adjusting the stiffness distribution, and using a damping

distribution based on the modified stiffness distribution.

This part presents a more general formulation for establishing the stiffness distri-

bution. Emphasis is placed on damping matrices that result from physical placement

of dampers in a structure, in particular stiffness proportional damping. Penzien and

Wilson [9] have developed a method for creating damping matrices that produce spec-

ified modal damping ratios. However, in most cases the damping matrices generated

are difficult if not impossible to physically construct. Unfortunately, damping matri-

ces that are not C orthogonal require the use of complex eigenvectors. At the present

time, the only method available for such damping matrices is design by simulation.

The design methodology presented in this part is described in detail in the follow-

ing chapters. Appendix A contains three case studies which were used to verify the

design methodology.



Chapter 6

Shear Beam Model

The design methodology developed is based on a shear beam model of a building,

also known as the portal method. This is a reasonable model for buildings with an

aspect ratio less than 5 [4]. The entire deformation of a structure is due to bending

of the beams and columns. By taking the following assumptions about the behavior

of a building, a highly indeterminate system can be reduced to a determinate one:

* All connections are moment resisting.

* Axial deformations can be neglected.

* Inflection points occur at mid-beam length and mid column height.

By summing the stiffness contribution of each panel over the floors, an equivalent

shear beam model can be obtained. See figure 6-1

The beauty of the model is the fact that we can specify a shear deformation that

is representative of the elastic limit due to bending for each subpanel. In such a

manner, we can prevent damage due to inelastic deformation.

By modifying the inverse algorithm presented in part I and using stiffness pro-

portional damping, we can generate an appropriate shear rigidity distribution and

damping distribution. The only parameters necessary are the height of the building,

the mass per floor, and the desired first modal damping ratio. The following chapters

describe this methodology in detail. The purpose of this chapter is to present the
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equations used to convert the shear stiffness and shear damping parameters to the

actual member properties and sizes.

The task of the designer is to ensure that the structure supplies the required

stiffness and damping distributions. The following equation is used to convert the

stiffness contribution of bending members and bracing to a equivalent shear stiffness

and vice versa. It is derived by considering a typical subpanel of the structure. (See

Figure 6-2). It is assumed that the subpanel is symmetric with respect to the vertical

and horizontal axes. A more general expression can be derived if so desired.
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Kshear, = ( Ksubpanel + ( iE ) Cos 2 on sin AU (6.1)

where

12EIcIb
Ksubpanel= L + Ic) (interior subpanel) (6.2)bpane L (L(lb + LbIc)

12EIIb
Ksubpanel = h(L Ih) (exterior subpanel) (6.3)

h2(2Lbic + Ibh)

i is the floor number.

j is the number of subpanels per floor.

n is the number of braces per floor.

h is the story height

The following equation is used to convert the damping contribution of the bracing

to a equivalent shear damping and vice versa.

Cshear, = (E Cn cOS2 On) AU (6.4)

In order to supply the required stiffness that will be generated by the algorithm

presented in this part, the designer has three parameters he/she can adjust. The size

of the columns and beams can be varied and if necessary, the designer can introduce a

bracing scheme. For the case of damping, the designer needs to incorporate diagonal

viscous dampers, so as to produce the required damping distribution.

The objective of our design is to prevent damage to the building in the form of

inelastic deformation. This can be quantified by limiting the amount of interstory

drift, or more precisely, the amount of shear deformation y the structure undergoes.

Typically, values of y around 2 represent the transition from elastic to inelastic

deformation.

This value can be checked upon completion of design by considering the subpanel

assembly in Figure 6-2. The maximum moment in the subpanel is given by



Mmax = PL (6.5)

Using the appropriate stiffness expressions given in equation 6.2 or equation 6.3 for

the subpanels, we can calculate the loading at the top of each subpanel and hence

the moment.

Psubpanel = KsubpanelAU (6.6)

Using the fact that the shear deformation is given by 7 = AU/h, and that the required

section modulus is given by,

S > Mma , (6.7)
0allowable

we can combine the above equations into the following equation that can be used to

check that the beams and columns satisfy strength constraints:

1
S > L Ksubpanely. (6.8)

- 2allowable

Similarly, the braces can be checked to ensure they satisfy the strength constraint

by using the following equation,

Obrace •• allowable (6.9)

where

Ubrace = E cos 0 sin 07. (6.10)



Chapter 7

Stiffness Distribution

7.1 Designing for a State of Constant Shear De-

formation

Our design strategy, is based on distributing the stiffness throughout the structure

such that the fundamental mode has a prescribed shape. In the case of a shear beam,

the desired state is uniform shear deformation and the corresponding displacement

profile is linear. In order to obtain the stiffness distribution, one needs to solve the

inverse eigenvalue problem.

Figure 6-1 defines the notation used to represent the various parameters and

variables for a shear beam discretized as a lumped mass system. The complete set of

n nodal equilibrium equations are written as:

MU + CU + KU = P (7.1)

where

U = {U1, U2, *, Un},

P = -MEag

(7.2)

(7.3)

(7.4)



M = [miij,

-kl + k2

K =

0C has a similar form as K. Specializing

C has a similar form as K. Specializing

-k2

k2 + k3

0equation

equation 7.1

01

.0 (7.6)

kn

for undamped free vibration,

U = qqeiwt

P=C=0

(7.7)

(7.8)

one obtains

K( = w2M (7.9)

Usually M and K are specified, and one determines the eigenvector 4 and corre-

sponding eigenvalue w2

The inverse eigenvalue problem is formulated as follows: given M, 4 and the

loading, find K and w. For this case, we specify 4 to be a scaled version of the

desired displacement profile and incorporate w2 in K,

1
K' = 2K (7.10)

=} = 4 = (7.11)

Equation 7.9 reduces to the following,

K'4 = M D (7.12)

This choice of P ensures that w is the fundamental frequency. The problem

reduces to solving equation 7.12 for the n scaled stiffness coefficients {kl, k1, ... , k'}

(7.5)



We define K'vec as a vector containing the scaled stiffness parameters,

K'vec = {k'l, k, .. , k'} (7.13)

Equation 7.12 can be written as,

4matK'vec = MI) (7.14)

where

U1 U1 - U2 .. 0

ou2 - ul . 0
(imat = (7.15)

0 0 " U n -- Un-1

Given (D and M one can solve for the stiffness distribution, K'vec. The actual

stiffness is determined by specifying w and scaling K' according to:

K = w 2K' (7.16)

Since w is unknown at this point, we need to introduce a constraint on displace-

ment and relate this constraint to stiffness, and finally to w. Details of the stiffness

calibration process for the case of seismic excitation are discussed in the next section.

7.2 Stiffness Calibration - Seismic Excitation

Our objective is to establish the magnitude of the stiffness and damping distributions

such that the profile of maximum lateral displacement has the form

Ulmax = (Iqmax (7.17)

where ( is the scaled fundamental mode vector (see equation 7.11 ) and qmax is

the targeted displacement amplitude. We obtain a first estimate of the parameters

by assuming the structure is responding in the fundamental mode, converting equa-



tion 7.1 to a modal form, and using a response spectrum to determine the peak modal

displacement. Starting with

U = A(q (7.18)

we transform equation 7.1 specialized for seismic excitation to

4 + 2(4w1q + w2q= -Fra (7.19)

where

2w = T I (7.20)
(ITME

F = TM (7.21)

We include a subscript on ( to denote that this quantity is the modal damping

ratio for the first mode. The peak displacement for a specified seismic excitation is

given by,

1
q maz = FS,(w, ý1) (7.22)

where S,(w, I1) is the spectral velocity corresponding to that excitation.

We use an ensemble of design earthquakes to produce the design spectral velocity

function S,(w, (). The earthquakes that compose the ensemble are selected such that

the frequency content is representative of the design area. They are then normalized

such that their maximum spectral velocity is equal to a reference value SvR for a

damping ratio of 0.02. This value should reflect the magnitude of excitation for

which the structure is to be designed.

Two methods for generating the design spectral velocity function are discussed

here. Both methods are based on the ensemble average of normalized spectral ve-

locity functions. The spectral velocity functions are generated from by scaling the

accelogram records to the reference value S,R for a damping ratio of 0.02. One



method develops an analytical expression for a design spectral velocity function and

is recommended for pedagogical purposes and for use in hand calculations. The sec-

ond method develops a numerical solution and is recommended for use in software

development since it produces more accurate results.

7.2.1 Analytical Formulation

The analytical spectral velocity function is generated for each damping ratio by as-

suming a bilinear log-log relationship between 0.1 and 0.6 seconds, and a constant

value for T > 0.6 seconds. The maximum value of S, is obtained by averaging the

peak values of the individual normalized spectra. Similarly, the minimum value is

the average of the spectral values at T = 0.1 seconds. Figure 7-1 shows normalized

spectral velocity functions normalized such that Svmax = 1.2 m/s for ( = 0.02 - a

representative value for a major seismic event. The accelograms corresponding to the

earthquakes are also normalized based on these values.

Once accelograms are normalized, we can compute how the spectral velocity func-

tion varies with ( by simply increasing this parameter and generating new spectral

velocity functions. Spectral velocity functions for these "scaled"accelograms and dif-

ferent damping ratios are shown in Figure 7-2. Figure 7-3 illustrates how the value

of Sv varies with ( for T > 0.6 seconds.

The spectral velocity function based on the bilinear log-log relationship can be

used to solve equation 7.22. Since, there is no unique solution, we generate a family

of solutions by specifying different values of ý1. For each value of (, the computation

reduces to iterating on the following equations:

Irs, w < 10.47 rad/sec
qmax 1 (7.23)
10b(27r)m m1 w >10.47

where

log Smax - log Svmin (7.24)
log Tmax - log Tmin
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Figure 7-1: Normalized Spectral Velocity Plots

b = log Svmax - m log Tmax. (7.25)

Given w, one can scale the stiffness parameters and establish the system stiffness

matrix, K. Since our choice of 4 has only positive elements, it follows that w and 4

are the fundamental eigenvector and eigenvalue for (K, M). The damping matrix, C

is not defined at this time. We just have a single relation between C and w, (1 which

follows from equation 7.20:

DTC -= (4-(TM ) (2lw1l) (7.26)

It remains to determine the elements of C the viscous damping parameters c , C2, C3, ... , c.

7.2.2 Numerical Formulation

The analytical expressions developed for the spectral velocity tend to be overly con-

servative. The reason being that we are attempting to generate an average design

spectrum with two piecewise linear log-log plots. An improvement in design results

can be obtained if an average spectral velocity function is generated by taking the

ensemble average of the spectral velocity functions, instead of attempting to create an

analytical expression. Equation 7.22 can be solved by iterating through the average
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spectral velocity function and finding the value of w and S, that satisfy the equa-

tion for a given value of (. Figure 7-4 shows an average spectral velocity function

generated for various values of (. For a given value of T, similar numerical functions

to that of figure 7-3 can be used to interpolate for a given value of (. Figure 7-5

shows the improvement in results for a three story building. The reader is referred to

appendix A for the particulars of the case study.
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Figure 7-4: Average Spectral Velocity Functions
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Chapter 8

Stiffness proportional damping

Stiffness proportional damping considers the elements of C to be scalar multiples of

the corresponding elements in K. One writes

(8.1)C= aK

which requires

ci = aki i = 1, 2, ... , n. (8.2)

Substituting for C in equation 7.26 and noting

2 TK=
Wl2 -OT (8.3)

one obtains an expression relating ca and (1, wl.

(8.4)

Stiffness proportional damping uncouples the modal equilibrium equations based

on an expansion in terms of the eigenvectors of (K, M). However, it introduces a

constraint on the modal damping ratios,

wi

wi
(8.5)



Modal damping increases with modal number which is desirable, but we cannot

adjust the individual viscous damping parameters, ci so as to independently vary the

modal damping coefficients.

At this stage of the design, the total amount of damping to place in the structure

should be determined. This can be done by specifying the amount of modal damp-

ing, (1, that should be placed on the first mode. The optimum value of 1I can be

determined by an economic analysis.

Cost Trade-Off Comparison

The stiffness and damping distributions can be computed as a function of the

damping in the first mode. See figure A-3. One can see that as the damping increases

linearly, the stiffness decreases nonlinearly. Such information could be used to cal-

culate the most economical solution. At the present time, viscous dampers for use

in commercial buildings are custom built. Prices are not available to make definitive

cost comparisons. As the application of such dampers increases, we can expect their

price to drop, thus making it feasible to have a high amount of damping in buildings.



Chapter 9

Conclusions

In this thesis, an algorithm for solving the inverse problem has been presented. The

methodology is general and can be applied to any structure for which a stiffness

matrix can be derived. For the case of statically determinate structures, a unique

solution exists. For the case of statically indeterminate structures, it is necessary

to formulate an optimization problem. The Mean-Valued Least Squares Solution is

the method of choice because it ensures a statically indeterminate structure remains

redundant.

Future work can be done on developing additional optimality criteria. Of interest

is the case of bending members. Different penalties on the cross-sectional areas and

moments of inertia would have to be imposed so as to produce typical sections.

For the method to produce meaningful results, a judicious choice of displacement

constraints is necessary. The section on partial displacement constraints deals with

this problem where the designer only specifies displacement constraints at nodes of

interest. An algorithm is presented that selects the displacement constraints at the

nodes that are not of interest. The algorithm is formulated as the solution to an

optimization problem. A quasi-Newton method is implemented to solve the system

of equations. The designer enters trial member sizes to start off the optimization

problem. The traditional set of equilibrium equations P = KU is solved for the

unspecified displacements with displacement constraints at the nodes of interest.

The second part of the thesis presents an application of the inverse problem to



seismic design. Emphasis is placed on damping matrices that represent physical

placement of dampers, in particular, stiffness proportional damping. The stiffness

distribution is generated by solving an inverse eigen-problem. The stiffness distribu-

tion is calibrated based on an ensemble average response spectra, which are a function

of damping ratio and frequency.

The earthquakes that compose the ensemble are chosen to reflect the frequency

characteristics of the site. They are then scaled to a reference spectral velocity for

( = 0.02 to reflect the magnitude of earthquake that is likely to be encountered. The

damping distribution is scaled base on the choice of (. The results generated are very

close to the design objectives and improve upon the results presented by Connor and

Klink [2]. The case studies presented in Appendix A were used to verify the design

methodology. The reader is referred to Appendix A for a discussion of the results.

Future work can be done on considering arbitrary damping distributions. This

necessitates the use of a state space formulation. The eigenvalue problem involves

complex eigenvalues and frequencies.



Appendix A

Case Studies - Seismic Design

Results for the case studies in Table A.1 are presented in this chapter. The build-

ings are to be designed for earthquake accelocgram records scaled such that they

have a maximum spectral velocity of 1.2 m/s for a modal damping ratio of 0.02.

The frequency content of the following three earthquakes is representative of the site

selected:

1. El Centro

2. Northridge: Station 01 Component 090

3. Northridge: Station 03 Component 090.

Note that above a first mode damping ratio of 0.1, the shear deformation does

not oscillate much. Thus, the design objectives converge to a value of about 80% of

the design objective. See Figure A-1 and Figure A-2. At this modal damping ratio,

increased damping has less of an effect on decreasing the stiffness. See Figure A-3.

The frequency and periods of the first three modes for the case studies are given in

Figure A-4. The reader can use this information to verify that our assumption on

a fundamental mode response is correct by looking at the frequency content of the

accelograms in Figures A-5, A-6, and A-7.



Table A.I: Case Studies

Case Study Number of Stories Story Height [m] Mass/Story [kg] Tobj

1 3 4 10,000 0.005
2 6 5 10,000 0.005
3 9 5 10,000 0.005
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