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Abstract

As product development tools become more powerful, complex, and distributed, the need to simplify the vast
amounts of information they provide becomes increasingly important. In addition, building in or adding features
that make the development tool easy to use and understand is vital.

Moreover, different product development participants, such as designers, engineers, and managers, want to quickly
locate the variables that impact the areas that interest them most and discover how the changes they make affect the
rest of the product development problem. They also want to know how sensitive results are to changes in these
variables. Given this capability, designers can quickly learn what they can affect and also what impacts them and to
what degree. Determining a causality or dependency chain, as well as providing a sensitivity analysis are methods
to help users visualize and understand large amounts of information and intricate relationships.

DOME (Distributed Object-based Modeling and Evaluation), a software design environment under development in
the MIT CADIab, is an integrated product development tool that offers users powerful modeling and evaluation
capabilities. DOME possesses many notable features and functions to aid the designer so they can make sense of
the model and results. DOME uses “entity relationship™ graphs as a default view, and employs different "lenses” so
that the engineer can evaluate the design problem by applying different criteria. For example, the designer can use a
lens to evaluate the performance of the design in terms of cost or safety.

The objective of this work is to add the ability of extracting qualitative information, such as cause and effect, from a
DOME design model. This thesis considers three different DOME modeling scenarios when developing the
algorithms to implement the features to accomplish this task. The first case is an explicit local DOME model. The
second case involves deducing causality only knowing a list of equations and nothing else. The third explores how
to extract a causality chain when parts of the model are linked to other software applications. By developing
algorithms to deal with these circumstances, individually or combined, and by displaying the results effectively,
people from different domains, such as designers and managers, will be able to easily perceive the information and
intricate interconnections of complex distributed models in the best way possible.

Thesis Supervisor: David Wallace
Title: Esther & Harold Edgerton Assistant Professor of Mechanical Engineering
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Introduction

1.1 Motivation and Goals

The DOME (Distributed Object-based Modeling and Evaluation) project team, working in the
MIT CADIlab, wishes to offer designers a product design tool to help them reduce product
development time and improve product quality. In particular, they hope to provide designers
with a tool that offers them much more power, freedom, and flexibility. The success of this
undertaking is closely related to how well a completed, or partially completed, software model is
understood, how easy it is for a given product development participant to use the tool, and how
accurate/reliable the model and results are.

Given the complexity of models that are generated with new design tools, the fact that models
are now distributed over networks, and that they can be linked to other high quality specialized
design software tools, the need to gain insight into qualitative information, why results are
obtained as opposed to what the results are, is more important than ever. For example, a design
tool might be able to optimize a design and produce an optimal result, but it is difficult for the
user to understand why or how this result was realized. In some cases a designer might want to
know which variable affects a particular aspect of the design the most. If a design tool uses
specs or utility functions to generate scores, it would be important to know for which values, or
combination of values, does the design score dramatically worsen. This problem is compounded
when the model is distributed. If the model is linked to several different software applications,
referred to as a “black boxes”, the explicit causality/dependency chain is lost. The designer does
not really know which parent variable influences which dependent variable. In summary,
designers would find causality/dependency and sensitivity features very useful.
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This thesis will develop and add new capabilities to DOME. Specifically, causality/dependency
theory, and design sensitivity analysis theory will be investigated and applied to DOME.
“Knowing about causal or dependency relations among variables is essential in handling a
number of practical problems such as diagnosis and prediction.” [3]

1.2 Vision

The vision is to provide users
of DOME with a deeper
understanding of a complex
distributed product
development model. This will
be accomplished by applying
causality/dependency analysis,
and design sensitivity analysis.
Figure 1.1 is a graphical
representation of this vision.

At the user’s request, a number
of options will be offered. A
full dependency or causality
map flowing from a selected
variable will be produced, or
simply a list of control
parameters (i.e. roots, the top-
level independent variables,
not the complete chain) or
influences (i.e. leaves, the very
end of the chain, not the
complete chain). As will be
discussed latter, the user could
choose to stop the chain at a
number of different points,
depending on what they are
interested in. The goal is to
help the designer better

understand and utilize the e 1 N o o ‘ -
DOME model b y fo cusing on Figure 1.1 The vision of this thesis includes visualizing causality. This igure

depicts the causality chain for a power drill.

what matters to them. They

will be able to focus in on sections of the model that relate to their areas of interest. The hope is
to reduce the amount of time the originator, or first time user, spends getting to know and
understand the model.

Additionally, the user, on command, will be able choose a particular variable or design score and
capture information on which variables influence them most. This is a sensitivity analysis.

14



Finally, causality/dependency chains of extremely complex models, such as automotive sub-
systems, might be difficult to make visible on a computer screen because of the large amounts of
data present. For these circumstances, methods of displaying large amounts of information will
be offered. An additional goal is to display this information in a way that best suits the particular
user. For example, if a manager were using the tool, the information would be displayed so that
they could understand it.

1.3 Problem Statement

The goal of this thesis is to define the algorithms that will carry out the above stated vision. The
following problems are addressed and resolved:

1.3.1 Causality/Dependency Analysis

First, given a DOME model with an explicit child/parent chain, develop an algorithm that
extracts the chain of interest. Second, develop a methodology to extract the chain if it is not
made explicit, such as if only equations describing the physical phenomenon are available.
Third, develop an algorithm to extract the chain if the model is distributed and linked to other
applications. Next, determine which of the above stated scenarios are present and then take the
appropriate action. Finally, discover the limitations of each of these approaches.

1.3.2 Sensitivity Analysis

Explore sensitivity analysis theory and ascertain how it applies to DOME. Next, investigate
current methods of applying sensitivity analysis and finally, learn what the limitations are.

1.3.3 Visualization

Develop an effective graphical interface to make these features user friendly. Suggest a method
of displaying the results. If the analysis produces a great deal of information find methods for
displaying this information on a computer screen and look for how the information could be
processed so that it make sense to the individual using the application.

1.4 Deliverables of this Thesis

First, an example of a complex DOME design problem model will be presented. It is a model of
an LCD computer projector. This LCD example is given to illustrate why these functions are
needed to diagnose the model. Furthermore, this example will illustrate how these features help
the designer gain insight into the model. Lastly, the model will be used to illustrate how the
features will be implemented.

This thesis will also present background information on the theory of causality and sensitivity
analysis. In addition, there will be some investigation into data visualization. Next, this thesis
will provide algorithms to carry out the vision. Finally, these theories will be integrated into the
DOME application.
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1.5 Organization of this Thesis

Chapter 2 begins with a brief description of the DOME framework and continues with an
illustration of an LCD computer projector design model. This chapter will set the stage for why
the features, discussed in previous sections, are needed.

Chapter 3 presents related work. The work of several key researchers in the field of causality
and design sensitivity analysis will be discussed. Current theories and methods of data

visualization will also be presented.

Chapter 4 deals with how to extract explicit causality/dependency chains from a DOME model
and offers proposals for different use scenarios.

The fifth chapter offers algorithms for determining causality/dependency if the model is
distributed, the “black box” issue.

The sixth chapter continues with a discussion on sensitivity analysis.
The seventh chapter discusses approaches of establishing causality if only equations are known.
The chapter then concludes with an explanation on why this could be useful in the DOME

architecture.

Chapter 8 summarizes the work presented in this thesis with conclusions and addresses
implementation issues.

16



Background

There is a great deal of literature devoted to the subject of generating qualitative information.
Some authors would argue that more emphasis is placed on describing models in terms of
equations, focusing on relationships and results rather than how or why they came to be. Iwasaki
and Simon stated that “in the world of engineering and science, many are interested in describing
things in terms of equations and expounding on the relations that hold among parameters of
objects that govern their behavior over time. The idea of causality is rarely made explicit. You
should or must know about causality to be able to understand the phenomena.” [3]

The need to generate qualitative information while using DOME software became very apparent
when the models became large, complex, and especially when they became distributed. Before
more is offered on the subject of qualitative analysis, and how it could be incorporated into
DOME, the following sections provide a brief description of the DOME framework.

2.1 A Description of DOME
2.1.1 Overview

DOME (Distributed Object-based Modeling and Evaluation), a software application under
development in the MIT CADIab [8] [14], is an integrated design tool that provides the user with
a distributed and integrated modeling and evaluation environment. The vision behind DOME
has broad applicability and encompasses many topics.

One driving notion behind DOME is that product modeling is more than just creating geometric

or even solid models of objects. Design can include almost anything. The concept behind the
technology is to approach each part/component/aspect of the design as an object, much like
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objected oriented programming. The objects can then be linked together to provide the user with
a systemic view of a design model.

Furthermore, the vision includes creating a general all-purpose tool. Therefore, DOME can be
put to use to solve many types of design problems. This includes resolving job shop scheduling
problems [24] in addition to a wide array of engineering design problems. DOME objects can
encapsulate just about every design activity, such as geometric design, costing, environmental
impact, and design for manufacturing. These objects can be then liked together. DOME is very
flexible and can be linked to other different applications, which is in step with the distributed
vision. Even evaluation schemes can be regarded as objects so users can exploit any assessment
or decision method as needed. The concept of objects can even be extended to include people.
A design could include an engineer, specializing in a relevant field, to supply technical answers
when needed. Their input would then be synthesized into the rest of the model.

Another goal of the creators of DOME is to allow users to quickly build design models. It would
not be very beneficial if the user had to spend several months or years, making theses models.
DOME models in fact, can be built rather quickly. Section 2.2 presents an example of a real
DOME model that required about 35 person days to construct [25]. The ultimate goal of using
DOME is to reduce product development time and to increase product quality. Developing the
overall model quickly helps in this regard.

The first step in creating a DOME model is to make the assumption that design problems can be
broken down into sub-problems. These sub-problems are then seamlessly linked together.

Motor Module 2.1.2 The Module; the Main Building Block of
Load Speed DOME
Characteristics
o rover The main building block of a DOME model is the
Supply n module. A module can represent a part of the
Nodes design problem such as a motor (Figure 2.1). A
Interface DOME model could also contain modules of other

- components such as gearboxes, chucks, and
Figure 2.1 Simplified motor module: interface and  rechargeable batteries, as well as more conceptual
embedded model [11] representations for issues like human factors.
Developing these modules and actively linking
them together actually facilitates and enhances design.

2.1.3 Nodes

These modules in turn encapsulate nodes (Figure 2.1). Nodes contain basic data that can be
deterministic or probabilistic, dependent or independent. They can even be linked to other
software applications using CORBA [8] [18]. In this way, several different software models
representing different pieces of the design can be linked together to form a system. Lastly, nodes
can contain computer program, tables, or functions.
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Nodes can also be linked together to form embedded models. Figure 2.2 shows how node
“Length”, that contains a beta distribution, can be multiplied by the node “Cross-sectional Area”,
containing deterministic value, and then multiplied by “Density” containing a deterministic value
of 7.77x10% kg/m’, to generate the distribution called “Weight”. This is accomplished by using a
Monte Carlo simulation. After accessing one of the nodes, Cross-sectional Area, for example,
the user can then manipulate the current value to explore different design possibilities. This
change in turn changes Weight. If Weight is connected to other nodes in the design, DOME will
then propagate this change throughout. This is accomplished because the modules that
encapsulate these nodes can then interact with one another to transmit the information (Figure
2.1). Information and results can propagate from the smallest detail of the design all the way up
to the overall model and vice versa.

Length (L)

Relation:
W=Lx AXp

Cross-
sectional

Weight (W)

Figure 2.2 A model: variables and relations [11]

2.1.4 Catalogs

DOME modules can be replaceable. A set of similar modules can be grouped together to form a
catalog. In this way, DOME has the capability of evaluating discrete module level changes in
the design. Figure 2.3 shows an example of an assemblage of DC motor modules.

Catalog of DC Motors

SlDEp.-

ower ower 0
ooty 1 fSoppiy M |Bipply ™ fEGpp

Figure 2.3 Catalog example of DC motors [11]

2.1.5 Evaluation

To evaluate a design, a decision support framework is utilized. Once the performances of the
variables are attained they are evaluated against a set of specifications. These specifications are
constructed as acceptability functions [16]. Next, all of the scores produced by this evaluation
are then taken together to obtain a final score. Many other evaluation methods could be used.
An example of an acceptability function is shown in Figure 2.4 (a) and an example of a
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performance is given in Figure 2.4 (b). This performance might be like the weight distribution
obtained in the previous section. The formula for the probability of acceptance if given in 2.4
(c), as well as a graphic depicting the performance overlaid on the spec [16]. If the performance
falls outside the acceptability function the performance has a zero probability of being accepted.
This outcome would propagate through the entire design and result in a zero score for the whole
design. If Pycceptance i €qual to one, then the probability of acceptance is unity. All results are
given between 0 and 1 and indicate a degree of acceptance.

acceptability(x) performance(x) acceptance
= jacceptability(x) - performance(x)dx

1

.
-

1

Pacceptab]e

=) -
4
o
Y
o
Y

(a) (b) (©)

Figure 2.4 Evaluation Framework [16].
2.1.6 The Complete Design

All of the design modules including catalogs and static modules are encapsulated in the final
design. Figure 2.5 shows an example of a top-level view of a DOME design model. The
modules are located in the middle part of this figure, the lenses, which will be described in the
next section, are located on the far right hand side, and the overall design score is located on the
bottom right hand side of the figure.

2.1.7 Features

Dome possesses many notable features. One .
striking feature of DOME software is the |
capability of exchanging modules of designs |
or catalog items over networks or the web. |
This allows the designer to utilize designs or |
catalog items from all over the world and try |
them out in their design models. :

Another capability of DOME is a multi- |
criteria search engine that allows designers to | e
optimize their design [30]. Designers and |
engineers can optimize the model base on all |
the parameters or just a chosen few. |
Likewise, they can optimize independent *-
parameters and catalog items. In addition, the
designer will receive not just the “best
answer”, but also a number of very good

Figure 2.5 Top-level design view of a DOME model

20



solutions to choose from. This search engine reduces the chances of getting a local maximum
and increases the chance of obtaining the optimal solution.

The current version of the DOME GUI (graphical user interface) displays a default graph view
that shows the modules as part of an entity relationship graph (Figure 2.5). Each module can
then be opened so that the designer can view its encapsulated nodes. More will be said about
this in the next section when an example is presented.

Some features that DOME does not presently have are options that produce a complete
dependency or causality chain. DOME also does not have the capability of performing
sensitivity analysis. These two features would give the designer deeper insight into the model.
Before proceeding with this topic, an example DOME design problem is presented.

2.2 An Example of a Distributed DOME Design Model-The LCD Projector

An example product design problem will be used to show what an actual
DOME model might look like. This DOME design model will then be used
to illustrate why it is necessary for DOME software to include features that
can generate causality/dependency trees and perform sensitivity analysis.
This example will also be used in later sections to describe how these
features will be implemented.

1 Figure 2.6 An example of
Recently, a proposal was an LCD projector

made by an industrial sponsor
of the MIT’s Center for
Innovation and  Product |
Development  (CIPD) to |
utilize DOME software to |
model an LCD computer |
projector (Figure 2.6). The |
goal was to use this DOME |
model to help the engineers |

reduce the development time |
of the projector and improve
product quality. A complex
distributed DOME model of |
the projector was then |
completed by a team of MIT |
students at the MIT CADIab.
A snapshot of the top-level
design view is shown in |
Figure 2.7.

The model contains different
modules representing aspects |
of the design. The modules

Figure 2.7 The DOME LCD projector model; top-level design view.
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representing all the major components of the projector are located on the left-hand side of Figure
2.77. Some of the modules are from catalogs and others are not. The catalogs include, starting
from the top left corner, Light engine, Universal power supply, Catalog of speakers, Exhaust
Fan, Catalog of Remote Controls, and Catalog of Case Materials. The names printed in small
italicized letters, beneath the catalog names, indicate which particular module is currently
selected. For example, two Jazz 56 mm dia is the current speaker configuration from the Catalog
of Speakers. Also included in the model are non-catalog, or static modules such as Main PCB
(printed circuit board) with computer 10 and Video PCB. These eight modules represent what
the engineers thought were important sub-problems, and were thus included. All of these
modules are linked to other design modules, and this network of linked modules exchange
services with one another. The designer can view Figure 2.7 to see what the present state of the
design is. In the configuration shown, the design is utilizing the light engine from supplier A,
power supply 1, two Jazz 56 mm dia speakers, the Panaflo FBA12G12LIA exhaust fan, remote
control 1, and ABS for the case material.

Also included in the DOME model are other modules
that perform services to evaluate the design. One
example of this is the Cost module located in the
lower left-hand side of Figure 2.7. This module
receives cost information and, using several criteria,
returns scores. For example, the cost of the two Jazz
56 mm dia speakers, $32.00 (Figure 2.8 (a)), is
judged against a budget or spec (Figure 2.8 (b)), to
formulate a criterion (Figure 2.8 (c)). Figure 2.8 (¢)
shows the cost superimposed on the
specification. From this criterion, a @ ®)
probability of acceptance, 0.90, is returned. Stated
another way, the designer is 90% likely to be satisfied
with this choice of speakers when measured against the
budget.

There are several other criteria like the speaker criterion
encapsulated in the Cost module. These assess the cost
of the power supply, light engine, fans, and others. All of
these criteria and scores can be viewed in a lens. An
open Cost lens is shown in Figure 2.9 and gives
thumbnail views of all the cost criteria. The speaker
criterion from Figure 2.8 (c) is located in the third
thumbnail from the bottom.

©)

If the user looks at the very right hand side of Figure 2.7,  Figure 2.8 Speaker Cost (a),
they can see the list of lenses. There are 8 lenses Spg;i;ﬁ(g:’é‘ristgfiggb()c’)a"d
displayed, and each contains a graphic of a magnifying

glass. These lenses include the Light engine Spec, Cost (Figure 2.9 shows the
open cost lens), Environment, Thermal, and more. Each of the criterion scores

Figure 2.9 Cost lens.
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encapsulated in the lens are multiplied together to
obtain the overall lens scores which is displayed
under the magnifying glass icon. The score P =
0 .12059 can be seen under the name Cost in the
Cost lens (Figure 2.7). In a like manner, all of the
final lens scores are multiplied together to obtain
an overall design score, located in the lower right
hand side of Figure 2.7. The final design score for
this design configuration is 0.01563.

As described in the previous section, DOME has
the flexibility of linking to other software
applications. Accordingly, several applications
were linked to this main model including Team®,
an environmental assessment software package,
Excel®, Solid Works®, a solid modeling
software package, and another DOME model.
These applications were linked because each
possesses its own specialized functions. Also, the
vision behind DOME is to allow designers and
engineers from different disciplines to use the
software tools they want. To illustrate this
software integration, the geometry module from
Figure 2.7 is opened (Figure 2.10) to show
information entering the SolidWorks node located
in the middle of the module. This node is remote
and is linked to Solid Works®. The information
from Power Supply Volume, index, from Light
engine, index, from Catalog of Speakers, and
index, from Exhaust fan, are then sent to Solid
Works®.  The geometry produced by this

information can be seen in Figure 2.11. If the Figure 2.11 Solid Works® model of the LCD
projector.

wonviom designer selects a smaller fan, the solid model

[From compuomant catnlogs sl omi G

— would change and, if appropriate, propagate
s this information to the dependent variables

OVideoPCO

oy Width, Length, Height, and Vol (Figure 2.10).

i . In addition, if the user opened the Cost module

materials
BProcessing

e (Figure 2.7), they would see a node called
I . Excel Cost Model. Just like the SolidWorks
} o : i node, this Excel Cost Model node is linked to
: an Excel® spreadsheet, which can be seen in
T e | B ‘ ; Figure 2.12. Any change related to costing
I would concurrently change the Excel® spread

Figure 2.12 Excel spread sheet representing the projector
cost model.

23



sheet. Furthermore, there is node in the module LCA-Connection (Figure 2.7) that is linked to
Team® software. This way, the user receives real time environmental impact information as
they make changes. Figure 2.13

shows what Team® software looks | s
like. Finally, one might notice the
light module called Virtual
Customer included in the DOME
model (Figure 2.7). This module is : |
linked to another DOME model e L
that addresses customer issues. e .

The model now gives the designer — e B
a systemic view of the LCD Lhati T e I
Projector. If there is a change, for s ] [

example, if the designer chooses
another light engine from the light
engine catalog, they can see how
that affects all the other aspects of
the design like geometry and cost
structure. The final overall design
score  confirms which design
configuration is best. This then gives the designer a powerful tool to help then answer
challenging trade off questions. Now evaluations of design iterations will take seconds or
minutes instead of days or weeks.

Figure 2.13 Environmental assessment using Team®

2.3 Why Causality/Dependency and Sensitivity Analysis is Needed

After the LCD model was finished, many of the students examined and tested the model. Over
all, the team was satisfied that the model was working well. A short time later, sensitively tests
related to this thesis were preformed. The results did not make sense. When debugging the
problem, it was found that the information returning from Solid Works® was unusable because
only one unchanged value was returned no matter how much the design configuration was
changed. Put in another way, node Vol (volume of the case) was not at all sensitive to the
changes in the node Power Supply Volume. This was clearly wrong and important to know
since many different variables depend on the value of node Vol. Furthermore, this problem had
gone unnoticed during validation, but was quickly discover by performing sensitivity analysis.

This example illustrates one reason why a sensitivity feature like this is important in the DOME
framework.
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Related Work

This chapter surveys past and present work related to the field of causality and dependency,
sensitivity analysis, and information visualization techniques. There are many individuals in the
field of qualitative research and visualization. Some of their ideas are useful and can be
incorporated into the DOME framework.

3.1 Causality/Dependency Related Research

Herbert A. Simon is a famous researcher in the field of causality. His background is in the area
of economics and artificial intelligence. In 1952 he established a method of determining
causality solely based on a set of equations [23]. Brown and de Kleer summarized the method
concisely by stating: “causal ordering (Simon) places an ordering on the variables.
Oversimplifying, when a variable can be solved by simple substitution, it is causally dependent
on the antecedents.” [12]. Even though Simon’s background is in economics, he argues that his
approach can still be used in the field of engineering as well. He won a Nobel Prize for
economics in 1978.

Yumi Iwasaki collaborated with Simon and produced several papers applying Simon’s theory of
causal ordering to practical problems [3] [7] [9]. She outlines a very thought provoking example
that demonstrates that when one attempts to derive a casual ordering given a set of equations
describing a phenomena, one’s intuition might mislead them. More will be said on this topic in
Chapter 7.

Brown and de Kleer take a different approach to qualitative research. They sum up the

differences they have with Iwasaki and Simon by stating: “The difference between Johan de
Kleer and John Seely Brown and Simon and Iwasaki concerning causality, modeling and

25



stability, comes from the difference of concerns between engineering and economics. Johan de
Kleer and John Seely Brown’s notion of causality arises from considering the interconnections of
components, not equations. The difference comes from a difference in point of view on the
relationship between the structure of a system and the equations that describe its behavior. The
difference stems from a difference in explicitness of the mechanisms and structural components
underlying economic systems vs. engineered artifacts.” [12]

Brown and de Kleer have written several papers on the subject of determining qualitative
information from a “mechanism” [10][12]. In [10] they develop a theory they call qualitative
physics. The point of qualitative physics is to predict and explain how a device or system
behaves in qualitative terms. More precisely, they outline three goals for qualitative physics.
The first is to make the theory far simpler than classical physics yet still able to characterize such
things as state or momentum. The second is to present easy to understand causal accounts of
physical devices. Finally, the third goal is to establish a foundation to enable designers and
engineers to build models that will work well with the next generation of expert systems. [10]

In a summary, they employ the notion that physical systems are made up of many relationships
in which a change in one or more variables produces a change in another. They go on to explain
that the difference between qualitative physics and classical physics is in using continuous
variables. In qualitative physics, each variable is described qualitatively by taking on only a
small number of values such as a very small positive change, a small negative change, or no
change. Further, they introduce what they call a qualitative differential equation:

0P+0A-00 =0 Equation 3.1

Part of this equation states that a change in A positively affects O and negatively influences P.
Finally, Brown and de Kleer discuss how qualitative physics helps in determining causality.
This part of their research is applied to DOME and will be shown in Chapter 5.

One other important note is that this theory was put into practice and a computer program was
created. It is called Envision. Envision has the capability, given an arbitrary device, to predict
its behavior and also determine causality. The input to Envision (Figure 3.1) is much like a
DOME model. It is a description of a system in terms of the topology and constraints.

Component library

J Causal explanation

Device topology F———— Envision

»| Behavior predictions

Figure 3.1 Envision [10]
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3.2 Sensitivity Analysis

M. Kleiber et al. has written a book [21] on the subject of sensitivity analysis. This book
outlines sensitivity analysis for linear systems as well as nonlinear systems. The book also
addresses the difficult problem of conducting sensitivity analysis for nonlinear structural
systems. Specifically, [21] focuses on solid mechanics issues and offers an approach to develop
a sensitivity analysis for non-linear material and kinematic problems. Lastly, the author explains
how sensitivity analysis can be used to streamline optimization by making it more efficient.

In [22] the authors develop a method for sensitivity analysis and optimization of discrete-event
systems using the score functions (SF) method. They also touch on perturbation theory. The
authors of this book demonstrate that the score functions method allows users to assess the
performance of a system, produce data regarding all of its sensitivities, and to solve an full
optimization problem by conducting simulation experiments.

While searching for software
applications that possess a sensitivity ? most signincant npult 19 drswn 3t e op o the grap win
capability, a  product called |[i& R
PrecisionTree® was discovered [13].
It is an add-in package for Excel®.
PrecisionTree® performs decision
analysis so that the user can
determine the best path to take when TR -

confronted with making an important

decision. The software can even | .

arvd 20w far tesiring Durstion (Diat S g
'

build a decision tree and influence : ‘
diagrams. The application, more . 2
importantly, can perform sensitivity -

analyses.

The authors explain \PNQll Scction 3 - Tornado Graphs
PrecisionTree® performs a one-way
sensitivity analysis by changing one Figure 3.2 PrecisionTree®*s tornado diagram.

variable of the system at a time. The
results of many one-way studies are then compared on the same chart called a tornado diagram
(Figure 3.2).

Some professors at MIT have lectured and written about the subject of sensitivity analysis.
Professor Odoni has the following to say about sensitivity analysis in the context of a parametric
model: “...some of the input parameters and assumptions may be varied systematically over a
range of values. How one interprets and uses the results of these sensitivity studies is very much
a matter of judgment.* [27]
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3.3 Visualization

When generating causality graphs it is important to think
about how they will be displayed. It would be beneficial to
find different approaches and techniques to visualize this
data.

3.3.1 The Java Graph Layout Algorithm
A Java graph layout applet [17] has been utilized to deal

with the simple issue of laying out a graph. This graph
layout algorithm behaves very much like an overly damped

first order system. The program works quite well arranging &

small arbitrary graphs with about twenty to thirty nodes.
The lengths of the cords connecting the nodes are
minimized to a preset value and the distances between the
nodes are maximized. A sequence of screen dumps is
given in Figure 3.3 (a) — (c) to show how this algorithm
takes an arbitrary graph and continuously iterates until the
graph is properly spread out. In the first figure the nodes
are unfurled randomly. In Figure (b), the nodes are then
pulled together closer and the algorithm continues to
execute, minimizing the length of the cords while
maximizing the distances between nodes. Figure (c)
shows the final layout.

The graph layout algorithm can be used not just as a tool to

help the designer lay out a complicated graph, but the
algorithm can be modified to help cluster large amounts of
data. For example, the nodes can be restricted to certain
areas of the screen, which will help in clustering.
Furthermore, the predefined lengths between the nodes can
also be adjusted. Figure 3.3 (c), for example, shows fleal
and flea2 closer together than cat and mouse. This
modification could also be used to cluster other types of
nodes as well.

3.3.2 Other Visualization Techniques

Researchers at Xerox PARC are working on several
different software applications to visualize data. The cone
tree is a noteworthy example of using three-dimensional
space to display large amounts of data. The authors of
[1], who are also the inventors of this software, argue that
being able to handle a large amount of data is a problem
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Figure 3.3 The Java graph layout applet. The
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executing (b) The final layout (c).



in large-scale cognition. “The task of managing and accessing large information spaces is a

problem in large scale-cognition.” [1] Figure 3.4
shows a screen dump of a cone tree. Animation
is used to rotate the cone to help the user
perceive the information and to track the
relationships without thinking about it.

Using this 3-D approach one can display a great
deal of data. However, the cone tree does not
work well for directed graphs having multiple
children and parents. The cone tree could
nevertheless be used to display the graphs
produced by causality analysis.

Another application created to visualize data is
called the perspective wall [8] (Figure 3.5).
The strength of this application is in the ability
to visualize linear structures. For example, the
detailed front view of the wall might contain a
page from a newspaper and the distorted views
(the two other sides of the wall, left and right)
might contain issues of the paper from different
days. In this way, the documented is placed in a
context. To view the other articles, animation is
used to scroll the documents to the front view.
It places the article in the center view and at the
same time, places the article in a meaningful
context. The perspective wall is good for
displaying revisions of files like engineering
drawings.

Yet another visualization approach is the hyperbolic
tree [28]. The hyperbolic tree uses what is called a
“focus + context” fish eye technique for visualizing
and manipulating large trees. This application could
be very helpful in displaying causality graphs. Like
the perspective wall, the application allocates more
display space to what the user is looking at in the
center while keeping most all of the other
information on the circumference. Again, like the
cone tree, animation is used to navigate through the
graph. The creators claim to be able to display about
10 times as many nodes effectively as conventional
hierarchy viewers.
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Figure 3.4 The cone tree.

Figure 3.5 The perspective wall.

Figure 3.6 The hyperbolic tree.



3.3.3 Clustering Algorithms

Another approach to help visualize an overwhelming amount of data is to cluster it. In [31], for
example, the authors deal with the clustering of related items. They employ structure-based and
content-based clustering. Content-based clustering examines the content of the element, such as
price range or actual cost and uses that attribute to group the nodes. Structure-base clustering, on
the other hand, collects the nodes based on characteristics of the structure of the graph. For
example, the algorithm consolidates some elements together if they have the same type of link.
Many elements might be grouped together if each of their links end at the same destination.

The authors go on to explain how the users can interact with the program to help create the view
they want. At this point in their paper they introduce a software tool they developed called
Navigational View Builder. This tool gives the users the ability to interactively create overview
diagrams. As with the other approaches previously discussed, they also make use of three
dimension and interactive animation to help with the visualizations.

In [2] the same authors expand their scope to deal with the clustering of arbitrary graphs. Their
aim is to provide users with alternative trees, each giving a different viewpoint to the underlying
information to help the user better discern the data. They propose to run an algorithm that
locates a root node, one that has no parents, then cluster groups of child nodes while cutting the
links between these clusters. The result is a newly formed tree from the arbitrary graph. The
algorithm then performs an evaluation to determine how good the structure of the graph is,
symmetrical versus asymmetrical, and also rates itself based on how much information was lost.

Finally, in [26] Yang puts forth a methodology to acquire an overall global view of information
that is somewhat similar to the others above. She utilizes three dimensions and uses a genetic
algorithm to untangle the 3-D graph to present the data in the best way possible. As a result,
global information and characteristics are revealed and, at the same time, the low-level details
are still accessible.
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Causal Ordering Given a Predefined DOME Model

4.1 Overview

soft Excel - Bookl

In many instances the mere act of
modeling defines a
casualty/dependency chain. When
a model is built in Solid Works®,
for example, entities are linked
together so that if there is a change
in one dimension, the power supply
volume from Chapter 2 for
instance, the other dependent
dimensions, in this case the
enclosure, will change accordingly.
Similarly, creating a spreadsheet in
Excel® and defining relationships
such as cell A8 = cell B8 + cell C8
also imbeds a causal chain.

A question then arises, how does
one extract this information from
the application? Excel® has an
option called Auditing that
generates a causality graph when a
cell is selected. The two choices
Excel® offers are “trace

Figure 4.1 Excel’s® “trace precedents” feature.
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precedents” and “trace dependents”. These features only display the next
level of parents or children, and s —

thus are somewhat limited. For - % Encenaate
example, clicking on the cell RS- \
containing 78 (Figure 4.1) o oo oo

produces lines and arrows from
the cells containing 10, 26, and
42 only. To generate the other
arrows, the user would have to
select cells with the numbers 42,

; 3§ Boss-Extrudel
§3 Shein
B Sketch3

26, and 10, and then repeat the T
command. To follow a chain all B e

the way back to the beginning or Mo
end requires using  the e v
command, “trace dependents” D pees

for example, over and over £ oot

again, which becomes very
tedious. Figure 4.1 shows an

example of a precedent tree Figure 4.2 Solid Work’s® *“Parent/Child” feature.

generated using the “trace

precedents” command ten times. | DOME - Infstusers IraimylsroftestidependencylshowParents.md {211
File Optimization Options Remote Connection Help

Similarly, Solid Works® has an option
to display parent/child relationships.
An example of this is shown in Figure
4.2. The selected object is the top face
of the projector’s case, profiled by a
dotted line. The popup window on the
right displays what this face depends
on, and what depends on it. Solid
Works®, like Excel®, does not give
the user a complete chain and
consequently the user can only view
the next level parent or child.

DOME software addresses causality in
a similar fashion. Like using Excel® - : e
and Solid Works®, the act of modeling Evaluation Score | 000000

in DOME creates a
causality/dependency chain. When
viewing the model, DOME’s graphical user interface employs a standard or default view that
shows the immediate next level child or parent relationship. To go to this view, the user simply
opens the module and examines the contents. Figure 4.3 shows an open module containing
nodes (see Chapter 2 for an example of the initial default view, Figure 2.5). Figure 4.3 indicates
that there are parents because the cords that connect the nodes are unidirectional. The arrows
pointing to nodel, located in the center, verify that the connected nodes on the left, nodel and

Figure 4.3. An Open DOME module.
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node2 from Modulel (the text box beneath the node name describes which module it comes
from) are its parents. In the same way, the arrows pointing out of the module to nodel from
Module4 and nodel from Module3 indicate that these are its children.

DOME however, does not have the capability of displaying the entire chain of dependency or
causality with a click of a button. It takes much searching to find this information. Many steps
are needed and the user must jump from a view of the open module (Figure 4.3) to the default
view (see Figure 2.5), then back again. At the end, the designer has forgotten the complete chain
unless they were recording the information by hand. This method does not give the user a one-
time picture of the complete causality chain, and subsequently the user looses an important
overall all view of causality/dependency. Also, obtaining this information multiple times would
be very difficult to find and tabulate.

When generating qualitative information from the model it is important to generate a
causal/dependency explanation whenever the user wishes. The authors of one paper wrote: “one
of the central issues of qualitative reasoning is generating causal explanation in response to
user’s query.” [5] Moreover, having the option to display the entire chain, a subset of the chain,
or just the end points must be offered. This subject will be discussed in ensuing sections.

4.2 MDL (Modeling Definition Language)

To show how the causality/dependency chain is established in the DOME framework, one can
examine the computer code that originates the DOME model. DOME employs a script language
to generate the design [4]. Having to write this simplified script language, or code, is a
temporary step between having to code the model all in C++ and building the design graphically.
Soon DOME will possess the capability of letting the user build a model graphically, by pointing
and clicking. The modeling language is called Modeling Definition Language or MDL.
Keywords are used such as “Module”, for example, to instantiate a module object. In a like
manner, the keyword “Dependency” creates dependencies. The following passage is an example
of MDL:

Module “Dimensions”

(
Variable “Length”

(

)
Variable “Width”

(

)
)
Module “Area”
(

Delta {1}

Delta {1}

SimVariable “Area”

(

Dependency “a” (ConnectedTo “Dimensions:Length’)
Dependency “b” (ConnectedTo “Dimensions:Width™)
(output = a * b;)
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The user has defined, in this section of code, two modules called Dimensions and Area. As can
be seen, module Dimensions contains two variables, Length and Width. The module Area
contains a SimVariable (simulated variable) that takes the Length and Width, and multiplies
them together to obtain the output area. In this example one can see the word Dependency used
under the keyword SimVariable. This sets the variable “a”, located in Area, to be dependent on
variable Length from module Dimensions. In the same way, variable “b”, located in Area, is set
dependent on Width from module Dimensions. The program that creates the graphical user
interface uses this information regarding dependencies from the design problem model to display
arrows indicating dependency (Figure 4.3). As a model grows, and more and more modules are
added, many dependencies are established. The question now becomes how to extract a
complete chain of these dependencies from start to finish. To create the proposed features and
options as explained in the introduction, the same type of function that generates the first level
dependency now will be modified. The function will be changed to provide a complete chain of
information and to offer more options on how to display this information.

4.3 Proposed Causality/Dependency Gfaphs

The proposed feature would enable the user to open a module, click on the node of interest, and
then select an option to display causality and dependency in a number of different ways. The
next figures presents how this vision might be implemented. First, when the user opens a DOME
model, they are looking at the
default view (Figure 4.4). For
this example, the LCD model
(See Dbackground) will be
used.  Next, they open a
module. The  module
Geometry is opened for this
example (Figure 4.5).
Subsequently, the user selects
the node/variable of interest.
For this example, node Power
Supply Volume has been
selected. The Power Supply
Volume node contains an
independent continuous
variable.

File  Optimization Options Remote Connection Help

The user would then click on
the causality button in the
node browser (see arrow | el

Figure 4.5). Next, the user is

offered a menu that lists a
number choices in the way in
which they can view causality (Figure 4.6). There are four main options and two of these have
two sub-options. The first option produces a causality chain, the second shows control

Figure 4.4 Default view of the DOME LCD model.
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parameters  (the  roots  or
beginning of the chain), the third
produces a dependency chain, and
the fourth shows a pop-up
window of influences (these are
nodes located at the very end of
the chain). In addition, the user
can stop the chain at three
different points. The first is to
end the chain at the dependent
variables and not include
information regarding criteria or
lenses. The second is to show the
same chain and go one step
further to include the criteria
nodes. The third is to go yet
another step to include criteria
and the lens information. As can
be seen from the diagram (Figure
4.5), Power Supply Volume does
not have any parents, so the
causality  options are  not

applicable. The user therefore chooses the dependency option.
Figure 4.7 shows a pop-up window containing the complete
dependency chain, not including criteria nodes or lenses. From
this display (Figure 4.7), generated from the design/MDL, the
designer can see that Power Supply volume has dependents such
as SolidWorks from module Geometry, and Excel Cost Model

from module Cost.

o
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...... {Helgnt (Height)
i i)
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}
e
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Catalog of Case Materials
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LCA-Connection
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<=| DOME = ProjectorComponentsi.mdl

Flle Optimization Options Remote Connection Help

Evabuaton Score | 00000

I Even though

Figure 4.5 Open Geometry module.

Figure 4.6 Proposed menu options.

there is much

useful information contained in this graphic,
displaying the entire chain still might be too
confusing to the user. Furthermore, they might
just want to know ultimately what dependent
variables would be effected by a change in
Power Supply Volume. For this case the user
has the option of choosing to see only the
influences (Figure 4.6). The window in Figure
4.8 now displays the extremities of the Power
Supply Volume’s dependency chain.

As explained earlier, the user has the option to

Figure 4.7 Complete dependency chain from Power

Supply Volume.

view chains including criteria and lens
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information. Figures 4.9 through 4.12 on the
following page show the output of selecting o

these commands. The fact that the chains T o~

stop at different points might help the user Yo
gain additional insight into the model.

Virtual Customer ‘
Power Supply Volume

£ 2 Ny
Ge t
Manufacturing Cost
T
Virtual Customer
£ £
PS-Land Use -
EP.S Total Assessment | | Assessment

Assessment Assessment 25

EPS-Non-renewable Energy| LEPS-Metal Resources
[Assessment] [Assessment]

Anplet started

Figure 4.8 Pop up window: What Power Supply Volume influences.
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4.4 Generating a Causality Chain Offei‘s Another Point of View

. ({invoc) ‘
The  designer may
notice that Materials
. E g
Cogt is one of the c g
variables  in  the Geomety >
1 Laht engine £, Mai PCB_ uter 10
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1 b 1 Toma Lo
ocated between Exce Catalog of Case Malerials [anufachiring Volumeunts]
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Cost Model and Total ustfan costs]
Unit Cost (Figure 4_7)_ Catalog of Case Materials
To achire an e Py
alternative view of Yosa
cause and effect, the
user could select node Cost X
: [aterials Cost]
Materials Cost and
choose the causality
option.  That would

produce the graph seen
in Figure 4.13. This
gives the user a »

different perspective. Previously, looking at the
dependency chain, the user could see that Power
Supply Volume was one root parent of Material
Cost, but now the user recognizes that Materials
Cost has several roots or control parameters. Just
as before, Figure 4.13 might still be too confusing.
The user may just want to view the control
parameters (roots) only. Now the designers could
choose the Control Parameters option and view

Figure 4.13 Causality chain of Material Cost.
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4.5 Using These Features Offers New Insight (e fspestrs]

into the Model.

Being able to instantly create these full
dependency graphs provides the user with a great
deal of insight. The dependency chain from
Power Supply Volume (Figure 4.7) sheds much
light on how the model is constructed. A first time user can instantly get the sense what is
connected to what. With a few clicks of the mouse, the first time user can very quickly see what
influence a particular variable and what that variable effects.

Figure 4.14 Control parameters of Material Cost.

4.6 Using a Recursive Algorithm to Extract the Information

A recursive function is used to generate these chains. The information for parents and children
are already data members of each node object. The function merely begins with the selected

38



node and extracts the names of all its parents or children, and repeats this for each of those
parents or children. Ultimately the function comes to an end when there are no dependency
information left. Next, the information is transferred to a Java graph layout algorithm (see
Chapter 3) that produces the pop-up window with the final graphs. The computer code for these
functions and algorithms are given in appendix A.

4.7 Limitations

As can be seen from the MDL language, section 4.1, the key word “Dependency” defines a
dependency between one variable and the next. For some reason the designer might define a
variable with a dependency but not use the variable in an equation. For example, taking the slice
of code in section 4.1 with one slight modification is as follows:

Module “Dimensions”

(
Variable “Length”

(
)
Variable “Width”
(

)

Delta {1}

Delta {1}

)
Module “Area”

(

SimVariable “Area”

[1P%1]

Dependency “a” (ConnectedTo “Dimensions:Length”)
y“b79 13 M M Width”)

)

As can be seen, variable b is not used in the calculation of “Area”. However, using the
causality/dependency algorithm just presented would report such a connection. A future
improvement to DOME would make it impossible for a designer to create a dependency with out
using it in an equation. The one flaw in this reasoning however, is that even if the designer
makes use of the variable in an equation, the variable could be multiplied by zero thus producing
the same effect. The line could look like:

(output = a * (b*0);) // previous was (output = a * b)

One last important note, when looking at Figure 4.7, the chain shows that Power Supply Volume
connects to Excel Cost Model which then links to a number of specifications; LE spec, Video
PCB Spec, Speakers Spec, and three others. Even though it is shown as such, the variable Power
Supply volume does not influence these specifications in anyway. The links are correct but the
causality is not. If the model is distributed, to Excel® in this case, then one really does not know
if parent x affects child y. For these instances an alternative method to determine the true
causality must be used. This method will be presented in the next chapter.
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Causal Ordering Given a Black Box

5.1 Overview

The previous chapter introduced some
limitations ~ reporting  causality/dependency
based on the patents/child relationship

contained in the design model/MDL language.
This is because, as was explained in the
Background section, DOME can be linked to
other software applications [11]. In fact,
DOME can be linked to other DOME models.
The node/module where this connection takes
place will be referred to as a “black box”.
Because of this, one does not truly know if
parents of the black boxes influence its
children. For example, Figure 5.1, taken from
chapter 4, shows that several specifications, LE
Spec (the light engine spec), Power Supply
Spec, Speaker Spec and others, all from the
cost module, depend on the variable Power
Supply Volume. This pop-up window was

[Assessmen(|

iApplet starte

Figure 5.1 Pop-up window of influences from
Power supply volume (what Power Supply
Volume influences).

created because that is how the user wrote the MDL file and subsequently that is how the design
was created. The other illustration that makes these connections clear is the complete chain
shown in figure 4.7. Following the chain (Figure 4.7) forward from the beginning, Power
Supply Volume influences SolidWorks, SolidWorks influences Vol, Vol influences Housing
Material Mass[kg], from Catalog of Case Materials, Housing Material Mass[kg] influences
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Housing material Mass[kg], from module Cost, this Housing material Mass[kg] influences Excel
Cost Model, and Excel Cost Model influences each of the specifications. But in fact, the Excel
Cost Model, is a black box. In reality, the cost manger, the originator of the Excel® spread
sheet, influences the specifications through the Excel Cost Model node. Therefore, The Excel
Cost Model node is the only parent to these specifications. The user might be confused and think
that they can influence these specifications by changing the value of Power Supply Volume; this
is incorrect. Power Supply Volume does not affect any of the six specifications. In addition,
there are other nodes (Figure 4.7) that are not dependent on Power Supply Volume. In fact, the
only variable Power Supply Volume affects after the Excel Cost Model node in Figure 4.7 is
Material Cost. Already one can see how this could be definitely confusing for a first time user of
the model.

Now the question arises, how to determine if there is a link between two variables? There are
different methods that could be used. One is the token method. There is another method that
will be referred to as the perturbation method. This method states that if one changes a value of
a variable upstream, and the variable down stream changes, then one depends on the other. This
method has roots in the work of Brown and de Kleer [10] [12]. The next section deals with the
specific algorithm. In applying this algorithm, many different interesting and important issues
are exposed. A different thought process will have to be applied to each and will be dealt with
later in this chapter.

5.2 Generating a Dependency Chain through a Black Box

In words, the algorithm for determining dependency through a black box is as follows: First the
variable of interest is selected. Power Supply Volume is again selected for this example. Next,
determined if the node is from a catalog or not. Then, obtain the list of Power Supply Volume’s
children. While saving this dependency information, each child is checked to see if they are
remote. Currently, node objects do not have data members to indicate whether they are remote
or not. Each node does however contain a documentation object. The keyword “remote” was
added to the documentation of remote nodes so that the algorithm could ascertain whether or not
the node was connected to another application. If the node is not remote, the chain is continued.
If the node is remote, then other steps are taken.

The first step is to obtain the list child variables of the remote node. Before proceeding with
each link of this part of the chain, the value of the initially selected node, Power Supply Volume,
is changed slightly. If Power Supply Volume were a member of a catalog, the whole module
would be replace. If there were a corresponding change in one of the children, indicating a
dependency, the algorithm would continue with that part of the chain. If there were no affect,
that part of the chain would end. This algorithm produces the true dependency chain and the
code for this algorithm is located in Appendix A.

5.3 The Resulting Chain after Applying the Perturbation Method
Figure 5.2 shows the results of this algorithm when applied to the Power Supply Volume. This

window can then be compared the chain produce in Figure 4.7. This new graph displays
surprisingly fewer dependencies than previously thought. Likewise, the new graph of
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Influences is shown in Figure 5.3. There is
also a marked difference between this
window and the previous one shown in
Figure 4.8.

5.4 Generating a Causality Chain
through a Black Box

Going up the chain and determining
causality can be dealt with in a similar
manner as generating dependency. The
algorithm begins with the selected node.
First information regarding the node’s

parents is obtained. While doing this, the Figure 5.2 Resulting Power Supply Volume chain produced

algorithm checks to see if the parent is
remote. If none of the parents are remote,

by the perturbation method.

the algorithm continues up the chain until there are no
more parents as in Chapter 4.

If one of the parents is remote, the algorithm follows
and remembers each individual link up the chains until
a root is reached. At this point it is determined if the
root is from a catalog or not. If it is not, its value is
changed slightly. If it is from a catalog, the algorithm
cycles through the catalog items. If the initially select
node changes due to a change in the root, then
algorithm reports the causal information for that
particular link. If there is no influence, then
information pertaining to that part of the chain is
disregarded. The code for this algorithm is also located
in appendix A.
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control parameters is shown in Figure 5.5. This figure can also be compared to the graph
produced in section 4.2 to reveal measurable differences.

s

5.6 Limitations

TR
light_engine_cost{$]

s, | Light engine

One limitation of the perturbation method is
in determining what constitutes a change. To

-
explain, some of the performance -
distributions contained in the nodes are o .

generated using a method call a parametric
Monte Carlo simulation [29]. The

. . . . . . xhaust fal ower_supply_cost($]
distribution contained in node EPS-Air from [Enestin] oy [
Figure 5.3 is an example of this. If a root of

EPS-Air were changed to the same value, in
other words not changed, (if Power Supply
Volume is change from .035 to .035, meaning
no change) the distribution contained in EPS-
Air would change. Such a change would be
detected in the algorithm just present. Figure 5.5 Control parameters f’f Material Cost produced
Therefore some interval or tolerance must be by the perturbation method.

established so that one can be sure that a change in a parent results in an actual change in a
dependency and that the value is not just varying due to the simulation method.

The way to determine if there has been a change depends on the number of simulations
conducted [29]. According to [29], if twenty simulations were completed, the mean of the
resulting distribution could vary plus or minus 10 percept. However, if 100 simulation were
conducted, the range would be reduced to plus or minus 2 percent. This added constraint can be
use to determine if a dependent variable generate by such a simulation method is actually
changing or not. For the above example in section 5.3, the variables related to the environment,
EPS-Air, EPS-Water, EPS-Metal Resources, EPS-Non-renewable Energy, and EPS-Total were
all influenced significantly by a change in Power Supply Volume. Therefore, there is a causality
link between them. Interestingly, the sixth dependent variable, EPS-Land Use from 4.2, was not
influenced (see Figure 5.3). This demonstrates the usefulness of the perturbation method
because in fact there is a problem with the EPS-Land Use distribution. The calculations are not
correct and only a value of zero is returned. Returning a zero value in this case is a perfect score.
It means that there is no detrimental effect to the environment. The modeler now realizes there is
a problem and can take steps to fix it.

5.7 How This Algorithm can be Extended to Carry out Sensitivity Analysis

Another technique to obtain qualitative information from a design model is to determine
sensitivity. With the algorithms already presented it would not be too difficult to extend their
capabilities to produce such an analysis. In the sections above, the goal was to discern if a child
variable is sensitive at all to a change in the parent. It would not be difficult to determine, not
just if the child is sensitive, but by what degree. This subject will be covered in Chapter 6.
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Sensitivity Analysis

Sensitivity analysis is another way of obtaining qualitative information from a design model.
Some authors would hold that the ability to carry out this analysis is extremely important. “The
sensitivity of a structural system to variation of its parameters is one of the most important
aspects necessary for a proper understanding of a systems performance. In fact, it is now widely
acknowledged that any reliable approach to practical structural engineering problems should
provide the analyst with an assessment of parameter sensitivity” [21].

6.1 Proposed Method of Sensitivity Analysis

Sensitivity is the partial derivative of a one variable with respect to another [21]. In the simplest
case, the function describing the system must be defined and sensitivity can be characterized as a
small change in the independent variable divided by the resulting change in the dependent
variable (the slope), holding all other variables constant. DOME presents a challenging case for
sensitivity analysis because although the parameters are known, the functions are hidden.
Moreover, the designer might want to know the sensitively over a range of values and not just for
one interval. For example, the environmental designer might want to have some information
regarding how the Environmental lens score changes as Power Supply Volume changes through
a series of values. Moreover, the issue of catalogs must be taken into account.

Therefore a slightly different approach is offered when tying to incorporated sensitivity analysis
in the DOME framework. In the background section, professor Odoni suggested that it should
be up to the user to determine what to do with the results of a sensitivity analysis: “...some of the
input parameters and assumptions may be varied systematically over a range of values. How one
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interprets and uses the results of these sensitivity studies is very much a matter of judgement”
[27].

The overall goal of sensitivity analysis, in the context of DOME, is to convey information on the
degree to which a parent variable or catalog affects the selected dependent variable, criterion, or
lens score. To implement this in the DOME framework the following algorithm is proposed.

First, after selecting the variable, criterion, or lens score, obtain a list of its control parameters.

The algorithm presented in Chapter 4 has the capability of doing this. Second, vary one parent

variable at a time while keeping the rest of the 12

model constant. If one or more parents are |
. 1 —

from a catalog, then cycle through the entire /

catalog including all hierarchies. If the parent % 08 o
. . B
is not from a catalog, then vary its value (vary |% 06+ . g%
. . . . e e . . o i
its value if it is a deterministic variable or | § 04 '
move the mean if it is a distribution) plus or 02
minus 10 percent of its present value. 0 . , { }
. . “ . » & P& &R
This algorithm produces data including both © Qo\‘; < P
the values of the changed independent parent @00

variable, and the corresponding outcome Modules From Catalog Assessment
values of the dependent variable. Figure 6.1
shows lens scores corresponding to each
module selection from the catalog Assessment.
The lens scores will be presented in ascending
order.

Figure 6.1 Environmental Lens score of every module in
the catalog Assessment.

As stated earlier, the aim of this analysis is ‘
to shed some insight into sensitivity. 1 %
Therefore, some value should be used to |
characterize the data obtained from a graph
like the one in Figure 6.1. Accordingly, a
proposal is made to use the slope of a best-fit
line through the data to indicate sensitivity. 0. 1

Then, all of the slopes from the graphs of all -
the control variables will then be put & & & &
together in one chart.

y = 0.0888x + 0.3671

Lens Score
o

To display these results a tornado diagram is Modules From Catalog Assessment
used (See Chapter 3). A complete sensitivity

analysis example is given in the next section.
The code that detects the control parameters
and generates the data points such as in Figure 6.1 is located in Appendix A.

Figure 6.2 Best-fit line through Figure 6.1’s data points.
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6.2 Proposed Use Scenario: Sensitivity Analysis of the Environment Lens

To perform a sensitivity analysis the user should be able to select a variable, which could include
nodes, dependent variables, specs, criteria, or lenses, and choose the option for sensitivity
analysis from a menu. As with other features, the user might want to display sensitivity analysis
in several forms. A pop-window should then be displayed to show the results of the analysis.

In this section the lens Environment has been selected to illustrate the sensitivity feature. As said

LCA-Cgnnection
Assessment
Univpower supply

Li

ght engine
Exhaust fan

Catalog of $peakers
Catalog of Case Materials

Video PCB Weight[lbs

Control Parameters

Disposal Method
Main PCB with computer 10 Weight[lb

use¢ location
Video PCB Power Consurption[W] 7

Main PCB Power Consurpption[W]

Eng. Rel. Min Time to Fajlure[hrs] |

Environmental Lens

Figure 6.3 Sensitivity analysis for the environmental lens (not including the parent variable Power Supply Volume).

previously, the slope values were used to gain an understanding of the sensitivity. Figure 6.3
shows the results of a sensitivity analysis performed for the Environmental lens (The parent
variable Power Supply Volume was not included in this graph because its slope was extremely
large and would obscure the other variables in the tornado diagram).

Interestingly this diagram shows that the lens score is more sensitive to some of the assessment
modules than some of the modules representing LCD components. There is a reason why the
lens is so much more sensitive to LCA-Connection than the rest. For this DOME model, LCA-
Connection is a catalog that contains modules that encapsulate Team®. The catalog contains
three different modules. The first module is called Nothing and performs no environmental
assessment. The other catalog choices utilize two different impact assessments, one is fast and
the other is detailed. Therefore the Environmental lens is very sensitive to this catalog because it
is changing from no assessment to some assessment.

On further inspection, it may be interesting to notice that there are three variables that do not
seem to affect the lens score at all. These are the Eng. Rel. Min Time to Failure[hrs], Main PCB
Power Consumption[W], and Video PCB Power Consumption[W]. This information could be
very valuable to the user.
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Just like the causality/dependency case the user should be offered some alternative ways to view
this information. As an example, two more tornado diagram were produced. One includes just
the catalogs and the other includes only the variables. One important point to mention is that for
this proposed adaptation of sensitivity analysis, the catalogs will always have a positive slope.
This is because the data is always presented in ascending order. Therefore the user only sees the
magnitude of sensitivity with regard to catalogs. Since the data corresponding to the variables is

LCA-Connection |

Assessment

Univ power supply ]
Light engine |
Exhaust fan [
Catalog of Speakers @

Catalog Names

Catalog of Case Materials @ |
Disposal Method E

use location f |
T T }

0.2 0.3

Environment Lens

0 0.1 0.4

0.5

Figure 6.4 Sensitivity analysis of the environmental lens (Variables from
catalogs only).

|
Video PCB Pow
Consumption[W]

|
Main PCB Pow
Consumption[W]

Eng. Rel. Min Time to
Failure[hrs]

Control Parameters not from a catalog

Environmental Lens

the best-fit line
could have a positive or
negative slope. Therefore the
designer can discover if the
parent is positively affecting or
negatively affecting the lens
score.

not sorted,

Figure 6.4 shows just the
catalogs items from the
previous sensitivity analysis.
In the same way, Figure 6.5
illustrate  the sensitivity of
variables not from catalogs. It
is interesting to see that Main
PCB weight and Video PCB
weight both effect the lens score
in a negative way. Finally, as
mentioned before, the last three
variables have a negligible
effect on the lens score.

All in all, the designer now has
some more insight into the
model. Future work will include
a full implementation of this
feature in to the DOME
framework.

Figure 6.5 Sensitivity analysis of the environmental lens (Variables not from catalogs).

48



Causal Ordering Given Only Equations

The prior sections outline methods to extract causality/dependency information from a DOME
design model. These methods generated causality/dependency graphs given a local DOME
model or a DOME model with remote connections. There is a third possibility, which is to be
able to determine causality based solely on a set of mathematical equations.

In the beginning of a design process, when the engineer is first trying to model something, they
usually start with a set of mathematical equations. Alternatively, the designer might utilize a set
of equations somebody else developed. In the future, a DOME user may have the ability to build
a module containing only mathematical equations and not specify any dependencies. For this
case, DOME software would have to be able to manipulate the equations in such a way so that
the module can be linked to other modules in the design when needed.

For these cases it would be convenient if there were an algorithm that could produce a causal
ordering based on a set of equations. An algorithm such as this could really aid the designer
because they may mistakenly assign the wrong causal ordering to a given set of equations. This
chapter first presents an example of why this tool might be beneficial and then concludes with
how it can be useful in the context of DOME.

7.1 The Bathtub Example

The following is a bathtub example that was taken from [3] and illustrates the usefulness of
being able to establish causality knowing only a set of equations.
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To begin, an imaginary designer has the desire to model a bathtub to ascertain the optimal
configuration. First the designer thinks about how to model this object. To start, the tub needs
to be a certain size and include some kind of drain. If the designer were considering a bathtub
with no stopper, they would have to think about flow rates and drain diameters.

The designer now has to relate these facts together to form some sort of model of the bathtub.
The following is a picture of this system.

Qin
v

Figure 7.1 Diagram of the bathtub example [3]. 0
out

Next, the designer lists the variables and relates them in the form of equations. Qj, and Qouy,
represent input and output flow rates. Variable A will represent the volume of water in the tub
and K gives the size of the drain opening. The designer makes one more relation by realizing
that the pressure at the bottom of the tub relates to the out going flow rate. Now the designer
uses these variables in equations. First they set Q;, as a constant. The equation for this relation
1s as follows:

Qin = ¢y, € is a constant.

Next, because the designer wants to keep the water level steady, they set the inflow rate equal to
the outflow rate:

Qout = Qin.

Then the designer sets the size of the drain:

K= c,, c7 is a constant.

The next equation describes the output flow rate as being proportional to the pressure.
Qou = c3KP"2, 5 is a constant.

The last equation describes the pressure as being proportional to the depth of water

A= c4P, c4 is a constant.
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K Figure 7.2 Causal ordering for the bathtub example. [3]

The resulting causal ordering, shown in Figure 7.2, obtained by using the causal ordering
methodology presented in [23] is a bit counter intuitive. It shows that the output flow rate
directly depends on the input flow rate, the pressure depends on the output flow rate and drain
size, and the water volume depends on the pressure.

One would think that adding water to the tub would increase the volume A, which would
increase the pressure P, which would then increase the output Qoy, like in Figure 7.3.

— S
Qin A P Qout

!

Figure 7.3 Intuitive causal ordering of the bathtub example. [3]

Therefore a designer might not guess the correct causal ordering as shown in Figure 7.2. To
confirm that figure 7.2 is the correct representation, the reader must recognize that this system is
in equilibrium. These equations do not depict a transient system.

To explain, we begin by abruptly opening the drain while the system is at equilibrium. The direct
response will be that Qg will increase. However when equilibrium is eventually restored, Qou
must be equal to Qy,, otherwise the system would not be in equilibrium.

Therefore changing the size of the drain only affects the equilibrium values of the pressure P and
the volume of water A but not Q.. Consequently, the equilibrium value of Q. cannot be
dependent on the pressure or the volume of water. This conclusion is accurately portrayed in
figure 7.2 but not in figure 7.3.

This type of methodology could be useful to the designer to help them understand the causal
ordering in a given set of equations.

7.2 Implementation of Causal Ordering
A computer program was develop to carry out the algorithm in [23] and is found in Appendix A.
The program parses all the equations available like the ones presented in the previous section

and, using Simon’s algorithm, returns a causal ordering.

Taking the equations from above for example, the input file would look like this:

Qinzcl
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Qout = Qin
K=C2

Qout = C3KP”2
A= C4P

The program produces the following output (the arrow indicate causality):

Qin -> Qom
Qout ->P
P->A
K->P

Two more interesting examples are given to demonstrate the capability of this methodology
implemented as a computer program.

The input equations are:

yi+ 12y, + 13y3 + 1825 + 1920 +10 =0
y1+ 22y, + 24y, +2825 +20=0

ya+ 3727+ 3925+ 30=0

Y4+ 45ys + 4675 + 4823 + 40 =0
y2+55}’5 +5823+50=O

g+ 60=0

Z7+70=0

g+ 80=0

Zg+90=0

The causal ordering output is:

Z7->Y3
Zy->Yy3
Y3 > Y1,¥Y2,Y1,Ys
Zs => Y1,Y2:¥Y4:Y5
28 ~> Y1,Y2.Y4,Y5
Zy -> Y1, Y2 Y4,Y5

The input equations are:
y- 2= 2(X - 1)7

2y =4,

Sin [5z] -y *x=-2
Causal ordering:

y > X

X->Z

y->z

7.3 How this Could be Useful in DOME

This methodology is somewhat limited because it only works on a set of self-contained (N
equations and N unknowns) set of equations. There are a few cases in which a complex model is
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made up of such a set of equations. There are many instances in which a module contains a
computer program that uses if then statements. In such cases this approach would not work. An
addition problem is that if some DOME objects are remote, one may not be able to access the set
of equations and therefore not know the causality.

However, this method could be helpful to a designer in the initial stages of design. Also, in
subsequent versions of DOME, the user might be able to enter only a list of equations in a
module. Being able to determine causality, the application could know how to connect such a
module by knowing what the inputs and outputs are of a given set of equations.
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Summary/Conclusions

8.1 Summary

This thesis presented methods on how to obtain qualitative information from a DOME design
model with the objective of attaining several goals. The first was to provide the DOME user
with tools or features to help them understand how and why results were reached and not merely
what they are. The second was to give the designer an alternative point of view of a model to
help them gain valuable insights. Third, these tools were offered to help reduce the amount of
time needed for a first time user to understand and navigate through a large distributed design
problem. The fourth goal was to offer features to assist in validating and diagnosing a
complicated distributed model. In addition to these goals, it was also determined that the
algorithms developed to extract this information would have to be robust enough to handle
different types of DOME models such as a completely local DOME model or one that is linked
to other software applications.

The thesis began by first furnishing a brief description of the DOME framework. In this chapter,
the reader learns about the creators’ vision for DOME and of the objected oriented approach to
design. From the discussion, an explanation of how a DOME model could be linked to other
applications was offered. Next, an example of a complex distributed DOME design problem of
an LCD computer projector was presented. Finally, it was shown through an anecdotal
experience why these features are needed and how they could be employed as a diagnostic tool.

In the next chapter, some research was conducted into related fields of cause and effect, and
sensitivity analysis. The authors of the papers surveyed argued that being able to extract
qualitative information from a physical model is extremely important and offered their
approaches. Later in this chapter, some current work in the field of visualization was also
reviewed. As a result of this search, a Java graph layout algorithm was discovered and
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subsequently utilized to view the output of the causality algorithm. The next sections examined
some other promising visualization software applications that could possibly be incorporated into
the DOME framework. Finally, the chapter concluded with a discussion of clustering.

Chapter 4 began by showing the causality features of two applications, Excel® and Solid
Works®, and then showed how limited they were. The next passage described how DOME
displays causality and how the dependency is established by the way the designer writes the
Modeling Definition Language. The algorithm for the first scenario of extracting the causality
directly from the instantiated design object was presented next. After this, some use scenarios
were outlined and a suggestion for the interface was made. The chapter concluded by discussing
the limitation of using such an algorithm for a DOME model that was linked to other
applications. This is because in such cases it is not known if a parent variable, linked to a remote
node/module, is in fact influencing its children.

As a result of the limitations listed in Chapter 4, the next chapter outlined a new method to
discover if a parent variable truly influences a child variable. The process was referred to as the
“perturbation method.” In summary, this method uses the idea that if a parent variable is
changed and there is a resulting change in a child variable, then there is causality. Using the
LCD projector as a test case, it was shown that there was a big difference between the causality
graphs that were produced using this perturbation method compared to those generated in
Chapter 4. Knowing the true causality is obviously crucial for the designer. One important
discovery made during the implementation of this routine was that some variables’ distributions
changed when the model was updated even if there was no change in an upstream variable. This
was because some of these distributions were generated by a parametric Monte Carlo simulation.
Because of the noise present, it was important to include some type of tolerance to be sure that a
change in a parent variable really caused a change in a dependent variable.

After creating a function that determines if a dependent variable is sensitive at all to a change in
a parent variable, it was not too difficult to extend these capabilities to perform a sensitivity
analysis. Since sensitivity analysis is another method of extracting qualitative information from
a DOME design model, the function was enhance to provided such a service. Chapter 6 made
some proposals on how to perform sensitivity analysis and also presented an interesting example
of a sensitivity analysis carried out on the environmental lens score.

Finally, Chapter 7 explained how to determine causality from a set of equations that described a
physical phenomenon. An illustration was presented to show how someone could be misled to
formulate the wrong causality given an example set of equations. The chapter also suggested
how this functionality could someday be adopted into the DOME framework.

8.2 Cdnclusions

In conclusion, it was demonstrated that these qualitative features are very important options to
include in a complex distributed model such as those produced using DOME. In Chapter 2, it
was shown how a sensitivity analysis quickly uncovered the fact that the Solid Works model
returned bogus information each time the model was changed. By using the perturbation method
in Chapter 5, it was also shown that fewer variables were dependent on the selected parent
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variable than previously thought. Likewise, the sensitivity analysis example presented in
Chapter 6 also shows how the environmental engineer might gain valuable insights into what
affects the environmental score the most.

Another finding was that care must be taken when using the perturbation method. In some cases,
there might be some noise in a calculated distribution and therefore it might look like it is
changing when in fact it is not. The size of the tolerance used to detect a change, and the number
of simulations utilized to generate distributions might have to be change from model to model.

In the future, DOME design problems could grow larger and larger and be linked to dozens of
software applications. If an automobile design was selected, for example, the model could be
tremendous. Many of the product development participants will need these features to help them
understand the model. First time users will also need to quickly gain a sense of what is
connected to what or to perform diagnostics.

8.3 Future Work

One of the goals of this thesis was to make the algorithm flexible enough to determine if, while
generating a causality chain, it encountered a linked software application. When the algorithm
senses a remote node/module it initiates the perturbation method. It may be desirable to use this
method in every case. This is because formulas may not ever really make use of a parent
variable and it may be important for a designer to know this. The trade off here is that in one
case the designer will be certain of causality for every type of DOME model. One the other
hand, this approach could be very time consuming and the chance that a designer might link to a
parent variable and not use it in an equation is low.

Other future work could include improving the algorithms to make them more efficient. One
reason for this is because it took a relatively long time to generate the results of the sensitivity
analysis presented in Chapter 6. Also some of the visualization techniques presented in Chapter
3 could be utilized to view output of the causality analysis. As DOME models grow, the
problem becomes understanding, visualizing, navigating, and getting the information one wants
when one needs it. In the same way, tailoring this output to suit the individual using the
application could also be a worthwhile task.

Lastly, there are currently two versions of DOME. One GUI is written in motif and the other

was created using Java. The next step would be to fully integrate these features in the Java
version of DOME.
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Appendix A

Casualty functions

#include <iostream.h>
#include "FileScan.h"
#include "GAO.h"
short _DebugOn = 0;

void findCausalityChain(GNode *);
void findRoots(GNode *);

void findDependencyChain(GNode *);
void findDependencyChainCrit(GNode *);
void findDependencyChainLens(GNode *);
void findLeaves(GNode *);

void findLeavesCrit(GNode *);

void findLeavesLens(GNode *);

VarNode * origCurrentVarNode = NULL;
VarNode * savedVarNode = NULL;

GNode * currentGNode;
GNode * origCurrentGNode;

Design * D = NULL;

ofstream outputF("MaterialsCost.html");
void main()

{char filename[200];

cerr<<"Input file name:";
cin>>filename;

ReadFile a(filename, XXXTrue);
a.Scan();

D = a.newGAOQO()->design();

Module * currentMod = NULL;

VarNode * currentVarNode = NULL;
currentMod = D->designModule("Geometry");

currentGNode = & currentMod->varNode("Power Supply Volume");
origCurrentGNode = &currentMod->varNode("Power Supply Volume");

findDependencyChain(currentGNode);
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findDependencyChainCrit(currentGNode);

findDependencyChainLens(currentGNode);

findLeaves(currentGNode);
findLeavesCrit(currentGNode);

findLeavesLens(currentGNode);

currentMod = D->designModule("Cost");
currentGNode = & currentMod->varNode("Materials Cost");
origCurrentGNode = &currentMod->varNode("Materials Cost");

findCausalityChain(currentGNode);

findRoots(currentGNode);

currentMod = D->designModule(" Assessment");
currentGNode = & currentMod->lens("Environment");
origCurrentGNode = &currentMod->lens("Environment");

findCausalityChain(currentGNode);

findRoots(currentGNode);

currentMod = D->designModule(" Assessment");
currentGNode = & currentMod->criterion("EPS-Air Crit");
origCurrentGNode = &currentMod->criterion("EPS-Air Crit");

findCausalityChain(currentGNode);

findRoots(currentGNode);
}

void findCausalityChain(GNode * currentGNode)
{

nt i;
int nParents = 0;

Array<GNode *> GNodeParentArray;

cerr << "The class type is"<< currentGNode->classType() << endl;
nParents = currentGNode->nparents();

if ( nParents == Q)

{

return;

}
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GNodeParentArray = currentGNode->parents();
for(i = 0; i < nParents; i++){

outputF <<GNodeParentArray[i]->name()<< "*"<<
D->connectedDesignModuleName(((VarNode * YGNodeParentArray[i]))
<<" "
<<currentGNode->name()<< "*" <<D->connectedDesignModuleName((VarNode *)currentGNode)<<",";
findCausalityChain(GNodeParentArray[i]);
}
}

"nen

void findRoots(GNode * currentGNode)
{

nt 1;
int nParents = 0;

Array<GNode *> GNodeParentArray;
nParents = currentGNode->nparents();

if ( nParents == 0)
{
outputF <<currentGNode->name()<<" *"<<D->connectedDesignModuleName((VarNode * )currentGNode)
<<ll?l|
<<origCurrentGNode->name()<<""<<
D->connectedDesignModuleName((VarNode * )origCurrentGNode)<<",";

return;

}

GNodeParentArray = currentGNode->parents();
for(i = 0; i < nParents; i++)
{
findRoots(GNodeParentArray[i]);

}
}

void findDependencyChain(GNode * currentGNode)
{

int 1;
int nChildren = 0,

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();
if ( nChildren == 0)

{

return;

}

GNodeChildArray = currentGNode->children();
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for(i = 0; i < nChildren; i++){

if ( currentGNode->classType() != 22 && GNodeChildArray{i}->classType() = 22)
{

nen

outputF<<currentGNode->name()<< "*" <<D->connectedDesignModuleName((VarNode *)currentGNode)
<<"7"<< GNodeChildArray[i]->name()<< "*"
<< D->connectedDesignModuleName(((VarNode * YGNodeChildArray[i]))<<",";

}
findDependencyChain(GNodeChild Array[i]);

}
}

void findDependencyChainCrit(GNode * currentGNode)
{

inti;
int nChildren = 0;

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();

if ( nChildren ==0)
{

return,

}

GNodeChildArray = currentGNode->children();
for(a1 = 0; 1 < nChildren; i++){

if (GNodeChildArray[i]->classType() != 13)
{

outputF<<currentGNode->name()<< "*" <<D->connectedDesignModuleName((VarNode *)currentGNode)
<<"?"<< GNodeChildArray[i]->name()<< "*"
<< D->connectedDesignModuleName(((VarNode * )GNodeChildArray[i]})<<",";

[}

}

findDependencyChainCrit{GNodeChildArray({i});
}
}

void findDependencyChainLens(GNode * currentGNode)
{

int i;
int nChildren = 0;

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();
if ( nChildren == 0)

{

return;

}
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GNodeChildArray = currentGNode->children();

for(i = 0; 1 < nChildren; i++)
{
outputF<<currentGNode->name()<< "*" <<D->connectedDesignModuleName((VarNode *)currentGNode)
<<"?"<< GNodeChildArray[i]->name()<< " "
<< D->connectedDesignModuleName(((VarNode * YGNodeChildArray[i]))<<",";

findDependencyChainLens(GNodeChildArray[i]);

}
}

void findLeaves(GNode * currentGNode)
{

int 1;
int nChildren = 0;

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();

if ( nChildren == 0 && currentGNode->classType() != 22 && currentGNode->classType() =23 &&
currentGNode->classType() = 13)

{

nen

outputF<<origCurrentGNode->name()<< "*" <<
D->connectedDesignModuleName((VarNode *)origCurrentGNode)
<<"?"<< currentGNode->name()<< "¢"
<< D->connectedDesignModuleName((VarNode *)currentGNode)<<",";
return;
}
GNodeChildArray = currentGNode->children();

for(i = 0; i < nChildren; 1++){

if (GNodeChildArray[i]->classType() == 22 && nChildren==1)
{

tnen

outputF <<origCurrentGNode->name()<< "*" <<
D->connectedDesignModuleName((VarNode *)origCurrentGNode)
<<"7"<< currentGNode->name()<< " "
<< D->connectedDesignModuleName((VarNode *)currentGNode)<<",";

}
findLeaves(((VarNode * YGNodeChildArray[i]));

}
}

void findLeavesCrit(GNode * currentGNode)
{

int i;
int nChildren = 0;

Array<GNode *> GNodeChildArray;
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nChildren = currentGNode->nchildren();

if ( nChildren == 0 && currentGNode->classType() == 22)
{

wen

outputF<<origCurrentGNode->name()<< "*" <<
D->connectedDesignModuleName((VarNode *)origCurrentGNode)
<<"?"<< currentGNode->name()<< "*"
<< D->connectedDesignModuleName((VarNode *)currentGNode)<<",";
return;

1
GNodeChildArray = currentGNode->children();

for(i = 0; 1 < nChildren; i++){

if (GNodeChildArray(i]->classType() == 22)
{

nen

outputF <<origCurrentGNode->name()<< "*" <<
D->connectedDesignModuleName((VarNode *)origCurrentGNode)
<<"?"<< GNodeChildArray[i]->name()<< "*"
<< D->connectedDesignModuleName(((VarNode *)GNodeChildArray[i]))<<",";

LI

}
findLeavesCrit(GNodeChildArray(il);

}
}

void findLeavesLens(GNode * currentGNode)
{

inti;
int nChildren = 0;

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();

if ( nChildren == 0 && currentGNode->classType() == 13)
{
outputF<<origCurrentGNode->name()<< "" <<
D->connectedDesignModuleName((VarNode *)origCurrentGNode)
<<"7"<< currentGNode->name()<<" "
<< D->connectedDesignModuleName((VarNode *)currentGNode)<<",";
return;

}
GNodeChildArray = currentGNode->children();

wen

for(i = 0; i < nChildren; i++)
{
findLeavesLens(GNodeChildArray{i));

}
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Perturbation functions

#include <iostream.h>
#include "FileScan.h"
#include "GAO.h"
short _DebugOn = 0;

void findDependencyChain(GNode *);
void findRoots(GNode * );

void findCausalityChain(GNode *);

GNode * origCurrentGNode = NULL;
Catalog * currentCat = NULL,;

double oldNodeVal = 0.0;

GNode * storedNodesFromFindRoots[20];
int count = 0;

Design * D =NULL;

ofstream outputF("blackBox.html");

void main()

{
for (int h = 0; h < 20; h++)

{
storedNodesFromFindRoots[h] = NULL;

}

char filename[200];
int nModules, nParents;

cerr<<"Input file name:";
cin>>filename;

ReadFile a(filename, XXXTrue);
a.Scan();

D = a.newGAO()->design();

nModules = D->nDesignModules();

Module * currentMod = NULL;

GNode * currentGNode;

currentMod = D->designModule("Geometry");

currentGNode = & currentMod->varNode("Power Supply Volume");
origCurrentGNode = & currentMod->varNode("Power Supply Volume™);
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oldNodeVal = ((VarNode *)origCurrentGNode)->position();
cerr << "The value of " << origCurrentGNode->name() << " is: " << oldNodeVal << " end" << endl;

findCausalityChain(currentGNode);
}

void findCausalityChain(GNode * currentGNode)
{

nt i,

int nChildren = 0;

Array<GNode *> GNodeChildArray;
nChildren = currentGNode->nchildren();

if ( nChildren == 0)
{

return;

}
GNodeChildArray = currentGNode->children();
for(i = 0; 1 < nChildren; i++){

if ( currentGNode->classType() != 22 && GNodeChildArray[i]->classType() != 22 )
{
cerr <<currentGNode->name()<< "*" <<D->connectedDesignModuleName((VarNode *)currentGNode)
<<"?"<< GNodeChildArray[i]->name()<< "*"
<< D->connectedDesignModuleName(((VarNode * )JGNodeChildArray[i]))<<",";
}

findCausalityChain{GNodeChildArray[i]);
1
}

void findDependencyChain(GNode * currentGNode)

{
XXXString DesignModuleName;
XXXString NodeName;

GNode * tempGnodePtr = NULL;

int 1;
int nParents = 0O;
int nRecords = 0;

Array<GNode *> GNodeParentArray;
nParents = currentGNode->nparents();

if ( nParents == 0)
{
cerr << "I have node " << currentGNode->name() << " from module " <<
D->connectedDesignModuleName((VarNode * )currentGNode)<< endl;
return;

}
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GNodeParentArray = currentGNode->parents();

cerr << "The current node " << ((VarNode *)currentGNode)->name() << " from design module "
<< D->connectedDesignModuleName((VarNode * )currentGNode)<< ", is " <<
((VarNode *)currentGNode)->documentation().url()<< endl;

if ((VarNode *)currentGNode)->documentation().url() == "Remote")

{

findRoots(currentGNode);

for(int j = 0; j < 14; j++)
{

DesignModuleName = D->connectedDesignModuleName(((VarNode * )storedNodesFromFindRoots[j]));
NodeName = storedNodesFromFindRoots[j]->name();

if (!D->designModulelsStatic(D->connectedDesignModuleName(((VarNode *
)storedNodesFromFindRoots[j]))))
{
currentCat = D->catalogAssociatedToDesignModule(D->connectedDesignModuleName(((VarNode *
)storedNodesFromFindRoots[j1)));

nRecords = currentCat->nRecords();

for(int n = 0; n < nRecords; n++)

{

D->replace(DesignModuleName, &(currentCat->record(n)));

D->evaluate();

if (oldNodeVal != ((VarNode *)origCurrentGNode)->position())
{
n = nRecords;
}
oldNodeVal = ((VarNode *)origCurrentGNode)->position();
}
}
else
{
((VarNode * )storedNodesFromFindRoots{j])->moveTo(((VarNode * )storedNodesFromFindRoots[j])-
>position()*.1 +
((VarNode *
)storedNodesFromFindRoots[j])->position());
}
1

return;

}

for(int k = 0; k < nParents; k++){
cerr <<GNodeParentArray[k]->name()<<
YGNodeParentArray[k]))
<<"?"
<<currentGNode->name()<<
JcurrentGNode)<<","<< endl;
findDependencyChain(GNodeParentArray[k]);

man

<< D->connectedDesignModuleName(((VarNode *

nwen

<<D->connectedDesignModuleName((VarNode *
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}

void findRoots(GNode * currentGNode)
{

int i;

int nParents = 0;

Array<GNode *> GNodeParentArray;
nParents = currentGNode->nparents();

if ( nParents == 0)
{
storedNodesFromFindRoots[count] = currentGNode;
count++;
return;
}
GNodeParentArray = currentGNode->parents();
for(i = 0; 1 < nParents; i++)
{
findRoots(GNodeParentArray[i});
!
}
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Sensitivity analysis

#include <iostream.h>
#include "FileScan.h"
#include "GAO.h"

short _DebugOn = 0;

void findDependencyChain(GNode *);
void findRoots(GNode * );

GNode * origCurrentGNode = NULL,;
Catalog * currentCat = NULL,;

double oldNodeVal = 0.0;

const int numberOfStoredRoots = 500;
const int numberOfSavedModNames = 500;

GNode * storedNodesFromFindRoots[numberOfStoredRoots];

XXXString savedModuleName[numberOfSavedModNames];
XXXLens * origCurrentLens = NULL;

Module * currentMod = NULL,;

int Scount = 0;
int count = 0;

Design * D = NULL;

ofstream outputF("FinalSens100.html");
ofstream outputG("SENSRESULTS100.HTML");

void main()

{
for (int h = 0; h < numberOfStoredRoots ; h++)

{
storedNodesFromFindRoots{h] = NULL;

}

for (int 0 = 0; o < numberOfSavedModNames; o++)

{

savedModuleName[o] = "x";

}

char filename[200];
int nModules, nParents;

cerr<<"Input file name:";
cin>>filename;

ReadFile a(filename, XXXTrue);
a.Scan();

D = a.newGAO()->design();
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nModules = D->nDesignModules();
GNode * currentGNode;

currentMod = D->designModule(" Assessment");
currentGNode = & currentMod->lens("Environment");
origCurrentLens = &currentMod->lens("Environment");

oldNodeVal = origCurrentLens->evaluate();

cerr << "The value of " << origCurrentLens->name() << " is: " << oldNodeVal << " end" << endl;
outputG << "oldNodeVal is " << oldNodeVal<< endl;

outputG << endl;

findDependencyChain(currentGNode);
}

void findDependencyChain(GNode * currentGNode)

{
XXXString DesignModuleName;
XXXString NodeName;

GNode * tempGnodePtr = NULL;

nt 1;
int nParents = 0;
int nRecords = 0;

Array<GNode *> GNodeParentArray;

nParents = currentGNode->nparents();
GNodeParentArray = currentGNode->parents();
findRoots(currentGNode);

for (int s = 0; s < numberOfStoredRoots; s++)
{if (storedNodesFromFindRoots[s] != NULL)
{outputF <<"The node is: "<< storedNodesFromFindRoots[s]->name()<<" from module "<<
D->connectedDesignModuleName(({VarNode * )storedNodesFromFindRoots[s]))<< endl;
} }

for(int j = 12;j < 15; j++)
{
if (storedNodesFromFindRoots[j] != NULL )
{
outputF<<"Root number "<< j <<" is node "<< storedNodesFromFindRoots[j]->name()
<<" from design module "<<D->connectedDesignModuleName(((VarNode *
)storedNodesFromFindRoots[j]))<< endl;

DesignModuleName = D->connectedDesignModuleName(((VarNode * )storedNodesFromFindRoots(j]}));
NodeName = storedNodesFromFindRoots([j]->name();
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if (ID->designModulelsStatic(D->connectedDesignModuleName(((VarNode *
)storedNodesFromFindRoots[j]))))

{

currentCat = D->catalogAssociated ToDesignModule(D->connectedDesignModuleName(((VarNode *
)storedNodesFromFindRoots{j])));

nRecords = currentCat->nRecords();

int defualtRecordIndex = currentCat->recordIndex(D-
>recordAssociatedToDesignModule(DesignModuleName));

for(int n = 0; n < nRecords; n++)

{
if ({(DesignModuleName == "LCA-Connection" && n == 2))

{

D->replace(DesignModuleName, &(currentCat->record(n)));
D->evaluate();

currentMod = D->designModule("Assessment");
origCurrentLens = &currentMod->lens("Environment");

<<", Current Record is "<<D->recordAssociated ToDesignModule(DesignModuleName)-

>name()
<< "and the current record is " << n << end];

}
}

D->replace(DesignModuleName, &(currentCat->record(defualtRecordIndex)));

currentMod = D->designModule("Assessment");
origCurrentLens = &currentMod->lens("Environment");

}

else

{
double holdNodeVal = ((VarNode * )storedNodesFromFindRoots[j])->position();

for (inty =0; y < 5; y++)

{
((VarNode * )storedNodesFromFindRoots[j])->moveTo(holdNodeVal*(.04*y) + holdNodeVal);

}
for (int x =0; x < 5; x++)

((VarNode * ystoredNodesFromFindRoots[j])->moveTo(holdNodeVal - holdNodeVal*(.04*x));
}
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void findRoots(GNode * currentGNode)
{

int i;
int nParents = 0;

int check = 0;
Array<GNode *> GNodeParentArray;
nParents = currentGNode->nparents();

if ( nParents == 0)
{
for (int m = 0; m < numberOfSavedModNames; m ++ )

{
if (savedModuleName[m] != "x")

{

outputF << "savedModuleName[m] is " << savedModuleName[m] << end];

}

if (savedModuleName[m] == D->connectedDesignModuleName((VarNode * )currentGNode) &&
ID->designModulelsStatic(D->connectedDesignModuleName(((VarNode * )currentGNode))))
{
check=1;
}
}

savedModuleName[Scount] = D->connectedDesignModuleName((VarNode * )currentGNode);
Scount++;

if (check 1=1)
{
storedNodesFromFindRoots[count] = currentGNode;
count++;

}

check =0;
return;

}

GNodeParentArray = currentGNode->parents();
for(i = 0; i < nParents; i++)
{
findRoots(GNodeParentArray[i]);
}
}
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Causality from a set of equations

import java.io.*;
import java.util. *;
import symantec.itools.awt.Matrix;

class ConMatrix {
public int rows, columns;
public double[][] element;

public static void main(String[] args)
{
String[] equationl = {"K"};
String[] equation2 = {"Qin"};
String[] equation3 = {"Qin","Qout"};
String[] equation4 = {"K","Qout","P"};
String[] equation5 = {"A","P"};

String[][] equation1to5 = new String[5][];

equation1to5[0] = equationl;
equationito5[1] = equation2;
equation1to5[2] = equation3;
equation1to5[3] = equation4;
equationlto5[4] = equation$;

String[] all_vars = new String[5];
int counta = Q;

boolean no_have_this_var = false;

for (int1=0;1<5;i++)
for (int j = 0; j < equation1to5[i].length; j++)
{
for (int k = 0; k < all_vars.length; k++)
{
if (!(all_vars[k] == equationlto5[i][j]))
{

no_have_this_var = true;

}
if ((all_vars[k] == equation1to5[i][j]))
{
no_have_this_var = false;
break;
)
!
if (no_have_this_var)
{
all_vars[counta] = equation1to5[i][j];
counta++;
no_have_this_var = false;
}

1
String [][] Matb = new String[5][5];
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for(inti=0;1<5;i++)
{
Matb[i][0]= all_vars[i];
System.out.println("all_vars[" + i+ "] =" + all_vars[i]);

}
int [][] MatC = new int [5][5];
int [1[] MatA = new int[5][5];

for (inti1=0;1<5; i++)
for (int j = 0; j < equation1to5[i].length; j++)
{
for(intk = 0; k < 5; k++)
{
if (equationltoS[i][j] == Matb[k][0})
{
MatAl[i][k] = 1;
}
}
}
for(int1=0;1<5; i++)
for(int j =0;j < 1; j++)
{

}
for(inti=0;1< 5; i++)
for(int j = 0;j < 5; j++)
{

}
if (isLowerTriangular(MatA))

System.out.printin("Matb[" +i + "J[" +j + "] =" + Matb[il[j]);

System.out.println("MatA[" +i + "][" +j + "] =" + MatA[i][j});

for(inti=0;1<5;i++)
for(int j =0;j < 5; j++)

{
if MatAli][j]l == 1)
{
for(intk = 1; k < 5; k++)
for(int1=0; 1< 5; 1++)
{
if (MatA[Kk][l] == 1)
{
int rember_j_pos = 100000;
for (int m = 0; m < 5; m++)
{
if (MatA[k][m] == 1)
{
rember_j_pos = m;
}
}
}
}
}
}
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public static boolean isLowerTriangular(int [J[] matrix)

{

for (int r = 0; r < matrix.length; ++r)

{
for (int ¢ = 0; ¢ < matrix[0].length; ++c)
{
if (r<c)
{
if (matrix[r][c] '=0)
return false;
}
1
}
return true;

}

public static int [][] transpose(int []{] matrix)
{
int [][] result = new int [matrix.length][matrix.length};
for (int r = 0; r < matrix.length; +4r)
{
for (int ¢ = 0; ¢ < matrix[0].length; ++c)
{
result[c][r] = matrix[r][c];
}
}

return result;

}
public static int [][] shuffleRows(int [][] matrix)

{
int [] numbers_used = new int[matrix.length];
for (int i = 0; i < numbers_used.length; i++)
{
numbers_used[i}= 100000000;
}
boolean Tr = true;
boolean random_repete = false;

int []{] result = new int [matrix.length][matrix.length];
int count = 0;

int rand = (int)(Math.random()* 5) ;

numbers_used[0] = rand;

for (int r = 0; r < matrix.length; ++1)
{
if (r'=0)
{
rand = (int)(Math.random()* 5) ;
while (Tr)
{
for (int i=0; 1 < count; i++)
{
if (numbers_used[i] == rand)

{

79



random_repete = true;

}
if (1 == (count - 1) && random_repete == false)
{
Tr = false;
numbers_used{r] = rand;
}
}
if (random_repete)
{

rand = (int)(Math.random()* 5) ;
random_repete = false;
}

}
}

count++;
Tr = true;
for (int ¢ = 0; ¢ < matrix[0].length; ++c)
{
result[r][c] = matrix[rand][c];
}
}
return result;
}
public void Matrix(String s) {
Vector row = new Vector();
Vector col = new Vector();
s=s+";"
int i = s.length();
int j;
int rowCounter = 0;
int colCounter = 0;
String sData = new String();
Double fl;
char sChar;
for (j =05 j<i; j++) {
sChar = s.charAt(j);
if ( (sChar=="")Il (sChar==",)Il ( (int) sChar==9)I|
(sChar == *))li( (int) sChar == 13)lI( (int) sChar == 10) ) {
fl = new Double(0);
try {
boolean testSpace = true;
int ii;
for(ii=0;ii<sData.length();ii++){
testSpace=testSpace&&(sData.charAt(ii)==""); }
if(testSpace==false){
fl = new Double(sData);
col.addElement(sData); }
sData = new String();
}
catch (Exception e) {
sData = new String();

}

if ( ( (sChar == *)II( (int) sChar == 13)Il( (int) sChar == 10) ) &&
'col.isEmpty() ) {
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row.addElement(col);
rowCounter = rowCounter + 1;
sData = new String();
colCounter = col.size();

col = new Vector();

}

else {

if ((Character.isDigit(sChar))ll(sChar=="")ll(sChar=="")) {
/1 allow only digit and decimal point characters
sData = sData + sChar;  // append to string

}

rows = rowCounter;
columns = colCounter;
element = new double[rows][columns];
col = new Vector();
Double d = new Double(0);
for (j = 0; j<rows; j++) {
col = (Vector) row.elementAt(j);
for (i = 0; i<col.size(); i++) {
d = new Double((String)col.elementAt(i));
element[j][i] = d.doubleValue();
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Java Graph Layout

/*
* @#)Graph.java  1.597/07/31
ES

* Copyright (C) 1994-1996 Sun Microsystems, Inc. All nghtS Reserved.
*

* Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,

* modify and redistribute this software in source and binary code form,

* provided that 1) this copyright notice and license appear on all copies of

* the software; and i1) Licensee does not utilize the software in a manner

* which is disparaging to Sun.

%k

* This software is provided "AS IS," without a warranty of any kind. ALL

* EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
* NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
* LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
* OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
* LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,

* INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
* CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
* OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGES.

*

* This software is not designed or intended for use in on-line control of

* aircraft, air traffic, aircraft navigation or aircraft communications; or in

* the design, construction, operation or maintenance of any nuclear

* facility. Licensee represents and warrants that it will not use or

* redistribute the Software for such purposes.

ES

* Changed by: Chris Bucchere, 30-July-1997
%
*/

import java.util. *;

import java.awt.*;

import java.applet.Applet;
import java.awt.event.*;

class Node {
double x;
double y;

double dx;
double dy;

boolean fixed;

String Ibl;
}

class Edge {
int from;
int to;
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double len;

}

class GraphPanel
extends Panel
implements Runnable, MouseListener {
Graph graph;
int nnodes;
Node nodes[] = new Node[100];

int nedges;
Edge edges{] = new Edge[200];

Thread relaxer;
boolean stress;
boolean random;

GraphPanel(Graph graph) {
this.graph = graph;
addMouseListener(this);

}

int findNode(String 1bl) {
for (inti=0; i < nnodes ; i++) {
if (nodes[i].Ibl.equals(lbl)) {
return i;
}

}
return addNode(lbl);

}
int addNode(String 1bl) {
Node n = new Node();
n.x = 10 + 380*Math.random();
n.y = 10 + 380*Math.random();
n.lbl = 1bl;
nodes[nnodes] = n;
return nnodes++;
}
void addEdge(String from, String to, int len) {
Edge e = new Edge();
e.from = findNode(from);
e.to = findNode(to);
e.len = len;
edges[nedges++] = e;

}

public void run() {
while (true) {
relax();
if (random && (Math.random() < 0.03)) {
Node n = nodes[(int)(Math.random() * nnodes)];
if (!n.fixed) {
n.x += 100*Math.random() - 50;
n.y += 100*Math.random() - 50;

}
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graph.play(graph.getCodeBase(), "../audio/drip.au");

try {
Thread.sleep(100);
} catch (InterruptedException €) {
break;
}
}
}

synchronized void relax() {
for (inti=0; i< nedges ; i++) {

Edge e = edges[i];
double vx = nodes[e.to].x - nodes[e.from].x;
double vy = nodese.to].y - nodesfe.from].y;
double len = Math.sqrt(vx * vx + vy * vy);
double f = (edgesli].len - len) / (len * 3) ;
double dx = * vx;
double dy =f * vy;

nodes[e.to].dx += dx;

nodes[e.to].dy += dy;

nodes[e.from].dx += -dx;

nodes[e.from].dy += -dy;
}

for (inti=0 ;i< nnodes ; i++) {
Node nl = nodes[i];
double dx = 0;
double dy = 0;

for (int j =0 ; j < nnodes ; j++) {
if (i ==) {
continue;
}
Node n2 = nodes[j];
double vx =nl.x - n2.x;
double vy = nl.y - n2.y;
double len = vx * vx + vy * vy;
if (len ==0) {
dx += Math.random();
dy += Math.random();
} else if (len < 100*100) {
dx +=vx /len;
dy +=vy/len;
}
}
double dlen = dx * dx + dy * dy;
if (dlen > 0) {
dlen = Math.sqrt(dlen) / 2;
nl.dx +=dx / dlen;
nl.dy +=dy/ dlen;
}
}

Dimension d = getSize();
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for (inti=0 ;i< nnodes ; i++) {
Node n = nodes[i];
if (In.fixed) {
n.x += Math.max(-5, Math.min(5, n.dx));
n.y += Math.max(-5, Math.min(5, n.dy));

//System.out.println("v="+ n.dx + "," + n.dy);
if (n.x<0){
nx=0;
} else if (n.x > d.width) {
n.x = d.width;
}
if (n.y<0) {
ny=0;
} else if (n.y > d.height) {
n.y = d.height;
}
}
ndx /=2;
ndy /=2;
}
repaint();
}
Node pick;

boolean pickfixed;
Image offscreen;
Dimension offscreensize;
Graphics offgraphics;

final Color fixedColor = Color.red;

final Color selectColor = Color.pink;

final Color edgeColor = Color.black;

final Color nodeColor = new Color(250, 220, 100);
final Color stressColor = Color.darkGray;

final Color arcColorl = Color.black;

final Color arcColor2 = Color.pink;

final Color arcColor3 = Color.red,;

public void paintNode(Graphics g, Node n, FontMetrics fm) {

int x = (int)n.x;
inty = (int)n.y;

g.setColor((n == pick) ? selectColor : (n.fixed ? fixedColor : nodeColor));

int w = fm.stringWidth(n.Ibl) + 10;

int h = fm.getHeight() + 4;

gfillRect(x - w/2,y - h/2, w, h);
g.setColor(Color.black);

g.drawRect(x - w/2, y - h/ 2, w-1, h-1);

g.drawString(n.1bl, x - (w-10)/2, (y - (h-4)/2) + fm.getAscent());

}

public synchronized void update(Graphics g) {
Dimension d = getSize();

if ((offscreen == null) Il (d.width != offscreensize.width) Il (d.height != offscreensize.height)) {

offscreen = createImage(d.width, d.height);
offscreensize = d;
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offgraphics = offscreen.getGraphics();
offgraphics.setFont(getFont());
}

offgraphics.setColor(getBackground());
offgraphics.fillRect(0, 0, d.width, d.height);
for (int i =0 ; i < nedges ; 1++) {
Edge e = edgesli};
int x1 = (int)nodes[e.from].x;
int y1 = (int)nodes[e.from].y;
int X2 = (int)nodes[e.to].x;
int y2 = (int)nodes[e.to].y;
int len = (int)Math.abs(Math.sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1l-y2)) - e.len);
offgraphics.setColor((len < 10) ? arcColorl : (len < 20 ? arcColor2 : arcColor3)) ;
offgraphics.drawLine(x1, y1, X2, y2);
if (stress) {
String Ibl = String.valueOf(len);
offgraphics.setColor(stressColor);
offgraphics.drawString(Ibl, x1 + (x2-x1)/2, y1 + (y2-y1)/2);
offgraphics.setColor(edgeColor);
}
}

FontMetrics fm = offgraphics.getFontMetrics();

for (inti=0 ;i< nnodes ; i++) {
paintNode(offgraphics, nodes{i], fm);

}

g.drawlmage(offscreen, 0, 0, null);

}

//1.1 event handling
public void mouseClicked(MouseEvent €) {

}

public void mousePressed(MouseEvent ¢) {
double bestdist = Double. MAX_VALUE;
int x = e.getX();
inty = e.getY();
for (int1=0; i< nnodes ; i++) {
Node n = nodes[i];
double dist = (n.x - x) * (n.x - x) + (n.y - y) * (n.y - y);
if (dist < bestdist) {
pick = n;
bestdist = dist;
}
}
pickfixed = pick.fixed;
pick.fixed = true;
pick.x = x;
pick.y =y;
repaint();
e.consume();

}

public void mouseReleased(MouseEvent e) {
pick.x = e.getX();
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pick.y = e.getY();
pick.fixed = pickfixed;
pick = null;

repaint();
e.consume();

}

public void mouseEntered(MouseEvent e) {

}

public void mouseExited(MouseEvent €) {

}

public void mouseDragged(MouseEvent e) {
pick.x = e.getX();
pick.y = e.getY();
repaint();
e.consume();

}

public void mouseMoved(MouseEvent e) {

}

public void start() {
relaxer = new Thread(this);
relaxer.start();

1

public void stop() {
relaxer.stop();

}

}

public class Graph
extends Applet
implements ActionListener {
GraphPanel panel;

public void init() {
setLayout(new BorderLayout());

panel = new GraphPanel(this);
add("Center", panel);

Panel p = new Panel();
add("South", p);

p.add(new Button("Scramble"));
p-add(new Button("Shake"});
p.add(new Checkbox("Stress"));
p.add(new Checkbox("Random"));

String edges = getParameter("edges");
for (StringTokenizer t = new StringTokenizer(edges, ",") ; t.hasMoreTokens() ; ) {
String str = t.nextToken();
int 1 = str.indexOf(-);
if (1> 0) {
int len = 50;
int j = str.indexOf(’/);
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if §>0){
len = Integer.valueOf(str.substring(j+1)).intValue();
str = str.substring(0, j);
}
panel.addEdge(str.substring(0,i), str.substring(i+1), len);
}
}
Dimension d = getSize();
String center = getParameter("center”);
if (center != null){
Node n = panel.nodes[panel.findNode(center)];
n.x = d.width / 2;
n.y = d.height/ 2;
n.fixed = true;
!
}

public void start() {
panel.start();

}

public void stop() {
panel.stop();

}

public void actionPerformed(ActionEvent e) {
Object arg = e.getSource();
if (arg instanceof Boolean) {
if (((Checkbox)arg).getLabel().equals("Stress")) {
panel.stress = ((Boolean)arg).booleanValue();
} else {
panel.random = ((Boolean)arg).booleanValue();

}
return;
}
if ("Scramble”.equals(arg)) {
play(getCodeBase(), "../audio/computer.au”);
Dimension d = getSize();
for (int i = 0 ; i < panel.nnodes ; i++) {
Node n = panel.nodes[i];
if (!n.fixed) {
n.x = 10 + (d.width-20)*Math.random();
n.y = 10 + (d.height-20)*Math.random();
}
}
return;
}
if ("Shake".equals(arg)) {
play(getCodeBase(), "../audio/gong.au");
Dimension d = getSize();
for (int i = 0 ; i < panel.nnodes ; i++) {
Node n = panel.nodes[i];
if (In.fixed) {
n.x += 80*Math.random() - 40;
n.y += 80*Math.random() - 40;
}
}
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}
}

public String getAppletInfo() {
return "Title: GraphLayout \nAuthor: <unknown>";

}

public String[][] getParameterInfo() {
String[][] info = {

{"edges", "delimited string", "A comma-delimited list of all the edges. It takes the form of 'C-N1,C-N2,C-N3,C-
NX,NI1-N2/M12,N2-N3/M23,N3-NX/M3X,...” where C is the name of center node (see center’ parameter) and NX
is a node attached to the center node. For the edges connecting nodes to eachother (and not to the center node) you
may (optionally) specify a length MXY separated from the edge name by a forward slash."},

"non

{"center", "string", "The name of the center node."}
)5
return info;
1
}
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