
Adaptive Degradation of Images in Network Applications

by

Simon Lau

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 22, 1998

Copyright 1998 Simon Lau. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

i th rv

Department of Elec/rica Engineering and Computer Science
/7 /7 /.-May 22, 1998

Certified by_
C b- . 'Miihael Bove, Jr.

Tjesi peryisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHLUSETTS INSTITUTFE

JUL 141998
LIBRARIES

lEra

Adaptive Degradation of Images in Network Applications
by

Simon Lau

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 1998

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The all-or-nothing image download scheme currently used on the World Wide Web is
unacceptable. This scheme is entirely too rigid, considering that for a given image, the
same amount of data is sent to every client who requests the image, with no consideration
of how fast this data can be downloaded or the available processing power at the client.
This thesis proposes an adaptive image degradation model in which images are scaled "on-
the-fly" so that the amount of data sent is in relation to the network and processing
capability of the requesting client. The primary contribution of this thesis is the
development of a wavelet-based adaptive image viewing system (WAIVS) using Netscape
plug-in technology, CGI scripts, and a highly scalable wavelet-based image coder/decoder
developed at Texas Instruments,. The benefits of such an adaptive image viewing system
are more efficient use of bandwidth and reduced download time as compared to the
currently used system.

Thesis Supervisor: V. Michael Bove, Jr.
Title: Associate Professor of Media Technology, The MIT Media Laboratory

1

jr -

ACKNOWLEDGMENTS

I would like to thank Raj Talluri and Raja Rajasekaran for giving me the opportunity of
joining the Video Technology Branch of the Media Technology Lab at Texas Instruments,
Dallas, Texas, for my thesis work. I am especially grateful to Prof. V. Michael Bove,
whose invaluable advice and support were essential to the successful completion of this
thesis. I also would like to thank Jie Liang, Jonathan Courtney, and Jennifer Webb for
offering me ideas and sound technical advice. Special thanks to Jon Orwant for answering
my Perl questions despite his very busy schedule. My heartfelt thanks to Fred Hill, Jr., for
proofreading my writing and getting me through the days when finishing the thesis seemed
impossible. To my dearest friends Eric Natale, Kamal Swamidoss, Lajos Molnar,
Xiaozhen Zhang, Rushani Wirasinghe and Florence Zhu, thank you for your
encouragement and support. To my father and grandmother, thank you for your special
phone call from Hong Kong and your words of wisdom. I miss you both very much. And
last but not least, to my mother and my best friend, Blaise Lin, this thesis is dedicated to
you. Thank you for putting up with yet another semester of my busy schedule. I love you
very much.

Table of Contents

1. INTRODUCTION 6

2. ADAPTIVE IMAGE DEGRADATION MODEL...................

2.1 SYSTEM M ODELS 9

2.2 D ESIGN CRITERIA .. 11

3. WAVELET IMAGE CODING ... 14

3.1 OVERVIEW OF WAVELETS 14

3.1.1 Mathematical Description 15

3.1.2 Wavelet Decomposition of Images 16

3.2 SHAPIRO'S EMBEDDED ZEROTREE WAVELET ALGORITHM............................... 17

3.3 THE PREDICTIVE EMBEDDED ZEROTREE WAVELET (PEZW) IMAGE CODEC 20

4. WAVELET-BASED ADAPTIVE IMAGE VIEWING SYSTEM (WAIVS) 23

4.1 SYSTEM OVERVIEW 23

4.2 TI PEZW CODEC SOFTWARE 25

4.3 CLIENT-SIDE DATA PROCESSING: THE NPWVT PLUG-IN 26

4.3.1 The Plug-in Life Cycle... 28

4.3.2 The Plug-in Object Model 29

4.3.3 The NpWvt Plug-in Instance Structure.. 30

4.3.4 The NpWvt Plug-in M ethods... 30

4.3.5 The Subclass Function 34

4.3.6 MIME Types and The <embed> Tag..... .. 35

4.4 SERVER-SIDE DATA ADAPTATION .. 37

4.4.1 C G I B asics 37

4.4.2 P erl Scrip t .. 38

4.4.3 The extract Program and the WVT Bitstream Syntax 40

4.5 SAMPLE EXECUTION OF THE SYSTEM ... 44

5. SYSTEM EVALUATION ... 47

5.1 TIME EFFICIENCY 47

5.2 SERVER LOAD ISSUES .. 49

5.3 BENEFITS OF ADAPTIVE DEGRADATION 50

5.3.1 Better Viewing Experience for the Users.................................. 50

5.3.2 Ease of Use for Content Creators.................................. 50

5.3.3 Elimination of Wasted Bandwidth... 51

6. CONCLUSION 53

7. FURTHER WORK ... 54

7.1 PER OBJECT ADAPTIVE DEGRADATION .. 54

7.2 PROGRESSIVE SCANNING... 55

7.3 EXTENSION TO V IDEO 57

8. BIBLIOGRAPHY.. 58

9. APPENDIX ... 60

9.1 COMPARISON OF ENCODING QUALITY BETWEEN WAVELETS AND JPEG 60

9.2 NPWVT.CPP 64

9.3 NPH-ADAPT.PL................................ ... 71

9.4 EXTRACT.C.. 71

9.5 AKIYO.HTM L 79

1. Introduction

The World-Wide-Web (WWW) is an increasingly popular medium for information

exchange and communication. One major problem with Web surfing today remains that

many Web pages take a long time to load, due to the limitation in bandwidth and the

heavy use of images and other types of media (e.g., graphics, audio, video). The

conventional model of viewing images over the Web is very rigid in that the same image

file, hence a fixed volume of data, is transferred to any requesting client regardless of the

available bandwidth. Thus, users with low-bandwidth connections generally have to wait

longer for images to download. In the extreme case, frustrated users may choose to

disable the image loading option of the browser altogether so that the remaining text

portion of a Web page would load quickly.

An alternative to this "all-or-nothing" download paradigm is to adaptively scale an

image to a different level of information resolution before it is sent to the client based on

available bandwidth. Information resolution refers to the content-richness of an image. It

can be described more concretely by other measures, such as picture quality and image

size. For example, a smaller version of an image is considered to be at a lower

information resolution as compared to the original image. A lower information-resolution

version of an image generally requires fewer bits to represent and, therefore, imposes a

lower bandwidth requirement. In this adaptive model, lower information-resolution

versions of images are sent to clients who have low-bandwidth connections, thus shifting

the penalty in download speed associated with the "all-or-nothing" download paradigm to

a tradeoff in information resolution.

This thesis proposes a model for adaptive media content delivery over the Web,

focusing primarily on the adaptive degradation of images. The term "degradation" is used

because the model is based on storing the original images (at full information resolution) at

the server, and deriving the lower information resolution versions from these originals. An

image is said to be adaptively degraded, if necessary, before the server sends it to the

client who requested the image. The contribution of this thesis is the development of a

wavelet-based adaptive image viewing system (WAIVS) based on this adaptive image

degradation model. WAIVS is constructed using Netscape plug-in technology, CGI

scripts, and a highly scalable wavelet-based image codec developed at Texas Instruments.

The benefits of WAIVS are efficient use of bandwidth and timely delivery of image data to

clients with a wide range of bandwidth capabilities.

Note that the general concept of adaptive degradation extends beyond images to

other types of media, including audio and video. In [1], Bove describes a scalable open

architecture television system in which the resolution and frame rate of the display device

need not match that of the originating source. A digital image representation that is

scalable in resolution and frame rate is used in this system so that an NTSC (525 lines, 60

fields per second) receiver can display a signal originating with a higher definition and

frame rate, and vice versa. An additional goal of this work is, therefore, the establishment

of a general adaptive degradation framework, which is extensible to other types of media.

Chapter 2 presents the adaptive image degradation model. Chapter 3 gives an

overview of the wavelet representation of images, the embedded zerotree wavelet (EZW)

algorithm, and the TI predictive embedded zerotree wavelet (PEZW) image codec.

Chapter 4 describes the implementation of WAIVS. Chapter 5 evaluates WAIVS and

suggests improvements to the system. Chapter 6 gives some concluding remarks. In

closing, Chapter 7 proposes further research problems based on the result of this work.

2. Adaptive Image Degradation Model

2.1 System Models

The most common way of viewing images over the Web follows the "all-or-

nothing" image download model, as illustrated in Figure 1. At the server, a single

representation (JPEG and GIF being the most popular image file formats) is stored for

each image. Upon request, the whole image file is transmitted across the network. This

model is very rigid because the amount of transferred data for a particular image is fixed.

Server

Image
Representation --

Network
-- --- ---- -------

Figure 1: "All-Or-Nothing" Image Download Model

Instead of having only one representation of each image, some Web sites support

thumbnails, or smaller-size versions of the original pictures. A user can then preview an

image before he decides to download the full-size original. This scenario exemplifies the

adaptive image selection model, which is shown in Figure 2. More generally, several

versions of the same image are stored at the server. Upon request, one of these versions is

selected to be transmitted back to the client. The selection is based on some hints

originating from the client, which contain information about the user's preference, the

client's processing power and display capability, connection bandwidth, etc. This model is

less restrictive than the existing one because the amount of transferred data for a given

Client

Image . Image Reconstructed

• Representation Decoder 0 Image for Display
on the Browser

AdaptationHints

Original Image AdaptiveRepresentation, Adaptive Image
Thumbnail, Representation

etc. Moduleetc.

Network

Adaptation Client
Hints

Image Image Reconstructed
Image Image

Representation Decoder Image for Displayon the Browser

Figure 2: Adaptive Image Selection Model

Server AdaptationHintServer ---------------------------Hints

Image DAdaptive Degraded Image
Representation Representation

Module

Network

Figure 3: Adaptive Image Degradation Model

Adaptation Client
Hints

SReconstructed
Degraded Image Image
Representation Decoder Image for Display

on the Browser

image is no longer fixed. However, the flexibility of adjusting the data rate comes with a

cost of keeping multiple versions of each image at the server. The additional storage

requirement can be very large if many different versions are desired. Also, generating all

the different versions can be quite cumbersome.

The adaptive image degradation model, depicted in Figure 3, takes the best

property of each of the two previously mentioned models and combines them. Similar to

the adaptive image selection model, when a client requests a particular image, a different

version of the image is transmitted depending on the adaptation hints provided by the

client. Unlike the selection model, the different versions are generated on-the-fly by an

adaptive degradation module. Thus the server only needs to keep one copy of the image

(i.e. the original image representation), as in the "all-or-nothing" image download model.

However, the added complexity in the adaptive degradation process comes at a cost of

achieving an adaptive data rate without extra storage at the server. As we will discuss

later in greater detail, when wavelet-based image coding technology is applied, image

degradation becomes a straight-forward process. The added complexity is, therefore,

minimized and the benefits of an adaptive image degradation system outweigh the costs.

2.2 Design Criteria

When designing a system based on the adaptive image degradation model, the

following issues should be considered: the choice of image characteristics on which

adaptation is performed, the source of adaptation hints, and the complexity of the adaptive

degradation process.

The adaptive image characteristics should be chosen such that degradation in these

characteristics results in not only a data rate that is reduced but also a picture that looks

acceptable. Picture quality and image size, therefore, are two reasonable adaptive

characteristics. For most image formats, the smaller the image, the smaller the file size.

For the JPEG format, a lossy DCT-based compression format, an image encoded at a

lower quality factor also requires fewer bits to represent. In general, a smaller or slightly

blurry picture is often acceptable. If the user only requires a rough idea of the image

content, reducing the quality or size of the picture is certainly acceptable. If the client

display resolution is very low so that the downloaded images appear too big to fit inside

the browser window, shrinking the images before they are transmitted to the client may

even be desirable. This could be useful in portable, palm-held computing devices.

The adaptive degradation module bases its operation on adaptation hints provided

by the client. These hints can be either specified by the user or automatically generated.

The choice depends on which of user-configurability or user-abstraction is preferred. For

user-specified hints, the user can be given a range of degradation levels for each adaptive

image characteristic supported by the system. The user may, for example, select the

degradation levels in a "Preferences" menu of the browser. To automatically generate

adaptation hints, additional monitoring modules are necessary to observe certain client

conditions, such as connection bandwidth, browser window size, etc. The monitored

values are then translated into an appropriate level of degradation for each adaptive image

characteristic to be sent to the server.

In order to generate a degraded version of an image on-the-fly, the adaptive

degradation process cannot be too complex or take too long to complete. This constraint,

in turn, limits the choice of image format. The file syntax for the image format must be

parsable on-the-fly so that the relevant data associated with the degraded version of an

image can be easily extracted from the original image representation. The JPEG format is

one counterexample. Suppose image quality is chosen to be the adaptive characteristic

and JPEG is the image format. To degrade the image quality of a JPEG file on-the-fly, the

adaptive degradation module cannot simply select a subset of bytes from the original

JPEG file and compact the bytes into a smaller file to be sent to the client. A file

generated in this manner is not a decodable JPEG file. Instead, the adaptive degradation

module must first decompress (decode) the original JPEG file stored at the server into raw

image data, then compress (or encode) the raw data back to JPEG format using a lower

quality factor. This degradation process is not time efficient at all. Moreover, since JPEG

is a lossy compression, the decompression/compression sequence in the degradation

process causes even more data loss, resulting in additional degradation in the transmitted

picture. On the other hand, an image encoded with a wavelet-based image codec has a file

format that makes on-the-fly adaptive degradation of image quality and picture size

possible. The TI Predictive Embedded Zerotree Wavelet (PEZW) image codec produces

such a file format and will be described in the next chapter.

3. Wavelet Image Coding

A wavelet-based image codec is used to encode images to be stored at the server.

Section 3.1 gives an overview of wavelet theory and the wavelet representation of images.

Section 3.2 talks about Shapiro's embedded zerotree wavelet (EZW) algorithm for a more

compact representation of the image subbands. Section 3.3 introduces the predictive

embedded zerotree wavelet (PEZW) image codec developed at Texas Instruments.

3.1 Overview of Wavelets

Wavelets are a fairly recent and quite well accepted method of compressing

images. They have been shown to provide encoding quality superior to transform coding

techniques based on the DCT (discrete cosine transform), as used in the JPEG

compression standard, on still images at equal bitrates (see [4] and the Appendix, Section

9.1). Since the wavelet transform operates over the entire image whereas DCTs typically

operate on 8x8 blocks, the blocking artifacts commonly produced by DCT schemes at low

bitrates are absent in wavelet based image compression. The superior quality at low

bitrates also stems from the fact that basis functions are chosen to cover a wide range of

signal behaviors. Thus, wavelets provide a signal representation in which some of the

coefficients represent signal behavior that is more localized in the space domain and tends

to be wide band in the frequency domain (e.g., edges) and some of the coefficients

represent signal behavior that is more localized in frequency but persist over a wide area in

space (e.g., smooth regions). Efficient algorithms exist for coding wavelet coefficients so

that very high compression ratios can be achieved.

3.1.1 Mathematical Description

Wavelets are families of functions generated by dilations and translations from a

single function, '(t) , called the mother wavelet. The dilations and translations can be

chosen as powers of 2 to produce the following wavelets:

y'm,n (t) = 2-m/2 Y(2-m t - n)

These wavelets can be used to describe arbitrary functions, such as image data.

Functions are expressed in terms of a superposition of the basis functions Ym,n :

f(t) = ICm.,n(f)ym,n(t)
Vm,Vn

The mother wavelet Y is often designed so that the resulting wavelets ,m,n form

an orthogonal basis. Thus the computation of cm, (f) simplifies to the following

equation:

m,n (f) = f Tm, (x)f (x)dx

This equation is known as the continuous-time wavelet transform. The set of

transform coefficients cm, (f) is a complete representation off. They are the weights for

the individual basis functions which compose the complete signal.

Each mother wavelet has an associated scaling function C(t) which can also be

written in terms of dilations and translations:

Dm,n (t) = 2- m/ 2 (2 - m t - n)

At a given resolution n, the scaling function D supplies low-frequency information

about the signal, whereas the wavelet function 'P furnishes more detail about the signal in

a complementary fashion.

3.1.2 Wavelet Decomposition of Images

When wavelet techniques are extended into the discrete domain, for image

compression applications for example, the wavelet and scaling functions are described in

terms of filter taps, rather than continuous functions. In image compression, wavelets

filters, such as the popular Daubechies filters, are used to decompose images into various

frequency bands. The decomposition occurs in both the horizontal and vertical directions

using one-dimensional wavelet filters H and L which corresponds to T and 0,

respectively. Figure 4 shows the diagram for one level of wavelet decomposition. The

end result is four subbands: LL (low-frequency subband), LH, HL, and HH (three high-

frequency subbands).

Input image

LL subband

LH subband

HL subband

HH subband

Figure 4: One-level wavelet decomposition of an image into four subbands

Wavelet compression schemes generally use three to five levels of wavelet

decompressions. Typically the LL subband is recursively decomposed. The

decomposition process satisfy the critical sampling property, preserving the total number

of samples. This is illustrated in Figure 5.

Figure 5: Wavelet decompositions of images: original image (left), 1-level
decomposition (middle), 3-level decomposition (right).

For more details on the wavelet mathematics, the reader should refer to [11].

Easy-to-read tutorial articles on wavelets and their use in image compression can be found

in [4], [7] and [12].

3.2 Shapiro's Embedded Zerotree Wavelet Algorithm

Performing the wavelet decomposition itself does not compress the images. The

compression comes from efficiently coding only those wavelet coefficients which

contributes the most energy and discarding the insignificant ones. Note that we need to

encode not only the value of the significant coefficients but also their positions. In the

literature ([8], [9]), the position information of the significant coefficients is referred to as

the significance map. Thus the true cost of encoding the significant coefficients is:

Total Cost = Cost of Significant Values + Cost of Significance Map

Shapiro's embedded zerotree wavelet algorithm (EZW) greatly reduces the cost of

coding the significance map by exploiting the relationship between the LL subband, which

contains most of the significant information, and the other subbands, which contain

primarily edge information. Shapiro's celebrated paper on his EZW algorithm can be

found in [9]. High-level descriptions of the EZW algorithm can be found in [5] and [8].

LH HL

LH HH

LL HL
HL

LHHH
LH HL

LH HH

LH HH

After a wavelet subband decomposition, it is readily observed that if the magnitude

of a wavelet coefficient in the LL subband is below a certain threshold T, then it is very

probable that wavelet coefficients in the corresponding positions of the higher frequency

subbands will also have magnitudes less than T. Suppose we call a coefficient in a lower

resolution subband a "parent" and the corresponding coefficients in the next higher

resolution subband "children." Then parent-children relationships are illustrated in Figure

6.

Figure 6: Parent-children dependencies of subbands

Shapiro's algorithm basically takes advantage of this self-similarity property of

coefficients across subbands. It begins by sending a significance map of the data indicating

the locations of the important coefficients, according to a given threshold, and supplying a

rough approximation to these coefficients. This step is called the dominant pass. Next,

addition information is sent to refine the approximations of the important coefficients.

This step is called the subordinate pass. Then the threshold for determining the

importance of a coefficient is lowered and the process is repeated. Another dominant pass

is sent with information about less important coefficients and the coefficient

representations are further refined with another subordinate pass. This process repeats

until encoding is stopped, typically when a target bitrate is reached. All resulting data is

further compressed using arithmetic coding.

In creating the significance map, each coefficient is classified as one of the

following categories:

1. Zerotree root (ZTR): the coefficient and all descendants are insignificant with respect

to the threshold T.

2. Isolated zero (IZ): the coefficient is insignificant but has at least one significant

decedent.

3. Positive significant (POS): the coefficient is significant and greater than zero.

4. Negative significant (NEG): the coefficient is significant and less than zero.

5. Predictably insignificant: descendant of a zerotree root.

During a dominant pass, only the symbol (ZTR, IZ, POS, or NEG) corresponding

to the category of each coefficient is sent. The coefficients are scanned in a particular

order, where all parents are scanned before the children, as shown in Figure 7. Note that

when a coefficient is predictably insignificant, no symbol is sent because the locations of

coefficients of this category can be derived from zerotree roots. This is where many bits

are saved because only one symbol, the zerotree root, is necessary to represent an entire

tree of insignificant coefficients (called the zerotree).

Figure 7: Scanning order for encoding significance map

3.3 The Predictive Embedded Zerotree Wavelet (PEZW) Image Codec

Shapiro's work has been shown to be one of the most efficient image coding

methods around. Many researchers have since worked on variations of the original zero-

tree method. Liang, at Texas Instruments, proposed and implemented a novel wavelet

image coding algorithm that improves the results of the EWZ-based algorithms through

improved symbol set for zerotree encoding, greater base band compression with DPCM

(Differential Pulse Code Modulation) coding, and better context modeling for arithmetic

coding. This section only describes the improved symbol set. For discussion on the other

two improvements, see [6].

In creating the significance map, each coefficient is classified as one of the

following categories:

1. Zerotree root with insignificant value (ZTRZ): the coefficient and all descendants are

insignificant with respect to the threshold T, same as ZTR in Shapiro's algorithm.

2. Zerotree root with significant value (ZTRS): the coefficient is significant but all

descendants are insignificant with respect to the threshold T.

3. Isolated zero (IZ): the coefficient is insignificant but has at least one significant

descendant.

4. Isolated significant (IS): the coefficient is significant but not all of its descendants are

insignificant.

5. Predictably insignificant: descendant of a zerotree root.

In comparison to the original symbols, POS and NEG is replaced with one symbol

IS because the possibility for positive numbers and negatively numbers are about equal.

This leaves room for a new symbol, ZTRS, to make significant coefficients permissible as

the root of a zerotree. The motivation behind this modification is the hypothesis that a

significant coefficient quite often has all insignificant descendants. Theoretical analysis

and empirical results support this hypothesis. To encode this scenario using the new

symbol set, only a single ZTRS symbol is needed; whereas using Shapiro's symbol set, one

IS symbol followed by several ZTR symbols are required.

The Predictive Embedded Zerotree Wavelet (PEZW) image codec developed at

Texas Instruments uses this new symbol set. The new method has been shown to have an

improvement of 1-3 db in PSNR (peak signal-to-noise ratio) over Shapiro's EZW

algorithm for the test images considered [6]. The PEZW encoder produces an embedded

bitstream, which means that all encodings of the same image at lower bitrates are

embedded in the beginning of the bitstream for the target bitrate. Thus different versions

(of varying sizes and qualities) of a particular image can be generated on-the-fly by

decoding different portions of the same bitstream. Furthermore, only one version

(corresponding to the highest quality) of an image needs to be stored at the server, since

all lower-quality versions of an image can be derived from the same bitstream.

4. Wavelet-based Adaptive Image Viewing System (WAIVS)

A wavelet-based adaptive image viewing system (WAIVS) is constructed based on

the adaptive image degradation model. Section 4.1 presents an overview of WAIVS and

introduces the various components of the system. Section 4.2 gives a brief description of

the TI PEZW decoder. Section 4.3 describes the construction of the client portion of the

system. Section 4.4 talks about how server-side adaptation is implemented. Section 4.5

illustrates the entire system at work using a sample scenario.

4.1 System Overview

WAIVS builds on the Web's client-server model to create an image viewing

environment in which the processing of image data is distributed between a program that

executes on a Web server and a plug-in that runs in the browser. The low-level details

involved in most client-server systems are handled entirely by the Web server and the

browser. Figure 8 shows a high-level overview of the system.

WAIVS consists of the following components:

nph-adapt .pl: a CGI-program written in Perl which interfaces the

Navigator browser and the adaptive degradation module, a program called

extract. It reads in two adaptation hints, bitplaneOff and

resolutionOf f, from the QUERY_STRING environment variable. Next it

calls extract with these variables and the name of the wavelet-encoded

(WVT) image file. When extract returns, the required HTTP response

headers are generated and sent to the Web client along with the degraded

wavelet-encoded data returned from the extract program.

23

Degraded
WVT bitstream

bitplantsffre
resolutionOff

er

maqe

Web
Serv

WVTi

Network

Degraded
WVT bitstream

Navigator
Browser

Decoded image
for display

I

Figure 8: WAIVS System Overview

* extract: an executable C program running at the server which adaptively

degrades a wavelet-coded (WVT) image. Depending on the two parameters

bitplaneOf f and resolutionOf f, the program parses the specified

WVT file, selects and packs a subset of bytes into a condensed bitstream. The

condensed WVT bitstream is returned to the calling Perl program, nph-

adapt .pl.

* NpWvt plug-in: a Netscape plug-in for decoding the WVT image format and

displaying the decoded image on the Web browser. The plug-in resides at the

client side and is dynamically loaded by Navigator when data of the MIME

type "application/x-waveletimage" is downloaded.

* Javascript: it is used to retrieve the adaptation hints bitplaneOff and

resolutionOf f from a client side cookie. It passes these hints to the

I

server by setting up the QUERY_STRING field appended to the URL of the

Perl program. It also sets up the appropriate name/data pairs in the <embed>

tag so that the NpWvt plug-in gets these two parameters as well.

The implementation details of each of these components are discussed in the

remaining sections of this chapter.

4.2 TI PEZW Codec Software

Jie Liang, at the Media Technology Lab of Texas Instruments, developed the

command-line version of the TI PEZW codec software. The input syntax for the PEZW

decoder is as follows:

decoder inputFile width height [bitplaneOff] [resolutionOff]'

Listing 1: Input Syntax for the PEZW Decoder

The required input arguments are the name of the file containing the encoded

bitstream, and the dimensions of the original image in pixels. The optional arguments

bitplaneOf f and resolutionOf f specify the number of SNR scalability layers and

spatial scalability layers (see Section 4.4.3), respectively, to skip during the decoding

process. A higher bitplaneOf f setting gives a blurrier picture; whereas a higher

resolutionO f f setting leads to a smaller image size. If these optional parameters are

not specified or set to zero, the reconstructed image will be at full quality and resolution.

Figure 9 shows some examples of the reconstructed images for various decoder settings.

1
The latest version of the TI PEZW codec software supports many additional options, such as bitrate control, minimum bit budget for the

chrominance components, and mosaicing. For clarity of this discussion, only a subset of the available options is included.

The reconstructed images are written out to two files, in YUV(4:2:0) and RGB

formats. An external image viewer program which supports these formats (e.g. Paint

Shop Pro) is required to view the reconstructed images.

4.3 Client-Side Data Processing: the NpWvt Plug-in

To integrate the TI PEZW decoder into WAIVS, the command-line decoder

software is converted into a custom Netscape plug-in, named NpWvt.2 The input

arguments to the NpWvt plug-in (i.e. inputFile, width, height,

bitplaneOff, resolutionOf f) are provided as attributes in the <embed> tag,

where they are specified using the form name=value, in an HTML document (see

Section 4.3.6). The decoded images are displayed directly onto the Navigator browser

window, instead of written out to files.

The NpWvt plug-in is created by modifying the source code of the template plug-

in included in Netscape's plug-in software development kit (SDK) and combining it with

the source code of the command-line version of the TI PEZW decoder software, with

some modifications. Although the SDK is written in C++, the plug-in object model does

2
An alternative approach would be to develop an ActiveX module to extend Microsoft Internet Explorer. The choice of Netscape plug-in

over ActiveX module is due to the greater availability of literature, resources, and tools on developing Netscape plug-ins at the time of this

implementation.

(a) (b)

(c) (d)

Figure 9: Reconstructed Akiyo Images for Various Decoder Settings:
(a) bitplaneOff=0, resolutionOff=0 (original image);
(b) bitplaneOff=0, resolutionOff=1;
(c) bitplaneOff=2, resolutionOff=0;
(d) bitplaneOff=7, resolutionOff=1

not use the object-oriented features of the C++ language. Instead, plug-ins use an

approach that could be implemented in C. The TI PEZW codec software is written

entirely in C. The NpWvt plug-in is created for the Windows 95 platform, using the

Win32 API. Visual C++ is used as the development environment for the plug-in.

The following sub-sections describe in detail the process of creating the NpWvt

plug-in. Sections 4.3.1 and 4.3.2 give an overview of the Netscape plug-in life cycle and

object model. Section 4.3.3 defines the NpWvt plug-in instance structure. Section 4.3.4

describes the implementation of some essential plug-in methods.

4.3.1 The Plug-in Life Cycle

A plug-in is a software module that can be added to Netscape Navigator to extend

the browser's ability to display various types of data (e.g., audio, video, images, VR,

PDF). In our case, the NpWvt plug-in enables Navigator to display images encoded with

the TI PEZW codec. (For convenience, these images will hereafter be referred to as WVT

images.)

Unlike standalone applications, a plug-in is not in charge of its own life cycle.

Plug-ins are completely under the control of the Web browser and must be written to

account for this architecture. For example, plug-ins are created automatically by

Navigator when they are needed and can be destroyed at any time. The life cycle of a

plug-in follows the pattern below:

* The user installs the plug-in.

* The user views a page that contains embedded data (WVT images in our case).

* Navigator identifies the appropriate plug-in to process and displays the data

and loads the plug-in module, if needed.

* The Web browser creates a new instance of the plug-in.

* The browser provides the plug-in with a window in which the plug-in can

display itself.

* The browser passes data to the plug-in.

* The plug-in processes and displays the data.

* When the user leaves the page, the browser destroys the plug-in instance.

* If there are no other instances of this plug-in, the browser unloads the plug-in

module.

4.3.2 The Plug-in Object Model

Because of their dynamic life cycles, plug-ins are based on an object-oriented

architecture. A plug-in is an object that supports a specific protocol that allows the object

to interact with the Web browser. Each plug-in defines a data structure that maintains the

plug-in's internal state. As with any object-oriented architecture, each instance of a plug-

in has its own copy of this data, so multiple plug-ins of the same type can exist at once.

Plug-ins also have methods, which are functions that operate on the plug-in's

instance data. There is a core set of methods, known as plug-in methods, that every plug-

in must implement. These methods are called by Navigator at the appropriate time and are

expected to perform some task required by the browser. For each plug-in there is a

corresponding Navigator "object" that provides an interface between the plug-in and the

browser. This object also has methods, which are known as Netscape methods. Netscape

methods provide various services that can be requested by plug-ins. Together, the plug-in

methods and the Netscape methods provide the basis of all interactions between plug-ins

and the browser, and enable the core capabilities of any plug-in.

4.3.3 The NpWvt Plug-in Instance Structure

The declaration of the data structure for the NpWvt plug-in object is shown in

Listing 2. The data structure includes two variables to hold the input arguments

bitplaneOf f and resolutionOf f, two variables to keep track of the dimensions of

the decoded image, an array to store the RGB values of the decoded image, and other

standard plug-in internal variables. An instance of this structure is passed to all plug-in

methods called by Navigator.

typedef struct _PluginInstance {

// Standard members for plug-ins

NPWindow* fWindow; // pointer to plug-in window structure
HWND fhWnd; // the plug-in window handle
uintl6 fMode; // plug-in mode ("embedded" for NpWvt)
FARPROC fDefaultWindowProc; // default subclass function

// Members specific to the NpWvt plug-in

int bitplaneOff;
int resolutionOff;
int imageWidth;
int imageHeight;
COLORREF *RGBbuffer;

} PluginInstance;

Listing 2: Declaration of the PluginInstance Data Structure

4.3.4 The NpWvt Plug-in Methods

The NpWvt plug-in implements methods that perform initialization when an

instance is created and clean up when an instance is destroyed. Other methods respond to

incoming streams of data, and supply a visible user interface within a Web page. The

functionality of the NpWvt plug-in is implemented by modifying the source code of the

template plug-in found in the SDK. The only plug-in methods that need to be changed for

the NpWvt plug-in are NPPNew () , NPP_SetWindow (), NPPNewStream (),

NPP_Write (), NPP_DestroyStream (), and NPP_Destroy (). These methods

are discussed in the paragraphs that follow. All other plug-in methods remain unmodified.

See [15] for a good description of standard plug-in methods.

When a plug-in is first loaded, Navigator calls the NPP_New () plug-in method to

create a new instance of the plug-in. The NpWvt plug-in's NPP_New () method allocates

memory for a copy of its PluginInstance structure, processes the argument list

passed to the plug-in instance, and initializes the plug-in specific members of the instance

data structure accordingly. Specifically, the bitplaneOf f and resolutionOf f

members are set to their corresponding input arguments. RGBbuf fer is set to the null

pointer. The imageWidth and imageHeight members are not set at this point, since

they refer to the final dimensions of the decoded image, which depends on

resolutionOff.

Once a plug-in instance has been created, Navigator calls NPP_SetWindow () to

provide a window in which the plug-in can display itself. This method may also be called

if the window is resized, destroyed, or changed. The NpWvt plug-in's

NPP_SetWindow () method performs some initial checks on the provided window. If

the window has not been set previously, the method updates the fWindow and fhWnd

members of the PluginInstance structure accordingly. This is followed by the

installation of a subclass function for the window, a technique known as subclassing the

window. The subclass function, named WVT_SubClassFunc (), acts as an "event

handler" for the plug-in window and must be implemented specifically for the NpWvt

plug-in. The main purpose of this function is to redraw the screen whenever the NpWvt

plug-in needs to be drawn. The implementation of WVT_SubClassFunc () will be

described in Section 4.3.5. The default subclass function which has been replaced by

WVT_SubClassFunc () is saved in the fDefaultWindowProc member of the

PluginInstance structure.

Before the NpWvt plug-in has anything to draw to its given window, it must be

able to read the WVT image data that Navigator provides. Navigator passes data to plug-

ins in streams. When data is available, Navigator calls NPP_NewStream () to inform

the plug-in that a new stream has been created and that data will follow. The NpWvt

plug-in's NPP_NewStream () method implements data buffering by initializing a buffer

structure defined in Listing 3.

typedef struct _PluginStream {
unsigned char *data; // buffered data
int len; // length of buffer

} PluginStream;

Listing 3: Declaration of the PluginStream Buffer Structure

The PluginStream structure holds a character array and maintains the size of the

buffer.

Once a stream has been opened, Navigator calls NPP_Write () as many times as

necessary to transfer data to the plug-in. Since the data for an entire WVT image

generally exceeds the amount of data that will arrive in a single call to NPP_Write () in

real time, the incoming stream is buffered to ensure that the data is not split into unusable

segments. The buffer structure was already set up in NPP_NewStream(), as described

earlier. The NpWvt plug-in's NPP_Write () method simply appends the new data to

the buffer, extending the size of the buffer if necessary.

When all data has been transferred, Navigator calls NPP_DestroyStream () to

inform the plug-in that the data transfer is complete and the stream is destroyed. At this

point, the NpWvt plug-in is ready to decode the WVT image data it has collected in the

stream buffer. It calls an external C function named decode () , which was previously

the main () function in the command-line version of the TI PEZW decoder software.

The main () function is modified to interface with the NpWvt plug-in. The new function

prototype for the decode () function is shown in Listing 4.

void decode(unsigned char *buffer,
int width, int height,
int bitplaneOff, int resolutionOff,
unsigned char *ImageData_R,
unsigned char *ImageData_G,
unsigned char *ImageData_B,
int *imageWidth, int *imageHeight)

Listing 4: The Function Prototype for the decode () Function

Comparing this new syntax to the one shown in Section 4.2, we see that

inputFile is replaced by the actual buffer of data which the plug-in provides. The

width, height, bitplaneOff, and resolutionOff arguments remain the same.

The new arguments ImageData_R, ImageData_G, and ImageData_B are

references to three character arrays which the plug-in allocates in the

NPP_DestroyStream () method, prior to calling decode (). The resulting RGB

values for the decoded image will be stored into these arrays and passed back to the plug-

in. Similarly, references to the imageWidth and imageHeight members of the

PluginInstance structure are passed to decode () for recording the actual

dimensions of the decoded image.

Upon return from the decode () function, the NpWvt plug-in's

NPP_DestroyStream () method packs the R, G, and B arrays into one RGB data

structure, namely the RGBbuf f er member of PluginInstance. Next, it frees

memory allocated for the stream buffer and the R, G, and B arrays. Lastly, it calls the

auxiliary functions InvalidateRect () and UpdateWindow () to force the plug-in

window to be redrawn. This, in turn, causes a WM_PAINT message to be sent to the

plug-in window, which will be handled by WVT_SubClassFunc (), where the actual

displaying is performed (see Section 4.3.5).

When an instance of the NpWvt plug-in is destroyed, Navigator calls

NPP_Destroy (). This method performs several cleanup steps. First, the original

subclass function is restored to the plug-in window. Recall the handle to the default

subclass function was stored in the PluginInstance structure in the

NPP_SetWindow () method. Next, the method frees memory allocated for

RGBbuffer. Finally, the instance structure itself is freed.

4.3.5 The Subclass Function

As mentioned earlier, the subclass function WVT_SubClassFunc () is

automatically called whenever an event is received that should be handled by the plug-in

window. The main purpose of this function is to redraw the screen whenever the NpWvt

plug-in needs to be drawn. The function uses a switch statement to decide what action to

perform, based on the type of event message received from Windows. For example, the

plug-in will receive a WM_PAINT message any time it needs to redraw itself. In

WVT_SubClassFunc (), the WM_PAINT event is handled by calling the auxiliary

function SetPixel () with the RGB values stored in RGBbuf fer, which corresponds

to the pixel values of the decoded image. As a result, the decoded image is displayed on

the browser. The imageWidth and imageHeight members of PluginInstance

are used to calculate offsets so that the decoded image is centered in the plug-in window.

4.3.6 MIME Types and The <embed> Tag

So far we have largely ignored what mechanism Navigator uses to determine

which plug-in should be loaded for a given data type and, once an appropriate plug-in is

found, how arguments are passed to the plug-in. Consider the sample HTML document in

Listing 5.

<html>
<title> A Sample Web Page Which Calls The NpWvt Plug-in </title>
<embed src="http://web.mit.edu/simon888/www/akiyo.wvt"

width=352 height=288 bitplaneOff=0 resolutionOff=l>
</embed>
</html>

Listing 5: A Sample Web Page Which Calls the NpWvt Plug-in

Every element on a Web page has an associated type. Every element's type is

described using a simple protocol known as the "Multi-purpose Internet Mail Extensions"

(MIME). The MIME type simply consists of a two-part string that specifies a major type

and a subtype. For example, the MIME type that identifies a GIF image is

"image/gi f." For WVT images, we have defined the identifying MIME type to be

"application/x-waveletimage."

When Navigator encounters an <embed> tag in an HTML document, it opens a

connection to request data from the URL specified in the src attribute. The Web server

associated with that URL looks at a MIME type registry to determine the type of data

stored in the specified file. In general, the server determines MIME types by examining

the file suffix. In this example, the server sees the .wvt file suffix and determines the data

in the akiyo.wvt file is of the type application/x-waveletimage, assuming the

server has been configured properly to recognize this MIME type. The server then replies

to the Web browser by sending the MIME type for the data, followed by the data itself.

Next, Navigator receives the MIME type and searches it's plug-in registry for a plug-in

that can handle this data type. In this example, Navigator receives the

application/x-waveletimage type and finds the NpWvt plug-in handles this

MIME type, assuming the NpWvt plug-in was already installed and the plug-in registry

has been configured properly to associate this MIME type to the plug-in. If a suitable

plug-in is found, Navigator creates a plug-in instance and allocates an area in the page for

the plug-in to use. Finally, Navigator passes the stream of data to the plug-in for it to

handle as it sees fit.

An <embed> tag can have any number of attributes that may affect the operation

or appearance of the plug-in. The <embed> tag in Listing 5 supplies src, width, and

height attributes, which are recognized by all plug-ins. The NpWvt plug-in supports

two additional attributes, bitplaneOff and resolutionOff, which are used as

decoder settings, as described previously.

4.4 Server-Side Data Adaptation

The server portion of the system is a program that exploits the Common Gateway

Interface (CGI) mechanism to run automatically when a Web client contacts the required

URL. The CGI program serves as the "adaptive" portion of the system which controls

how much data to send back to the Web client, based on some scalability parameters

passed to it. The two components of the CGI program are:

* nph-adapt .pl: a Perl script which interfaces with the NpWvt plug-in

* extract: a C program which extracts the relevant layers of data from the

WVT file

Section 4.4.1 presents the basics of CGI. Section 4.4.2 shows the implementation

of nph-adapt .pl. Section 4.4.3 explains the WVT bitstream syntax and describes

how the relevant layers of a WVT image file are extracted for delivery to the Web client.

4.4.1 CGI Basics

Before looking at the implementation of the server-side programs which perform

the WVT data adaptation, it is important to understand some features of the Common

Gateway Interface mechanism on which it is based. Clients (Web browsers) communicate

with a Web server using a protocol known as HTTP. The HTTP protocol consists of a

request header sent by the client to request some service and a corresponding response

header sent by the server as its reply to the client.

Most servers support a special directory named cgi-bin, where CGI programs and

scripts reside. When a user browses to a URL associated with a CGI program, the client

sends an HTTP request to the server requesting the file. When servicing the request, the

server recognizes that the requested file is a program in the cgi-bin directory. Instead of

redirecting the file back to the client verbatim, the server executes the CGI program. The

program can read information sent by the browser, and can produce information that will

be sent to the browser.

4.4.2 Perl Script

Although CGI programs can be written in any language, Perl, an interpreted

scripting language, is the most popular one. Listing 6 shows a Perl implementation of

server-side adaptation script, nph-adapt . pl.

#!/usr/local/bin/perl

print "HTTP/1.0 200\n";
print "Content-type: application/x-waveletimage\n\n";

$bitplaneOff = "0";
$resolutionOff = "0";

$ENV{ 'QUERY_STRING' } =- s/%2C/,/g;
$ENV{'QUERY_STRING'} =- s/=//g;

if ($ENV{ 'QUERY_STRING' }) {
@params = split(/,/, $ENV{'QUERY_STRING'});
($bitplaneOff, $resolutionOff) = @params;

}

$output = 'extract akiyo.wvt $bitplaneOff $resolutionOff';
print $output;

Listing 6: The CGI Program, nph-adapt .pl

The above script is an example of a non-parsed header (NPH) CGI script. This

means that the CGI script is responsible for generating and returning a complete HTTP

response header. The alternative would be to generate only a partial response header and

let the server intercept the output and complete the header information with header

information of its own. Because non-parsed header CGI scripts return a complete

response header, no extra overhead is incurred by the server, and the output of the CGI

script goes directly to the client. To identify themselves to the server as non-parsed

header CGI scripts, programs that output complete headers must start with the "nph-"

prefix. See [3] for a more detailed description of non-parsed header CGI programs.

The first two print statements correspond to the complete HTTP response

header returned by nph-adapt. pl. The first header line is the status response header,

which contains the HTTP protocol revision and the status of the program. The second

header line is the Content-type response header, which indicates the MIME type of the

data to follow. Note that a blank line after the last header line is required by the HTTP

protocol to separate the header from the data that follows it.

Next, the QUERY_STRING environment variable is parsed for the

bitplaneOf f and resolutionOf f arguments. The browser sends these values to

the CGI script by appending them to the URL, after a question mark. The information

appended to a URL after the question mark is known as a query string. When the server

is passed a URL with a query string, it calls the CGI program identified in the first part of

the URL (before the question mark) and stores the query string in the environment

variable QUERY_STRING, which can be parsed by the CGI program for input arguments.

Finally, the script calls the extract program with the bitplaneOf f and

resolutionOf f arguments and the name of the file containing the WVT data. The

data returned from extract is sent directly to the browser.

4.4.3 The extract Program and the WVT Bitstream Syntax

The extract program is a standalone C program which generates on-the-fly a

WVT bitstream to be sent to the browser by extracting the relevant layers of data from a

WVT image file stored at the server. The size of the WVT bitstream is smaller than or

equal to the size of the WVT file from which it is extracted. Yet the WVT bitstream

contains all the information the NpWvt plug-in needs to decode the WVT image at the

specified degradation level. Thus bandwidth is saved by eliminating the transfer of any

data that is not needed for decoding a degraded version of the image. The calling syntax

of extract is shown in Listing 7.

extract inputFile bitplaneOff resolutionOff

Listing 7: The Calling Syntax of extract

The extract program reads in the WVT image file specified by inputFile

and parses it according to a defined WVT syntax (described in detail below). A subset of

relevant data is determined from the specified values for the bitplaneOf f and

resolutionOf f arguments. The header information and the subset of relevant data

are copied to an output buffer, which is returned back to the calling Perl script. The

extraction process is explored in greater detail later in this section.

In Figure 9, we saw qualitatively how the two decoder parameters

bitplaneOf f and resolutionOf f affect the visual quality and size of the decoded

image. We have not yet explored how the decoder exploits the embedded nature of the

WVT image file format to generate these reconstructed images of various image qualities

and sizes. The remainder of this section examines the exact syntax for the WVT file

format as well as the newly extracted WVT bitstream to be sent to the browser.

The TI PEZW codec supports both color and monochrome images. The syntax

for a color WVT image file is given in the form of a pseudocode, as shown in Listing 8

below. Each line of the pseudocode contains the name of the field followed by the number

of bits to represent that field in parenthesis.

wavelet_decomposition_levels (8 bits)
color (8 bits)
Y_mean (8 bits)
U_mean (8 bits)
V_mean (8 bits)
Quant_DC_Y (8 bits)
Quant_DC_UV (8 bits)
for (Y, U, V) {

lowest_subband_bitstream_length (16 bits)
lowest_subband_texture_coding (lowest_subband_bitstream_length bits)

}
spatialscalabilitylevels (5 bits)
quantization_type (2 bits)
SNRlength_enable (1 bit)
for (Y, U, V) {

for (i=O; i<spatial_scalability levels; i++) {
spatial_bitstream_length (24 bits)
Quant (16 bits)
for (j=O; j<SNRscalability_levels; j++) {

SNR_bitstreamlength (16 bits)
wavelet_zero_tree_coding (SNR_bitstream_length bits)

}
}

Listing 8: The WVT File Syntax

The syntax of a monochrome WVT file is very similar to the one shown above.

The only difference is that any header fields and data layers associated with the U and V

components of the image are absent from the monochrome WVT file syntax. Likewise,

the process of extracting the relevant layers of data from a WVT file is almost identical for

both cases. The following explanation of the WVT file syntax and the bitstream extraction

process will focus on the case of color WVT images only.

The first seven fields of the color WVT image file format are header information.

The first field represents the number of decomposition levels, which corresponds to the

total number of subband filtering stages in the encoding (as discussed in Chapter 3). The

second field is a flag that indicates whether the image is color or monochrome. The next

five fields specify the mean value for each of the Y, U, and V components of the image,

the quantizer for the DC layer (lowest subband) of the Y component, and the common

quantizer for the DC layers (lowest subbands) for the U and V components.

Next, the data corresponding to the DC layer for each of the Y, U, and V

components is followed. Each DC layer is preceded by a 16-bit header field which

specifies the length of the data.

Three more header fields come after the DC layers. They specify the number of

spatial scalability layers, the quantization type, and the SNR bitstream length mode toggle.

All fields up to this point must be included in the extracted WVT bitstream for any

degradation levels (i.e. for any values of bitplaneOf f and resolutionOf f).

The remaining fields consist of the header and data for each spatial and SNR

scalability layer. Note that the data associated with the Y, U, and V components are not

interleaved in these layers of data. All layers of Y come first, followed by all layers of U,

followed by all layers of V.

Each spatial scalability layer begins with two header fields that specify the size of

the bitstream and the quantizer for the current spatial scalability layer. The bitstream for

this spatial layer follows, which is in turn divided into SNR scalability layers. Each SNR

scalability layer begins with a 16-bit field that indicates the size of the current SNR

scalability layer, followed by the bitstream for this SNR layer itself.

The resolutionOff parameter tells the extract program how many spatial

layers to skip when extracting the WVT bitstream from the WVT image file. Likewise,

bitplaneOf f controls the number of SNR layers skipped in every spatial layer. Listing

9 shows the resulting syntax for the newly extracted WVT bitstream.

wavelet_decomposition_levels (8 bits)
color (8 bits)
Y_mean (8 bits)
U_mean (8 bits)
V_mean (8 bits)
Quant_DC_Y (8 bits)
Quant_DC_UV (8 bits)
for (Y, U, V) {

lowest_subband_bitstream_length (16 bits)
lowest_subband_texture_coding (lowest_subband_bitstream_length bits)

}
spatial_scalability_levels (5 bits)
quantization_type (2 bits)
SNR_length_enable (1 bit)
for (Y, U, V) {

for (i=resolutionOff; i<spatial_scalability_levels; i++) {
spatial_bitstream_length (24 bits)
Quant (16 bits)
for (j=0; j<SNR_scalability_levels-bitplaneOff; j++) {

SNR_bitstream_length (16 bits)
wavelet_zero_tree_coding (SNR_bitstream_length bits)

}
}

Listing 9: The Syntax for the Extracted WVT Bitstream

The NpWvt plug-in must be modified accordingly to support this new syntax.

Otherwise, the decoding process will fail.

4.5 Sample Execution of the System

Putting all the pieces together, the following sample HTML document, shown in

Listing 10, demonstrates how the adaptive wavelet-based image viewing system works.

<html>
<title> A Sample Web Page Which

<script LANGUAGE="JavaScript">

var largeExpDate = new Date ();
var myDomain;

function SetParams()
{

Calls The NpWvt Plug-in </title>

var bitplaneOff = GetCookie('bitplaneOff');
var resolutionOff = GetCookie('resolutionOff');

if ((bitplaneOff == null) II (resolutionOff == null))

bitplaneOff=0;
resolutionOff=0;

document.write(
document.write(
nph-adapt.pl?'
document.write(
document.write(
document.write(
document.write(

'<center>');
'<embed src="http://web.mit.edu/simon888/cgi-bin/
+ bitplaneOff + ',' + resolutionOff + '"');
' width=352 height=288');
' bitplaneOff=' + bitplaneOff);
resolutionOff=' + resolutionOff);

'></center>');

SetParams();

</script>

</html>

Listing 10: A Sample Web Page Which Illustrates the WAIVS At Work

Unlike the sample Web page shown in Listing 5 (Section 4.3.6), this example uses

javascript to generate various attributes in the <embed> tag. This example assumes that

values for the bitplaneOf f and resolutionOf f variables are previously stored in a

client-side cookie. Each time this sample Web page is loaded, the javascript function

SetParams () fetches these values from a cookie by calling GetCookie (), another

javascript function not shown here (see the Appendix, Section 9.5). The corresponding

attributes of the <embed> tag are properly set, and a query string consisting of these

values is appended to the URL specified in the src attribute. Also, the URL in the src

attribute now references the CGI program "nph-adapt. pl" instead of a static WVT

file, as in the previous example.

When a user browses this sample Web page, the following sequence of actions

occurs:

1. The browser sends an HTTP request to the server for the sample Web page.

2. The server sends an HTTP response header along with the HTML document

requested back to the client.

3. At the client side, javascript fetches the values of bitplaneOf f and

resolutionOf f from a cookie and replaces any references to these

variables in the HTML document (e.g. in the "query string" field of the src

attribute, and in the bitplaneOf f and resolutionOf f attributes of the

<embed> tag) with the fetched values.

4. The browser encounters the <embed> tag and sends an HTTP request to the

server associated with the URL specified in the src attribute.

5. Since the URL corresponds to a CGI program, the server executes the CGI

program, instead of sending an HTTP response header along with the CGI

program back to the client verbatim. The query string appended at the end of

the URL is stored in the environment variable QUERY_STRING.

6. The CGI program uses the information in QUERY_STRING to set up a call to

the extract program.

7. The extract program extracts the appropriate layers of data from the

requested WVT file to form the WVT bitstream, which is returned to the CGI

program.

8. Since it is "non-parsed," the CGI program generates the appropriate HTTP

response header (which includes information about the content MIME type,

application/x-wavelet image) and sends it along with the WVT

bitstream back to the client directly, without going through the server.

9. The browser finds the appropriate plug-in for the MIME type of the incoming

data and loads it. A new instance of the NpWvt plug-in is created. The values

of the bitplaneOf f and resolutionOf f attributes in the <embed> tag

are passed to the NpWvt plug-in. The WVT bitstream is re-directed to the

plug-in as well.

10. The NpWvt plug-in buffers the data, decodes it, and displays the decoded

image on the browser window.

5. System Evaluation

5.1 Time Efficiency

In evaluating the time efficiency of WAIVS, we examine the total latency between

the initial request for an image and the display of the decoded image on the browser,

which roughly consists of the following:

1. Server response time

2. Adaptation time: time to execute extract, the adaptive degradation module.

3. Network latency

4. Connection latency: time to transfer the incoming bitstream across the client's

network connection, typically a modem or an Ethernet card.

5. Decode time: time to decode the WVT bitstream.

Server response time and network latency are difficult to quantify, as they vary

greatly depending on numerous dynamic factors and the capabilities of each server and

network. Hence we will focus the evaluation on the adaptation time, connection latency,

and decode time.

The execution time of the adaptive degradation module contributes a very small

portion of the total latency because of its simple operation. For typical server loads and

WVT image file sizes (2 to 10 kilobytes), extract should take no longer than a quarter

of a second to degrade one WVT image. The exact execution time depends on the server

load and may increase with the number of instances of extract running concurrently.

The connection latency depends on the size of the incoming WVT bitstream and

the connection speed. Figure 10 shows the reduction in connection latency when the

47

degraded versions, instead of the original version, of the Akiyo test image are downloaded

across modems running at 28.8, 33.6, and 56 kilobits per second.

A28.8 kbps

--- 33.6 kbps

, 56.0 kbps

LA.

Degradation Level (resolutionOff, bitplaneOff)

Figure 10: Reduction in Connection Latency Versus Degradation Level for the
Akiyo Test Image (352x288 pixels, 63752 original bitstream size)

Note that the reduction in connection latency is quite significant, ranging from about 0.5

to 2 seconds.

Still in the early stage of development, the focus of the TI PEZW decoder remains

coding efficiency rather than speed. Hence the current version of the PEZW decoder

takes a long time to decode a WVT image. The decode time typically ranges from 0.5

second to 15 seconds, depending on the size and degradation level of the WVT image. We

believe that the C implementation of the PEZW decoder can be optimized to achieve

decoding times that are at least comparable to JPEG.

5.2 Server Load Issues

In WAIVS, each request for a WVT image generates an instance of the CGI

program. If many requests come at the same time, which is possible during peak hours

S 2.5

•-J 2
2

0o

*01.5

0

SoS01
0

0.5

0

when many people are browsing Web pages containing inline WVT images, the many CGI

instances running concurrently place a heavy burden on the server. In dealing with the

aforementioned problem with server load, WAIVS can be extended to provide an option

to bypass the adaptive degradation module. Web page designers can also be advised to

reference the URLs corresponding to the WVT images directly, instead of the CGI

programs, so that calls to the CGI programs are bypassed altogether. For both

approaches, the adaptivity of network bandwidth is lost. However, the adaptation hints

can still be fed to the NpWvt plug-in so that the adaptivity of processing (decoding) time

is retained. This is illustrated in the HTML example in Listing 11.

<html>
<title> A Sample Web Page Which Calls The NpWvt Plug-in </title>

<script LANGUAGE="JavaScript">

var largeExpDate = new Date ();
var myDomain;

function SetParams()
{
var bitplaneOff = GetCookie('bitplaneOff');
var resolutionOff = GetCookie('resolutionOff');

if ((bitplaneOff == null) I (resolutionOff == null))

bitplaneOff=0;
resolutionOff=0;

}

document.write('<center>');
document.write('<embed src="http://web.mit.edu/akiyo.wvt"');
document.write(' width=352 height=288');
document.write(' bitplaneOff=' + bitplaneOff);
document.write(' resolutionOff=' + resolutionOff);
document.write('></center>');

}
SetParams();

</script>

</html>

Listing 11: Sample Web Page Illustrating How To Bypass Adaptive Degradation
While Retaining Adaptivity In Decoding Time.

5.3 Benefits of Adaptive Degradation

5.3.1 Better Viewing Experience for the Users

WAIVS is beneficial to the people who browse images on the Web because it

offers a new dimension of choices, namely, images at different information resolutions.

Adaptivity offers more timely delivery of the images across a wide range of client and

network capabilities. The user is given the choice to download a lower-quality picture

instead of waiting a long time for a full-quality picture to download. Moreover, since the

user can specify the adaptation hints, users can exert some control over the degradation

level of the downloaded images.

5.3.2 Ease of Use for Content Creators

An adaptive image viewing system simplifies the task of creating Web pages that

are viewable for a wide range of network and client capabilities. For example, two

different versions (one for low-bandwidth and another for high-bandwidth) of Web pages

are not needed, since WAIVS automatically generates the different versions. WAIVS also

provides content creators the flexibility to be more liberal in the use of images in Web

pages, since the system "takes care" to adaptively degrade the images so the download

time for low-bandwidth clients is acceptable.

Encoding images into the WVT format is just as easy as encoding them into other

formats such as JPEG and GIF. The only additional work is to provide the PEZW

encoder with some parameters, such as the number of decomposition levels, and spatial

and SNR scalability levels, which is trivial. By specifying these parameters to the PEZW

encoder, the content creators have full control of the degradation behavior of the images

created. To achieve the desired look of the images at different degradation levels, the

content creators can iteratively try out several sets of encoder parameters and view the

resulting pictures at various degradation levels using the browser plug-in. Thus WAIVS

provides many benefits to the content creators with very little work.

5.3.3 Elimination of Wasted Bandwidth

Precious network bandwidth is wasted in the mismatch of interest between the

content creator and the user. For example, suppose the author of a web page included a

80-Kbyte, good-quality image of a man in a tuxedo standing next to a penguin, but a

visitor to this page only cared about the relative sizes of the two (and missed the humor

too). Then a 20-Kbyte, intelligible picture would have sufficed and the difference of 60

Kbytes would have been saved. More generally speaking, whenever an image contains a

higher level of detail than a viewer cares to observe, some bandwidth is wasted in

transmitting the extra information which is irrelevant to that particular viewer. The

degradation scheme in WAIVS is based on adaptation hints which account for user

interest. As a result, wasted bandwidth due to sending unnecessary image details to the

user is eliminated.

6. Conclusion

This research is in response to the rigidity of image formats and conventions that

view images as static objects in terms of size and quality. Here we present an alternative

image representation which allows for the adaptive degradation of the picture, enabling

the efficient use of network bandwidth and timely delivery of images over a wide variety

of technologies.

An adaptive image degradation model is proposed and a wavelet-based adaptive

image viewing system (WAIVS) is developed. The adaptive image degradation model

achieves adaptive data rate for a given image without extra storage requirement at the

server. The cost comes in the added complexity in the adaptive degradation process, each

time an image is requested. In WAIVS, the highly scalable and embedded image

representation provided by wavelet-based image coding technology is exploited to

minimize the overhead cost of adaptively degrading an image on-the-fly.

WAIVS is built on the Web's client-server model. The server portion of WAIVS

is a CGI program that is responsible for the adaptive degradation of images based on some

adaptation hints provided by the client. The client portion of the system consists of a

browser plug-in, built from the TI PEZW decoder, to decode WVT images, and some

javascripts to look up and deliver adaptation hints to the server.

WAIVS offers numerous advantages over existing means of viewing images over

the Web, including higher compression ratios, timely delivery of images to low-bandwidth

clients, flexibility in designing graphics intensive Web pages, and more efficient use of

network bandwidth.

7. Further Work

7.1 Per Object Adaptive Degradation

Instead of degrading the entire image uniformly, in some cases, it may be desirable

to divide the image into regions representing different objects and degrade each region

separately to a varying extent. This capability is known as content-based scalability in the

upcoming MPEG4 standard [2] [10]. For example, the content creator may wish to retain

the quality of the foreground objects as much as possible. As shown in the sequence of

images in Figure 11, as bitplaneOf f increases, the two cars in the foreground degrade

at a slower rate than the background.

Figure 11: Sample images illustrating per object adaptive degradation:

bitplaneOff = 0 (top left), 3 (top right), 5 (bottom left), and (bottom

right)
In extending the adaptive image degradation model introduced in this paper to

support per object adaptive degradation, some interesting questions arise. What are the

heuristics of translating a single set of adaptation hints for the whole image into different

sets of adaptation hints for the different objects within the image? How are the sub-

images stored on the server? Are they stored as separate WVT files? Are the degraded

versions of the sub-images transmitted as separate bitstreams to the client? If so, how are

they decoded and combined into a single image to be displayed on the browser? Can

arbitrary-shaped objects be supported? Do the benefits of per object adaptive degradation

outweigh the implementation complexity and the overhead costs during execution? The

MPEG4 standard aims to provide an "object layered" bitstream format in which each

audio or video object is coded into a separate object bitstream layer. This coded

representation of audio and video data allows the user the separate decoding and

reconstructions of the objects at different quality levels [2] [10].

7.2 Progressive Scanning

The idea of progressive scanning is borrowed from the progressive JPEG standard.

The incoming bitstream is decoded on-the-fly as it arrives at the browser and the decoded

image is displayed in a series of scans. Thus the user can see an approximation of the

whole image very quickly, with gradual improvement of quality as one waits longer.

One way to extend WAIVS to support progressive scanning is illustrated in Figure

12. An additional parameter, proScanEnable, is sent from the client to the server to

toggle between progressive scanning mode and standard mode (without progress

scanning). In progressive scanning mode, the adaptation hints are ignored at the server

and the entire original WVT image is sent to the client without any degradation. At the

client, bitplaneOff and resolutionOff are provided to the NpWvt plug-in so the

WVT decoder can start decoding as soon as enough data has arrived to reconstruct an

image at the degradation level specified by the adaptation hints. That is, the image

displayed for the first scan in progressive scanning mode is the same as the degraded

image in standard mode. Subsequent scans are produced by decoding more and more data

as it arrives. Each scan adds to the data already provided, so that the total storage

requirement is no greater than if the image is decoded and displayed after the entire

bitstream is downloaded. The last scan corresponds to the original image at full quality.

bitplaneOff, .Web resolutionOff
Server

WVT image-

Network

oScanEnable:

Figure 12: Extending WAIVS to support progressive scanning.

The advantage of progressive scanning is the user can see both a preview of the

image very quickly and the full quality image shortly after. The first scan would probably

bitplaneOff, resolutionOff vascript Navigator
proScanEnable .. Browser

cookies
Decoded image

WVT bitstream- NpWvt plug-in for displayfor display

come faster than the degraded image in standard mode because the adaptive degradation

process at the server is bypassed in progressive scanning mode. The downside of

progressive scanning is there is no saving in network bandwidth. Also, multiple scans

takes more computation time than decoding the entire WVT bitstream once it is fully

downloaded. Therefore, progressive scanning only makes sense if one has a decoder

which is fast compared to the communication link.

7.3 Extension to Video

Using the framework suggested in this work, the adaptive degradation model can

be extended to other types of media. Adaptive degradation techniques for video would

unquestionably be highly valuable, since video clips require considerably greater

bandwidth than images. Frame rate is a reasonable adaptive characteristic. With temporal

scalability, a video can be degraded on-the-fly by dropping frames. Hence the data rate is

reduced at the cost of the video appearing more jerky.

The major difficulty of extending the aforementioned adaptive degradation model

to video lies in designing an embedded video bitstream that supports spatial, SNR, and

temporal scalabilities simultaneously. Moreover, the desirability for real-time presentation

of video further constrains the complexity of the encoding format. Scalable video coding

remains an area of active research.

8. Bibliography

[1] V. M. Bove, Jr., "Scalable (Extensible, Interoperable) Digital Video Representations,"
in Digital Images and Human Vision, A. B. Watson, ed., MIT Press, Cambridge MA,
1993, pp. 23-34.

[2] Leonardo Chiariglione, "MPEG and Multimedia Communications", IEEE Trans,
CSVT, Vol. 7, No. 1, February 1997.

[3] Shishir Gundavaram, CGI Programming on the World Wide Web. O'Reilly, CA,
1996.

[4] John C. Huffman, "Wavelets and Image Compression," SMPTE Journal, pp. 723-727,
November 1994.

[5] E. Lamboray, "Progressive Transmission For Very Low Bit Rate Context Based
Image Compression," Technical Report CAIP-TR 218, Rutgers University, NJ, June
1997.

[6] Jie Liang, "Highly Scalable Image Coding for Multimedia Applications," Proceedings
of the 5th ACM International Conference on Multimedia, Seattle, WA, November 1997.

[7] Karen Oehler, "Low Bitrate Wavelet Video Compression Scheme," Texas
Instruments Technical Activity Report, December 1994.

[8] Karen Oehler, "Low Bitrate Wavelet Video Compression Scheme, Part 2," Texas
Instruments Technical Activity Report, May 1995.

[9] Jerome M. Shapiro, "Embedded Image Coding Using Zerotrees of Wavelet
Coefficients," IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp. 3445-3462,
December 1993.

[10] T. Sikora, "The MPEG-4 Video Standard Verification Model," IEEE Trans, CSVT,
Vol. 7, No. 1, February 1997.

[11] Gilbert Strang, "Wavelets and Dilation Equations: A Brief Introduction," SIAM
Review, Vol. 31, No. 4, pp. 614-627, December 1989.

[12] Gilbert Strang, "Wavelets," American Scientist, Vol. 82, pp. 250-255, May-June
1994.

[13] Larry Wall, Tom Christiansen, and Randal L. Schwart, Programming Perl.
O'Reilly, CA, 1996.

[14] Andrew Wooldridge, Mike Morgan, Mark C. Reynolds, and Jerry Honeycutt,
Special Edition Using JavaScript, Second Edition. Que, IN, 1997.

[15] Douglas A. Young, Netscape Developer's Guide to Plug-ins. Prentice Hall, NJ,
1997.

9. Appendix

9.1 Comparison of Encoding Quality between Wavelets and JPEG

The following three sets of images show the superior quality of wavelet-encoded

images as compared to JPEG images at comparable bitrates. Although shown as black-

and-white images in the following figures, the images used for this comparison are color

images. The wavelet-encoded images are generated from the TI PEZW codec at three

quality-level settings, which are bi tplaneOf f=0, bi tplaneOf f=1, and

bitplaneOff=2. The corresponding JPEG images are generated from the standard

JPEG encoder using appropriate quality-level settings, called q-factors. The appropriate

q-factors are determined by trial-and-error to match the bitrates of the three wavelet-

encoded images.

...

Figure 13: Comparison of Wavelet-encoded Image and JPEG Image at Comparable
Bitrates: 62392 bits (Wavelet, top), 62240 bits (JPEG, bottom)

..........

Figure 14: Comparison of Wavelet-encoded Image and JPEG Image at Comparable
Bitrates: 41296 bits (Wavelet, top), 41024 bits (JPEG, bottom)

Figure 15: Comparison of Wavelet-encoded Image and JPEG Image at Comparable
Bitrates: 21904 bits (Wavelet, top), 21784 bits (JPEG, bottom)

62

9.2 NpWvt.cpp

#include "windows.h"
#include "string.h"
#include <ctype.h>
#include "npapi.h"
extern "C" {

#include "decode.h"
}

typedef struct _PluginStream {
unsigned char *data;
int len;

} PluginStream;

typedef struct _PluginInstance {

// Standard entries for plug-ins

NPWindow* fWindow;
HWND fhWnd;
uintl6 fMode;
FARPROC fDefaultWindowProc;

// Members specific to the NpWvt plug-in

COLORREF *RGBbuffer;
int bitplaneOff;
int resolutionOff;
int imageWidth;
int imageHeight;

} PluginInstance;

LONG NP_LOADDS WINAPI
WVT_SubClassFunc(HWND hWnd,WORD Message,WORD wParam, LONG lParam);

NPError NPP_Initialize(void) {
return NPERR_NO_ERROR;

}

void NPP_Shutdown(void) {
}

NPError NPP_New (NPMIMEType pluginType,
NPP instance,
uintl6 mode,
intl6 argc,
char *argn[],
char *argv[],
NPSavedData *saved

// A NULL instance pointer would indicate a
// serious error.

if (instance == NULL)
return NPERR_INVALID_INSTANCE_ERROR;

// Allocate memory for the PluginInstance structure.
// For convenience, assign the memory a local pointer
// named "This"

instance->pdata = NPN_MemAlloc(sizeof(PluginInstance));
PluginInstance* This = (PluginInstance*) instance->pdata;

// Test for memory failure

if (This == NULL)
return NPERR_OUTOFMEMORY_ERROR;

// Initialize the PluginInstance structure

This->fWindow = NULL;
This->fMode = mode;
This->fhWnd = NULL;

// Initialize the data specific to this plugin

This->RGBbuffer = NULL;

// Compare each entry in the argn array for arguments
// this plugin supports.

for (int i = 0; i < argc; i++
{

if (!::stricmp (argn[i], "bitplaneOff"))
This->bitplaneOff = ::atoi(argv[i]);

else if (!::stricmp (argn[i], "resolutionOff"
This->resolutionOff = ::atoi(argv[i]);

}

return NPERRNO ERROR;

NPError NPP_Destroy (NPP instance, NPSavedData** save)
{

if (instance == NULL
return NPERR_INVALID_INSTANCEERROR;

PluginInstance* This = (PluginInstance*) instance->pdata;

if (This != NULL)
{

// Remove the subclass function
// for the client window

if (This->fhWnd)
::SetWindowLong(This->fhWnd, GWL_WNDPROC,

(DWORD)This->fDefaultWindowProc);

// Free the memory allocated in NPP_New()

if (This->RGBbuffer)
NPN_MemFree(This->RGBbuffer);

NPN_MemFree(instance->pdata);
instance->pdata = NULL;

}

return NPERRNO ERROR;

#define PROPERTY "PluginInstance"

NPError
NPPSetWindow(NPP instance, NPWindow* window)

if (instance == NULL)
return NPERR_INVALID_INSTANCE_ERROR;

PluginInstance* This = (PluginInstance*) instance->pdata;

if(This->fWindow != NULL) /* If we already have a window, clean
* it up before trying to subclass
* the new window. */

if((window == NULL) I (window->window == NULL
{

/* There is now no window to use. get rid of the old
* one and exit. */
::SetWindowLong(This->fhWnd, GWL_WNDPROC,

(LONG)This->fDefaultWindowProc);
This->fDefaultWindowProc = NULL;
This->fhWnd = NULL;
This->fWindow = window;
return NPERR_NO_ERROR;

else
if (This->fhWnd == window->window
{

/* The new window is same as the old one. Redraw and get out.
*/

::InvalidateRect(This->fhWnd, NULL, TRUE);
::UpdateWindow(This->fhWnd);
This->fWindow = window;
return NPERRNOERROR;

}
else
{

/* Clean up the old window, so that we can subclass the new
* one later. */
::SetWindowLong(This->fhWnd, GWL_WNDPROC,

(LONG)This->fDefaultWindowProc);
This->fDefaultWindowProc = NULL;
This->fhWnd = NULL;

else
if((window == NULL) I (window->window == NULL
{

/* We can just get out of here if there is no current
* window and there is no new window to use. */

This->fWindow = window;
return NPERR_NO_ERROR;

/* At this point, we will subclass
* window->window so that we can begin drawing and
* receiving window messages. */

This->fWindow = window;
This->fhWnd = (HWND)(DWORD)This->fWindow->window;

// Subclass the window instance, saving the
// previous WNDPROC in the PluginInstance
// record.

This->fDefaultWindowProc =
(FARPROC) ::SetWindowLong (This->fhWnd,

GWL_WNDPROC,
(DWORD) WVT_SubClassFunc);

// Store this plugin's PluginInstance as a

// property associated with the Window handle.

::SetProp (This->fhWnd, PROPERTY, This);

return NPERRNOERROR;

NPError NPP_NewStream (NPP instance,
NPMIMEType type,
NPStream *stream,
NPBool seekable,
uintl6 *stype)

{
PluginStream* newStream;

if (instance == NULL)
return NPERR_INVALIDINSTANCEERROR;

PluginInstance* This = (PluginInstance*) instance->pdata;

// Create a stream data instance, and store it in the NPStream

newStream = (PluginStream*) NPN_MemAlloc(sizeof(PluginStream));

if (newStream != NULL)
{

newStream->data = NULL;
newStream->len = 0;
stream->pdata = newStream;

}
else {

return NPERR_OUTOFMEMORY_ERROR;
}

return NPERRNO ERROR;

#define DATASIZE OXOFFFFFFF

int32 NPP_WriteReady (NPP instance, NPStream *stream
{

// Return the number of bytes this plugin is
// ready to accept in the next call to NPP_Write()

return DATA_SIZE;

int32 NPP_Write (NPP instance, NPStream *stream,
int32 offset, int32 len, void *buffer)

{
if (instance != NULL)
{

// If the existing stream already has some data,
// copy the data into a temporary stream structure,
// append it with the incoming data from buffer,
// and copy the appended stream back to the old stream

if (stream->pdata != NULL)
{

PluginStream* ps = (PluginStream*) stream->pdata;

if (ps->data == NULL)
{

ps->data = (unsigned char*) NPN_MemAlloc(len);
ps->len = 0;

}
else

{
// Create a larger buffer for the stream
unsigned char *data =

(unsigned char*) NPN_MemAlloc(len+ps->len);

// Copy old data into new stream buffer
::memcpy(data, ps->data, ps->len);

// Deallocate old stream buffer
NPN_MemFree(ps->data);

// Update pointer to point to new stream buffer
ps->data = data;

// Append new data into new stream buffer
::memcpy (&ps->data[ps->len], (unsigned char*) buffer, len);
ps->len += len;

return len;

// A NULL instance would constitute an error

return -1;

NPError NPP_DestroyStream (NPP instance,
NPStream *stream,
NPError reason

if (instance == NULL
return NPERR_INVALID_INSTANCE_ERROR;

if (reason == NPRES_DONE)
{

PluginInstance* This = (PluginInstance*) instance->pdata;
PluginStream* ps = (PluginStream*) stream->pdata;

if (ps != NULL)
{

if (ps->data != NULL)
{

// allocate three buffers for R, G, and B values

int bufferSize = This->fWindow->height*This->fWindow->width;
unsigned char *R = (unsigned char *) NPN_MemAlloc(bufferSize);
unsigned char *G = (unsigned char *) NPNMemAlloc(bufferSize);
unsigned char *B = (unsigned char *) NPN_MemAlloc(bufferSize);

NPN_Status(instance, "Decoding image ... ");

decode (ps->data,
This->fWindow->width,
This->fWindow->height,
This->bitplaneOff,
This->resolutionOff,
R, G, B,
&This->imageWidth,
&This->imageHeight);

// free up memory allocated for stream

NPN_MemFree(ps->data);

// compact into one buffer of RGB (COLORREF) values

This->RGBbuffer =
(COLORREF *) NPN_MemAlloc(bufferSize*sizeof(COLORREF));

for (int i=O; i<bufferSize; i++)
This->RGBbuffer[i] = RGB(R[i],G[i],B[i]);

// free up memory allocated for R, G, B buffers

NPN_MemFree(R);
NPN_MemFree(G);
NPN_MemFree(B);

// force a window repaint
NPN_Status(instance, "Decoding image ... done");

::InvalidateRect (This->fhWnd, NULL, TRUE);
::UpdateWindow (This->fhWnd);

}
NPN_MemFree(ps);
stream->pdata = NULL;

}

return NPERRNO ERROR;

void NPP_StreamAsFile(NPP instance, NPStream *stream, const char* fname)
{

if (instance == NULL)
return;

PluginInstance* This = (PluginInstance*) instance->pdata;

void NPP_URLNotify(NPP instance, const char* url,
NPReason reason, void* notifyData)

{
}

void NPP_Print (NPP instance, NPPrint* printInfo

if (printInfo == NULL
return;

if (instance != NULL
{

PluginInstance* This =
(PluginInstance*) instance->pdata;

if (printInfo->mode == NP_FULL)
{

NPFullPrint *fp;

fp = &(printInfo->print.fullPrint);

fp->pluginPrinted = FALSE;

else // If not fullscreen, plugin must be embedded
{

intl6 NPP_HandleEvent(NPP instance, void* event)
{

NPBool eventHandled = FALSE;
if (instance == NULL)

return eventHandled;

PluginInstance* This = (PluginInstance*) instance->pdata;

return eventHandled;

LONG WINAPI WVT_SubClassFunc (HWND hWnd,
WORD Message,
WORD wParam,
LONG iParam

{
// Get the plugin instance associated with this window

PluginInstance *This =
(PluginInstance *) ::GetProp(hWnd, PROPERTY);

switch (Message)

case WM_PAINT:

{
PAINTSTRUCT paint;

// All paint calls must be bracketed
// by ::BeginPaint() and ::EndPaint()

HDC hDC = ::BeginPaint(hWnd, &paint);

// Calculate offsets to center the image
int xOffset, yOffset;
xOffset = (This->fWindow->width - This->imageWidth)/2;
yOffset = (This->fWindow->height - This->imageHeight)/2;

// Display image buffer
COLORREF *RGB = This->RGBbuffer;

if (RGB != NULL)
for (int y=O; y<(int)This->imageHeight; y++)

for (int x=O; x<(int)This->imageWidth; x++)
::SetPixelV(hDC, x+xOffset, y+yOffset, *RGB++);

// Call ::EndPaint() after all drawing has been completed
::EndPaint (hWnd, &paint);

}
return 0;
break;

default:
// For all other messages, call the original WndProc
return ::CallWindowProc(This->fDefaultWindowProc,

hWnd, Message, wParam, lParam);

jref NPP_GetJavaClass(void)
{

return NULL;}

9.3 nph-adapt.pl

#!/map/sys/bin/perl

print "HTTP/1.0 200\n";
print "Content-type: application/x-waveletimage\n\n";

$bitplaneOff = "0";
$resolutionOff = "0";

$ENV{'QUERY_STRING'} =- s/%2C/,/g;
$ENV{'QUERY_STRING'} =- s/=//g;

if ($ENV{'QUERY_STRING'}) {
@params = split(/,/, $ENV{'QUERY_STRING'});
($bitplaneOff, $resolutionOff) = @params;

}

$output = 'extract akiyo.wvt $bitplaneOff $resolutionOff';
print $output;

9.4 extract.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAXBUFFSIZE 1000000
#define BI_LEVEL 2
#define NLEN_BITS 16

/* static int buffer; *//* bits buffered for output */
extern unsigned char buffer;
extern int bits_to_go;/* Number of bits free/still in buffer */
extern int garbage_bits;/* Number of bits past end-of-file */

extern unsigned char *streamptr;
extern unsigned char *buf_start;
extern unsigned char *buf_end;

void start_outputing_bits();
void output_bit(int bit);
void done_outputing_bits();
void done_inputing_bits();
int input_bit();
void set_buffer (void *buffer);
void *get_buffer ();
void start_inputing_bits();
unsigned int get_bits (int nbits);

int fileparse(unsigned char *inbuffer, int bitplaneOff,
int resolutionOff, unsigned char *outbuffer);

int main(int argc, char *argv[])
{
unsigned char *teststring;

int i, bitplaneOff, resolutionOff;
unsigned char *inbuffer, *outbuffer;
FILE *infile;

if (argc<4) {
fprintf(stderr, "Usage: adapt InputFile bitplaneOff resolutionOff\n");

exit (-I);
}

if ((infile=fopen(argv[1], "rb")) == NULL) {
fprintf(stderr, "Can't open input file\n");
exit(-1);

}

bitplaneOff = atoi(argv[2]);
resolutionOff = atoi(argv[3]);

if ((inbuffer = (unsigned char*) calloc(MAXBUFFSIZE, sizeof(char))) == NULL)
{
fprintf(stderr, "Cannot allocate inbuffer, out of memory\n");
exit(-1);

}

if ((outbuffer = (unsigned char*) calloc(MAXBUFFSIZE, sizeof(char))) ==
NULL)

{
fprintf(stderr, "Cannot allocate outbuffer, out of memory\n");
exit(-1);

}

i = fread(inbuffer, sizeof(char), MAXBUFFSIZE, infile);

i = fileparse(inbuffer, bitplaneOff, resolutionOff, outbuffer);

if (fwrite(outbuffer, sizeof(char), i, stdout) != i) {
fprintf(stdout, "Writing tempBuffer file: failed\n");
exit(-1);

return 1;

int fileparse(unsigned char *inbuffer, int bitplaneOff,
int resolutionOff, unsigned char *outbuffer)

{
unsigned char *inptr, *outptr;

int wvtDecompLev;
int Color;
int Ymean, Umean, Vmean;
int QdcY, QdcUV;
int DCsizeY, DCsizeU, DCsizeV;
unsigned char *currbuffer;
int i,j,l;

int spatial scalabilitylevels;
int quantization_type;
int SNR_lengthenable;

int SPlayer_Y_spatial_bitstream length;
int SPlayer_U_spatialbitstream length;
int SPlayer_V_spatialbitstream_ length;
int SPlayer Y SNRlayer_Quant;
int SPlayerUSNRlayer_Quant;
int SPlayer VSNRlayer_Quant;

int SPlayer Y_SNRlayersnr_bitstream_length;
int SPlayer USNRlayersnr_bitstream_length;
int SPlayer V SNRlayer_snr_bitstream_length;
int SPlayer Y SNR_scalability_levels;
int SPlayer U_SNR_scalability_levels;

int SPlayer V SNR_scalability_levels;

int len;

int bytes;
int bsize;
long temp;
long bitstream_size;
int Base;

// Base = (int) pow(2., NLEN_BITS-1);
Base = 32768;

/* set the buffer */
set_buffer (inbuffer);
start_inputing_bits();

inptr = inbuffer;
outptr = outbuffer;

/* wavelet decomposition level (8 bits)
output the level for luminance, the chrominance level is 1 less */

wvtDecompLev = getbits(8);
*outptr++ = (unsigned char) *inptr++;

/* decide if the image is color or gray scale (8 bits) */
Color = get_bits(8);
*outptr++ = (unsigned char) *inptr++;

/* obtain Ymean, Umean, and V_mean (8 bits) */
Ymean = get_bits(8);
*outptr++ = (unsigned char) *inptr++;

if (Color) {
Umean = get_bits(8);
*outptr++ = (unsigned char) *inptr++;
Vmean = get_bits(8);
*outptr++ = (unsigned char) *inptr++;

}

/* obtain quantization step for DC band (Lum, Chrominance) (8 bits) */
QdcY = get_bits(8);
*outptr++ = (unsigned char) *inptr++;

if (Color) {
QdcUV = get_bits(8);
*outptr++ = (unsigned char) *inptr++;

}

/* get the length of the DC bitstream Y (16 bits) */
DCsizeY = getbits(16);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* Get the DC bitstream */
currbuffer = (unsigned char *) get_buffer();
for (i=O;i<DCsizeY/8;i++) {

*outptr++ = (unsigned char) *inptr++;
currbuffer++;

}
set_buffer (currbuffer);

if (Color) {
/* get the length of the DC bitstream U (16 bits) */
DCsizeU = get bits(16);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* Get the DC bitstream */
currbuffer = (unsigned char *)
for (i=0;i<DCsizeU/8;i++){

*outptr++ = (unsigned char)
currbuffer++;

get buffer();

*inptr++;

set_buffer (currbuffer);

/* get the length of the DC bitstream V (16 bits) */
DCsizeV = get_bits(16);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* Get the DC bitstream */
currbuffer = (unsigned char *) getbuff
for (i=0;i<DCsizeV/8;i++){

*outptr++ = (unsigned char) *inptr++;
currbuffer++;

}
set_buffer (currbuffer);

er () ;

spatial_scalability_levels = get_bits(5);
quantization_type = getbits(2);
SNR_length_enable = get_bits(l);
*outptr++ = (unsigned char) *inptr++;

if (quantization_type == BI_LEVEL) /* bi-level quantizer */
{

if (spatial_scalability levels == 1){
/* get the length */
SPlayer_Y_spatial bitstream_ length = get_bits(24);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* get Quant */
SPlayerY SNRlayer_Quant =
*outptr++ = (unsigned char)
*outptr++ = (unsigned char)

get_bits(16);
*inptr++;
*inptr++;

/* get the bitstream for Y */
currbuffer = (unsigned char *) get buffer();
for (i=O;i<SPlayer_Yspatial_bitstream_ length/8;i++){
*outptr++ = (unsigned char) *inptr++;
currbuffer++;

set_buffer (currbuffer);

if (Color) {
/* U component */
/* get the length */
SPlayerU_spatial bitstream length = get_bits(24);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* get Quant */
SPlayerUSNRlayer_Quant = get_bits(16);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* get the bitstream for U */
currbuffer = (unsigned char *) get_buffer();
for (i=O;i<SPlayer_U_spatial_bitstream length/8;i++){

*outptr++ = (unsigned char) *inptr++;

currbuffer++;
}
set_buffer (currbuffer);

/* V component */
/* get the length */
SPlayer_V_spatial_bitstream_length = get_bits(24);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* get Quant */
SPlayerVSNRlayer_Quant = get_bits(16);
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

/* get the bitstream for V */
currbuffer = (unsigned char *) getbuffer();
for (i=O;i<SPlayer_V_spatial bitstream_length/8;i++){

*outptr++ = (unsigned char) *inptr++;
currbuffer++;

}
set_buffer (currbuffer);
}

}
else if (spatial_scalability_levels > 1) {

/* Y component */
/* for (l=wvtDecompLev-l; 1>=0; 1--) { */
for (l=wvtDecompLev-l; 1>=0; 1--) {
/* get length */
SPlayer_Y_spatial_bitstream_length = get_bits(24);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 3;

/* get Quant */
SPlayerYSNRlayer_Quant = get_bits(16);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 2;

if (SNR_length_enable == 0) {

/* Y bitstream */
currbuffer = (unsigned char *) get_buffer();
for (i=O; i<SPlayer_Y_spatial_bitstream_length/8; i++) {

if (l>=resolutionOff) {
*outptr++ = (unsigned char) *inptr++;

}
else inptr++;
currbuffer++;

}

/* set the buffer to the new position */
set_buffer(currbuffer);

}
else {

len = 0;

/* j=0; */
/* while (len < SPlayer_Y_spatial_bitstream_length) {*/
for(j=0; j<wvtDecompLev+2; j++) {

/* get SNR length */

bsize = get bits(NLEN_BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev+2-bitplaneOff)) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

else inptr += 2;
bitstream_size = (bsize>=Base)?bsize-Base: bsize;
i=0;
while (bsize >= Base) {

i++;
bsize = get_bits(NLEN BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev+2-bitplaneOff)) {
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
}
else inptr += 2;
temp = (bsize>=Base)?bsize-Base: bsize;
bitstream_size = (temp<<(i*(NLENBITS-1)))+bitstream_size;

SPlayerY_SNRlayer_snr_bitstream_ length = bitstream_size;
len += SPlayer Y_SNRlayersnrbitstream_length;

/* get the bitstream */
currbuffer = (unsigned char *) get buffer();
for (i=0; i<SPlayerYSNRlayersnrbitstream_length/8; i++) {

if ((l>=resolutionOff) && (j<wvtDecompLev+2-bitplaneOff)) {
*outptr++ = (unsigned char) *inptr++;

}
else inptr++;
currbuffer++;

/* set the buffer to the new position */
set_buffer (currbuffer);

/* j++;*/
} /* while () */
/* SPlayerY SNRscalability_ levels = j; */

) /* if (snr_len_enable) */

if (Color) {
/* U component */
/* for (l=wvtDecompLev-2; l>=0; 1--) { */
for (l=wvtDecompLev-2; 1>=0; 1--) {

/* start inputingbits();*/
/* get length */
SPlayerUspatial_bitstream length = get bits(24);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

else inptr += 3;

/* get Quant */
SPlayerU SNRlayer_Quant = get_bits(16);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 2;

if (SNR length enable == 0) {
/* U bitstream */
currbuffer = (unsigned char *) get buffer();

for (i=O; i<SPlayer_U_spatial_bitstream_length/8; i++) {
if (l>=resolutionOff) {
*outptr++ = (unsigned char) *inptr++;
}
else inptr++;
currbuffer++;

}
/* set the buffer to the new position */
set_buffer (currbuffer);

}
else {

len = 0;
/* j=0; */
/* while (len < SPlayer_U_spatial_bitstream length) { */
for(j=0; j<wvtDecompLev+l; j++) {

/* get SNR length */
bsize = get_bits(NLEN_BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev+l-bitplaneOff)) {
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
}
else inptr += 2;
bitstream_size = (bsize>=Base)?bsize-Base: bsize;
i=0;
while (bsize >= Base){
i++;
bsize = get_bits(NLEN_BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev+l-bitplaneOff)) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 2;
temp = (bsize>=Base)?bsize-Base: bsize;
bitstream_size = (temp<<(i*(NLEN_BITS-l)))+bitstream_size;
}

SPlayerUSNRlayer_snr_bitstream_length = bitstream_size;
len += SPlayerUSNRlayer_snr_bitstream_length;

/* get the bitstream */
currbuffer = (unsigned char *) get_buffer();
for (i=0; i<SPlayerUSNRlayer_snr_bitstream_length/8; i++) {
if ((l>=resolutionOff) && (j<wvtDecompLev+l-bitplaneOff)) {

*outptr++ = (unsigned char) *inptr++;
}
else inptr++;
currbuffer++;
}
/* set the buffer to the new position */
set_buffer (currbuffer);

/* j++; */
} /* while () */
/* SPlayer_U_SNR_scalability_levels = j; */

} /* if (snr_len_enable) */
}

/* V component */
/* for (l=wvtDecompLev-2; 1>=0; 1--) { */
for (l=wvtDecompLev-2; 1>=0; 1--) {

/* get length */
SPlayer_V_spatial_bitstream_length = get_bits(24);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

else inptr += 3;

/* get Quant Quant */
SPlayer_V_SNRlayer_Quant = getbits(16);
if (l>=resolutionOff) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 2;

if (SNR_ length enable == 0) {
/* Y bitstream */
currbuffer = (unsigned char *) get_buffer();
for (i=0; i<SPlayerV spatial bitstreamlength/8; i++)

if (l>=resolutionOff) {
*outptr++ = (unsigned char) *inptr++;
}
else inptr++;
currbuffer++;

}
/* set the buffer to the new position */
set_buffer (currbuffer);

}
else {

len = 0;
/* j=0; */
/* while (len < SPlayerV spatial bitstream length) { */
for(j=0; j<wvtDecompLev; j++) {

/* get SNR length */
bsize = getbits(NLEN BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev-bitplaneOff)) {
*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;
}
else inptr += 2;
bitstream_size = (bsize>=Base)?bsize-Base: bsize;
i=0;
while (bsize >= Base){
i++;
bsize = get bits(NLEN_BITS);
if ((l>=resolutionOff) && (j<wvtDecompLev-bitplaneOff)) {

*outptr++ = (unsigned char) *inptr++;
*outptr++ = (unsigned char) *inptr++;

}
else inptr += 2;
temp = (bsize>=Base)?bsize-Base: bsize;
bitstream_size = (temp<<(i*(NLENBITS-l)))+bitstreamsize;
}

SPlayer VSNRlayersnr_bitstream_ length = bitstreamsize;
len += SPlayerV SNRlayer_snr_bitstreamlength;

/* get the bitstream */
currbuffer = (unsigned char *) getbuffer();
for (i=0; i<SPlayerVSNRlayer_snr_bitstream_length/8; i++) {
if ((l>=resolutionOff) && (j<wvtDecompLev-bitplaneOff)) {

*outptr++ = (unsigned char) *inptr++;
}
else inptr++;
currbuffer++;
}
/* set the buffer to the new position */
setbuffer (currbuffer);

/* j++; */
} /* while () */

/* SPlayer_V_SNR_scalability_levels = j; */
} /* if (snr_len_enable) */

}
}

}

done_inputing_bits();

/* how many bytes totally? */
bytes = inptr - inbuffer;

bytes = outptr - outbuffer;

return (bytes);

9.5 akiyo.html

<html>

<head>
<title>
Wavelet Codec Image Demo -- akiyo image
</title>
</head>

<body>

<script LANGUAGE="JavaScript">

// Hide this script from old browsers --

var largeExpDate = new Date ();
var myDomain;

function getCookieVal (offset) {
var endstr = document.cookie.indexOf (";", offset);
if (endstr == -1)

endstr = document.cookie.length;
return unescape(document.cookie.substring(offset, endstr));

}

function GetCookie (name) {
var arg = name + "="
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (document.cookie.substring(i, j) == arg)

return getCookieVal (j);
i = document.cookie.indexOf(" ", i) + 1;

if (i == 0)
break;

}
return null;

function SetParams()
{
var bitplaneOff = GetCookie('bitplaneOff');
var resolutionOff = GetCookie('resolutionOff');

if ((bitplaneOff == null) I (resolutionOff == null))
{
bitplaneOff=0;
resolutionOff=0;

document.write('<center>');
document.write('<embed src="http://www.yourwebserver.com/nph-

adapt.pl?'+bitplaneOff+', '+resolutionOff+'" width=352 height=288 ');
document.write('bitplaneOff='+bitplaneOff);
document.write(' resolutionOff='+resolutionOff);
document.write(' type="application/x-waveletimage">');
document.write('</center>');

I
SetParams();
// -- End Hiding Here -->
</script>

</body>

</html>

