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Abstract

Methods for sharing application data are currently more complex than necessary and
crude at best. Users may utilize different applications for similar tasks. These applications
do not have access to the same data. For example, many email clients do not share ad-
dress books. Applications store their data in different formats, ranging from ASCII files
to transactional databases.
Heterogeneous synchronization is a process for achieving eventual data consistency be-
tween these heterogeneous data sources. Mediators are used to translate the data into a
generic record-field format for universal access by a synchronization process. The proc-
ess makes no assumptions about the capabilities of the sources as long as the data can be
read. In addition, there are no restrictions on the kind of data that can be synchronized.
Each field consists of a name and value. The name is defined by the mediators and im-
plicitly defines the type of the field's value. All operations on the value are performed by
the mediators that define a given field name.
The SyncEngine is an implementation of the heterogeneous synchronization process. In
the current version the SyncEngine synchronizes contact information between the address
books of Eudora Pro and Outlook.
This thesis introduces a novel application of generic data access to weakly consistent
synchronization for heterogeneous sources.

Thesis Supervisor: John Chapin
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I. Introduction
Many desktop applications work with similar information but do not share this data with

each other intelligently. For example, a fax program has a different address book data-

base than an e-mail application. The user might use one client for business and another

client for private email. If both clients shared one address book, the user would not have

to maintain two sets of similar contacts. To address this problem some of these software

products allow the user to import and/or export data. While this is a good start, a problem

arises with data consistency. If some data changes, the change is not automatically ap-

plied to the other applications. The user has to manually export and then import the data

into all other applications. As can be imagined, this process is unnecessarily complex and

time consuming.

The problem of information sharing does not only apply to an application's address-book.

Another example is schedule and calendar information. Personal Information Managers

(PIMs) are digital versions of Franklin day-planners. A user might use several PIMs for

different purposes but would prefer that they share the same calendar. Personal Digital

Assistants (PDAs), which are replacing paper based filo-faxes, also contain the user's ap-

pointment schedule. Most PDAs let users synchronize data with particular applications,

but do not provide a general data synchronization procedure. These three examples sug-

gest that there is a need for a general data synchronization process.

Databases have provided synchronization and replication features for years. They allow

tables and views of data to be replicated between two or more replicas. In most cases,

replication is used homogeneously, between databases running the same database system

software and created by the same manufacturer. The main focus of database replication



services is to provide high-speed replication of changes from one database to another.

The duplicate databases are often used to improve availability and/or load balancing. In

these replication schemes, the source and destination have the same schema and provide

proprietary access protocols in order to achieve high performance replication. The data-

base software has replication and synchronization services built-in.

If productivity applications such as PIMs and PDAs used full-featured databases to store

information, they could rely on the provided replication features to share information

with each other. First, every application uses its own proprietary schema, they could store

their data in one central database and there would be no information sharing problem.

This solution is not realistic. Second, even Microsoft, with its influence on personal com-

puter operating systems and its huge market share in applications, has been unsuccessful

in establishing one central database for contact information. The Windows-Address-Book

attempts to consolidate address book information in one place, but even Microsoft appli-

cations do not exclusively use the Windows-Address-Book. For example, Microsoft

Word does not use the Windows-Address-Book for the envelope-printing feature.

Another attempt to consolidate application data storage is the Windows Registry. Win-

dows 95 and Windows NT 4.0 both provide a central hierarchical database, namely the

Windows Registry. It contains information from configuration information for the oper-

ating system to application specific information. However, the Windows Registry lacks

structure and a predefined standard. Applications write data to the registry in their own

format. Hence, applications cannot share information intelligently with each other.



An external general-purpose synchronization engine that synchronizes and replicates in-

formation between many applications in a user-friendly fashion would be a better solu-

tion to this problem. This is the solution described in this thesis.

The engine should periodically (or on user demand) be able to scan the different applica-

tions for new and updated information. It should also be able to transfer the changes to all

other applications. This process should be as seamless as possible and require only mini-

mal user interaction. Unfortunately, a synchronization engine in this environment has no

internal knowledge of the application's data storage policy, nor can the engine rely on the

application for support. For example, in a database environment, the replication engine

can intercept transactions to identify which information needs to be transferred to the

other replicas. A general-purpose synchronization engine is unable to hook into the inter-

nal workings of existing applications so it cannot observe changes as they happen.

One approach for the synchronization engine would be to supply a software developers

kit (SDK) to application developers. The developers would use the SDK in order to allow

information sharing between applications. While this could theoretically work, it is not

feasible. There is no incentive for application developers to utilize the synchronization

SDK because it does not add any value to their product. Instead, it makes it easier for the

user to switch applications, decreasing the application's customer base. From the devel-

oper's perspective, if the user cannot access the information from another application, the

user is less likely to switch and re-enter the information into the new application.

Not only must the synchronization engine operate without support from the applications,

it also cannot assume that all applications support a minimum set of capabilities. For ex-

ample, some applications support last names up to a maximum of 30 characters, while



others support 50 characters. The engine needs to be aware of the limitations of each ap-

plication and take those into account when synchronizing data among software products.

In addition, an application might use Unicode encoding for text strings instead of ASCII

encoding. Hence, the synchronization engine needs to translate between Unicode and

ASCII strings in order to synchronize correctly.

One approach is to use the lowest common denominator. For example, one could syn-

chronize 30 characters of text if that is the smallest limit of all of the software products.

This limitation seems overly restrictive, since it should be possible to share data of

greater length between applications that support longer fields.

Another restriction that should not limit synchronization is the engine's potential inability

to update one application's information, for example if a file is read-only or the applica-

tion does not provide an interface to update its information. The synchronization engine

will not be able to update that particular application's information, but it should be able to

propagate updates among other applications. If a temporary restriction that prevents up-

dates is lifted in the future, synchronization should proceed as if the restriction had never

been in effect.

The SyncEngine described in this thesis addresses the problem of synchronizing infor-

mation between different applications. The engine synchronizes data between heteroge-

neous applications, applications that provide different capabilities and have different re-

strictions. The SyncEngine operates without resorting to a lowest common denominator

solution. The engine synchronizes data in a generic fashion: it makes no assumptions

about the data except that the data can be accessed in a record-field fashion. The engine

relies on mediators that provide access to the data in a common generic record-field for-



mat. The SyncEngine has been tested for synchronizing the address books of Eudora and

Outlook.

II. Related Work
Some of the previously mentioned products, e.g. Outlook and Schedule Plus, have fea-

tures to import information from other sources. These features are crude at best. They re-

quire the user to "clean up" the imported data and to delete duplicate records. This man-

ual process is not suited for continuous data synchronization.

The following sections describe database replication schemes which are more relevant to

this project. Most of the schemes add functionality to the database itself, which is not

possible in this project. However, these examples give insight into mechanisms for syn-

chronization, replication, and heterogeneous data access.

1. Data Sharing Techniques

1.1 Voting
A well-known replication method is voting [2], which is a protocol for maintaining con-

sistency of replicated data. A read or write collects a quorum of votes, which are assigned

to each copy of a replicated data item. These read and write quorums of votes must sat-

isfy two constraints. First, quorums must intersect, guaranteeing that any read quorum

has a current copy. Second, write quorums must intersect, imposing an order on updates.

Voting masks failures, with no need for intervention to resume operation. However, re-

silience to failures is achieved at a high read/write cost since at least half of all nodes

need to participate in each data access in order to partition them into majority and non-

majority partitions. These ideas could be applied to the SyncEngine. It would not need its

own database to store the current state. Instead the engine could read or write from or to a



quorum of applications respectively. However, this approach is slower than writing to its

own local database, so the design implemented in this thesis uses a local database.

1.2 Weakly Consistent Replication
The anti-entropy algorithm [13] also relies on weak consistency requirements. The algo-

rithm supports arbitrary communication topologies with incremental replication progress,

while guaranteeing eventual consistency. Replication takes place between two replicas

that exchange write operations. Any database state can be reached by successively ap-

plying the write operation from an initial start state. A write log is stored with each data-

base and contains all writes received by applications or other servers. It is easy to identify

conflicts. If a write is not in one of the replica's logs, it is transmitted to that log. The

storage and communication is very efficient.

A nice feature of the anti-entropy algorithm is that it allows incremental progress. If the

replication process is interrupted, it can be restarted and finish from where it halted. This

feature is very appealing to the SyncEngine, whose data sources can go off-line at any

time. This property also allows replication over low bandwidth connections or even con-

nectionless media like floppy disks. It is easy to support disconnected sources, e.g. mo-

bile personal digital assistants or applications connected via the Internet. However, the

anti-entropy algorithm does not provide the means to identify changes in application data

sources. One possibility is to restrict the SyncEngine to data sources with change notifi-

cations or to implement a change-identification mechanism.

In this thesis, the SyncEngine implements change identification without application sup-

port, and uses a write propagation algorithm similar to but much simples then the anti-

entropy algorithm.



2. Data Sharing Systems

2.1 Windows Briefcase Replication
The Windows Briefcase (part of Microsoft Windows 95 and Windows NT 4.0) allows

application-independent replication. It replicates files between two locations. The user

creates a copy of a file in a different location and the operating system tracks if either

copy has been changed. Later, the user chooses to synchronize the two copies. If only one

field has changed, it is copied to the other location. However, if both files have changed,

the operating system leaves it to the user to resolve the conflict.

The Windows Briefcase process is very easy to use, but has many obvious drawbacks. It

requires user interaction, and it is limited to a file by file synchronization. Synchronizing

data such as address books requires automatic record by record synchronization, so the

Windows Briefcase mechanism is not appropriate.

2.2 IntelliLink Plus
IntelliLink Plus for Windows by IntelliLink Corp. [7] goes beyond import and export to

perform data transfers between Microsoft Schedule+ and a host of additional PC and

handheld applications. It allows the user to import and export contact information be-

tween a variety of programs. The idea is similar to the SyncEngine in that it tries to keep

several applications' data consistent. However, IntelliLink's approach is different. Intel-

liLink Plus requires the user to initiate the import/export from within Schedule+. The

user is expected to export to the other applications whenever he or she updates informa-

tion in Schedule+. Similarly, he or she has to import from another application when that

application's data changes. To replicate the changes to yet additional applications, the

user has to export to all of the desired applications. The process is cumbersome and re-



quires effort on the user's part. There are no conflict-resolution schemes implemented in

IntelliLink Plus; instead, the user is asked to resolve conflicts manually for each con-

flicting record. In contrast, the goal of the SyncEngine is to decrease the amount of user

interaction. Ideally, a change made in one application should be automatically replicated

to all other applications.

2.3 TSIMMIS
The TSIMMIS project [1] developed general techniques for accessing heterogeneous data

sources. Each data record is converted to a common representation for data comparisons

and manipulations. The conversion is performed by a software layer between database

and data client called Mediators.

Mediators perform data translation and field masking. Mediators can also perform data

manipulations depending on the client's requirements. The SyncEngine borrows the idea

of data translation from TSIMMIS, but does not implement fully functional mediators as

defined by TSIMMIS. The SyncEngine's application specific drivers will perform trans-

lation and data manipulation. However, the translation routines will be hard coded. In the

future, the manipulation routines should be downloaded from a user defined location to

the SyncEngine, so that they can be changed dynamically.

One shortcoming of the TSIMMIS system with regard to heterogeneous synchronization

is that the capabilities and constraints of the original data source are not exposed by the

mediators for use by the generic database engine. The SyncEngine needs to extend the

TSIMMIS mediator concept to provide this information, since the SyncEngine needs to

identify changes and merge fields in case of synchronization conflicts. In TSIMMIS the

mediators hide the differences of the sources. The SyncEngine must be aware of the dif-



ference. For example, first name fields could be up to 30 characters in one source and up

to 50 in another. The SyncEngine must be aware of the max character length when com-

paring first names from both sources.

Ill. Design Principles

1. KISS
One of the goals of this project was to create a generic and working SyncEngine. A ge-

neric design risks over-design and incompletion. The fundamental design principle to

prevent over-design is the 'KISS' principle, or "keep-it-simple-stupid." When in doubt,

the simpler option was chosen in the design of the SyncEngine.

2. Data Consistency
Database replication technology usually focuses on performance and transactional con-

sistency. Replication products compete to minimize the time required to establish con-

sistency between replicas. However, the primary concern of heterogeneous synchroniza-

tion is not performance. Instead, the objective is to store the largest possible union of data

from several sources in each source. The main design goal should be data consistency,

since heterogeneous synchronization's goal is to store a consistent set of data in several

sources. High performance is desirable but secondary. The SyncEngine implementation is

targeted at the small data sizes characteristic of contact information making fine-tuned

performance secondary.

3. Standard Interfaces
The design of the SyncEngine follows existing componentization guidelines. In particu-

lar, the interface of the mediators follows the Automation guidelines [10] of Microsoft's

Component Object Model (COM) [14]. The guidelines define argument data types and



suggest calling semantics. A feature of the Automation guidelines is the dual interface

specification that allows late and early binding. The key benefit of the Automation

guidelines is that they define a binary calling conventions, which is supported by several

programming languages. For example, Visual Basic (VB), Java Script, Visual J++, Vis-

ual C++, and VB Script all support it. Hence, the mediators can be written in any lan-

guage that supports the Automation specification. For instance, it is considerably simpler

to access Microsoft Schedule Plus from Visual Basic than via C++. The Automation

specification allows implementing the Schedule Plus driver in Visual Basic even though

the main SyncEngine is written in C++.

4. Extensibility
The heterogeneous synchronization process should be extensible. Sources should be al-

lowed to be added at a later time without requiring changes to the existing implementa-

tion. Similarly, the kinds of information synchronized and their data types should be ex-

tensible.

IV. Methodology: Heterogeneous Synchronization

1. Overview
This section describes the algorithm developed for heterogeneous synchronization, inde-

pendent of any implementation issues. Section V illustrates the issues of the SyncEngine

implementation.

Abstractly speaking, heterogeneous synchronization takes data from several sources, cre-

ates the union of this data, and stores the union back to every source. However, a source

might not be able to store all types of data. In this case the goal is to store the largest pos-

sible subset of the overall union in that source. After a synchronization run, all sources



should contain logically the same information. If information in any source is updated,

added, or deleted, the next synchronization run will apply the same changes (additions,

deletions, and updates) to all sources. Hence, after each synchronization run, the infor-

mation in all sources is identical to the extent allowed by the capabilities of each source.

This outlines the overall goal of the synchronization process.

Heterogeneous sources make the synchronization process difficult. The synchronization

algorithm can make no assumptions about the capabilities of the sources, except that they

support some method of data access that enables an external program to read the infor-

mation stored inside the source. There can be complex situations where one source can be

updated, another source is read-only, and a third source can only store a subset of the in-

formation.

The heterogeneous synchronization system consists of several components. As in the

TSIMMIS system, the synchronization system needs a translation layer. Recall that the

mediator in TSIMMIS generalizes the access to the source's data, as well as the data it-

self. The access to the information needs to be normalized because each source has a dif-

ferent information access interface. Further recall that each source needs a specific me-

diator. See Figure 1.

The information normalization property of the mediator allows the synchronization proc-

ess to work with the data in an abstract fashion, without knowledge about its type or in-

terpretation. The goal is to be able to synchronize any kind of data.
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Figure 1 - Mediators - Abstract Data Access

2. Sources
The system synchronizes data between several sources. (For notation let these be sources

A, B, and C.) Each source can be a file, or an application that provides methods to access

its data. The exact makeup of the source is irrelevant to the synchronization process, be-

cause each source is accessed though a mediator specific to the source. If an application

can store data in several places (i.e. files), then a customized mediator for each location

(file) is needed.



3. Mediators
Each source is accessed via its mediator, making the words mediator and source synony-

mous from the perspective of the synchronization algorithm. (For notation let these me-

diators also be A, B, and C.) Each mediator exports the source's information as an unor-

dered collection of records. The mediator assigns a unique identifier to each record it ex-

ports (see section 0 for details). The identifier is unique in time and unique with respect

to that mediator. The mediator supports retrieval of individual records by identifier and

iteration over the collection of records.

Each mediator defines a collection of named-fields it supports. (For the definition of

named-fields see section 5.) The names of the supported named-fields are also exported

as a collection, which can be accessed by iterating over it. Each mediator may support

different named-fields. The following example clarifies the definition of the intersection

of supported field names between sources.

* Let mediator A support fields named N, 0, and P.
* Let mediator B support fields named 0, and Q.
* Let mediator C support fields named N, O, P, and Q.

The intersection of supported named-fields between mediator A and B are fields named

O. The intersection for mediator B and C are fields named 0, and Q. Finally, the inter-

section between mediators A and C are fields named N, 0, and P.

If all three intersections were empty, meaning no field name was shared by any pair of

mediators, then there are no fields that can be synchronized between sources.
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4. Records
The mediators export the source's data as records. (For

notation let these records be R, S, and T.) Each record

consists of an unordered collection of named-fields and

a unique identifier assigned by the mediator as de-

scribed above. The individual fields can be accessed by

iterating over the named-field collection or by selecting

a field by its name. There are no restrictions on the

number of named-fields with the same name that can

be in each record

Figure 3 -Records

5. Named-Fields
A record consists of a collection of named-fields. (For notation let these fields be F, G, H

and I.) Each named-field consists of two properties, a name and a value. (For notation let

these names be N, O, P, and Q, and let the values be V1, V2, V3, ...)

Each mediator declares a collection of field names. Each field name implicitly defines the

type of the value property of the named-field. For example, mediator A declares field

name "Email" as a field with the value property being a zero-terminated string in ASCII

encoding. The synchronization algorithm assumes that all mediators that declare the field

name "Email" agree on the value type. The algorithm makes no attempt to ensure that the

mediators are in compliance. The assumption is safe, since name clashes are unlikely if

only mediators from one origin are used in any one system. For example, the

implementers of the Eudora and the Outlook mediators have a common interest to avoid

name clashes, namely to synchronize between Outlook and Eudora.

Field F

Field G

Record 
RS

.ID=id2l \ \ •i --
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This design makes the synchronization process exten-
Field F Name N

Value Vl sible. If new kind of information should be synchro-

Field G NameO nized, the mediators responsible for this new infor-
Value V2

Field H Name O mation must define new named-fields and agree on

their value representation. For example, if postal ad-

Figure 4 - Named-Fields dresses should be synchronized, the mediators that

synchronize addresses must agree the following field names: "Street Name", "City",

"State", "Zip Code", and "Country". The mediators must also agree on the type of the

value property of each field. An example for the type of the value property could be

Unicode strings. But alternatively, the type of the value property of the field named "Zip

Code" could be a binary encoded decimal. The synchronization process does not put any

restriction on the choice of field name or representation.

Each record exported from a specific mediator contains only fields named with one of the

names supported by that mediator. For example, if mediator A supports field names N

and M, then all records exported by mediator M contain only fields named N or M.

However, if a record is sent to a mediator, that mediator is required to accept records with

fields having any name, not just the ones supported by the mediator. The mediator is ex-

pected to disregard the fields with names that it does not support, meaning that it treats

these records as if they did not contain any fields with names different from the ones the

mediator supports. This feature allows mediators to be extended in the future to support

other field names. It is important that mediators disregard any field with names that it

does not support, otherwise it would start performing operations on data whose type it



does not know. This could lead to corruption. For example, it might look at a field's

value as of type ASCII string, when in fact it is a binary encoded decimal.

6. Local Database
The synchronization algorithm requires a local database in order to determine which, if

any, records have changed in a source. The functionality of the database is defined in this

section; section 8 describes how the algorithm uses these features. The local database

stores records (including their unique identifiers), status and timestamp for each record.

The unique identifier assigned by the mediators are used to establish a logical link be-

tween equivalent records in different sources. For example, assume that the contact in-

formation for "Bill Clinton" is stored in sources A and B. In source A, it stored as record

R and in source B as record S. Let R have identifier R.ID and S have identifier S.ID.

Logically they both represent the same information, namely the contact "Bill Clinton."

The identifiers R.ID and S.ID together form a logical link between the same contact "Bill

Clinton" across source boundaries. If the contact is updated in source A, the identifier

link {R.ID, S.ID} can be used to determine that record S in source B needs to change as

well. The exact process is explained later.
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The local database also stores a status field for each logical records that helps when a re-

cords is missing in a source, because the synchronization process does not know if the

record has been deleted from the source or if the record never existed in the source. For

example, let the contact "Bill Clinton" be record R in source A. Another source C does

not have a contact "Bill Clinton." This information is not sufficient to determine if

source C never had a contact "Bill Clinton" or if it used to have a contact "Bill Clinton"

that has been deleted. This is important, since if the contact has been deleted in C, then

the record R in source A must be deleted as well. If C never had a contact "Bill Clinton,"

then the contact must be created in source C by adding the record R from source A to

source C.
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To resolve the creation-deletion ambiguity, each record stored in the local database has a

status R.status. By default R.status = Write, meaning that the record exists. If the record

has been deleted it is marked as R.status = Delete, which means that the record has been

deleted from at least one source and should be deleted from the others.

R witten R witten
to db

, time
t, t2

R(t < tj) = Q R(t t < t 2) = R(tj) R(t2 < t) = R(t2 )

R(tnow) = R(t 2)

Figure 6 - Timeline

The synchronization process must also determine whether a record has changed in a

source. To make this possible, the local database needs to keep track of all changes to

each record. Assume that a record R was stored in the local database at time t1 . At time t2

the same record is updated. Instead of overwriting the record R(tl) with the new informa-

tion, a new record R(t2) is added to the local database. Both versions of record R can be

retrieved from the local database by specifying a time for the record. For example, R(tl)

will be retrieved if a time t is specified with t1 
< t < t2. Similarly, R(t2) will be retrieved if

a time t' is specified with t2 5 t'. If there is no version of record R with time greater than

t2, then time t' does not have an upper bound, i.e. t2 < t'. Obviously, the retrieval of R(to)

with to < tl will fail, since there exists no version of record R at any time before tl. For

notation, the latest version of a record is named R(t,,now) since all version have times

smaller than the current time by definition. For an illustration see Figure 6.

to db

I I I

R witten 
R witten

I



Unfortunately, the local database can grow large if the information changes often. A pro-

posal for reducing the number of versions of records stored the local database is de-

scribed in section 11.

7. Record Equality Testing
The synchronization process tests records for equality as part of change identification.

The tested records are considered to be equal if they contain the same number of fields

and the fields are pair-wise equivalent. Pair-wise field equivalence means that the fields

in the first record and in the second record have the same field name and the same field

value.

The values of two fields cannot be compared directly, since the data type of that value is

unknown to the synchronization algorithm. Only the mediators that support a specific

field name know what type it is. For example, the value of field name N might an ASCII

string while the value of field name O might be a UNICODE string. Similarly, the value

of field name O might be an ASCII string whose capitalization does not matter, meaning

that "xyz" is equivalent to "XYZ".

Therefore, each mediator must provide an equivalence-testing function for each field

name that it supports. The synchronization process can then use these functions to com-

pare two fields and thereby test the equality of two records. The synchronization algo-

rithm calls on the mediator that it is currently synchronizing with to perform the record

comparison. It is of course necessary that all mediators supporting the same field name

provide logically identical equivalence-testing functions for that field's values.



8. Heterogeneous Synchronization Process
Now that the components have been defined, the actual synchronization algorithm is ex-

plained in this section. As stated earlier, the goal of synchronization is to merge all rec-

ords from all sources into each source and to keep them consistent. The synchronization

process eventually achieves consistency. Eventually means that the algorithm guarantees

consistency if a synchronization run with all sources completes in which no changed rec-

ords were identified. This method is called eventual consistency [13].

Unlike in [13], in heterogeneous synchronization the limitations of a given source may

prevent it from storing all records of all sources. Therefore, we use a more relaxed re-

quirement than complete consistency, requiring instead that the largest possible fraction

of the union (of all records from all sources) is stored in each source. More formally:

* Construct union U = records from A u records from B u ...

* A stores largest possible VA C U given the limitations of A

* B stores largest possible VB _ U given the limitation of B

Note that VA VB if the limitations for A and B are different.

We call this heterogeneous consistency.

Once heterogeneous consistency has been initially achieved, the sources need to be kept

consistent. When the user changes a record in one source, the SyncEngine should propa-

gate the change to all corresponding records in all other sources. The following para-

graphs outline the synchronization algorithm that achieves this goal.

8.1 Initial Synchronization
The synchronization algorithm processes each source one by one, starting with source A,

then source B, and so forth. The first time the synchronization process is started, all rec-



ords from a source A are stored in the local database. They are stored along with their

identifiers R.ID, which are created by the mediator for source A. Next, all records from a

source B are similarly stored in the local database.

At this step one could search for "similar" records, link them, and avoid duplicates. Con-

sider what happens if both sources A and B contain a record for "Bill Clinton". Let "Bill

Clinton" in source A be record R and let "Bill Clinton" in source B be record S. One

could devise an algorithm that finds that R and S are conceptually the same record, ex-

cept that they originate in different sources. These "similar" records could be linked in the

local database via their unique identifiers. This would reduce the number of duplicates of

the same contact "Bill Clinton" in each source. However, this optimization is not imple-

mented in the current version of the SyncEngine. Not searching for "similar" records

means that the user has to manually detect the duplicates and merge or delete them. Con-

sequently, the algorithm is not as automatic as it could be.

After all the records from sources A and B have been stored in the local database, the re-

cords from the remaining sources are similarly stored in the local database. As a result,

the local database contains the union of all records from all sources. Next, all records in

the local database that are not in a particular source need to be written to that source.

After adding all records that do not exist in a source to that source, it is now consistent

with the union of all records from all sources. This process is continued until all sources

are consistent with the union of all records from all sources. Hence, the sources eventu-

ally reach heterogeneous consistency. See section 10 for what happens if a failure hap-

pens before all records have been be added to a given source.



8.2 Change Identification
Before changes in a given source can be applied to other sources, the algorithm has to

determine what changes happened in the given source. This section explains how the

synchronization process determines which records have changed in a given source as well

as which changes from other sources need to be applied to this given source.

In the following description, SrcRec refers to a record from a given source and record R

refers to the corresponding record from the local database. The correspondence is deter-

mined by the identifier link which is stored in the local database. Recall the explanation

on identifier links in section 6.

8.2.1. Possible Changes
The information in the sources can change over time as the user works in different appli-

cations. The changes can be updates, additions, or deletions of individual fields or entire

records. The records in the local database change because the changes in another source

are applied to the corresponding record in the local database.

The synchronization process looks at each source individually. The possible changes are

the cross product of the changes to a SrcRec and the changes to the corresponding record

R in the local database. Table 1 outlines all possible changes. Some permutations are

marked as N/A for not available, since these permutations cannot occur in the synchroni-

zation process. The reasons are explained below.



Possible changes Type of change to SrcRec
since last sync not exist no add delete update
with given source change
cr not exist N/A 1 N/A 2 N/A 1 N/A 2
0

C no N/A 5 N/A 3
change

'5 add N/A 4 N/A 3 N/A 4 N/A 4
-F N/A 4

delete N/A 5 N/A 3
.c_ update N/A 5 N/A 3

Table 1 - Possible Changes

N/A 1: If a record exists neither in the source nor in the local database, then it does not

exist; the synchronization process does not need to synchronize it.

N/A 2: If there is a source record with no corresponding record in the local database, then

this source record must have been added since the last sync with the given source.

Therefore it cannot be in the No Change or Update states.

N/A 3: If a SrcRec has just been added to its source, then SrcRec cannot have a corre-

sponding record in the local database. As previously mentioned, one could con-

ceivably search for a record "similar" to SrcRec in the local database, but this

search algorithm is not part of the synchronization procedure implemented in this

thesis. Consequently, the cases marked N/A 3 do not exist.

N/A 4: Similarly to N/A 3, if a record R has just been added to the local database, then R

cannot have a corresponding record in the source.

N/A 5: If there is a record in the local database with no corresponding record the source,

then this database record must have been added since the last sync with the given

source. Therefore it cannot be in the No Change, Update, or Delete states.



8.2.2. Possible Actions
For each combination of source record change type and database record change type,

there is an action that must be taken. Table 2 describes the possible actions. Each possible

entry in table 1 requires one or several of these possible actions to be executed. This list

of actions is complete.

nop no operation, no action is necessary
add SrcRec to lo- add SrcRec to local database
cal database
update R update record R in local database with data from SrcRec.

This creates a new version R(tnow) of record R with the in-
formation from SrcRec.

add R to source add record R from local database to the source
reconcile reconcile SrcRec with R. For example, if R and SrcRec

have both changed, the user is required to merge
changes.1

mark R delete mark R as "Delete" in the local database
del SrcRec delete SrcRec in the source.2
update SrcRec overwrite SrcRec in the source with R(tnow)
confirm if one record has been updated and the corresponding rec-

ord has been deleted or marked deleted, either the user is
asked for which action is correct or a new record based on
the updated record is created

Table 2 - Possible Actions

Table 3 outlines what actions need to be taken under which circumstances. The table ex-

plains which changes in the source and/or changes in the local database to corresponding

records trigger which actions.

1 Another possibility is to create two records based on R and SrcRec.
2 In the future, the algorithm should ask the user to confirm the deletion of a source record. All deletion
should also be logged so that the user could restore a deleted record manually.



Required actions Type of change to SrcRec in source
for changes since not exist no add delete update
last sync with change
aiven source

0I

C0

cc

0 C

0 CZ-a

not exist

no
change
add

delete

update

Table 3 - Required Actions

If a record changed in a source, on the next synchronization run, the change should be

applied to all corresponding records in all other sources in order to keep all sources syn-

chronized. Before the change can be applied to other sources, the change needs to be

identified.

8.2.3. Type of Change of R
The type of change to a record R in the local database can be determined by looking only

at the local database. Table 4 lists the type of changes and how they can be identified.

I

............



Type of Change to R in Lo- Identified by
cal database
not exist R =

(i.e. there exists no record R
corresponding to SrcRec in
local database)

no change R(tnow) = R(tlastsync)
A R(tlastsync) # 4
A R.status = Write

add R(tlastsync) =
A SrcRec =
A R.status = Write

delete R.status = Delete
A R(tlastsync) # 4

update R(tnow) # R(tlastsync)
A R(tlastsync) # 4
A R.status = Write

Table 4 - Identification of Change Types of R

The remainder of this section explains the entries in Table 4. Let source A be the source

that is currently being synchronized. Let tlastsync be the time of the last synchronization

with source A. R(tlastsync) is the version of record R as of time tlastsync. Let tnow be the cur-

rent time.

No Change: A database record R is unchanged (change type "No Change") with respect

to source A if the tlastsync version is the same as the newest version of record R.

Obviously, the tlastsync version must exist and R must not be a deleted record.

Add: A database record R has been added (change type "Add") to the local database

since the last synchronization with source A if R is not marked deleted and a tlast-

sync version of R does not exist. Additionally, a corresponding source record

SrcRec must not exist.

Delete: A database record R has been deleted (change type "Delete") from the local data-

base since the last synchronization with source A, if R is marked deleted and a



tlastsync version of R exists. The second requirement is subtle, but if a tlastsync ver-

sion does not exist, then R has been added to the local database (and marked de-

leted) since the last synchronization with source A. This implies that there exists

no corresponding source record in A because a corresponding source record

would have only been created during a synchronization run. Hence, nothing needs

to be done, since there is no corresponding source record.

Update: A database record R has been updated (change type "Update") in the local data-

base since the last synchronization with source A if R is not marked deleted and

the tlastsync version is not equal to the tnow version of record R. Obviously, the tiast-

sync version of R must exist, otherwise R would have change type "Add" and not

"Update".

8.2.4. Type of Change of SrcRec
Identifying the change to SrcRec in the source would be simple if the source supported a

method to query for all records that have changed since the last synchronization. The het-

erogeneous nature of the sources prevents the assumption that all sources support such a

query for changed records. To identify which records have changed, all source records

SrcRec must be read from the source and compared to the information stored in the local

database. Table 5 outlines how changes in the source are identified.



Type of Change to SrcRec Identified by
in Source
not exist SrcRec =

(i.e there exists no record
SrcRec corresponding to R)

no change SrcRec = R(tlastsync)
add R = A SrcRec #
delete R(tlastsync) # A SrcRec =
update SrcRec # R(tlastsVnc)

Table 5 - Identification of Change Types of SrcRec

The remainder of this section explains the entries in Table 5. Let source A be the source

that is currently being synchronized. Let tlastsync be the time of the last synchronization

with source A. R(tastsync) is the version of record R as of time tlastsync. Let tnow be the cur-

rent time.

No Change: A source record SrcRec is unchanged (change type "No Change"), if SrcRec

is equivalent to the tlastsync version of the corresponding record R. They corre-

spond since the tlastsync version was updated from SrcRec (or vice versa) at the last

synchronization.

Add: A source record SrcRec has been added (change type "Add") to A, if there exists

no record R in the local database corresponding to SrcRec. Obviously the source

record SrcRec must exist.

Delete: A source record SrcRec has been deleted (change type "Delete") from A, if a tlast-

sync version of the corresponding database record R exists and source record

SrcRec no longer exists.

Update: A source record SrcRec has been updated (change type "Update") in A, if

SrcRec is not equivalent to the tlastsync version of the corresponding record R, since

the tlastsync version is the version to which SrcRec was equivalent at the last syn-



chronization. Note that R(tlastsync) = 0 cannot occur since in order for the change

type to be "Update," there must have been a record R in the local database at the

time of the last synchronization.

Using Table 4 and Table 5, it is possible to determine which changes have occurred.

Combining the conditions from both tables leads to a complete list of the conditions that

must be tested in the synchronization process, shown in Table 6.

Conditions Inverse Conditions
C1 R= R #
C2 R(tlastsync)= R(tlastsvnc)
C3 R(tnow) = R(tlastsync) R(tnow) R(tlastsync)
C4 R.status = Write R.status = Delete
C5 SrcRec = 0 SrcRec 4
C6 SrcRec = R(tlastsync) SrcRec R(tlastsync)

Table 6 - Conditions

8.2.5. Type of Change, Conditions, Actions
Combining the conditions with the possible changes results in Table 7, summarizing the

synchronization algorithm.

Changes and their
conditions

cao0
C C_Co

00)0

: Cd
I--

Type of change to SrcRec in source since last sync
not exist no add delete update

not exist

no
change
add

delete

update

Table 7 - Summary of the synchronization algorithm



The following algorithm identifies all changes and takes the appropriate actions. First, all

source records are retrieved from a source A. Each source record SrcRec is put through a

series of tests to identify changes. Then the appropriate actions are taken. Thereafter, all

records R that do not have corresponding source records in source A are sequentially read

and put through a series of tests to identify if they changed, and the appropriate actions

are taken. Now the local database and the source A should be consistent again. The same

procedure is applied to the remaining sources until there are no more changes to be ap-

plied. Once all sources have been processed in this manner, an entire synchronization run

is complete. Heterogeneous consistency is only reached if no changes happen to any

source between the time it is processed and the end of the sync run. For the types of ap-

plications considered in this thesis, the change rate is low enough that heterogeneous con-

sistency will almost always be achieved.

The following is a proposed implementation of the synchronization algorithm. Figure 7

and Figure 8 outline a proposed implementation of the IndentifyChange (xxx) algo-

rithms.

Sync ()
Begin

For each Source S
Begin

For each SrcRec in S
Begin

IdentifyChange (SrcRec)
End
For each R in the local database with no corresponding SrcRec
Begin

IdentifyChange (R)
End

End
End



IdentifyChange (SrcRec)

- uon rm

Figure 7 - IndentifyChange(SrcRec)
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IdentifyChange(R)

Figure 8 - IdentifyChange(R)

9. Scheduling of Synchronization Runs
The synchronization algorithm needs to run often enough that the user has the perception

that the sources are almost always consistent. For example, in the domain of address

books that means that a change in one address book should be applied to another within

roughly a minute. To support this requirement, the user should be able to specify a fixed

interval between automatic executions of the synchronization process. To improve this

fixed scheduling, advanced mediators could notify the algorithm that a change has oc-



curred in a source. The mediator need not guarantee that a change did take place, nor

specify exactly what changed. A mediator could for example use the Windows NT file

change notification feature. This operating system notification fires whenever a file has

been modified. This notification does not guarantee that the source data has changed, but

it is a strong hint which the mediator can pass on to the algorithm. The algorithm in turn

buffers incoming notifications, and once a user defined delay time has passed without

further modifications, a synchronization run is started. This approach assures that user

modifications to a source results in a sooner than scheduled synchronization. It also

avoids a notification propagation problem, since a synchronization run is not started im-

mediately after a mediator notification. If this were not the case, a notification from me-

diator A could result in a synchronization run which immediately updates source B. This

update in turn, could result in another notification by mediator B, starting another syn-

chronization run. Since each run can take significant amount of time, the cascade of runs

would degrade the user's system performance noticeably.

10. Failures
The synchronization process can take a long time to complete. Failures can occur during

this period. For example, the network connection to a source might be interrupted, power

may fail, a hard disk may crash, etc. The longer the synchronization algorithm runs, the

greater the probability of a failure occurring. In case of a failure the synchronization run

is interrupted. Assuming that the local database is accessed using transactions, and as-

suming that mediators write and update the sources in a transactional fashion, then the

algorithm can recover from a failure.



Recovering also requires that the implementation of the algorithm follows a fail-fast de-

sign. Fail-fast means that the algorithm stops when it encounters an error rather than cor-

rupting its local database or any of the sources.

Fail-fast for the local database is assured by the use of transactions. The mediators have

to be implemented to guarantee fail-fast. For example, instead of updating a file, the me-

diator can update a copy of the file. Upon completing of the update, the new file is re-

named to the original name. This method assures file level atomicity. The atomicity re-

quirement is reduced to the rename operation. It is assumed that the operating system

guarantees atomicity for the rename operation.

Given a fail-fast algorithm, achieved through transactional updates, recovery is straight-

forward. After the error has been eliminated, the synchronization process is started again.

The last synchronization time of the record that was being synchronized at the time of the

failure will not have been updated, since the synchronization time is part of the transac-

tional update to the local database. Hence, after a failure the algorithm treats that record

as if it had not been considered since the last completed synchronization. Additionally,

the changes applied to sources during the failed run do not have to be reapplied, since the

change identification algorithm recognizes that R(tnow) == R(tlastsync) for those records.

For an example, assume that the algorithm is synchronizing with source A. It identifies

that a record R has changed in the source A, that a record S has changed in the local data-

base, and that a record T has changed in the source as well as in the local database. The

algorithm applies the changes for record R and S before a failure occurs. The synchroni-

zation run stops leaving the change for record T unapplied. After the error is corrected,

the algorithm is started again. Assume that records R, S, and T have not changed again



since the failed synchronization run. The algorithm notices that the records R and S did

not change, because the changes have already been applied during the partial synchroni-

zation run. Record T is recognized as changed, and this time the appropriate synchroni-

zation behavior occurs. Similarly, if records R and S have changed since the failed syn-

chronization run stopped, then records R and S will be identified as changed by the algo-

rithm, and the appropriate changes will be applied.

10.1 Read-Only Sources
An interesting example of a failure is the case of temporarily or permanently read-only

sources. At first glance it might not make much sense to synchronize with a source that is

read-only; however, the source may be read-only with respect to the synchronization pro-

cess, but updateable by another method. Read-only sources can be considered as another

form of failure, in which non of the changes are applied to the source. In the following

next synchronization will try to apply the same changes to the source. It is clear, that if

the read-only restriction was ever removed, then heterogeneous consistency would even-

tually be reached for the given source.

11. Local Database Maintenance
This section describes several enhancements to the local database that make the overall

operation more efficient, but are not crucial to the synchronization process of the algo-

rithm.

11.1 Database Collapsing
This local database can grow large when data changes often since it stores all versions of

all records. To reduce this problem, the algorithm can be improved to store only the latest

version of a record. For previous versions, a reverse-delta is stored. The reverse-delta is



used to restore the original version of the record. For example, let version tnow be stored

entirely. To retrieve version R(tj) with tl < tnow the reverse delta of tl is applied to R(tnow)

to generate version R(tj). This concept can be applied sequentially, such that each previ-

ous version is stored as the reverse delta of the following version. To generate a previous

version all intermediate reverse-deltas have to be applied.

Applying reverse-deltas takes time. Using this method trades retrieval speed off for stor-

age size. Unfortunately, this method is only a partial solution, since the overall size of the

local database still increases over time, retaining old versions of records that will never

be accessed again by the algorithm.

11.2 Database Pruning
The database can also be pruned of old versions of records that are no longer needed. Re-

call that only the versions R(tnow) and R(tlastsync) of each record are needed for synchroni-

zation with each source. Consequently, all versions of records that are not the tnow or tlast-

sync versions of that record for each source can be periodically pruned from the database.

Database pruning is an efficient way to keep the local database at the minimum number

of versions of records. In most problem domains, especially the one considered in this

thesis (email address books) pruning should be sufficient and database collapsing is not

necessary. For problem domains with records that are individually very large, collapsing

might be an important enhancement.

12. Advanced Sources
Some sources provide more capabilities than others. One example is Outlook, which can

be queried for records that have changed since a specific date. Querying for changed rec-

ords improves synchronization performance since the algorithm does not need to retrieve



all records from each driver. Since the algorithm still has to work with mediators that

cannot be queried for changed records, the algorithm must first ask the mediator if it can

be queried for changed records. If it does, the synchronization speed for this source can

be increased.

This concept can be extended to allow mediators to send a notification to the algorithm,

saying that a change in their source might have happened. For more details see section 9.

V. Implementation: SyncEngine

1. Overview
The SyncEngine is a prototype implementation of the previously outlined synchroniza-

tion process. The goal is to build a generic engine that synchronizes information between

heterogeneous data sources. This engine can be used by the user to synchronize informa-

tion between different applications or between the same application on different comput-

ers, such as a desktop and a laptop. The engine should allow other sources to be added

and removed at the users' discretion. The engine needs to be extensible in the sense that

in the future it can synchronize new types of information without changing the SyncEn-

gine itself. All that should need to be changed are the mediators. (In the context of the

SyncEngine the mediators are called drivers; one driver for each source.) A new source is

integrated into the synchronization process by adding a new driver for that source. Dif-

ferent kinds of information from an existing source are added by modifying the existing

driver for that source.

2. SyncEngine
The current implementation of the SyncEngine allows the user to synchronize the address

book of Qualcomm's Eudora Pro 4.0 email-client with the contact store of Microsoft's



Outlook 97 personal information manager. This is an interesting scenario because Eu-

dora's address book is an ASCII file, while Outlook's address book is an extensible data-

base. Additionally, the SyncEngine cannot write to Eudora's address book since it is a

combination of an ASCII file with a binary index file with unknown file format. The

ASCII file could be updated, but that would leave the index file out of date, and Eudora

would be unable to read its address book. Therefore, from the SyncEngine's perspective,

Eudora's address book is read-only. These two sources represent two extremes, an ASCII

file that can only be read via file I/0 on the one hand, and a query based database on the

other.

The SyncEngine itself is general and uses an abstract interface to the driver of each

source to access the source's information. It does not assume that only contact informa-

tion is synchronized. By changing the drivers, it is possible to synchronize other kinds of

information, such as appointments. However, these modifications have not yet been im-

plemented.

Native
Access
Method Source

Eudora
(read/only)

Outlook

Figure 9 - SyncEngine Overview



Figure 9 shows the major components surrounding the SyncEngine. Depicted are the

sources Outlook and Eudora, along with their address books, the drivers for each source,

the SyncEngine, and the database local to the SyncEngine. The SyncEngine does not ac-

cess the address books directly but via the driver for each source. Outlook exposes a

COM Automation interface for access to its address book, which is used by the Outlook

driver. The Eudora driver uses Windows file I/O calls to access the address book. The

SyncEngine uses Structured Query Language (SQL) to access its local database.

Figure 10 - Database Schema

When the SyncEngine starts the user can choose which sources to synchronize. Once se-

lected, the user starts the synchronization process by clicking a button. The engine starts

with the first source, dynamically loads its driver DLL and starts synchronizing that

source. After that source is synchronized, the driver is unloaded to reduce the overall



memory footprint of the engine. Unloading becomes important for drivers that cache the

source data in memory such as the Eudora driver. Then the driver for the next source is

dynamically loaded and synchronized. This procedure iterates over all selected sources. It

is clear that after enough synchronization runs that all sources will eventually be consis-

tent.

2.1 Local Database
The local database is a Microsoft Access database. A graphical representation of the

schema is depicted in Figure 10.

2.1.1. IDMap Table
Each record is assigned a unique identifier by the driver where the record originated. This

identifier is called DataRecordlD. This id is only valid in combination with the driver id.

The DataRecordlD and DriverlD pair uniquely identifier a record from a given driver.

Inside the database, all corresponding records are stored only once. For example, let the

contact "Bill Clinton" from source A correspond to the contact "Bill Clinton" from

source B. Instead of storing both records, the information is stored only once and is as-

signed a unique identifier with respect to the database. This id is called SyncEnginelD.

The IDMap table is responsible for maintaining the correspondence relationship (the

"identifier link" in section IV.6) across drivers. The table contains the one to many rela-

tionship of on SyncEnginelD to many DataRecordlD/DriverlD pairs. Lastly, each row

has an t_lastsync field whose value is the time tlastsync for that record, meaning the last

time this record identified by DataRecordlD/DriverlD was made or checked to be

equivalent to the corresponding record in the source identified by DriverlD. This field



t_lastsync needs to be updated each time consistency has been established between the

database and corresponding the source record.

2.1.2. DataRecords Table
The DataRecords table contains the status for each SyncEnginelD record. The status is

either "Write" or "Delete". The status is stored in the ActionlD field. For extensibility

and efficiency reasons, the ActionlD field contains an index into the Actions table. (The

Actions is assumed to contain at least two rows, one for "Write" and one for "Delete".)

The TypelD field is a placeholder for future enhancements. See section 4.

2.1.3. Dataltems Table
The Dataltems table contains the actual values of all SyncEnginelD records. For each

SyncEnginelD there are many rows, each row containing the Key and Value of a field of

that record. The key is the type of the field's value property. For example, if a record has

four fields than there will be four rows in the Dataltems table for that record. But this ta-

ble must also store all version of the same record. Therefore, each row contains a DT

which is a date/time value. The correct record can be identified by the SyncEnginelD

along with the DT of that record.

2.1.4. Example
Here is an example, of what steps are necessary to retrieve a particular record. Let R be a

record with ids DataRecordlD and DriverlD. To retrieve R(t), meaning R as of time t,

first the SyncEnginelD of R must be determined by a lookup in the IDMap table. Once,

the SyncEnginelD is retrieved, it can be used to look up status (ActionlD) in the DataRe-

cords table. Then the SyncEnginelD is used to retrieve all fields for R, by retrieving all

rows in table Dataltems with SyncEnginelD and DT = t. Putting all rows together results



in R(t). This retrieval can be easily performed using inner-join SQL statements. The full

SQL statement is:

SELECT DataRecords.SyncEnginelD AS SyncEnginelD, IDMap.DriverlD,
IDMap.DataRecordlD, IDMap.t_lastsync, DataRecords.ActionlD,
DataRecords.TypelD, Dataltems.DT, Dataltems.Key, Dataltems.Value

FROM (DataRecords INNER JOIN IDMap ON DataRecords.SyncEnginelD =
IDMap.SyncEnginelD) INNER JOIN Dataltems ON DataRecords.SyncEnginelD
= Dataltems.SyncEnginelD

WHERE (DataRecords.SyncEnginelD = id AND Dataltems.DT = t)

2.1.5. Interface
Inside the SyncEngine, record storage to and retrieval from the local database is ab-

stracted into a class. The following is the interface:

class CSyncEngineDB

public:
//.........................................................

// Ctor/Dtor
CSyncEngineDB(); // ctor
virtual -CSyncEngineDB(); // dtor

//.........................................................
// Open/Close database and all member recordsets
HRESULT Open();
void Close();

// open database and member record sets
// close database and member record sets

//................................
// record manipulation methods
HRESULT AddDataRecord(

const CDataRecord& rDataRecord,
const COleDateTime& dt,
/*[OUT]*/ long& rlSyncEngineID

add record to database or
record already exists
record to add to db
date/time of record to add
return SyncEngineID of the
return S_OK on success
return EOUTOFMEMORY
return E_INVALIDARG if no

iew version if

added record

entry or no
// dataitems for lSyncEngineID with time dt
// any CDatabaseExceptionthrow();

HRESULT GetDataRecord(

long lSyncEngineID,
const COleDateTime& dt,
bool bExactDT,

retrieve record from database by
SyncEngineID
ID of record in db
date/time of record to retrieve
records with exact dt or <= dt

/*[OUT]*/CDataRecordDB* &rpDBDataRecord // pointer to retrieved record
// return S_OK on success
// return E_OUTOFMEMORY
// return E_INVALIDARG if no entry or no
// dataitems for iSyncEngineID with time dt

throw(); // any CDatabaseExecption

HRESULT GetDataRecord(

LPCTSTR szDriverID,
LPCTSTR szDataRecordID,

retrieve record from database by
DriverID/DataRecordID and time
syncengine driver name
record ID specific to syncengine driver



const COleDateTime& dt, // date/time of record to retrieve
bool bExactDT, // records with exact dt or <= dt
/*[OUT]*/CDataRecordDB* &rpDBDataRecord // pointer to retrieved record

) // return SOK on success
throw(); // any CDatabaseException

HRESULT AddMapping(

long iSyncEngineID,
LPCTSTR szDriverID,
LPCTSTR szDataRecordID)
throw();

// add mapping between source and existing db
// record
// SyncEn-gineID of existing record
// DriverID to map to SyncEngineID
// DataRecor-dID to map to SyncEngineID

//.........................................................
// Get/Set methods for driver last sync time
HRESULT GetDrvSyncTime( // get driver last sync time

LPCTSTR szDriverID, // syncengine driver name
/*[OUT]*/COleDateTime& rdtDrvSyncTime // date/time of last sync with specified

// driver
const; // return S_OK on success

// return S_FALSE on no last sync time entry
// for dry meaning first sync with dry
// return E_FAIL on failure

HRESULT SetDrvSyncTime(
LPCTSTR szDriverID,
const COleDateTime& dtDrvSyncTime

set driver last sync time
syncengine driver name
date/time of last sync with specified
driver
return S_OK on success
return E_FAIL on failure

3. Drivers
The drivers are implemented as dynamic link libraries (dlls). The SyncEngine dynami-

cally loads each driver at run time and initializes it. Once initialized it can call the driver

to return each record of the source. Following is the interface that each driver exposes.

class ISyncEngineDrv : virtual public IUnknown

public:
STDMETHOD(Initialize) () PURE; // initializes the driver

// this method should be called
// by the factory to initialize
// an instance of this object.

//-------------------------------------------------------------------------
// General driver properties:
STDMETHOD_(BSTR,GetName) () PURE; // returns unique driver name

STDMETHOD_(BSTR,GetDescription) () PURE; // returns driver description

//-------------------------------------------------------------------------
// Property for supported field enumeration
STDMETHOD_(ISyncEngineDrvFieldsEnum*,GetFieldsEnum)() PURE;

//-------------------------------------------------------------------------
// Property for records enumeration

STDMETHOD (ISyncEngineDrvRecordsEnum*,GetRecordsEnum)() PURE;

//-------------------------------------------------------------------------
// Record retrieval methods:
STDMETHOD_(long,GetCount) ( // returns the number of records in

) PURE; // return number of records
driver



STDMETHOD(GetDataRecord)( // gets a specific record
long i, // record to get: 0 thru GetCount()-1
/*[OUT]*/IDataRecordWirerep* &rpDataRecord // pointer to retrieved record
) PURE; // return S_OK on success

STDMETHOD(AddDataRecord)( // adds record to driver
IDataRecordWirerep *pDataRecord // record to add
) PURE; // return S_OK on success
// Note: updates the record's driver ID and record ID

STDMETHOD(UpdateDataRecord)(
const IDataRecordWirerep
) PURE;

STDMETHOD(DeleteDataRecord)(
const IDataRecordWirerep
) PURE;

// update record in driver
*pDataRecord // record to update

// return S_OK on success

// delete record in driver
*pDataRecord // record to delete

// return S_OK on success

class ISyncEngineDrvRecordsEnum : virtual public IUnknown

public:
STDMETHOD_(long,GetRecordsCount)(

) PURE;
// returns the number of records in driver
// return number of records

STDMETHOD(GetDataRecord)( // gets a specific record
long i, // record to get: 0 thru GetCount()-1
/*[OUT]*/IDataRecordWirerep* &rpDataRecord // pointer to retrieved record
) PURE; // return S_OK on success

STDMETHOD(AddDataRecord)( // adds record to driver
IDataRecordWirerep *pDataRecord // record to add

PURE; // return S_OK on success
// Note: updates the record's driver ID and record ID

STDMETHOD(UpdateDataRecord)(
const IDataRecordWirerep
) PURE;

STDMETHOD(DeleteDataRecord)(
const IDataRecordWirerep
) PURE;

// update record in driver
*pDataRecord // record to update

// return S_OK on success

// delete record in driver
*pDataRecord // record to delete

// return S_OK on success

class ISyncEngineDrvFieldsEnum : virtual public IUnknown

public:
STDMETHOD_(long,GetFieldsCount) () PURE; // returns number of supported field names

// return S_OK on success

STDMETHOD_(BSTR,GetFieldName)(
long i
) PURE;

// get a specific supported field name
// field name to get: 0 thru GetCount()-1
// return S_OK on success

The interface exposed by each driver conforms to the requirements of Microsoft's Com-

ponent Object Model. However, the design should be modified in the future to conform

more closely the to COM Automation guidelines. In particular the IxxxEnum interfaces

are not compatible with the Automation guidelines. The goal is to make the interface con-

form well enough that it can be implemented using any language such as Java, VisualBa-



sic or C++. Currently, because the interface does not conform, the drivers cannot be

called from VBScript or JavaScript.

4. Future Work
To improve the efficiency of the local database, the enhancements described in section

IV.11 should be implemented in future versions of the SyncEngine. The following sec-

tions describe other extensions to the current implementation that would improve the ef-

ficiency of the SyncEngine.

4.1 Record Comparison via Record Hashes
For domain with large record size the following proposal improves performance. The

comparison of two records can be a bottleneck, because the corresponding fields of both

records need to be compared. A future implementation could speed up this process by

storing a digital signature [15] of all fields along with each record. The digital signature is

a well-chosen one-way hash function of all field names and values of the particular rec-

ord. The mediator/driver will be responsible for generating the hash for each record, and

a hash will be stored for each record in the local database. When comparing two records

the hashes of the two records can be compared.

4.2 Callback for Record Comparison
In the current implementation the SyncEngine compares the fields of two records using a

simple string compare. However, as described previously, this might not be the correct

behavior for all field value types. Only the mediators/drivers know the type of the field's

value property for each field name that they support. In future implementations the driver

should expose a method that takes two records as arguments and compares them. Since



the driver understands the representation of all fields it can correctly compare the two re-

cords.

4.3 Callback for Find-Similar-Record
In the initial synchronization run, all records from all other sources are added to each

source. If several sources contain similar records, which is likely since the user will have

manually replicated the records, it will be important to avoid creating duplicates in these

sources by "linking" the similar records. But the SyncEngine cannot find similar records,

since it is unaware of the representation of the record's fields. A solution might be to call

the driver to locate a similar record for each record from another source during the initial

synchronization. In case of contact information the driver might look for a match in first

name, last name and email address.

4.4 Enhanced Links
The TypeID in the Types table of the local database a placeholder for future extensions.

Currently all records are synchronized with all sources. The corresponding records are

"linked". In the future, it should be possible to define records that are not-linked, mean-

ing they are not synchronized with other sources. This feature can be handy when a rec-

ord is deleted in one record, but the corresponding records in other sources should not be

deleted. The sources should then be consistent except for this "non-linked" record.

5. Tools and Infrastructure

The target platform for the engine is Win32, meaning Microsoft Windows 95/NT. The

development environment is Microsoft VisualStudio 97 on Windows NT 4.0. VisualStu-

dio includes VisualC++ as well as VisualBasic. C++, including language features like

templates and exceptions, is used for the implementation of the SyncEngine and the driv-



ers. To reduce development time, the Microsoft Foundation Classes (MFC) as well as the

Standard Template Library (STL) are used. These libraries provide frameworks for user

interface development as well as simple and advance data structures. The local database

is created using Microsoft Access 97 and is accessed from the engine via the Open Data-

base Connector (ODBC) using Structured Query Language (SQL) queries. MFC has

ODBC support classes which facilitate the development of the database access.

NuMega BoundsChecker was used during development to identify run-time errors and

memory leaks. Visual Quantify from Rational Rose was used for performance analysis.

VI. Experiments
This section gives the results of experiments performed to test the functionality of the

SyncEngine as well as to identify shortcomings of the engine.

Information about the performance of the SyncEngine was gathered by creating a sample

Eudora and Outlook address book. Table 8 shows sample records for each address book.

Field Name Sample
Eudora FullName EudoraContact0019

Email email0019 @ eudora.com
Outlook FullName Outlook Contact01l93

FirstName Outlook
LastName Contact01l93
HomeAddressStreet 99 Magazine St, Apt 999
HomeAddressCity Cambridge
HomeAddressPostalCode 3  MA
HomeAddressCountry USA
HomePhone (617) 555-5555
Email ContactO1 93 @ outlook.com

Table 8 - Sample Records

3 The Outlook driver incorrectly puts the state in the field named PostalCode. This will be corrected in the
future.



Each record was created using a script. The records are identical except for the number

following the word 'Contact'. The number is used to differentiate each record

1. General Validation
The first experiment with the SyncEngine was run to validate the functionality of the al-

gorithm. The functionality of the engine was validated by comparing the number of rec-

ords and fields in the local database after each synchronization run with the expected

number of records and fields.

The setup was a clean state, where no synchronization had been run before, meaning that

local database was empty. The Eudora and the Outlook address book contained one hun-

dred records each. After two synchronization runs (two synchronizations with each

driver), the local database contained 200 records and 1600 fields. The total number of

records was 200, since each source contributed 100 records. The total number of fields

was 1600, because each Eudora record had 3 fields initially (See Table 8.) Each Outlook

record had 9 fields initially. Consequently, 100 Eudora records contributed 300 fields and

100 Outlook records contributed 900 fields for a total of 1200 fields.

At first glance, there are 400 more fields then expected. During the synchronization with

Outlook the 100 Eudora records were added to Outlook. If a record was added to Outlook

that has only a 'FullName' field but not a 'FirstName' or 'LastName' field, then Outlook

assigned a 'FirstName' and/or 'LastName' field automatically. In this experiment, the

records originating in Eudora only had a 'FullName' and 'Email' field. When these rec-

ords were added to Outlook, each of these records was automatically assigned a

'FirstName' field by Outlook. During the next synchronization with Outlook, these rec-

ords were identified as changed in Outlook. Accordingly, they were added to the local



database as new versions. Each new version had four fields instead of originally three.

Since there were 100 records with new versions, there were 400 new fields, for a total of

1600 as previously mentioned.

Subsequently, the "EudoraContact0010" record's 'Email' field was changed to

"TESTemail0010@eudora.com" from within Eudora. In the next synchronization with

Eudora, this record was noticed as "Change" in the source and the corresponding record

in the local database was "No Change". Consequently, a version of the record was added

to the local database, resulting in 1604 fields, since the new version had four fields. Dur-

ing the next synchronization run with Outlook, this record was noticed as "No Change"

in the source Outlook and "Change" in the local database. The record in the source Out-

look was updated with the latest version of the local database record.

2. Failure
One claim of the SyncEngine is that it is able to synchronize even if it is interrupted. The

design assumes that the drivers can update the sources atomically and that the local data-

base is updated atomically. The Eudora driver does not need to provide atomic updates,

since it is read-only. The Outlook driver delegates updates to Outlook. It is assumed that

Outlook provides atomicity for these updates on a record level. The SyncEngine only

requires record level atomicity.

The SyncEngine's behavior after failures has been tested as follows. During a synchroni-

zation run, a failure is simulated by terminating the SyncEngine's process at a random

time. To verify the assumption that Outlook provides atomic updates, a script validates

that each record in Outlook complies to the sample record given in Table 8 differing only

in the number after the word 'Contact'. This does not prove the assumption to be true in



the general case, since all simulated crashes of the SyncEngine could have happened

while not updating Outlook. However, it ensures that the assumption is valid for the tests.

Neither of the two sources is changed after the interruption. This restriction is without

loss of generality of the simulation, since changes to the sources after the interruption are

handled identically to changes from before the interrupted synchronization that have not

been applied before the interruption. This case is explained in more detail below.

After the interruption, the SyncEngine is started again, and synchronization starts by

identifying which records have changed. There are two cases of changed records:

(a) Records whose changes have been applied before the interruption.

(b) Records whose changes have not been applied before the interruption.

In case (a), a change had been identified in the interrupted synchronization run and the

correct action had been completed before the interruption. Completing the correct action

means that the SrcRec is equal to R(tnow). In the following synchronization run the

change identification algorithm will compare the SrcRec to R(tnow). Since the correct ac-

tion had previously been completed, SrcRec is equal to R(tnow) and no further action

needs to be taken.

In case (b), a change had either not been identified in the interrupted synchronization run

or the correct action had not been completed before the interruption. In the following

synchronization run that change identification algorithm will recognize the change and

apply the correct action as it would have in the interrupted synchronization run.

The experiment was initialized with 50 records in the source according to the sample rec-

ords in Table 8. The local database was empty. During synchronization the 50 source re-



cords need to be added to the local database. The SyncEngine was run inside the debug-

ger. During the run, the SyncEngine process was stopped in debugger. At that point the

number of records in the database was recorded. This number corresponds to the number

of records in case (a), the records whose changes have been applied before the interrup-

tion. The remaining records are in case (b). Then the synchronization process was re-

started. Upon completion the number of records in the database was compared to the ex-

pected number of records (50).

This test run was performed 15 times for synchronizing the Eudora source and 15 times

for the Outlook source. Out of the 30 runs, the number of records in the local database

after completion of the restarted synchronization was 50 records (as expected) except for

the 1 1th Outlook synchronization. In that instance the restarted run did not complete be-

cause the SyncEngine terminated with an unexpected exception from Outlook's Automa-

tion interface. The cause of that exception could not be determined, nor could the failure

be reproduced. Since writing Automation code from C++ is complex the most likely

cause is that the Outlook driver is not using Outlook's Automation interface quite right.

The scenario could not be reproduced.

The number of (a) and (b) cases was not centered around the expected value of 25 for

each, assuming a uniform distribution over all 50 records. It was roughly centered around

36. The reason might be that the SyncEngine was stopped manually, and that the user

stopped the process later rather than earlier.

The simulations have shown that the SyncEngine can be restarted after interruptions and

proceed with the synchronization.



3. Read-Only
The SyncEngine is designed to be able to synchronize data sources, some of which might

be temporarily or permanently read-only. The general validation described in section 1

did not validate synchronization with read-only sources.

Starting from the endpoint of the general validation experiment, the same record "Eu-

doraContact0010" was changed. In particular its email field was altered to "MORE-

TESTemail0010@eudora.com". The next synchronization run with Outlook noticed this

change and added a new version of this record to the local database, resulting in 1608

fields in the local database. The following Eudora synchronization run noticed the

change, and tried to update the record in Eudora. Since Eudora was read-only the update

failed and the tlastsync time of that record for source Eudora was not updated to the time of

synchronization. On subsequent synchronization runs, the SyncEngine noticed that the

Eudora source record was "No Change" and that the local database record was "Change".

The engine tried to update the source record on every subsequent synchronization run,

but each time the update failed, and the tlastsync time of that record for source Eudora was

never updated. At this point, the record was manually updated in Eudora. The subsequent

synchronization run noticed that both corresponding records were changed. Conse-

quently, the source and the local database records needed to be merged. The SyncEngine

displayed a dialog box informing the user that the records needed to be merged. The ex-

periment was aborted at this point. The experiment showed that the SyncEngine does cor-

rectly synchronize even if one of the two sources is read-only.



4. Performance
A series of tests was performed to measure the performance of the SyncEngine imple-

mentation. As stated earlier, performance was not a major design issue and consequently

the implementation has not been optimized. The measurements were performed on a

Pentium Pro 200 Mhz computer with 128 MB of random access memory running Win-

dows NT 4.0 SP3.

4.1 Measurements
This section summarizes the results for several test runs to evaluate the scalability of the

SyncEngine. Figure 11 and Figure 12 show the speed of synchronization with Eudora and

Outlook respectively.

Figure 11 - Scalability of Eudora driver
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Each figure contains two trend lines, one for an "initial sync" and another for a "no

change sync". Both are with respect to the number of records in the source. The "initial

sync" line is the performance of synchronizing with the source for the first time when the

local database is still empty. This synchronization mostly reflects the speed of retrieving

records from the source and the speed of the local database for storing all retrieved rec-

ords. The "no change sync" line is the performance of synchronizing with the source

when there are no changes in the source nor in the local database. This synchronization

mostly reflects the speed of retrieving records from the source and the local database and

the performance of the change identification algorithm.

Figure 12 - Scalability of Outlook driver
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It is obvious that the performance is not practical for real world usage. Performance can

be improved by optimizing the drivers as well as the SyncEngine itself. More impor-

tantly, the trend with respect to increasing number of records in the source is linear in the

range from 50 to 500 records for the Eudora driver and in the range from 50 to 250 for

the Outlook driver. However, increasing the record range to 1000 records shows that the

"no change sync" is close to O(n2), while the "initial sync" is close to O(n 3). It was ob-

served that the disk is operating at an extremely high number of seeks per second. A hy-

pothesis is that the local database scales as O(n3) for inserts and as O(n 2) for reads (plus

few updates) with time dominated by disk seeks. (Recall that the local database is up-

dated even in the no-change synchronization to keep the tlastsync values correct.) However

more detailed measurements are needed in the future to support this hypothesis.

4.2 Analysis
The following is a summary of the components of the SyncEngine performance, meas-

ured using Visual Quantify. The times and percentages of total running time exclude idle

times. In each analysis the Eudora and the Outlook address book have been pre-populated

with 50 sample records each. Time was measured from the beginning of the actual syn-

chronization run, which excludes the startup of the SyncEngine itself. It does include the

opening and closing of the local database and the dynamic loading of each driver. Upon

dynamic loading the Eudora driver reads in the entire address book file and creates a

collection of records from which it serves all record retrieval calls. The loading time of

the Outlook driver includes the initialization of an Automation COM connection to the

running Outlook application, but no records are pre-cached.



4.2.1. Initial Synchronization Run
This run shows a typical behavior when a source is synchronized for the first time. The

source is pre populated and the local database is empty.

The results for Outlook:
Total running time: 33.9 seconds
Time % of Total Sync Description

Time
2.8 8.2% opening local database
0.2 0.6% dynamically loading Outlook driver
2.4 7.2% retrieving records from Outlook driver

(Estimated per record time: 0.048 seconds)
24.1 71.2% adding records to local database

(Estimated per record time: 0.482 seconds)

The results of Eudora:
Total running time 4.59 seconds
Time % of Total Sync Description

Time
2.5 54.2% opening local database
0.2 5.8% dynamically loading Eudora driver
2.4 7.2% retrieving records from Eudora driver

(Estimated per record time: 0.048 seconds)
1.3 29.2% adding records to local database

(Estimated per record time: 0.026 seconds)

4.2.2. No Change Synchronization Run
This run shows typical behavior when no changes have been made to the source or to the

local database. It is interesting to know where the time is spent during a synchronization

run that does nothing except that it discovers that it has nothing to do for each record.



No Change synchronization with Eudora:
Total running time: 4.8 seconds
Time % of Total Sync Description

Time
2.7 57.1% opening local database
0.3 5.6% dynamically loading Eudora driver
0.0 0.7% retrieving records from Eudora driver

(Estimated per record time: 0.0 seconds)
1.4 30.1% retrieving records from local database and updating

tlastsync

(Estimated per record time: 0.028 seconds)

VII. Conclusions
The synchronization process described in this document guarantees eventual heterogene-

ous consistency between heterogeneous sources. The power of heterogeneous synchroni-

zation is its extensibility and that it works with any kind of information while not requir-

ing changes to existing data sources. New sources and new kinds of data can be added to

the system at anytime.

The techniques described in this thesis are most closely related to methods and tech-

niques of the TSIMMIS system. The TSIMMIS system uses more sophisticated media-

tors. In TSIMMIS they are active components with rules for data translation and extrac-

tion. The mediators are advanced enough to access other mediators and query for infor-

No Change synchronization with Outlook:
Total running time: 19.8 seconds
Time % of Total Sync Description

Time
2.5 12.5% opening local database
0.2 1.0% dynamically loading Outlook driver
4.5 23.1% retrieving records from Outlook driver

(Estimated per record time: 0.09 seconds)
11.1 56.1% retrieving records from local database and updating

tlastsync

(Estimated per record time: 0.222 seconds)



mation on the users behalf. This thesis only builds upon the concept of abstract data ac-

cess of heterogeneous data sources.

It is important to note that,

* consistency is only reached if a synchronization run completes without simultaneous

changes made by the sources.

* synchronization of read-only data sources is handled by the same algorithm that al-

lows the synchronization process to be interrupted at any time due to failures.

The major limitation of the prototype implementation of heterogeneous synchronization

described in this thesis is performance. Each synchronization run takes a considerable

amount of time, up to over 20 minutes for a thousand records on the system examined

here. Performance can be improved for sources whose mediator can tell the algorithm

which records have change in the source.

The SyncEngine is a proof of concept implementation that successfully establishes con-

sistency between the address books of Outlook and Eudora. More importantly, the

SyncEngine shows that heterogeneous synchronization works for sources that are read-

only as well. The implementation needs more work to make it truly generic and to in-

crease performance.
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