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ABSTRACT

We have implemented a suite of algorithms which enable increased autonomy
in planetary rovers. Specifically, we have implemented an iterative, semi-sparse
range map generation algorithm which is adaptive in both texture and dis-
tance, allowing the computationally efficient generation of range maps. Using
these range maps we have implemented a simple obstacle avoidance methodol-
ogy. To these two algorithms we add an image segmentation algorithm based
on correlating texture-based image segmentation with edge detection to achieve
approximately 94% correct segmentation in pseudo-natural environments. Com-
bining the above algorithms, we demonstrate roaming obstacle avoidance with
autonomous sample acquisition.

Implementing a range map registration algorithm provides us with one mea-
sure of the rover’s inter-frame state change. By fusing this measurement of the
rover’s change in state with the commanded motion via Kalman filter, we are
able to achieve a position estimate error for the rover in soft soil simulant and
rocky terrain of approximately 0.4 m after a 6 m traverse. This higher-quality
state estimate relative to dead reckoning alone allows us to perform naviga-
tion to user designated goals using a real time potential flow based path plan-
ning methodology. We present several experimental trials in challenging terrain
where the rover is successful in navigating to relatively directly accessible and
very obstructed user designated goals.
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Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

NASA’s Pathfinder mission to Mars, carrying the Sojourner rover, was a phe-
nomenal success. Both the rover and lander outperformed their expected nom-
inal missions, sending back stunning pictures of the Martian surface, and per-
forming a variety of science functions, including temperature, atmospheric, and
soil characteristic measurements. However, the Sojourner rover was very lim-
ited in many respects. It required frequent commands input from the ground
team on earth, as its autonomous capabilities were very limited. Additionally,
the rover was limited to explorations within the visual range of the lander cam-
eras (approximately 10 meters), due to quickly growing errors in the rover’s
dead-reckoned-only position state estimate, given the difficult terrain. Staying
within the range of the lander cameras allowed the ground team to update the
rover’s state estimate manually. Given the success of the Pathfinder mission,
NASA/JPL is moving forward with additional mars rover missions, in 2001,
2003, and 2005. [37]

The current planned objectives for NASA’s 2001 and 2003 rover missions
to Mars include traverses totaling tens to hundreds of kilometers, over time
frames spanning several months to a year or more. During these long distance
traverses, various science functions are to be performed, including sample ac-
quisition and cache, spectroscopic imaging, micro-camera imaging, and sample
abrasion. Sample acquisition and cache activities have the highest priority, in
preparation for the planned 2005 Mars sample return mission. The 2005 Mars
sample return mission, in contrast to the 2001/2003 missions, is envisioned to
last only a matter of days, as a rover sprints out from its descent vehicle to
acquire and retrieve a sample cache from one of the “dead” sample collection
rovers, quickly traversing back to its ascent vehicle for return to earth. [13],
[27].

In order to adequately achieve these ambitious desired mission objectives
within the specified time frames, increased autonomy must be introduced and
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16 CHAPTER 1. INTRODUCTION

incorporated into NASA’s 2001, 2003, and 2005 rover platforms. Teleopera-
tion is infeasible as signal delay times are on the order of 7 to 10 minutes.
Additionally, command uplink / data downlink sessions are able to occur only
approximately twice per earth day. Thus, increased autonomy is necessary, as
high average ground speeds are desired to maximize the amount of terrain area
covered per unit time.

Of paramount importance are the robustness and computational efficiency
of these autonomous behaviors. Not only must the algorithms function with
repeatedly high performance in varying terrains and lighting conditions, but also
work well given the computational limitations imposed by radiation hardened
processor requirements and power constraints. Additionally, these behaviors
must take into account, and be capable of dealing with, the possibilities of
sensor and actuator degradation over time, both during transit, landing, and
surface traverse.

To accomplish the stated mission objectives within the specified time frames,
we desire that the rover be capable of robustly and autonomously completing
the following tasks:

e terrain map generation

e obstacle avoidance

e sample acquisition, and cache

o sample inspection using onboard science instruments
e soil trenching

e roaming behavior

e state estimation

o real time path planning

e navigation to a user designated goal

For the task of obstacle avoidance, we desire that the rover be capable of
distinguishing hazardous terrain features with a minimum of false positives or
undetected hazards, with the former requiring the rover to perform excessive,
and time consuming, avoidance maneuvers, and the latter being directly haz-
ardous to the health and well being of the rover.

Our implementation of vision-based autonomous obstacle avoidance, using a
texture-based interest operator [5], coupled with stereo correlation and triangu-
lation to generate 3D terrain maps, is adaptive to varying surface and lighting
conditions, as well as being computationally efficient.

To successfully accomplish the task of sample acquisition and cache, we have
implemented an image segmentation algorithm, also using the same texture-
based interest operator mentioned previously. The output of this texture-based
interest operator, correlated with edge detection, reliably segments out rock



1.1. MOTIVATION 17

samples from background soil in camera images. Once segmented, the 3D loca-
tions of any samples may be computed using stereo correlation and triangula-
tion. Using the inverse kinematics of the rover mounted manipulator, we may
then acquire and cache the located samples.

Coupling simple obstacle avoidance behaviors with our segmentation algo-
rithm, we then demonstrate the implementation of roaming behaviors, where
the rover may wander the surface, looking for ‘interesting’ rock samples. In this
case, a sample is acquired if it is deemed “interesting” based on the output of
the texture-based interest operator, the known texture signatures of the previ-
ously collected samples, and the approximate empty volume remaining in the
sample cache container.

Similarly, rather than being acquired and cached, an interesting sample may
be inspected by deploying onboard science instruments which operate on the
surface of the sample. These autonomous activities are typically initiated for
selected samples by remote scientists. To address the need to perform sample
inspection, we have implemented a suite of autonomous routines, which may be
initiated through a network based remote graphical user interface.

In many cases, planetary geologists may wish to examine unexposed soil.
Thus, the rover must be capable of autonomous force-adaptive trenching, such
that it varies its digging patterns in differing soil conditions to maximize both
soil volume excavated per unit time, as well as the safety of the rover mounted
manipulator. We show one possible implementation of this functionality.

In soft soil, wheel slip is significant, resulting in degradation of the dead reck-
oned vehicle state estimate. Likewise, in terrain with dense rock fields, obstacle
climbing and numerous rotations in obstacle avoidance maneuvers significantly
degrade the dead reckoned vehicle estimate.

Thus, for the task of state estimation, we implement an extended Kalman
filter [1] to fuse together two estimates of the rover’s change in state. The
first estimate is visually based, using the registration of successive terrain maps
generated at each frame during the rover’s traverse to derive the rover’s between-
frame rotation and translation [32]. The second estimate is the dead reckoned
estimate, using the rover’s wheel odometry. The combination of the two mea-
surements gives us a much more accurate state estimate than relying on either
measurement alone. Once a state estimate is available, it becomes possible
to place successive terrain maps in a common reference frame, incrementally
generating a world terrain map.

In addition to simple roaming behavior, planetary geologists may wish to
have the rover traverse to specific landmarks or large rocks visible from a mast
generated panorama, or from the navigation cameras. Thus, to address the
problems of navigation and path planning to a user designated goal, we must
implement not only autonomous path planning, but also path planning which is
able to continuously replan based on our current state estimate and our position
error estimate during our traverse to the designated goal.

Using our current Kalman filtered state estimate, we continuously replan
our desired path to the user designated goal. We demonstrate the successful
application of a real-time 2D potential-flow based path planning methodology
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[7], capable of dealing with dynamic environments, a needed feature for dealing
with uncertainty in the rover’s state estimate.

Finally, we wish to emphasize that all approaches described have been exper-
imentally verified using NASA/Jet Propulsion Laboratories’ Lightweight Sur-
vivable Rover (LSR), pictured in Figure 2.1. These algorithms, although they
perform well as individual units, also work together in support of one another, as
an integrated system, to successfully demonstrate a suite of robust and adaptive
autonomous behaviors.

1.2 Previous Work

Much work has been done in range map generation, some using “texture” fea-
tures such as corners or other interest point identification methods [2] [20]. Some
generation algorithms use parallel approaches [8]. Given the computational lim-
itations imposed by power and radiation hardened processor requirements, we
have developed a computationally efficient semi-sparse range map generation
algorithm which is adaptive to both distance and texture.

Likewise, much work has been done in the area of mobile vehicle state estima-
tion, often using vision [1] [34] [20] [12] [22] [10] [17], and often using statistical
estimation techniques to fuse together measurements of the rover state from
multiple sensors [1] [20] [25]. However, experimental validation of statistical
state estimation approaches such as Kalman filtering for mobile robotics gener-
ally only been performed in laboratory settings, benign terrain, [1] [20], [17], [3]
or only in simulation [25]. Some navigation performance evaluation has been
pursued [19], however state estimation during these trials relied on dead reck-
oning only. We add experimental validation in very difficult terrain, as might
be experienced by a rover performing difficult traverses on the surface of Mars,
and show the feasibility of such a sensor fusion approach to state estimation.

Similarly, potential flow based path planning has been demonstrated exten-
sively in simulation, (7}, [15], [4], [23], [16], (see [7] for more references). Here, we
demonstrate experimental validation of real time path planning using harmonic
potentials in dynamic environments. Additionally, the environment consists of
soft soil, and relatively dense rock fields, validating the potential flow based
path planning approach in complex and challenging environments.

1.2.1 Summary

Finally, we show the unification of these many various techniques in system
level trials. This includes adaptive range map generation, successive range map
registration, Kalman filtering of vision and dead reckoning for improved state
estimation, and real time path planning using potential flow-based method-
ologies. Path planning relies on the state estimate, which relies on Kalman
filtering of the registered range maps, which relies on range map registration,
all within an integrated system. However, this also validates each of the sys-
tem components, which could of course be used separately in another system.
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Additionally, we demonstrate successful roaming obstacle avoidance behavior,
autonomous sample acquisition, and soil trenching.

Section 2 provides an overview of the experimental hardware we use to vali-
date our algorithms, broken down into mechanical hardware, sensor suite, com-
puting environment, and system interconnections. Section 3 provides a more
detailed discussion of the algorithms we have implemented for the autonomous
routines discussed above. In section 4 we detail the results of testing our au-
tonomous algorithm suite in difficult terrains. We discuss our results in section
5, and provide concluding remarks and suggestions for further work in section
6.
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Chapter 2

Experimental Hardware

2.1 Mechanical Hardware

Our mechanical hardware, or rover platform, consists of two main sub-sections,
these being the rover body itself, or Lightweight Survivable Rover (LSR), and
the rover mounted manipulator arm, MicroArm-I.

The Lightweight Survivable Rover was developed in an attempt to satisfy
many of the challenging requirements for a successful Mars rover design. These
include a thermally stable warm-electronics box, small stowed volume, large
deployed volume and high ground clearance, minimal mass with high structural
integrity, and science-instrument deployment capability.

MicroArm-I was designed with similar intent, to have high structural in-
tegrity while minimizing mass and maximizing task- flexibility as a robotic ma-
nipulator.

In satisfying these design requirements, a variety of novel materials and
structures were developed and employed, as discussed in the following sections.

The LSR Rover and MicroArm-I manipulator were developed in NASA /
JPL’s Science and Technology Development Section (354), in a task lead by Dr.
Paul Schenker/JPL, and supported by Dr. Eric Baumgartner/JPL, System’s
Engineer.

2.1.1 LSR Rover

The LSR rover, pictured in figure 2.1, is a 6-wheeled, skid-steered, rocker-bogie
design, designed by a mechanical engineering team lead by Lee Sword/JPL/IS-
Robotics. To satisfy the requirement for a thermally stable warm electronics
box, or WEB, designed by Gregory Hickey/JPL, which is used to protect the
delicate computing hardware from external Mars temperature swings of 100 de-
grees Celsius or more, a lightweight composite honeycomb design was employed,
filled with an ultra-lightweight aerogel material for insulation. This WEB also
serves as the main rover body/chassis, to which the rocker-bogie running gear
are mounted.

21



22 CHAPTER 2. EXPERIMENTAL HARDWARE

2D composite tubes with aluminum end-fittings were used in the construc-
tion of the running gear, which pivots in-plane about its attachment on the
side of the chassis. As LSR is a skid-steered vehicle, it sees significant bending
moments about these pivots, due to the length of the running gear. It was thus
retrofitted, by Anthony Ganino/JPL, with aluminum reinforcements mounted
through the wall of the WEB, directly to the more rigid honeycomb WEB-base
for increased structural integrity.

The 2D composite running-gear also featured a novel wheel design, again
developed by Lee Sword, allowing the wheel to be stowed in a collapsed state,
then deployed into a stable, rigid configuration for surface traverse.

The rover drive motors are located in the center of each wheel. The three
motors on each side of the rover are currently ganged together electrically, allow-
ing the rover forward, reverse, and rotational motion, but disallowing traction
improving techniques derived from independent wheel control.

A 2D composite crossbar connects the two sets of running gear, pivoting
about a point on the top front of the chassis, which stabilizes the WEB and
disallows free rotation about the two side running gear pivots. This connecting
crosshar also saw increased loading during experimental testing, as was hence
retrofitted with an aluminum coupling for increased structural integrity.

A science instrument tray is located beneath the rover. Normally stowed,
it may be deployed down and forwards from the rover using a 4-bar linkage,
to bring a statically mounted science instrument into contact with a sample of
interest.

The front of the rover, to which MicroArm-I is mounted, was retrofitted
with the equivalent of an optics bench, using a very rigid, yet lightweight, hon-
eycomb composite material, into which regularly spaced attachment points were
installed.

This plate provides not only a rigid attachment base for MicroArm-I, but
also an effective mounting surface for the rover’s stereo camera pairs and our
sample cache container. The cache container may be seen in figure 2.1, as a white

cylinder with black cross markings, used in targeting and cache acquisition by
a Sample Retrieval Rover (SRR).

2.1.2 MicroArm-1

MicroArm-1, mounted to the front of LSR, is a 4 degree of freedom robotic
manipulator arm, with an additional degree of freedom in its end effector.
MicroArm-I, designed by Randall A. Lindemann/JPL, is constructed nearly
in its entirety of 3D and 2D carbon fiber composite material. The two links
of the arm are 2D composite tubes, with the joint housings and end effector
being made from the newer 3D composite material. The 3D composite material
has the advantage of being machinable into complex geometries, and also being
much lighter than aluminum. However, we chose to retrofit the arm with alu-
minum joint housings for increased structural integrity, given the large amount
of experimental testing to be performed.
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Figure 2.1: Lightweight Survivable Rover (LSR)

MicroArm-I, 0.7 m at full extent, is driven by 1-inch-pound torque capability
piezoelectric ultrasonic motor actuators. These motors, developed by the Shinsei
Corporation, rely on the frictional interaction between two piezoelectric discs,
one located in the motor rotor and the other located in the motor stator. A
standing wave is set up in the discs, with the phase difference between the
waves in the two discs resulting in the motion of the rotor, and hence the motor
shaft. These motors have the advantages of high torque-to-weight ratios, and
the ability to operate in very low temperature and near vacuum environments,
making them an excellent choice for space applications. Some investigation may
be performed in the future with regard to innovative control methodologies to
compensate for the low-speed stall of the motors. Additional investigation is
being performed by a team lead by Yosi Bar-Cohen/JPL to develop higher-
performance ultrasonic motors for space applications.

The revolute joints of MicroArm-I are driven by the aforementioned ultra-
sonic motors through 200:1 harmonic gear reductions, chosen for their large gear
reduction and low volume.

The powered multifunction end effector designed for MicroArm-I has avail-
able a close distance color imaging camera, a rotary abrading tool, and a clam
shell scoop/gripper.

MicroArm-1 is pictured in figure 2.2. Further discussion of the LSR /
MicroArm-I hardware may be found in [26].

The forward and inverse kinematics for MicroArm-I are provided in appendix
A for completeness.
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Figure 2.2: MicroArm-I

2.2 Sensor Suite

For a Mars rover to perform effectively, it must be able to sense or measure
some aspects of its internal state, as well as measure parts of its environment.
Thus, we have outfitted LSR with a variety of sensors. However, the sensor
suite would be benefited by many additions, which we will discuss in section
6.2.

2.2.1 Stereo Camera Pair

LSR is outfitted with a pair of SuperCircuits CCD cameras capable of producing
grayscale images. The cameras are mounted in a plane to a 3D composite camera
fixture as a binocular pair, with a 10 cm baseline, mounted directly beneath
MicroArm-I, at an angle with the horizontal of approximately —20°.

Each CCD camera produces an image with a resolution of 512 columns by
486 rows, which we generally subsample to 256x243. Each camera is equipped
with a 120° field-of-view lens, automatic gain control (AGC), runs on 12 volts
DC, and draws approximately 100 mA of current.

The stereo camera pair as mounted on LSR may be seen in figure 2.3.

2.2.2 Strain Gauges

As MicroArm-I is actuated by non-backdrivable piezoelectric / ultrasonic mo-
tors, through 200:1 gear reductions, using motor current measurements to de-
termine the forces experienced by the end effector would be extremely difficult.

Thus, we have instrumented each of the arm links with extremely sensitive
strain gauges, able to measure the deflection of the links in response to externally
applied loads. Using the Jacobian, we may then obtain some rough estimate
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Figure 2.3: Stereo CCD Cameras

as to the applied cartesian tip force (although not technically the cartesian tip
force as we do not have a square Jacobian, having only two links instrumented).

Each strain gauge passes through a signal amplifier and filter, before being
sampled.

2.2.3 IR Home Position Sensors

To accurately calibrate the relationship between the cartesian workspace of
MicroArm-I and the workspace of the stereo cameras, we require that the manip-
ulator be capable of locating itself absolutely in cartesian space. Thus, we have
equipped the manipulator with IR emitter/detector-pair home position sensors,
which allow it to be repeatedly homed to within approximately 1 degree at
each joint. Each IR sensor signal is passed through a simple inverting buffer to
preserve its integrity, as our A/D converter has relatively low impedance.

2.3 Computing Environment

The computing environment for the LSR/MicroArm-I platform is currently a
distributed/hybrid (offboard) SUN Sparc-20 / Silicon Graphics Indigo-2 / VME-
bus / Sun Sparc-SLC architecture. This computing environment is currently in
the process of being integrated into an on-board 133 MHz 586/PC-104 archi-
tecture.

2.3.1 User Interface

A multi-threaded Java-based graphical user interface (GUI) is provided to ini-
tiate autonomous routines on the remote LSR rover, as well as display images
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Figure 2.4: LSR Rover Graphical User Interface

and data as collected by the rover to the remote scientist/operator. This GUI
runs on the Sun Sparc 20.

When the GUI is executed, the rover controller, through the GUI, starts a
frame-grab-request server on the SGI Indigo-2, via a Telnet connection over a
pre-existing TCP /TP network. The remote rover controller, in a similar fashion,
also connects to the VMEbus, through a Sun Sparc SLC, and initializes the mo-
tion controllers for the rover, then starts a command parsing process, discussed
further in section 2.3.3.

A typical screen capture of the User Interface during operation of the rover
may be seen in figure 2.4. Discussion of a similar Java-based graphical user
interface for telerobotic control may be found in [14].

2.3.2 Image Acquisition

As the LSR rover does not have frame grabbing hardware on-board, we make
use of the frame grabbing hardware provided by the Silicon Graphics Indigo-2
workstation. Unfortunately, the SGI workstation is only able to capture frames
from one video signal at a time, and thus we must multiplex the video signal
provided to the SGI, if we wish to be able to capture stereo image pairs, for
example.

Thus, we pass the video signals through a computer controlled video-mux,

and switch the signals by writing commands over a serial connection between
the VMEbus and the video-mux.
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2.3.3 Rover Command and Control

The majority of the computation for the rover’s autonomous routines is per-
formed on the Sparc 20, by the GUI / Application, either in Java or by calling
native code compiled from C.

Low level control of the rover is performed by two VMEbus-based Galil
motion controller boards. Also in the VMEbus is a single 68040 processor
board, running the VxWorks 5.2 real-time operating system. The command
parsing process, originally designed by Hrand Aghazarian/JPL for the control
of a lander mounted manipulator, MarsArm-II, is started by the remote rover
controller through the Java-based GUI. This parsing process receives commands
from the GUI via TCP/IP socket connections, interprets them, and sends the
appropriate commands to the Galil motion control boards.

The functionality of the Galil motion control boards is not limited solely to
motor control, but also includes on-board A/D and digital output. The A/D
converters are used to sample the strain gauges mounted on MicroArm-I, as
well as the output from the IR emitter-detector pair home-position sensors.
The digital output lines are used to control the LSR left and right drive motor
gangs. The output signals from the Galil boards to the LSR rover, and the
sensor input to the A/D converters and SGI frame grabbing hardware all passes
through a 50 foot tether attached to the back of LSR.

Of course, the Galil motion control boards were originally designed to control
analog motors, not ultrasonic piezoelectric motors. Thus, the analog MicroArm-
I motor control signals from the Galil boards pass through conditioning circuitry
designed by Mike Garrett/JPL before being presented to dedicated control cir-
cuitry provided by Shinsei for the motors. Similarly, the digital output lines
used to control the LSR drive motors in a bang-bang fashion are passed through
motor drive circuitry, also conceived by Mike Garrett.

2.3.4 System Interconnections

Although obviously this system was constructed using the available hardware,
connected in a complicated fashion to achieve the desired functionality, the
system interconnections are more clearly visible when depicted in figure 2.5.

It is a testament to the algorithms’s robustness and flexibility that they are
able to perform as well as they do given the system configuration.
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Chapter 3

Algorithms

In this chapter, we present a suite of algorithms to enable a 2001/2003 Sample
Acquisition rover to autonomously perform obstacle avoidance, sample segmen-
tation, acquisition, and cache, roaming behavior, state estimation, real-time
path planning, and navigation to a user designated goal. The algorithms are
designed with memory and computational limitations in mind, given the radia-
tion hardened processor requirements of the Mars rovers.

This algorithm suite for terrain map generation, obstacle avoidance, state
estimation, path planning and navigation, as described below, borrows heav-
ily from the description presented in [13]. The reader familiar with that pre-
sentation may proceed directly to section 3.5, containing additional algorithm
developments not presented in that initial paper.

3.1 Terrain Map Generation

If the rover is to effectively navigate and avoid potentially hazardous obstacles,
it must be able to generate some internal representation of the world around it,
e.g. aterrain map. Although such representations do not have to be euclidean in
nature [24], [18], a 3D reconstruction of the world simplifies further algorithm
development in some respects. We choose to use passive stereo vision rather
than active measurement methods such as sonar, or laser scanning, because such
camera technology has been space proven, typically has low power requirements,
and stereo algorithms can be used to generate range maps quickly.

While moving through its initially unknown environment, the rover will con-
struct maps of the terrain immediately in view, using its wide field of view
navigation cameras for input. A sample stereo image pair taken from the rover
navigation cameras may be seen in figure 3.1.

To address the problem of robust and computationally efficient terrain map
generation, beginning with a stereo image pair, we present the novel application
of a texture-based interest operator in conjunction with stereo correlation and
triangulation, such that our algorithm is adaptive in refinement to both texture

29
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Figure 3.1: Stereo Pair

and distance.

3.1.1 Wavelet Transform

After acquiring a stereo image pair (e.g. figure 3.1), we compute the wavelet
decomposition of each image using the standard two dimensional Harr wavelet
basis. The algorithm for this decomposition, which effectively decomposes the
image into horizontal, diagonal, and vertical channels at multiple resolution
levels is given below for completeness, from [29].

func Harr2D(I: array [1...27,1...2%] of reals)
loop: row =1...27
DecompRC(c[row, 1...2])
end loop
loop: col =1...2%
DecompRC(c[1...27, col])
end loop
end function

func DecompRC(c: array [1...27] of reals)
c=c/V2i
g=2
while: (g >=2)
DecompSub(c[1..g])
9=9/2
end while
end func
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Figure 3.2: Wavelet Transform, Showing Horizontal, Vertical and Diagonal
Channels, for a | = 2 Decomposition

func DecompSub(c: array [1...27] of reals)
loop: i =1...27/2
cli] = (c[2i — 1] + c[2i])/V2
c'[27/2 4] = (c[2i — 1] — €[2i]) /V2
end loop
c=c
end function

The output of the wavelet decomposition is thresholded, based on pixel value,
to 0 or 255 (i.e. 0/1). In our implementation, we use a threshold value of 4, and
a decomposition level, I, of 2, which gives us adequate results. A representative
wavelet decomposition from one of the images in a stereo image pair, showing
the horizontal, vertical, and diagonal channels, in 2 levels, may be seen in figure
3.2.

3.1.2 Texture Signature Computation

The “ground” texture is then computed in several known locations at the bot-
tom of each image, between the rover wheels, as shown in figure 3.3 using a
texture operator on the wavelet decompositions. The output of this operation
is a texture signature, T'S, in the space defined by the horizontal (H), vertical
(V), and diagonal (D) channels of the wavelet decomposition [5] and, for each
channel, is defined as

n/2 m/2 .
1 j=-n/2 k:—m/Z‘W(a+‘7’b+k)|

N (nm)
TS =Y z (3.1)

=0

where the parameter [ refers to the level to which the wavelet decomposition,
W, has been computed. Thus, for each channel (H,V,D) in the wavelet decom-
position, we sum the contributions to the texture signature from each level of
the decomposition, by summing the absolute value of the thresholded wavelet
decomposition over a window of size n x m centered on (a,b) as indicated by
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Figure 3.3: Ground Texture Computation

equation 3.1. The values of n and m are dependant upon the current level, and
the coordinates (a,b) are the image coordinates (z,y) in the wavelet transform
at level | and channel (H,V, D). In our implementation, n = m =8 atl =1
andn=m=4atl=2.

3.1.3 Adaptive Texture Based Interest Point Selection

Once we have an average H,D,V texture signature which we assume corresponds
to the ground, we search the left image with a stepsize of 16 pixels, in an
area where we expect to find obstacles (between the rover wheels), looking for
points which do not match the average ground texture signature which has been

previously computed. These “interesting” points are marked, as shown in figure
3.4.

A range map computed using a stepsize of 16 will be referred to as a “Level
16” range map. Similarly, a range map computed with a stepsize of 8 will be
referred to as a “Level 8” range map, and so on.

3.1.4 Correlation
Epipolar Geometry

In performing correlation between stereo images, we will make use of a simple
geometric property, known as the epipolar constraint, to reduce our search for
a matching point from an area in the image (2D) to a line in the image (1D).
A simple depiction of the epipolar geometry arrangement may be seen in figure
3.5 [33].

For a point in the left image, m;, its corresponding point in the right image
my must lie along the line Fmj in the right image, where F is the 3 x 3
fundamental matrix. We will avoid further digression on the subject of the
epipolar constraint and refer the interested reader to [33] or [6].
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Figure 3.5: Epipolar Geometry
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Figure 3.6: Correlation Using Fundamental Matrix

The Epipolar Geometry and Warped Images

The epipolar geometry is technically valid only for cameras which can be rea-
sonably modeled using pinhole camera models. A camera with a 120° field of
view lens can not normally be reasonably modeled as a pinhole camera.

However, although we are using 120° field of view lenses on the stereo cam-
era pair, we have found that the error in using the fundamental matrix to
compute a line of correspondence (rather than computing a curve of correspon-
dence as would be expected for such highly distorted images) is on the order of
approximately one pixel [36]. This experimental result is corroborated by the
investigation performed in [35].

Dewarping and Rectification?

Normally, it is considered computationally efficient to dewarp and rectify the
images in a stereo image pair, such that the subsequent correlation may be
performed by searching along scanlines (rows) in the image. However, in the case
where we are only searching for a small number of points, to generate a relatively
sparse range map, it may prove more computationally efficient to forego this
dewarping and rectification process. Additionally, if the camera models used
in the dewarping process are not very accurate, the resulting dewarped and
rectified images may be offset from one another quite a bit, in which case finding
correct matches by searching along scanlines (+N scanlines) may prove difficult.

Pixel Correlation

Using the epipolar geometry described above, we attempt to correlate the inter-
esting points found in the left stereo image with their corresponding points in
the right stereo image, using the fundamental matrix [33] to reduce this search
from a 2D problem to a 1D problem.

In correlating, we search along the epipolar line of left image point m; given
by Fm;, where F is the 3 x 3 fundamental matrix, and mj is a vector in the form
[zy1.0]7, where z and y are the column and row pixel locations, respectively.
We assume that the cameras are reasonably aligned to the same horizontal axis,
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and thus limit our search vertically to £10 rows. Figure 3.6 details a left image
point of interest and its corresponding epipolar line and search band. To account
for possible errors in the epipolar geometry, we also search left and right at each
point on the epipolar line by +8 columns. However, if we use cameras which
can reasonably be modeled as orthographic, then this error is greatly reduced
and, correspondingly, the number of columns to the right or left of the epipolar
line we bother searching is also reduced. The method by which the fundamental
matrix is computed is described further in section 4.1. For our stereo cameras,
the F matrix is

—8.907e - 06  1.159¢ — 03 —7.025e¢— 02
—1.155e — 03  2.457e—04 1.966e — 01
6.521e — 02 —2.082e —01 9.5632e — 01

where this particular F matrix was derived from point matches in the environ-
ment in a stereo image pair taken with the LSR cameras, using a freely available
software package [36].

A valid match between a left image point and its corresponding point in
the right image is defined by the greatest correlation score found during the
search along the right epipolar line, larger than some threshold. To compute
the correlation scores between points in the left and right image, we employ the
standard sum minus average divided by standard deviation over an n x m box
in each image.

In this normalized definition of correlation, the maximum correlation value
is +1 (identical) and the minimum value is —1 (totally uncorrelated). In our
implementation the correlation threshold is chosen to be 0.80, following [33].
Likewise, n and m are chosen to be 7, which has become the de-facto standard
correlation window size [8]. The correlation score between a left image point
m; and a right image point my is defined as

Score(my, my) =

[I1 (ur+i,v1+5)— 11 (ul,wl)] x
Zz—_" Z]-—m [F2 (uz+i,v247) — T2 (u2,v2)] (3 2)

(2n +1)(2m + 1)/o2 (L) x 02(I)

where Iy (u,v) is defined by equation 3.3 and is the average image intensity over
a window of size (2n + 1) x (2m + 1) centered on (u,v) in image I, where
k = 1,2. The average image intensity is defined as

k(u+1,v+7)
Z Z 2n+1) (2m +1)] (33)

'L_'-’I’L]”'—

The variable o(I;), in equation 3.2, is defined by

o) \/Zz__nzj__mmu v) ~ Ti(w,0)

n+1)(2m+1)
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and is the standard deviation in the image intensity over a window of size
(2n +1) x (2m + 1) centered on (u,v) in image Iy, where k = 1, 2.

Sub-Pixel Correlation

Once we have an initial point match between the left and right images, we
compute the subpixel location of the matching point in the right image, which
is obtained by fitting a parabola to the pixel-level correlation scores in both the
row and column directions, as given by [31]

Acol = Scol— - Scol+
Z(Scol— + Scol+ - 25001)
Arow = Srou- = Srowt (3.5)

2(Srow— + Srow+ - 2Srow)

where S, and S, refer to the correlation score between a point in the left
image m; and a point in the right image mg at position (col,7ow), where the
maximum pixel level correlation score has been found. S, is the score between
m; and the point in the right image one column to the left of ma. Syou_, Seors
and Syou4 are computed similarly.

The right image row and column are then set equal to their integer value
found during the pixel level correlation, plus the delta row and column found
during the subpixel correlation. This procedure greatly improves the smoothness
of the derived range map, with little extra computation.

3.1.5 Computation of 3D Location

Using the set of matching image points computed to subpixel precision, we
then triangulate to obtain 3D position information, using metrically calibrated
camera models that take into account radial lens distortion [11]. The calibration
procedure will be described further in section 4.1.

3.1.6 Adaptive Mesh/Terrain Map Refinement

Using the computed 3D position information, we can further iteratively improve
the density of our range map by returning to those interesting points computed
in the previous iteration that are found to be within a threshold “danger dis-
tance” from the rover.

Searching the image over an area of (Stepsize;_1)? centered on each inter-
esting point using a stepsize of (Stepsize;_1)/2, we find a new set of “interesting
points” based on texture and compute their 3D position information, as can be
seen in figure 3.7.

In this fashion we perform what we have dubbed “adaptive mesh refinement”
being somewhat akin to the process of adaptive mesh refinement in finite element
analysis, in that we only bother computing the range map in areas where we care
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Figure 3.7: Points of Interest, Level 8

about what we are going to find - i.e. areas that are both texturally interesting
and “dangerous”, or close to the rover.

The density of the final range map is user specified. The initial Level 16
range map is computed with a pixel stepsize of 16, which at 2 meters from the
rover corresponds to approximately 26 cm between adjacent range map points
for our 256 x 243 stereo image pairs. Level 8 is the next step up in density, with
Levels 4, 2, and finally, 1, becoming increasingly more dense.

Figure 3.8 shows how the range map has been computed adaptively such that
the areas corresponding to the “ground” in texture are not computed. Likewise,
it can be seen in the upper left corner that initially interesting points texturally
are not further refined, as they are too far away to be either accurate in distance
or immediately dangerous to the rover.

Figures 3.9 and 3.10 offer some comparison between the density of the final
range maps generated, between Level 4 and Level 1.

Adaptive Range Map Generation
Summary

We can thus summarize the procedure of adaptively generating the range map
based on texture and distance “danger” as follows:

1. Obtain stereo image pair (256x243, 8 bit grayscale)

2. Compute wavelet transform (2D Harr Basis) using the procedure given by
29]
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Figure 3.8: Points of Interest, Level 4
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Figure 3.9: Generated Terrain Map (Level 4)
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Figure 3.10: Generated Terrain Map (Level 1)

Set initial stepsize (Stepsize; = 16) for iteration i = 0

Search for points of interest using equation 3.1 between some max and min
row and column locations known to probably contain points of interest

LOOP (i < MIN):

5.

Correlate points Using equation 3.2 and the
fundamental matrix

. Compute subpixel matches (optional, recommended)

Compute 3D locations using triangulation

. Perform Adaptive Mesh Refinement

(see below) on “dangerous” points

i=1i/2

END LOOP

Adaptive Mesh Refinement:

For each point (x,y) preserved as interesting from iteration
i

. Search for points of interest using equation 3.1 between x+Stepsize;_1, y+

Stepsize;_1 using (Stepsize;_1)/2

. Add any points found to running list of new interesting points

Stepsize; = (Stepsize;—1)/2
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Timing and Performance

We have time tested the adaptive range map generation algorithm using the 172
image pairs gathered during our first autonomous navigation exercise.

At Level 4, the maximum time required to complete range map generation
(AND path selection, as described in section 3.2) was 17 seconds (wall clock
time) on a Sparc20, running as a user process, with an average time of approxi-
mately 9 seconds. At Level 8, the maximum time was approximately 5 seconds
(wall clock time) on the same system, with an average time of approximately
2.5 seconds.

The same code timed on a Pentium 166 Mhz processor took 7.5 seconds at
Level 4, and 1.9 seconds at Level 8, as measured by the profiler under Microsoft
Visual C++.

These times reflect no optimization - we are presently transferring the math
to binary point integer math, and expect speed increases on the order of approx-
imately 2x, based on initial tests. Computation time is linear in the number of
points computed.

The strength of the algorithm lies in the following features:

e Range map computed selectively, only for texturally interesting points,
which automatically eliminates those areas where no correlation or an
incorrect correlation would be found

o Range map computed adaptively, only for points which are close enough
to be accurately located and of possible near-term danger to the rover

o De-warping and registering the image pairs is not required, as the epipolar
geometry is used explicitly to find matching points.

e Easily implementable

¢ Low memory requirements

3.2 Obstacle Avoidance

Once we have adaptively computed the range map, we make use of the terrain
information to perform obstacle avoidance. To do so, we sum the number of
terrain points encountered when sweeping a box having an outline of the frontal
area of the rover through 1.5 meters along the Y axis (directly ahead of the
rover). We choose 1.5 meters as our lookahead distance because of the accuracy
limitations imposed by low resolution images taken through 120° field of view
lenses. We repeat this sum at several different rotation angles, examining the
possible direction the rover might travel. The terrain point integration volume
is depicted in figure 3.11.

The path having both the fewest number of encountered points and also the
least amount of required rotation is chosen. If the absolute value of the rotation
requested is less than 5 degrees, then the rover proceeds forward for 5 seconds
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Figure 3.11: Reactive Obstacle Avoidance: Terrain Point Integration Volume

(approximately 20 cm). If the rotation is greater than -+5 degrees, the rover
rotates clockwise for 5 seconds, otherwise the rover rotates counterclockwise for
the same period of time, which corresponds to a rotation of approximately 10
degrees. We find this to give us adequate obstacle avoidance performance.

Using only current information and the above strategy may lead to oscilla-
tory behavior during obstacle avoidance maneuvers. The rover thus maintains
a history of its past executed motions and initiates an oscillation-breaking ma-
neuver (20 degree rotation) if it detects oscillatory behavior.

3.3 State Estimation

3.3.1 Vision Based State Estimation

At each iteration through our navigation algorithm, we compute a range map,
which can be used to identify obstacles in the field of view of the rover. We can
register these successive range maps such that they are all in a single frame of
reference, effectively computing a global world map of the environment which
the rover is traversing through. The process of registering these maps also has
the advantage of providing an estimate of the rover’s current state (position and
orientation relative to it’s initial frame of reference).
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Extraction of Inter-Frame Rotation and Translation

The algorithm we have implemented for the registration of two range maps is
described in [32] and [34]. Here, a brief overview of the algorithm is presented.
The interested reader is referred to [32] and [34] for additional details.

This iterative registration process minimizes a performance criteria, F, given
by

1 m
F(R,T) = s Y pid*(Rxi + T,9) (3.6)
=15 =)

which is related to the difference in distance between the two clouds of 3D
range points. In equation 3.6, R represents the rotation between the two range
maps and T is the translation between the two range maps. Also in equation
3.6, the variable p; is 1 if the point x; is matched to a point on the surface S’
defined by the second set of 3D range points, and 0 otherwise, relating to points
which are visible only from one frame or the other. The variable m refers to the

number of points in the first terrain map, and the function d(x,S’) is defined
by

d(x,8') = min d(x,x;) (3.7)
je{lv'“,n}

where d(x,x’) is the euclidean distance between two points.

We are then able to find a set of closest point matches between the two
frames where the distances between the two points in a matched pair is less
than an adaptively computed maximum distance tolerance D! , . The search
for closest points is accomplished through the use of a k-dimensional binary

search tree [32] for speed.

In each iteration we adapt the maximum distance tolerance based on the
mean p and standard deviation o of the distance between the points in each set
of matched pairs which satisfied the maximum distance tolerance D!~ from

max
the previous iteration. The mean and standard deviation are given by

1 N
==%"g .
u N; (3.8)

where N is the number of matched pairs and d; is the distance between the
points in matched pair 1.

We then adaptively specify a new D! __ based on the following criterion:
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ifu<D
Doz = p+30
else if 4 < 3D
Dvlna:t =p+20
else if y < 6D
Dz =H+0
else
D’I{naz = E

We reject any points which do not satisfy the newly computed Df . dis-
tance tolerance, and use the remaining matched pairs to compute the motion
between the two frames. To compute the motion between the two frames, a
dual quaternion methodology [30] [32] is used to solve optimally for the rotation
and translation between the two frames simultaneously.

Once the motion between the two frames has been determined, the computed
motion is applied to the first frame. We then iterate, finding the next set
of closest point matches, updating the point matches using the statistically
computed distance tolerance D7 .., computing the motion between the two
frames, and applying that motion to the first set of points, until the change in
the computed motion reaches a lower threshold, or the algorithm reaches the
maximum allowed number of iterations.

One variable referenced above is D, which is computed to be the average dis-
tance between points and their closest neighbors in a terrain map, and is related
is effectively the resolution of the terrain map data. The second variable, &, is
computed from the point match set distance histogram. The reader is referred
to [32] for a more thorough explanation of D and &, and their implications to
the convergence of the algorithm.

Experimental Validation

We now present experimental validation of our implementation of the algorithm
described above, using terrain maps generated by the adaptive range map gen-
eration algorithm presented in Section 3.1. Figure 3.12 shows a terrain map
generated in one position by the rover. Figure 3.13 shows a terrain map gener-
ated by the rover after a nominal 10° counterclockwise rotation.

Applying the range map registration algorithm to the above two range maps,
with the following initial rotation matrix R and translation vector T:

Rinitial =
0.984807 —-0.173648 0.000000
0.173648 0.984807 0.000000
0.000000 0.000000 1.000000

Tinitial =
[ 0.000000 0.000000 0.000000 ]
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Figure 3.12: Range Map Position 1, 12,634 Points
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Figure 3.13: Range Map Position 2, 12,464 Points
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Figure 3.14: Initial Registration vs. Final Registration; Light Points: Terrain
Map 1, Dark Points: Terrain Map 2; Computed Rotation: 8.26 degrees coun-
terclockwise

The final computed rotation matrix R and translation vector T is computed to
be:

Rfnal =
0.989621 —0.135732 —0.047190

0.136498  0.990550  0.013388
0.044927 —0.019690  0.998796

Thinal =
[ —0.044082 —0.026828 0.013626 |

The vehicle rotation computed from Rgnal results in an 8.26° counterclockwise
rotation which corresponds well with the observed motion of the rover, and with
the commanded rotation of 10.0° counterclockwise. Figure 3.14 shows the initial
registration between the two terrain maps, after the application of Rinjtial and
Tinitia1 to terrain map 1, and the final registration between the two terrain
maps, after the application of Rfnal and Tgpnal to terrain map 1.



46 CHAPTER 3. ALGORITHMS

3.3.2 Formulation of the Extended Kalman Filter (EKF)

One method for obtaining the position and orientation of the rover relative to
its starting position is to use the successive R and T estimates provided by the
range map registration algorithm described in the previous section. Another
method for obtaining the position state of the rover is to use dead reckoning
(i.e. assuming that the rover achieved the 20cm forward motion or 10° nominal
rotation).

However, both estimates of the rover’s position and orientation will in-
evitably contain errors. The vision estimate may be degraded by poor metric
camera calibration, as it takes the range maps which have been generated using
that camera calibration as input. Similarly, the performance criterion in 3.6 will
generally not converge to identically zero, and thus we stop the iterative algo-
rithm when its rate of change becomes lower than a certain threshold. Likewise,
the dead reckoned estimate will be seriously affected by the quality of terrain
over which the rover is traversing. If it attempts to cross soft ground and is
forced to climb over small rocks, its dead reckoned estimate will be generally
Very poor.

To improve the rover’s final state estimate, we have implemented an extended
Kalman filter [1] to fuse together the two state estimates to obtain a more
optimal estimate. We describe the formulation of the Kalman filter in this
section.

3.3.3 Dead-Reckoned Estimates

The state equations describing the rover’s motion based on its (dead-reckoned)
wheel odometry are given by equation 3.10. For simplicity, we will consider only
in-plane translations and rotations.

dX (@)
dx(a) “do Ry, cos ¢(a)
7 = 9% = | Ry sing(a)
. do(a) By
da
= f(x(a),u) (3.10)

In equation 3.10, x = [X Y ¢|T represents the position and orientation of
the rover relative to a global reference frame, generally taken to be the rover’s
starting position in the environment. The rover’s nominal wheel radius is defined
to be R,,, with B defined as half the distance between the rover’s wheel base.
The variable « is defined by equation 3.11.

0r+01
2

o =

(3.11)

In equation 3.11, 8, and 6; are the absolute rotations of the right and left
wheels, respectively. The variable u is defined by equation 3.12.
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b, —db,
Y= 36, + do,

Similarly, in equation 3.12 df, and d6; are the differential left and right wheel
rotations, respectively.

For LSR, which is a skid-steered rover, the state equations given in equation
3.10 are valid all maneuvers except for turning-in-place, which is exactly the
method by which we perform rotation of the rover. During a turn-in-place
maneuver, the variable o becomes zero (as 6; = —6,), and the state equations
become singular, (as doo = 0). Thus, to handle turn in place maneuvers, we
redefine o as

(3.12)

a_o,—e,
)

which results in a new set of state equations used during the turn in place
maneuver, as may be seen in equation 3.14.

(3.13)

dX(a)

0
d do
da da R
do(a) B
do

In a rover system with wheel encoders, the rover’s wheel rotations could
be measured over time and used in the numerical integration of the above state
equations to produce the dead-reckoned estimates of the rover motion. However,
as LSR is not equipped with wheel encoders, and moves in discrete increments,
we will not perform numerical integration of the state equations to obtain the
rover’s dead reckoned estimate, but rather use the commanded motion.

Similarly, the estimation error covariance matrix, P(«), as part of the Kalman
filter is propagated after each motion by the rover using equation 3.15.

dP(a)
da

In equation 3.15, F(«) is the Jacobian of the state equations and Q is the
covariance matrix associated with the process noise. The process noise covari-
ance matrix is assumed to be diagonal, i.e. Q = diag[Qxx,Qyy,Qzz], and
represents the confidence placed in the dead-reckoned estimate of the state, in
a qualitative sense.

=F(a)P(a) + P(a)F()T +Q (3.15)

3.3.4 Kalman Filter Update via Vision

Using the terrain map registration technique described in section 3.3.1, inter-
frame rotation and translation of the rover may be extracted from two successive
vision-based range maps, given some initial knowledge of the commanded mo-
tion.

In the framework of the Kalman filter, the R and T generated by the range
map registration technique will be considered a measurement of the rover’s state.
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We will then fuse this measurement with the dead-reckoned state estimate,
obtaining a more accurate estimate of the rover’s state. The measurement of
the rover state is given by equation 3.16.

X(ai_1) + AX(O(@)
z(a;) = | Y{i—1) + AY (o) | = h(x(o)) (3.16)
P(ai-1) + Ad(ai)

In equation 3.16, AX, AY, and A¢ are computed directly from the R and
T which are computed as detailed in section 3.3.1. Additionally, o; represents
the value of o at the end of the stereo pair acquisition — terrain map generation
— range map registration cycle (prior to making the next move) and «;_; is
the value of a at which the previous vision-based update to the Kalman filter
was computed.

The update to the rover state is thus given by

i(az) = fc(ailai_l)—}—
K(a)[z(ai) = h(R{ailoi-1)] (3.17)

with the Kalman gain, K(o;), being given by equation 3.18.

K(ai) = P(ai{ai - l)HT *
[HP(as|a; — DHT + Rynne] * (3.18)

In equation 3.18, X refers to the Kalman filtered estimate of the rover state.
H is the Jacobian of the measurement equation, 3.16, which is the 3 x 3 iden-
tity matrix in this case. The measurement noise covariance matrix, Rumne, is
assumed to be a diagonal matrix, i.e. Rmnc = diag[Rmncxx: Rmneyy s Rmnezz)s
and represents the confidence placed in the vision-based estimates of the state,
in a qualitative sense.

The estimation error covariance matrix is updated via

P(o) = (I - K(o) H)P(o;]ti—1). (3.19)

In equation 3.19, and in equation 3.18, P(«;|a;_1) represents the propagated
estimation error covariance matrix resulting from the integration of equation
3.15. Similarly, in equation 3.17, X(oy|a;—1) represents the propagated state
estimates resulting from the integration of the rover state equations given either
by equation 3.10 or by equation 3.14.

The experimental performance of the EKF-derived state estimator described
in this section is presented in section 4.

The performance of the filter is greatly affected by the assumed process noise
covariance matrix, Q, and the measurement noise covariance matrix, Rupnc, as
it is in any Kalman filtered application.

This is especially true for the case of a planetary rover where terrain style
(e.g. soft soil, hard-packed ground, etc.) can change the quality of the dead
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reckoned state estimates through wheel slip and other factors. Similarly, the
number of features in the landscape will affect the quality of the vision based
state estimate through the ruggedness, and hence quality of registration, of the
terrain maps.

Therefore, for the results presented in this paper, the state-estimate gains
are defined using equation 3.3.4.

Rxx Ryy Ryy
Gx = | 22X Gy =, [2YY G, = |20
x Qxx’ ¥ Qvy’ ° Qpe

This allows the relative weight given to the dead-reckoned state estimate
with respect to the vision-based state estimate to be varied more easily, by
reducing the number of tunable parameters.

3.4 Navigation

Once the rover’s state estimate is available, navigation to a user designated goal
becomes possible. This section describes the methods by which we perform real-
time path planning based on a potential-flow based path planning methodology
capable of dealing with dynamic environments (7], using the EKF-based state
estimate.

3.4.1 Potential Flow Based Navigation and
Obstacle Avoidance

As an alternative to simply performing reactive obstacle avoidance, as described
in section 3.2, we can also navigate to a user designated goal and avoid (either
autonomously located or user designated) obstacles along the way. To do this,
we have implemented a real-time path planner based on potential flow method-
ologies [7]. During each iteration of the navigation algorithm, this path-planner
computes the local flow velocity (i.e. the streamline direction at the rover’s
location in the environment), to which the rover aligns itself or travels along to
reach the desired goal. Currently, we limit path planning to 2D and obstacles
to be limited to cylinders or ellipses at some specified angle, although arbitrar-
ily shaped objects may be modeled using panel-approximations to the object’s
boundary.

Obstacle Modeling

Here we present a brief treatment of the potential flow based path planning
methodology described more fully in [7]. The interested reader is reader is
referred there for more details.

If we consider the rover workspace as the complex plane, the potential for a
plane flow at an angle a with the real axis is given by

w=-Uze ™. (3.20)
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The potential for a circular cylinder centered at z = Xy + 1Yy with radius 7 in
a plane flow with velocity U at an angle o with the real axis is given by
,,.2 eia

= _ o 3.21
w Ulze +z—zo) (3.21)

Finally, the flow around an ellipse with major axis ¢ and minor axis b may be
obtained using a conformal mapping as given by

2
= — 3.22
F=lt (3.22)
Applying the conformal mapping given by equation 3.22 to equation 3.21, we
obtain the equation for a cylinder in the £ plane, as may be seen in equation
3.23.

) 2 i
w = ~U(gemio 4 GO (3.23)
4
If we then solve for £, we obtain the following
£= %(z £ V22 —r2), 7% = a% — b? (3.24)

whose solution describes the velocity field around the ellipse.

Potential Construction

We define the external plane flow using where X; and Y; are the (X,Y) goal
position, and X and Y are the rover’s current position.

Y-Y
Xr—X
An approximate harmonic potential solution to the continuous potential flow
is achieved by the superposition of the closed form potentials for the plane

flow and all of the individual obstacles added to the flow. More details on the
construction of this harmonic potential are provided in [7].

w=-Uze ", a=tan"*( ) (3.25)

Rover Motion

Once the harmonic potential is constructed, the u and v components of the flow
can be found using equation 3.26.

— 0¢ __ oY __ dw
U= v = = = —R(%E),

_ % 8 (\(gé) (3.26)
V= oy T ax =  S(F)

The u and v components of the flow define a vector in the rover workspace.
The potential flow based path planning methodology was originally developed
for an omni-rover. However, our rover may only move in the direction which it
is facing. Thus, we must align the pointing angle of the rover with the current
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Obstacle

Figure 3.15: Traveling Along A Streamline

streamline vector. Once the rover has rotated to be nominally aligned with
the streamline by making 10° nominal rotations, (in our implementation, the
pointing error must be less than 5°), it may proceed forward, in steps of 20 cm
nominal. This process is depicted in figure 3.15.

Currently obstacle locations are defined a prior: by the user in the global
reference frame of a ceiling mounted camera with 120 degree field of view, which
we will refer to as “the sky camera.” This camera and its calibration are de-
scribed more fully in section 4.3 However, given a manipulator-mounted or mast-
mounted stereo pair on a rover platform, all obstacles could be located either
by the user, or located automatically by processing the terrain map generated
by this stereo pair, all in the reference frame of the rover. We plan to pursue
this avenue in the future.

State Estimate Error and Expanding Obstacles
(Roving in Dynamic Environments)

It is explicitly the ability of the real-time path planner to deal with dynamic
environments which allows its application to the context of rover navigation.
If all obstacle locations are not known a priori, then incremental discovery of
obstacles and their addition to the world potential flow requires a path planner
capable of dealing with dynamic environments. In other words, the rover must
be capable of replanning its path to the goal in real time in response to newly
discovered obstacles which invalidate it’s previously planned path.

We can further exploit the dynamic features of the potential flow based
path planning algorithm by making use of the rate of change of the estimation
error covariance matrix. If the rover is bounded by an estimation error ellipse
which is changing size at some rate ér then we may define the obstacles in
the environment to also be expanding at the same rate ér, such that the path
taken by the rover is guaranteed never to intersect any of the known obstacles,
regardless of the error in the rover’s state estimate.

Both incremental introduction of obstacles into the environment and the
use of the estimation error covariance matrix to expand obstacle boundaries to
maintain rover safty are topics which we plan to pursue in the future.
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Figure 3.16: Coping With Finite Stepsizes

Dealing With Finite Stepsizes and NonHolonomic Properties

As our rover is commanded to move in discrete increments, there exists the
possibility that it may jump “inside” the sphere of influence of an object. The
stream line along which the rover is commanded to travel then rotates by some
large value, so move the rover quickly outside of the object. However, the rover
is a nonholonomic vehicle, not an omni-rover. Therefore, the rover must rotate
through a very large angle to move along the streamline and out of the obstacle,
before again rotating through a similar large angle to continue on toward the
goal. We may possibly deal with this problem in the manner depicted in figure
3.16, which we plan to explore in the future.

In figure 3.16 (a), we see that as the rover approaches the obstacle on the
right side, if it is not precisely aligned with the streamline (as in the case where
it is able to make discrete rotations), it will move inside the obstacle boundary
on the next movement. The streamline it is asked to align itself to is then nearly
orthogonal to its present direction of motion, requiring a large rotation before
moving outside the obstacle, and then another large rotation to realign itself
with the streamline.

Rather than using this method to move to the goal, we could look effectively
one time step ahead to see where the final goal of the motion is, as shown in
figure 3.16 (b), and take an intercept angle from the present position, rather
than simply following the streamline.

Of course, the problem is also solved if we move continuously, rather than in
discrete jumps, and were able to align ourselves to the streamline more precisely
with finer rotational control.



3.5. SAMPLE SEGMENTATION AND ACQUISITION 53

Figure 3.17: Autonomous Sample Acquisition: Starting Image Pair

3.5 Sample Segmentation and Acquisition

While autonomously navigating from point to point and avoiding obstacles in
the environment, the rover will invariably come across small rock or soil samples
which are sufficiently “interesting” enough to warrant collection.

An example stereo pair containing possibly interesting samples may be seen
in figure 3.17

As these small samples may not initially be visible given images available to
the rover command crew, the rover should, in essence, be “on the lookout” for
these “interesting samples”, and collect them if they are considered “interesting
enough.”

This level of autonomy introduces two difficulties. First, how does the rover
effectively segment collectable samples from the background environment? and
second, how does the rover determine if the samples are “interesting”?

We address the first question in sections 3.5.1 through 3.5.4, and the second
question in section 3.5.5.

3.5.1 Texture Based Segmentation

Using the texture signature described in section 3.1.2, we can step over the
image with a stepsize of two pixels in the area between the wheels of the rover,
corresponding to the “maximum manipulability” region for the rover mounted
manipulator, detailed in figure 3.18. As before, we have precomputed the ground
texture such that this selection of interesting points is adaptive to the current
terrain.

The results of this interest point selection, or initial segmentation of possible
samples from the background, may be seen in figure 3.19.

As may be seen in figure 3.19, the texture segmentation alone is sensitive to
the lighting and variations in the terrain, such that it tends to be overly cautious
and select an abundant number of interesting points. However, it gives a useful
first pass on which we may refine our segmentation.
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Figure 3.18: Sample Search Region

Sample Locations (Pixels) Using Texture Alone
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Figure 3.19: Texture Only Sample Segmentation: Interest Point Locations (Pix-

els)
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Figure 3.20: Raw Edge Detection

3.5.2 Edge Detection

Computing the horizontal and vertical intensity difference between adjacent
pixels in the original (non-wavelet-transform) left image gives a rough edge
detection, as may be seen in figure 3.20.

To make this algorithm adaptive to the current terrain, we pass a 20x20
window over the image, in the same adaptation area used by the texture seg-
mentation algorithm for computation of the ground texture. If we compute the
average intensity of the edge detected image over that 20x20 window, we are
able to obtain some idea of the “edginess” (or average intensity gradient) of the
terrain we are currently occupying.

Using this average intensity value, we can then threshold the raw edge de-
tection values to obtain a binary representation, as shown in figure 3.21.

A window of size 20x20 pixels was chosen after determining that a sam-
ple small enough to be acquired by the rover generally fit into an area of size
20x20 pixels, when inside workspace of MicroArm-1 and viewed from the rover
mounted navigation cameras.

3.5.3 Correlation of Texture Segmentation and
Edge Detection }

For each point marked as interesting during the texture-segmentation phase,
we then sum the intensity of the edge detected image over a 20x20 window
centered on that point. If the average edge detected intensity over that window is
greater than some constant multiplied by the ground edginess, then the point is
preserved as an interesting point. Otherwise, it is eliminated from consideration.
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Figure 3.21: Thresholded Edge Detection

| Sample | X (m) | Y (m) | Z (m) |
Top 0.0539 | 0.3958 | -0.3836
Right 0.1659 | 0.2325 | -0.3942
Left -0.0179 | 0.2135 | -0.3961

Table 3.1: Segmented Samples, 3D Locations

3.5.4 Blobification and Sample Acquisition

The final retained, texture/edge detect-correlated points, which were originally
selected using a stepsize of two pixels are then interpolated. By interpolated,
we refer to the process by which if two or more retained points are separated by
only one nonvalid pixel, then that pixel is marked as a valid point also. This in
effect also tends to smooth the resultant correlated points. The results of this
correlation may be seen in figure 3.22.

Once interpolated, the points are then subjected to “blobification”, or the
process of individual blobs of points being numbered for retrieval, using a re-
cursive blob coloring algorithm, which also calculates the centroid of each blob
[9]. The pixel at this location is correlated with the right image to obtain the
corresponding right image point. The point pair is then used to triangulate the
3D position of the sample.

The 3D sample locations computed for the samples in figure 3.17 are listed
in table 3.1.

The 3D position of the sample can then be used, in conjunction with the
inverse kinematics for the manipulator arm, which may be found in appendix
A to acquire each numbered sample and store it in the cache, as may be seen
in figure 3.23.
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Figure 3.22: Texture and Edge Detect Correlation

Figure 3.23: LSR Acquiring an Autonomously Segmented and Selected Sample



58 CHAPTER 3. ALGORITHMS

3.5.5 What Constitutes Interesting?

Until this point we have concentrated on the problem of how to segment a sample
from the background and localize it autonomously for acquisition. The second,
perhaps more important question is: when is a sample interesting enough to
acquire?

In the context of a year long mission over tens to hundreds of kilometers, a
rover may come across many samples which could be acquired. However, the
space available in its cache is limited. Thus, there is an obvious tradeoff between
picking up something now and waiting until later in hope that something more
interesting might be found.

A very detailed simulation study of this problem has been done [28]. How-
ever, independent of the knowledge of this study, we have implemented a sim-
pler, salient functional relationship, which takes into account many of the salient
points which were brought to light.

Effectively, we can model the desire to acquire a sample as a functional
relationship between the euclidean distance in texture signature between the
current sample we are considering and the recorded texture signatures of all
other samples we have already acquired, weighted by the estimated space left
available. Thus, it is easy to pick up samples early in the mission, when the
cache is relatively empty, but as time progresses, the samples must be increas-
ingly interesting to warrant being collected. This relationship is presented in
equation 3.27, where [ is a tunable parameter setting the falloff rate, and v is
the estimated percentage of volume used in the cache can.

Acquirelnterest = (mini\/(H — H;)? + (D — D)2 + (V = V;)2)el =) (3.27)

Thus, for a sample to be acquired, the value of Acquirelnterest must simply
pass a user specified threshold. This threshold is generally tuned based on the
relative abundance of samples in the environment, and the quality to which
samples are homogeneous in texture. Likewise we can normalize the euclidean
distance by some expected average texture difference between samples, such that
the value provided by equation 3.27 is nominally approximately 1.0 for an empty
cache, set 1.0 to be the threshold, and thus rocks must be more interesting than
the norm in order to be collected (this results in more selective behavior by the
rover).

An example texture signature list and cache can representation may be seen
in figure 3.24.

3.5.6 Denser Sample Distributions

The small samples seen in figure 3.17 are fairly well defined against the back-
ground and fairly widely spaced. Thus, we might ask what happens if we place
the samples more closely together, as shown in figure 3.25.

Computing the texture-only segmentation of the image results in the blobs
shown in figure 3.26.
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Figure 3.24: Cache Status, Showing H,D,V Texture Signature, Pixel Area, and
Approximate Cache Volume Filled

Figure 3.25: Autonomous Sample Acquisition: Starting Image Pair
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Sample Locations (Pixals) Using Texture Alone
T r T T T

1 i L L s ' L L 1
20 130 140 150 160 170 180 190 200 210 220
Column Pixel

Figure 3.26: Texture Only Sample Segmentation: Interest Point Locations (Pix-
els)

[ Sample [ X(m) [Y(m) | Z(m) |
Top Right 0.1517 | 0.4245 | -0.4063
Top Left -0.0090 | 0.3765 | -0.3823

Middle Right | 0.1152 | 0.2752 | -0.3906
Bottom Left | -0.0144 | 0.2226 | -0.3995

Table 3.2: Segmented Samples, 3D Locations

Computing the raw edge detect on the image results in figure 3.27.

Figure 3.28 details the result of the thresholding operation on the edge de-
tection.

Finally, correlating the thresholded edge detection with the texture-only
segmentation results in the sample segmentation shown in figure 3.29.

The 3D sample locations computed for the samples in figure 3.25 are listed
in table 3.2.

As we can see, the segmentation algorithm also performs well on more closely
spaced samples, although it does consider the most closely placed sample pair
to be a single sample.

3.6 Other Algorithms

In addition to those algorithms which we have mentioned previously which apply
to terrain map generation, state estimation, navigation, and sample acquisition,
we have implemented a number of user initiated autonomous algorithms. These
algorithms, of course, could also be integrated with our algorithm for sample
segmentation, such that they are run rather than the sample acquisition and
cache routine.
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Figure 3.27: Raw Edge Detection
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Figure 3.28: Thresholded Edge Detection
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Figure 3.30: User Interface for Sample Manipulation

To initiate any of the following algorithms, the remote user first obtains a
stereo image pair from the rover’s navigation cameras. Using this image pair,
the remote user then designates a sample, as shown in figure 3.30, which the
rover mounted manipulator (MicroArm-1) will interact with.

Some possible interactions which have been implemented include close range
sample imaging, sample abrasion using the end-effector mounted abrading tool,
science instrument deployment and placement against the sample, soil trenching,
and of course, user initiated sample acquisition and cache.

Results for the implementations of these activities are presented in section
4.7
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Figure 3.31: Command Cycle Showing Algorithm Interconnections

3.7 Algorithm Suite Interconnections
and Summary

In this chapter we have presented a variety of algorithms, which we have imple-
mented and tested experimentally, of use in increasing autonomy in planetary
rover operations. We now step back and view the interconnections between the
individual algorithms and are better able to gain a sense of perspective as to
how they all fit together.

3.7.1 Interconnections

The interconnections between the various algorithms described in this chapter
can best be seen in terms of a flow chart through a navigation time-step, as
depicted in figure 3.31.

Several switches in the algorithm flow can be seen in this diagram. For
example, the user may switch between reactive obstacle avoidance for roaming
behavior and navigation to a user designated goal. Likewise, sample acquisition
may be turned on or off.

Similarly, some parts of the flow may be replaced with other modules, e.g.
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the module where we acquire samples may be replaced with viewing samples or
abrading samples, or any of the other sample manipulation algorithms described
in section 3.6, which all (except soil trenching) may act on the output of the
sample segmentation and location procedure.

We view the depicted algorithm structure as a reasonable framework in which
the 2001/2003 Mars rover missions could perform their mission successfully.

3.7.2 Summary

Overall, we have presented a suite of algorithms which will enable a planetary
rover, such as those which will be used in NASA’s planned 2001/2003 Mars
rover missions, to function in a highly autonomous fashion. This will enable, to
a large part, the rover to accomplish desired mission objectives such as sample
acquisition and cache, and exploration of large terrain areas. The ground is
then able to more effectively intervene, on a more infrequent basis, to specify
desired navigation goals, or desired samples to interact with.

We now present the experimental results for the algorithm suite which we
have successfully implemented.



Chapter 4

Experimental Results

The algorithms described in Chapter 3 have all been implemented and tested
on the LSR / MicroArm-1 platform. Here, we present our experimental results.

First, we present the methods used to calibrate the LSR navigation cameras
and state estimate ground truthing cameras in sections 4.1 through 4.3. We then
present our results for autonomous roaming obstacle avoidance behavior in sec-
tion 4.4. The results from potential flow based path planning and navigation to
both unobstructed and unobstructed goals are presented in section 4.5. Finally,
we present the results for our autonomous sample segmentation and acquisition
algorithms in section 4.6. The results for all other sample manipulation routines
are presented in section 4.7.

4.1 Camera Calibration

In order to perform operations which make use of a mapping between a pair
of camera image points and a 3D point, or a single camera image point and a
2D point, we must first discover this mapping (generally nonlinear) through the
process of camera calibration.

Once we have this mapping, we can perform metric reconstructions (of the
environment, for example), using the image data provided by the cameras. This
allows us to generate 3D terrain maps, as described in section 3.1, perform
sample manipulation, as described in section 3.6, and also to provide ground
truthing for the rover’s state estimate in the environment.

We describe the method used to calibrate the LSR stereo navigation camera
pair in section 4.2, and our method of calibrating the camera used in ground
truthing the rover’s state estimate in section 4.3.

4.2 Navigation Camera Calibration

To effectively calibrate the LSR stereo navigation pair, the stereo cameras were
shown several black calibration fixtures having white dots of varying diameters
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%

Figure 4.1: Sample stereo calibration pair.

in 34 different positions to provide input data for a least-squares calibration
technique which attempts to generate a camera model compensating for radial
lens distortion [11]. Given the large field-of-view of our cameras, radial lens
distortion was quite significant. An example pair of calibration images may be
seen in figure 4.1.

Given images with a resolution of 256 columns by 243 rows, we found that
the camera calibration was accurate to approximately 2 cm at a distance of
approximately 0.3 m from the navigation cameras, and approximately 10 cm at
a distance of approximately 1.3 meters from the navigation cameras. Generally,
the accuracy of the camera calibration improves with proximity to the cameras,
as expected.

4.3 Ground Truth (Sky Camera) Calibration

To measure the performance of our state estimation and navigation routines
effectively, we require a method by which we may obtain the ground truth
position measurement for the rover.

To address this problem we mounted a single SuperCircuits CCD camera to
the ceiling of the laboratory, pointing directly downward and centered on the
rover workspace. Using this camera, fitted with a 120° field of view lens, we are
able to capture nearly the entirety of the rover workspace.

We then placed a calibration fixture on the floor of the laboratory, having a
9x 9 grid of white, 2 cm diameter calibration points on a black background, with
point spacing of 10 cm. The location of each calibration point in 2D laboratory
space, and its corresponding pixel location are extracted using the software
developed for 3D camera calibration by [11] from a series of images where the
calibration fixture is moved to cover the entire surface of the laboratory floor.
A sample calibration image may be seen in figure 4.2. The extracted 2D spatial
locations of the calibration points may be seen in figure 4.3. The corresponding
pixel locations for these points may be seen in 4.4, where the degree of radial
lens distortion present when using 120° field of view lenses is readily apparent.
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Figure 4.2: Sample Image from Ground Truth Camera Calibration

Ground Calibration Locations Calibration Pixel Locations

Ground ¥ (m)

Ground X (m)

Figure 4.3: Ground Truth Points Figure 4.4: Corresponding Pixel
Points

We then fit third degree polynomials to the data to determine the functional
mapping between pixel column number and the X position in the laboratory co-
ordinate frame in meters. Similarly, we find the mapping between pixel row and
laboratory frame Y position. Of course, we also compute the inverse functional
mapping, so that we may overlay a graphical representation of the rover on the
ground truth images, based on the rover’s state estimate. These functions may
be seen in figures 4.5, 4.6, 4.7, and 4.8.

As we have a relatively accurate fit to the calibration data, as may be seen
from figures 4.5 through 4.8, the accuracy of the ground truth position estimate
should be on the order of the resolution of the image, or approximately 5 cm.
The ground truth data for each of the rover traverses was extracted by hand by
selecting the center of a white cross pattern on the top of the rover. However,
in the future a template matching or correlation based approach could be used
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Figure 4.9: Kalman Filtered State Estimate Using Reactive Obstacle Avoidance

effectively, given that the rover’s internal state estimate may be used to reduce
the search area in the image significantly, ultimately saving a great deal of time
in the extraction of the ground truth measurements over the manual method.

4.4 Obstacle Avoidance Results

To experimentally test the rover’s wandering behavior, i.e. reactive obstacle
avoidance, we released the LSR rover into its environment, pictured in figure
4.9. It successfully avoided obstacles as it wandered from its starting position to
the upper right of the rover workspace. While wandering, the rover maintained
an estimate of its position and orientation relative to its initial position. It was
not instructed to acquire samples during this run.

As can be seen in Figure 4.9, the Kalman filtered vehicle state estimate is still
quite good after completing a traverse of approximately 6 meters. The final error
between the filtered state and the ground truth is approximately 0.22 meters,
with a maximum absolute error over the entire traverse of 0.64 meters, and a
mean absolute error of 0.38 meters. The vehicle made 79 iterations through
the reactive obstacle avoidance algorithm, making 20 right turns (10° nominal),
11 left turns (10° nominal), and 48 forward motions (20 cm nominal). Figure
4.10 details the position error of the Kalman filtered estimate with respect to
the ground truth. The gains used in the Kalman filter were Gx: 1.9, Gy: 1.9,
G¢:1.2.
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4.5 Navigation Results

In all experimental trials of the potential flow based path planning and nav-
igation methodology, the obstacles and goal were specified a-priori, using the
overhead ground truthing camera, as described in section 3.4.1. However, as
previously mentioned, these obstacles could also be specified using a manipu-
lator mounted stereo pair or extracted from an incrementally generated world
terrain map.

Figure 4.11 details the path taken by the LSR rover in its navigation through
soft soil-simulant and over medium sized rocks to a nearly directly accessible
goal. The final error between the filtered state and the ground truth was 0.63
meters, with a maximum absolute error over the whole traverse of 0.76 meters,
and a mean of 0.40 meters. The vehicle made 125 iterations through the poten-
tial flow based navigation algorithm, making 41 right turns, 44 left turns, and
40 forward motions. The gains used in the Kalman filter for this first run were
Gx: 1.9, Gy: 1.9, G¢: 1.2

Figure 4.12 details the LSR rover’s traverse around an obstruction to a goal.
In the context of the sample return mission, the same software, implemented on
the Sample Return Rover (SRR) testbed, will be used to navigate around ob-
structions to its desired goal, the ”dead” LSR rover. The final error between the
filtered state and the ground truth was 0.67 meters, with a maximum absolute
error over the whole run of 1.09 meters and a mean of 0.59 meters. The vehicle
made 69 motions, with 8 right turns, 22 left turns, and 39 forward motions. The
gains used in the Kalman filter for the second run were Gx: 5.0, Gy: 5.0, Gy:
2.5.

Table 4.1 summarizes our results for all of the experimental trials presented
in this section.
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Figure 4.11: Kalman Filtered State Estimate Using Potential Flow-Based Path
Planning: Unobstructed Goal

Figure 4.12: Kalman Filtered State Estimate Using Potential Flow-Based Path
Planning: Obstructed Goal
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Trial Kalman Filtered | Dead Reckoned
Max/Mean Max/Mean
Reactive 0.68/0.38 m 2.83/1.34 m
Unobstructed | 0.76/0.40 m 2.99/1.38 m
Obstructed 1.09/0.59 m 1.34/0.70 m

Table 4.1: Estimation results for all experimental trials.

Figure 4.13: Approximate Path Taken During Sample Acquisition Trial

4.6 Sample Acquisition Results

To experimentally test the effectiveness of the image segmentation algorithm
for sample acquisition, as described in section 03.5, we released the rover into
its environment, configured as shown in figure 4.13.

The approximate path followed by the rover is overlayed on figure 4.13. The
absolute position via. the ground truth camera is not available, as this camera
was not installed at the time this trial was conducted.

While traversing the environment and performing reactive obstacle avoid-
ance, the rover encountered a variety of small rocks which were previously ran-
domly distributed. The rover was instructed to be looking for samples and to
attempt to cache any of these which it found to be interesting.

The rover made 172 iterations through its terrain map generation — sample
segmentation and acquisition — obstacle avoidance loop, acquiring 172 stereo
image pairs which it attempted to segment, looking for samples.

The results of its attempts at identifying samples in the workspace using the
sample segmentation algorithm described in section 3.5 are presented in table
4.2.

From table 4.2, we can see that the segmentation algorithm correctly classi-
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Correct Correct Q False False

Sample | No Sample Positive | Negative
Segmentation 13 148 4 3 4
Performance | 7.56% 86.0% 2.33% | 1.74% 2.33%

Table 4.2: Sample Segmentation Results

fies 93.6% of the images. Moreover, the most detrimental result, a false positive,
from the standpoint of wasted time and energy, accounts for only 1.74% of the
results.

4.6.1 Selected Images

Additionally, we show here the correctly identified samples, the false positives
(sample found where there is no sample), and the false negatives (sample exists
but not found). We will omit the correctly classified true negative (no sample
exists and none was found), as these are the majority of the 172 image pairs
and are generally less interesting.

Correct Sample

The images where our segmentation algorithm correctly segmented out the tar-
get sample from the soil background are shown in figures 4.14 and 4.15.

False Positive

The images where a sample was falsely detected (false positive) are shown in
figure 4.16, accounting for 1.74% of the results.

False Negative

The images where a sample went un-noticed are shown in figure 4.17, accounting
for 2.33% of the results.

Questionable

Finally, we include a questionable section, where the rover showed what might be
deemed questionable judgment in its classification. The images which resulted
in a questionable segmentation are shown in figure 4.18, accounting for 2.33%
of the results.

4.7 Other Sample Manipulation Results

Figures 4.19 through 4.23 show the LSR/MicroArm-1 platform successfully en-
gaging in a variety of user- initiated autonomous activities.
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Figure 4.14: Correct Segmentation (1-8)
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Figure 4.15: Correct Segmentation (9-13)
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Figure 4.16: False Positive Segmentation

Figure 4.17: False Negative Segmentation
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Figure 4.18: Questionable Segmentation

These autonomous manipulation routines all rely on simple inverse-kinematics.
As such, they generally performed with reasonable success given the limitations
of the hardware.

The configuration of the MicroArm-I end-effector, being similar to a clam-
shell in design, often results in “pressing” behaviors on the surface of the
sand, rather than “cutting” or “scooping” behaviors, which would have been
more effective in acquiring small rock samples. As such, sample soil-interaction
routines (sample acquisition, soil trenching) were generally successful approxi-
mately 75samples with respect to the soil surface.

MicroCamera Imaging and Science Instrument Deployment were successful
approximately 95positioning errors being related to errors in camera calibration.

Sample abrasion succeeded effectively approximately 60time, due to the
precision positioning required to place the end effector rotary tool repeatedly
against the rock sample to be abraded.

Visual verification of autonomous activity results may be introduced in the
future.
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Figure 4.19: Sample Acquisition Figure 4.20: Sample Abrasion

Figure 4.21: MicroCamera Imaging Figure 4.22: Instrument Deployment

Figure 4.23: Soil Trenching



Chapter 5

Discussion

In this chapter we discuss the performance of our algorithms, including both
their strengths and weaknesses, and any implementation or testing caveats.
Additionally, we highlight what additions might increase the performance of the
described algorithms. Comparisons with other algorithms, or with algorithms
from which these algorithms were derived are also made.

5.1 Terrain Map Generation

5.1.1 Algorithm Performance

We have tested our semi-sparse texture-distance-adaptive range map generation
algorithm on several hundred image pairs as our rover has navigated through
our laboratory environment, with very good results.

At Level 8, a terrain map generally contains approximately 100 points. At
Level 4, a terrain map generally contains approximately 400 to 700 points. Level
2 and Level 1 have correspondingly larger numbers of points. Of course, the ac-
tual number of points selected by the algorithm is dependent on both the texture
quality of the ground and the number of texturally interesting features in the
environment which are close to the rover. However, the user does have control
over the approximate number of points generated by selecting the maximum
iteration depth (Level number) for the algorithm.

5.1.2 Implementation Caveats

In our current implementation of the adaptive terrain map generation algo-
rithm, the map generation occurs with reasonable rapidity and computational
efficiency, requiring approximately 2 seconds at Level 8, and 5 seconds at Level
4, on an unloaded Sparc 20. Given that the implementation is currently not op-
timized and uses floating point arithmetic, we expect to see large improvements
in speed when all arithmetic operations are converted to integer.
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5.1.3 Testing Caveats

Unfortunately, due to the nature of the experimental hardware (i.e. the tether
between the LSR rover and the system VMEbus), on which the terrain map
generation system was implemented, we were unable to test the algorithm ex-
tensively on totally natural imagery. However, we have no reason to expect that
it should have reduced performance when operating on natural imagery.

5.1.4 Comparison With Other Methods

In the context of planetary rover operations, the passive stereo approach to
the problem of terrain map reconstruction is clearly the most desirable, given
power and mass budgets which limit the usefulness of laser range finding, and
uncertain / minimal atmospheric constituents, which limit the usefulness of
acoustic / sonar based approaches. Other electromagnetic based approaches
(e.g. radar) generally also have relatively high power requirements with respect
to passive CCD camera systems. Passive CCD camera systems also have the
added advantage of being an already space proven technology.

In terms of comparisons with other possible reconstruction methodologies,
we find that our methodology strikes a good compromise between purely feature
based (non iterative refinement) approaches, which tend to produce compara-
tively sparse depth maps (50 to 100 points in a 256x243 image), and area based
(attempt to correlate all points) approaches, which produce comparatively dense
depth maps (several thousands of points or more in a 256x243 image).

Depending on the iteration level selected for our algorithm, it may become
more efficient to dewarp and rectify the images (at Levels 2 and 1, for example,
where greater than 1000 to 1500 points may be computed). For Level 4, it
is questionable whether dewarping and rectification buys anything in terms of
speed, and for Level 8, the additional overhead makes it less efficient.

5.1.5 Algorithm Strengths

Again, the strength of this particular algorithm lies in its iterative terrain map
refinement approach, where correlation and triangulation are performed for
points which are both texturally interesting (also helping to avoid ambiguous
matches during correlation) and distance-relevant from a danger perspective.

In the development of this algorithm, we make two implicit assumptions.
The first is that the texture of the ground is recognizably different from the
texture of the objects in the environment.

The second implicit assumption made concerns to the structure of the en-
vironment: we have tacitly assumed that the environment is divided into areas
which we consider interesting (and worth computing distance values for), and
areas which are not interesting. If the environment turns out to be generally
interesting everywhere, then we do not gain anything in attempting to find in-
teresting points, and really this just introduces additional overhead into the
algorithm. No range information will be returned in the case of a flat plain, but
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this is actually a feature. It is questionable whether a sloping sand dune, which
might be too difficult for the rover to climb, would be texturally interesting,
being generally of the same texture as the ground. However, irrespective of
whether the dune is texturally interesting, a standard correlation window, used
to find matching points between images (in this algorithm and others) would
most likely have a very difficult time finding correct correspondences on a sand
dune-like structure.

Regarding the first implicit assumption, in general, we find that even if the
ground is relatively texturally interesting, its signature is different enough from
the objects in the environment that they are picked up as interesting.

Regarding the second implicit assumption, in general, we find that for the
type of terrain which will be traversed by a planetary rover, the images will
consist of rock fields, in which some rocks may rise up in the visual field, and
others lie close to the ground. Thus, the environment appears to be filled in a
semi-sparse manner, making the second implicit assumption a valid one.

5.1.6 Algorithm Improvements

Improvements to the terrain map generation algorithm could be realized with
smaller field of view cameras, having less radial lens distortion, which would
improve the efficiency of the correlation search, by reducing the error in using
the fundamental matrix (epipolar line) approximation to the epipolar curves.

Additional improvements could be realized by performing the wavelet trans-
form of the stereo images in real time using a DSP chip or other dedicated
hardware. Similar improvements in speed could be realized by using a DSP
chip or dedicated hardware for faster correlation. Of course, on a system with
less restrictive hardware constraints, frame grabbing hardware capable of high
speed memory to memory transfer would reduce the bottleneck on our system
in the image acquisition phase.

5.2 Obstacle Avoidance

5.2.1 Implementation Caveats

Given that our obstacle avoidance methodology is quite simple, we will only
discuss implementation caveats. As it is currently implemented, our obstacle
avoidance integration volume does not consider points below half a rover wheel
height to be threatening to the rover. As such, it can not deal effectively with
pits, trenches, or cliffs. This functionality could be easily implemented, but was
not relevant to our laboratory testing environment.
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5.3 Terrain Map Registration

5.3.1 Algorithm Performance

Our implementation of Z. Zhang’s terrain map registration algorithm was also
a success, and helps to further validate the approach taken. We have tested
this algorithm on a significantly larger dataset (again, on the order of several
hundred stereo image pairs) than that presented in the papers [32], [34], etc.,
with good results.

Over all terrain maps generated, we found that the time to register the maps
was on the order of only a few seconds.

Additionally, we have validated the use of this algorithm for data sets which
contain significantly fewer 3D points (on the order of 400) with larger amounts
of noise both in the initial motion estimate between the viewing frames, and in
the estimates of the point positions themselves, compared with the rock scenes
in [32] and [34].

Finally, we have shown that this vision-based motion estimate may be effec-
tively used to generate or, in our case, assist in the generation of a rover state,
which is alluded to in [34] but without the presentation of experimental results.
We show positive results in challenging (rocky, with soft soil) terrain.

5.3.2 Performance Caveats

On our particular system, we found that the motion estimate was more reliable
in rotation than in translation, due to the characteristics of our generated terrain
maps. In general, points farther from the rover are less accurate in position due
to the resolution of the CCD cameras, as well as the quality of their calibration.

5.3.3 Implementation Caveats

The larger amounts of noise in our system stems from our lack of high quality
between-frame motion estimates, as the LSR rover is not equipped with wheel
encoders, gyro/accelerometers, or any other means by which to gauge position
and orientation changes (excepting straight time-based dead-reckoning).
Additional error is introduced by our wide field of view (120°) navigation
cameras, which are generally difficult to calibrate to a high degree of accuracy.

5.3.4 Algorithm Strengths

The strengths of the this approach include the ability to deal with features which
are present in one view and not in another (appearance and disappearance), be
they from rotation in and out of the field of view, or from occlusion by another
object. The iterative and somewhat statistical nature of the algorithm makes it
robust to outliers and noise in the 3D dataset. [32]



5.4. STATE ESTIMATION 83

5.3.5 Algorithm Weaknesses

Caveats to the use of this algorithm include the requirement that there be some
features to match in the environment. Obviously the algorithm will fail on a
featureless plane. At this time, additional methods of motion estimation might
be explored, including ridge-line/ horizon tracking, if there are mountains in the
distance.

5.3.6 Algorithm Improvements

Currently, the points in the 3D terrain maps are not given a quality estimate.
Such an estimate could be incorporated into the terrain map registration algo-
rithm, such that points with higher quality estimates are weighted more heavily
in the registration process. The introduction of a Kalman filter into the regis-
tration process for just this purpose is actually suggested in [32].

Higher quality estimates of inter-frame motion would of course also improve
the accuracy of the range-map registration algorithm, which relies on an initial
motion estimate, such that after application of the initial motion estimate, inter-
frame motion may be assumed to be small. Such estimates might be generated
or measured using gyro/accelerometers, wheel encoders, and absolute heading
sensors such as sun sensors. Additionally, matching range maps generated from a
mast or arm-mounted stereo pair, rather than from a lower-mounted navigation
camera pair, would also generate higher quality motion estimates, we suspect.
Such a higher vantage point should allow a larger number of widely spaced
points to be correlated between frames.

5.4 State Estimation

We were pleasantly surprised by the quality of the state estimate produced
after Kalman filtering the dead-reckoned inter-frame motion estimate with the
vision-based motion estimate.

Clearly, the use of Kalman filtering techniques can greatly improve the over-
all state estimate of a mobile vehicle such as a planetary rover (as we have
demonstrated here, with 0.38 m vs. 1.34 m, 0.40 m vs. 1.38 m, and 0.59 m vs.
0.70 m mean absolute error in three different trials), especially if many mea-
surement sources are available (e.g. gyro/accelerometer, wheel encoders, sun
sensors, etc.).

5.4.1 Implementation Improvements

Currently, state estimation (via Kalman filtering) is only performed for in-plane
rotations and translations. In difficult terrains, the assumption of planar motion
is not necessarily correct as the rover moves over small obstacles in its efforts to
achieve its goals or avoid larger obstacles. The extension of the Kalman filtering
approach to out-of-plane translations and rotations could be used to improve
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the initial estimate used to start the terrain map registration algorithm, which
would improve its subsequent output.

Additionally, currently we only use our dead reckoned guess and the output
from the range map registration algorithm for the inter-frame rotation and trans-
lation of the rover. The addition of other sensor inputs (e.g. gyro/accelerometer,
sun heading sensor, wheel encoders, etc.) into the Kalman filter framework
would also serve to (perhaps dramatically) improve our estimate of the rover’s
state.

5.5 Path Planning and Navigation

5.5.1 Algorithm Performance

We have performed approximately 10 to 15 experimental trials of the path plan-
ning and navigation system, with various rock configurations in our laboratory.
In general (approximately 80time), the rover was capable of achieving the de-
sired goal position. In those cases where the rover was unable to achieve the
goal, this was due to large errors introduced in the state estimate via interac-
tions between the rover wheels and various normally benign rocks (given the
open configuration of the rover wheels, it was possible for the edges of various
rocks to actually extend inside the wheel, preventing the desired motion of the
rover from being completed. This is in contrast to normal interactions with rela-
tively benign rocks which did not drastically affect the Kalman filtered estimate
of the rover’s state.

5.5.2 Algorithm Strengths

Potential flow based path planning has been studied extensively in computer
simulation [7]. To this we add the validation of it’s use in real-time path planning
for planetary rovers in challenging terrain.

As an approach, the strengths of the potential flow based path planning
methodology lie in that it is capable of computing the desired motion of the rover
in real time. This is in contrast to other approaches which rely on searches or
other linear programming techniques which attempt to minimize the expected
cost of the traverse to the desired goal. In using the potential flow based ap-
proach, a near optimal (in a distance sense) path is found between the rover
and the goal.

5.5.3 Algorithm Weaknesses

Unfortunately, the path planning methodology used is currently only two-dimensional
in nature. This precludes the use of the ground clearance of the rover to tra-
verse obstacles which are higher than half a wheel height by straddling them

and passing over them.
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5.5.4 Algorithm Improvements

More precise control of the rover’s position and orientation will prevent a number
of the artifacts introduced by using finite stepsize motions (ie. jumping inside
obstacle boundaries, or not staying exactly on a streamline)

Additionally, it should be noted that the real-time potential flow based path
planning methodology employed is capable of dealing with dynamic environ-
ments, such that as the error in the state estimate of the rover grows over time,
the obstacles in the environment of the rover may also grow with time, which
guarantees that the rover will never intersect an object on it’s path to the goal.
We may explore this functionality in the future.

5.6 Sample Acquisition and Cache

5.6.1 Algorithm Performance

The correlated edge detection / texture segmentation-based sample segmen-
tation algorithm we have developed worked very well in our lab environment
(93.6% correct segmentation, over 171 stereo image pairs).

5.6.2 Testing Caveats

Again, as our rover was tethered to the VMEbus in our laboratory, we were
unable to test the implemented algorithms on naturally occurring terrain. How-
ever, given the high quality of performance seen in the laboratory setting, we
believe that the segmentation routine would perform similarly in a natural en-
vironment.

5.6.3 Algorithm Improvements

The addition of color CCD cameras into our suite of available sensors would
possibly aid in the efficient segmentation of samples from the background en-
vironment, particularly in cases where the environment might be of similar
textural quality to the samples of interest. The introduction of color would also
add another identifying signature against which our decision to acquire or not
acquire a sample given limited time and cache resources could be made.

5.7 Sample Manipulation and Soil Trenching

The sample manipulation algorithms all perform as expected, given the known
limitations imposed by the nature of the hardware and the accuracy of the stereo
camera imaging system, as detailed in section 5.7.
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Chapter 6

Conclusions

In this chapter, we present our conclusions regarding our implementation of a
suite of enabling algorithms for autonomous activity in planetary rover oper-
ations. Additionally, we present a look at where future work based on these
results might proceed.

6.1 Summary

In summary, we have implemented a suite of enabling algorithms for increased
autonomy in planetary rovers, and a modular framework which allows each of
the component algorithms to be used independently. Although each algorithm
may be used independently, the interaction between the various algorithms al-
lows the implementation of fairly complex high level autonomous behaviors,
including roaming obstacle avoidance, sample acquisition, and navigation to
user designated goals.

Specifically, we have demonstrated a new method by which semi- sparse
range maps may be generated in a computationally efficient fashion based on an
iterative algorithm which is adaptive to both texture and distance. Depending
on the number of 3D points desired by the user, the algorithm timing ranges
from sub-second to multi-second. We then used this terrain map generation
algorithm, together with our simple obstacle avoidance methodology to enable
roaming obstacle avoidance.

Having demonstrated roaming obstacle avoidance, we then presented a sam-
ple segmentation algorithm, capable of approximately 94% correct segmentation
in a semi-natural laboratory setting. This algorithm, coupled with roaming ob-
stacle avoidance, gave rise to our first desired behavior, namely autonomous
roaming obstacle avoidance and sample acquisition.

The implementation of an range map registration algorithm [32] allowed one
measurement of the rover’s state change during wandering or navigation to be
performed. Combining this measurement with the commanded motion (dead-
reckoned estimate) via Kalman filtering [1] enabled the LSR rover to maintain a
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state estimate accurate to approximately 0.4 m over a 6 m traverse in very soft
soil and in rocky terrain. Additionally, our implementation of the range map
registration algorithm [32] adds additional experimental performance validation
over multiple navigation runs and validation of the use of the algorithm in
conjunction with Kalman filtering as suggested in [32].

With this state estimate available, potential low based path planning and
navigation to user designated goals became possible. Here, we have presented
navigation through an obstacle field to both a relatively unobstructed goal and
a more obstructed goal using this real-time path planning approach [7]. Thus,
in addition to the experimental validation of the algorithm, we have presented
a demonstration of its feasibility in difficult terrain as might be encountered by
a planetary rover.

6.2 Future Work

Currently, the algorithm suite has been implemented and runs on the LSR
rover platform. As many of the algorithms (terrain map generation, obstacle
avoidance, range map registration and Kalman filtering, real time potential flow
based path planning and navigation to user designated goals) are applicable to
the problems faced by the Sample Return Rover, the described algorithms are
currently being implemented on the SRR platform, pictured in figure 6.1.

Specifically, the Sample Return Rover will have to generate terrain maps
and avoid obstacles in its attempt to quickly rendezvous with one of the “dead”
science rovers, such that it may retrieve the sample cache held by the science
rover and return to its ascent vehicle for return to earth. In addition to avoiding
obstacles, the SRR rover will have to maintain a state estimate to effectively
navigate to the science rover goal, which may possibly be quite obstructed,
requiring significant path-replanning, as demonstrated in figure 4.12.
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6.2.

Sample Return Rover

Figure 6.1
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Appendix A

MicroArm-1 Kinematics

A.1 Forward Kinematics

The forward kinematics for MicroArm-1 are defined by the following transfor-
mation matrices between each of the joint coordinate frames.

In the following, for MicroArm-1, the values of the constants Al, A2, A3,
A4, D2, D3, D4, and L5 are listed in table A.1.

Variable Al A2 A3 A4
Value (m) | 0.0752 | 0.2847 | 0.2779 | 0.0363

Variable D2 D3 D4 L5
Value (m) 0.0508 | 0.0508 | 0.0462 | 0.0762

Table A.1: Kinematic Constants
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cos(61) —sin(f;) 0.0 0.0
sin(61)  cos(f1) 0.0 0.0

0.0 0.0 1.0 0.0
00 0.0 00 1.0
Tiz:

cos(f2) —sin(f2) 0.0 Al
0.0 0.0 1.0 D2
—sin(02) -008(02) 0.0 0.0
0.0 0.0 0.0 1.0

Tas :
cos(63) —sin(f3) 0.0 A2
sin(f3)  cos(f3) 0.0 0.0
0.0 0.0 1.0 D3
0.0 0.0 0.0 1.0

cos(4) —sin(fs) 0.0 A3
sin{f4)  cos(fg) 0.0 0.0
0.0 0.0 1.0 D4
0.0 0.0 0.0 1.0 |

Tas

1.0 0.0 0.0 A4+ L5cos(6s)
0.0 1.0 0.0 —L5sin(65)
0.0 0.0 1.0 0.0
| 0.0 00 00 1.0

Given the joint angles (61,0;,03,604,65), the end effector position is then
given by:

X =T05[0][3] = (T01 x T12 x T23 x T34 x T45)[0}[3] (A1)
Y = T05[1][3] = (TO1 x T12 x T23 x T34 x T45)[1][3] (A.2)
Z = T05[2][3] = (TO1 x T12 x T23 x T34 x T45)[2|[3] (A.3)

A.2 Inverse Kinematics

The inverse kinematics for MicroArm-I are computed as follows (as derived by
Dr. Eric Baumgartner, JPL).
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A.2.1 Thetal

If we let P;, P,, and P, correspond to the position of the end effector, the desired
end effector pointing vector be given by n = [nz, ny, nz|, and the opening angle
of the end effector (65) be given, then the two possible solutions for theta; are
given by equation set A.4, where atan2 is the arctangent of P,/P, in the range
-7 — .

er; = \/Pg + P2 — (D2 + D3 + D4)?
01, = atan2(P,, P;) — atan2((D2 + D3 + D4), ex;) (A4)
01, = atan2(P,, P;)— atan2((D2 + D3 + D4), —ex;) (A.5)

The choice of §; from 6;,_, and 82, is made by constraining the result to be
in the range from 0 — 7.

A.2.2 Theta 2

Once we have the base joint angle, 8, the manipulator may be thought of as
planar. We can then compute the end effector position in the plane of the
manipulator arm using equation set A.6.

Pip. = Prcos(61) + Pysin(6,) — Al (A.6)
Ptp, = —Prsin(01)+ Pycos(61) — (D2 + D3 + D4) (A7)
DPtp, = Pz (AS)

Once we have the position of the end effector in the trenching plane, we
can compute the position of the MicroArm-I wrist (we will assume that the
end effector scoop is pointing down and introduce the additional complexity
of multiple orientations for the end effector below). The wrist position of the
manipulator arm is given by equation set A.9.

Pwrist, = P - (A4 + Ls)nx (Ag)
Pwm'sty = Py (AIO)
Pwrist, = Pz - (A4 + L5)nz (A].].)

The solutions for theta 2 can then be computed using equation set A.12

Pz%rist, + Pl%)ristz + A22 + A32
(2)(A2)\/P3)ristz + PEJM’st:

sinpsi = /1 — cospsi?

psty = atan2(sinpsi,cospsi)

cospst =
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psia = atan2(—sinpsi,cospsi)

2., = —(atan2(Pyrist,, Purist,) + psii) (A.12)
2,, = —(atan2(Pyrist,, Purist.) — psi1) (A.13)
02, = —(atan2(Pyrist., Purist,) + Psiz) (A.14)
02, = —(atan2(Pyrist,, Purist,) — PSiz) (A.15)

The solution for the value of 6, is chosen to be that solution which lies
between —7/2 and /2

A.2.3 Theta 3

The solution for 83 is found in a similar fashion, using equation set A.16.

costhy —  Furiste T Pirisy, = (A2 + A3%)

(2)(A2)(43)

sinth3 = /1 — costh3?
f3,, atan2(sinth3, costh3) (A.16)
03, = atan2(—sinth3,costh3) (A.17)

I

The solution for 65 is selected as the solution which falls between 0 and 7.

A.2.4 Theta4

The solution for thetay is then constrained by the solutions for theta;, thetas,
thetas, and the given thetas, to be given by equation A.18.

04 = atan2(—n,,n,) — 62 — 63 (A.18)

And thus we have solved for the joint angles of the manipulator given it’s
X,y,z position, it’s end effector opening angle, and it’s end effector pointing
vector.

A.2.5 Multifunction End Effector

Given that MicroArm-I has a multifunction end effector, with a micro-imaging
camera, and abrading device, in addition to it’s gripper- scoop, the end effector
orientation is not necessarily always tip-down. (Generally, if we are performing
soil or sample manipulation actions, the end effector pointing vector is specified
as [0,0, —1], and the end effector is assumed to have the scoop pointing down-
ward). However, if we wish to use the camera or abrading tool, we must modify
the kinematics slightly, by using equation set A.19 for the wrist position.



A.2. INVERSE KINEMATICS

Abrader :
¢

~y
wristlength

Camera :
¢

Y
wristlength
Gripper :
¢

y
wristlength

PointingVector :
Npew,
Npew,
Npew,

WristPosition :

Pwrist

0.0
T
A4+ LDR

atan(YCAM /(A4 + XCAM))
(m/2) — phi
(YCAM?)

0.0
0.0
A4+ L5

cos(y)ng + sin(y)n,
0

—sin(y)ng + cos(y)n,

Pee — Npew(wristlength)

Similarly, we then use equation A.32 for 6.

04 = atan2(—n,,n,) — 63 — 03 + phi

95

(A.19)
(A.20)
(A.21)

(A.22)
(A.23)
(A.24)

(A.25)
(A.26)
(A.27)
(A.28)
(A.29)
(A.30)

(A.31)

(A.32)
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