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Abstract

Integral equation methods are popular in the electrical simulation of three-dimensional
structures since they require only surface meshing, and hence reduce dramatically the number
of unknowns. However, they lead to dense matrices which are too expensive to store or factor
directly. Iterative solutions based on approximate, matrix-free representations of the original
linear system appear to be the only recourse. However, this alternative can also fail if the linear
system is ill-conditioned, as is often the case. This thesis investigates the kinds of difficulties
which arise and how they can be resolved, using two practical problems in the computer-aided
design of VLSI systems.

The first part of this thesis deals with the modeling and simulation of three-dimensional
integrated-circuit interconnect in the distributed RC, or electroquasistatic, regime. When a
surface integral formulation is first combined with a multipole sparsification method, it is shown
that small multipole approximation errors are magnified by the ill-conditioning resulting from
the wide range of time constants in the dynamical system. In addition, this ill-conditioning
also makes iterative solution impractical because of the large number of iterations required for
convergence. A mixed surface-volume approach which effectively resolves both difficulties is
proposed and successfully implemented. Results show that the cost of extracting a complete
reduced-order model of the interconnect is only several times that of the basic capacitance
extraction.

The second part of this thesis deals with the extraction of substrate coupling resistances,
which can be formulated as a first-kind integral equation involving only the discretized, two-
dimensional substrate contacts. Since first-kind integral equations lead to ill-conditioned linear
systems, standard Krylov-subspace iterative solution algorithms are slow to converge. A fast-
converging multigrid iterative method for first-kind integral equations is developed to overcome
this difficulty. However, for the multigrid implementation to be efficient, the dense matrix
representation at each level needs to be sparsified. A multilevel sparsification method based
on moment-matching and eigendecomposition which handles edge effects more accurately than
previously applied multipole expansion techniques is presented and incorporated into the multi-
grid solution algorithm. Results on realistic examples demonstrate that the combined approach
is up to an order of magnitude faster than the sparsification plus a Krylov-subspace method,
and orders of magnitude faster than not using sparsification at all.

Thesis Supervisor: Jacob K. White
Title: Professor of Electrical Engineering and Computer Science
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Introduction

Boundary value problems for Laplace's equation in three dimensions are usually solved via

one of two general classes of numerical techniques. The first class requires the discretization

of the entire region in which Laplace's equation holds, and includes the well-known finite-

difference (FD) and finite-element(FEM) methods. This results in a large but sparse system

of linear algebraic equations, which can be solved directly using sparse-matrix factorization,

or iteratively using either conjugate-gradient style methods or multigrid methods. The most

efficient among such techniques require an amount of storage and CPU time proportional to M,

where M is the number of nodes, or unknowns, in the discretized region. However, since a huge

number of unknowns will be generated, these methods become very expensive when applied to

exterior bounary value problems, or to interior problems requiring very fine discretization.

For such problems, one usually resorts to integral equation methods, also called Green's

function methods. These methods require only the discretization of relevant boundary fea-

tures, i.e. those associated with a distribution of charges or dipoles. The term "boundary

element method" (BEM) is used when the discretized surface is the boundary of an open set

in R3. Because only two-dimensional surfaces are discretized, integral equation methods lead

to much smaller systems of linear algebraic equations than those produced by the FD or FEM

methods. See Figures 1-1 and 1-2 for an exterior boundary value problem discretized with

the FD or the BEM methods. However, since an integral equation couples every boundary

unknown to every other boundary unknown, the resulting matrix is dense, and consequently

too expensive to store or factor directly even for moderate N, where N is the size of the matrix,

or equivalently the number of "boundary elements". Since the cost of direct solution via Gaus-

sian elimination requires O(N 3 ) operations and O(N 2) storage, integral equation methods had

not been considered suitable for "large" problems involving thousands or tens of thousands of

unknowns.

The advent of matrix-free, iterative methods [1, 2, 3] during the past fifteen years has revived

interest and activity in the application of integral equation methods for large problems. The



L
FIGURE 1-1: Finite-difference discretization. FIGURE 1-2: Boundary-element discretization.

central idea behind this is best illustrated with the solution of a linear system of equations

P q=v (1.1)

where P is a large and dense matrix which is too cumbersome to store or factor directly.

Consider solving (1.1) using an iterative algorithm. A generic iterative method is illustrated in

Algorithm 1.

Common among all iterative methods is that the residual r(k) is needed to produce an

incremental correction to the current guess through F (r(k)), where F(.) denotes some linear

operation associated with a specific iterative method. The most important observation to be

made about this approach is that if an efficient "black box" algorithm exists to compute the

matrix-vector product P. q(k) given arbitrary input q(k), then the residual r(k) is easily obtained,

and (1.1) may be solved without explicit construction or storage of the matrix P. As a simple

Algorithm 1 ( Generic Iterative Algorithm for Solving P -q = v ).

Set k = 1, initial guess q(1) arbitrary.

Repeat {
Compute matrix-vector product v(k) - P. q(k)

Determine residual r(k) - v(k) - v.

Update current guess q(k+l) = q(k) + (r(k)).

Set k = k + 1.

} Until residual norm IIr(k)ll < e.
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example, let the elements of P be defined by Pij = 6ij + ui -wj, where u, w are constant,

length-N vectors, and 6 is the Kroneker delta. Then P is a dense matrix given by

1+ Ulw U1W2 ... U1WN

U2Wl 1 + U2W2 ... U2WN (1.2)
P = (1.2)

UNWI UNW2 ... 1 + UNWN

If the product P - q(k) is computed by direct matrix-vector multiplication, the cost is N 2 op-

erations. However, if we first compute the inner product a = wTq(k), and then compute

P q(k) u + q(k), the cost is now only 2N operations. This "algorithm" is motivated by

the representation

P = I + U T, (1.3)

where I is the identity. It is easy to see that (1.3) is equivalent to (1.2). We emphasize here

that (1.2) is a matrix equation in which P is an array of numbers, with reference to a specific

basis set, and that (1.3) is an operator equation in which P is defined as a sequence of linear

operations without any regard to a basis. It is a minor abuse of notation that P is used to

denote both a matrix and a linear operator. The field of numerical linear algebra has gradually

moved away from the traditional matrix representation and toward the much more powerful

operator point of view. We have just given here a simple example of the "matrix-free" approach.

Alternatively, we can view (1.3) as a "sparsified" form of (1.2).

FIGURE 1-3: Every panel interacts with every other panel.

Now, consider solving a potential integral equation arising from the capacitance extraction

problem [4]

(x) j (x') 1 da', x E S, (1.4)

where S is the collection of conductor surfaces, I1 - II is the Euclidean distance, da' is the

differential conductor surface area, E is the dielectric constant. This is an integral equation



d panels

FIGURE 1-4: Multipole Expansions.
FIGURE 1-5: Local Expansions.

of the first kind [5] with a (1/r) kernel, or Green's function. The problem is to solve for the

unknown surface charge density o-(x'), given the prescribed conductor surface potentials O(x).

A common approach [6] is the piecewise constant collocation scheme, in which the conductor

surfaces S are approximated by a set of N panels {pi}. The charge qi on each panel pi is

assumed to be uniformly distributed. If the potential b(x) in (1.4) is evaluated at the centroid

of each panel, the results is a linear system of the form (1.1) with matrix entries Pij defined by

1 J 1
P P= x- xda', (1.5)aj s 47elxi - x111

where xi is the centroid of panel pi and aj is the area of panel pj. See Figure 1-3 for an

illustration of a two-conductor problem.

Since charge at any given panel will produce a non-zero potential at all panels, Pij : 0

and the matrix P is dense. Hence we seek a fast, matrix-free algorithm to compute P - q given

arbitrary input q. Since v = Pq is simply the potential distribution resulting from the charge

distribution q, this feat is accomplished if there is a fast way to compute potentials due to a

collection of charges. The fast-multipole method (FMM) [7, 8], developed by Greengard and

REokhlin for the (1/r) kernel, is an algorithm that computes approximate values ;i for the N

potentials in O(N) operations and with O(N) storage, given a fixed error bound jjIu - v|| < C.

The basic idea is to exploit the fact that (l/r) is smooth away from the point r = 0. A collection

of charges in a cluster of radius R may be represented by a single charge at the center, with

strength equal to the sum of the charges, if the potential due to this cluster is to be evaluated

at a distance r far from the cluster r >> R. This is a monopole expansion. Better accuracy

is achieved with higher-order representations, called multipole expansions. This is illustrated

in Figure 1-4. Similarly, a Taylor series, or local expansion, can be used to approximate the

potentials at evaluation points inside a cluster of radius R, if all sources are at least a distance

r >> R away, as depicted in Figure 1-5. By keeping the ratio r/R at a fixed constant,

the multipole and local expansions can be applied at various length scales in a hierarchical

manner [8, 3]. The fast-multipole algorithm has been used successfully in combination with

gH e~ai~~af8Paa j·~oir~~s



Krylov-subspace iterative methods, such as GMRES [9], to solve potential integral equations

[1, 3, 10, 11].

Part I of this thesis investigates integral formulations for a dynamic problem, namely, the

simulation and macro-modeling of three-dimensional VLSI interconnect in the distributed RC,

or electroquasistatic, regime. Consider the dynamical system

d
x(t) = A x(t) + b u(t),

dt

y(t) = cT. (t), (1.6)

where x(t) E RN is the vector of state variables, A E RNxN is the system matrix, b E RN and

c E RN are constant vectors, u(t) is a scalar excitation, and y(t) the scalar output. Examples

of dynamical systems include the simple RC tree shown in Figure 1-6, and a three-dimensional

interconnect shown in Figure 1-7. In each case, the system is driven by an input voltage source

u(t) and the output y(t) is taken as voltage at a particular node.

u(t
y(t)T _s

FIGURE 1-6: Simple dynamic system.

t),

FIGURE 1-7: 3D interconnect.

Suppose that u(t) = 1, then the steady-state - is the solution of the linear system

A -X = -b. (1.7)

Matrix equations similar to (1.7), but with different right-hand sides, also need to be solved

for the problem of model-order reduction, the result of which is to produce a much smaller



representation, or macromodel, of the originial linear circuit or interconnect. If the dynamical

system (1.6) is derived from a circuit model in which each node has connections to only a few

neighboring nodes, or if (1.6) results from a FD or FEM discretization of a three-dimensional

region, then the matrix A is sparse. In such cases, it is feasible to solve (1.7) by LU factorization

[12, 13]. However, if (1.6) results from an integral formulation, where only conductor surfaces
are meshed, then A is dense and cannot be stored or factored directly. This is the case we
are concerned with in this thesis. When a matrix-free, iterative method is employed to solve

(1.7), two major difficulties are encountered, both resulting from the ill-conditioning in A. The
first difficulty is that when a black-box algorithm such as the fast-multipole method is used to
perform the matrix-vector multiplication, the multipole approximation error [Il - vii, usually

negligible, becomes amplified by the condition number of A. The second difficulty is that Krylov-

subspace based iterative algorithm (e.g. GMRES) converge slowly for ill-conditioned linear

systems [14, 15], and that the number of iterations required grows with increasing condition

number [14]. Iterative solution becomes very expensive if many iterations, or matrix-vector

multiplies, are necessary.

The fundamental cause of the ill-conditioning is that the time constants of the dynamical
system span a wide range, especially for long conductors. This is an essential feature in the
"physics" of the problem, and is independent of the mathematical formulation used to solve it.
However, we discovered that the ill-conditioning can be isolated with a mixed surface-volume

formulation. The problem is decomposed into two parts: an exterior Laplace problem solved via
the boundary-element method, and an interior Laplace problem solved via the finite-difference

method. The ill-conditioning can be isolated by explicitly solving an interior problem with
mixed boundary conditions. We show that for a small amount of additional work, the error
magnification is eliminated. Also, the interior solution leads to a preconditioner which acceler-
ates GMRES convergence by virtually removing the effect of time constants on matrix condition.
This removal of ill-conditioning caused by time constants reduces the cost of solving a dynamic
problem to one of solving a static problem. Realistic examples are given to demonstrate that
constructing a full, time-dependent reduced-order model is only several times more costly than
basic capacitance extraction. In addition, the multipole-accelerated code is used to compare
the popular, one-dimensional diffusion equation against three-dimensional models for the case

of long RC lines.

In Part II of this thesis, we turn to fundamental issues on the convergence of iterative

algorithms for solving integral equations of the first-kind, which are of the form

(x) = fs K(x;x')a(x') da'. (1.8)

In contrast, integral equations of the second kind [5] take the form

(x) = (x) + K(x; x')a(x') da'. (1.9)



Standard results from functional analysis and the theory of Sobolev spaces [5] show that eigen-

values for first-kind integral equations with continuous or weakly singular kernels have an ac-

cumulation point at zero, whereas eigenvalues for second-kind integral equations with compact

operators are bounded away from zero. The implication of this is that second-kind equa-

tions generate well-conditioned linear systems with bounded condition numbers, and that first-

kind equations generate ill-conditioned linear systems, whose condition numbers continue to

grow with mesh refinement. Since Krylov-subspace based algorithms converge rapidly for well-

conditioned linear systems, GMRES has been the method of choice for the iterative solution of

second-kind equations [1, 16]. When applied to solving first-kind equations, GMRES converges

slowly, and preconditioners are necessary to reduce the number of iterations by reducing the

effective matrix condition. However, the preconditioner derived in [3] for the problem of capac-

itance extraction, while effective, does not stop the number of iterations required from growing

with increasingly fine discretizations.

To overcome this difficulty, we develop a multigrid iterative method for first-kind integral

equations, and demonstrate that the convergence rate, and hence iteration count, is fixed, i.e.

independent of discretization. Multigrid, or multilevel, methods operate by first decomposing

the original problem into a set of sub-problems, each associated with a specific length scale,

or level. Then, a relaxation, or smoothing, scheme is applied to each sub-problem to reduce

error components at that length scale. The sub-problems "communicate" with one another via

restriction and prolongation operators, collectively called intergrid transfer operators. Since

the work associated with relaxation at each level decreases geometrically as the problem is

coarsened, the total work required for going through each level once, or for one multigrid

sweep, is bounded by a small multiple of the work at the finest level. Furthermore, since the

relative error reduction resulting from a relaxation iteration at each level is uniform across

all levels, the error reduction for a multigrid sweep is equal to the error reduction at a single

level. Hence the multigrid convergence rate is independent of discretization. Although it is

possible to formulate multigrid methods as multilevel preconditioners used to accelerate other

iterative solvers such as GMRES, we shall not take such a view, since we will later demonstrate

that GMRES with multigrid preconditioning converges only slightly faster than the stand-alone

multigrid algorithm. This implies that the multigrid preconditioner turns the original matrix

into something very "close" to the identity, in which case simple classical relaxation schemes

work nearly as well as Krylov-subspace methods.

The vehicle for our multigrid development is the problem of substrate coupling resistance

extraction for mixed-signal IC's. This is formulated as a first-kind integral equation involv-

ing only the two-dimensional substrate contacts. The two core components of a multigrid

method are carefully developed. The first component, the smoothing operator, is cast as a

fixed-point iteration, in which a sequence of local problems are solved to reduce the short-range,

or high-frenquency, portion of the error. The second component, interpolation and prolon-



gation, requires first that the original problem be formulated at different length scales. We

accomplish this using a hierarchical set of basis functions in a Galerkin discretization. Since a

coarse-level basis set forms a subspace of a fine-level basis set, interpolation and prolongation

operators are simple to construct. In order to make the multigrid algorithm practical, it is

necessary to sparsify the dense matrix-vector operations at each level in the discretized inte-

gral equation. Previous attempts on sparsification based on multipole approximations [17, 18]

are inaccurate since they fail to model the edge effects of the substrate. We develop here a

sparsification algorithm based on eigendecomposition, which accounts for the edge effects ex-
plicitly. At coarser levels, a moment-matching algorithm is developed to represent the problem

on a correspondingly coarse and regular grid, on which eigendecomposition can be applied more

cheaply. Numerical experiments are given to demonstrate that the resulting multigrid method

achieves a constant convergence rate independent of discretization. For a realistic chip layout,
the sparsified multigrid approach is up to an order of magnitude faster than a Krylov-subspace

method plus sparsification, and orders of magnitude faster than not using sparsification at all.
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The Transient Interconnect

Problem
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Overview of the Transient
Interconnect Problem

When analyzing high-performance integrated circuit designs, it is well-known that the single

lumped resistor-capacitor model of interconnect is insufficiently accurate. It has been shown

[19] that reasonably accurate electro-quasistatic, or transient interconnect, simulations could be

performed by computing the time evolution of the electric field both inside and outside the con-

ductors via a finite-difference discretization of Laplace's equation. More recently, a boundary-

element approach [20] based on Green's theorem was proposed, which performs the caculation

using the same surface discretization used for ordinary capacitance extraction, thereby avoid-

ing the large, exterior domain mesh and computation. However, the latter approach generates

dense matrix problems, which require O(N 3 ) operations to solve directly, and at least O(N 2)
to solve iteratively, where N is the number of surface unknowns. Therefore it is necessary

to accelerate such methods when solving large problems. The direct application of the O(N)

fast-multipole algorithm on the boundary-element formulation produces unacceptable results

because the multipole errors are magnified by the ill-conditioning in the linear system, which

results from the wide range of time constants in the dynamics. To overcome this difficulty,

we derive a mixed surface-volume formulation, and show how it prevents the magnification of

the multipole error. In this formulation, the interior finite-difference method is used to solve

Laplace's equation inside the conductors, and the boundary-element method is used to solve

the exterior Laplace problem.

For three-dimensional interconnect structures to be included along with the actual transis-

tors in a coupled, SPICE-level circuit simulation, it is necessary to construct low-order macro-

models whose terminal behaviors essentially capture the complicated 3-D field interactions

among the interconnect. Most model order reduction techniques, such as Asymptotic Wave-

form Evaluation [21] and the more recent Pade-via-Lanczos [22] and Arnoldi [23] algorithms,

have been successful because it is feasible to carry out an LU decomposition of the associated



sparse system matrix, after which each solve can be performed cheaply. For problems involving

large, dense matrices, direct factorization is computationally intractable. Iterative methods
can also be expensive if many solution iterations, or matrix-vector product computations, are
required for convergence, as is the case for ill-conditioned linear systems. We show how the

surface-volume formulation can be modified slightly to allow effective preconditioning, which
produces rapid convergence in the iterative solution.

The outline of our exposition is as follows. Chapter 3 deals with the integral formulation

of the transient-interconnect problem. The surface-integral formulation is briefly outlined in
Section 3.1. The phenomenon of ill-conditioning is described in Section 3.2. The surface-
volume formulation is then derived in Section 3.3, and the resulting error control demonstrated

in Section 3.4. Chapter 4 deals with the problem of efficient model-order reduction, or macro-

modeling. The guaranteed stable Arnoldi algorithm for model-order reduction is reviewed
in Section 4.1. The modified surface-volume formulation and preconditioning techniques are
presented in Section 4.2. Section 4.3 describes the method-of-images for including ground-
planes. Examples of model-order reduction are presented in Section 4.4, where we show that
the cost associated with generating a q-th order model is order N, and is less than that of
peforming q capacitance extractions. In Chapter 5, we compare the popular diffusion model of
the distributed RC line to three-dimensional calculations.



3

Problem Formulation and Error
Control

3.1 The Surface Integral Formulation

For the transient interconnect problem, the system is assumed to be in the electro-quasistatic

(EQS) regime. The scalar potential O(x, t) satisfies Laplace's equation in all of space except on

conductor surfaces, where charge can accumulate [20]

V2 b(x, t) = 0, x ý S, (3.1)

where S is the union of all conductor surfaces. Since Laplace's equation (3.1) holds both inside

and outside of the conductors, all charges in the system reside on the conductor surfaces S.

Therefore, the potential 0 is related to the conductor surface charge density, Ps, through the

superposition integral,
O (x, t) 1 Ps (X', t)da' (3.2)

Ot s 4rEllx - x'11 at
where the regions inside and outside the conductors are assumed to have uniform permittivity

c. Charge conservation [24] at the surface yields the continuity condition

ap(x) - J internal(X) - J external(x), (3.3)at
where J internal and J external are the normal current densities taken just inside and just outside

the conductor surface. Inside a conductor, the current obeys the constitutive relation

J in t ernal() = -_ (), (3.4)

where a is the conductivity and n is the outward normal to the surface S.

Combining (3.2), (3.3), and (3.4) results in an integral formulation

-4r (x, t) I -- (x', t) da' , J ternal ', (3.5)
at s x an' s |Ix - x'I



where T = e/a is the dielectric relaxation time of the conductors, x is a point on a conductor

surface, n' is the outward normal to the conductor surface, and lIx - x'll is the Euclidean
distance betweeen x and x'. Careful application of Green's theorem [25] [20] to the first integral

on the right-hand side of (3.5) yields

a)(x, t) a 1 1 J ex t
ernal(X', t)-47r- = 2 (x, t) + (' t) da' + - da'. (3.6)at s 1 n' FX- a |s - '|ll

Let S contact be the subset of S which is in contact with external voltage sources, and let S free =
S\S contact be the non-contact, or free, surfaces. Then O(x, t) for x E Scontact is known a priori.
Since there is no external current flow at non-contact surfaces, we also have a priori that
J external(x, t) = 0 for x E S free.

To numerically solve (3.6) for 0 at non-contact surfaces and for J external at contact surfaces,
the conductor surfaces are broken into N small tiles, or panels. It is then assumed that on
each panel 1, there is a constant potential 0 1 and a constant external supply current density
Ji. A collocation scheme [6], in which (3.6) is enforced at the centroid of each panel, is used to
generate a system of N equations. The result is a N x N dense linear system

- 4 7T- (t) = (2rI + D)%P(t) + P J ext(t), (3.7)dt a

where I, E RN, J ext E RN represent the discretized panel potentials and external supply
current densities. The elements of the dense matrices D E RNxN and P E RNxN are

lj 1
Pkd = d, a' (3.8)

Dki = - 1 da', (3.9)
Dkane-- an' 1ix' - xkIl

where Xk is the center of the k-th panel, and at is the area of the 1-th panel. Mathematically,
Pkl is the potential at Xk due to a unit charge distributed uniformly over panel 1. Similarly,
Dkl is the potential at Xk due to a unit dipole oriented along the normal to and distributed
uniformly over panel 1. The integrals in (3.9) and (3.9) are often referred to as single-layer and
double-layer integrals [5], respectively.

Suppose Nc of the N surface panels are connected to voltage contacts whose potentials ,c E
RNc are known but whose supply currents J Text E RNc are unknown. It is then clear that (3.7) is

an index-one differential-algebraic equation (DAE), solvable with backward-differencing formu-

las (BDF). In addition to the Nc elements of J ext , the unknowns also include the Nf = (N- Nc)

elements of 1Ef e RNf, which correspond to the non-contact panel potentials. Discretization of
(3.7) in time with the backward-Euler method yields the linear system

H f= 4r-T 47r= - I+2r l + D ( (3.10)
( t=(m+l)h F t=(m+l)h



where h is the timestep. The matrix, or linear operator, H E RNxN, is defined by the trans-

formation rule
H 4r7I + 2rI + D v + P , (3.11)

w h 0 w

where v E gNf and w E R•c

Since H is defined in terms of P and D, the unknowns can be interpreted as a distribution of

monopoles and dipoles, with the panels associated with the elements of Jce xt acting as uniform

monopoles (single layers), and the panels associated with 'I' acting as uniform dipoles (double

layers).

3.2 Difficulties with Multipole Acceleration

Consider using a Krylov-subspace based iterative algorithm, such as GMRES [9], to solve

(3.10) at each timestep. The k-th iteration of the GMRES algorithm requires computing the

matrix-vector product Huk, where uk is the k-th GMRES search direction. Since H is dense,

computing Huk directly requires N 2 operations. However, forming Huk is equivalent to com-

puting potentials at N points due to a distribution of N monopoles and dipoles. Fast-multipole

algorithms [26] [3] [27] can be used to compute approximate values of the N potentials in fN

operations, where p is independent of N but dependent on the required accuracy.

If (3.10) is solved by using a fast-multipole algorithm to approximate H in (3.11), then

H( • -t ) = b, (3.12)

where H is the multipole approximation to H, b is the right-hand-side of (3.10), and , Jcext

are approximations to the true solution 1, Jc e x t in (3.10). The relative error in the computed

potentials and currents is given by

7Jeext ta H - H( K (H) (3.13)

where H - H is the multipole error and IC(H) is the condition number [12] of H. As clear

from (3.13), the error from the multipole algorithm is magnified by the condition number of H.

To see the impact of even mild ill-conditioning in H on multipole algorithm errors, consider the

first model problem, a rectangular wire with dimensions L : 1 : 1, which is connected to a step

voltage source at one end, shown in Figure 3-1. The steady-state voltage at any point on the

conductor surface is 1 Volt. Figure 3-2 is a plot of the steady-state voltage at the opposite end

of the wire (labeled v1) versus wire length, computed using a multipole-accelerated algorithm.



FIGURE 3-1: Single wire (L=4) connected to voltage source at one end.

For the algorithm used (second-order multipole expansions), the multipole approximation
errors in the potential calculation is between 0.1-1%, but the steady-state error is much larger
because of the magnification due to the ill-conditioning in H. As further evidence of this
explanation, the condition number of H is plotted as a function of wire length in Figure 3-3.

For multi-conductor systems, the condition number of H grows as the spacing between
conductors is reduced. Figure 3-4 shows a simple two-conductor problem. Each conductor has
voltage boundary conditions at one end. Figure 3-5 shows that the condition number for the
system increases as the spacing between the conductors is reduced. At very large separations,
the two conductors are decoupled, and the condition number approaches that of the single-wire
example in Figure 3-1.

We comment here that while higher-order multipole expansions can be used (at a much
greater computational expense) to improve the accuracy, it only serves to delay the onset of
error magnification, and since the condition number is observed to grow quadratically with the
length of the conductors, we shall pursue other means of resolving this difficulty.

3.3 The Mixed Surface-Volume Formulation

We derive here a mixed surface-volume formulation which can be multipole-accelerated

without loss in solution accuracy, although it does not change the condition of the system
matrix. Consider the interior Dirichlet-to-Neumann operator X, defined by the linear map
between the surface potential V and its normal derivative -1--, where the limit for o2 is

approached from the interior of the conductor surfaces

XO(x) n (x), x E S. (3.14)
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This relation allows the surface-integral formulation (3.5) to be written as

4IT(Xt) 1 1 l1a-47 t IIx 1 X0 (x ', t)da' +- J ext
ernal(x , t)da', (3.15)at S -a HS 11 -'111 (3-15)

We now discretize the conductor surfaces into N panels and assume uniform potentials and

currents on each panel as described in Section 3.1. The resulting matrix equation is

d 1- 41rr d (t) = P(XI,(t) + J ext (t)), (3.16)
dt 0

where P is as defined in (3.9). The matrix X E RNxN approximates the continuous operator

X, and is defined by

XF =_ F, (3.17)

where %n E RN corresponds to 0-V at the N panels. Given %F at the surface nodes of a

conductor, Laplace's equation can be solved in the interior domain with an interior finite-

difference method to yield 'n at each surface node. Hence, applying X implies solving the

interior problems.

As before, a fixed-timestep, backward-Euler method is used to solve the DAE derived from

(3.16). The resulting linear system is

A Jcef = 4-- et=mh -- I + PX (3.18)( ) t=(m+l)h ( c ) t=(m+l)h (3.18)

The new operator A is defined by the transformation rule

A(4 = h + P 4X + 0 (3.19)
w h 0 0 w

The computation associated with applying X can be performed efficiently. Since the interior

Laplace problem is solved independently for each conductor, the action of the X operator
corresponds to solving a block-diagonal and sparse linear system. Thus the dominant cost of
applying A in (3.19) comes from applying P, which is a dense matrix operation since it couples
every panel to all panels on all conductors. But as described in Section 3.2, the application of

P to a vector can be multipole-accelerated. Therefore the combined surface-volume approach

can be made very efficient.

The mixed surface-volume method provides an important guarantee on the solution accu-

racy. This is stated in the theorem below.

Theorem 3.1. If the steady-state solution of (3.15) is such that the surface potential on each

conductor is a constant, and none of the conductors is floating, then the steady-state solution

computed by the mixed surface-volume method is exact, regardless of multipole approximation

error and discretization error.



Proof. Consider first the single conductor problem. From equation (3.16), the steady-state

solution satisfies
d 1
d- = 0 = P(Xxt + J xt). (3.20)
dt a

From the theory of fractional Sobolev spaces, it can be shown that the potential coefficient

matrix P is non-singular given a sufficiently fine discretization [28]. It then follows that X'I +

(1/a)J ext = 0 in the steady-state. In the finite-difference implementation of X, this is equivalent

to a resistor network connected to external voltage sources [19]. Assuming that all voltage

sources are at 1 Volt, the solution satisfies

X f + 0 = =0. (3.21)

In the equivalent resistor network picture, Nc of the surface nodes are connected to unit-

voltage sources, while the remaining Nf surface nodes are left open-circuited. Network analysis

immediately yields ' f = 1 and Je ext = 0, the exact steady-state solution. For many-conductor

problems, the same result holds since each conductor is treated independently by the X operator.

Since (3.6) and (3.15) are both derived from (3.5), the Green's theorem based and the

surface-volume based formulations are equivalent in their integral equation form. If we define

the integral operators PX and D as

tPXhus l(1) io s a(x)dams the oe (3.22)

:D(x)~> = n' llx - '] i(xl')da' (3.23)

then formally PX = (27rI + D) by Green's theorem [25], where I is the identity operator.

Thus it follows that in the limit as the mesh becomes very fine (i.e. N -* oo), the discretized

versions of these operators approach each other, PX m (27rI + D). Since O(x) - constant

implies Xb(x) = -20(s) = 0, both PX and (27rI + D) are singular matrices, with the vector

{1, 1, ..., 1} in the null space. The surface-volume formulation essentially factors the matrix

(2rI + D) into the product of a singular X and a well-conditioned, non-singular P. When the

action of P is multipole-accelerated in the mixed formulation, errors are introduced only in the

capacitance matrix of the surface panels, which does not alter the physical character of the

system. This error appears only during the transient, and will be shown experimentally to be

small and independent of condition number. This is expected since approximations are made

only on P, the well-conditioned part. The null space of PX is preserved. The same is not true

for the Green's theorem based, pure boundary formulation, since multipole approximations are

made on D, which alters the null space of (2rI + D).



Double Wire Problem, L=8, m=3
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FIGURE 3-6: Without acceleration, both tech- FIGURE 3-7: Multipole errors get magnified
niques produce correct results. only in the pure BE method.

3.4 Computation Results

To show that both the pure boundary-element (BE) formulation and the mixed finite-

difference/boundary-element (FD/BE) formulation produce similar results without multipole

acceleration, we performed simulations on the single-wire conductor in Figure 3-1, using the

dimensions L=4, W=1, H=1. Here we introduce a discretization parameter m, which represents
the number of sections into which each unit-length is divided. For example, m = 3 in Figure
3-1. One end of the conductor is connected to a step voltage source, and the voltage waveform
at the other end is shown in Figure 3-6. For the coarse mesh m = 3, both methods produce
small discretization errors. For the fine mesh m = 7, the two methods converge to the same
waveform. This confirms the validity of the new mixed formulation.

Multipole-acceleration is performed on both techniques for the double-wire example in Fig-
ure 3-4, with actual discretization (m=3) shown. At their near ends, one wire is connected to a
step-voltage source, while the other is grounded. Simulated voltage waveforms at their far ends
are shown in Figure 3-7. For the mixed finite-difference / boundary-element (FD/BE) formu-

lation, the multipole-accelerated result produces the correct steady-state, and is practically in-

distinguishable from the non-accelerated, explicit calculations. The multipole-accelerated pure
boundary-element (BE) technique is seen to produce obviously erroneous results, as reported

in Section 3.2. Experimentally, for the mixed surface-volume formulation, we find that second-

order multipole acceleration always produces results matching those of the explicit calculations,
independent of the condition number.

A fairly complex three-dimensional interconnect example is presented here to demonstrate

that the multipole-accelerated surface-volume method is necessary for large problems. The

GMRES [9] iterative method without preconditioning is used to solve the linear systems (3.10)

e
0

10)

Voltage at far end of bar



and (3.18). Polysilicon resistivity of p = .02 Qf-cm is assumed for all conductors, and oxide
permitivity of Er = 3.2 is assumed thoughout space. All computations are performed on a 266
MHz DEC AXP3000/900 workstation, with one gigabyte of physical memory.

FIGURE 3-8: SRAM cell (m=3 mesh).

m 1 2 3 4
panels 986 3,944 8,874 15,776

FD time 0.3% 1.0% 2.5% 6.7%

Table 3-1: Problem size and FD time for SRAM.

Figure 3-8 displays a model of a six-conductor SRAM cell. The groundplane is shown but
not used in this example. Each conductor is connected at a port, labeld 1 through 6. An
additional port, labeled 7, is connected to conductor 3. Table 3-1 lists the number of surface

unknowns for four successive refinements, with Figure 3-8 corresponding to (m = 3). The pair

of L-shaped conductors (1 and 2) are the clock lines, while the pair of H-shaped conductors

(5 and 6) are the data lines. A third pair of intertwined, interior conductors (3 and 4) make
interconnections between transistors in the cell. Assume that ports 3,4 are grounded, and that

ports 5,6,7 are floating during a particular fetch cycle. We simulate the cross-talk noise induced
on these lines by a unit-step voltage source on both ports 1 and 2. Such spurious signals must

* 5
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FIGURE 3-9: Waveforms computed using var- FIGURE 3-10: Comparing CPU times.
ious mesh refinements.

be minimized at the design phase to ensure error-free operation.

Results of the time-domain backward-Euler simulation are shown in Figure 3-9. The

multipole-FDBE method is applied to four successively finer meshes (m = 1, 2,3,4), while

the explicit-BE method, due to CPU time and memory limitations, is used only for the coarsest

mesh (m = 1). From the voltage waveforms v5 and v7, it is seen that the (m = 1) mesh re-

sults in significant discretization error. The finer meshes generate large numbers of unknowns,
and hence necessitates using the multipole-accelerated FDBE method. CPU times for the

multipole-FDBE method are plotted in Figure 3-10, which can be seen to exhibit linear, or

O(N), growth. CPU times for the explicit-BEM approach are extrapolated from the (m = 1)

mesh computation, and grows as O(N 2) since it is a dense-matrix method. For the (m = 4)

mesh, with 15,776 panels, the multipole-accelerated method is seventeen times faster than the

dense-matrix approach.

We make the additional note here that the CPU time consumed by the interior finite-

difference computation as a percentage of the total CPU time grows with increasing mesh

refinement but remains small, as shown in Table 3-1. This confirms the earlier assertion that

the cost of the boundary-element calculation is dominant.

0
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Model-Order Reduction and
Preconditioning

4.1 The Arnoldi Algorithm

In order to fully evaluate the effects of interconnect on overall circuit performance, it is

necessary to perform a coupled circuit-interconnect simulation at the SPICE level. It is im-

practical to incorporate the large, dense matrices associated with the 3D interconnect directly

into the circuit simulator. Instead, reduced-order models, which use small matrices to cap-

ture the current-voltage relations at the terminal ports of the interconnect, can be extracted

from the full model and then used in the coupled simulation. Techniques such as Asymptotic

Waveform Evaluation (AWE) [21] and the Pade-via-Lanczos (PVL) algorithm [22] have been

used successfully for this purpose. In this section, we summarize previous work on the sim-

ilar Arnoldi [29] algorithm, a numerically robust, orthogonal-projection based scheme which

generates guaranteed stable reduced-order models [30].

Consider the single-input-single-output (SISO), linear, time-invariant system described by

a system of first-order ordinary differential equations of the form

kc(t) = Ax(t) +bu(t),

y(t) = cTx(t), (4.1)

where the N-vector x represents the circuit variables or the detailed internal voltages of the

interconnect, and the N x N matrix A represents the detailed interactions among internal

elements; b E RN is the excitation vector corresponding to the input terminal, and c E RRN is

the observation vector corresponding to the output terminal. The scalar quantities u(t) and y(t)

are the input and output terminal-port variables, through which the linear system "interfaces"

with external circuitry. The state-space representation of (4.1) is

sX(s) = AX(s) + bU(s),



Y(s) = cTX(s), (4.2)

where X, U, and Y denote the Laplace transforms of x, u, and y, respectively. The transfer

function F(s) - Y(s)/U(s) can be written

F(s) = c . (I - sA-1) p = N V43)
(4.3)

s - Ak

where p = -(A- 1 ) -b.

Since N can be of the order of tens of thousands, it is desirable to reduce the large and
dense matrix A or A- 1 in a manner that captures the low-frequency behaviour of the transfer

function. This is done by matching Taylor series terms at s = 0. It has been shown in [29] that

an Arnoldi-based orthogonalization process can be used to construct an orthonormal basis for
the Krylov subspace

Kq,(A-, p) = span{p, A-lp, A-2p,... , A-(q- 1)p}. (4.4)

After q steps, the Arnoldi algorithm returns a set of q orthonormal vectors, as the columns of

the matrix Vq E RNxq, where N is the size of A, and typically q < N. The reduced-order

transfer function can then be constructed as

F(s) = - (I - sHq)-

Hq = VqT(A-1)Vq,

= VqTp = IIp|elj,
ET = CTVq, (4.5)

where Hq is a q x q upper Hessenberg matrix. The transfer function F(s) of the reduced q-th
order system (4.5) has been shown in [29] to match (q - 2) derivatives, or moments, of the exact
transfer function in (4.3) at s = 0, the low-frequency limit. The triplet [Hq, f, E] is said to be
the reduced-order model of the triplet [A- 1 , p, c].

It is possible to extend the present work to the multiple-input-multiple-output (MIMO) case
using block algorithms similar to those described in [31] and [23].

4.2 Preconditioned Model-Order Reduction

Both the AWE and PVL algorithms have been successfully applied to reduce circuit networks
for the lumped-element model of the interconnect since the associated large, sparse matrices can

be factored to solve for the low-frequency moments of the transfer function [32]. The difficulty
with applying the AWE, PVL, or Arnoldi algorithm to reduce three-dimensional interconnect

models is that the associated large, dense matrices are too expensive to store and factor. Matrix-
implicit iterative solution can also be expensive since many matrix-vector product computations



are required for ill-conditioned problems. We recall here that the matrix ill-conditioning re-

sults from the wide range of time constants associated with typical interconnect and is thus

independent of the problem formulation. In section 4.2.1, we show that straight-forward iter-

ative solution converges slowly, and in section 4.2.2, we reformulate the mixed surface-volume

approach slightly and derive an effective preconditioner, which allows for rapid convergence of

the iterative solution. Section 4.3 describes how to include ideal ground-planes in the problem,

and Section 4.4 presents the computational results.

4.2.1 Application of Arnoldi

To simplify notation in equation (3.16), section 3.3, let P P and = PX
which results in

d- (t) = DI(t) + J ex
t(t). (4.6)

dt

Since D is singular, the steady-state voltage P(t) is not uniquely determined by the external

current J ext (t). Thus we recast (4.6) as a differential-algebraic (DAE) system. This is done

by using voltage sources instead of current sources, and then computing the resulting n-port

frequency-dependent admittance matrix, which is then well-behaved near zero frequency. Recall

that the N unknowns are the first Nj entries in the potential vector %F corresponding to the

free potentials %F plus the Nc non-zero externally supplied currents Jcext
. The last Nc entries

%F, in *I are given a priori and correspond to external voltage sources. In frequency domain,

the result is a system of equations

sI - Df -Pc IF f(s) ISc¢Q(s)- I -fccj Jcxt (S) (]cc - sI)''c(s)

where Dff E RNf c Nf, 1  E NfxNc,'cf E NcxNf,cc E • xN are partitions of the D

matrix

D=[ f I] (4.8)

Similarly, P ff Nf XN, N fe 6 NfxNc, Pcf E RNcxNf , Ec E NcxNc are partitions of the P
matrix. The subscript f denotes the free-floating panels and the subscript c denotes panels in

contact with voltage sources. Since the contacts are typically at the ends of long conductors, the

number of contact panels is typically much smaller than that of floating panels. Therefore Pcc

is a small matrix and can be inexpensively inverted. Using Pcj allows (4.7) to be recast in the

standard form for reduced-order modeling. Let v E Nc, w E RNN be vectors of ones and zeros

which selects the input voltage and output current panels, respectively. Then 'c(s) = vu(s)

and y(s) = wT . j~ext(s), where u(s) is the scalar voltage input and y(s) is the scalar current

output. After some amount of algebra, the admittance transfer function g(s) = y(s)/u(s) is

g(s) = (ko + k1s) + cT. (sI - A) - 1 b, (4.9)



where

A = Dff - P fcPccDcf, (4.10)

b = (Dfe - PfcP 'Dce + APfcP-1) -v, cT = -wT. P-• f ,and ko, kI are scalar constants.

Rewriting the second term in (4.9) as f(s) = cT. (I - sA-1) -p, with p = -(A-l) -b, we

apply the Arnoldi method to reduce the triplet [A-', b, p] by matching low-frequency moments.

For each additional order in the model, a new vector in the Krylov subspace /Cq(A-l,p) in

(4.4) is generated by appling GMRES to perform an iterative solution of the system

A x = RHS (4.11)

using only multipole-accelerated matrix-vector multiplies as described in Chapter 3.

As a numerical experiment, we directly apply the above Arnoldi algorithm to the simple

interconnect in Figure 3-1, a single wire, with the supply voltage as input variable u(s) and

the supply current as the output vairable y(s). The same calculation is performed for wires of

varying lengths, keeping the other two dimensions fixed. Our numerical results, summarized in

Table 4-1, show that the number of iterations, or matrix-vector product calculations, required

for GMRES convergence in solving (4.11) grows quickly as the wire length, or aspect ratio,
is increased. This is caused by the the system matrix A becoming more ill-conditioned as

the range of time constants, or eigenvalues, grows with the wire length. It is well-known that

the rate of convergence for Krylov-subspace style algorithms deteriorates with growing matrix

condition number [14].

Wire Aspect Ratio 16 32 64 128

Mat-Vecs (Direct apply) 24 37 60 102
Mat-Vecs (Preconditioned) 4 5 5 6

Table 4-1: Matrix-vector multiplies required per order vs. length of wire

4.2.2 Preconditioned Formulation

We derive here a slightly modified version of equation (3.16), which can be easily precondi-

tioned to accelerate convergence of the iterative method used to compute the Krylov subspace

vectors. In this formulation, we assume that the panels in contact with voltage sources store

no charge, or equivalently, that the contact capacitances have been removed. This model may

also be supported based on physical arguments: terminal ports of interconnects are not exposed

surfaced when the connections to transistors or other curcuitry have been made. The contact

panels in practice exist inside conducting material, where Laplace's equation holds, and hence

cannot store charge.

We start from the original integral formulation of (3.5). By writing the surface integrals

over S as a direct sum of integrals over the contact and non-contact surfaces S contact and S free,



(3.5) becomes

S(x, t) 1 1external-47ra t x x' , 't) + J exe , t) da' +
t s free x - O a

Sota x x' O(, t) + J ex
t
ernal(x',t) da'. (4.12)

s contact ||z - X11z n'|| a
The assumption that the charge density p, is zero at contact surfaces S contact, combined with

the continuity condition (3.3) and the consitutive relation (3.4), implies

8# 1,(x', t) + -J external(xI,t) = 0, x E S contact. (4.13)
an' a

Thus the second surface integral in (4.12)vanishes. In addition, since there are no external

supply currents at non-contact surfaces, J external (', t) = 0 Vx' ES free. The unknown potentials

on S free then satisfy

-4lraI (x, t) 1 f t)a
at s free iix - x'|| an'

=- S fr 1 1 J internal(xt, t)da', x ES free (4.14)
free 11X _X'11 0

where (3.4) has been used in the second equality.

As before , we discretize Sf into Nf elements and Sc into Nc elements using the collocation

scheme. The interior Dirichlet-to-Neumann operator defined in (3.17), Section 3.3 can be

rewritten as

nf1 Xff Xfc If 1 J jnt
X-f = -- 1 (4.15)

SC Xcyf  Xcc  [ C J Jcint

where J n
t E ZRNf and Jcint E RNc correspond to normal current densities just inside the N1

non-contact panels and the Nc contact panels, respectively. Discretization of (4.14) yields the

Nj x Nj system

dt (t) = -ffj "int(t). (4.16)

where Pff e RNfxNf has been defined previously. Combining (4.15) and (4.16) and again

letting Ic(s) = vu(s) and y(s) = wT . Jcint(s), we have the state-space form

sly' (s) = A f (s) + bu(s), (4.17)

y(s) = cT. % (s) + d u(s), (4.18)

where

A =offX -- ( - P )PffXf (4.19)

b = (7)PXXfcv, cT = wTXcf, and d = wTXccv. The new expression for A in (4.19) is to

be compared with that in (4.10). Notice that )ff = ( 4-LPX)ff : (4)P1 fXff. Time-domain

solutions show that for reasonably long wires, the two formulations yield the same results since
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Compare formulations with and without end-face capacitors
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FIGURE 4-1: Compare formulations with and without contact-port capacitances

the capacitances associated with the contact ports are comparatively small. See Figure 4-1 for

the far-end voltage waveforms computed for a length=64 wire, in the absence of a ground-plane,
excited by a unit-step voltage source at the near-end.

Proceeding with the Arnoldi algorithm as in Section 4.2.1, the central task is to solve linear

systems of the form A -x = RHS for arbitrary right-hand-sides. Since the operator A has now
a product form, it is easy to reduce its condition number by making the substitution

x = Xjf-Ijf y, (4.20)

where H-' is a sparse matrix approximation to the inverse of the dense matrix Pff, and is
constructed by explicitly inverting local, overlapping blocks of Pf . For details on this compu-

tation, which fits naturally in the fast-multipole algorithm as demonstrated in the capacitance
extraction program Fastcap, see [3]. The operator X-1 is the exact inverse of Xff, and its

action is effected by solving the interior Laplace problem with mixed boundary conditions:
Dirichlet on the contact panels (%IF = 0) and Neumann on the free panels (J•nt arbitrary). As

in the pure Dirichlet-to-Neumann problem X, the mixed problem is solved by LU-factoring the

associated sparse matrix generated from finite-differences. The free-panel potentials 'f are

computed, along with J it as a by-product.

Using the preconditioner X ff1, we apply GMRES to solve for y in

1 (PfI H- ) y = RHS, (4.21)
47rT ff

and then compute the final solution x by applying (4.20). This preconditioned Arnoldi algo-

rithm is applied to the single-wire interconnect test case in Section 4.2.1. Table 4-1 displays the

number of iterations, or matrix-vector product calculations, required for the iterative solution



of (4.21). The rapid convergence shows that the condition number of the operator PffIj-fl is

much smaller than that of A, and nearly independent of conductor length. The ill-conditioning

caused by the wide range of time-constants has been removed by explicit solution of the interior

problem X-1, and the ill-conditioning caused by the proximity of conductors is removed by the

overlapping preconditioner IIj.

We make a note here that the starting Arnoldi vector p in (4.4) is computed by p =

-X-}Xc. - v rather than an iterative solve involving A. Hence, a q-order reduced model

requires q GMRES iterative solutions rather than (q + 1) solutions.

4.3 Ground-plane Implementation

The potential variation of the grounded silicon substrate is typically of the order of tens of

milivolts due to the many local, grounded body-plugs. Since this is small compared with the

3-volt or 5-volt power supply, we will assume an ideal ground-plane in this work. To include the

ground-plane in the preconditioned formulation of the previous section, the only modification

to make is the charge-to-potential operator Pff. The interior Dirichlet-to-Neumann operator

X remains unaffected. Let the ground-plane be approximated by a finite sheet, and assume it

is explicitly discretized into Ng panels. Let I,g E RN9 be the vector of ground panel potentials,
and let Jg E RNg be the vector of corresponding panel currents. To include the ground-plane,
additional terms are introduced into (4.16)

Pff Pfs  i f in d % f (4.22)
I)gf gg Jg dt xg

where Pfg E ~RNf N 9 i ~gf E N g X Nfgg RNg x Ng describe capacitive interactions among

conductor surfaces and the ground-plane, and are similarly defined as )ff. The condition

dt g(t) = 0 in the dynamic equation (4.22) implies that

d-1f = -Pf Jf, (4.23)

P ff = f - Pf9 pgg gf, (4.24)

where P)ff E RNfxNf is the new charge-to-potential operator in the presence of a ground-plane.

Since Ng may be large, it is impractical to factor Pgg, and since Pff is applied multiple times
in an iterative solve, it is impractical to apply P- 1i via an inner-loop iterative solve. Hence we

will use the method-of-images [25] to apply the operator Pff Fictitious image charge panels

are created by reflecting real charge panels across the ground-plane, and are always assigned

the opposite charge. A similar procedure applies to the overlapping preconditioning operation.

Since the O(N) fast-multipole algorithm is used, the net cost is twice that of the problem

without the ground-plane.

It would also be possible to use precorrected-FFT methods with a modified Greeen's function

to include the ground-plane [33].
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4.4 Model-Order Reduction Results

In this section, we present numerical results of our multipole-accelerated, preconditioned

model-order reduction algorithm and demonstrate its accuracy and efficiency. Throughout,
polysilicon conductivity and oxide permittivity will be assumed unless otherwise noted. The

groundplane is also included in all following examples. Figure 4-2 shows the frequency response

for a 2-port, computed from the full model, for a rectangular conductor with aspect ratios

l/m x 1Lm x 64pm, sitting one micron above the groundplane. Two discretizations are used:

the coarser one divides each unit square into 9 equal panels, and the finer one divides each unit

square into 16 panels. It is seen that up to a frequency of 10 Terahertz (1013) the results for

the two discretizations are nearly identical. Henceforth we shall use the coarser discretization.

Figure 4-3 is a plot of the frequency response of the reduced-order models for the same

conductor and shows that a twentieth-order model produces virtually identical results as the full

model, of order 2,304. Time-domain data generated by the full-order models and the reduced-

order models are also given for comparison. Figure 4-4 displays the short-circuit current in port

2 (held at ground), and Figure 4-5 displays the open-circuit voltage at port 2, for various reduced

models; the excitation in both is a unit-step voltage source at port 1. We see from Figures 4-3

and 4-4 that third-order models are accurate enough if there are no signals in the system faster

than 10 - 30 picoseconds. Figure 4-5 shows that the third-order model captures most of the

essential features of the true response, while the first-order model, which is equivalent to a

single-lumped RC model, fails miserably.

Next, we perform two-conductor coupling experiments using the same configuration as in

Figure 3-4, with the driven conductor connected to a voltage source and the "victim" conduc-

tor grounded at the near ends. We are interested in the voltage noise v2. Both wires have
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FIGURE 4-4: Port 2 current vs. time com-

puted with reduced models
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FIGURE 4-6: Poly-to-poly coupling voltage
noise in frequency domain
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FIGURE 4-7: Poly-to-poly coupling voltage
noise in time domain
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frequency (l/s) time (ps)

FIGURE 4-8: Metal-to-poly coupling voltage FIGURE 4-9: Metal-to-poly coupling voltage
noise in frequency domain noise in time domain

dimensions 1/tm x 1ltm x 80itm, and sit 1 micron above the groundplane. Figure 4-6 shows

the magnitude of v2 in the frequency domain, generated from several reduced models. It is

seen that a fifth-order model is necessary to capture the full model up to 10 GHz. Figure

4-7 shows the time-domain response v2 to a unit-step voltage source. The fifth-order model

is nearly indistinguishable from the full model. Similar experiments were performed with the

driven polysilicon line replaced by aluminum, and the victim line material unchanged. Results

are shown in Figures 4-8 and 4-9. The metal line introduces a much smaller timescale due

to its high conductivity, and as a result the coupling noise remains significant up to a much

higher frequency, 10 THz. The time-response also shows a much faster risetime. For purposes

of SPICE-level simulation in which the excitation is bandwidth-limited to say, below 10 GHz,
a fifth-order model is sufficient.

Next, we apply our algorithm to two large interconnect examples. The first is the six-

conductor SRAM structure shown in Figure 3-8. The structure is treated as a six-port prob-

lem, with the excitation ports labeled 1-6 in the figure. The simulation is now run with the

groundplane with its approximate position shown in the figure. Refer to Section 3.3 for the

discretization scheme and labeling. Total panel counts, including real and image panels, are

shown in Table 4-2. Figure 4-10 shows the frequency response of the conductance G61 computed

using various discretizations. It is seen that up to 1013 Hz, the results are nearly identical for

the mesh refinements m = 3 and m = 4; refer to Section 3.4 for the definition of the mesh

parameter m. The coaser meshes, m = 1 and m = 2 may be used for quick estimates. The

model-order reduction results for m = 4 is plotted in Figure 4-11, which shows that a sixth-

order model is necessary to capture the first knee in the frequency response at - 100 GHz. We

make a note here that the straight-line section of Figure 4-11 corresponds to the low-frequency
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SRAM example with groundplane (6 conductors)

10 10 10 102 1013 1014
frequency (1/s)

FIGURE 4-10:
tion for SRAM

approximation

Convergence with discretiza- FIGURE 4-11:
SRAM

Reduced-order models

Y = jwC, (4.25)

where Y, C are the admittance and capacitance matrices, respectively. Resistance plays no

part in the interconnect conductance until the higher-frequency components are excited.

3'

FIGURE 4-12: Three-level interconnect (m=1 mesh).

m 1 2 3 4
SRAM 1,952 7,808 17,568 31;232
3-level 5,078 20,312 45,702 NA

Table 4-2: Total (real+image) panel count.

frequency (1/s)
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Three-level interconnect with groundplane

frequency (1/s) frequency (1/s)

FIGURE 4-13: Convergence with discretiza- FIGURE 4-14: Reduced-order models for
tion for three-level interconnect three-level interconnect

A three-level interconnect structure with a coarse discretization (m = 1) is shown in Figure

4-12, in which each unit square is ltm x lt1m, and the groundplane is one micron below the

bottom-level interconnect. Polysilicon is used for the bottom level, and aluminum for the top

two. Each interconnect layer is excited at a single port, as shown in the figure. In this example,

we compute the first column of the admittance matrix by connecting port 1 to a voltage source

and grounding ports 2 and 3. Three discretizations were used (m = 1, 2, 3), and the total panel

count is shown in Table 4-2.

Figure 4-13 shows the convergence with discretization of the frequency response for G31,

and Figure 4-14 shows results of reduced-order modeling. Although the frequency dependence

is complicated, a third-order model is accurate up to 1 GHz, and a sixth-order model accurate

up to 10 GHz.

To demonstrate that the entire multipole-accelerated, preconditioned model-order reduction

algorithm has order N complexity, we plot CPU time and memory used versus the total number

of panels (real and image) in computing a single-input-multiple-output (SIMO), sixth-order

model for the SRAM and the three-level interconnect examples. See Figures 4-15 and 4-16.

Since a SIMO reduced-order model corresponds to one column of the frequency-dependent

admittance matrix, we compare this cost to that of computing one column of the capacitance

matrix using FASTCAP [3], a multipole-accelerated capacitance extraction program. Table 4-3

displays the ratio of the CPU times. While a sixth-order model essentially solves the capacitance

problem six times, the actual CPU time overhead is seen to be only a factor of two to three.

This is because the significant set-up time associated with the multipole algorithm, common

to both procedures, is better amortized in the reduced-order model computation. Memory

requirements are nearly identical in both cases.

y
0

cSn

Three-level interconnect with aroundolane



Memory use vs. problem size
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FIGURE 4-15: CPU time grows linearly with
problem size

FIGURE 4-16: Memory use grows linearly with
problem size

m=1 I m=2 m=3 m=4
3-level 1.6 1.6 2.4 NA
SRAM 1.8 2.2 3.0 3.1

Table 4-3: Ratio of reduced-model to capacitance-extraction CPU times.
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5

Comparing Diffusion and 3D
Models

For analyzing two-dimensional interconnect problems, such as a single, long wire or a collec-

tion of parallel wires, the diffusion equation equation is often used in the electro-quasistatic ap-

proximation, or RC regime. In the context of interconnect analysis, the basic, single-conductor

diffusion equation can be written as

RC a (, t)= 2(X, t), (5.1)at ax
where 1, C are the resistance and capacitance, respectively, per unit length, and 4(x, t) is the

electric potential along the wire as a function of position and time. Equation (5.1) can be easily

derived by taking the continuous limit of the discrete RC ladder circuit shown in Figure 5-1.

Similarly, numerical solutions which are accurate up to a given excitation frequency can be

obtained from a circuit solution of the discrete RC ladder network if a large enough number of

sections, or lumps, are used.

-I-A

FIGURE 5-1: RC ladder circuit

The diffusion model differs from the full three-dimensional model in several ways. First, the

diffusion equation assumes capacitive coupling only between each node and the groundplane,
and not among the nodes themselves, whereas the three-dimensional picture models capacitive

coupling among all panels as well as the groundplane. Figure 5-2 displays the capacitive inter-

action between one particular node and all other nodes. Secondly, the diffusion picture models

only current flow parallel to the wire, whereas the three-dimensional picture models current

flow in all three directions in the conductor, produced by possible potential differences in the



FIGURE 5-2: Global capacitive coupling model

Compaing 3D to dif n ComDadna 3D to diffusion results: voltaae attenuation

frequency (l/s) frequency (l/s)

FIGURE 5-3: Voltage attenuation: diffusion FIGURE 5-4: Diffusion model less accurate for
model vs. 3D large Z

transverse directions. Results from the two models approach each other as the conductor ap-

proaches the groundplane and as the excitation frequency is lowered, since the former effectively

reduces the relative strength of panel-to-panel interactions, and the latter makes the conductor

potential more uniform in both transverse and longitudinal directions.

We present results from numerical experiments which compare the diffusion and the three-

dimensional models. A three-dimensional capacitance extraction is performed on a single,
rectangular wire over a groundplane, using the mesh in Figure 3-1. A long enough wire is used

to ensure that the capacitance per unit length is within one percent of the long-wire limit.

This capacitance value, along with the wire resistance computed from its cross sectional area,
is used in the diffusion model. For all experiments in this section, the conductor dimensions are

80pm x lpm x 1lm, with a distance above the groundplane at 1,m(Z = 1) or 10m(Z = 10).

First, we perform the single-wire experiment, in which the near-end of the conductor is excited

by a voltage source, and the resulting far-end voltage is measured as a function of frequency.

The set-up is similar to that in Figure 3-1. The results from the diffusion and 3D model are

shown in Figure 5-3. A close-up view is shown in Figure 5-4. It is seen that up to a frequency

of 100 GHz (1011Hz), the diffusion results give a fair approximation to the 3D results. Also, the

approximation becomes worse as the distance between the wire and groundplane is increased.

-- · · ·*-····r -- ·- ·--~- -··-··----··
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Next, we perform the two-conductor coupling experiment in a set-up similar to that of Fig-

ure 3-4. The parameters used for the diffusion model are extracted from the two-conductor

capacitance matrix, computed with the groundplane included, and the coupled diffusion equa-

tion is solved numerically with the coupled RC ladders shown in Figure 5-5. The noise voltage

v2 is plotted as a function of excitation frequency for the case Z = 1 in Figure 5-6, and a mag-

nified view is shown in Figure 5-7 for both the Z = 1 and Z = 10 cases. The same observations

can be made here as in the single-wire experiments. The low-frequency, straight-line section

in the figures correspond to the capacitive limit described by (4.25), where the wire resistance

plays no role.

We conclude from the above experiments that the diffusion model and the 3D model yield

similar results when the conductors are in close proximity to the groundplane, in which case

the relative importance of global capacitive coupling is minimized.

FIGURE 5-5: Coupled RC ladders
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Part II

The Substrate Coupling Problem





Overview of the Substrate Coupling
Problem

The design of single chip mixed-signal systems which combine both analog and digital

functional blocks on a common substrate is now an active area of research, driven by the

relentless quest for high-level integration and cost reduction. A major challenge for mixed-

signal design tools is the accurate modeling of the parasitic noise coupling through the common

substrate between the high-speed digital and high-precision analog components [34, 35, 36].

Fast switching logic components inject current into the substrate, causing voltage fluctuation

which can affect the operation of sensitive analog circuitry through the body-effect, since the

transistor threshold is a strong function of substrate bias. This coupling mechanism is illustrated

in Figure 6-1, in which a switching digital node injects current J via the p-n junction into the

bulk, causing the local substrate potential Vb to vary at an analog node. This interaction is

also illustrated in Figure 6-2 from the circuit point of view.

D

FIGURE 6-1: Substrate coupling mechanism.

For the accurate modeling of substrate-coupled noise, several numerical schemes currently



A

F-

FIGURE 6-2: Substrate coupling from circuit point of view.

exist, but each has its limitations. Since it has been understood that the bulk substrate behaves

resistively up to a frequency of a few gigahertz [37, 18], it is sufficient to solve Laplace's equation
inside the substrate with proper boundary and interface conditions. Examples of this approach

[35, 34, 38, 39, 40] includes Finite Element (FEM) and Finite Difference (FD) methods. These

techniques perform a full domain discretization on the large but bounded substrate and can
easily handle irregular substrates (wells, doping profiles, etc). Although the resulting linear
systems are sparse, such methods are impractical for complex layouts because the number of

unknowns resulting from three-dimensional volume-meshing of the entire substrate is too large.

Integral equation (IE) based techniques have been applied with some success to the mod-
eling of substrate coupling [41, 42, 17]. By requiring only the discretization of the individual,
two-dimensional substrate contacts, IE methods dramatically reduce the number of unknowns
and hence the size of the linear system to be solved. The primary drawback to the integral
formulation is that the resulting matrices are dense, which makes direct factorization imprac-
tical for problems with more than a few hundred unknowns. To address this difficulty, similar
heuristic partitioning schemes were described in [43, 41] as an attempt to sparsify the matrix

inverse by setting direct admittances to contacts outside a user-defined region to zero. While

this approximation makes larger problems tractible, it requires too much user intervention and,
more importantly, results in errors that are difficult to control and quantify.

Iterative algorithms form an attractive alternative to direct matrix factorization for large

or dense linear systems. GMRES [9], a Krylov-subspace based iterative method similar to the
well-known conjugate gradient technique, was used in [17] to solve the IE system in a matrix-

free manner. Since only matrix-vector products are required to generate new search directions,
a multipole-accelerated, "black-box" algorithm was formulated to perform the matrix-vector



multiplication without having to explicitly compute or store the dense matrix. This allows all

direct and indirect substrate contact-to-contact interactions to be included. However, the major

difficulty with conjugate gradient style iterative methods is slow convergence when applied

to large IE systems, which tend to be ill-conditioned [28, 14, 5]. Hundreds of matrix-vector

products may be required per solution for large problems.

Multigrid methods, or more generally, multilevel methods, are well-developed and known

to be the most efficient iterative techniques in the solution of elliptic partial differential equa-

tions (PDE's) [44, 45, 46] due to their fast convergence. More specifically, such methods can

yield convergence rates independent of problem size and matrix condition [47, 45]. However,

multilevel methods are not well-developed for the solution of first-kind integral equations [5]

defined over complicated surfaces, as is the case here for the integral formulation of the sub-

strate coupling problem. In this thesis, we address this void by developing the many algorithmic

components necessary for a sparsified, multigrid iterative solution of such IE systems. We then

demonstrate that the resulting convergence rate is independent of problem size and similar to

those for PDE's.

Our multigrid development for the substrate coupling problem is organized as follows. Chap-

ter 7 summarizes the integral equation formulation for substrate coupling resistance extraction.

Chapter 8 reviews some basic ideas from function analysis and the theory of integral equations,

which are then used to motivate our multiresolution, or multigrid analysis. A sparsification

method based on eigenanalysis is presented in Chapter 9. For solving first-kind integral equa-

tions defined over regular domains, a novel multigrid method is developed in Chapter 10.

Chapter 11 then extends this multigrid algorithm to solving equations defined over complicated

geometries, such as a typical IC layout. Computational results are given in Chapter 12, where

comparisons to conjugate gradient style methods are also made.





Background and Previous Work

This chapter reviews the integral equation (IE) formulation for the mixed-signal substrate

coupling problem. The eigenfunctions and Green's functions for the integral equation are also

introduced. The notation and convention introduced here will be used throughout the rest of

the thesis.

7.1 Integral Formulation

For typical mixed-signal circuits operating at frequencies below a few gigahertz, the sub-

strate behaves resistively [37, 17]. Assuming this electrostatic approximation, the substrate is

therefore modeled as a stratified medium composed of several homogeneous layers characterized

by their conductivities, as shown in Figure 7-1. Three substrate contacts are shown in gray.

For this work, the substrate backplane is assumed to be grounded electrically. The governing

equation in the electrostatic case is Poisson's equation

- V. (aijV(r)) = p(r) (7.1)

where q is the electrostatic potential, r is the position vector, ai is the conductivity associated

with the i-th layer, and p is the current flux density p = V. J.

Since current is injected only from the substrate contacts on the top surface, Laplace's

equation, where the right-hand side of (7.1) is zero, holds in the interior of the substrate. Thus,

if the Green's function G(r; r') satisfying

- V. (aiVG(r; r')) = 6(r') (7.2)

and appropriate boundary and interface conditions can be efficiently computed, an integral

equation defined over S, the collection of two-dimensional contact surfaces, can be written

O(r) = j ps(r')G(r; r')da', r e S, (7.3)
JS
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FIGURE 7-1: 3D substrate profile.

where r, r' are now points on S, and Ps is the current density on S. This is a first-kind integral

equation [5] which forms the basis for the numercial techniques used in [41, 43, 17]. Figure 7-2

illustrates a situation where the Green's function G(r; r') is to be evaluated for all pairs (r; r')

on the two substrate contacts, colored in gray.

FIGURE 7-2: Green's function to be evaluated.

To numerically solve (7.3), the domain S is broken up, or discretized, into a collection of N

disjoint, rectangular panels {pi} such that S = UJ N pi. An example of panel discretization for

a three-contact layout is given in Figure 7-3. In the piece-wise constant Galerkin scheme [6], it

is assumed that the current density ps (r) on each panel pi is uniform and equal to pi. Then N

linear equations are constructed by evaluating the average of the potential O(r) over each panel

r')G(r;

7M



Pi. The Galerkin method yields a discretized version of (7.3)

Pq = v (7.4)

where q and v are length-N vectors with qi denoting the total current on panel i and vj denoting

the average potential on panel j. P is an N x N matrix, with elements Pij given by

Pi- 3 P Pj
G(r; r')dada'

where ai and aj are the surface areas of panels i and j respectively.

(7.5)

P is often called the

coefficient-of-potential matrix. We note here that P is dense since current injected into panel i

will produce a non-zero potential at panel j.

1

2

3

2

a

FIGURE 7-3: Example of contact discretization.

Let n be the number of contacts, or nodes, in the substrate layout. Typically n << N. The

aim of substrate coupling extraction is to derive a macromodel in the form of a conductance

matrix which models the substrate current flow completely from the point of view of the n

nodes or ports. For example, the three-contact problems shown in Figure 7-1 and 7-3 can be

modeled with six conductances as shown in Figure 7-4. The resulting macromodel is

Q = GV, (7.6)

where G E Rnxn is the conductance matrix, Q E Rn specifies the total current Qi for each node

i, and V E Rn specifies the voltage Vj for each node j. The matrix

912 "'" 91n

922 "'" 92n

9n2 "'" gnn

911

921

gnl

(7.7)
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is symmetric and diagonally dominant. If a direct connection exists between each node and

ground (i.e. if the backplane is grounded), then G is also strictly diagonally dominant. To

extract the i-th column of G, the N x N linear system (7.4) is solved for the specific right-hand

side, or detailed potential distribution v, in which all panels belonging to the i-th contact are set

to one volt, while all other panels are set to zero volt. After the detailed current distribution q

is obtained, the element gki can be computed by summing the panel currents in q corresponding

to the k-th contact. Thus, to derive the n x n macromodel G, (7.4) is to be solved n times for

q given v. This is analogous to the capacitance extraction problem [4, 3].

FIGURE 7-4: Three-node macromodel for substrate.

We make the special note here that a purely resistive macromodel of the substrate is suffi-

cient in the case where the dielectric relaxation time constant r = c/a [48] is much smaller than

the typical time scales of the circuit. This is true for most substrates operating below a few

Gigahertz, as shown in [37, 17]. However, the RC time constants resulting from substrate in-

teractions with junction and gate capacitances are certainly not negligible. These capacitances,
typically nonlinear, are much more easily handled by a circuit simulator such as SPICE. Hence,
the nodes in Figure 7-4 correspond to bottom plates of junction or gate capacitances, as sug-

gested in Figure 6-1. Reduced-order models which include the effects of junction capacitances

have been proposed in [40]. These macromodels are more complicated than the conductance

matrix G describes above, and may be less accurate when nonlinear effects of the junctions

become significant.

i<

I



7.2 Green's Function based Framework

The Green's function G(r; r') specific to the substrate coupling problem must satisfy Pois-

son's equation

- V. (a(r)VG(r; r')) = 6(r'). (7.8)

In addition, the appropriate interface conditions

G(r;r') G(r; r')
ai-1 - Oz Oz Iz--d+

G(r; r') Iz-(--d = G(r;r') Iz--d (7.9)

must be satisfied at each interfaces z = -di between layers with conductivities ai-1 and ai. This

ensures that both potential and normal current flow are continuous across layer boundaries.

See Figure 7-1. Finally, the boundary conditions

G 0, r E top face or side faces
On

G(r;r') = 0, r bottom face (7.10)

where n is the unit outward normal at the boundaries, must be satisfied by G. This enfores

that the normal current flow is zero (Neumann B.C.) at the top and side faces of the substrate,

and that the substrate bottom contact remains at ground (Dirichlet B.C.). For the case in

which the backplane is floating, a zero-Neumann B.C. is applied to the bottom face as well as

the side faces, leading to a modified Green's function [41, 49]. In this thesis, we shall focus on

the case with the backplane grounded.

Since the Green's function G(r; r') is to be evaluated for target r and source r' points on

the two-dimensional substrate contacts on the top surface (as shown in Figure 7-2), we make

the substitution r -+ (x, y) and r' -- (x', y'). The problem is reduced to two-dimensions, where

z = z' = 0 is implied below. The Green's function satisfying (7.8),(7.9), and (7.10) is shown in

[37, 43] to be an infinite series

G(x, ; ', y') = : mn i n cos - cos mC' cos (b cos b (7.11)
m=0 n=o

where a, b are the lateral substrate dimensions, and x, y are the cartesian coordinates. From

(7.11), it is clear that G(r;r') does not have translational invariance. This means that in

general, G(r; r') # G(r + A; r' + A). The scaling constants Cmn are defined by

1/(ab) m = 0, n = 0

Cmn= 2/(ab) m = 0, n > 0 or m > 0, n = 0 (7.12)

4/(ab) m>0, n > 0

The coefficients finn take into account the vertical dimensions and the layer conductivities,

and can be computed with the help of recursion formulas. For the sake of completeness, we



summarize the procedure derived in [37] for computing finn. First, define

'Ymn = nr)" (7.13)

Assume there are a total of L layers, as shown in Figure 7-1, and let d = dl be the substrate
thickness. For m, n not both zero, we then compute the quantities and r (L)recursively

from the relation

(k) -1 osh2((k) )  sinh2(mk) k- 1 sh( ) sinh(k) -1)

S (mn1- 1() cosh(E-) sinh(~) ,cosh2( )- k- sinh2 (,mn) rk 1)

(7.14)
where 2 < k < L and = 7mn(d - dk). The recursion starts with (1) = 1 and F)= 0.
The coefficients finn are then given by

1 finn tanh(ymnd) + t- m
Jmn = , m>0orn>0.

at * 7mn n(L) + n(L) tanh(7mnd)

For the case m = n = 0, the quantities (L) and L) are computed from the recursion

[ O(k) ] [ 0k 1 o (k-1)
a k 00

lp(k) - 1 - 1) dk 1 r (k-1)
t 00 i) d 00

starting with 3 =- 1 and ()= d. The coefficient foo is given by

1 Fr(L)
foo - 00UL 3(L)

(7.15)

(7.16)

(7.17)

For the case of the uniform substrate (L = 1) with conductivity a, the coefficients fmn are
given by the simpler equation

fmn = { [tanh(-mnd)]/(a - Ymn)
I (d/a)

m > 0 or n > 0,
m = 0, n = 0

For a given substrate profile, the cost associated with computing an M x M array {fmn},
0 < m,n < M- 1, is O(M 2).

Suppose that the substrate surface is represented by a regular, M x M computational grid,
and that each panel aligns to a cell on this grid. This situation is depicted in Figure 7-5 in
which panels are shown in gray. It was shown in [43] that by truncating the Green's function
(7.11) to a finite M by M series and substituting this into (7.5), it is possible to construct each
entry Pij of the coefficient-of-potential matrix from linear combinations of appropriate terms
from the two-dimensional (M + 1) x (M + 1) array {Fij} defined by

(7.19)
M-1 N-1 7 )

Fi= ' ' fmn cos i cos co , 0 • i,j M
m=0 n=0

(7.18)



FIGURE 7-5: Each panel aligns to a cell.

where the primed summation indicates that the first term in each sum is to be multiplied by

(1/2). The array {Fij) can thus be regarded as a lookup table. If M is a power of two, then

{Fij) is the two-dimensional, Type-1 inverse Discrete Cosine Transform [13] (IDCT) of the

array {f mn), which can be computed efficiently with the Fast Fourier Transform (FFT). This

is an efficient way of evaluating and integrating the Green's function G(r; r') without summing

the series in (7.11) directly. However, it is possible to show that for reasonable accuracy, at

least 2M x 2M terms in the series (7.11) are required for a physical grid of size M x M. Hence

we leave to Chapter 9 the details of this table lookup approach, along with our development

of an efficient algorithm which achieves higher accuracy by incorporating more terms in the

Green's function expansion.

Although the construction of the lookup table {Fij } via DCT allows the individual entries

of P to be computed, the solution of (7.4) still requires O(N3 ) CPU time to factor and O(N 2)

memory to store the dense matrix P. This limits the size of the problem to a few hundred

panels. However, the table lookup approach will be used in the multigrid algorithm when direct

panel-to-panel interactions are required.

7.3 Eigenfunction based Framework

In contrast to the Green's function based approach derived in [37, 43] and outlined above,

we derive here an alternative framework based on eigenfunctions, or eigendecomposition. This

framework offers two crucial advantages over the Green's function based approach. The first

advantage is that analytic properties of our particular first-kind integral equation 7.3 become

immediately accessible, offering critical insights which motivate the development of a mul-

tiresolution analysis. The second advantage is that the eigendecomposition picture leads to a

sparsification algorithm for the dense matrix-vector product required in solving the discretized

I r

---



integral equation (7.4). In this section, we describe the eigenfunction based approach and its
connection with the Green's function based approach.

Let Q _= [0, a] x [0, b] represent the entire substrate surface, and let o : RQ -~ be a function

satisfying

j G(x, y; x', y') - (x', y')da' = A - (x, y) , (x, y) . (7.20)

Hence, W(x, y) is an eigenfunction of the integral equation defined over the entire substrate

surface Q. The scalar A is the eigenvalue corresponding to p(x, y). Care must be taken to
differentiate Wo and A from the eigenfunctions and eigenvalues of (7.3), which is defined over S,
the collection of substrate contacts. To find the eigenfunctions p(x, y), it is convenient to look
for solutions of the partial differential equation corresponding to (7.20)

- V . (aV (x, y, z)) = Ap(x, y) -6(z) (7.21)

such that

I (x, y, 0) = A (x, y). (7.22)
Note that the Dirac delta funciton 6(z) was used to specify current sources only at the substrate
surface.

It can be shown [50] that the normalized eigenfunctions are

(Pmn (X, ) = amn cos ( COS ( , m,n E integers (7.23)

where the normalization constants amn are

1/(ab) m = O, n = 0

amn = 2/(ab) = 0, n > 0 or m > 0, n = 0 (7.24)

V 4/(ab) m>0, n>0

Notice the appearance of these eigenfunctions in the infinite series expansion (7.11) of the
Green's function. Hence defined, the set {snm} is orthonormal

i ij(x,y) Wmn(x,y) dx dy = 1 (ij) = (mn (7.25)J•{ 0 otherwise

The coefficients {fmn} used to compute the Green's function (7.11) in Section 7.2 have been
slightly modified from the form given in [37] so that they are exactly equal to the eigenvalues

{Amn } in this section

Amn = finn , (7.26)

where fmn is given in (7.15),(7.17), and (7.18). Also notice the similarity between amn defined
in (7.24) and Cmn defined in (7.12). This intimate connection between the Green's function
G(x, y; x', y') and the eigenfunctions {I nm} is explored below.



To facilitate our exposition, we first introduce some basic notation from the field of quantum

mechanics. A function i : Q -- R, labeled as a ket I,), is now considered to be an element of

a function space X, i.e. I|) E X. Its adjoint 1ji)t is labeled as a bra ( 1. We define Ib)t = (01

and (,Olt [ I). Hence the ket is analogous to a column vector, while the bra is analogous to a

row vector. The adjoint operation is similar to taking the transpose conjugate of a vector. The

inner product (q1¢) E R between two functions , ?i E X is defined as

(0 1) = 0*(x', y') 0(x', y') dx' dy', (7.27)

where 0*(x, y) is the complex conjugate of q(x, y). In addition, we have the property

( ( 1|) )* = ( (01[) )t = (01|) (7.28)

A more powerful way of interpreting (7.27) is to see it as a vector projection of the element

IV) onto the element I1). In particular, let us define the element Ix, y), where (x, y) E Q, to

represent the two-dimensional Dirac delta function 5(x' - x, y' - y) centered at (x, y). Letting

|) = Ix, y) in (7.27) yields

(x, y10) = v)(x, y). (7.29)

Equation (7.29) gives the expansion of I[0) in the basis set Ix, y), with the coefficients of expan-

sion given by 0(x, y).

A linear operator H mapping from a normed function space X to a normed function space

Y, H: X --+ Y, can also be defined. In operator notation, (7.20) can be written simply as

HIp) = AIp). (7.30)

To simplify notation, let Im, n) represent the eigenvector corresponding to the normalized eigen-

function Omn (X, y), that is,

(x,ylm,n)= =mn(x,y) . (7.31)

The orthonormality condition in (7.25) then becomes

(im,1 (i,j) = (m, n) (7.32)

S0 otherwise

Since the eigen-elements {Im, n)} are orthonormal and complete, the operator H can be ex-

panded as an outer product in this basis

00 00

H = Im, n) Am (m, n . (7.33)
m=O n=O

The Green's function G(x, y; x', y') can be evaluated with (7.33) by computing the potential

due to the source Ix', y') and then projecting onto the target Ix, y)

G(x, y; x', y') = (x, ylHlx', y') = (, ym, n) Amn (m, nl',y') . (7.34)
m=O n=O



Use of (7.31) and (7.28) in (7.34) immediately yields the infinite series expansion (7.11). The

first equality in (7.34) suggests that G(x, y; x', y') can be considered a matrix element of the

operator H in the basis (Ix,y)}. Since in general G(x,y;x',y') O0, this is called a dense

representation of the operator H. However, consider expanding H in the basis {(Im, n)}

F(m, n; m', n') = (m, nIHIm', n')

-• M- (m,nli,j) Aij (i,jlm',n')
i=0 j=o

= 6mmIbnn Amn (7.35)

The operator H has a diagonal matrix representation in the basis formed by the set of eigenfunc-

tions 0mn (X, y). This is the motivation for our sparsification algorithm based on eigendecom-

position. The connection between the Green's function based framework and the eigenfunction

based framework can thus be viewed as a coordinate transformation, or change of basis.



Motivation for Multigrid Analysis

Although it has been shown in the previous chapter that the matrix elements Pij can be

constructed efficiently, it is still too expensive to store or factor the dense N x N matrix P

directly when N, the number of panels, becomes large. To reduce the computational complexity

for solving the discretized integral equation

Pq = v (8.1)

several approaches have been previously proposed, each with its own difficulties. Heuristic

schemes were described in [43, 37] and [41], which attempt to sparsify Y, the matrix inverse of

P, by zeroing direct admittances Yj whenever panels i and j are "well-separated". However,
accuracy is compromised since these heuristic schemes cannot give reliable error bounds or a sim-

ple means of error control. In [17, 18], a Krylov-subspace based iterative method, GMRES [9],
was used in combination with multipole sparsification to solve (8.1). The multipole-accelerated

computation of (P. - ) takes all panel-to-panel interactions into account, and is much faster

than direct matrix-vector multiplication. However, because multipole approximations require

translational invariance in the Green's function, this approach cannot handle edge effects of the

substrate, and it was necessary in [17, 18] to approximate the Green's function with a polynomial

in (1/r). A more fundamental difficulty with the approach in [17, 18] is that Krylov-subspace

based iterative methods converge slowly for ill-conditioned linear systems [14, 15]. Such is the

case for discretized first-kind integral equations with weakly singular kernels [28, 5]. Hundreds

or more iterations may be required for convergence in a large problem, wiping out the benefits

of an iterative approach.

Multigrid, or more generally, multilevel, methods offer enticing prospects as an iterative

solver for the integral equation (8.1). The efficiency of multigrid iterative methods for solving

elliptic partial differential equations (PDEs) discretized using finite-differences (FD) or finite-

elements (FEM) is well known [44, 45, 46], and is a direct result of the fact that the convergence

rate is independent of discretization, and hence problem size. This is to be contrasted with



Krylov-subspace based (conjugate-gradient style) iterative methods, whose convergence rates

deteriorate with increasing FD or FEM mesh refinement, or equivalently, worse matrix condi-

tioning.

In this chapter, we use the analytic properties of the underlying integral operator, described

in Chapter 7, to motivate subsequent development of a multigrid solver. Section 8.1 explores

similarities between the first-kind integral equation and the standard second-order elliptic PDE.

In both cases, either the operator itself or its inverse is unbounded in the L2 sense. Hence both

problems are often considered ill-posed. It will be shown in Section 8.2 that in the framework

of Sobolev spaces and Sobolev norms, both problems are bounded and boundedly-invertible.

In this setting, the nature of the integral operator as a pseudo-differential operator is apparent.

Finally, in Section 8.3 we describe how iterative solvers in general suffer from ill-conditioning in

the linear system, and then describe the source of ill-conditioning as a result of the coexistence

of eigenmodes with distinct characteristic length scales. The promise of multigrid methods is

then clear, since they attempt to remove the ill-conditioning by analyzing the problem at each

length scale independently.

8.1 Connection with Elliptic PDEs

n

*0 0*

I R 0 0 0

Rmn

(0,0)

FIGURE 8-1: Discrete (m, n) space.

We begin by assuming that the integral equation is defined over the entire substrate surface

- [0, a] x [0, b]

G(x, y; x', y')p(x', y')da' = (x, y), (xy) E , (8.2)

or in the operator notation

Cp = ¢. (8.3)



Recall from Chapter 7 the eigenfunctions

Pmn(x, y) = Cmn COS (( mxxa cos n(-, m,n E integers.

If we further assume that the substrate has uniform conductivity a, then the eigenvalues are

Amn = [tanh(-ymnd)]/(a --mn)
(d/o)

on 809

m > 0 or n > 0,
m = O, n = O

Also recall the definition of ymn

"Ym n = - +
'Yma b

As m or n (or both) becomes large, the eigenvalue behaves as

1
Amn+ 1 m, n -oo.

Suppose that the domain l is a square a = b, and define

Rm,n =sm 2 2+ n2

to be the radius in the discrete (m, n) space shown in Figure 8-1, then

Amn - 1/Rm,n Rm,n - 00.

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

If we further let d = a = (r/a) = 1, then ymn = Rm,n, and the eigenvalue Amn = tanh(Rmn)/Rmn.
The behavior of tanh(x)/x is plotted in Figure 8-2.

Consider an elliptic PDE in two dimensions

V2¢0(x, y)
Oi¢

a = u
On

(8.10)

where n is the unit outward normal at the boundary 0Q. In operator notation, (8.10) becomes

L£V = o (8.11)

where the boundary conditions are implied. The eigenfunctions of the Laplacian operator

V 2p(x, y) = Ap(x, y) on Q (8.12)

with homogeneous Neumann boundary conditions ((pl/On = 0 on aO) can be easily shown to

be the same as those of the integral equation (8.4). The eigenvalues, however, are given by

(8.13)

(8.4)

= e(x,y) on Q = [0, a] x [0, b]

Am n - - • + b
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FIGURE 8-2: Behavior of tanh(x)/x.

Again, letting a = b and using the definition (8.8), we have for the elliptic PDE

Amn ~ Rm,n Rm,n - 00. (8.14)

Since A00 = 0, a discretized version of (8.10) is singular. Let us de-singularize (8.10) by removing

the (m, n) = (0, 0) mode from the problem. This requires that

So,o (x, y) (x, y) dx dy = /(ab) (x, y) dx dy = 0. (8.15)

The lowest eigenvalue is now A01 = A 0o $ 0.

As Rmn = -/m2+ n 2 increases, the eigenfunction 'Pmn becomes more oscillatory, or non-

smooth. For the second-order PDE in (8.10), the eigenvalue Amn grows like R 2 ,, whereas for
the integral equation (8.2), the Amn shrinks like 1/Rm,n. For this reason, the linear operator IC
associated with the first-kind integral equation at hand is called a pseudo-differential operator

of order -1. This implies that the substrate Green's function G(x, y; x', y') in (8.2) corresponds

to a weakly singular kernel. The singularity in the Green's function is not strong enough

to overcome the smoothing property of the two-dimensional integration over Q. Since the

weakly singular kernel 1/llr - r'll used for the ordinary capacitance extraction problem in three

dimensions (3-D)

O(r) = (r) da' (8.16)
a 4rcllr - r'I

also leads to a pseudo-differential operator of order -1 [28] over smooth boundaries 80 of a 3-D

volume R2, there is much in common between the (8.2) and (8.16), both integral equations of the

first-kind. Although it is possible to show, using the method of images [25], that the substrate



Green's function G(r; r') -' 1/llr - r'lI as r --+ r', it is not as useful as the eigenfunctions {bmn}

in establishing analytic properties of (8.2).

If the functions 0, p, 1i, e in (8.3) and (8.11) are square integrable, they can be considered

elements of the function space L2 (Q) with implied boundary conditions. The usual L2 inner

product and L 2 norm (also called the mean square norm) are defined as

(pP)L2 -JO*(x,y) V)(x,y) dxdy , , E L2 (( ) (8.17)

and

111L2L = V(pIp)L2 • (8.18)

Let us consider the integral operator K and the differential operator £ as mappings from L 2 (Q)

into itself, i.e. KC : L 2(() -- L 2(Q) and £: L2 (Q) -- L 2(Q). A linear operator A : L2 (2) -

L 2 (Q) is bounded if the operator norm defined by

IIAIIL2 (n) s= up Ao L2(f) (8.19)
WE+L2(n) I1W11L2(Q)

is finite. For the first-kind integral equation (8.2) in our substrate coupling problem, it can be

seen from the eigenvalues (8.5) that the integral operator KC is bounded, but since Amn -+ 0 as

m, n - oo, K: does not possess a bounded inverse. On the other hand, for the elliptic PDE

in (8.10), the operator £ itself is unbounded since Amn --+ 00oo as m, n -- oo, as seen in (8.13).

Recall that since the zero eigenvalue A00 has been removed in the de-singularized version, L has

a bounded inverse. The phenomenon of ill-conditioning in the numerical solution of discretized

first-kind integral equations or elliptic PDEs arises fundamentally from the unboundedness of

either the underlying continuous operator or its inverse. We shall see in the next section how

it is possible to interpret both KC and £ as bounded, and boundedly-invertible, linear operators

in the framework of Sobolev spaces and Sobolev norms.

8.2 Sobolev Spaces

Perhaps more accessible than the theory of pseudo-differential operators is the concept of

Sobolev spaces [5]. We first introduce here the definition of Sobolev spaces for periodic functions

over [0, 27], following [5]. Then we extend this treatment to functions defined on the rectangle

Q = [0, a] x [0, b] and show how the integral operators K and £ defined in Section 8.1 maps

between these spaces of functions.

Let q: [0, 27r] -- R be a 27r-periodic and square integrable function, i.e. q E L2[0, 27r]. Then

00

Sam eimt (8.20)
m=-oo

where

am 7- e-"imt (t) dt (8.21)



is called the Fourier series of 0(t), and am are called the Fourier coefficients. Let fm(t) - eim t

represent the Fourier basis functions. The set {eimt} is orthonormal and complete, and the

series (8.20) converges in the mean square norm [5].

Now we define subspace HP[0, 27r] of L 2[0, 2r] by requiring that the Fourier coefficients am
decays at a certain rate as mlI - co. Let 0 < p < oo. Then by HP[0, 2w71] we denote the space

of all functions € E L 2[0, 2r] with the property

(1 + m 2 )plam 2 < 00 (8.22)
m=--oo

for the Fourier coefficients am of q. The space HP[0, 2r] is called a Sobolev space. Notice

that Ho[0, 2r] coincides with L 2[0, 2r]. The higher the p value, the smoother are the functions

contained in the space HP[O, 2w]. Notice that non-integer values ofp are allowed in the definition.

(p (t)

I

-7 -C c

FIGURE 8-3: Step function in one dimension.

As a simple but important example, let us define the step function 0(t) shown in Figure 8-3

r1 -c<t<c

0(t) = otherwise t [-7, 7]. (8.23)

This function can be extended to a periodic function on [0, 21]. The Fourier coefficients are
given by

sin(mxrc)am - (8.24)
m~r

Since I sin(mrc)l 5 1, let us plug in laml = (1/m) into (8.22) for p = 1/2 - e, resulting in the
series

1 (1 12 2 r0(1m2) 1+2e (8.25)
m=-oo m=-oo

Clearly, (8.25) diverges for e = 0 but converges for any e > 0. Hence, we say that the step
function ¢(t) is almost smooth enough to be in H1/ 2 [0, 2r], and that q E H 1/2-E[0, 2r] for any
' >0.

I



Assume that the series (8.22) converges for functions W and 0 for some positive p. Then it

is possible to define a more stringent Sobolev norm based on the Sobolev inner product

00

m=-oo(P0?)p Z= E (1 + m2)p am bm (8.26)
where o, ' E HP[0, 2r] with Fourier coefficients am and bm, respectively. The Sobolev norm

11. lip is then

II llp = (1 + m2 )p aml2  (8.27)
m=-oo

It is easy to see from (8.27) that "Iolp < IIPIIq if p < q.

For negative orders, the Sobolev space H-P[0, 27r] where 0 < p < oo00 is defined as the

dual space of HP[0, 27], that is, the space of bounded linear functionals on HP[0, 27r]. A linear

functional G : HP[0, 27] -+ R maps every function p E HP[0, 2r] to a real number G(p). A

linear functional G is bounded if its norm, defined as

IIGllp - sup IG()l, (8.28)
pEHP[0,2i] Illp

is finite. If we define the linear functional G by its action on each function fm(t) = eim t

G(fm) = cm , (8.29)

then it can be shown [5] that

IGllp = (1 + m2) - p I 2 . (8.30)

Each function g C L 2[0, 2r] is associated with a linear functional G by the duality pairing

G() -g (1 9*) W(t) dt, p HP[0, 2]7r. (8.31)

Since this defines a linear functional G E H-P[0, 2r], we can regard L 2[0, 27r] as a subspace of

H-P[0, 2wr]. In this sense, the Sobolev space H-P[0, 27r] for p > 0 is a space of generalized func-

tions or distributions g(t), which may not be square integrable, and whose Fourier coefficients

cm are given by the corresponding linear functional. The Sobolev norm of this generalized

function g is equal to the norm of its dual (the associated linear functional G), given by (8.30),

i.e. IgI-p - IIGIIp. For example, the linear functional defined by

G(p) - 1 (r) (8.32)
2w

corresponds to the Dirac delta function, 6(t - 7), which is an element of H-1/2-,[0, 27r] for any

positive E. It is almost smooth enough to be in H- 1/2 [0, 2r].



We now show how Sobolev spaces HP(Q) can be defined for functions ýp : --+ , where

Q = [0, a] x [0, b]. First, define L 2(Q) as the space of functions p : S --+ R which are square

integrable over Q and which satisfy the boundary condition Os/9n = 0 on 09t. Then, similar

to (8.20) and (8.21), we define a Fourier cosine series (or just Fourier series) associated with p

Samn cos ( COS (8.33)
m=O n=O

with Fourier coefficients amn are given be

amn - Cmn COS ( ) os b (x,y) dx dy , (8.34)

where Cmn are the normalization constants given in (7.12). The normalized Fourier basis
functions are

fmn = Cmn Cos mx cos . (8.35)

Now, for 0 < p < oo, define the Sobolev space HP(Q) as a subspace of L 2(Q) by requiring that

the Fourier coefficients amn decay at a certain rate. Then by HP(Q) we denote the space of all
functions po E L2 ( () with the property

E -(1 + m 2 + n2)p IamnI 2 < 0 (8.36)
m= on=o

for the Fourier coefficients amn of op. The Sobolev inner product ( • | • )p is defined as

00 00

(WoIb), (1 + m 2 + n 2)P amn bmn (8.37)
m=O n=O

where Wo, V E HP(Q) with Fourier coefficients amn and bmn, respectively. The Sobolev norm
II- ip is then

IIllpP = { --:(1 + m2 + n2)p lamn2 (8.38)

The Sobolev spaces H-P(Q), for 0 < p < oo, is defined as the space of bounded linear functionals
on HP(Q), as done previously in the 1-D case. If a linear functional G E H-P(Q) is defined by

G(fmn) = cmn , (8.39)

then its norm is given by

IIG|II = 1 (1 + m2 + n2) - p . IC m 2  . (8.40)
Sm=O n=O mI

A linear functional G E H-P(Q) is associated with a generalized function g(x, y) in a duality
pairing similar to (8.31). The Fourier coefficients of g E H-P(Q) is given by the cmn in (8.39),
and the Sobolev norm |gJI-p = IIG||p given by (8.40).



Now consider the differential operator £ defined in Section 8.1, as a mapping between

Sobolev spaces £: HP(Q) -+ Hp- 2(1Q). The operator norm of C defined using the appropriate

Sobolev norms, is
£p1p-2 1 sup p-2 (8.41)

WoEHP(Q) IIllp

Let amn be the Fourier coefficients of p. Since the eigenfunctions of C coincide with the Sobolev

basis functions finn, the Fourier coefficients of £Vo are given by A,mnamn = (m 2 + n 2)amn, as

given by (8.13), where we have let ir/a = 7r/b = 1. It then follows that

I|I ~PIp-2 = j -(1 +m + -2 + np2 (m2 + n2)amn 2

m=0 n=O

1< E (l+m +n2 ) lamn •2
m=O n=O

- l1pp , (8.42)

which implies that II1Ip-p- 2 < 1. Hence 1 : HP(Qd) --+ HP- 2(2) is now a bounded linear

operator, whereas L: L 2( ?) --+ L2() is unbounded as shown in Section 8.1.

We now consider the integral operator KC in (8.3) as a mapping K : HP(Q) -- Hp+(1(), and

show that under the appropriate Sobolev norms, KC is both bounded and boundedly-invertible

(i.e. has a bounded inverse). Similar to (8.41), the operator norm of KI is

II ip-p+ i sup Pp (8.43)

Again, let amn be the Fourier coefficients of p. Since the eigenfunctions of KI coincide with

the Sobolev basis functions finn, the Fourier coefficients of ICp are given by Amnamn, with Amn

given by (8.5). Again, letting ir/a = 7r/b = 1 and a = d = 1 to simplify things, we have

Amn = 1 , n= (8.44)
tanh(-ymn)/-ymn m > 0 or n > 0

where Ymn = m 2 + n 2. Making use of the fact that Aoo00 = 1 and that tanh(x) < 1 for real

x > 0, we have

00 00

IIK(I,+l = Z (1+m2+n 2)P +~•Amnamn 2
m=0 n=O

I aoo l2+Z (1+m2 +n 2)p+1 m
2 1 2) amn 2

m,n o0,0

I laoo 2 + 2 Z E (1 + M2 + n2)plamn12
m,n #0,0

< 2Z E (1+m 2+n 2)p amn 2

m=O n=O

= 211llp , (8.45)



resulting in IKIIllppp+ 1 < 2.
For the inverse operator K- 1 : HP +(Q) --+ HP(Q), we have the norm

K-|p p - sup -IP (8.46)
(PEHP+'1() IIPllp+1

The Fourier coefficients of K-lY are now given by Amn • amn, given by

1 1 m = 0, n =0 ,

A-' m=0, n=O (8.47)
m -m 1 = 7mn/tanh(Ymn) m > 0 or n > 0

and it is easy to show that

A'n < (1.32) m2 , m > 0 or n > 0 (8.48)

Using (8.48) and Aoo1 - 1, we get

I|KIC-1 |p = +(1 +m+n 2 )P IA 2 amn 2

m=O n=O

SIaoo2 + (1 + m 2 + n2 ) p . (1.32) /m2 + n2 am12
m,n 0,0

laoo 2 + (1.75) E E (1 + m2 + n2)p+llamn12
m,n $0,0

_ (1.75) (1 + m 2 +n 2)p+lamn12
m=O n=O

= (1.75)IIpollp+ , (8.49)

from which we have IIK- llp+,,-p 5 1.75. Hence we have just proved the following theorem:

Theorem 8.1. The linear operator K associated with the first-kind integral equation (8.2)

with the substrate kernel G(x, y; x', y') given by (7.11) is a bounded and boundedly-invertible

mapping from the Sobolev space HP(Q) to the Sobolev space Hp+'(Q).

Since K : HP(S) -- HP+'(2), is bounded and boundedly-invertibe, and since HP+I(2) is a

smooth subset of functions in HP(2), we call K: a smoothing operator. The relation between the
Sobolev spaces HP(Q) and Hp+1 (2) is roughly depicted in Figure 8-4. This is not to be taken

literally, since Hp+I () actually forms a dense set in HP(2).

The idea that Sobolev norms can lead to linear operators which are bounded and boundedly-

invertible can be used to formulate numerical methods [51]. The desired result will be linear

systems with bounded condition numbers. However, the numerical evaluation of the appropriate

Sobolev norms of fractional order is notoriously difficult, especially over complicated regions,
as in our substrate coupling problem. The basic idea behind Sobolev norms is a rescaling

of the Fourier components such that the high-frequency components are either emphasized

or de-emphasized relative to the low-frequency components. This is called renormalization in
the physics literature. Hence, rather than computing Sobolev norms directly, it is possible to



FIGURE 8-4: Relation between Sobolev spaces.

achieve the same results by analyzing the problem at various length scales, or resolutions. This

effectively breaks up the various Fourier components of the problem, analyzing each component

individually. This idea is explored in the next section.

8.3 Analysis at Multiple Length Scales

We first turn to the solution of linear systems using "black-box" iterative algorithms, includ-

ing classical methods and Krylov-subspace based methods, and show how they both suffer from

slow convergence for ill-conditioned linear systems, such as those generated by elliptic PDEs or

first-kind integral equations. We then suggest how this difficulty might be overcome by exploit-

ing the underlying analytic properties of the integral or differential operator. This motivates

our development of fast-converging iterative schemes based on multigrid, or multiresolution,

analysis.

Consider solving an N x N linear system

Ax = b (8.50)

for x given b with an iterative algorithm. For ease of analysis, let us assume that the matrix

A E RNxN is symmetric positive definite (SPD), i.e.

xtAx > 0 if Ixil| > 0 . (8.51)

This implies that A is non-singular, and that all eigenvalues of A are real and positive. Let us

further assume that A has unit norm, i.e. IIAl = 1. Hence, the maximum eigenvalue of A is

Amax = 1, and the minimum eigenvalue is Amin = 6 > 0. The eigenvalue distribution of A is

shown in Figure 8-5.

Consider the operator splitting

A=I-M , (8.52)



r i_ =imp-

FIGURE 8-5: Eigenvalues of the matrix A.

where I is the N x N identity matrix. It is not difficult to show that IIM|I = (1 - 6) < 1. This

implies that the Neumann series [52] for A- 1 converges, that is

A - ' - (I- M) -1 I+ M + M2+M3...

= 
M k

k=O
(8.53)

The solution x to the linear system (8.50) can be written

x = A-lb = b + Mb + M 2 b + M 3 b + ... (8.54)

This motivates an iterative scheme for computing the solution x based on the operator splitting

(8.52), described in Algorithm 2.

This algorithm is basically a preconditioned version of the classical Gauss-Jacobi iteration
[12]. The error at the k-th iteration

e(k) = x(k) - x (8.55)
can be easily shown to be reduced by the relation

Ile(k+1) I
Ile(k) I
Ile(k)ll
Ile(o)ll

<_ IIMI

< ||Milk (8.56)

Algorithm 2 ( Iterative Algorithm for Solving (I - M)x = b ).

Set k = O, initial guess x (o) = b.

Repeat {
Compute x(k+1) = Mx(k) + b

Set k = k + 1.

} Until converged.



Since IIM|I = (1 - 6) < 1, Algorithm 2 converges given the assumptions we have made about

A. The condition number r,(A) of a square matrix A is defined as

K(A) =_ AI| - IIA- 1 | (8.57)

where 11 I| denotes the 2-norm. This is equivalent to the definition

K(A) Umax (8.58)
Umin

where Umax and amin are the largest and smallest singular values [15], respectively, of A. For

a symmetric positive definite matrix A, we also have K(A) = Amax(A)/Amin(A). From Figure

8-5, it is clear that r = (1/6). Hence the error norm is reduced at the rate

|Ie(k+1)II < (8.59)IIe(k) II P

Algorithm 2 essentially expresses the k-th iterate for the solution as a k-th order polynomial

pk(M) of the iteration matrix M

(k)= b + Mb + M 2b + + Mkb - pk(M) b . (8.60)

Since A = I - M, pk(M) is also a k-th order polynomial in A

x(k) = Pk(A) -b . (8.61)

In classical iterative algorithms such as the Jacobi iteration, the coefficients of the approximat-

ing polynomial Pk (M), and hence those of Pk (A), are independent of A and the right-hand side

b Krylov-subspace based iterative algorithms, on the other hand, taylors the matrix polynomial

Pk (A) specifically to the matrix A and each right-hand side b in an attempt to minimize some

error metric at each iteration. Examples of Krylov-subspace methods are the Conjugate Gra-

dient (CG), Generalized Minimum RESidual (GMRES), and Quasi Minimal Residual (QMR)

algorithms [53]. Recall the definition of the residual r(k) for the k-th iterate x(k)

r(k) = b - Ax(k) . (8.62)

Define the Krylov subspace CkC(A, b) as the k-dimensional linear subspace spanned by vectors

generated from the right-hand side b

Kk (A, b) = span{b, Ab, A 2b, ... , Ak-lb} . (8.63)

The popular GMRES algorithm, summarized in Algorithm 3, searches for a vector x(k) in

Ik (A, b) which minimizes the residual norm, i.e.

r(k) l |Ib - Ax(k) ll min lb - Ax*11 , (8.64)
x*ECk(A,b)



where it has been assumed that the initial guess x (o) = 0, and r(O) = b. The condition x(k) E

ICk (A, b) is equivalent to

x(k) = Zk-1(A) b , (8.65)

where Zk-1 is a polynomial of order k - 1. It then follows that

r(k)= b - A x(k) = b-A.Zk-_(A).b

= Pk(A) - b, Pk(O) = 1 , (8.66)

where Pk is a k-th order polynomial with the constraint pk(O) = 1. Thus, (8.64) can be restated
as

|Ir(k) = mmin IPk(A) r(o0 )| , (8.67)
PkE'Pk,pk(O)=l

where Pk denotes the space of k-th order polynomials. If A is SPD, then the upper bound
derived using Chebyshev polynomials gives [14]

Ilr(k+l)I ___-

ir(k)jj -<Pr +1

2
= 1 ~+O (8.68)

where the O(1/)ll term can be ignored for n >> 1.

The number of iterations k required to reduce the error or residual norm by a factor of 10-m
is given by

pk < 10-m ,or k > m (8.69)- loglo P

where p = Pe or Pr. The rate of convergence is defined as

R= - loglo (p) . (8.70)

From (8.59), we see that the classical Jacobi iteration gives

Re - 1/r , (8.71)

whereas from (8.68), the GMRES iterative method yields

Rr - 1/- . (8.72)

Hence, as the condition number a grows, the number of iterations required of classical iterative
methods also grows as K, whereas that of Krylov-subspace methods grows only as the square
root of K. Nevertheless, the required number of GMRES iterations still grows without bound as
matrix condition worsens.



Recall from section 8.1 the eigenvalues and eigenfunctions of the integral operator K: on Q

(Pmn (x, y) cos (-x) cos ( 7), m,n E integers . (8.73)

and
1

Amn m, n -- oo. (8.74)
m 2 4 n2'

Hence the operator K: has a infinite number of real and positive eigenvalues, with an accumu-

lation point at zero as m, n -- oo, as depicted in Figure 8-6. Since the N x N matrix P in

accumulation point

0

FIGURE 8-6: Eigenvalues accumulate at zero.

(7.4) is a discrete representation of KIC, it is capable of approximating only N of the largest

Algorithm 3 ( GMRES iterative method for solving Ax=b ).

1. Start:

Set k = 0, o = O, ro = b and p = Ilb|l,vi = b/l

Define the (m + 1) x m matrix Hm = {hij}li<_m+l,l<j<m and initialize it to zero.

2. Arnoldi loop:

(a) For j = 1, 2,..., m do {

Compute wj = Avj

For i = 1,...,j do {

hij = (vi, w j )

Wi = wj - hijvi

}

(b) Compute hj+l,j = IIJll. If hj+l,j = 0 go to 3.
(c) Compute vj+l = wj/hj+l,j.

3. Form approximate solution:

Compute ym, the minimizer (over y) of II,3el - Hmyll and xm = VmYm where

Vmr= [ 12,v22,...Vm].-



eigenvalues which correspond to the "lowest-frequency" eigenfunctions of K: (i.e. the cosine

modes with lowest m, n). As the mesh is refined, or as N increases, it becomes possible to rep-

resent the "higher-frequency" eigenfunctions and their associated eigenvalues, which shrink at

the rate given in (8.74). This is the mechanism through which P becomes more ill-conditioned

with mesh refinement. For a given discretization, the large eigenvalues correspond to the low-

frequency cosine modes, and the small eigenvalues to the high-frequency cosine modes. This

is shown in Figure 8-7. It is now clear that the ill-conditioning in the linear system is caused

xx X X X X

0 min k max

FIGURE 8-7: Mixing of low and high frequency modes.

by the simultaneous presence of eigenmodes with very distinct characteristic length scales, or

spatial variations. We shall term this phenomenon "mode-mixing". Since iterative methods
generally suffer from ill-conditioning, this analysis suggests a way of resolving this difficulty: If

the problem can be analyzed separately at several length scales, then each of the sub-problems

may be "better-conditioned" than the original problem in the sense that the ratio of eigenvalues

associated with eigenmodes within each length scale is now much closer to one. The critical
insight is that for first-kind integral equations, the characteristic length scale of an eigenmode
is monotonically related to the magnitude of its associated eigenvalue. The same argument can
also be made for equations defined over complicated geometries with only minor modifications.
Once the linear system is "transformed" into a well-conditioned one, both classical linear re-
laxation or Krylov-subspace methods are expected to converge rapidly. The former approach is
the stand-alone multigrid algorithm, which is a linear relaxation scheme. The latter approach

leads to a multigrid-preconditioned Krylov-subspace algorithm. We later demonstrate that

even with the optimal search strategy, the preconditioned Krylov-subspace approach produces

almost no improvement in convergence rate over the stand-alone multigrid method. This is the

justification for our claim that the multigrid scheme should be considered the principal "solver"

rather than a "preconditioner".

I ............I ..
X



Sparsification via
Eigendecomposition

We show in this chapter how to compute the matrix-vector product P - q efficiently on

a regular M, x My substrate grid, where each of the N panel aligns to a cell on this grid, as

shown previously in Figure 7-5. This is achieved by exanding the global current density function

J(x, y) as a sum of eigenfunctions of the integral operator IC on Q, given in (8.4). The DCT is

then used to compute the average potentials on the Mx x My substrate grid, from which the

individual panel potentials can be easily extracted. Our eigendecomposition approach differs

from the multipole-accelerated approach used in [17] in one critical respect: For the multipole

approximation used in [17], it was necessary to assume a substrate Green's function which

has translational invariance and which can be fitted to a sum of polynomials in (1/r), where

r = |Ir - r'll. In contrast, the eigendecomposition approach accounts for the substrate edge

effects explicitly and does not require translational symmetry in G(r; r').

Although the eigenfunctions in (7.23) also appear in [43, 37], they were used indirectly to

construct the panel-to-panel interaction coefficients Pij. Let M = Mx = My, and and let N

be the total number of panels. Assume that all panels are minimum sized cells on the M x M

substrate grid, and that 10% of the cells are occupied by actual panels (i.e. N = (0.1)M 2).

Then the dense matrix-vector multiplication P -q in [43] would require O(N 2) , 0(0.01 x M 4)

operations. In contrast, we use the eigenfunctions directly to expand the global current density

J(x, y) and show that the P-q product can be computed in 0(2 M 2 .log2 (M)) operations using

the DCT. At M = 128, eigendecomposition is already an order of magnitude faster than direct

multiplication. For the case of non-uniform panel sizing, the eigendecomposition approach may

be adapted to achieve similar computational savings, but this is not pursued in this thesis.

We define normalized prototype characteristic functions centered about the origin in one



dimension

a ( Ma if lxi < a/2M b(y)f Mib if Iy| < b/2M
0) = otherwise 10 otherwise

This is shown in Figure 9-1. We shall call Ea(x) and Eb(y) square-bump functions. It is then

clear that the panel characteristic functions Xi (x, y) can be obtained by combining and shifting

a (x) and Ob(y). The piecewise constant Galerkin discretization implies that the global current

density is of the form

M-1 M-1(i + 1/2) a (j + 1/2) b (9.2)
J(x,y)= E E f(i,j) aO x - M"b y - . (9.2)

i=o j=o

-a/2M 0 a/2M

FIGURE 9-1: Prototype characteristic function.

If we can expand J(x, y) in (9.2) in terms of the eigenfunctions {(ij }

J(X,y) = E • a(i,j) Pij(x, y), (9.3)
i=0 j=o

then (7.20) immediately leads to

00 00

41(xy) = A A,(ij) a(i,j) Wij(x,y). (9.4)
i=0 j=O

This motivates our development of a sparsification algorithm based on eigendecomposition. To

make the computation feasible, the infinite series in (9.3) and (9.4) is truncated to K x K

terms, where K > 2M for reasonable accuracy. We will show in this chapter that if 7(p, q)

is the M x M 2-D Type-2 DCT of f(i,j), then the average cell potentials -(p, q) are given

by the M x M 2-D Type-2 inverse DCT of the array y(p, q) (p, q), where A(p, q) is a modified

eigenvalue to be defined later. The use of modified eigenvalues keeps the size of the DCT and

inverse DCT to M x M regardless of the number of terms (K x K) used to expand J(x, y).

To compute panel potentials from panel currents using eigendecomposition, we will make use

of the two-dimensional (2-D) Type-2 discrete cosine transform (DCT) and its inverse transform



(IDCT). The Type-2 DCT array is of size N, x Ny, where Nx, Ny are both powers of two. The

indexes run from zero to Nx - 1 or Ny - 1. The DCT of an Nx x Ny array {f (j, jy)} is defined

as

7(kx, ky) = E E f (j 1jy) -cos Ncos (9.5)
jX=O jy=0 x O

Its inverse transform (IDCT) is defined as

(-4 N- i (- rkxk(jx + 1/2) C (rky(jy + 1/2)

f(Xjy) = ENN Z ' (kx, ky) -cos Nx Ny (9.6)
\xNY kx=O ky=O y

where the primed summation indicates that the first term in each sum is to be multiplied

by (1/2). Fast algorithms for the implementation of the 2-D Type-2 DCT can be found in

[54, 55, 56, 57, 58]. The transforms in (9.5) or (9.6) can be performed in O(NxN log 2 (NxNy))

operations.

In the multigrid algorithm, it will also be necessary to compute nearby panel-to-panel inter-

action coefficients Pij. This is done using the table look-up approach previously developed by

[37, 43]. Let {J(kx, kvy)} represent an Nx x Ny array of eigenvalues, then we will need its Type-1

inverse discrete cosine transform (IDCT) {A(jx,jy)} as the look-up table. This computation

A(jx, y) = N' Z ' A(kx,ky) -cos( I os Ny (9.7)
\ Y k =O ky=O

is performed only once during the initial set-up phase. For convenience, we state here the

standard definition of the 1-D Type-1 DCT and IDCT, which is a transform on (N + 1) data

points, where N is a power of two. The 1-D DCT is defined as

N-1 Ik

F(k) = [f (0) + (-1)kf(N) + (j os (k) ,k = 0: N (9.8)
j=1

and the 1-D IDCT as

f (j) = 1/ ' {[F(O) + (-1)JF(N)] + F(k) cos , j = 0: N. (9.9)
k=1

Standard fast DCT algorithms [13] exist for evaluating (9.8) and (9.9). The 2-D inverse trans-

form (9.7) can then be performed by successively applying (9.9) in each direction, where F(N)

is always first set to zero.

To derive the eigenvalue folding algorithm, we first tackle the one dimensional (1-D) problem.

Suppose that the current density function J(x) is expressed as a sum of 1-D characteristic

functions
M-1 (i + 1/2) a

J(x) = E f (i) - a x - M (9.10)
i=O



where f (i) denotes the total current in the 1-D panel Pi. Let

SPk(X) = akCOS ()
ak = \/a k>0 (9.11)

be the normalized eigenfunctions in the interval [0, a]. The current density J(x) in (9.10) can
be expanded as an infinite series in the eigenfunctions pk (x). Truncating this series to K terms
leads to

K-1

J(x) = B B(k) pk(X)
k=O
K-1 (
-= B(k)ak cos (9.12)
k=0

where K must be reasonably large for an accurate approximation. It can be shown that the
expansion of "step" functions with cosines is fairly accurate if we choose K = 2M or K = 4M.

The expansion coefficients B(k) are computed as

B(k) - J(X) Wk (2) dx
M-1M-1 a '=O 1l··( (i + 1/2) a Sks

-ak E f /)( [(+a (Oa - ( cos dx] (9.13)
i=O

where k is an integer and k = 0 : K - 1. The terms in square brackets can be evaluated to yield

M-1 rk(i 1/2)
B(k) = ak " UM(k) Z f(i) -cos M k = 0 : K - 1 (9.14)

i=0

where the function UM(k) is defined as

UM (k) 2M (9.15)k M k > 0

For convenience we define

( 1 CO ((i's k(i + 1/2)B (k) f(i) cos M , k = 0: K- 1 (9.16)
i=O

which leads to

B(k) = CtkUM(k) . B(k) . (9.17)

Assuming that the expansion coefficients B(k) have been computed for k = 0 : K - 1, we

can express the potential ((x) as

K-1

4(x) = 1 A(k)B(k)ak cos (i) (9.18)
k=O



where A(k) is the 1-D eigenvalue for Wk. Given (9.18), the average potential over panel pi is

computed as

(i) ja ((x) Oa - (i + 1/2) a dx
Ki -1 () 8 M
K-1 ak(k)B(k) a (x- (i + 1/2) a Cs (k dx

k=O

K-1 (lrk(i + 1/2) )
K- Bk(k)B(k) U U(k) - cos rk(i + /2)M ] (9.19)
k=O

Making use of (9.17) in (9.19), we get

(i) = a -i (k) A(k) -U(k) - cos (rk(i + 1/2) (9.20)

k=O

Using the defintion for the normalization constants ak in (9.11), we get

(i) = (a Z' IB(k) .A(k) UA( (k) cos ( -k(iM$1/2) , (9.21)
k=O

where the prime in the summation indicates that the first term in the sum is to be multiplied

by (1/2).

Although there are a total of K cosine terms used in the expansion, we show that using an

eigenvalue folding technique, it is possible to reduce the computation to a 1-D Type-2 DCT of

size M. Thus, an arbitrary number of cosine modes can be included in the series expansion

(9.12) without increasing the cost of the DCT calculation. For the case K = 2M, the mode

index k ranges from zero to (2M - 1). For the modes in the upper half (i.e. k = M: (2M - 1)),

we can write k = M + q, and use the following relation

cos( rk(i + 1/2) ) q(i + 1/2)
( Ui = -sin (r(i+ 1/2)) - sin rq(iM1/2)

M M

= (-1)i+ 1 sin q(i M 1/2) q = : M - 1. (9.22)M , q=O: M-1. (9.22)

Using the identity sin(O) = cos(ir/2 - 0), we derive

sin (rq(i + 1/2)os i+ 1/2) (9.23)
M M

where the index q' is defined as

q '=_M-q , q=O:M-1. (9.24)

Combining (9.22) and (9.23) yields the useful relation

cos ( (M + q)(i + 1/2) )= xq((i1/2) (9.25)
M M



Now we break up the length-2M sequence B(k) into two sequences, each of legnth M. The

lower sequence q (q) corresponds to B(k) for k = 0 : M - 1 and is defined as

, q=O : M-1. (9.26)M-1 (rq(i + 1/2))7(q) = f (i) -cos Mi=0

Notice that {77(q)} is simply the 1-D Type-2 DCT of {(f(i)}. The upper sequence ((q) corre-

sponds to 1b(k) for k = M : 2M - 1 and is defined as

M-1

E f(i)
i=0

SCO (M + q)(i + 1/2)

M-1 ( rq'(i + 1/2)
- f (i) -cos M

i=O
, q=O:M-1 ,

where (9.25) has been used in the second equality. The sequence ((q) follows directly from y(q)
since

C(q) = -y(q') = -y(M - q) . (9.28)

The first term ((0) is zero as seen directly from (9.27). Thus we have the relation

q=O

q=1:M-1
(9.29)

which essentially states that {((q)} is a mirror image of {q7(q)}.

With the help of (9.25) and the definitions (9.26), (9.27), we can rewrite (9.21) for the
K = 2M case as

(2) ' q(k)
k=O

(rk(j+1/2)

(9.30)

Making use of (9.29) and (9.24), we rewrite the second term on the right-hand side of (9.30) as

M-1
(2) Z C(M - q') - [A(2M - q') - U2(2M

q'=1

(2) M 77(q') [A(2M - q') -U2(2M - q')]
q'=1

- q')]. - cos rq'(j + 1/2)

- cos (rq'(+ 1/2))

This allows (9.30) to be simplified as

S M-
q=0

77(q) - A(q) cos ( M1/2)

((q)

q1 = M - q, (9.27)

C(j)

- (~) ((q) - [A(M + q) -U2(M + q)] -cos (qji+1/2))q=0O

(9.31)

(9.32)

. [A(k) -U(k)] -cos

(((q)_ 0

I0 -•(M -q)



where A(q) are the modified eigenvalues defined by the eigenvalue folding scheme

(q) A()U2(0) q 0 (9.33)

A(q)U (q) + A(2M - q)U (2M - q) q = 1 : M - 1

A graphical illustration for the folding scheme is given in Figure 9-2 for the case M = 8 and

K = 16. Assuming that the modified eigenvalues {j(q)} have been computed and stored, we

now have a fast algorithm to compute potentials from currents on a 1-D cell array of size M.

Given the M cell currents {f(i)}, we first calculate {t?(q)} defined in (9.26) using the 1-D Type-

2 DCT. Then {q(q)} is multiplied by the modified eigenvalues {I(q)} term-by-term. Finally,

a 1-D Type-2 inverse DCT (IDCT) is performed on the resulting array {y(q)A(q)} to give the

average cell potentials ((j) as prescribed by (9.32).

q

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 9-2: Eigenvalue folding for M = 8 and K = 16.

It is easy to include more cosine terms in the expansion (9.12) without increasing the size

of the DCT computation. For the case K = 4M, in addition to (9.25), we have the following

identities

s (7r(2M + q)(i + 1/2) rq(i + 1/2)
cos M - cos M

(lr(3M + q)(i + 1/2)) cos(7rq'(i + 1/2) (9.34)M M
where q = 0 : M - 1 and q' = M - q. Similarly, it is easy to see that

B(2M + q) = -77(q) ,

B/(3M + q) = qj(q') . (9.35)

Use of (9.31),(9.34), and (9.35) in (9.21) results in

(2) M-1 7rq(j + 1/2)

I(j) = ' 7(q). [A(q)- U(q)] -cos M
q=O

+ ( 77(q) -[A(2M - q) - UM(2M - q)] -cos M1/2)
q=1



2qM-q(jM 1/2)
+ ( y 77(q) - [A(2M + q) -U2(2M + q)] cosq( + 1/2)

(2) M-1 (rq(J1/2))

+ ( yq(q) - [A(4M - q) -U2(4M - q)] cos ( 1/2)
q=l

(9.36)

which again leads to the simplified expression (9.32) for 4(j), except that the modified eigen-
values are now computed using a folding and shifting scheme

A(q) = A(q)U2(q) + A(2M - q)U2(2M - q) + A(2M + q)U2(2M + q)

+A(4M - q)U2(4M - q) , q = 1 : M - 1 (9.37)

and X(0) = A(O)U2(0). Using the modified eigenvalue approach, we see that only a size-M

DCT transform is required regardless of the size of K.

It is easy to generalize the ideas developed thus far to the two-dimensional problem. Given
an M, x My array of cell currents f(j,,jy), we first compute its 2-D Type-2 DCT 7r(qx, qy) as

MX-1 M•-1 (7rq , (jx_ + 1/2) Co(rq,(jy + 1/2)Z (qx, ) =  f(jz,j)c - os M"x cosjx=O j,=O M
(9.38)

where qx = 0 : Mx - 1 and qy = 0 : My - 1. The average cell potentials 4 (jx, jy) are computed
via a 2-D Type-2 inverse DCT

_= 4\M -I Ma,-1 7rqx(jx + 1/2)) (" rqy(jy + 1/2)
(jx, y)= (4) 'E(q3 , qy) -A (qx, qy) - cos (ix+ 1/2) cos M+12

qx=O qv=O m y

(9.39)
where the modified eigenvalues A(qx, qy) can be computed via folding and shifting just as in the
1-D case. For the case Kx = 2Mx and Ky = 2My, we have

A(qx, qy)
A(o,0)U (o, 0)
A(0, qy)U2(O, qy) + A(0, 2My - qy)U2(O, 2My - qy)

A(qx, O)U2 (qz, 0) + A(2Mx - qx, O)U2(2Mx - qx, 0)

and

A(qx, qy) A (qx, qy)UE(qx, qy) +

A(2Mz - qx, qy) U2 (2Mz - qz, qy) +

A(qx, 2My - qy)U2(qz, 2My - qy) +

A(2Mx - qx, 2My - qy)U 12(2Mz - qx, 2My - qy) Sq > 0, qy > 0. (9.41)

Similar formulas can be derived for the case Kx = 4Mm, Ky = 4My. Hence, we have derived
an eigendecomposition based sparsification technique to compute the Mx x My array of average
cell potentials given the Mx x My array of net cell currents.

= 0, qy = 0

= O, qy > 0

> O, qy = 0

(9.40)



In practice, since only a fraction of the M, x My cells correspond to actual panels from

substrate contacts, it is necessary to zero-pad the vector of panel currents q to fill the 2-D data

array f (jx, jy). After the average cell potentials q (jx, jy) everywhere have been computed, the

vector of panel potentials v are lifted as a subset of this 2-D array. This process is depicted in

Figure 9-3. Let N be the number of panels, and let M = M. = My. If we assume that the

fraction of chip area occupied by substrate contacts is a, then N = aM 2. Then computing a

single Pq product via dense matrix-vector multiplication costs O(N 2) = O( 2M 4 ) operations,
whereas the eigendecomposition approach costs only O(2M 2 log2(M)).

q tf.. -

q zero-padding 13 DCT ij

lifting - IDCT A
v=Po -- (.. 1 r;;

FIGURE 9-3: Sparsification via eigendecomposition.

In addition to being able to compute Pq efficiently given q, it is also necessary in the multi-

grid algorithm to compute and store interaction coefficients P/m between nearby panels pt and

Pm. We show how this can be done efficiently using a 2-D Type-1 inverse DCT. Of course, the
panel-to-panel calculations must be consistent with the results given by the eigendecomposition

algorithm. Let the source panel Pm be located at position (mx, my) in the 2-D cell array, and

similarly let the target panel pt be located at position (lx, ly). To find the potential due to a unit

current source distributed uniformly over the cell at (mx, my), we set f (jx, jy) = Sj,,mS j,my,
where 6i,j is the Kroneker delta. This turns (9.38) into

r7(qx, qy) = cos ( x(m,,+ 1/2)) cos (qy(my + 1/2) (9.42)

" 13 ljJ` "- j

Jil



Substituting (9.42) into (9.39), and setting the cell-to-cell interaction coefficient P(lx, ly; mx, my)
equal to ((lx, ly), we get

4 1 M-1 qx(lx + 1/2) q,(l + 1/2)
S E' ' A(qx, qy) -cos ( r~Cos- ) • cos My )

qz=O q==O M

cos (rq(mx + 1/2) cos (rqy(my + 1/2) (9.43)MX MY
With the help of simple trigonometric identities, (9.43) can be rewritten as

M0-1 MY -1

qx=O qy=O

cos (rqx(lx + mx + 1)
"cos MIr M

Scos ( rq(ly + my +
+ (i7rqx(l - mx)Y

+ cos ( }
Define the array w(qx, qy) as a scaled version of A(qx, qy)

w(qx, qy) - 4ab ) -(q, qy)

Using the definition of the 2-D Type-1 inverse DCT in (9.7), we now rewrite (9.44) as

P(lx, ly; mx, my) = O(lx + mm + l, ly + my + 1) + z(lx + mi + 1,ll, - my)

+O(l - mX, ly + my + 1) + J(lx - mx, ly - my).

The fact that -7(j, jy) has indexes in the range jx = 0 : Mx

(9.46) be evaluated with the help of simple identities

-(-jx , jy)

a(2Mx - jxjy)

= (jXz,jy)
= -ZT(j ,jy)

and jy = 0 : My requires that

(9.47)

and

w(j 2, -jy) = U(jx, jy)
-(jx,2My-jy) = (jxjy).

(9.48)

Once the (Mx + 1) x (My + 1) array J(jx, jy) has been computed via a 2-D Type-1 inverse DCT

from the modified eigenvalue array A(qx, qy), it serves as a look-up table from which individual,
panel-to-panel interaction coefficients can be extracted via (9.46) It is not difficult to check that

(9.46) is consistent with the definition of the Galerkin matrix element in (7.5) if the the Green's

function G(r; r') is taken to be the first Kx x Ky terms in the infinite series (7.11).

(9.44)

(9.45)

(9.46)

P(1X, ly; mx, my)

P(lX, ly; mX) my)



10

Multigrid Method on Regular
Domains

For the solution of elliptic partial differential equations discretized with the finite-difference

or the finite-element mesh, multigrid methods are well-developed and known to be the most

efficient class of numerical schemes [44, 45, 46]. In the area of integral equations, however,
multigrid-style methods have received much less attention, although there exist some literature

on second-kind integral equations defined on simple curves or surfaces [45, 2]. For the solution of

first-kind integral equations on an irregular, multiply-connected surface, as is the case here for

the substrate coupling problem, we are not aware of any previous work based on the multigrid

idea. We address this void by developing the many algorithmic components necessary for an

efficient multigrid-style solution scheme. The ideas proposed here can be generalized to solve

other problems arising from first-kind integral equations defined over complicated surfaces, such

as the boundary-element (BEM) based capacitance extraction [3] problem.

To best present the general multigrid method, we first describe in this chapter the simpler

case of a uniformly discretized contact that covers the entire substrate. We then describe the

modifications needed for many irregularly shaped contacts in Chapter 11.

10.1 Two-Grid Method (TGM)

In this section, we assume that the integral equation is defined over the entire substrate

= [0, a]x [0, b]
O(r) = j ps(r')G(r; r')da', r f, (10.1)

and that QŽ is discretized into a uniform array of M x M square panels. We assume further

that M is a power of two, i.e. M = 21 for integer 1. The number of panel unknowns, and hence

the size of the linear system Pq = v, is then N1 = M 2. We refer to this discrete IE system as a

level 1, or fine-grid, representation of (10.1)

P({} " q{} = v{1}. (10.2)



Level 1 Level 1-1

FIGURE 10-1: Two-level Representation and Restriction for Uniform Grid Problem.

Suppose we also discretize (10.1) using a coarser, uniform (M/2) x (M/2) array of panels,

yielding a discrete linear system of size N1- 1 = (M 2/4). This results in a level (1 - 1), or

coarse-grid, representation

P{i-1} , q{-1} = v{-1_}. (10.3)

See Figure 10-1 for the two discretizations.

Solving the fine-grid problem (10.2) by direct matrix factorization is impractical for large

N1 since P11} is dense. However, it may be possible to factor the smaller matrix P11_1) corre-

100

Algorithm 4 (Two-Grid Method (TGM) for solving P1 } ql} = vl}).

Set k = 1 q 0.

Repeat {
Fine-Grid Smoothing:

Solve D 1) - Aq = -P} - q + v} for q

Compute intermediate guess q*} = q (k)

Compute residual ul - P1}) • q=*} - v}).

Project to coarse grid u{1_l} = ru{l}.

Coarse-Grid Correction:

Solve for Aql{-i} in P1_-1) - (Aq{1-1}) = up1-1.

Project to fine grid Aql{} = p(Aql-1)).
.(k+l)

Update intermediate guess q() ql} - Aql}.

Set k = k + 1.

} Until residual norm I|u{i}[| < e.

I I I

1 I I
i I

-- 1 j



sponding to the coarse-grid problem (10.3), since NI- 1 = N1/4. This motivates our develop-

ment of a two-grid method (TGM), in which the problem is solved iteratively at level I with

the help of direct solution at level (1 - 1). The two principal algorithmic components, anal-

ogous to TGM for PDE's [44, 45, 46], are the smoothing operator and the intergrid transfer,

or restriction-prolongation, operators. In our TGM iteration for solving (10.2), the error in

the k-th iterate, q (k) is smoothed by carefully solving a series of local problems. This first

stage is typically called fine-grid smoothing or relaxation, and results in an intermediate guess

q*{ . Next, we compute the residual u{l} = Pl 1) - q*l} - vi{} and project it onto the coarse grid

via u11_l} = ru{l}, where r is a restriction operator. Then we solve explicitly the coarse-grid

problem P{-_ 1)  . (Aq{(l_}) = u{1_ 1} for Aq{_l-}, and project the result onto the fine grid via

Aqyl} = p(Aq{1_l}), where p is a prolongation operator. Finally, the intermediate guess on the

fine grid is updated to yield the (k + 1)-st iterate q(+1 = - Aq . This second stage is

termed coarse-grid correction and is responsible for "long-range" interactions. The fine-grid

smoothing/coarse-grid correction cycle is repeated until the norm of the residual uJz} is below

some tolerance. The entire two-grid method is summarized in Algorithm 4, where the matrix

D is described below.

FIGURE 10-2: Smoothing of error at fine grid.

Since fine-grid smoothing is responsible for reducing only the "high-frequency" components

of the error (as shown in Figure 10-2), and since the resulting, smoothed error is well-represented

on the coarse grid where explicit solution is performed, the two-grid scheme effectively decou-

ples the original problem into a high-frequency sub-problem and a low-frequency sub-problem.

This decoupling is depicted in Figure 10-3, which shows three-quarters of the total number

of eigenvalues being classified as "high-frequency" and handled by fine-grid relaxation. The

remaining one quarter of eigenvalues, classified as "low-frequency", are handled by the explicit

solution at the coarse grid. The fact that the high-frequency eigenvalues occupy an interval

half as large as that of the low-frequency eigenvalues is a direct consequence of the eigenvalue

relation Am,,n - 1//m 2  n2.

To derive the smoothing operator, we first make the important observation that the IE

matrix P is derived from a Green's function G(r; r') that is sharply peaked as r -+ r', but is

smooth otherwise, i.e. Ir - r'l > d for some distance d. We seek an operator splitting at level 1

P1} = D{} + S{1}, (10.4)
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level 1 level 1-1

3Q modes Q modes
r

0 1/4 1/2
X X X

1

FIGURE 10-3: Two-grid method and eigenspectrum.

such that D{l} captures the short-range, sharply-peaked portion of Pj{}, and S{1l captures the

long-range, smooth portion of P{l}. See Figure 10-4 for a rough depiction. Given (10.4), we

define the smoothing operator as the result of solving

D{)} - q*} = -S 1} + v{I} (10.5)

for the vector q*}l. Equation (10.5) defines a fixed-point iteration [14], since the condition

q() = q{l}, where qjl} is the exact solution of (10.2), would lead to q* = it is

necessary that the above smoothing step be done cheaply, we require that D{p} be easy to

invert, or that D-1 has a sparse matrix structure, since

q{} = D-4 - S • 1 } + vq}) . (10.6)

+

P D S

FIGURE 10-4: Operator Splitting P = D + S.

We now determine whether it is more efficient to contruct Dil} as an approximation of Pil)
or D- as an approximation of . First, we note that the matrix Pil) is "non-local", since
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its matrix elements decay roughly as 1/r away from the source. This slow rate of decay makes

it difficult to truncate elements of Pp(}. On the other hand, the matrix P-• is a capacitance

matrix and hence is strictly diagonally dominant. This property implies that P-• is "local",

and can be truncated to form a sparse approximation D 1 . Since P j} is the discrete analog of

a smoothing operator (pseudo-differential operator of order -1), the capacitance matrix P-1

corresponds to a differential operator of order +1. It is to be expected that sparse matrix

approximations can be more easily constructed for differential operators than for smoothing

operators. This is the reason why multigrid relaxation algorithms are easy to construct when

solving elliptic PDE's.

Hence, we construct directly a sparse matrix D-1 based on the overlapping, local-inversion

preconditioner developed in Fastcap [3], a BEM-based capacitance-extraction program. Similar

ideas have been proposed in [59]. Our particular implementation is outlined as follows. For each

panel p{11 , a local coefficient-of-potential matrix P{c} [k] involving only itself and its immediate

neighbors is constructed. For the uniform grid problem, the size of Pl1} [k] is at most 9 x 9, as

shown in Figure 10-5. This small matrix is easily inverted to yield (P }o [k])-1 whose elements

from the row corresponding to panel k are then extracted and stamped into corresponding

locations in the k-th row of D-. Hence, the matrix D-1 contains at most 9 non-zero entries

per row and is sparse. We recall that the panel-to-panel interaction coefficient can be computed

inexpensively from a M x M DCT array described in Chapter 7.

FIGURE 10-5: Local coefficient of potential matrix Ploc.

Because we do not construct D)} directly, it may seem at first glance that the matrix

S{} -= P{z} - Dp•} is difficult to obtain. But if we subtract (D}) -ql ) from both sides of (10.5)
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and then multiplying through by D-1, the result

Aq{ = D -P ) q } + v1) (10.7)

can be used to compute q*,}

q1 =q(k) + Aq (10.8)q{ = } f{z}. (q.l}.

We notice that the modified smoothing steps (10.7) and (10.8) require only operators D-j and

P{1} which are readily available.

Restriction r Prolongation p

FIGURE 10-6: Intergrid transfers for simple domain.

In addition to the smoothing operator, we require transfer operators r and p between the

two grids. They are trivial in the case of uniform grids, where a coarse-grid panel, called a

parent, is composed of four fine-grid panels, called kids. See Figure 10-6. Recall that in the

Galerkin formulation, qi is the net current on panel i, and vj the average potential on panel j.

For the restriction operator r mapping from level l to level (1 - 1), the net current on a parent

is simply the sum of the currents on the four kids, and the average potential on a parent is the

average of the four kid potentials. The prolongation operator p mapping from level (1 - 1) to

level I is defined as the adjoint, or transpose, of the restriction r [46].

10.2 Multigrid Method (MGM)

Level 3 Level 2 Level 1 Level 0

FIGURE 10-7: Multilevel discretization of simple domain.

The multigrid method (MGM) is the generalization of the two-grid method to an arbitrary

number of levels. Instead of solving the problem (10.3) explicitly at level (1- 1), which may still

be too expensive, we apply a similar smoothing-correction cycle at level (1 - 1). In the same

manner, the correction cycle at level (1- 1) becomes a smoothing-correction cycle at level (1- 2),

104

10 so



and so on. The integral equation (10.1) is now discretized at all levels {lmin,..., Imax }, as shown

in Figure 10-7. Only at the coarsest level, I = Imin, is the system P{ "q(l{} = vj{} solved explicitly.

Each multigrid iteration is best described as a recursion, and is summarized in Algorithm 5.

Notice the recursive functional call MGM in the algorithm. The function MGM(l, q{(}, v{l})

is called repeatedly at the finest level (1 = Imax) until it has been determined externally that

the desired accuracy is achieved. Algorithm 5 describes the basic multigrid V-cycle, although

the W-cycle and the full multigrid (FMG) cycle can also be easily implemented.

The manner in which multigrid methods accelerate iterative convergence can be visualized

with the eigenspectrum in Figure 10-8. Suppose, for example, that a grand total of 64Q

eigenmodes exist in the discrete system, and that their corresponding eigenvalues range between

1/16 and 1. Then a four level multigrid scheme will break up the eigenspectrum into four

"clusters" approximately as shown in Figure 10-8. The finest grid relaxation is responsible

for the 48Q lowest eigenvalues, the second-finest grid for the next 12Q eigenvalues, and so

on. Because the ratio of largest-to-smallest eigenvalues within each cluster is always 2, the

"effective" condition number has been reduced to 2 from 16. This ratio of two is a direct
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Algorithm 5 (Multigrid Iteration (MGM) for solving P) } q{1} = vll}).

MGM(l,q{l},v{p}) {

If (1 = lmin)

Solve Pj}) , qj} = v {} explicitly.

Else {
Fine-Grid Smoothing:

Solve D{) -Aql} = -P" q + v+ for Aq .

Compute intermediate guess q*,} = q + Aq*~1 .

Compute residual upl} = Pjj} "- q} - v{)}.

Restriction up_-1} = ru{l}.
Coarse-Grid Correction:

Set initial guess Aqf{_l} = 0.

Do MGM(l - 1, Aq{(l_l),u{_I1 ).
Prolongation Aqj{} = p(Aq{_1 }).

Update intermediate guess q (k1= - Aq

}
}



48Q 12Q 3Q Q modes

0 1 1 1 1
16 8 4 2

FIGURE 10-8: Eigenvalue clusters corresponding to multigrid levels.

consequence of the asymptotic eigenvalue distribution (8.74) and the 2x coarsening in each

direction between successive grids. Hence, multigrid schemes converge at a constant rate,
independent of mesh refinement.

10.3 Smoothing Results and High-Pass Filtering

To see how the matrix splitting P{1} = Dpj} + S{j} achieves the desired smoothing effect on

the error, we note that the smoothing iteration (10.6) implies

e = -DjS} - e (k) (10.9)

where e , q)} - q} and el _ q} - q{i} are the errors before and after smoothing,
respectively. Hence we define

M{}- -D-jS{l} (10.10)

as the smoothing matrix at level 1. If M{1} is used in isolation as a relaxation algorithm,
then (10.9) requires that IIM{1}11 < 1 for convergence. However, since Mjj} is used only as
a smoother at level 1, we require only that its eigenvalues be less than one for eigenmodes

with "high" spatial frequencies. It is expensive to compute the eigenvectors and eigenvalues

directly for M{)}, since it is a dense matrix of size M 2 X M 2. However, we can guage the

effect of Ml) on a "delta" error, which is simply a current density function that takes on a

non-zero, uniform value on a given panel pi, and is zero everywhere else. This corresponds to

a vector ei = [0,...,0, 1, 0,...,0]t with a non-zero entry in the i-th position. For each panel

Pi, the Fourier cosine (DCT) components of the error before and after smoothing (i.e. ei and

M{}) - ei) can be compared term-by-term to observe the effect of smoothing at each spatial

frequency. Figure 10-9 plots the ratio of the Fourier coefficients of the smoothed error to those

of the original delta error on a 32 x 32 grid, with the delta error located near the center of

the substrate. The vertical axis gives the reduction ratio, and the horizontal axis the Fourier

mode index. Since the Fourier mode index (m, n) is two-dimensional, we have chosen to plot a

transparent "side-view" of the 2-D data from one of the axes. Similar results are obtained for

delta errors located elsewhere on the substrate. It is seen that almost all error components are
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reduced by a factor of 10, except at very low spatial frequencies, where error magnification is

possible. The size of this magnification depends on the thickness of the substrate, as well as the

level of discretization. This usually has no effect on convergence since the low-frequency errors

are effectively dealt with at coarser levels. However, for cases involving very thick substrates or

a very large number of levels, convergence may slow down, and even divergence is possible. To

ensure optimal multigrid convergence in all situations, we insert an additional component into

the multigrid algorithm, termed "high-pass filtering", which is aimed at explicitly removing

any effect the smoother M{l } may have on low-frequency modes. For the case of a uniformly

discretized contact which covers the entire substrate, the high-pass filter is simple to construct.

At each level 1, after the vector AqTl} has been obtained, we remove any projection Aq*{} has

on the next coarser level before computing the intermediate guess q*. The modifications may

be summarized as

Aq*{}  = (I - pr) . Aql}

q{l} = q+} Aq 1, (10.11)

where the operator (I - pr) orthogonalizes a density function at level I against all density

functions at level (1 - 1).

To show that the two-grid and multigrid algorithms we have developed for simple domains

indeed converge at the rate predicted by the behavior of the smoother M{1}, we plot the error

norm versus iteration count for a two-level (Lmax = 2), three-level (Lmax = 3), and four-level

(Lmax = 4) algorithm. Figure 10-10 displays results for a 32 x 32 grid, Figure 10-11 for a

128 x 128 grid. As expected, the error norm is reduced by an order of magnitude per iteration,

independent of the number of multigrid levels applied or the grid size of the finest mesh.
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32x32 grid; abs( qAdct./qdct); input q(16,16)=1

5 10 15 20 25 30 35

FIGURE 10-9: Effect of smoother M{1} on "delta" error.
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32x32 V-cycle (1,1,0) Aspect Ratio=1 (a=b=10, d=10)

Notice the low-frequency errors blowing up!
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Multigrid standard first-kind eqn Pq=f
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FIGURE 10-10: Multigrid convergence on 32 x 32 grid.

Multigrid standard first-kind eqn Pq=f
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MGM iter

FIGURE 10-11: Multigrid convergence on 128 x 128 grid.
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11

Multigrid Method on Irregular
Domains

The basic idea behind any multigrid algorithm is as follows. Suppose that the original

discretized problem can be solved on a coarser grid, then this coarse solution can be interpo-

lated onto the original fine grid to form an approximate solution. Now all we need to do is to

make local corrections on this approximate solution, since the long range interactions have been

taken care of already on the coarse grid. Multigrid methods have been popular in the solution

of PDE's using finite differences or finite elements in large part because it is straightforward

to construct coarse-grid representations of the original discretization. However, in the case of

integral equations defined over irregular domains, no previous work exists to the best of our

knowledge on the construction of coarse-grid representations. This has been a major impedi-

ment to the adoption of multilevel methods by the integral equation community. Perhaps the

most important contribution in this thesis is the concept of hierarchical basis functions which

are derived from characteristic functions associated with panels in the original discretization.

This leads naturally to a multilevel representation via the Galerkin approach, and is detailed

in Section 11.1. Efficient algorithms to accelerate the matrix-vector multiplication at each level

is described in Section 11.2.

11.1 Hierarchical Basis and Multilevel Representation

To handle layouts involving many irregularly shaped substrate contacts, we allow the in-

tegral equation (7.3) to be defined over an arbitrarily shaped surface S. Again, we make the

assumption that S can be discretized into a collection of panels {Pi}, each of which coincides

with a cell on a regular M x M array covering Q - [0, a] x [0, b]. This assumption is only mildly

restrictive since most IC layouts are based on rectangular, or Manhattan, geometries. We also

assume that M is a power of two. Of course not all of the M x M cells are occupied by panels.

See Figure 7-5 for a simple example. This is the original discretization, which corresponds to



the finest-grid representation. Recall that the linear system 7.4 results from a Galerkin dis-

cretization based on constant strength panels. Hence, we define here the characteristic function,
Xi(r) ,associated with each panel Pi

( 1/ai ifr Epi (11.1)0 otherwise

where ai is the area of Pi. The Galerkin coefficients Pij given in (7.5) is equivalent to the

definition

Pi = is G(r; r') Xi(r). Xj•(r')da da' (11.2)

where the integrations are now over the entire surface S.

Level 5 Level 1

FIGURE 11-1: Characteristic functions at levels 1 and 5.

The explicit use of Galerkin characteristic functions allows us to construct coarser-level

representations of the integral equation defined over complicated geometries. Let M = 21max.

Then the matrix elements given in (11.2) correspond to a discrete representation at level 1 =

Imax, or the finest level
p{lmax} . q{lmax} = v{lmaz}. (11.3)

To construct coarser representations of (11.3), we need to first define panels at the coarser

levels l = 0 : (Imax - 1) in the following manner. At each level 1, the rectangular domain Q

is covered with a regular 21 x 21 array of level-1 cells. For each non-empty level-i cell, a level-1

panel is defined as the union of all finest-level panels within that cell. The k-th panel at level I

is denoted by p} , and is associated with a characteristic function Xkl} defined as

{ i (if r 11.4)
k 0 otherwise

where a l is the area of pl}.) Given the set of hierarchical basis functions {X1 1 }, we can now

easily define discrete representations of the integral equation (7.3) at each level 1 = 0 : Imax

Pll . q{l} = v{l} (11.5)

112



where the Galerkin matrix elements Pill are computed as

P1G1r) G X}- (r) X Y'(r')da da' (11.6)

Figure 11-1 shows a finest-grid discretization at level 5 being mapped into a coarse representa-

tion with only four panels at level 1.

Sr

FIGURE 11-2: Restriction operator for irregular domain.

The use of multilevel characteristic functions leads to very straightforward definitions for the

intergrid transfer operators. The prolongation operator p mapping from level I to 1+ 1 is trivial

to define since every characteristic function at level 1 is a linear combination of characteristic

functions at level 1 + 1. This can be expressed as

X E span {XJ/I'}. (11.7)

If Hi( } is defined as the space of functions

Hil = span {X) }, (11.8)

then we have the general relation

Ho0 } C H 1} C ... C H{lmx- l} C H {lma . (11.9)

Once the prolongation operator p is available, the restriction operator r is defined as its adjoint

[46, 45]

r = pt (11.10)

An illustration of the restriction operator in action is given in Figure 11-2, which shows the

combination of three finest-level panels into a coarse panel at level (lmax - 1), and also the

combination of four coarse panels into a single panel at the next coarser level. The high-pass

filtering described in Section 10.3 can be easily implemented for irregular domains after the

intergrid transfer operators have been constructed. Again, the filter is implemented as

Aq*l} = (I - pr) -Aq}

S (k) -. )qf{) = { } 1 =}, (11.11)
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For integral equations defined on irregular domains, we again define the operator splitting

at each level 1 as

P{)} = Djl} + Sj} , (11.12)

and directly construct a sparse matrix D-1 at each level using a slightly modified version of the

algorithm described in Chapter 10 for regular domains. At a given level 1, two panels p~11 and

p1  are considered to be nearest neighbors if the cells to which they belong share at least one

vertex. By this definition, a panel is also its own nearest neighbor. For each panel p},} a local

coefficient-of-potential matrix P1{1 [k] is constructed from the interactions among its nearest

neighbors. Then appropriate entries are taken from its inverse (Pj [k])-1 and stamped into

the k-th row of D-1. This is illustrated in Figure 11-3, in which the panel p"} is shown to have

six nearest neighbors including itself.

FIGURE 11-3: Local interactions on irregular domains.

Efficient algorthms are required to evaluate the Galerkin integrals in (11.6) and to perform

the matrix-vector product (11.5) at each level. These are developed in Section 11.2.

11.2 Moment-Matching and Precorrected-DCT Acceleration

We have shown in Chapter 9 how to compute P{1 }) q{l} efficiently at the finest level 1 = Imax,

but it is also necessary to be able to construct the operators P{11 and to compute P{} - q{l)

efficiently at the coarser levels 1 = 0 : (lmax - 1). Efficient implementation of multigrid schemes

requires that the coarse-grid operators are cheaper to construct and to apply than at the finest

grid. Idealy, the cost of applying the coarser-grid operator P 11-l} should be one-fourth that of

the finer-grid operator P{1), since there are only one-fourth as many unknowns at the (1 - 1)
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level. In practice, this is difficult to achieve, but multigrid schemes are efficient whenever the

cost of an entire MG iteration is bounded by a small multiple of the cost required to compute

the residual at the finest grid. In this section, we develop efficient techniques to approximately

construct and apply the coarse-grid operators developed in Section 11.1.

To calculate a single Galerkin coefficient P 1} between two coarse-grid panels defined by

(11.6), it is sufficient to perform a double summation of the panel-to-panel coefficients P1lmax}

at the finest level. However, this leads to an O(N 2) algorithm. Instead, we make the observation

that when two coarse panels p and p are "well-separated", their interaction coefficient

P{ can be computed approximately by leaving out much of the detail in the characteristic

functions X,,M and X 1 }. Similar ideas have been used extensively in multipole-accelerated

algorithms[60, 3, 17]. For the multipole approximation used in [17], it was necessary to assume

a substrate Green's function which has translational invariance and which can be fitted to a

sum of polynomials in (1/r), where r = Ir - r'I. In contrast, we develop here a moment-

matching method similar to [61] which can be used in combination with the cosine transform to

accelerate the coarse-grid computations and account properly for all the substrate edge effects.

This approach approximates the potentials produced by a coarse panel p} by constructing a

simpler representation of the associated characteristic function X 11} .

FIGURE 11-4: Two panels which are "well-separated".

Before we derive the moment-matching method, let us first make some definitions. First,
let c 1 [m, n] represent the level-1 cell at position (m, n) in the two-dimensional cell array. Then

we define the normalized characteristic function W )} [m, n] associated with the cell c{l}[m, n]

as

S[m, n(r) /a rE c[m n] (11.13)
0 otherwise

where al{ } is the area of an level-I cell. Also, let f{l}(k) and g{lI(k) be integer functions

which return the (m, n) position indexes for the level-I cell occupied by the panel pll}. For

example, Pk is associated with the cell c1 } [f{I (k), gl} (k)]. An additional definition concerns

the distance between panels. Two panels at a given level I are classified as well-separated if they
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are not nearest neighbors. The equivalent definition is that they are separated by at least one

intervening cell at level 1. See Figure 11-4 for example.

'ElI

I-

FIGURE 11-5: Zero-order approximation of coarse panel.

Assume we are to calculate P}, the average potential over panel pIf} due to a unit current

distributed uniformly over panel p51 . If the two panels are well-separated, it might be a reason-

able approximation to distribute the current uniformly over the entire cell c{l}[f{l}(j), g{l} (j)],

and to average the resulting potential over the entire cell c{}}[f{M}(i), g{l(i)]. This amounts

to approximating each panel characteristic function X 1
}1 with the simpler cell characteristic

function W{'}[f {)(k),g{} (k)], as depicted in Figure 11-5.

I-

-III:~
FIGURE 11-6: Third-order approximation of coarse panel.

This idea can be refined by matching higher-order moments of the characteristic function

,.i} with a regular 2" x 2" array of characteristic functions associated with the cells at level

(1+ v). For the choice v = 2, each coarse panel is approximated with 4 x 4 = 16 cells, as shown

in Figure 11-6. Define X} as the result of combining the 4 x 4 level-(l + 2) cell characteristic

functions
mo+3 no+3

-'_f C h1}[m,n] W {1+2} [m, n]  (11.14)
m=mo n=no

where m0 = 4. f {l(i) and no = 4 -g{l (i). There are 16 coefficients hf' [m, n] to be determined

for each approximate representation X1. The moment matching conditions require that the

Cartesian moments Q(p and defined by

Q(Y) J X l' } . x. y3 dx dy,
a ,3 I
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Qx(-P " x y dx dy, (11.15)

match exactly up to a certain order ymax for each -y = 0 : y,,,max. Since y = a+pf and 0 _ a, f 7y

for each moment Q•Y), the number of moments corresponding to each order y is - + 1 as a

ranges from zero to y. It is easy to show that the total number of moments, or the number of

constraints imposed by (11.15), is

S= (max + 1) (7max + 2) (11.16)mtot - (26)2
For a third-order approximation -Ymax = 3, we are required to match 10 Cartesian moments

according to (11.16). Given the 16 unknown coefficients h 1} [m, n] and 10 constraints for each

l}1, this results in an underdetermined linear system, which can be solved with the singular-

value decomposition (SVD) [13]. It can be shown that if the Cartesian moments match up to

order -Ymax, then the difference between the the potentials generated by X} and X 1 is of

order (1/rYmax+l), but we shall omit the proof here. Empirically, we observe that the error

in the approximate Piý-0 computed using third-order moment-matching is within one part in a

thousand for panels which are "well-separated".

We now describe an efficient method to compute the product v{1 } - P{} . q{1} given q{l}

at a coarse level 1, where (1 < Imax - 2), by combining the moment-matching approximations

just described with a precorrected-DCT algorithm. This algorithm is divided into two stages.

In the first stage, a first approximation ({1} is computed using the moment-matched, 4 x

4-cell representation for each panel p1{. This can be performed efficiently using a Type-2

DCT and inverse DCT of size 21+2 x 21+2 . Since the moment-matching approximations are of

poor accuracy for nearby panel interactions, it is necessary to compute the nearest-neighbor

interactions directly for each panel, and to make appropriate corrections on the previous result

w{t}. This forms the second stage of the algorithm.

Stamping

Extraction

FIGURE 11-7: Adjoint operators between coarse panels and their cell representations.

The first stage of the algorithm again makes use of the sparsification via eigendecomposition

technique developed in Chapter 9. Hence this is also called the transform stage. Since each
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coarse-grid panel p2I is associated with 16 geometric coefficients h( 1 [m, n], and since these

coefficients correspond to cell currents at level (I + 2), we scale each set of coefficients h 11 [m, n]

by the net panel current qf 1 and stamp the resulting cell currents onto a regular 21+2 x 21+ 2
•{i2+2)

grid. Let A +2} be called the stamping operator defined by

q {1+ 2} = A q1+ 2} q l}  (11.17)

where q{1+2} is the resulting cell currents at level (1 + 2). A two-dimensional Type-2 DCT of

size 21+2 x 21+2 is then performed on the cell currents qc +2}. The result is multiplied with the

modified eigenvalues, and then a Type-2 inverse DCT is performed to give a 21+2 x 21+2 array
of average cell potentials 1+2} Let {l+2}of average cell potentials v + 2} . Let +2} represent this transform operation between cells

v{l+2} = •{•+2} l+2} (11.18)
F t a e+2t}c •1

Finally, the average potential il} over each panel pl} is extracted by taking a weighted sum

over the 16 associated cell currents, with hfl E[m, n] now being used as the weights. Let A12}

denote the extraction operator defined by

{)l} = Af l} v{ 1+2} (11.19){1+2} C

The entire computation in the first stage is then summarized as

i{'l = A 1 } 5{+2} A +2} q{}. (11.20)S{1+2} {l+2} j(1}

Since the same coefficents hl} [m, n] are used to expand the panel current densities as well as

to compute average panel potentials, the extraction operator is the adjoint of the stamping

operator, i. e.

A{ 2} (A {+2} ) t (11.21)

This is illustrated in Figure 11-7 for an example where 1 = 2. This symmetry is a direct

consequence of the Galerkin formulation (11.6). At level 1, the cost of computing U{l} given q{l}
is O(2M 2 1og 2 (M)), where M 21+2.

In the second stage, corrections are made for the large errors in nearest-neighbor panel

interactions produced by moment-matching approximations during the transform stage. This

is done in a similar manner as in the pre-corrected FFT scheme [62]. During the set-up phase

in the multigrid algorithm, a sparse matrix PNN containing accurate nearest-neighbor inter-

action coefficients is created at each coarse level and stored for subsequent use. This can be

accomplished during the smoother construction by extracting the row corresponding to panel
pfl} from its associated local coefficient-of-potential matrix Pll [k] and stamping it into the

k-th row of P.l} Also during set-up, another matrix PN}N with the same sparsity pattern as

P•}N is constructed in a similar manner, except that the 4 x 4-cell representation for each panel

118



derived from moment-matching is now used to calculate nearest-neighbor potential coefficients.

With both P11 and P5N} available, the correction Av{l} to be made in the second stage is

Av{} = PQ q{l} - P} q{l1}

v1-} = ;t)} +A{ . (11.22)

Hence the entire algorithm for computing v{ l} = P{1 } q{1} given q{l} can be summarized as

v 1+2 = A } • +2} } q{} -PN _ {1} . (11.23)

Because each panel at level (lmax - 2) is still represented exactly with a 4 x 4 cell array,
moment-matching approximations are not necessary for the finest three levels (Imax, Imax -
1, Imax - 2), and the PI} -. q{1} product is to be computed on the finest grid. Since the cost of

computing a P'}) -q{11 product becomes cheaper than p{lmax} . q{lmax only when I < (imax - 2),

the result is that for large Imax, the cost of a complete multigrid V-cycle is between three

to four times that of a finest-grid calculation. This factor may be reduced as more efficient

approximation and sparsification algorithms become available.

Level (L) Level (L+1)

FIGURE 11-8: Hierarchical approach to compute P-1 for coarse-grid panels.

We now turn to the problem of how to compute the Galerkin matrix element P1'}, between

two coarse panels p'1 and p1 at level 1. This computation is necessary in building the local

coefficient-of-potential matrices p{1 1[k] required during the construction of the correction op-

erator PNN and the smoothing operator D, 1 . As explained previously, PF1 may be computed

as a double sum of potential coefficients 1Pm1n"} at the finest level, but this leads to an O(N 2)
algorithm, where N is the number of panels. Instead, we introduce here a hierarchical algo-

rithm which makes use of coefficients stored at the next finer level as well as moment-matching

approximations. The algorithm is as follows. Suppose that panels p} and pV are both nearest
neighbors to p 11  Then we need to calculate p-l} as a required entry in the matrix P{ [k].

Further suppose that the matrix PNN has been created and stored, i.e. each element Pmn
between two nearest neighbors p+ and p1+1} are available at level (1+1). If p 1 and p are
"well-separated", then the 4 x 4 moment-matching cell arrays are used to compute P at level

1. If, on the other hand, p} and p are themselves nearest neighbors, P1 is computed as a
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double sum over panel coefficients at level (1 + 1). This double summation involves at most 16

terms since each level-i panel contains at most 4 level-(l + 1) panels. Each term P1+ in the

sum is either already available from memory, in the case where p+ and p are nearest

neighbors, or it is calculated using moment-matching approximations, in the case where the

panels are "well-separated" at level (1 + 1). This requires a "bottom-up" approach, in which

the finest grid is handled first, and the coarsest grid handled last. This algorithm is illustrated

by an example shown in Figure 11-8, where P1 } is computed as a 4 x 4 double sum over Pmn+

4 8

P1 =  Pm 1  (11.24)
m=1 n=5

where P~+} is either taken directly from memory (e.g. P3{'+ 1}) or computed using moment-

matching approximation (e.g. P3{+l}).
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Computational Results

In this section, we present numerical experiments comparing two iterative methods for

solving (7.4): our new multigrid algorithm and the standard Generalized Minimal RESidual

algorithm (GMRES [9]) without preconditioning. Since (7.4) results from a first-kind integral

operator (7.3), the smallest eigenvalues of the matrix P1{} approach zero with increasing mesh

refinement [5] and P1p} becomes more ill-conditioned. It is well-known that Krylov-subspace

based iterative methods such as GMRES or CG (Conjugate Gradient) suffer from slow conver-

gence for ill-conditioned linear systems [14]. Although it is possible to appply preconditioning

to the linear system (7.4) to accelerate GMRES convergence in a similar way as done in [3], an

increasing number of iterations is still required for finer discretizations. We demonstrate here

that the multigrid algorithm resolves this difficulty by retaining a constant convergence rate per

iteration, independent of mesh refinement, and hence problem size. Thus, for a fixed relative

error tolerance IIr(k)ll/llr(o)ll < E, the number of multigrid (MG) iterations required does not

grow with mesh refinement.

0
=L

15 a -cm
0
0

1 u -cm

15 a -cm

1 ma -cm

Ir-A
0

01

0.1 a -cm

20 n -cm

Single-layer Low-resistivity High-resistivity
(a) (b) (c)

FIGURE 12-1: Example substrate profiles.
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In Figure 12-1, we display three possible vertical substrate profiles used in this chapter:

the single-layer substrate, the low-resistivity substrate, and the high-resistivity substrate. The

lateral dimensions of the substrate is always assumed to be 1mm x 1mm (or 1000 Im x 1000

inm).

MG iter

FIGURE 12-2: TGM vs. MGM convergence rates.

The efficiency of multigrid algorithms in general arises from the fact that the smoothing
operator M() -D- S-1 } at each level reduces the corresponding error components by the

same numeric ratio [46]. This was observed in Chapter 10 for the integral equation defined over
the entire substrate Q = [0, a] x [0, b]. We show that when the multigrid algorithm developed

in Chapter 11 is used to solve problems involving many irregularly shaped contacts, the same
results hold. For this purpose, a test layout was created. The single-layer substrate is first
covered with a regular, 256 x 256 grid. Then half of the cells on this grid are randomly
selected and labeled as panels. This gives Imax = 8 at the finest level. We apply a two-
level, four-level, seven-level, and nine-level multigrid iteration to solve this problem, and plot
the resulting normalized residual, IIP{l}q,, - vf{}/ll/I|v{} |, versus the MG iteration count in
Figure 12-2. The coarsest level is Imin = 7 for the two-level algorithm (TGM) and Imin = 0
for the nine-level algorithm (MGM). Because the same convergence rate of about an order of

magnitude per iteration is observed for multigrid methods of varying depths, we conclude that

the smoother indeed reduces the error at each length scale by the same factor for the case of
irregular geometries. Recall that MGM requires only the application of operators P{1} at various

levels (and the solution of a scalar equation at the coarsest level I = 0), whereas TGM requires

solution of the system at level (1 - 1). Hence the MGM iteration is always cheaper to apply

than the TGM iteration. Since the size of the linear system decreases geometrically with the
level index, the cost of an MGM iteration is a constant multiple of an operator application at
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the finest level, or equivalently, a single GMRES iteration. Using the algorithms developed in

Section 11.2, we observe this factor to be three to four in our implementation.

._
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E
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FIGURE 12-3: Effect of mesh refinement on convergence.

The crucial feature of multigrid schemes is that the convergence rate is independent of

discretization, and hence problem size. We perform our next experiment with the single-layer

substrate on five random test layouts of increasing mesh refinement, created in a similar manner

as the previous example and labeled d = 4 through d = 8. The d = 4 layout is discretized on

a 16 x 16 grid, and the d = 8 layout is discretized on a 256 x 256 grid. The multigrid method

with maximum depth (liin = 0, Imax = d) is applied to solve each problem. The observed MG

convergence rate is indeed independent of mesh size, as shown by the residual versus iteration

plot in Figure 12-3. Also displayed are the GMRES convergence rates, which deteriorate with

increasing mesh refinement as expected. Since the cost of a single MG iteration is a constant

multiple of that of a GMRES iteration (three to four in our case), it is clear that MG is superior

to GMRES, especially for large problems requiring fine discretization.

To show that the multigrid approach can be applied to realistic problems, we perform

substrate parameter extraction on a a Phase Lock Loop (PLL) frequency synthesizer circuit

[63] on a 1mm x 1mm chip. There are 478 substrate contacts defined by the active layer mask

CAA, shown in Figure 12-4(a). Discretized with the help of a 1024 x 1024 grid, the total number

of panels, or minimum-size cells, is N = 183905. This corresponds to roughly 20% of the chip

area. The resolution thus achieved is about 1 micron.

The GMRES algorithm with sparsification via eigendecomposition [50] is used as a timing

benchmark. Multigrid and GMRES convergence rates for a single solution of (7.4) are plotted

in Figure 12-4(b) assuming the single-layer substrate profile. Similar results are shown in Figure

12-5(a) for the low-resistivity profile and in Figure 12-5(b) for the high-resistivity profile. In
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FIGURE 12-4: (a) PLL active area layout. (b) PLL on single-layer substrate.
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FIGURE 12-5: (a) PLL on low-resistivity substrate. (b) PLL on high-resistivity substrate.
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all three cases it is seen that MG converges much more rapidly than GMRES. However, each

multigrid iteration costs more than each GMRES iteration, and the multigrid setup cost is

many times that of the GMRES setup. We demonstrate the efficiency of MG versus GMRES

by comparing the CPU times required to extract the entire 478 x 478 substrate conductance

matrix. We also require convergence to a tolerance of le-3 in the relative residual norm for

each of the 478 solves. The timing results are summarized in Table 12-1. It is seen from the

total extraction time that MG is faster than GMRES by almost an order of magnitude for the

low-resistivity and high-resistivity substrates. More significant gains will be seen for even larger

problems requiring finer meshes.

I Setup time Time per iter Iters per solve Time per solve I Total time

MG (single) 317s 28.5s 3 85.5s 11.4h
GMRES (single) 11.2s 7.32s 50 366s 48.6h

MG (lo-res) 343s 28.4s 4 114s 15.2h
GMRES (lo-res) 29.9s 8.1s 95 771s 102h

MG (hi-res) 333s 28.0s 6 168s 22.3h
GMRES (hi-res) 23.0s 8.4s 180 1512s 201h

Table 12-1: Computational cost for PLL substrate extraction.

A possible limitation of the multigrid algorithm is that it resolves only ill-conditioning caused

by mesh refinement. It is less effective in dealing with ill-conditioning caused by the apparent

loss of groundplane, as seen in a slowdown of multigrid convergence for the high-resistivity case

in Table 12-1. The reason for this difficulty is that the Green's function is raised by a constant

DC level as the bulk resistivity increases. This causes the eigenvalues for the low-frequency

modes to move toward zero, causing the linear system to be much more ill-conditioned than in

the single-layer substrate case. This ill-conditioning is extremely difficult to resolve because the

eigenvalue spectrum of the discretized system essentially resembles that of a pseudo-differential

operator of order -a where a can be much larger than one. The true nature of the integral

equation will not be observed until the discretization become extremely fine. To maintain the

optimal multigrid convergence rate for the high-resistivity case, it is necessary to explicitly

solve the problem at a level Imin > 0 which is fine enough to capture the ill-behaved part of

the eigenspectrum. However, even this strategy will fail as the bulk resistivity becomes high

enough to make the condition number larger than machine precision. For such problems to

be well-posed, there must be substrate plugs which help establish substrate potential from the

top surface. These additional Dirichlet boundary conditions give rise to well-behaved Green's

functions.

Finally, we investigate the effects of various preconditioners for the GMRES iterative solver.

The test layout for this case is a large contact which occupies a quadrant of the chip area. The

coarsest discretization used for the contact is 16 x 16 on a 32 x 32 substrate grid, and the finest

discretization used for the contact is 128 x 128 on a 256 x 256 substrate grid. For each case, the
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FIGURE 12-6: (a) GMRES w/o preconditioner. (b) GMRES with nearest neighbor precondi-
tioner.

right-hand side is set to be a random vector. Figure 12-6(a) displays the convergence rate for
GMRES without preconditioning. As expected, convergence slows down with increasing mesh
refinement. Figure 12-6(b) displays the convergence rate for GMRES with an over-lapping,
local-inversion (OLLI) preconditioner using nearest neighbors. This preconditioner is equivalent
to the finest-level smoother used in the multigrid algorithm. Convergence is enhanced by this
preconditioner, but still slows down with finer meshing. Next, we consider using the multigrid
V-cycle (MGM) as a multilevel preconditioner for GMRES. We observe that as expected, the
resulting convergence rate is independent of discretization, just as in the multigrid case. Figure
12-7(a) compares convergence rates for the GMRES algorithm with MGM preconditioning,
OLLI preconditioning, and without preconditioning. The multigrid-preconditioned GMRES
algorithm has essentially the same convergence rate as the stand-alone multigrid iteration, as
demonstrated by the plot in Figure 12-7(b). It is seen that after three iterations, both methods
have knocked down the relative residual to one part in ten thousand. After seven preconditioned
GMRES iterations, it is only one iteration "ahead" of plain multigrid. This confirms our earlier
assertion that the multigrid iteration is already near optimal, and hence cannot be improved
upon very much with a Krylov-subspace search.
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Conclusion

In this thesis, we have investigated the numerical solution of integral equations arising from

two distinct problems in the computer-aided design of VLSI circuits. Iterative solvers converge

slowly for both problems because of ill-conditioning. However, the source of ill-conditioning is

very different in the two cases, as are their remedies.

In the first part of the thesis, we investigated the boundary-element formulation of the

transient interconnect problem. We showed that while this approach eliminates the need for

exterior volume meshing, it produces large errors when multipole-accelerated due to the some-

what poor conditioning of the problem. The ill-conditioning is inherent to problems with a

large range of time constants, or natural frequencies. This magnified error is eliminated in

the alternative mixed surface-volume formulation, in which the ill-conditioned interior Laplace

problem is separated from the well-conditioned capacitance problem and solved explicitly at a

small additional cost.

To construct reduced-order models by matching Taylor series terms of the transfer function

at s = 0, iterative solutions of a linear system must be performed repeatedly. A large number

of iterations are required for ill-conditioned problems, such as those involving long wires. By

reformulating the surface-volume approach slightly, we found natural preconditioners which

produce rapid convergence in the iterative solve. We presented results which demonstrate that

the cost of computing a fixed-order reduced model is order N, independent of condition number,

and is only several times that of a multipole-accelerated capacitance extraction. Then we used

our multipole-accelerated code to investigate the accuracy of the one-dimensional diffusion

equation for long RC lines. Our simulations show that the diffusion equation is accurate up to

relatively high frequencies, unless the line is some distance from the ground plane.

In the second part of this thesis, we focused on solving the first-kind integral formulation

of the substrate extraction problem. It is well-known that both classical and Krylov-subspace

iterative algorithms converge slowly for ill-conditioned linear systems. However, we recognized

that when the linear system is derived from a first-kind integral equation, the eigenvalues are
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intimately related to the characteristic length scales, or spatial frequencies, of the eigenmodes.

Specifically, the eigenvalue approaches zero monotonically as the spatial frequency of the eigen-

mode increases. Because of this special connection, it is possible to remove the effects of

ill-conditioning by breaking up the original problem into a sequence of sub-problems, each with

a distinct characteristic length scale. This motivated our development of a multigrid iterative

method.

The two core components of the multigrid scheme were developed for first-kind integral

equations defined on irregular geometries. We constructed the first component, the smoothing

operator, by solving a series of local, over-lapping sub-problems in an attempt to approximate

the inverse operator directly. The second component is the discrete representation of the original

problem at various length scales. This was accomplished with the construction of a hierarchy

of characteristic functions which form subspaces of the space spanned by the original panel

functions. The Galerkin integrals then lead naturally to a multilevel discrete representation.

For an efficient implementation of the multigrid scheme, it is necessary to sparsify the
dense matrix-vector multiplications required at each level. For the finest level, we developed

an eigendecomposition approach which takes advantage of regularity and homogeneity in the
distribution of panels, or current sources. For coarser levels, we developed moment-matching

approximations which transform the current distribution into a regular array, on which the
eigendecomposition technique may be applied. Our sparsification approach accounts properly

for substrate edge effects, unlike previously applied multipole approximations.

Results on realistic examples demonstrate that the multigrid approach combined with spar-
sification via moment-matching and eigenexpansion is up to an order of magnitude faster than
the sparsification plus a Krylov-subspace method, and orders of magnitude faster than not using
sparsification at all. We believe that the ideas proposed here can be generalized to solving other
problems arising from first-kind integral equations defined over complicated surfaces, such as
BEM capacitance extraction [3].

130



Bibliography

[1] V. Rokhlin. Rapid Solution of Integral Equations of Classical Potential Theory. Journal
of Computational Physics, 60(2):187-207, September 1985.

[2] A. Brandt and A. A. Lubrecht. Multilevel matrix multiplication and fast solution of integral
equations. Journal of Computational Physics, 90:348-370, 1990.

[3] K. Nabors and J. White. Fastcap: A Multipole Accelerated 3-D Capacitance Extraction
Program. IEEE Transactions on Computer-Aided Design, pages 1447-1459, November
1991.

[4] A. E. Ruehli and P. A. Brennan. Efficient capacitance calculations for three-dimensional
multiconductor systems. IEEE Transactions on Microwave Theory and Techniques,
21(2):76-82, February 1973.

[5] R. Kress. Linear Integral Equations. Springer-Verlag, 1989.

[6] R. F. Harrington. Field Computation by Moment Methods. Macmillan, New York, 1968.

[7] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Com-
putational Physics, 73(2):325-348, December 1987.

[8] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. M.I.T. Press,
Cambridge, Massachusetts, 1988.

[9] Y. Saad and M. H. Schultz. Gmres: A generalized minimum residual algorithm for solving
nonsymmetric linear systems. SIAM J. Stat. Comp., 7:856-869, 1986.

[10] T. Korsmeyer and J. White. Multipole-accelerated preconditioned iterative methods for
three-dimensional potential integral equations. In Proceedings of Boundary Element Meth-
ods 15 (BEM15), August 1993.

[11] M. Kamon, M. J. Tsuk, and J. White. Fasthenry: A multipole-accelerated 3-d inductance
extraction program. IEEE Transactions on Microwave Theory and Techniques, 42(9):1750-
1758, September 1994.

[12] G. Dahlquist and A. Bjorck. Numerical Methods. Prentice Hall, 1974.

[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C.
Cambridge University Press, second edition, 1992.

[14] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, second
edition, 1993.

131



[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, Maryland, 1983.

[16] A. Greenbaum, L. Greengard, and G. B. McFadden. Laplace's equation and the dirichlet-
neumann map in multiply connected domains. Journal of Computational Physics, 105:267-
278, 1993.

[17] Nishath K. Verghese, David J. Allstot, and Mark A. Wolfe. Verification techniques for
substrate coupling and their application to mixed-signal ic design. IEEE Journal Solid-
State Circuits, 31(3):354-365, March 1996.

[18] Nishath Verghese. Extraction and Simulation Techniques for Substrate-Coupled Noise in
Mixed-Signal Integrated Circuits. PhD thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA, August 1995.

[19] S. Kumashiro, R. Rohrer, and A. Strojwas. A new efficient method for the transient
simulation of three-dimensional interconnect structures. In Proc. Int. Electron Devices
Meeting, pages 193-196, December 1990.

[20] D. Ling, S. Kim, and J. White. A boundary-element approach to transient simulation
of three-dimensional integrated circuit interconnect. In Proceedings of the 29th Design
Automation Conference, pages 93-98, June 1992.

[21] Lawrence T. Pillage and Ronald A. Rohrer. Asymptotic Waveform Evaluation for Timing
Analysis. IEEE Trans. CAD, 9(4):352-366, April 1990.

[22] Peter Feldmann and Roland W. Freund. Efficient linear circuit analysis by Padd approxi-
mation via the Lanczos process. In Proceeding of the Euro-DA C, pages 170-175, September
1994.

[23] L. Miguel Silveira, Mattan Kamon, and Jacob K. White. Efficient reduced-order modeling
of frequency-dependent coupling inductances associated with 3-d interconnect structures.
In 32nd A CM/IEEE Design Automation Conference, pages 376-380, San Francisco, Cali-
fornia, June 1995.

[24] H. Haus and J. Melcher. Electromagnetic Fields and Energy. Prentice Hall, Englewood
Cliffs, N.J., 1989.

[25] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New York, second edition,
1975.

[26] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. M.I.T. Press,
Cambridge, Massachusetts, 1988.

[27] T. Korsemeyer, K. Nabors, and J. White. FastLap: Version 1.0. Computational Hydro-
dynamics Facility and Research Laborotory of Electronics, M.I.T., Cambridge, MA 02139,
U.S.A., April 1993.

[28] A. H. Schatz, V. Thomee, and W. L. Wendland. Mathematical Theory of Finite and
Boundary Element Methods. Birkhiiuser Verlag, Basel/Boston/Berlin, 1990.

132



[29] L. Miguel Silveira, Mattan Kamon, and Jacob K. White. Efficient reduced-order modeling
of frequency-dependent coupling inductances associated with 3-d interconnect structures.
In Proceedings of the European Design and Test Conference, pages 534-538, Paris, France,
March 1995.

[30] Kevin J. Kerns, Ivan L. Wemple, and Andrew T. Yang. Stable and efficient reduction of
substrate model networks using congruence transforms. In International Conference on
Computer Aided-Design, pages 207-214, San Jose, California, November 1995.

[31] Peter Feldmann and Roland W. Freund. Reduced-Order Modeling of Large Linear Subcir-
cuits via a Block Lanczos Algorithm. In 32 nd ACM/IEEE Design Automation Conference,
pages 474-479, San Francisco, California, June 1995.

[32] C.L. Ratzlaff, N. Gopal, and L.T. Pillage. RICE: Rapid Interconnect Circuit Evaluator.
In 2 8 th A CM/IEEE Design Automation Conference, pages 555-560, June 1991.

[33] J.R. Phillips and J.K. White. Efficient Capacitance Extraction of 3D Structures using
Generalized Precorrected FFT Methods. In Proceedings of the IEEE 3rd Topical Meeting
on Electrical Performance of Electronic Packaging, pages 253-256, November 1994.

[34] D.K. Su, M.J. Loinaz, S. Masui, and B.A. Wooley. Experimental results and modeling
techniques for substrate noise in mixed-signal integrated circuits. IEEEJSSC, 28(4):420-
430, April 1993.

[35] T. A. Johnson, R.W. Knepper, V. Marcellu, and W. Wang. Chip substrate resistance
modeling technique for integrated circuit design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits, CAD-3(2):126-134, 1984.

[36] Bram Nauta and Gian Hoogzaad. How to deal with substrate noise in analog cmos circuits.
In European Conference on Circuit Theory and Design, pages Late 12:1-6, Budapest,
Hungary, September 1997.

[37] Ranjit Gharpurey. Modeling and Analysis of Substrate Coupling in Integrated Circuits.
PhD thesis, Department of Electrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, CA, June 1995.

[38] Sujoy Mitra, R. A. Rutenbar, L. R. Carley, and D. J. Allstot. A methodology for rapid
estimation of substrate-coupled switching noise. In IEEE 1995 Custom Integrated Circuits
Conference, pages 129-132, 1995.

[39] B.R. Stanisic, N.K. Verghese, R.A. Rutenbar, L.R. Carley, and D.J. Allstot. Address-
ing substrate coupling in mixed-mode ic's: Simulation and power distribution synthesis.
IEEEJSSC, 29(3):226-238, March 1994.

[40] Ivan L. Wemple and Andrew T. Yang. Mixed-signal switching noise analysis using voronoi-
tesselation substrate macromodels. In 32 nd A CM/IEEE Design Automation Conference,
pages 439-444, San Francisco, CA, June 1995.

[41] T. Smedes, N. P. van der Meijs, and A. J. van Genderen. Extraction of circuit models
for substrate cross-talk. In International Conference on Computer Aided-Design, pages
199-206, San Jose, CA, November 1995.

133



[42] R. Gharpurey and R.G. Meyer. Modeling and analysis of substrate coupling in integrated
circuits. In IEEE 1995 Custom Integrated Circuits Conference, pages 125-128, 1995.

[43] Ranjit Gharpurey and Robert G. Meyer. Modeling and analysis of substrate coupling in
integrated circuits. IEEE Journal Solid-State Circuits, 31(3):344-353, March 1996.

[44] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333-390, April 1977.

[45] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin Heidelberg
New York Tokyo, 1985.

[46] W. L. Briggs. A Multigrid Tutorial. Society for Industrial and Applied Mathematics,
Philadelphia, 1987.

[47] A. Brandt. Guide to multigrid development. In W. Hackbusch and U. Trottenberg, editors,
Multigrid Methods. Proceedings of the Conference Held at Koln-Porz, November 23-27,
1981, pages 220-312. Springer-Verlag, Berlin Heidelberg New York, 1982.

[48] Hermann A. Haus and James R. Melcher. Electromagnetic Fields and Energy. Prentice
Hall, Englewood Cliffs, New Jersey, First edition, 1989.

[49] A. J. van Genderen, N. P. van der Meijs, and T. Smedes. Fast computation of substrate
resistances in large circuit. In International Conference on Computer Aided-Design, San
Jose, CA, November 1996.

[50] J. P. Costa, M. Chou, and L. M. Silveira. Efficient techniques for accurate modeling and
simulation of substrate coupling in mixed-signal ic's. In DATE'98 - Design, Automation
and Test in Europe, Exhibition and Conference, pages 892-898, Paris, France, February
1998.

[51] G. C. Hsiao and R. E. Kleinman. Error control in numerical solutions of boundary integral
equatrions. unpublished.

[52] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press,
UK, 1992.

[53] Y. Saad. Iterative Methods for Sparse Linear Systems. Don't Know, 1994?

[54] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-28(1):27-34, February 1980.

[55] K. R. Rao. Discrete Cosine Transform: Algorithms, Advantages, and Applications. Aca-
demic Press, Inc., San Diego, CA., 1990.

[56] F. A. Kamangar and K. R. Rao. Fast algorithms for the 2-d discrete cosine transform.
IEEE Transactions on Computers, C-31(9):899-906, September 1982.

[57] H. Nussbaumer. Fast multidimensional discrete cosine transforms. IBM Technical Disclose
Bulletin, 23(5):1976-1981, October 1980.

[58] H. Nussbaumer. Improved approach for the computation of multidimensional discrete
cosine transforms. IBM Technical Disclose Bulletin, 23(10):4517-4521, March 1981.

134



[59] S. A. Vavasis. Preconditioning for boundary integral equations. SIAM J. Matrix Anal.
Appl., 13:905-925, 1992.

[60] V. Rohklin. Rapid solution of integral equation of classical potential theory. J. Comput.
Phys., 60:187-207, 1985.

[61] C.L. Berman. Grid-multipole calculations. SIAM J. Sci. Comput., 16(5):1082-1091,
September 1995.

[62] J. R. Phillips. Rapid Solution of Potential Integral Equations in Complicated 3-Dimensional
Geometries. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, June
1997.

[63] E. Charbon, R. Gharpurey, R.G. Mayer, and A. Sangiovanni Vincentelli. Semi-analytical
techniques for substrate characterization in the design of mixed-signal ics. In International
Conference on Computer Aided-Design, pages 455-462, San Jose, CA, November 1996.

135


