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Abstract

Test vehicles used in the verification of chip fabrication processes have been dominated
by static RAM arrays. While SRAM’s are a very good test vehicle to identify structural faults in
the process, they do not truly represent the varied logic circuits that make up about 2/3 of the die
area of present day microprocessors. And hence the continued reliance on SRAMS pose a serious
problem for process engineers since this leads to a growing disparity in the fault mechanism of
products and the test vehicles, which may lead to the masking of potentially serious process
defects. A new approach to test vehicle design has been made. The approach replaces the simple
RAM cell with a complex but testable unit that implements the various circuit styles and
topologies found on modern microprocessors and ASICs. This solves the problem of divergence
of product and test vehicle and allows for grater confidence in the suitability of new processes for
mass production and hence faster turnaround for each new process generation.
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Chapter 1

1.1 Introduction

As the time between the introduction of new CMOS fabrication processes has precipitously
shrunk [1], as can be seen in Figure 1, the challenge for semiconductor companies to maximize
their yields has grown accordingly. To meet this challenge, manufacturers of applications specific
integrated circuits (ASICS) and microprocessors have begun to develop new generations of test
vehicles (structures) to better predict the behavior of the final product during the ramping up of

the CMOS process.
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Figure 1 : CMOS generation timelines
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Test vehicles used in the verification of chip fabrication processes have been dominated
by static RAM arrays. RAM arrays posses several advantages over other techniques for
identifying and characterizing fault mechanisms in IC fabrication processes. Firstly SRAM’s have
a very simple functional model, which consists entirely of the writing and reading of data.
Secondly SRAM’s also have a simple structural model based on one unique, but small, memory

cell,Figure 2 a, replicated in a two dimensional array, Figure 2 b.

Bit Lines Bit Lines

SEAM Cell

o
o

Figure 2 : a) Static Ram Cell b) Static Ram Array

Other vehicles that can be used to detect and characterize fault mechanisms in the CMOS
process (process bring up), such as micro-controllers and ASICs, have been hampered by the fact
that they do not fully share the strengths of RAM arrays. In particular these vehicles do not posses
a simple structural model. For the process test engineer functional fault detection is necessary, but
it is far from sufficient. To correctly identify and characterize a process fault the process test
engineer has to localize the fault to the transistor level and even to a faulty contact. With the

growing complexity of microprocessor circuitry and systems on a chip ASICs it is increasingly
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not cost effective to do routine process verification and qualification on actual production chips.
This is in part due to the fact that detailed structural models of these complex microprocessors
and ASICs are not readily available. Also the structural models for complex logic chips are too
complex for current test generation and analysis technology. Because SRAM’s have such a simple
structural model, it is very easy to produce tests for structural faults such as stuck faults or
bridging faults. In addition to this, because SRAM’s are built in uniform arrays it is quite easy to
localize the faulty transistors or contacts. This has led to the adoption of SRAM’s by industry as
the standard test vehicle in qualifying semiconductor processes.

While SRAM's are a very good test vehicle to identify structural faults in the process,
they do not truly represent the varied logic circuits that make up about 2/3 of the die area of
present day microprocessors. And hence the continued reliance on SRAMS pose a serious
problem for process engineers since this leads to a growing disparity in the fault mechanism of
products and the test vehicles, which may lead to the masking of potentially serious process
defects. To remedy this problem and breach the growing gap between test vehicles and product, a
new generation of test vehicles that better represent the current complexity of microprocessors
and ASICs need to be developed. Two approaches to solve this problem have been considered.
The first approach is to replicate a section of a typical complex microprocessor and use it as the
test vehicle. While this approach solves the problem of divergence of the test chip from real
microprocessor design and potentially shorter lead times, it introduces problems associated with
the functional testing of a complex device, as well as controllability and observability issues.
Another approach is to design a totally new test vehicle that incorporates varied logic and RAM
circuits in an easily controllable and observable manner. While this would seem to be the best
approach it has its own disadvantages. Firstly it would need a lot of design resources to
implement and verify a sizable design. If the design was simplified and then arrayed to reach the
desired size, it would go against one of the design criterions, which was to produce a test vehicle

that resembled actual microprocessor and ASIC chips. The solution to this dilemma was to
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characterize the features of high performance Integrated Circuits (ICs) to determine which circuit
and geometrical structures were not being represented in the SRAM arrays and then create a
replicated structure that addressed these issues.

The two principal areas of concern is the representativeness of the test vehicle to product
and the provision of Built in Self Test (BIST) and diagnosis functions to facilitate the full
identification and diagnosis of fault mechanisms. Figure 3 show the method of identifying and

replicating the structural and functional blocks present in product on the test vehicle.
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Logic ~1lr
Complex "%
gates/simple -..M_“
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Drivers
Product (e.g CPU) Test Vehicle

Figure 3 : Extraction of test vehicle from product

The need to find and diagnose fault mechanisms during the qualification of new CMOS
processes is driven by the need to reduce the defect level (DL), or ratio of defective parts to
defect-free parts, of products run through the FAB. The DL is a function of test coverage T and

the manufacturing yield Y [7].
DL=1-Y"P (1.1)

While the test coverage has remained constant or decreased for very complex microprocessors

and system on a chip ASICs, manufacturing yields have had to bear most of the brunt for
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reductions in the defect level. This problem is compounded by the increasing use of new process
generations to maintain the performance curves of leading microprocessors. The trend is
highlighted in Figure 4, which shows the number of CMOS process generations a particular

microprocessor design undergoes during its lifetime.

O Process
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(Source: Intel)
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Figure 4 : Process generations in lifetime of microprocessor architectures

The need to further decrease the DL is also spurred by the extremely high cost of replacing
defective parts that make it to the customer’s field site.

This thesis reports on a method to better predict the defect level of final products during
the development period of each new CMOS generations. The goal is accomplished by designing
test vehicles that more accurately mimic that fault mechanisms exhibited by the product. By
doing so, appropriate action can be taken to remedy any significant manufacturing problems
before production begins and in time to inform design engineers of the yield affects of high

performance circuit topologies. The target product used for this research is a microprocessor core.
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1.2 SRAM Testing Methodology

As stated earlier, SRAMs have been the mainstay of test vehicle design and consequently a lot of
effort has been put into developing testing methodologies for the SRAMs. Taking this wealth of
experience in designing test procedures into consideration, designs of replacements for the
SRAM must leverage past work by using the same basic array structure of the SRAM as well as
its simple interface to external logic.

SRAM are tested using its functional model, reading and writing data to storage cells. The goal of
the functional testing is to ensure that data can be stored in the SRAM and retrieved at the desired
time. To meet this functional model, an SRAM must be able to perform any combination and
permutation of data writes and reads. The testing is complicated by the fact that the functional
model must be performed across the entire operating range of the device and meet timing
requirements at every test point.

The tests conducted on the SRAM are broken down into two categories DC tests and AC tests [9].
The DC tests are as follows:

1. Address non-uniqueness test: An address non-uniqueness test will insure that every SRAM cell
can be addressed separately and correctly from the input pins. This test is needed to ensure the
validity of subsequent test since there is no way of verifying in the read and write instructions that
the intended cell is actually performing test.

2. Stuck at Cell test: This test is used to verify if a cell in the SRAM array is permanently (or
intermittently) stuck at a particular logic value. The causes of this fault are usually process
imperfections such as mask alignment.

The AC tests are as follows:

1. Access time test: This test is used to find and verify the delay through each SRAM cell is

bounded by the desired design and process specifications.
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2. Cycle time test: This test is used to verify that the SRAM operates at the predicted clock
frequency.

3. Set-up and hold time test: These tests are used to verify the proper operation of all latching
structures inside the SRAM.

Enhanced SRAMs include Built-in Self-Test (BiST) capabilities which allow the sequential
nature of an SRAM to be converted into a combinational path by including a scan path for data in
each simultaneous latch stage to be read out sequentially. By converting the SRAM cell into a
level sensitive latch, testing of the array can be enhanced to that of level testable. As a level
testable circuit the response of the SRAM, its functional model, can be measured independent of
the delay between memory elements in the design. i.e Level testable designs also makes the order

at which input signal change irrelevant, a feature that greatly simplifies test generation.
1.3 Yield Estimation

Estimating the yield of devices in a given process is done by creating a model for determining the
number and spatial distribution of faults in the process. The model chosen is dependent on
measured characteristics of the process equipment, but a random distribution is a good priori

estimate. Using this model a poisson process for defect distribution is given by equation 1.2 [9].
Prob;{ X = k} = e ™A /k! (1.2)
Equation 1.2 gives the probability of having exactly k faults per chip at the ith process step,

where A is the average number of faults per chip generated over all processing steps. From this

we can determine the fraction of devices on a wafer that are not affected by faults at the end of

processing, or in order words the yield as,

Y =I1Y; =™ (1.3)
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1.4 Test Coverage

To determine the DL of a given product we finally need to determine the test coverage T, the
fraction of all faults that can be tested and detected. Tests are sets of input patterns (vectors) that
are input to a device under test and its output compared to a table of correct responses. To get
100% test coverage the set of responses, f; , to input vectors, v;, must be able to distinguish
between two devices deferring by at least one malfunctioning element.

Thus the test coverage is determined by summing all nodes that exhibit the same response to a

vector set when faulty and fault free.

T =1 - (#nodes,where Xf(faulty) = Xf; (fault-free) / #nodes)  (1.4)
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Chapter 2

2.1 Characterizing and Reducing Product Divergence

To alleviate the fundamental problem with the current process test vehicles, the divergence

between them and complex logic must be reduced. This divergence has been fueled by increased
developments in process technology namely the addition of more metal lines and increased logic
densities due to improved processes and more aggressive design rules and styles. Figure 5 shows

typical sections of an SRAM array a), compared to a logic block b).

Figure S : a) Logic block b) SRAM array

Regular SRAM cells do not need or benefit from all these developments and thus are not
designed to include them. To minimize the divergence for test purposes, SRAM cells can be
modified to include extraneous metal lines and circuit styles. But this comes at a cost of reducing
the test coverage since a paths for controlability and observablity must be added to the design for
each new feature that is added to the basic cell. Since the SRAM cell must be modified

significantly to bring it closer to the logic block, we might as well make a clean break from the
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past and design a test vehicle dedicate to CMOS process bring-up instead of incremental changes
that do not entirely address the problems at hand.

To arrive at a new cell to replace the SRAM an analysis of the features of current logic
circuits and layout topologies must be done. The test case for this analysis was an advanced
microprocessor, the Alpha 21264 chip, by Digital Equipment Corporation. Figure 6 shows a

micrograph of the microprocessor.

Figure 6: Digital Alpha 21264 Microprocessor

2.2 Representative Logic

The task of creating representative logic has been focused on microprocessors, which show the
greatest divergence from current test vehicle technology. The deferent circuit and topological
features of the microprocessor have been identified and divided into several functional groups to

better asses their representativeness in test vehicles.
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9.

10.

RAM structures
Synthesized Logic
Random Logic

Data paths

Control paths
Decoders
Interconnect
Topology and Layout
Drivers/Receivers

Special Circuits

Each of these functional groups consists of several circuit structures which are broken down into

the various groups and list of structures that need to be recreated in the test vehicle to insure that

the test vehicle is representative. The following is a brief description of each functional group and

the circuit structures classified under them.

RAM structures:

These consist of small memory cell arrayed into large structures and are used as memory
storage blocks. Examples of which are:

e Caches

e Register Files

Synthesized Logic

Synthesized logic are usually random control blocks that are generated by CAD programs and
exhibit a varying degree of regularity depending on the size of the macro cell used to compile
the structure. Examples of these structures can be found in the:

e  Memory Controller

e Integer/Floating point Mappers
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Bus Interface Unit

Random Logic

Random logic blocks are scattered around the processor core and are exemplified by the
lack of any replication. Examples of random logic are located in:

¢  Memory Controller

e Integer and floating point execution units

Data paths

These are topological structures, usually made up of wires and transistors that direct the
flow of data through the functional blocks of the microprocessor. They can be found
almost every where in a microprocessor but are usually identified in the:

¢ Integer/Floating point execution units

¢ Data and Control Busses

Control paths

These are somewhat identical to the data paths except that they carry control instructions
to the various sections of the microprocessors and are usually orthogonal to the data
paths. They also contain significant amount of random logic. Control paths can be found
in the:

e Integer/Floating point execution units

e Data and Control Busses

e Memory Controllers

Decoders

Decoders are structures that exhibit a significant amount of repetition, and are used often
enough in the design of microprocessors to have a significant effect on yield. Though
decoders are used throughout the design their densities are highest in these sections:

o Integer/Floating point execution units
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10.

e Caches
e Instruction Data Path
Interconnect
The transistors and larger blocks on the microprocessor are all connected through the use of
various forms of interconnect. These include poly-silicon and metal layers. Various
functional blocks of the microprocessor have differing degrees of utilization of any particular
interconnect layer but the processor as a whole tries to maximize the use of all these layers to
transport signals as well as power supplies.
Topology and Layout
This issue is concerned with how the various transistors and interconnect layers are arranged
to form the final product. This is an issue because fabrication processes are affected by the
orientation of transistors and metal layers on the circuit to be fabricated. An example of this is
seen in the reduced yield of beveled interconnect. Examining how topological differences in
larger structures that are absent in SRAM arrays is the main concern.
Drivers/Receivers
These are usually large devices that are used to communicate over long distances such as to
other chips on the motherboard. Examples can be found in:
e 1/O Pads
e Data and Control Busses
Special Circuits
Special Circuits refers to the various circuit styles that are sometimes used in each of the
structures listed above. The circuits listed below define the eventual layout decisions that
are made in the design of the microprocessor and thus have a strong impact on the fault

mechanisms of the processor.
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Table 1 : Special Circuit Types

Logic gates (simple/complex)
Multiplexers (MUX)
PLA

De-coupling capacitors
ESD structures

Clock distribution

Bit lines

Cascade logic

Large drivers

Dynamic logic
Cascode logic

Latches

Carry chains

Strapped poly
Oscillators

Pass Logic

In this initial design, numerical enumeration of the percentage coverage of all the circuit styles
listed above was not attempted. The goal of the project was to define a framework for analyzing
the various components of the product individually and then determining the factors that are most

likely to affect yield.
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Chapter 3

3.1 Design

Discussion of the design strategies employed in the logic test vehicle shall now procced with brief

descriptions of the various aspects of the design.
3.2 Motivation

Development of the test vehicle is motivated by several factors among which are:
1. Complement Current SRAM testing

2. Alleviate identified shortfalls of RAM testing

3. Greater representation of circuit styles and products

4. Better use of metal layers

5. Test-bed for designs to be used in the future

6. Built In Self Test (BIST)

7. Smart error logging capability

8. Operation at Speed (300Mhz)

3.3 Chip Architecture

The test vehicle maintains the basic SRAM array structure to facilitate easy diagnosis of detected
faults as well as to reduce the design effort and create a scalable architecture for use in other
generations of the test vehicle. The RAM cell that characterizes SRAM arrays is replaced by the
Logic Test Element (LTE) as the basic building block. The LTE incorporates most of the circuit
and some of the topologic styles that were identified as needed to create a test vehicle that is
representative of product.

The LTE’s are grouped into 2 symmetric blocks of 32 LTEs, which make up a cluster

consisting of 64 LTEs. Within the cluster each LTE is uniquely addressable and its output can be
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read separately. Multiple clusters are then arrayed to make up the test vehicle. The goal is to
create a 4x4 array of clusters consisting of approximately 700,000 transistors.

Hedged between the clusters is the centralized control and support logic, which interfaces
the test vehicle with external logic. It is also responsible for generating addresses and monitoring
failures that occur in each cluster.

3.3.1 Logic Test Cluster

The Logic Test Cluster (LTC) consists of 64 LTEs, grouped into 2 symmetric blocks of 32 LTEs.

Figure 7 shows a block diagram of the structure of the LTC.
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Figure 7 : Logic Test Cluster (LTC)

3.3.2 Logic Test Element (LTE)

The LTE incorporates most of the circuit and some of the topologic styles that were identified as
needed to create a test vehicle that is representative of product. In This case the LTE consists of a
4 bit ALU similar to the 74X181. The choice of this particular device was due to its complexity
as well as the reasonable number of vectors needed to fully detect faults as well as diagnose the

failure. A more in-depth discussion of the reasons for choosing the 4-bit ALU, is contained in
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chapter 4. The LTE incorporates approximately 700 transistors. Figure 8 shows a block diagram

of the LTE
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Figure 8 : LTE Block Diagram
3.3.3 Control Logic

The centralized control and support logic interfaces the test vehicle with external logic. It is also
responsible for generating addresses and monitoring failures that occur in each cluster. The

control logic is designed to out live The LTEs that make up the bulk of the test vehicle.

3.3.4 Logic Test Vehicle (LTV)

The Logic Test Vehicle (LTV) is then made from arraying 16 LTCs. Each LTC can be addressed
by the control logic and the output from each LTE contained in the LTC directed to off-chip test

equipment. Figure 9 shows a block diagram of the LTV.
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Figure 9 : Logic Test Vehicle (LTV)

The replication done for this generation of test vehicle can be expanded to fill any desired die size

by arraying the LTV itself.
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Chapter 4

4.1 Implementation

The implementation of the Logic Test Vehicle was broken up into three stages. First a behavioral
model of the LTV was written from the architectural specifications. The behavioral model was
used to simulate LTV and iron out implementation details such as communications protocols
between the LTV and external test logic. A listing of the behavioral model is included in
appendix B. The second stage involved generating schematics from the behavioral model. The
schematics, available in appendix C. The schematics were then verified using a Boolean
verification tool against the behavioral model to insure there were no inconsistencies. Finally
Layout of LTV was done from the schematics, as well as backend verification of the layout to

insure that it met the design rules of the .28u process that the LTV was to be manufactured in.

4.2 Logic Test Element (LTE)

The logic test element (LTE) is the basic building block for the test vehicle. The LTE is designed
replace the SRAM memory cells. To accomplish this the LTE must be fully testable and
diagnosable. In digital logic circuits this criterion is met through solving controllability and
observability issues. Controllability is the ability to establish a specific signal value at each node
in a circuit by setting values on the circuits inputs [2]. Observability is the ability to determine the
signal value at any node in a circuit by controlling the circuits’ inputs and observing its output.
For an SRAM cell this task is not very complicated since the ram cell’s ratio of logic to inputs
and outputs is high. Figure 10 shows how the different paths in an SRAM cell are sensitized for

controllability and observability.
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Figure 10 : Sensitization of SRAM cell for controllability and observability.

To effectively migrate to the LTE as the basic building block, its observability and conrollability
must be as close as possible to that of the SRAM for the test engineers to effectively use the test
vehicle to develop the process. This fact runs counter to the needs of making the test vehicle
representative of product, which in this case is a very complex microprocessor. To solve this
problem the choice of functions that comprise the LTE is severely limited. This restriction led to
the adoption of a simple 4-bit Arithmetic Logic Unit (ALU) as the function to be performed by
the LTE.

The 4-bit ALU was chosen because it provided a relatively simple functional model that
was easily modeled to enhance automatic test vector creation and testing. It also allowed the easy
detection of structural faults through the application of a limited set of test vectors, which can
then be thoroughly examined to determine the particular process parameter that was responsible
for a failure. Another benefit of the 4-bit ALU is that it is several orders of magnitude more
complex than the RAM cell. This added complexity allows for the replication of different circuit

structures and styles within each LTE. A palette of LTE’s incorporating many different variants
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of the circuit styles determined relevant for the particular design can be compiled and assembled

for the test vehicle. Figure 11 shows the gate level logic schematic of the LTE.
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Figure 11 : LTE Logic Diagram

The actual circuit styles employed in the final implementation of the LTE can be seen in circuit

diagram of the LTE in appendix C.
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4.3 Analysis of the testability and diagnosability of the LTE

Once the structure of the LTE has been arrived at, an analysis of its testability and diagnosability

can proceed. This is done by analysis of the structural fault models, the predicted failure

mechanisms, associated with such a structure, namely [2]:

1. Short - a short is formed by the connection of two nodes not intended to be connected to each
other. Extra conducting material placed across wires during fabrication usually cause this

fault. Figure 12 shows an example of a short.

Figure 12 : Short between metal lines [5]

2. Open - an open is formed as a result of a break in the connection of two nodes in a circuit.
Opens are usually cased by the absence of conduction material during the fabrication of
devices or the wearing away of material due to chemical action or electromigration. An

example of an open can be seen in Figure 13.
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Figure 13 : Break in metal line [5]

These two structural fault models combine to create the two logical fault models we shall
consider:
1. Stuck at fault.
The stuck at fault is when a node in a circuit appears to be held at a constant value
independent of the inputs to the circuit. This fault is usually cause by a short between the
node and a power or ground line, or an open that leaves a node at a low value indefinitely.
2. Bridging fault
The bridging fault is caused by shorts between two signal wires, which result in a new logic
function from the combination of signals.
The approach employed to detect these structural faults is based on analyzing the functional
model of the ALU. To do this several assumptions are made about the fault mechanisms of the
CMOS process. First there is an assumption that there is at most one logical fault in the system.
This simplifying single-fault assumption, is justified by the frequent testing strategy, which states
that we should test a system often enough so that the probability of more than one fault

developing between tests is close to zero. Secondly structural fault models assume that
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components are fault-free and only the interconnect is affected, the problem of discriminating
between interconnect and devices is an area of added research.

In this technique the output of the ALU to any specific combination of inputs is a
function of the inputs as well as any structural fault present in the device. To simplify the analysis

an assumption that only a single fault can occur between each test and diagnosis phase.
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Figure 14 : Array implementation of a 4-bit ALU slice

All the building blocks of the ALU shown in Figure 14 are combinational and it is assumed that
any fault in the ALU will also leave it as a combinational circuit. Therefore a functional fault
F{(s); will modify the output of the ALU to any given input ip; from its fault free output 0; to 0’;.
This translation is denoted by the term f; ,,,) . The functional fault F{(s) is therefore the sum of all

input patterns that produces an erroneous set of outputs.
F(S) = Zf',(o,o) (41)
The number of possible errors for an n-input, m-output module is [3]
2'2™-1) 4.2)
Since performance is not a major goal in the design, the simple array ALU with independent

modules for each bit, makes testing easy. This is possible since each input bit of the ALU can be

addressed and its corresponding output analyzed, thereby the problem of testing the ALU can be
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decomposed into one of testing each of the ALU modules, the FA, LM and MUX shown in
Figure 14. These individual module tests are then addressed to each ALU contained in the test
vehicle to achieve the desired coverage for the entire test vehicle. By doing this the vector length
to test the entire test vehicle is significantly reduced making test generation easy and efficient.
With minimal effort put into the analysis of testing schemes that can be applied to the test
vechicle, its simple functional model enables the test engineer to simply use an exhaustive testing
scheme. Exhaustive testing is were all the possible stimuli are applied to the test vehicle and its
output are compared to a table of correct responses generated by a software model of the test
vehicle. Several researchers have published valuable information on fault analysis of ALU
structures, including Hayes and Sridhar [4], the testability analysis concluded above was based on

work done by Blanton and Hayes [3].

4.4 At Speed Test

In addition to the problems of circuit divergence, test vehicles also face a problem of operating at
the same frequency range as products. With the astonishingly high frequency ranges of modern
microprocessors, testing at speed is becoming a critical aspect of qualification, because of
reliability concerns due to power fluctuations and transistor characteristics at these speeds.

Test vehicles have been slow to increase their clock speeds because of limited design
resources and the unavailability of inexpensive logic testers that can operate at high frequencies.
A solution to this problem that is implemented in the logic test vehicle is to add a high frequency
on-chip clock generator to the test vehicle as well as a low frequency external clock input from
the logic tester. The internal clock source can be used with the onboard BIST capability to fully
detect faults in the test vehicle as well as during diagnosis to measure timing characteristics at
speed. On detection of a fault in the logic test vehicle, the test vehicle transitions its clock from
the internal clock source to the external clock, for the tester to read out the failure information.

For the external logic testers to communicate with the logic test vehicle during diagnosis or fault
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detection, the external clock source is used. The external lock source can also be used to operate
the logic test vehicle at any frequency. To reduce the design resources needed to implement the
internal clock source a multi-tap ring oscillator was chosen as the clock source. The delay of each
intermediate ring of the oscillator was chosen to produce a range of frequencies between 400Mhz
and 50Mhz. The particular tap that will be used is programmed into the logic test vehicle at power
up from the input pins.

To guarantee proper operation of the logic test vehicle during transitions from the internal
clock to the external clock source, a clock arbiter is added to de-glitch the global clock of the test

chip. A description of the clock arbiter is provided in chapter 5.

4.5 BIST/Monitoring Architecture

As well as satisfying its representative value, the test vehicle must be easily tested. This is
accomplished by the inclusion of self-test hardware on the test vehicle to perform Built in Self-
Test (BIST), as well as facilitate failure monitoring and diagnosis. The implementation strategy
is to surround the representative logic with BIST logic for life cycle tests. Life cycle tests are used
to simulate failures in field deployment of product, by creating an accelerated failure environment
in a burn in oven through increased temperatures and voltage stresses. The test vehicle is also
designed to easily facilitate off-line fault detection and analysis. The BIST circuitry will
emphasize the functional model of the design and will be accomplished through redundancy
failure detection. Diagnosis of failure data and fault model detection and analysis will rely on a
direct scan architecture, which will utilize automatic test program generation (ATPG) to generate
test vectors for fault detection and identification.

Development of ATPG tools and interfaces for use with transistor level analysis is an

area of research that is needed to fully develop the capabilities of this architecture. Since the
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observerbility of many of the nodes in the test vehicle is very low, very efficient ATPG tools will

be necessary to fully maximize fault detection and diagnosis the of the test vehicle.

4.6 Chip Operation

The test vehicle has two operating Modes:

1. BiST Mode

2. Off-line Test Mode

In BiST mode the test vehicle generates pseudo random stimulus to all LTEs and compares the
results of a pair of LTEs to determine if there has been a failure. Failures are then communicated
to external test logic.

In Off-line test mode stimulus can be loaded into each LTE and response data of an addressed
LTE read out by external logic, or a combination of internal generation of stimulus and external
generation of addresses can be employed, with each LTE exhaustively stimulated from primary

inputs. The control specifications of the test vehicle are included in appendix B.
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Chapter 5

5.1 Design of Logic Test Vehicle (LTV)

The following chapter discuses the design of the Logic Test Vehicle (LTV). The discussion will
include the blocks of the LTV already discussed above as well as several other aspects of the
LTV including its clocking scheme and power analysis. The design of the LTV started with the
creation of a behavioral model of the LTV then followed by the creation of the schematics and
then physical layout of the device.

The LTV was targeted at the CMOS 7 (enhanced .28 micron) process of Digital

Equipment Corporation. Figure 15 shows a layout plot of the LTV.

Figure 15 : Logic Test Vehicle
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There were several requirements on the design that were encountered. They included:

1. Completion of the architecture, specification and design of Logic test vehicle in 6 months.

2. Area limitation of 34,000 CDU (4.76mm) on a side

3. High frequency operation, (target frequency of ~300Mhz)

4. Minimal external test equipment (low pin count)

5. External and internal clock generation

These requirements were met in the design and are discussed in some depth in the following

sections. The tools used in the design were provided by Digital Equipment Corporation, and

included:

1. Behavioral modeling tools used to simulate the entire LTV structure and generate test
patterns.

2. Schematic entry and simulations tools.

3. Boolean verification tools used to verify the consistency of the schematics with the
behavioral models.

The behavioral models, as well as schematics for the LTV are included in appendix B and C

respectively.

5.1.1 Logic Test Element (LTE)

The design of the LTE was based on the 7X181 ALU. While not a simple array ALU it exhibits
many of the traits of the array ALU. It is also widely studied and understood. The LTE is the
basis of the representativeness that the test vehicle exhibits, and as such the design of the LTE
takes into account the varied logic and layout styles that are present in the target product (Alpha
21264 microprocessor). Figure 16 shows a block diagram of the logic design styles implemented

in the LTE.
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Figure 16 : Logic design styles in LTE

The first stage of the LTE consists of complex gates these in turn feed the second stage which is
made up of a broad range of multi input simple gates. The third stage of the LTE consists of
mixture of static MUX implementations as well as some complex logic. The fourth stage is
implemented with PASS transistor logic that feeds the final stage, which is a set of latches
implemented with sense amps, a form of dynamic logic. Figure 17 and Figure 18 show the

contrast between the layout of a RAM cell with the LTE cell.
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To allow the LTE cells to be arrayed and addressed, tristate drivers are added to the outputs of

each LTE.

5.1.2 Logic Test Cluster (LTC)

To facilitate the aggregation of several hundred LTE’s onto the test vehicle. The LTE are grouped

into another structure called the LTC. The LTC is also used as the basis for the BIST and

monitoring support of the test vehicle.

An important issue in the design of the LTC was determining whether the outputs of

individual LTE cells are to be accessed sequentially or in parallel during self-test and offline

testing. The various pros and cons of each strategy are analyzed in Table 2.

Table 2 :Tradeoff in Parrallel vs. Sequential LTE access

Issue Parallel Sequential
Array size Larger, more signal wires. Smaller.
Address Generation Smaller infrastructure. Larger, unique address
needed.
Row Decoding May not be needed if all Needed.
outputs are available for
comparison.
Utilization of Address If present then will be run at Used every cycle (may
decoders the same rate as in sequential | hamper off-line testing if a

case.

fault occurs).

Column Decoding

Not needed.

May be needed to reduce
multiplexing of outputs.

Column Multiplexer

Large multiplexer needed,
May need to break it up into
multiple stages. (Looks like
the sequential case).

Needed if no column decoding
is used.

Comparator Row comparison or array Parallel comparison may still
comparison may be done be used, but serial comparison
depending on the scale of uses more of the same path as
parallelism. off-line testing.

Testablity Decoders may still have to be | Decoders need to be testable.
made testable.

Control Less complex More complex.

Similarity to SRAM Not as similar Can be made to be identical.

Error Generation

Extra work needed to extract
error from individual
comparison (if needed)

Not needed.
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From these tradeoffs it seems that either strategy, parallel or sequential, will eventually resemble
the other because of implementation constraints. The only difference between the two is solely a
matter of ease of implementation. The benefit of the parallel approach is that less address signal
lines must be generated in the central control logic and distributed throughout the test chip.
Another benefit of the parallel approach is that the interval between when each LTE is tested is
reduced and hence test-throughput is increased, a need that has been identified by industry
experts [10]. This advantage is somewhat reduced due to the added work needed to extract the
identity of a particular failing LTE cell.

The LTC consists of two 8x4 arrays of LTE’s, each with independent linear feedback
shift registers (LFSR) that serve as pseudo random stimulus generators for LTE data and control
inputs. LFSR’s as shown in Figure 19, are cyclic elements that go through a fixed sequence of
states when clocked. In this implementation the ability of loading the LFSR with arbitrary data
from external test equipment is provided. This enables the stimulation of the LTE’s with specific
inputs during offline testing. The choice of LFSR’s for the cluster stimulus generators, as
opposed to counters, was based on the simplicity of their design, low area overhead, and possible

reduced failure analysis to determine if they are functioning properly.
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Figure 19 : Example Linear Feedback Shift Register (LFSR)

Each column and row of the array is fed a permuted version of the LFSR to help detect
errors in the decoders for each array as well as to vary activity within the array. The locations of

the sections discussed above can be seen in the plot of the LTC shown in Figure 20.
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Figure 20 : Plot of Logic Test Cluster (LTC)

Embedded between the LTE arrays is the column support logic, its duty is to compare the outputs
of each row of LTE’s from the upper and lower arrays to check for mis-compares and hence
failures in any of the LTE’s. The comparison is made every cycle and once a failure is detected a
signal to the central control logic is generated. The column support logic also multiplexes the

output of a selected LTE to the central control logic for extraction by external test logic.
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5.1.3 Central Control logic

The central control logic monitors the activity of all the LTC’s arrayed onto the test vehicle. It
also interfaces the test vehicle to external test equipment. The central control logic posses two
modes:
1. Command Mode

In the Command mode the control logic waits for, or executes commands from the
external test equipment. The control logic also defaults to this mode when a BIST self cycle as
finished.
2. Run Mode

In the Run mode the control logic generates successive address for each LTC to perform
a BIST or user controlled test cycle.
A block diagram of the control logic can be seen in Figure 21. A detailed explanation of the

workings of the control logic can be found in appendix C.
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Figure 21 : Control Logic
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The control logic consists of several registers and decoders. These registers control the address of
the LTE to be analyzed, the vector to stimulate the LTE with, and markers to determine the end of

the test cycle.

5.1.4 Clock generation and Distribution

As with all synchronous systems the test vehicle needs a clock source to synchronize all the
activity within it. This clock source must be free of excessive skew induced by asymmetric wire
delays from the clock source to clock sinks. To solve this problem designers have implemented
several clock distribution networks optimized for different chip topologies. An example of one
topology is the hierarchical clock-buffering scheme. In this method clock skew is kept at a
manageable level by creating a symmetric clock-buffering tree that keeps the clock skew along

each branch at a manageable level [4]. A block diagram of such a scheme is shown in Figure 22.

Min Clock skewr Max Clock skew

SEEEE <t P oEEmn
ETTRTRTRRY D TaTaTaT
IEEEE < A BT

Clock Source

Figure 22 : Hierarchical clock-buffering scheme
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Where clock skew is to be kept as close to zero as possible another approach, the H-tree is used.
The H-Tree approximates zero skew by using a single clock source that feeds clock sinks that are
connected with the same length of interconnect wire. This approach shown in Figure 23, has the

disadvantage of extra interconnect wiring, capacitive load and hence longer RC delays.

/\

Clock Source

Figure 23 : H-Tree Clock Network

To minimize the clock skew on the test vehicle and reduce simulation time to qualify the
clock distribution network, a modified H-Tree network was used. The H-Tree was used to supply
the clock to each Logic Test Cluster (LTC), but within the LTC a hierarchical clock network was
used without additional buffers. The H-Tree guarantees zero clock skew to the LTV’s and within
them the RC delays is small enough to meet the clock skew budget of 30ps max. Figure 24 shows

a model of the clock distribution network employed in the test vehicle.
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Figure 24 : Global Clock distribution network model

Simulation of this model using spice was used to show that the network met the limit of 30ps
clock skew. Simulation data also showed that the rise and fall times of the clock network were
good enough for the test vehicle. Figure 25 shows several timing traces from spice simulations of

the clock network.
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Figure 25 : Traces from Spice Simulation of Clock Network.

For the Cluster itself another model was created, shown in Figure 26, it is a basic hierarchical
clock model without clock buffers. The global clock distribution network connects to the center
of the cluster clock distribution network and is distributed in a grid like fashion to all the LTE
blocks contained in the cluster. To supply the central control logic with a clock source, taps are
made from the second and third cluster quadrants as can be seen in Figure 24. These taps also
transverse the same interconnect length from the clock generators as do the clusters to guarantee

zero clock skew between the central control logic and the logic test clusters.
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Figure 26 :Cluster Clock Distribution Network

5.1.5 Clock Domain Arbiter and Distribution Network

The LTV uses several different clock sources, an external clock source (tck) as well as several
internal taps from a ring oscillator. In order to allow selection of any of the clock sources while

guaranteeing a glitchless global clock it is necessary to incorporate a deglitching circuit into the
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clock selection mux (clock domain arbiter). The deglitching circuit acts as the clock arbiter
during transitions between clock domains. An implementation of this clock arbiter circuit is
shown in Figure 27. It succeeds in deglitching the global clock by holding it low (and preventing

state change) until all glitches that may be present in the clock generation circuits are resolved.

HUld_C]k_l Tfans_Clk_h
R 5

Global Clock
) Restart h
o< !
el & =
Clock Taps

Figure 27:Clock Arbiter and Deglitching Circuit

The signal Trans_clk_h is generated to initiate transitions between clock domains during the A
phase of a transition. Trans_clk_h sets the asynchronous RSR latch causing hold_clk_I to be
asserted. Hold_clk_1I is and’ed with rclk to produce the global clock gclk. By doing this, the
global clock is held low during the transition period and the LTV state is preserved and glitches
removed from the global clock.

Hold_clk_1is also used to feed a set of synchronization latches (L1 and L2) clocked by
rclk. When Trans_clk_l is asserted, a different clock tap was selected through the clock source
mux. The clock source mux feeds rclk making it inherently glitch prone during transitions
between different clock taps. rclk is used as the clock to the synchronizing latches L1 and L2
which feed the reset input of the RSR latch. (more latches can be used to reduce the probability of

metastablity, resulting from latching asynchronous signals, from reaching the RSR latch). The
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purpose of the latches is to synchronize the falling edge of the new rclk with the de-assertion of
Hold_clk_l. By doing so we guarantee that gclk is held low throughout the phase uncertainty and
glitches that may occur during clock transition. Instead of holding the clock low the circuit can be
modified the hold the clock high instead depending on the timing requirements of the driving
circuits. A timing diagram to illustrate the operation of the clock arbiter circuit is shown in Figure
28. The phase misalignment of the clock domains is compensated for and glitches during clock

transitions are eliminated from the global clock.

| I].UI]UpsI I].I]l]l]psIFJns |50ns |100ns [150ns [200ns
1 1 1 L1 1 TR S T | T T T [

Trans_Clk_H / Y

Haold_Clk_L \ /

Restart_H 1

RCIk SN VANV A A A
GClk AR A FATANSASANT AN AT

Figure 28:Timing Diagram

The operation of the clock arbiter circuit is transparent to the rest of the LTV. The only additional
signals needed are those for signaling a transition between clock domains, Trans_clk_h, and the
selecting the clock tap to be used. Generation of Trans_clk_H, is done in the control logic by
decoding the current instruction or at the initiation of a RUN or CMD mode. The CMD mode is
entered into when a command from the external pins is needed such as loading registers and
reading data from the LTV clusters. The RUN mode is entered into when internal generation of
data stimulus and address is desired. Depending on which run mode is entered into a failing
vector may return the LTV to CMD mode. Figure 29 shows the state machine for the generation

of Trans_clk_h . For timing reasons this signal is latched until the next cycle before it is passed
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to the clock arbiter. All data latches on the LTV are operated on gclk. This simplifies clock

routing and lowers clock skew.

Trans clk_h

CND
MODE

Trans_clic h

Figure 29:Trans_clk_h generation

Design concerns in implementing this scheme of clock synchronization are as follows:
1) Clock to Q + RSR prop delay must be shorter than a phase of gclk
2) Clock to Trans_clk_ah + RSR prop delay must be shorter than phase of clk

3) Probability of Metastability must be lowered by addition of enough synchronizing latches.

5.1.6 Decoupling capacitance

Due to the potenitally high operating frequency of the LTV and high current demands of clock
drivers and LTC’s it is necessary to add a considerable amount of decoupling capacitance to the
test vehicle. The decoupling capacitor is implemented as an NMOS device with its source and

drain connections tied to VSS and its gate tied to VDD, this is shown in Figure 30.
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Figure 30: Decoupling Capacitor

Decoupling capacitors are placed around high current devices and each LTC to supply current
during pathological switching scenarios. Figure 31 highlights the area taken up by decoupling

capacitors on the LTV die.

Figure 31 : Decoupling Capacitors on the LTV
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5.1.7 Pad Ring and IDDQ

The pad ring is located at the perimeter of the LTV die and contains the I/O drivers and power
and ground pins to control the LTV. To facilitate better IDDQ testing, a method of testing VLSI
chips by monitoring the current consumption of the device, the power grid is segmented into
several partitions. A separate power grid feeds each quadrant of the LTV, comprising of four
LTC blocks. Also an additional power grid feeds the central control logic and clock drivers.
IDDQ testing is accomplished by measuring the quiescent leakage current of the LTV
caused by gate-oxide shorts and other sources [5]. The usefulness of IDDQ testing has been
decreasing due to the increasing number of devices being built into each VLSI device, because it
makes discrimination of the individual faulty gate harder. The increasing leakage current
produced by transistors in each new process generation also compounds this problem by masking
faulty gates due to the high background leakage current. By segregating the power sources to

each cluster of the LTV, IDDQ testing of the LTV has been enhanced by a factor of more than 4.

5.2 Power Analysis

Power consumption of the LTV can be determined by analysis of the capacitive load of the
various components of the design and from the equation:

P = (CVH)*f*U (5.1)
Where C=Capacitance, V=voltage, {=Frequency, U=Ultilization
Assuming each node in the LTV is an XOR function, to compensate for glitching and other
spurious transitions, the utilization of the LTV can be approximated by an analysis of the

switching probability of an XOR gate [11].
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Table 3 : 2 Input XOR Gate

A B Out
0 0 0
0 1 1
1 0 1
1 1 0

Assuming that the initial probabilities:
P(A=1) =12, P(B=1) =12
Therefore:
P(Out = 1) = %, P(Out = 0) = %
P(Out, 0->1) = P(Out=0).P(Out=1) =12 *Va=14
P(Out, 1->0) = P(Out=1).P(Out=0) =2 * V2 =14
The probability of a transition, or the utility, in the output is:
U =P(Out, 0->1) + P(Out, 1->0)=Va+ L4 =1

Next the components of the LTV must be broken down and converted into a capacitive load. Due
to the unavailability of capacitance data on features in the target .25u process, the power
estimation is done using capacitance data for a .35u process. Scaling the result by a factor of 0.5
should approximate the actual power usage in the fabricated test chip.

The total area for MOSFETs in each logic test cluster is listed in Table 4.

Table 4 :Cluster Diffusion Area

Name Area (CDU)
N Diffusion 1432236
P Diffusion 2112080
Total 3544316

Using a conversion factor of 0.4ff of capacitance for each CDU (CMOS design unit) of area, we
arrive at a capacitive estimate of the TLC of 1.42e6 ff. In addition to the diffusion capacitance

local interconnect capacitance must also be added. A general rule of thumb for calculating
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interconnect capacitance is to assume a 50% split between diffusion/gate capacitance and
interconnect. This means the diffusion capacitance has to be multiplied by 2 to determine the total
capacitance for each LTC.

In addition to the local interconnect in each LTC there is additional capacitance from global
routing interconnect feeding each LTC. Using approximations for the capacitance of interconnect
in the process, the total global interconnect attributed to each LTC was found to be 2e4ff.
Another approximation used in approximating power usage is to assume that the control logic’s
contribution to power dissipation is insignificant, since it is hardly used and comprises a very
small percentage of the total test chip. Since there are 16 TLC on the test chip we multiply the
capacitive load attributed to each LTC by 16 and arrive at a total load of 1.44¢6 ff.

Lastly the capacitance of the clock network, 6e5 ff, extracted using cad tools must be added to
arrive at the total capacitance of the chip. Table 5 lists the different components of the test chip

and their capacitive loads.

Table 5 :LTV capacitance

Name Unit Capacitance (ff) | Quantity Total Capacitance (ff)
TLC 1.44¢6 16 2.3¢e7

Clock Network 6e5 1 6e5

Total 2.36e7

Plugging in the total capacitance of the LTV and using a target frequency of 300Mhz, a supply
voltage of 2.5Vand a utilization of V2, the total power dissipated of the LTV is 11W in a .35u
process. Using an optimistic scaling factor of a half for the .28u process, the actual dissipation of
the LTV should be 5.5W.

In order to supply the needed power to the LTV, a grid network of power supply busses
was implemented. The grid is fed by wide power and ground rings, which in turn are fed by

multiple power and ground pads. Figure 32 shows an example of the power and ground grid.
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Figure 32: Power and Ground Grid

By doing this the power needs of the LTV was spread over a vast number of pins contained in the

132 Pin PGA, reducing inductive power drops across each of the power pins.
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Chapter 6

Conclusion

Designing test vehicles for future CMOS process generations is a continuously evolving process,
the work included here tries to pose a methodology for improving the value of the test vehicle, by
making them more accurately model the actual products made with the process. The design of the
test vehicle is a reasonably complex, but is still diagnosable using some of the same
methodologies used in testing SRAMs. The architecture used in implementing the test vehicle
allows the inclusion of multiple implementations of the basic LTE cell, without changes to any of
the support logic. Because of this modular approach to designing the test logic, the test chip has a
better chance of keeping up with advances in IC integration and circuit implementations
employed in modern ICs. An important feature of the design is that the diagnosability of the test
vehicle remains constant with transistor count, allowing the design to be replicated, as process
dimensions shrink, without hindering effective testing and diagnosability. Finally by keeping the
number of unique structures on the chip to the essentials, the design can be easily portable to the
next process generation.

There are several challenges that were not addressed in the design of the LTV. These
include full testability of the support circuitry and full non-uniqueness testing of the LTE array.
While these shortcomings are needed to completely perform process testing, they are fairly
straightforward to address in future generations of the LTV. The Design resources for creating
new generations of the LTV are minimal and will mostly be relegated to layout modifications for
each new CMOS process.

Due to the latency in getting silicon back from fabrication, testing of the LTV to verify its
operation at the indicated speed and measure improvements in IDDQ testing could not be done.

The behavioral model was thus used to verify the operation of the LTV.
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Appendix A: Specifications

Logic Test Vehicle Chip

Generation 1

Specifications [8]
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Introduction

The Logic Test Vehicle chip (henceforth referred to as the LTV chip) is a new process bring-up

and process/product qualification tool. Similar in scope and character to the SRAM test chips

presently used for process bring up, LTV is expected to overcome some of the short-comings of

the SRAM test vehicle. The test circuitry on the LTV chip is more complex and therefore a bit

more representative of the complexities found on the real products. The LTV is not intended to

replace the use of SRAM test vehicles, but rather supplement it. Also at present in its current

scope of definition, the LTV is not expected to represent all aspects of circuit complexities found

on a product and therefore is not expected to replace or eliminate the product qualification effort.

With the insight and experience gathered over time, the LTV is expected to open new avenues to

process and product qualification and allow us to get higher quality products quicker to the

market.

The LTV chip is designed to satisfy the following goals and constraints.

e Representative of a broad range of circuits and circuit topologies.

e Diagnosable to the smallest possible cluster of gates by non-destructive testing methods.

e Capable of thorough self-exercising and self-testing at a representative gate transition speeds
and gate delays during life test.

e Stress all interconnect levels.

o Life testable in the existing Wakefield equipment.

e Testable on the same tester that is used for testing SRAM test vehicles.

e Portable to process generations with minimal redesign effort.

Some goals not addressed by this version of chip are:

¢ Smart monitoring. This goal is deferred to a later version of the chip. The LTV architecture,

however, is such that it easily supports this goal.
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Table 6 :LTV Chip Summary

Transistors 700,000 approx. Package 132 Pin PGA
Die-Size 34,000x34,000 cdu Speed 300Mhz
Signal Pins 37 Power 5.5W

Chip Architecture

The LTV chip is a two dimensional arrangement of the basic building block called Logic Test
Element (LTE) and the test and diagnosis support logic. The former, supplies the bulk of the
process test transistor and interconnect geometry implemented in the test vehicle, the latter
provides an effective self-exercise and self-test during life testing as well as supports convenient
oft-line test and diagnosis from a simple tester.

Figure 33 shows the top-level block diagram of the LTV. It consists of an array of Logic Test

Clusters, LTV Control Logic, Clock Generator, Error Monitoring Logic, and Pin Interface Logic.

Dataln_H(16,0)
DataOut_H(7£2
Mode_H(3,0)

[t

LTV Chip

Freeze_H
Marker_H
ErrorQ_L

Pin Bus [LTV Control |Clock
Interface |Logic Generator Errort_L

LtvVIkOut_H
Unique_H

YyYvvyvyy

Tck_H
Trst_L

Vdd
Vss

WY

D Logic Test Cluster

Figure 33 : Logic Test Vehicle Chip
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A Logic Test Cluster (LT cluster) is a grouping 64 identical LTEs, the target test logic. Each LT
cluster is capable of supporting self-exercise and self-test of its LTEs. Each LT Cluster and each
Logic test Element can be accessed from the chip pins via an addressing scheme, similar to the
one employed for accessing cells in a RAM array.

The LTV Control Logic supports the self-test operations. It generates and broadcasts address and
control to the LT clusters. It houses a master counter which keeps track of the self-test and self-
exercise of the clusters.

The Clock generator is a ring oscillator with outputs taken from several taps. It provides clock for
the LTV circuits during the life test.

The Error Monitoring Logic performs simple on-chip error gathering and analysis task that allows
LTV to detect and flag occurrence of intermittent and non-unique failures during the life test.

The Pin Interface Logic provides a convenient interface to the tester and the life test burn-in
equipment to control modes and operations of the LTV chip.

A Logic Test cluster is designed with a specific design style. Using LTE clusters designed with
representative product design styles easily increases product representation of this test vehicle.
The LTE chosen for this LTV chip is a 4-bit slice of ALU with a set of output latches. The LTE
has approximately 700 transistors. A Logic Test Cluster with 64 LTEs contains approximately
45K transistors. A 4x4 arrangement of LT Clusters shown in Figure 33 gives approximately 700K
test transistors in 1024 LTEs. The actual number and the arrangement of the LT clusters can be
chosen to suit the constraints of the host chip.

Figure 33 also shows the pin interface. Pin Interface is described in detail in Section 0. During
life test modes, the only signals to be supported on the burn-in tray are the Tck_H, Trst_L, and
Error0_L, Error1_l signals. The rest of the signals can be suitably tied off. Cmd_H(3,0)(3,0) pins
are tied off to enable RunForLife mode. In this mode, upon deasserting Trst_L, the LTV enters

an eternal self-exercise/self-test mode and remains in that mode until Trst_L is asserted again or
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power is turned off. When the self-test circuitry detects an error, the Error Monitoring Logic

asserts chips error outputs as explained later.

Logic Test Cluster

Logic Test Cluster houses the bulk of the test transistors and the local self-test support logic.
Figure 34 show the block diagram of the LT cluster. It consists of an array arrangement of 64
Logic Test Elements, a pair of Stimulus Generators, a pair of row decoders and a common
Column Mux and Cluster Compare Logic.

The LTE array is organized as two symmetrical halves of 4x8 array of LTEs. Each half is fed by a
Cluster Generator to exercise the LTEs. During life test, the address dispatch from the Cluster
Control Logic randomly selects an LTE in the upper half cluster and pairs it with an LTE in the
lower half cluster to dynamically form the basic self-testing unit. The comparator in the Cluster
Support Logic compares the outputs of the selected LTE pair and flags an error if a mismatch is
detected.

Address_H(4,0) broadcast from the LTV Control Logic selects two LTEs (one from each half of
cluster) for self-test, comparing outputs of each against the corresponding outputs of the other.
Address_H(5) selects outputs from one two LTEs selected for self-test and makes them available
at the cluster output. When the cluster is selected during off-line test, these outputs are made

available to the chip pins via the global output lines.
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Figure 34 :Logic Test Cluster

Logic Test Element

The Logic Test Element chosen for this LTV chip is a 4-bit slice of ALU with a set of output
latches. The 4-bit ALU slice is simple yet a few orders of magnitude more complex than an
SRAM cell. Its testability is well understood, requiring only 13 vectors to detect all single stuck-
at faults. Ability to test it with exhaustive set of inputs is expected to provide a rich fault
dictionary for non-destructive fault isolation and failure analysis. Output latches provide the

opportunity to bring in a variety of latch representations. The LTE has approximately 700

transistors.
A(3,0) B(3,0)
S(4,0)
Cin Cout
—_—
Cik v F3,0) v L,E,G \
—_——p R(7,0)

Figure 35 :The Logic Test Element
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Cluster Stimulus Generator

Cluster Stimulus Generator is a 17-bit LFSR capable of generating a stream of 2'7-1
pseudorandom vectors. A set of 14 outputs (bits 13,0) from the generator are used as inputs to
drive the LTEs (Figure 36). The stimulus generator thus not only supplies all input combinations
to the LTE, but also provides eight opportunities for varying vector to vector transitions. Bits
(13,9) are used to drive the function select lines of the LTEs. Bits (8,0) supply the A, B
arguments and Cin. The connections of bits (8,0) to the argument inputs of LTEs are rotated by

two bits from

Mode y From pins
—ee—— Mux
LFSR 16 |15 {14 |13 |12 |11 |10 |9 |8 |7 |6 [5 |4 |3 |2 {1 |O
Row Rotator/Drivers Column Rotators/Drivers
Bit(8,0) | Bit(6,0;8,7)| Bit(4,0;8,5)| Bit(3,0;8,4)
Sel(4,0)
o
Sel(3,0,4) -
Sel(2,0,4,3 -
Sel(1,0,4,2)
To To To 'I%
‘Col(7) ¥ol(6) YCol(5) poI(O)

Figure 36 :Cluster Stimulus Generator

column to column. Likewise, connections of bits (13,9) are rotated by one bit from row to row.
This staggers the nodal activity in the LTEs in a cluster as well as helps to establish a unique
identity of an LTE within a cluster. Similarly, the nodal activity from cluster to cluster is
staggered by offsetting cluster generator to a different initial value.

The generator is clocked by gclk. An assertion on Trst_L initializes the generator with Ox1. The

Address_H(xxx) bits address the generator for writing from pins. When its address is selected,
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LdCsg command loads the generator from Data_H pins. The generator counts every cycle for

which run_H is asserted.

Cluster Support Logic

This logic selects a pair of LTESs, one form each half of the cluster and compares their outputs to
generate the error signal during the life test modes. During the off-line test modes it transfers the
outputs of the selected LTE to the global output bus. Figure 37 shows the block diagram of the

Cluster Support Logic. It consists of a pair of column multiplexers, a comparator and the output

drivers.

bu[7](7,3) buiG](?,i) l l ¢ l 1u[0](7,0)

Address_h(4,2) & /
AN ’

ZU[7](7,0) rl/ TlC_OUt7,0)
—>
Comparator Tlc:error_h

ZI[7)(7,0) >
\ | Address_h(5)

tTa

bl[7](7,0) BI[6](7,0) bi[0](7,0)

Figure 37: Cluster Support Logic

LTV Control Logic

LTV Control Logic broadcasts LTE addresses and control to the LT clusters. During the life test
modes, it generates the addresses, while during the off-line test modes it passes the addresses
received from the chip pins.

Figure 38 shows a block diagram of the LTV Control Logic. It consist of Cluster Address
Register, LTE Address Generator, Self-Test Duration Counter, Freeze Register, Activity Counter,

Clock Control Register, and Test Control Register and the control logic.
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Logic « Mach H | Freeze Register(16.0)
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Register(2,0)

Marker H
-

Run_H
—

Test Control Register(11,0)

Figure 38: Cluster Address Generator

Cluster Address Register

Cluster Address Register is 8-bit wide. Its outputs are decoded and used for enabling one of the
16 clusters to connect to the DataOut_H pins. Trst_L clears the register. LoadLteAddress
command loads it from the Dataln_H pins (see Table 9). The counter can be observed on
DataOut_H(7,0) pins by suitably loading the Test Control Register (see Table 8). (Note: The
present generation of LTV has only 16 clusters. Therefore, only bits (3,0) are used. The other bits

are ignored.)

Lte Address Generator

Lte Address Generator is a 6-bit LFSR Counter, counting all 2° states. Its outputs uniquely select

one of the 64 LTEs on each cluster. Its carry output indicates the end of major self-test cycle.

That is, completion of minor self-test cycles (defined later) on each of the 64 LTEs in a cluster.

The Trst_L resets the counter. It is clocked by the global clock gclk. It counts every time the Self-

Test Duration Counter puts out a carry. The counter can be loaded directly from the Dataln_H
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pins by a load command (see Table 9). The counter can be observed on DataOut_H(7,0) pins by

suitably setting the Test Control Register (see Table 8).
Self-test Duration Counter

Self-test Duration Counter is 17-bit wide (same size as the stimulus generators in the clusters).
The Trst_L initializes the counter to a starting value. The counter is clocked by the global clock
gclk. It counts every cycle for which run_H is asserted, that is the LTV is not in a freeze state.
When the count reaches 2'’- 1, the counter outputs a carry to indicate the end of the minor self-
test cycle on an LTE. The counter can be loaded directly from the Dataln_H pins by a load
command (see Table 9). The counter can be observed on DataOut_H(7,0) pins by suitably loading

the Test Command Register (see Table 8).

Freeze Register

Freeze Register is a 17-bit wider register used for halting the self-test and freezing the state for
debug. During RunFreezeOnCount mode the LTV state freezes when the Freeze Register

contents match the contents of the Self-Test Duration Counter. Trst_L clears The Freeze Register.

LoadFreezeRegister command loads the register from the Dataln_H pins.

Activity Counter Register

Activity Counter Register is a 9-bit LFSR counter. The counter is used to apply a burst of 2°-1
cycles worth of self-exercise and then hold the LTV in a temporary freeze state until the restart
cue (Tck_H edge) is received. An assertion on Trst_L or an issue of a new run command resets

the counter to the starting count.
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Clock Control Register

Clock Control Register is a 3-bit register. It selects one of 8 possible clocks to run the LTV logic.

The register is loaded from Dataln_H pins up on deassertion of Trst_L. Table shows the clock

selection.

Table 7: Clock Control Register and LTV Clock Selection

CCR(2,0 ClockTap | CCR(2,0 ClockTap | CCR(2,0 ClockTap | CCR(2,0 ClockTap

) ) ) )

000 500Mhz | 010 Tbd 100 Tbd 110 tbd

001 Tbd 011 Thbd 101 Tbd 111 Tck_H
Test Control Register

The Test Control Register is 12 bit register used for miscellaneous control of the operation. A

portion of the register provides observability control by selecting and steering information from

various sources in the LTV chip to the output pins. Table 8 shows the bit fields and their effect on

the outputs. Trst_L clears this register to and establishes the default output control. LoadTcrReg

mode loads the register from the pins (see Table 9).

Table 8 : Test Control Register

Field Tcr(11.0) Value Output
ErrorControl(0) 0 0 Bist-Cycle-End Error

1 Cycle-by-Cycle Error
ErrorControl(1) 1 0 Or of all cluster error outputs

1 Selected cluster error output
ObsSel(2,0) 4:2 000 Selected Lte outputs

001 Address Generator

010 Master Counter

011 Fuse ID

1xx For future use
ActivityFlag(0) 5 0 Enable activity equalization

1 Disable activity equalization
Spares 11:6 TBD

76




Test Command Register

Test Command Register is a 4-bit register that provides control over the various test and

diagnosis operations of the LTV chop. The register is directly loaded from the pins when the LTV

is in Command Mode (described later). The register is cleared by Trst_L. Table 9 lists the

opcodes for the various commands together with the function of the other input pins.

Table 9 :Command Register Opcodes and Input Control

Cmd_H(3,0) Command Dataln_H(16,0)
16 |15 (14 [13 |1 11987 2 1 |0
2 0

11111 RunForLife OutFSel<2:0>
1111110 RunFrzOnCoun OutFSel<2:0>

t
1110} 1 RunFrzOnError OutFSel<2:0>
1{1[0[0 | RunSingleBurst OutFSel<2:0>
of1])1]|1 LoadCltgen ClusterGenerator<16:0>
1{0(0|0 LoadMasterCnt MasterCounter(16,0)

r
0[1|1]0 | LoadFreezeReg FrrezeRegister(16,0)
0l 1]0]1 LoadLteAdress CluserAddressRegister(7,0) | LteAddressGenerator(5,0)
0l1]0(0 LoadTcr TestControlRegister(11,0)
0/{0]0]0 NOP OutFSel<2:0>

[ |

As seen from the table, LTV supports two groups of commands; various Load commands that

establish the internal state of LTV control registers, and the various Run commands that put LTV

into a Self-Test/self exercise mode. Self-test/self-exercise modes begin from the default state

established by the power-on reset (assertion of Trst_L) or from the control state established by the

various load commands.

RunForLife: This command puts LTV into the eternal Run state. It is use for life test. The

Clusters undergo self-exercise/self-test automatically and continuously until interrupted by the

reset or the loss of power.
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RunFrzOnCount: This command is used to advance the LTV state to the desired self-test cycle

during debug and failure analysis. The command puts LTV in the Run state. It initiates the self-
test/self-exercise from the established LTV state and returns the LTV to Freeze (Command) state
when the Master Counter reaches the value in Freeze Register. Due to the pipeline latencies, the
LTV state advances by two cycles after the freeze is issued.

RunFrzOnError: This command is used to stop on an error during debug and failure analysis.

The command puts LTV in the Run state from the established LTV state and returns the LTV to
Freeze (Command) state when an error in Lte is detected. Due to the pipeline latencies, the LTV
state advances by two cycles after the error is detected. During this command, the value in the
Freeze Register establishes the self-test cycle (Master Counter value) up to which the errors must
be masked, thus preventing them from causing a freeze.

RunSingleBurst: This command is used to apply a single burst consisting of two cycles to check
out the dynamic performance of the selected LTE during debug and failure analysis. The
command puts LTV in the Run state from the established LTV state and returns the LTV to
Freeze (Command) state after executing exactly two cycles of self-test.

LoadCltGen: This command is used to test a selected LTE directly from the primary I/P pins.
The command loads the cluster generator selected by the Cluster Address Register(7,0) and the
LteAddress Register(6) directly from Dataln_H(16,0) pins.

LoadMasterCounter: This command loads the Master Counter directly from the
Dataln_H(16,0) pins. The command is primarily useful for testing out the Master Counter itself
during debug and failure analysis.

LoadLteAddress: This command loads the Cluster Address Register and the Lte Address
Counter directly from the Dataln_H(13,0) pins. The command is used to select a specific LTE in
the LTV for testing, debug and diagnosis.

LoadLteAddress: This command loads the Test Control Register directly from the

Dataln_H(11,0) pins.
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LTV State Machine

LTV chip has basically two states: Run state and the Command-Freeze state.

Run Commands

Trst_L / Command
State

Freeze Trigger -

Figure 39 : LTV State Machine

Command State:

This is the state in which LTV can be issued various run and load commands from the
Cmd_H(3,0) pins. The state is forced upon power-up or by assertion of Trst_L. The state is also
entered automatically when a freeze is triggered during any of the run commands. The LTV
operates with the external Tck_H clock during this state. The self-test activity is frozen. Only
operations allowed are the loading of the various control registers by the load commands. The
LTV remains in this state until a run command is issued.

Run State:

The LTV enters this state from the Command state when any of the Run commands is issued. The
LTV remains in this state until a trigger action, or reset forces it to return to the Command state.
In this state, LTV executes the self-test/self-exercise cycles with a clock selected by the Clock

Control Register (see Table 7).

Activity Stress Control

Chip-to-chip variations in the clock frequency supplied by the LTV’s on-chip ring oscillator can
subject LTV samples in a life test run to different amounts of nodal activity stress. This can

complicate interpretation of the life test results. The LTV chip architecture therefore has a

provision to equalize the nodal activity stress on different LTVs in a given wall clock interval.
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During Run state, the activity counter outs out a carry after every 512 cycles. This causes the
LTV to enter a temporary freeze state and remains there until the next rising edge of Tck_H. At
that time it exits the temporary freeze state and the self-test/self-exercise begins from where it
was left off.
Thus, all LTVs started on Life Test at the same time will enter this temporary freeze state after
512 cycles. After the slowest known part has entered the freeze state, the burn-in chamber’ s
clock module issues the rising edge of Tck_H and the all LTV’s resume the next burst of self-
test/self-exercise.
The scheme requires that the range f the operating speed of all LTVs in a life test run be known.
The period of the Tck_H that the clock module must supply is determined by the following
relationship.

Tix > 1.1x 10° X Tyen

where, Ty Tga is the period of the slowest LTV in the life test.

Clock Generator

Clock Generator Logic provides the clock for the LTV chip as well as provides for the
synchronization between the external Tck_H and the clock internally generated by the ring

oscillator.

ClockControlRegister(3,0)

Y

Ring Oscillator
gclk

Tck_H

Figure 40: Clock Generator and Activity Control Logic
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Figure 40 shows a simplified block diagram of the Clock Generator. Ring Oscillator produces a
50% duty cycle clock with a cycle times Ty and Texa ns. T is selected to be approximately
200% of the worst case path delay on the LTV. T is 1.5xTeyo. This slack immunizes the proper

functioning of LTV from the ring oscillator frequency variations.

Monitoring Logic

For the first generation of LTV chip, the monitoring logic consists of a simple OR output of
cluster error signals that sets a set-reset flop. The flop is cleared at the start of the self-test cycle.
The error flop in turn updates the Fail Flag, which drives the ErrorO_L, Error1_l pin as specified

earlier.

Pin Bus

DataIn_H(16,0) are the 17 data input pins. They are useful during production test and during
debug and diagnosis to load various control registers and to test each LTE directly from pins.
DataOut_H(7,0) are the output pins. They are used during production test and debug and
diagnosis. They allow to external logic to examine outputs of a selected LTE or allow observation
of the selected internal registers, including fuse die-ID.

Cmd_H(3,0) are Command input pins. They provide the operational control of the LTV. See
Section 0 and Table 9 for the listing and description of various commands.

Marker_H outputs a pulse to mark the end of a self-test cycle and the beginning of a new self-
test cycle on the LT Clusters. The pulse is minimum fast tap* 512 cycle wide...

tbd ns wide - wide enough for the tester or Burn-in clock module to sample it for performing
failure monitoring functions.

Error0_L, Errorl_L are the two open drain output pins that indicate the Pass/Fail status.
Errorl_L is the copy of the Error0_L. This redundancy is provided to support a scheme to easily

locate a failing LTV on a burn-in tray.
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The error output is provided either, on the fly cycle-by-cycle, or at the end of the self-test major-
cycle. The former is used during production and test and debug modes. The latter is used during
life test. The self-test cycle end error-reporting works as follows. If an error is detected during a
self-test cycle, the signals assert low with the rising edge of the Marker_H pulse and remain high
until updated again at the end of the next self-test cycle. Thus if the fault on the LTV chip is
permanent, the signals remain asserted until cleared by chip reset. On the other hand, if the fault
is intermittent, the signals are marked by periods of assertion and deassertion levels.

Freeze_H output indicates that the LTV is in Freeze state. The signal is asserted a cycles after
LTV state machine enters the Freeze state and remains asserted until it reenters the Run state.
LtvCIkOut_H bring out the output of the on-chip Clock generator. This output is used for
measuring and characterizing the clock used during the life test mode.

Trst_L is the chip reset. It clears all control register and puts LTV in the Command state.
Tck_H is the external clock input to the LTV chip. It drives LTV during Command Modes and

also provides the reference edges for the activity equalization scheme explained in Section 0.

Operation

Life Test Operation

The only pins to be supported for life test operation are: Trst_L, Tck_H, Dataln_H(3,0),

Cmd_H(3,0), and the three output signals Marker_H, ErrorO_H and Error1_H. To start life test do

the following:

1. Tie off Cmd_H(3,0) to RunForLife command. Tie off Dataln_H(3,0) to select the the desired
ring oscillator clock frequency tap. Assert Trst_L.

2. Feed Tck_H with a suitable frequency clock. As explained in Section 0, the period for Tck_H
is determined by the following relationship:

Tk > 1.1x 10° X Tya
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where, Ty Ty is the period of the slowest LTV in the life test.

3.

4.

5.

Turn on power.
Deassert Trst_L. With this the LTV enters the life test mode with the control register defaults
established by the reset.

Monitor the Marker_H, and the Error0_H, and Errorl_H signals as explained in Section 0.

Testing the Selected LTE from Tester

Although the Logic Test Elements in LTV are self-testing during production test and debug and

diagnosis it may be desired to test the LTEs directly from a tester. This can be done in a variety

of ways. The following procedure shows one way to test a selected LTE from pins. The testing is

done with the external clock Tck_H.

1.

2.

Set Cmd_H(3,0) to NOP. Set Dataln_H(3,0) to select the external clock. Assert Trst_L.
Feed Tck_H with a clock of desired frequency.

Turn on power.

Deassert Trst_L. This will establish Tck_H as the operating clock for the LTV.

Using LoadTcr command, set up the Test Control Register (ObsSelect(2,0) field. see Table 8)
to select Lte outputs for observing at the DataOut_H(7,0) pins. The other fields may be
ignored.

Using the LoadLteAddress command, load the Cluster Address register and the Lte Address
Generator with the address of the LTE to be tested.

Set the command to LoadClstGen. Supply the test vectors to be applied to LTE at the
DataIn_H(16,0) pins. Observe outputs on DataOut_H pins. Figure 41 shows the timing
information.

Repeat step 6 and 7 to select a new LTV and test it.
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Tck_H

Cmd_H(3,0) NOP LoadClstGen
CmdRegister(3,0) NOP LoadClstGen
Dataln_H(16,0) Il Do D1 D2 D3 D4 D5

ClusterGenerator(16,0) |IIIINIENGNE DO D1 D2 D3 D4
LteOutLatch(7,0) NN RO R1 R2 R3
DataOut_H(7,0) NG RO R1 R2

Error0_L (Cycle-by-cycle) G O

Figure 41 :Timing Diagram for Testing LTV from Pins

Debug and Diagnosis of Speed problems from a Simple Tester

LTV architecture supports debug and diagnosis of speed failures using a simple tester. Suppose

that an LTV develops a fault that shows up only during at speed test with one of the clock taps

and the tester available for debug cannot support the frequency corresponmding that tap. Some of

the features in the LTV architecture allow it to let the LTV self-test at the internal clock rate and

isolate/identify failing vectors to aid failure analysis. The following procedure shows how this

may be accomplished.

1.

Set Cmd_H(3,0) to NOP. Set Dataln_H(3,0) to select the frequency tap for which LTV is
failing. Assert Trst_L.

Feed Tck_H with a clock of desired frequency.

Turn on power.

Deassert Trst_L. This will establish the selected clock tap as the operating clock for the LTV.
Using LoadLteAddress command, load the Cluster Address register to select one of the 16
clusters. Lte Address Generator may be loaded arbitrarily.

Issue RunFrzOnError command. This will begin the self-test with the selected clock tap. If

any of the LTEs in the cluster is bad, the LTV enter a freeze state. Freeze_H wire will be
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10.

11.

12.

asserted when the freeze occurs. If no errors are found, the LTV will reach the end of the
major BIST Cycle and enter the Freeze state. At which point new commands may be loaded.
Repeat steps 5 and 6 until the failing cluster is located.

Once the failing cluster is located, using the LoadTcr command, set up Test Control Register
(ObsSelect(2,0) to select Lte Address Generator to appear on DataOut_H(8,0) pins.

Issue NOP command with Dataln_H(3,0) se to 0x0. This will output the bits 7,0 of the Lte
Address Register. Repeat this step with Dtataln_H(3,0) set to 0x1 and 0x2 to extract the other
fields. When done, the failing LTE’s complete address is identified.

LoadTcr command, set up Test Control Register (ObsSelect(2,0) to Master Counter to appear
on DataOut_H(7,0) pins.

Using procedure similar to step 10, off load the contents of the Master Counter. The Master
Counter contents are two cycles ahead of the cycle in which the error was detected. This
identifies the first failing vector.

To identify the subsequent failing vectors, load the Freeze Register with the value
corresponding to the count where the last error occurred. Reissue the RunFrzOnError
command. This time LTV will enter the Freeze state on the second error. By repeating the

procedure, the entire failure syndrome of the fault can be obtained.

Once the failing vectors are identified, it may be desired to examine the actual output responses to

the failing vectors. This is accomplished by using the RunFrzOnCount command and following

the procedure similar to the one outlined above.
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Appendix B: Behavioral Model

Behavioral Model for Logic Test Vechicle (LTV)

Container File (Signals)

Ltv.cnt

User {*
#define ACLK CLK(k->clk)
#define BCLK CLK(~k->clk)

#define A_CLK k->clk
#define B_CLK ~k->clk

#define And (~((c_lte[cnum]->bdata_2a_h[arm][arrx][arry](3)&c_lte[cnum]-
>sel_2a_h[arrn][arrx][arry](0))|(c_lte[cnum]->sel_2a_h[arm][arrx][arry](1)&(~c_lte[cnum]-
>bdata_2a_h[arrn][arrx][arry](3)))|c_lte[cnum]->adata_2a_h[arrn][arrx][arry](3)))

#define Cnd (~((c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](2)&c_lte[cnum]-
>sel_2a_h[arrn][arrx][arry](0))|(c_lte[cnum]->sel_2a_h[arrn][arrx][arry](1)&(~c_lte[cnum]-
>bdata_2a_h[arrn][arrx][arry](2)))|c_lte[cnum]->adata_2a_h[arm][arrx][arry](2)))

#define End (~((c_Ilte[cnum]->bdata_2a_h[arrn]{arrx][arry](1)&c_lte[cnum]-
>sel_2a_h[arrn][arrx][arry](0))|(c_lte[cnum]->sel_2a_h[arm]{arrx][arry}(1)&(~c_lte[cnum]-
>bdata_2a_h[arm][arrx][arry](1)))|c_lte[cnum]->adata_2a_h[arrn][arrx][arry](1)))

#define Gnd (~((c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](0)&c_lte[cnum]-
>sel_2a_h[arm][arrx][arry](0))|(c_lte[cnum]->sel_2a_h[arm][arrx][arry](1)&(~c_lte[cnum]-
>bdata_2a_h[arm][arrx]{arry](0)))|c_lte[cnum]->adata_2a_h[arr][arrx][arry](0)))

#define Bnd (~((~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](3))&c_lte[cnum]-
>sel_2a_h[arm][arrx][arry](2)&c_lte[cnum]->adata_2a_h[arrn][arrx][arry](3)|c_lte[cnum]-
>adata_2a_h[arm][arrx][arry](3)&c_lte[cnum]->sel_2a_h[arm][arrx][arry](3)&c_lte[cnum]-
>bdata_2a_h[arr][arrx][arry](3)))

#define Dnd (~((~c_lte[cnum]->bdata_2a_h[arr][arrx][arry](2))&c_lte[cnum]-
>sel_2a_h[arm][arrx][arry](2)&c_lte[cnum]->adata_2a_h[arm)][arrx][arry](2) |c_lte[cnum]-
>adata_2a_h[arrn][arrx][arry](2)&c_lte[cnum]->sel_2a_h[arrn][arrx][arry](3)&c_lte[cnum]-
>bdata_2a_h[arrn][arrx][arry](2)))

#define Fnd (~((~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](1))&c_lte[cnum]-
>sel_2a_h{arrn][arrx][arry](2)&c_lte[cnum]->adata_2a_h[arrn][arrx][arry](1)|c_lte[cnum]-
>adata_2a_h[arm][arrx][arry](1)&c_lte[cnum]->sel_2a_h[arm][arrx][arry](3)&c_lte[cnum]-
>bdata_2a_h[arm][arrx][arry](1)))

#define Hnd (~((~c_Ite[cnum]->bdata_2a_h[arm][arrx][arry](0))&c_lte[cnum]-
>sel_2a_h[arrn][arrx][arry](2)&c_lte[cnum]->adata_2a_h[arm][arrx][arry](0)|c_lte[cnum]-
>adata_2a_h[arrn][arrx][arry](0)&c_lte[cnum]->sel_2a_h[arm][arrx][arry]}(3)&c_lte[cnum]-
>bdata_2a_h[arrn][arrx][arry](0)))

/I LTV STATE MACHINE

1

//[STATES
#define CMDMODE 0x0 // INITIALIZE LTV mode
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#define RUN 0x1 // NORMAL mode
//[COMMANDS
#define NOP 0x0 /I NO OPERATION
#define LOAD_TCR O0x4 /' load test control register
#define LOAD_GAG 0x5 // load global address generator
#define LOAD_FZR 0x6 /I load freeze register
#define LOAD_CSG 0x7 // load cluster stimulus generator
#define LOAD_GSC 0x8 // load global stimulus generator
#define RUN_SS 0xC // RunSingleStep
#define RUN_FOE 0xD // RunFreezeOnError
#define RUN_FOC 0xE / RunFreezeOnCount
#define RUN_FL OxF // RunForLife
// ALU FUNCTION SELECTION TABLE
I
1
// Merged control wire
"
//LANCNOS3S2S1S0 X=XOR
nn A N=XNOR
| | *=LEFT SHIFT
// MSB LSB
1
/" LOGIC ARITHMETIC
"
/83 §2 S1 SO LAN=H LAN=L,CNO=H LAN=L,CNO=L
//'LLLLF=/A F=A F=A+1
// L L L HF=/(A+B) F=A+B F=(A+B)+1
//' LL HL F=(/A)B F=A+/B F=(A+/B)+1
//'LLHH F=0 F=-1(2’s comp) F=0
//' L H L L F=/(AB) F=A+A(/B) F=A+A(/B)+1
// LHLHF=B F=(A+B)+A(/B) F=(A+B)+A(/B)+1
//' L HH L F=AXB F=A-B-1 F=A-B
// L H HH F=A(/B) F=A(/B)-1 F=(/A)B
//f HL L L F=/A+B F=A+AB F=A+AB+1
// HL L H F=/AN/B F=A+B F=A+B+1
// HL HL F=B F=(A+/B)+AB F=(A+/B)+AB+1
/ HLHH  F=AB F=AB-1 F=AB
/HHLL =1 F=A+A* F=A+A+1
/ HHLH F=A+/B F=(A+B)+A F=(A+B)+A+1
//HHHL F=A+B F=(A+/B)+A F=(A+/B)+A+1
/HHHH F=A F=A-1 F=A
*};
1/
/"
/" Global Clock
/"
I
Container k
{
Signal clk {clock, timing="|_/~]~\ |"}; /1 global clock
Signal tck {clock, timing="|_/~]~\_|"}; /1 tck clock
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|8

Container ¢_elu_gen[16]{
Signal newcsg_1a_h(16,0);
Signal csg_2a_h(16,0);
Signal xext_la_h;

Signal Idcsg_la_h;
Signal recir_la_h;
Signal rdcsg_2a_h[8](8,0);
Signal rccsg_2a_h[4](4,0);
Signal svector(16,0);
B

Container c_ala_gen[16]{
Signal newcsg_la_h(16,0);
Signal csg_2a_h(16,0);
Signal xext_la_h;

Signal ldcsg_la_h;
Signal recir_la_h;
Signal rdesg_2a_h[8](8,0);
Signal rccsg_2a_h[4](4,0);
Signal svector(16,0);
}s

Container c_elu_dec[16]{
Signal wdline_3a_h(3,0);

Signal radd_3a_h(1,0);

B

Container c_ala_dec[16]{
Signal wdline_3a_h(3,0);

Signal radd_3a_h(1,0);

)

Container c_elu[16]{
Signal zout_3a_h[8](7,0);
|5

Container c¢_ala[16]{
Signal zout_3a_h[8](7,0);
b

Container c_cmp[16]{
Signal elu_dataout_4a_h(7,0);
Signal ala_dataout_4a_h(7,0);
Signal s_dataout_4a_h(7,0);
Signal elu_dataout_3a_h(7,0);
Signal ala_dataout_3a_h(7,0);
Signal s_fail_5a_h;
Signal asel_4a_h;
Signal csel_4a_h;
Signal csel_S5a_h;
Signal cadd_3a_h(2,0);
}i/le_cmp

// new csg

// cluster stimulus generator bits

// Ifsr xor term
// load generator

/! recirculate contents of Ifsr
// rotated csg data inputs to Ite array
// rotated csg control inputs to lte array

// reset value

/I new csg
// cluster stimulus generator bits
/I fst xor term
/ load generator
// recirculate contents of Ifsr
// rotated csg inputs to lte array
// rotated csg control inputs to lte array
// reset value

// Word line
// piped radd

/l Word line
/I piped radd

/I Output of upper Ite column

// Output of lower lte column

// shared output data
// shared output data
// output of cluster

/ upper array
/l lower array

// tailure signal
// delayed array selector
// cluster select
// cluster select

// piped cadd
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Container c_lte[16]{
Signal adata_2a_h[2][8][4](4,0);
Signal bdata_2a_h[2][8][4](4,0);
Signal sel_2a_h[2]{8][4](3,0);
Signal cn0_2a_h[2][8][4];
Signal lan_2a_h[2][8][4];
Signal fn_2a_h[2][8]{4](4,0);
Signal f_2a_h[2][8][4](4,0);
Signal xn_2a_h[2][8][4];
Signal yn_2a_h[2][8][4];
Signal cnp4_2a_h[2][8][4];
Signal aeb_2a_h[2][8][4];
Signal zdata_3a_h[2][8][4](7,0);

}; MNte

Container s{
Signal c_gen_ldcsg_la_h;
Signal run_la_h;
Signal c_dec_radd_2a_h(1,0);
Signal c_cmp_cadd_2a_h(2,0);
Signal c_asel_2a_h;
Signal c_csel_2a_h(15,0);
Signal 1dgag_la_h;
Signal marker_2a_h;

Signal cstate_a_h;

Signal nstate_a_h;

Signal reset_h;

Signal p_stfail_a_h;

Signal m_asloc_3a_h(23,0);

Signal 1dtcr_la_h;
Signal Idfzr_la_h;
Signal 1dgsc_la_h;
Signal tcr_a_h(11,0);
Signal fzr_a_h(16,0);
Signal ctapr_a_h(2,0);
Signal ctapsel_a_h(7,0);

Signal instr_1la_h(3,0);
Signal outc_a_h(7,0);
Signal errm_a_h;

Signal err_selm_a_h;
Signal p_output_a_h(7,0);
Signal ofs_a_h(7,0);
Signal c_cmp_oce_3a_h;

Signal k_transclk_h;

Signal s_ext_la_h;
Signal a_ext_la_h;
Signal newgsc_1la_h(16,0);
Signal gsc_2a_h(16,0);
Signal newgadd_1la_h(13,0);

/[ a input
//' b input
/f select input
/l inverted carry input
// mode control input
// output no carry in
// output
// carry propagate output
// carry generate output
/l inverted carry output
// comparator output
// output data

// Load generator
// run generators
// upper row address
// Column address
/[ array selector
// cluster selector
// load address generator
// marker

// current state
// new state
// global reset
// self test fail
// location of stimulus and address

// load tcr
// load fzr
// load gsc
/1 test control register
/I freeze register
/I clock tap register
// decoded clock tap

// instruction latch
// decoded output select control
// error mode cc or be
// error mode LTV or selected cluster
/l output signals to pins
/I decoded output select
// or cluster error

// transition clock

// counter first stage xor term
// address xor term
// new msc
// global stimulus counter
// new gadd
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Signal gadd_2a_h(13,0);
Signal gadd_run_a_h;
Signal gadd_zerod_h;
Signal gadd_reset_h;
Signal sdone_2a_h;
Signal gsc_recir_a_h;
Signal gadd_recir_a_h;
Signal gsc_cout_a_h;

Signal ¢_iddq_smode;

Signal srun_la_h;
Signal pcrun_a_h;
Signal ncrun_a_h;
Signal crun_a_h;
Signal plfreeze_a_h;
Signal pfreeze_a_h;
Signal noop_la_h;
Signal ent_runm_a_h;
Signal datain_la_h(16,0);
Signal pfoc_2a_h;
Signal foc_3a_h;
Signal frzc_la_h;
Signal frze_la_h;
Signal frzss_la_h;
Signal match_2a_h;
Signal p_fail_a_h;

Signal ccfail_6a_h;
Signal plfail_6a_h;
Signal Ifail_7a_h;
Signal befail_a_h;
Signal marker_6a_h;
Signal marker_7a_h;
Signal freeze_a_h;

Signal en_tckavg_a_l;
Signal ppulsed_marker_6a_h;

Signal p_pulsed_marker_7a_h;
Signal sync_tck_a_h;

Signal scond_a_h(8,0);
Signal new_scond_a_h(8,0);
Signal scond_ext_a_h;
Signal scond_reset_h;
Signal scond_recir_a_h;
Signal scond_cout_a_h;
Signal reset_I;

Signal or_ccfail_5a_h;
Signal mux_ccfail Sa_h;

Signal int_dataout_a_h[2][4](8,0);

Signal dataout_4a_h(7,0);
}; /s

Container p{

/I global address outputs

// increment gadd
/Il gadd zero detect
/I gadd reset
// stimulus done
[/ recirculate first stage gsc

// recirculate gadd

/I carry out of first stage gsc
/I enable selected cluster for Iddq testing

// start run

/"

/"

// activity averaging signal
// 1atched freeze signal

// latched freeze signal

// no op instruction

// enter run mode

// Data from pins

// init frz on gsc and frzr

// init frz on gsc and frzr

// freeze LTV on count

/I freeze LTV on error

/I freeze LTV on single step
// match of gsc and fzr

// Fail signal to external logic

/I cycle per cycle fail

// 1atch fail from any cycle
// 1atch fail from any cycle
// bist cycle fail

/I marker

// marker

// freeze signal

// enable tck averaging
// Pulse delayed marker signal to external
pins

// Pulse delayed marker signal to external pins

// Syncronized tck signal

// Averaging delay

// new Avr delay

/I xor feedback input

/ reset

// recirculate

/Il Carry out

/l reset

/I or'd fail from clusters

// muxed fial from clusters
// intermediate mux output values from
clusters

// output from selected cluster
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Signal s_datain_a_h(16,0); // data from input pins

Signal s_control_a_h(3,0); // control input pins
Signal tck_h; // clock
Signal s_reset_I; // reset
Signal fail_h; /1 fail output
Signal dataout_h(7,0); /! Output data
Signal Marker_h; /! marker signal
Signal Itvclk_out_h; // clock output
Signal unique_fail_h; // unique failure
Y/l p
Container f{
Signal fuse_h(47,0); // Fuse ID
}; 1t
Ltv.mdl
"
// 1tv.mdl
/"

// $Log: Itv.mdl,v $

// Revision 1.2 1997/09/11 23:06:01 echeruo
// Basic frame work for LTV done!

I

// Revision 1.1 1997/07/24 18:09:10 echeruo
// Initial revision

!/

/

#include "Itv__cnt.hxx"
#ifdef _MXX_RTL
MXX_VERSION("@(#) $Id: Itv.mdl,v 1.2 1997/09/11 23:06:01 echeruo Exp $");

void ewl_main();

void Itv_k_build();
void Itv_c_build();
void Itv_s_build();
void Itv_p_build();
void Itv_f_build();

void ewl_main()

{
// build all boxes in LTV
Itv_k_build();
Itv_c_build();
Itv_s_build();
Itv_p_build();
Itv_f_build();

} /1 ew]l_main(}

void Itv_k_build()

{
}Ntv_k_build()
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void Itv_c_build()

{
// initialize reset values of clusters
c_elu_gen[0]->svector(16,0) = 0x1;
c_ala_gen[0]->svector(16,0) = Ox1;
c_elu_gen[1]->svector(16,0) = 0x2490;
c_ala_gen[1]->svector(16,0) = 0x2490;
c¢_elu_gen[2]->svector(16,0) = 0xc100;
c_ala_gen[2]->svector(16,0) = 0xc100;
c_elu_gen[3]->svector(16,0) = 0xb9a4;
c_ala_gen[3]->svector(16,0) = 0xb9a4;
c_elu_gen[4]->svector(16,0) = 0x12000;
c_ala_gen[4]->svector(16,0) = 0x12000;
c_elu_gen[5]->svector(16,0) = 0x9001;
c_ala_gen[5]->svector(16,0) = 0x9001;
c_elu_gen[6]->svector(16,0) = 0x16¢90;
c_ala_gen[6]->svector(16,0) = 0x16¢90;
c_elu_gen[7]->svector(16,0) = 0x7748;
c_ala_gen[7]->svector(16,0) = 0x7748,;
c_elu_gen[8]->svector(16,0) = 0x8200;
c_ala_gen[8]->svector(16,0) = 0x8200;
c_elu_gen[9]->svector(16,0) = 0x16100;
c_ala_gen[9]->svector(16,0) = 0x16100;
c_elu_gen[10]->svector(16,0) = 0x2081;
c_ala_gen[10]->svector(16,0) = 0x2081;
c_elu_gen[11]->svector(16,0) = 0x7¢d0;
c_ala_gen[11]->svector(16,0) = 0x7cdO;
c_elu_gen[12]->svector(16,0) = 0x4920;
c_ala_gen[12]->svector(16,0) = 0x4920;
c_elu_gen[13]->svector(16,0) = 0x1a690;
c_ala_gen[13]->svector(16,0) = 0x1a690;
c_elu_gen[14]->svector(16,0) = 0x1b248;
c_ala_gen[14]->svector(16,0) = 0x1b243;
c_elu_gen[15]->svector(16,0) = 0xf9a5;
c_ala_gen[15]->svector(16,0) = 0xf9a5;

Ytv_c_build()

void ltv_s_build()
{

/I control and address generation

/!
// LTV State Machine

// Two modes CMDMODE and RUN

// assertion of reset, returns state machine to CMDMODE

s->ent_runm_a_h = s->srun_la_h & (~s->freeze_a_h);

s->nstate_a_h = SWITCH(SEL(s->reset_h),
CASE(1),CMDMODE,
CASE(0),SWITCH( SEL(s->cstate_a_h),
CASE(CMDMODE),SWITCH(SEL(s->ent_runm_a_h),
CASE(0),CMDMODE,
CASE(1),RUN),
CASE(RUN),SWITCH(SEL(s->freeze_a_h),
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CASE(0),RUN,
CASE(1),CMDMODE)));

s->cstate_a_h = DFLOP(CLK(A_CLK),s->nstate_a_h);

// INSTRUCTION DECODE
//Decode all instructions in each state

//Bits of instruction decode are as follows
/10 -noop_la_h

// 1 -1dtcr_la_h

//2-1dgag_la_h

// 3 -1dfzr_la_h

//4-1dcsg_la_h
/l'5-1dgsc_la_h

/16 -srun_la_h
/17 -1rzc_la_h
/1 8 - frze_la_h
/19 -frzss_la_h
!/

/I STATE Instruction decode (6-0)
// CMDMODE NOP 0000000001
// RUN LOAD_TCR 0000000010
/ LOAD_GAG 0000000100
/ LOAD_FZR 0000001000
/" LOAD_CSG 0000010000
/" LOAD_GSC 0000100000
/! RUN_SS 1001000000
/ RUN_FOE 0101000000
/ RUN_FOC 0011000000
/! RUN_FL 0001000000

CONCAT(s->frzss_la_h,s->frze_la_h,s->frzc_la_h,s->srun_1la_h,s->ldgsc_la_h,

s->c_gen_ldcsg_la_h,s->1dfzr_la_h,s->ldgag_la_h,s->ldtcr_la_h,s->noop_la_h)
= MSB_EXTEND(10,~s->reset_h)&SWITCH( SEL(s->instr_la_h(3,0)),

CASE(NOP),0x1,

CASE(LOAD_TCR),0x2,

CASE(LOAD_GAG),0x4,

CASE(LOAD_FZR),0x8,

CASE(LOAD_CSG),0x10,

CASE(LOAD_GSC),0x20,

CASE(RUN_SS),0x240,

CASE(RUN_FOE),0x140,

CASE(RUN_FOC),0xC0,

CASE(RUN_FL),0x40,

DEFAULT,0x0);

/ LTV run signal
s->run_la_h = s->srun_la_h & (~s->freeze_a_h) & (s->crun_a_h);

//initiates transition between clock domains when entering or leaving run mode
s->k_transclk_h = (s->run_la_h & (s->cstate_a_h==CMDMODE)) |

((s->freeze_a_h | s->reset_h) & (s->cstate_a_h==RUN));

// Instruction register
// Load instructions when in CMDMODE, else recycle instruction
s->instr_la_h(3,0) = DFLOP(CLK(A_CLK),

MUX(EN(s->reset_h),0x0,
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EN((s->cstate_a_h==CMDMODE) & (~s->reset_h)),p->s_control_a_h(3,0),
EN((s->cstate_a_h==RUN) & (~s->reset_h)),s->instr_la_h(3,0)));
// Load Registers
/Noad ter
s->ter_a_h(11,0) = DFLOP(CLK(A_CLK),
MUX(EN(s->reset_h),0x0,
EN(s->ldtcr_la_h),s->datain_la_h(11,0),
EN((~s->Idtcr_la_h) & (~s->reset_h)),s->tcr_a_h(11,0)));

/Noad fzr

s->fzr_a_h(16,0) = DFLOP(CLK(A_CLK),
MUX(EN(s->reset_h),0x0,
EN(s->ldfzr_la_h),s->datain_1la_h(16,0),
EN((~s->ldfzr_la_h) & (~s->reset_h)),s->fzr_a_h(16,0)));

/Noad ctapr
s->ctapr_a_h(2,0) = DFLOP(CLK(~s->reset_h),p->s_datain_a_h(2,0));

// Decode TCR Register fields

/lextract data from fields in tcr

//decode output select control

s->outc_a_h(7,0) = DECODER(IN(s->tcr_a_h(4,2)));
s->ofs_a_h(7,0) = DECODER(IN(p->s_datain_a_h(2,0)));

// Enables tck averaging of activity
s->en_tckavg_a_l = s->tcr_a_h(5);

/lextract error mode
s->errm_a_h = s->tcr_a_h(0);
s->err_selm_a_h = s->tcr_a_h(1);

//Decode clock tap
s->ctapsel_a_h(7,0) = DECODER(IN(s->ctapr_a_h(2,0)));

/[Cluster output Mux

I/

s->dataout_4a_h(7,0) = SWITCH(SEL(s->gadd_2a_h(9)),

CASE(0),SWITCH(SEL(s->gadd_2a_h(8,7)),
CASE(0),s->int_dataout_a_h[0][0](7,0),
CASE(1),s->int_dataout_a_h[0][1](7,0),
CASE(2),s->int_dataout_a_h[0][2](7,0),
CASE(3),s->int_dataout_a_h[0][3](7,0)),

CASE(1),SWITCH(SEL(s->gadd_2a_h(8,7)),
CASE(0),s->int_dataout_a_h[1][0](7,0),
CASE(1),s->int_dataout_a_h[1][1](7,0),
CASE(2),s->int_dataout_a_h[1][2](7,0),
CASE(3),s->int_dataout_a_h[1][3](7,0)));

//LTV Output Mux

I

s->p_output_a_h(7,0) = MUX(
EN(s->outc_a_h(0)),s->dataout_4a_h(7,0),
EN(s->outc_a_h(1)),MUX(

95



EN(s->ofs_a_h(0)),s->gadd_2a_h(7,0),
EN(s->ofs_a_h(1)),WIDTH_EXTEND(8,s->gadd_2a_h(13,8)),
NO_ENS_DEF,0x0),

EN(s->outc_a_h(2)),MUX(
EN(s->ofs_a_h(0)),s->gsc_2a_h(7,0),
EN(s->ofs_a_h(1)),s->gsc_2a_h(15,8),
EN(s->ofs_a_h(2)),WIDTH_EXTEND(8,s->gsc_2a_h(16)),
NO_ENS_DEF,0x0),

EN(s->outc_a_h(3)),MUX(
EN(s->ofs_a_h(0)),f->fuse_h(7,0),
EN(s->ofs_a_h(1)),f->fuse_h(15,8),
EN(s->ofs_a_h(2)),f->fuse_h(23,16),
EN(s->ofs_a_h(3)),f->fuse_h(31,24),
NO_ENS_DEF,0x0),

NO_ENS_DEF,0x0);

//Misc bits

// Latch data from pins
s->datain_la_h(16,0) = DFLOP(CLK(A_CLK),p->s_datain_a_h(16,0));

Ireset

/lasyncronous asserstion, syncronous deasserstion

s->reset_h = ~(p->s_reset_] & DFLOP(CLK(A _CLK),p->s_reset_l));
s->reset_| = ~s->reset_h;

// freeze on count signal (match of gsc and fzr)

s->match_2a_h = (s->gsc_2a_h(16,0) == s->fzr_a_h(16,0));
s->pfoc_2a_h = (~s->noop_la_h) & (s->match_2a_h | s->foc_3a_h);
s->foc_3a_h = DFLOP(CLK(A_CLK),s->pfoc_2a_h);

/I Activity Averaging
// bit 8 of TCR controls if tck averaging is used
s->sync_tck_a_h = DFLOP(CLK(A_CLK),p->tck_h);

s->perun_a_h = s->reset_h | s->sync_tck_a_h | ((~s->scond_cout_a_h) & s->ncrun_a_h);
s->ncrun_a_h = DFLOP(CLK(A_CLK),s->pcrun_a_h);
s->crun_a_h = s->en_tckavg_a_l | s->ncrun_a_h;

/I Averaging delay (Int clock divider)
"
//' PRIMITIVE SEARCH PROGRAM VERSION 1.3 MARCH 9, 1986

/I DATE = 10-13-97 TIME = 10:29 HRS
// No. of Stages in LFSR = 9
// No. of XOR Gates used for feedback = 1

// Primitive Table:
n ;
" POLYNOMIAL * | FEEDBACK TAP POSITIONS I
o l
// ] 1000010001 B1 | 94 Il
"o :
/i | 1 primitives found in 1 trials [
1
i

"
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// LFSR DESIGN ACCEPTED --
T

" < <
// 5 ‘ 5 ‘ ‘ ‘ ‘ 4 & <
" | |

s->scond_recir_a_h = (~s->scond_reset_h) & (~s->run_la_h);
s->scond_ext_a_h = s->scond_a_h(8)"s->scond_a_h(3);
s->scond_reset_h = s->reset_h | (~s->srun_la_h);

s->new_scond_a_h(8,0) = MUX(
EN(s->scond_reset_h),0x1,
EN(s->scond_recir_a_h),s->scond_a_h(8,0),
EN(s->run_1la_h),CONCAT(s->scond_a_h(7,0),s->scond_ext_a_h));

s->scond_a_h(8,0) = DFLOP(CLK(A_CLK),s->new_scond_a_h(8,0));

//generate carry out of first stage of gsc

s->scond_cout_a_h = (s->scond_a_h(8,0) == 0x100);

// Duration and Address counters

I

// The duration and Address counters are implemented as LFSR’s

// The duration counter is a duplicate of the stimulus generator that feeds the LTE
// The carry out of the duration counter is used to increment the Address counter
I

// Address 7 bits Duration 17 bits
T

=11 - <--||I|||I|||||I|||||<--

A I e A B eI ittt

0T I |

A |

| |

| |

/l Marker Cout

N

I

I

// Global stimulus counter

H

// 17 bit LFSR with tap on bit 5
/I No. of Stages in LFSR = 17
// No. of XOR Gates used for feedback = 1

// Primitive Table:

i |
no # POLYNOMIAL * | FEEDBACK TAP POSITIONS |
no|

/1 || 1] 0400101 B3 | 17 6 Il

/1 || 2] 0400041 B3 | 175 |
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/N

// || 2 primitives found in 4 trials {
I/

|
"
/I LFSR DESIGN ACCEPTED --
I
e
1" <= T e
// 6+€_‘_5_£_‘_4_6_E_£_4_L_£+‘_£-‘_£_‘
I | |
I

s->gsc_recir_a_h = (~s->run_la_h) & (~s->reset_h) & (~s->ldgsc_la_h);

s->s_ext_la_h =s->gsc_2a_h(16)"s->gsc_2a_h(4);

s->newgsc_la_h(16,0) = MUX(
EN(s->reset_h),0x1,
EN(s->ldgsc_la_h),s->datain_la_h(16,0),
EN(s->gsc_recir_a_h),s->gsc_2a_h(16,0),

EN(s->run_la_h),CONCAT(s->gsc_2a_h(15,0),s->s_ext_la_h));

s->gsc_2a_h(16,0) = DFLOP(CLK(A_CLK),s->newgsc_la_h(16,0));

//generate carry out of first stage of gsc
s->gsc_cout_a_h = (s->gsc_2a_h(16,0) == 0x10000);

/l address generator
// implemented as an LFSR with zero completion

// PRIMITIVE SEARCH PROGRAM VERSION 1.3 MARCH 9, 1986

// DATE = 10-30-97 TIME = 13:05 HRS
/I No. of Stages in LFSR = 6
// No. of XOR Gates used for feedback = 1

// Primitive Table:

R —

m| # POLYNOMIAL * | FEEDBACK TAP POSITIONS

|

/|| 1] 1000011 B1 | 61 I

/"

/I ]| 1 primitives foundin 3 trials I

1

// LFSR DESIGN ACCEPTED --
N e

4 <[] ]]<--
// 6+‘_‘_6_6_‘+‘
I |

//global address generator
s->gadd_zerod_h = (s->gadd_2a_h(5,0) == 0);

s->a_ext_la_h = s->gadd_2a_h(5)"s->gadd_2a_h(0)"s->gadd_zerod_h;
s->gadd_run_a_h = s->run_la_h & s->gsc_cout_a_h & (~s->marker_2a_h);

s->gadd_recir_a_h = (~s->gadd_run_a_h)&(~s->gadd_reset_h)&(~s->ldgag_la_h);

s->gadd_reset_h = (s->reset_h | s->marker_2a_h);
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s->newgadd_1la_h(13,0) = MUX(
EN(s->gadd_reset_h),0x0,
EN(s->ldgag_la_h),s->datain_la_h(13,0),
EN(s->gadd_recir_a_h),s->gadd_2a_h(13,0),
EN(s->gadd_run_a_h),CONCAT(s->gadd_2a_h(13,6),s->gadd_2a_h(4,0),s-
>a_ext_la_h));

s->gadd_2a_h(13,0) = DFLOP(CLK(A_CLK),s->newgadd_1la_h(13,0));

/lcarry out of address counter gives marker signal
//marker is used to check self test signature and drive off chip
s->marker_2a_h = (s->gadd_2a_h(5,0)==0x20);

//generate pulse delayed marker to drive offchip
s->ppulsed_marker_6a_h = (~s->scond_cout_a_h) & (s->marker_6a_h | s->p_pulsed_marker_7a_h);
s->p_pulsed_marker_7a_h = DFLOP(CLK(A_CLK),s->ppulsed_marker_6a_h);

/ldrive address and stimulus to monitoring logic
//s->m_asloc_3a_h(23,0) = DFLOP(CLK(A_CLK),DFLOP(CLK(A_CLK),

/ CONCAT(s->gadd_2a_h(6,0),s->gsc_2a_h(16,0))));
//drive address bus

Vi

/"

// Address Bus

/43210 |

1/ \ /\/

/N

/I | Row

" | Address

I |

" Column

I Address

I

/

// In life test mode

/"

// global address is mapped directly in case of offline testing
"

/"

" Address Bus

/I 13 6543210]
/AN ANAV

ne

// Cluster | Row

/I Select | Address

1/ |
/! Column
/! Address

/Nower row address uses bit 1 and 0
s->c_dec_radd_2a_h(1,0) = s->gadd_2a_h(1,0);

//column address bits 4-2
s->c_cmp_cadd_2a_h(2,0) = s->gadd_2a_h(4,2);
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/lupper or lower array select
s->c_asel_2a_h = s->gadd_2a_h(5);

//select desired cluster
s->c_csel_2a_h(0) =
s->c_csel_2a_h(2) =
s->c_csel_2a_h(4) =
s->c_csel_2a_h(6) =
s->c_csel_2a_h(8) =
s->c_csel_2a_h(10) =
s->c_csel_2a_h(12) =
s->c_csel_2a_h(14) = ~s->gadd_2a_h(6);

s->c_csel_2a_h(1) =

s->c_csel_2a_h(3) =

s->c_csel_2a_h(5) =

s->c_csel_2a_h(7) =

s->c_csel_2a_h(9) =
s->c_csel_2a_h(11)=
s->c_csel_2a_h(13) =
s->c_csel_2a_h(15) = s->gadd_2a_h(6);

// Freeze assertion
/!

s->plfreeze_a_h = (s->frzc_la_h & s->foc_3a_h) | //freeze on count
(s->frze_la_h & s->foc_3a_h & s->ccfail_6a_h) | //freeze on error
(DFLOP(CLK(A_CLK),s->frzss_la_h))| //run single cycle

((s->frzc_la_h | s->frze_la_h) & s->marker_7a_h); //freeze if past marker
s->pfreeze_a_h = (~s->noop_la_h) & (s->plfreeze_a_h | s->freeze_a_h);

s->freeze_a_h = DFLOP(CLK(A_CLK),s->pfreeze_a_h);

// error monitor
1/

/I error mode controls if the cluster signals are wire or’d or not. monitor unit selects cycle

// by cycle of bist cycle error

// marker signal indicates end of Major Cycle (bist cycle)

s->marker_6a_h = DFLOP(CLK(A_CLK),DFLOP(CLK(A_CLK),
DFLOP(CLK(A_CLK),DFLOP(CLK(A_CLK),s->marker_2a_h))));

s->marker_7a_h = DFLOP(CLK(A_CLK),s->marker_6a_h);

s->mux_ccfail_Sa_h = SWITCH(SEL(s->gadd_2a_h(9)),

CASE(0),SWITCH(SEL(s->gadd_2a_h(8,7)),
CASE(0),s->int_dataout_a_h[0][0](8),
CASE(1),s->int_dataout_a_h[0][1](8),
CASE(2),s->int_dataout_a_h[0][2](8),
CASE(3),s->int_dataout_a_h[0][3](8)),

CASE(1),SWITCH(SEL(s->gadd_2a_h(8,7)),
CASE(0),s->int_dataout_a_h[1][0](8),
CASE(1),s->int_dataout_a_h[1][1](8),
CASE(2),s->int_dataout_a_h[1][2](8),
CASE(3),s->int_dataout_a_h[1][3](8)));

s->or_ccfail_5a_h = (c_cmp[0]->s_fail_5a_h) | (c_cmp[1]->s_fail_5a_h) |
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(c_cmp[2]->s_fail_Sa_h) | (c_cmp[3]->s_fail_Sa_h) |
(c_cmp[4]->s_fail_5a_h) | (c_cmp[5]->s_fail_5a_h) |
(c_cmp[6]->s_fail_5a_h) | (c_cmp[7]->s_fail_S5a_h) |
(c_cmp[8]->s_fail_5a_h) | (c_cmp[9]->s_fail_Sa_h) |
(c_cmp[10]->s_fail_5a_h) | (c_cmp[11]->s_fail_Sa_h) |
(c_cmp[12]->s_fail_5a_h) | (c_cmp[13]->s_fail_5a_h) |
(c_cmp[14]->s_fail_5a_h) | (c_cmp[15]->s_fail_5a_h);

//determine cycle per cycle fail error

s->ccfail_6a_h = DFLOP(CLK(A_CLK),SWITCH(SEL(s->err_selm_a_h),
CASE(0),s->or_ccfail_5a_h,
CASE(1),s->mux_ccfail_5a_h));

/fset SR latch when fail occurs in bist cycle
s->plfail_6a_h = ~(s->marker_7a_h | s->reset_h) & (s->ccfail_6a_h | s->1fail_7a_h);
s->Ifail_7a_h = DFLOP( CLK(A_CLK),s->plfail_6a_h);

/Natch SR at end of bist cycle
s->bcfail_a_h = DFLOP(CLK(A_CLK),
MUX(EN(s->marker_7a_h),s->lfail_7a_h,
EN(~s->marker_7a_h),s->bcfail_a_h));

//select between cycle by cycle or bist mode error

//or and between LTV error or cluster error

s->p_fail_a_h = MUX(
EN(~s->errm_a_h),s->bcfail_a_h,
EN(s->errm_a_h),s->ccfail_6a_h);

}Ntv_s_build()
void ltv_p_build()

{
/I pins

1

p->tck_h = k->tck;

//fail alert

p->fail_h = s->p_fail_a_h;

//output data

p->dataout_h(7,0) = s->p_output_a_h(7,0);

Wtv_p_build()
void ltv_f_build()
%//]tv_f_build()
void ltv_e_build()
%//ltv_e_build()

#else // _MXX_RTL
#endif
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Cluster.mdl

int cnum;
int arrn,arrx,arry;

for (cnum=INDEX_FROM;cnum<INDEX_TO;cnum++) {
// stimulus generators (upper and lower)
/"

/1 17 bit LFSR with tap back to bit 5
/I No. of Stages in LFSR = 17
// No. of XOR Gates used for feedback = 1

// Primitive Table:

I |
/l|| #| POLYNOMIAL* | FEEDBACK TAP POSITIONS ||
" :
/|| 1] 0400101 B3 | 17 6 I

/|| 2| 0400041 B3 | 17°5 I

| |
/|| 2 primitives foundin 4 trials |

" :
// LFSR DESIGN ACCEPTED --

Il

" <= LT <

// ‘+6_‘_‘_‘_6_6_‘_‘-6_6_‘_6+‘_‘_‘_‘_‘

" | |

/lcheck if required to load generator

c_elu_gen[cnum]->ldcsg_la_h = (~s->c_asel_2a_h) & s->c_gen_ldcsg_la_h & s-
>c_csel_2a_h(cnum);

c_ala_gen[cnum]->ldcsg_la_h = (s->c_asel_2a_h) & s->c_gen_ldcsg_la_h & s-
>c_csel_2a_h(cnum);

c_elu_gen[cnum]->recir_la_h = ~(c_elu_gen[cnum]->ldcsg_la_hl|s->run_1la_h|s->reset_h);

c_ala_gen[cnum]->recir_la_h = ~(c_ala_gen[cnum]->ldcsg_la_h|s->run_la_h|s->reset_h);

/lupper csg
c_elu_gen[cnum]->xext_la_h = c_elu_gen[cnum]->csg_2a_h(16)*c_elu_gen[cnum]-
>csg_2a_h(4);
c_elu_gen[cnum]->newcsg_la_h(16,0) = MUX(
EN(s->reset_h),c_elu_gen[cnum]->svector(16,0),
EN(c_elu_gen[cnum]->ldcsg_1la_h),s->datain_la_h(16,0),
EN(c_elu_gen[cnum]->recir_la_h),c_elu_gen{cnum]->csg_2a_h(16,0),
EN(s->run_la_h),CONCAT(c_elu_gen[cnum]->csg_2a_h(15,0),c_elu_gen[cnum]-
>xext_la_h));
c_elu_gen[cnum]->csg_2a_h(16,0) = DFLOP(CLK(A_CLK),c_elu_gen[cnum]-
>newcsg_la_h(16,0));

/Mlower csg
c_ala_gen[cnum]->xext_la_h = c_ala_gen[cnum]->csg_2a_h(16)*c_ala_gen[cnum]-
>csg_2a_h(4);
c_ala_gen[cnum]->newcsg_la_h(16,0) = MUX(
EN(s->reset_h),c_elu_gen[cnum]->svector(16,0),
EN(c_ala_gen[cnum]->ldcsg_la_h),s->datain_la_h(16,0),
EN(c_ala_gen[cnum]->recir_la_h),c_ala_gen[cnum]->csg_2a_h(16,0),
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EN(s->run_1la_h),CONCAT(c_ala_gen[cnum]->csg_2a_h(15,0),c_ala_gen[cnum]-
>xext_la_h));

c_ala_gen[cnum]->csg_2a_h(16,0) = DFLOP(CLK(A_CLK),c_ala_gen[cnum]-
>newcsg_la_h(16,0));

//rotate csg outputs
c_elu_gen[cnum]->rdesg_2a_h[0](8,0) = c_elu_gen[cnum]->csg_2a_h(8,0);
c_elu_gen[cnum]->rdesg_2a_h[1](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(1,0),c_elu_gen[cnum]->csg_2a_h(8,2));
c_elu_gen[cnum]->rdesg_2a_h[2](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(3,0),c_elu_gen[cnum]->csg_2a_h(3,4));
c_elu_genfcnum]->rdesg_2a_h[3](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(5,0),c_elu _gen[cnum]->csg_2a_h(8,6));
c_elu_gen[cnum]->rdcsg_2a_h[4](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(7,0),c_elu_gen[cnum]->csg_2a_h(8));
c_elu_gen[cnum]->rdesg_2a_h[5](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(0),c_elu_gen[cnum]->csg_2a_h(8,1));
c_elu_gen[cnum]->rdesg_2a_h[6](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(2,0),c_elu_gen[cnum]->csg_2a_h(8,3));
c_elu_gen[cnum]->rdcsg_2a_h[7](8,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(4,0),c_elu_gen[cnum]->csg_2a_h(3,5));
c_ala_gen[cnum]->rdesg_2a_h[0](8,0) = c_ala_gen[cnum]->csg_2a_h(3,0);
c_ala_gen[cnum]->rdesg_2a_h[1](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(1,0),c_ala_gen[cnum]->csg_2a_h(8,2));
c_ala_gen[cnum]->rdesg_2a_h[2](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(3,0),c_ala_gen[cnum]->csg_2a_h(3,4));
c_ala_gen[cnum]->rdcsg_2a_h[3](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(5,0),c_ala_gen[cnum]->csg_2a_h(8,6));
c_ala_gen[cnum]->rdesg_2a_h[4](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(7,0),c_ala_gen[cnum]->csg_2a_h(3));
c_ala_gen[cnum]->rdcsg_2a_h[5](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(0),c_ala _gen[cnum]->csg_2a_h(8,1));
c_ala_gen[cnum]->rdcsg_2a_h[6](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(2,0),c_ala_gen[cnum]->csg_2a_h(8,3));
¢_ala_gen[cnum]->rdcsg_2a_h[7](8,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(4,0),c_ala_gen[cnum]->csg_2a_h(8,5));
c_elu_gen[cnum]->rcesg_2a_h[01(4,0) = c_elu_gen[cnum]->csg_2a_h(13,9);
c_elu_gen[cnum]->reesg_2a_h[1](4,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(10,9),c_elu_gen[cnum]->csg_2a_h(13,11));
c_elu_gen[cnum]->rcesg_2a_h[2](4,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(12,9),c_elu_gen[cnum]->csg_2a_h(13));
c_elu_gen[cnum]->reesg_2a_h[3](4,0) =
CONCAT(c_elu_gen[cnum]->csg_2a_h(9),c_elu_gen[cnum]->csg_2a_h(13,10));
c_ala_gen[cnum]->tcesg_2a_h[0](4,0) = c_ala_gen[cnum]->csg_2a_h(13,9);
c_ala_gen[cnum]->rccsg_2a_h[1](4,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(10,9),c_ala_gen[cnum]->csg_2a_h(13,11));
c_ala_gen[cnum]->reesg_2a_h[2](4,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(12,9),c_ala_gen[cnum]->csg_2a_h(13));
¢_ala_gen[cnum]->recsg_2a_h[3](4,0) =
CONCAT(c_ala_gen[cnum]->csg_2a_h(9),c_ala_gen[cnum]->csg_2a_h(13,10));

// row decoders
/

¢_elu_dec[cnum]->radd_3a_h(1,0) = DFLOP(CLK(A_CLK),s->c_dec_radd_2a_h(1,0));
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c_ala_dec[cnum]->radd_3a_h(1,0) = DFLOP(CLK(A_CLK),s->c_dec_radd_2a_h(1,0));
c_elu_dec[cnum]->wdline_3a_h(3,0) = DECODER(IN(c_elu_dec[cnum]->radd_3a_h(1,0)));
c_ala_dec[cnum]->wdline_3a_h(3,0) = DECODER(IN(c_ala_dec[cnum]->radd_3a_h(1,0)));

// mux and compare logic
/"

//get upper array data

c_cmp[cnum]->cadd_3a_h(2,0) = DFLOP(CLK(A_CLK),s->c_cmp_cadd_2a_h(2,0));

c_cmp[cnum]->elu_dataout_3a_h(7,0) = SWITCH(SEL(c_cmp[cnum]->cadd_3a_h(2,0)),
CASE(0),c_elu[cnum]->zout_3a_h[0](7,0),
CASE(1),c_elu[cnum]->zout_3a_h[1](7,0),
CASE(Q2),c_elu[cnum]->zout_3a_h[2](7,0),
CASEQ),c_elu[cnum]->zout_3a_h[3](7,0),
CASE(4),c_elu[cnum]->zout_3a_h[4](7,0),
CASE(5),c_elu[cnum]->zout_3a_h[5](7,0),
CASE(6),c_elu[cnum]->zout_3a_h[6](7,0),
CASE(7),c_elufcnum]->zout_3a_h[7](7,0));

/Iget lower array data

c_cmp[cnum]->ala_dataout_3a_h(7,0) = SWITCH(SEL(c_cmp[cnum]->cadd_3a_h(2,0)),
CASE(0),c_ala[cnum]->zout_3a_h[0](7,0),
CASE(1),c_ala[cnum]->zout_3a_h[1](7,0),
CASE(2),c_ala[cnum]->zout_3a_h[2](7,0),
CASE(3),c_ala[cnum]->zout_3a_h[3](7,0),
CASE(4),c_ala[cnum]->zout_3a_h[4](7,0),
CASE(5),c_ala[cnum]->zout_3a_h[5](7,0),
CASE(6),c_ala[cnum]->zout_3a_h[6](7,0),
CASE(7),c_ala[cnum]->zout_3a_h[7](7,0));

//get selected array data

c_cmp[cnum]->asel_4a_h = DFLOP(CLK(A_CLK),DFLOP(CLK(A_CLK),s->c_asel_2a_h));

c_cmp[cnum]->elu_dataout_4a_h(7,0) = DFLOP(CLK(A_CLK),c_cmp[cnum]-
>elu_dataout_3a_h(7,0));

¢_cmp[cnum]->ala_dataout_4a_h(7,0) = DFLOP(CLK(A_CLK),c_cmp[cnum]-
>ala_dataout_3a_h(7,0));

//compare upper and lower array output
¢_cmp([cnum]->s_fail_5a_h = DFLOP(CLK(A_CLK),
(c_cmp[cnum]->elu_dataout_4a_h(7,0) != c_cmp[cnum]->ala_dataout_4a_h(7,0)));
c_cmp[ecnum]->csel_4a_h = DFLOP(CLK(A_CLK),DFLOP(CLK(A_CLK),s-
>c_csel_2a_h(cnum)));
c_cmp[cnum]->csel_Sa_h = DFLOP(CLK(A_CLK),c_cmp[cnum]->csel_4a_h);

//drive bus if cluster selected
if (cnum ==0 | cnum == 1) {
s->int_dataout_a_h[0][0](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[0][0](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_Sa_h);

}

if (cnum == 2 | cnum == 3) {
s->int_dataout_a_h[0][1](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
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SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));

s->int_dataout_a_h[0][1](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_S5a_h);

}

if (cnum ==4 | cnum == 35) {
s->int_dataout_a_h[0][2](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[0][2](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_S5a_h);

}

if (cnum==6 | cnum ==7) {
s->int_dataout_a_h[0][3](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[0][3](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_5a_h);

}

if (cnum == 8 | cnum == 9) {
s->int_dataout_a_h[1][0](7,0) = BUS(EN(c_cmp|[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[1][0](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_Sa_h);

}

if (cnum == 10 | cnum == 11) {
s->int_dataout_a_h[1][1](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(]),c_cmp{cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[1][1](8) = BUS(EN(c_cmp[cnum]->csel_Sa_h),
c_cmp[cnum]->s_fail_5a_h);

}

if (cnum == 12 | cnum == 13) {
s->int_dataout_a_h[1][2](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp{cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[1][2](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_S5a_h);

}

if (cnum == 14 | cnum == 15) {
s->int_dataout_a_h[1][3](7,0) = BUS(EN(c_cmp[cnum]->csel_4a_h),
SWITCH(SEL(c_cmp[cnum]->asel_4a_h),
CASE(0),c_cmp[cnum]->elu_dataout_4a_h(7,0),
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CASE(1),c_cmp[cnum]->ala_dataout_4a_h(7,0)));
s->int_dataout_a_h[1][3](8) = BUS(EN(c_cmp[cnum]->csel_5a_h),
c_cmp[cnum]->s_fail_5a_h);
}
// LTE unit
/I
/"
// LTE Logic Test Element is the basic building block of the test vehicle
/I It consists of a 4bit ALU slice similar to the 74181
// Data is fed to each LTE by a data bus that runs down 8 columns of 4 LTE’s
// The output of each LTE is enabled by row decoders which span the columns
// driving a common output bus runing down each column
/! upper TLE array
/I Same as lower TLE array
/1

for (arrn=0;arrn<2;arrn++)
for (arry=0;arry<4;arry++)
for (arrx=0;arrx<8;arrx++){

/fassign inputs to each lte in array rotating inputs bits as needed
//also divide array into upper (ELU) and lower (ALA) and
if (arrn ==0) {

c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0) =
WIDTH_EXTEND(S,c_elu_gen[cnum]->rdcsg_2a_h[arrx](3,0));
c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0) =
WIDTH_EXTEND(S,c_elu_gen[cnum]->rdcsg_2a_h[arrx](7,4));
c_lte[cnum]->cn0_2a_h[arr][arrx][arry] =
c_elu_gen[cnum]->rdcsg_2a_h[arrx](8);
c_lte[cnum]->sel_2a_h[arm][arrx][arry](3,0) =
c_elu_gen[cnum]->rcesg_2a_h[arry](3,0);
c_lte[cnum]->lan_2a_h[arm][arrx][arry] =
c_elu_gen[cnum]->rcesg_2a_h[arry](4);

else {
c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0) =
WIDTH_EXTEND(S,c_ala_gen[cnum]->rdcsg_2a_h[arrx](3,0));
c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0) =
WIDTH_EXTEND(S,c_ala_gen[cnum]->rdcsg_2a_h[arrx](7,4));
c_lte[cnum]->cn0_2a_h[arm][arrx][arry] =
c_ala_gen[cnum]->rdcsg_2a_h[arrx](8);
c_lte[cnum]->sel_2a_h[arm][arrx][arry](3,0) =
c_ala_gen[cnum]->rccsg_2a_h[arry](3,0);
c_lte[cnum]->lan_2a_h[arrn][arrx][arry] =
c_ala_gen[cnum]->rcesg_2a_hlarry](4);
}
//determine and perform function
c_lte[cnum]->fn_2a_h[arm][arrx][arry](4,0) =
SWITCH(SEL(c_lte[cnum]->lan_2a_h[arm]{arrx][arry]),
CASE(0),SWITCH(SEL(c_lte[cnum]->sel_2a_h[arm][arrx][arry](3,0)),
//LAN=L
CASE(0x00),c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0), // F=A
CASE(0x01),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)| // F=(A|B)
c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0),
CASE(0x02),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)| // F=(A}/B)
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(~c_lte[cnum]->bdata_2a_h[arm]{arrx][arry](4,0)),
CASE(0x03),0xF, / F=-1(2’s comp)
CASE(0x04),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)+// F=A+A(/B)
(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)&
(~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0))),
CASE(0x05),(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)| // F=(A|B)+A/B
c_lte[cnum]->bdata_2a_h[arrn][arrx]{arry](4,0))+
(c_lte[cnum]->adata_2a_h[arr][arrx][arry](4,0)&
(~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0))),
CASE(0x06),c_lte[cnum]->adata_2a_h[arr][arrx][arry](4,0)- // F=A-B-1
c¢_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0)+0xF,
CASE(0x07),(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)&// F=A(/B)-1
(~c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0)))+0xF,
CASE(0x08),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)+// F=A+AB
(c_lte[cnum]->adata_2a_h{arrn][arrx][arry](4,0)&
¢_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0)),
CASE(0x09),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)+// F=A+B
c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0),
CASE(0x0A),(c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0)| / F=(A|/B)+AB
(~c_lte[cnum]->bdata_2a_h[arrn]{arrx][arry](4,0)))+
(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)&
c_lte[cnum]->bdata_2a_h[arrn]{arrx][arry](4,0)),
CASE(0x0B),(c_lte[cnum]->adata_2a_h[arrn]{arrx][arry](4,0)&// F=AB-1
c¢_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0))+O0xF,
CASE(0x0C),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)+// F=A+A
c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0),
CASE(0x0D),(c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0)|// F=(A|B)+A
c_lte[cnum]->bdata_2a_h[arrn]{arrx][arry](4,0))+
c¢_lte[cnum]->adata_2a_h[arr][arrx][arry](4.,0),
CASE(0x0E),(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)|// F=(A|/B)+A
(~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0)))+
c_lte[cnum]->adata_2a_h[arm][arrx]{arry](4,0),
CASE(0x0F),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)+0xF),  // F=A-1
CASE(1),SWITCH(SEL(c_lte[cnum]->sel_2a_h[arrn][arrx][arry](3,0)),
//LAN=H
CASE(0x00),~c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0), /I F=/A
CASE(0x01),~(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)|// F=/(A|B)
c_lte{cnum]->bdata_2a_h[arm][arrx][arry](4,0)),
CASE(0x02),(~c_lte[cnum]->adata_2a_h[arrn]{arrx][arry](4,0))&// F=(/A)B
¢_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0),
CASE(0x03),0, /I F=0
CASE(0x04),~(c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0)&// F=/(AB)
c_lte[cnum]->bdata_2a_h[arrn]{arrx][arry](4,0)),
CASE(0x05),~c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0), // F=/B
CASE(0x06),c_Ite[cnum]->adata_2a_h[arrn]{arrx][arry](4,0)" // F=AXB
c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0),
CASE(0x07),c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0)&// F=A(/B)
(~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0)),
CASE(0x08),(~c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0))|// F=(/A)B
c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0),
CASE(0x09),~((c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0))*// F=~(AXB)
(c_lte[cnum]->bdata_2a_h[arrn][arrx][arry](4,0))),

CASE(0x0A),c_lte[cnum]->bdata_2a_h[arrn}[arrx][arry](4,0), /| F=B

CASE(0x0B),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)& /l F=AB
c_lte[cnum]->bdata_2a_h[arm][arrx]{arry](4,0),

CASE(0x0C),0x1F, /l F=1
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CASE(0x0D),c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)| // F=A|(/B)
(~c_lte[cnum]->bdata_2a_h[arm][arrx][arry](4,0)),

CASE(0x0E),(c_lte[cnum]->adata_2a_h[arrn][arrx][arry](4,0)|// F=A|B
c_lte[cnum]->bdata_2a_h[arr][arrx][arry](4,0)),

CASE(0xOF),c_lte[cnum]->adata_2a_h[arm][arrx][arry](4,0))); /| F=A

/fadd carry if needed
c_lte[cnum]->f_2a_h[arrn][arrx][arry](4,0) =
SWITCH(SEL(c_lte[cnum]->lan_2a_h[arm][arrx][arry]),
CASE(0),c_lte[cnum]->fn_2a_h[arm][arrx][arry](4,0)+
WIDTH_EXTEND(S,~c_Ite[cnum]->cn0_2a_h[arm][arrx][arry]),
CASE(1),c_lte[cnum]->fn_2a_h[arrn][arrx][arry](4,0));

// calculate carry outs
c_lte[cnum]->xn_2a_h[arrn][arrx][arry] = ~( Hnd & Fnd & Dnd & Bnd );
c_lte[cnum]->cnp4_2a_h[arrn][arrx][arry] =
~(c_lte[cnum]->yn_2a_h[arm][arrx][arry] &
((~(Fnd&Bnd&Dnd)) | (~(c_lte[cnum]->cn0_2a_h[arrn][arrx][arry]&Hnd))));
c_lte[cnum]->yn_2a_h[arm][arrx][arry] =
~((And)|(Bnd&Cnd)|(Bnd&Dnd&End)|(Bnd&Dnd&Fnd&Gnd));

// other output bits
c_lte[cnum]->aeb_2a_h[arm][arrx][arry] =
(c_lte[cnum]->f_2a_h[arrn][arrx][arry](3,0) == OxF);
c_lte[cnum]->zdata_3a_h[arrn][arrx]{arry](7,0) = DFLOP(CLK(A_CLK),
CONCAT(c_lte[cnum]->aeb_2a_h[arrn][arrx][arry],
c_lte[cnum]->cnp4_2a_h[arm][arrx][arry],
c_lte[cnum]->yn_2a_h[arm][arrx][arry],
c_lte[cnum]->xn_2a_h[arm][arrx][arry],c_lte[cnum]->f_2a_h[arm][arrx][arry](3,0)));

//drive output lines if selected

if (arrn ==0) {
c_elu[cnum]->zout_3a_h[arrx](7,0) = BUS(EN(c_elu_dec[cnum]->wdline_3a_h(arry)),
c_lte[cnum]->zdata_3a_h[arrn][arrx][arry](7,0));

}
else {
c_ala[cnum]->zout_3a_h[arrx](7,0) = BUS(EN(c_ala_dec[cnum]->wdline_3a_h(arry)),
c_lte[cnum]->zdata_3a_h[arrn][arrx][arry](7,0));
}
}
}
clusterB0.mdl

#include "Itv__cnt.hxx"
#define INDEX_FROM 0
#define INDEX_TO 2

void ewl_main() {
#include "cluster.mdl"

}
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clusterB1.mdl

#include "ltv__cnt.hxx"
#define INDEX_FROM 2
#define INDEX_TO 4

void ewl_main() {
#include "cluster.mdl"

}
clusterB2.mdl

#include "ltv__cnt.hxx"
#define INDEX_FROM 4
#define INDEX_TO 6

void ewl_main() {
#include "cluster.mdl”

}
clusterB3.mdl

#include "Itv__cnt.hxx"
#define INDEX_FROM 6
#define INDEX_TO 8

void ewl_main() {
#include "cluster.mdl"

}
clusterB4.mdl

#include "ltv__cnt.hxx"
#define INDEX_FROM 10
#define INDEX_TO 12

void ewl_main() {
#include "cluster.mdl"

}
clusterB5.mdl

#include "ltv__cnt.hxx"
#define INDEX_FROM 12
#define INDEX_TO 14

void ewl_main() {
#include "cluster.mdl"

}
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clusterB6.mdl

#include "ltv__cnt.hxx"
#define INDEX_FROM 12
#define INDEX_TO 14

void ewl_main() {
#include "cluster.mdl"

}
clusterB7.mdl

#include "Itv__cnt.hxx"
#define INDEX_FROM 14
#define INDEX_TO 16

void ewl_main() {
#include "cluster.mdl"

}
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Appendix C: Schematics
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C-1: Logic Test Vehicle (LTV) Global Schematic
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Figure 42 :LTV Global Schematic
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C-5: Logic Test Cluster (LTC)
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Appendix E: L1v pLoT

Logic Test Vehicle Plot

Figure 54 :LTYV plot
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