
How to Design a Bumble Bee, or

a Curl Code Editor that will Fly...

by

Jon S. Heiner

Submitted to the Department of Electrical Engineering
and Computer Science in partial fulfillment of the

Requirements for the degree of Master of Engineering in
Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 7, 1998

@ Jon S. Heiner, 1997-98. All rights reserved.

The author hereby grants to MIT permission to reproduce and distrib-
ute publicly paper and electronic copies of this document in whole or

in part, and to grant others the right to do so. All rights reserved.

Author
Dep eIf nt/f Electrical Engineering andComputer Science

August 7, 1998

C ertified by - --------- / Professor Stephen A. Ward
Department of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by-... ,
Arthur C. Smith

Chairmar Anrtment Committee on Graduate Theses
A"S ACHUSS INSTITUTE

OF TECHNOLOGY

NOV 16 1998

How to Design a Bumble Bee, or
a Curl Code Editor that will Fly...

by

Jon Heiner

Submitted to the

Deptartment of Electrical Engineering and Computer Science

August 7, 1998

In Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in

Electrical Engineering and Computer Science.

Abstract

The Curl language is a new web development language being written in the Computer
Architecture Group at the MIT Laboratory for Computer Science. This thesis describes
my design considerations for writing a code editor expressly for the language Curl. The
motivation, design philosophy and process, architecture, and implementation details are
provided here. The overall goal is to is to create an editor which expediates the process of
writing Curl code while providing a pleasant environment in which to work with and learn
this "gentle-slope" language.

Thesis Supervisor: Stephen A. Ward
Title: Professor, EECS

- I.."

rq

er

"But I don't want to go among mad people." Alice remarked.

"Oh, you can't help that" said the Cat: "we're all mad here
I'm mad. You're mad."

"How do you know I'm mad?" said Alice.

[from Lewis Carroll's Alice in Wonderland]

1

14

Acknowledgements

I wish to thank my family for their constant support during all my trials at MIT, this one
being the last and the most satisfying to finish, for it is a closure. Thanks to them for see-
ing me through to the end, giving sound advice and moral support from thousands of miles

away, and always putting up with the only "techie" in the family.

I wish to thank Irena Asmundson who probably was affected directly by my thesis more
than anyone else (other than myself.) Thanks Ii for your support, your friendship and

above all, your understanding, much love.

I wish to thank the Curl group, first at the Laboratory of C omputer Science at MIT and
now on their own wild adventure at Curl, Inc. Special thanks to my Thesis Advisor Profes-

sor Stephen Ward for his patience. Thanks to Dr. David Kranz, Chris Metcalf, Anne
Hunter, Patrick LoPresti and Marty Wagner. Best of luck.

Thanks to rms and marc, both of whom I know better by their usernames than by their
faces, for their relevant help on my thesis: rms: for creating Emacs and doggedly pursuing

the ideal of free software; marc: for his "intuitively obvious" algorithm.

There are many other people who I wish to thank for their support, wisdom, advice, dis-
tractions, friendship and comfort: Trevor Stricker who provides the vibe, my instructors at

the Somerville School of Chung Moo Doe and higher belts, my brothers at ATO, my
brothers, sisters and others at No.6, the on-line crew @ Lambda without whom I would

either never have finished or finished much earlier, my officemates Mark "Wally" Hersch-
berg and Arthur E Housinger for the many deep philosophical meanderings and for

restocking the refrigerator, Boca Grande for sustenance, and Jasmine for always being
there when she needed me.

Thanks all,

Jon Heiner

Table of Contents

Cover Page 1
Abstract 3

Quote 4
Acknowledgements 5

Table of Contents 6

Chapter 1: Introduction 8
Curl 8

A Curl Programming Environment 9
Emacs 10

Bumble Bee Anectdote 10
Overview of Thesis 11

Chapter 2: Design Philosophy 14
Design is a Two-Pronged Process 14

Discussions with Richard Stallman, creator of Emacs 15
A correct tool for each job 16

Chapter 3: High-Level Design 18
What programmers need from a code editor 18

Correlative Features 19

Chapter 4: Low-Level Design 22
The Three Main Low-Level Classes 22

The Text Buffer Class 23
The Input Filter Class 26

The Text Display Class 28

Miscellaneous Design Considerations 34

Chapter 5: Implementation 36
Implementation Phases 36

Low-level memory handling implementation: CTETextBuffer 36
User Input: CTEInputFilter 39

Displaying the text: CTETextDisplay 41
Features 46

Chapter 6: Conclusion 50
The Curl Code Editor 50

The Curl Language 50
What I Learned 51
Final Thoughts 52

Appendix: Code 54
cte-constants.curl 54

cte-helpfile.curl
cte-inputfilter.curl

cte-keybase.curl
cte-keysequences.curl

cte-point.curl
cte-reservewords.curl

cte-textbuffer.curl
cte-textdisplay.curl

run-double-windows.curl
run-with-scrollbar.curl

run.curl
samplefile.curl

....................................5 5

....................................5 7

....................................6 5

....................................6 7

....................................7 0

....................................7 2

....................................7 7

....................................8 2

....................................9 8

....................................9 8

....................................9 9

....................................9 9

References 102

Chapter 1

Introduction

1.1 Curl
Curl is a new language under development at the MIT Laboratory for Computer Science.

Its goal is to provide a rich development base for the rapidly growing requirements of the

developing World Wide Web.

Curl is a new language for creating web documents with
almost any sort of content, from simple formatted text to
complex interactive applets.

Curl provides a rich set of formatting operations similar
to those implemented by HTML tags. Unlike HTML, the
Curl formatter can be extended by users to provide addi-
tional functionality, from simple macros (e.g., to provide a
convenient way to switch to a particular font, size and color)
to direct control over the positioning of subcomponents
(e.g., as in a TeX-like equation formatter). Several packages
of useful formatting extensions are currently under develop-
ment.

Using a TK-like interface toolkit of interactive compo-
nents, Curl makes it easy to build simple interactive web
pages. One can view interactive objects like buttons or edit-
able fields as extensions to the basic formatting operations
provided above -- one uses the same easy-to-learn syntax to
create interactive documents as to create regular text docu-
ments. There's no need to learn a separate scripting lan-
guage!

Other components of an interactive document may
require more sophisticated mechanisms than are provided
by the interface toolkit. These components can also be
developed using Curl since, at its heart, Curl is really an
object-oriented programming language. Curl expressions
embedded in the web document are securely compiled to
native code by the built-in on-the-fly compiler and then exe-
cuted without the need for any sort of interpreter. Curl pro-
vides many of the features of a modern object-oriented
programming language: multiple inheritance, extensible
syntax, a strong type system that includes a dynamic "any"

type, safe execution through encapsulation of user code and
extensive checking performed both at compile and run time.
Almost all of the Curl system and compiler are written in
Curl.

Curl is intended to be a gentle slope system, accessible to
content creators at all skill levels ranging from authors new
to the web to experienced programmers. By using a simple,
uniform language syntax and semantics, Curl avoids the dis-
continuities experienced by current web users who have to
juggle HTML, JavaScript, Java, Perl, etc. to create today's
exciting sites. Our hope is that the single environment pro-
vided by Curl will be an attractive alternative for web devel-
opers.

(from http://www.cag.lcs.mit.edu/curl/)

1.2 A Curl Programming Environment

The Curl Language and its associated utilities are changing daily. At present, it has a

browser, an inspector, a rudimentary equation editor, a slide presenter, and a host of other

demo applications. Notably, it is missing any coding environment. Almost all the code is

currently written using Emacs (see below) and then compiled and run at the command

line. Bugs must be handled "off-line" by editing files in a separate text editor and then

recompiling them over and over again.

Although there is nothing wrong with this system, there are many obvious advantages

to having an editing environment built right in to the language base. First, by writing the

editor in Curl, the editor will have access to all kinds of run-time information, including

Curl's extensive database of documentation. Also, the editor can be opened as needed for

debugging. Run-time errors can be quickly edited without having to leave the Curl pro-

gram. The editor itself is a validation of the programming language as it is a non-trivial

application. Also, the creation of such an editor requires the establishment of a whole new

set of useful classes that can be used in other projects and applications besides the editing

environment. Possible applications include: an email program, a news reader, an outline

editor, an on-line documentation editor, an assignment composer for an electronic text-

book and so on.

1.3 Emacs

Most of the Curl code written to date has been done in Emacs. Emacs (originally chosen

as an abbreviation of Editor MACros) is the quintessential coding editor, describing itself

as "the extensible, customizable, self-documenting real-time display editor."

Emacs is extraordinarily powerful and estensible, and despite the steep learning curve,

provides long-time users with a comfortable, optimized environment. Many of the features

in Emacs are set up in such a way to be user-motivated rather than automatic. A good

example of this is tab-indention. When the user presses the tab key in an editing buffer,

that line will be correctly indented according to the lines prior to it. This allows the user to

write code without being distracted by intermittent formatting events.

Despite its many strengths, Emacs has several notable drawbacks. Emacs is cpu-inten-

sive. It eats up a lot of processor cycles because of its complexity. It has a large memory

footprint. It has a steep learning curve. Above all, it is certainly not within the gentle slope

paradigm to which Curl aspires.

1.4 Bumble Bee Anectdote

There is a well-known urban myth about how a scientist proved that bumble bees cannot

fly. The tale was popularized during the 1930's in the German technical universities by the

students of the aerodynamicist Ludwig Prandtl at G6ttingen. The story he tells is that a

noted Swiss aerodynamicist, whom he does not name, was talking to a biologist at dinner.

The biologist asked about the flight of bees and the Swiss gentleman did a back-of-the-

napkin calculation. It showed simply that the size of the bumble bee's wings would not

support the relative volume and mass of the bumble bee's body. In fewer words, the bum-

ble bee cannot fly. Unfortunately for the scientist, everyone knows that a bumble bee can

fly, and with later developments in aerodynamic models and high-speed photography, it

was shown that certain features of how the wings were moving allowed for this seeming

miracle.

Similarly, with many modem programming languages, the editing facilities available

are either too small and thus limited in usefulness (e.g.: vi, TeachText), or too bulky and

result in overkill. (e.g.: emacs, Microsoft Word v.5.0) As a consequence, the developer

either can get little work done or must spend a considerable amount of time getting up to

speed in an essentially extraneous application. Often, there are only a small set of neces-

sary features which are actually useful to the efficiency of the developers. By examing

which features impact efficiency, we can maintain the simplicity of the editor while keep-

ing it creative and powerful. At first glance, this may seem limiting for a language with so

much power and size, but with careful application, it can allow the developer to truly fly.

The lesson of the bumble bee is the simple one of quality over quantity.

1.5 Overview of Thesis

This thesis is divided into six major chapters, of which this introduction is the first.

The next three chapters present the design phase of the Curl Code Editor. Chapter Two

is a discussion of the design philosophy which I chose in approaching the problem of writ-

ing a text editor. This section includes my research, including discussions with Richard

Stallman, the originator of Emacs. Chapter Three is on high-level design. It presents the

conclusions I made from my research about what the important feature set is for a func-

tional editor. The last of these three chapters, Chapter Four is on the low-level design. It

describes the programming design architecture that I determined would be necessary to

provide for the high-level feature set.

Chapter Five covers the implementation details that the primary foundation modules

iterated through and goes on to cover the major features and how they were layered on top.

Chapter Six presents closing comments and conclusions about the editor.

Chapter 2

Design Philosophy

2.1 Design is a Two-Pronged Process

My belief about design is that it is an innately two-pronged process. One must start at the

highest and lowest level and effectively move in until the design itself is "squashed" out

between the resulting specifications. With the editor, it was necessary to begin first with

the high-level ideals that one would like to achieve while also considering the low-level

classes that are necessary to provide even the most basic functionality. This idea of polar-

ized design can be seen in even the most simple of engineering tasks--such as making a

sandwich for lunch. This example will be used to illustrate what I mean.

High-level design is my way of expressing that it is important to have an overall pic-

ture before beginning. One must have a mind's eye view of the final project before trying

to create it. [This is not to say that the final incarnation of the project will not be signifi-

cantly different as elements are changed or substituted due to what is learned through the

implementation process.] From the sandwich example, when you go make lunch, you

decide what the final sandwich will be before you start. This means deciding on how big it

should be, what ingredients are necessary and which are extraneous, and how much effort

you are willing to put into it before just heading over to McBurgers. For the Curl Code

Editor, this means figuring out what the final application will look like, how it will run,

and what features will be needed to achieve a final product that is appealing and sharp.

Low-level design is often referred to as systems architecture or class hierarchy. Either

way, it is simply a preparatory measure of what raw needs one has in order to accomplish

some engineering goal. What do we have when we start? What else do we need? What

would be nice? What is essential? Again, when you look in the refrigerator to make a

sandwich, what you make is often determined by what is there. Sometimes you have to go

to the store to get what you want. In the case of the Curl Code Editor, this involved under-

standing what underlying classes are necessary to provide the high-level functionality. In

this particular case, the cupboard was almost bare.

Before doing any design, however there is a more fundamental question which should

be answered. Is there any reason to even build an editor? This thought led me to a discus-

sion with Richard Stallman, the originator of Emacs.

2.2 Discussions with Richard Stallman, creator of Emacs

A lunch discussion with Richard Stallman, the eminent creator of Emacs, taught me a

number of things, among which is that RMS (as he prefers to be called) really likes soup.

Beyond this personal fact, the topic of our conversation ranged over various editor optimi-

zations, the internals of emacs memory management, and philosophical views on the util-

ity of text editors.

The main point that was raised in our talk is that traditionally, people will often use

tools/technology for purposes for which they were not originally intended. This near tau-

tology implies that when one designs a new tool, it should be as robust as possible in order

that its usefulness can be stretched to the fullest. Always include provisions for customiza-

tion and extension in order to extend the life and utility of your tool. For a text editor, this

means that it could potentially be used for almost anything. RMS pointed out that if both

the editor and the language are successful then people are going to begin using the editor

inevitably for things it is not intended. It will become a mail editor and a news browser

and so forth. Further, to not account for this situation is folly. His statements can be neatly

summarized. Any editor that works with any text must first and foremost be a text editor,

and a popular text editor will be used with all kinds of text.

2.3 A correct tool for each job
RMS raises an insightful point, which is that the success of the language will necessitate a

robust general-purpose editor and perhaps, vice versa. His point is a general validation for

the need for a text editor within the Curl language. The focus of my thesis, however is for

a code editor. A code editor is the first step on the road which RMS indicates. I am provid-

ing a tool for a specific group of people (programmers) to do a clearly defined task, not a

multi-purpose Uber-application. But, the modules that comprise the editor have been

designed so that they can be reused to enable future needed applications.

The Curl Code Editor is expressely design to work only with Curl code. It is my feel-

ing that although Stallman is correct in his belief that technology is often used in ways for

which it is not initially intended, there is nevertheless a correct tool for each job. By main-

taining this one-to-one correspondence between problems and solutions, the ramp-up time

needed to understand the solution (in this case that is the time needed to learn an editor) is

significantly lower than it would be for a infinitely large application like Emacs. This

comment is intended not as a slant to Emacs, but rather as a validation of the Curl Code

Editor design tack.

With this in mind, we can also limit our overall conception of the editor to include only

those functions/features which contribute to code efficiency, as opposed to the potentially

infinite uses a more general editor maintains. Regardless, the classes which comprise the

Curl Code Editor can be reused to create more general editors. As a result, the first short-

term goal is to discretize the feature set. Once we have the feature set, we can determine

what minimal underlying classes and structures are necessary to support them. Finally,

with these base classes formulated, the internal structure of the application, that is the code

specifications are clearly determinable.

Chapter 3

High-Level Design

3.1 What programmers need from a code editor

Programmers, experienced and otherwise are most often stymied by the syntax of a lan-

guage. They may know the semantics of what the program should do (i.e.: the meaning of

the code) but then get caught up in the syntactic web. The motivation behind an editor

which is intended for working with a specific language is to improve the relationship

between the programmer and their code. With this in mind, we set forth to make coding:

faster -- By faster, I mean that the programmer should not be hindered by the interface

to the computer. Requiring the typist to use a mouse for movement or selection, limiting

editing functionality, not being able to search, not having macros will all hinder a pro-

grammer's ablility to work.

simpler -- Programming is simplest when the user focuses the majority of their time on

actually writing code and less time searching through documentation, source trees, and

libraries; debugging easily avoidable errors; or trying to recollect strange syntax for infre-

quently used code forms.

more accurate -- By accuracy, I mean accuracy in terms of format, spelling, variable

usage, etc. in one's code. A forgiving editor will enable a programmer to work faster if

they can avoid obvious compile time errors. Accuracy really is a measure of semantic

exactness, the correlation between what the programmer wants the program to do (seman-

tics) and what the programmer enters into the editor (syntax.)

more readable -- Code readability often has a lot to do with a particular programmer's

"writing" style. Nevertheless, there are many basic services that an editor can provide

which may aid in reading code. These include effective use of color to categorize various

components of a file, consistent line indention for grouping text, and the use of a clear,

mono-space font. Readability is even more important when inspecting or editing another

programmer's code.

efficient -- This is the internal efficiency of the editor. At a basic level, this affects the

previous four interface issues. We must be able to handle access to many files, to large

files, editing of these files, intense memory requirements and still maintain the above

goals. The efficiency of the editor at this internal level is really a question of low level

memory management and less an interface consideration. It is mentioned here for com-

pleteness but does not directly affect the interface.

3.2 Correlative Features
The first four areas mentioned above [speed, simplicity, accuracy, and readability] yield

our set of desirable features. These features are described below with an indication as to

how they help the Curl programmer.

Flexible Editing Commands: The editing commands comprise a set of the basic com-

mands familiar to most editors. These are coupled with access to the keybase mappings

itself which allows for a fully customizable control interface.

Clickable Key Words: Especially when reading another person's work, one runs

across code whose purpose is either ambiguous, evasive or simply unknown. Like the

inspector option of the Curl browser, the editor supports right-button clickable text which

brings up correlating documentation. This documentation may be in the form of a tutorial,

an inspector, another editor to code, etc.

Curly Matching: Curl derives its name from the curly braces used to delineate code

segments, etc. By hilighting the matching curly brace when closing them, accuracy and

sanity is preserved.

Smart Tab Indentation: Indentation based on the scope of a code segment improves

readability of code. As previously mentioned, indention should be user driven as opposed

to automatic.

Colorization: Explicit coloring of the text based on its syntactic type has been found

to aid in not only the general readability of the code, but accuracy.

Debugger Hooks: In order to make general interaction with the Curl language as sim-

ple as possible, the editor supports hooks which allow it to be called from other applica-

tions. Thus, debuggers, profilers, inspectors, etc. can open files for editing dynamically.

Code Fragments/Ghost Templates:* Templates allow users to have a clear indication

of the semantics of their programming language. By filling in place holders for non-exis-

tent code, the accuracy and readability of the code is improved. (e.g.: { if {> a var2l cons

altl where the underlined words are just placesholders.) Another case where this is partic-

ularly useful to the users is when they are learning or accessing functions with which they

are not completely familiar. The editor simplifies the situation by indicating the code flow.

A good example of this in Curl is the distinction between the if and when statements.

While i f has an alternate clause, when does not. This can destroy the semantics of a

user's code if they try to use them interchangeably.

Tutorial Package:* The tutorial package is an estensible set of documentation which

includes instruction on how to use the editor itself. By providing a framework for other

tutorials, however, we provide the potential for simplifying the learning process for the

language as well.

*features which were later removed from design.

Chapter 4

Low-Level Design

4.1 The Three Main Low-Level Classes

With the given feature set, we begin to reason about the internal structure of the editor.

Although there are design considerations which one cannot foresee and which become

apparent only during the implementation process, these major modules constitute a com-

plete functional set. The three modules are defined below and described in detail in this

chapter. In addition, the major features are described in detail as they fit into these classes.

CTETextBuffer -- Memory Management Module: The CTETextBuffer class handles

the maintenance of the ASCII text information from the files. It is not a visual classes but

is rather linked to Views and other Graphic classes in order to provide an efficient abstrac-

tion layer. This also allows the module to be a stand-alone set unto itself, useful for other

projects and applications. It incorporates file access, buffers and general editing; however,

the most important concept the CTETextBuffer class encapsulates is the editing algorithm

referred to as the Bubble (termed in the Emacs code and documentation as the gap.) The

Bubble allows very large files to be efficiently changed around without demolishing mem-

ory. This is particularly important, because one will often have several or more large code

files open simultaneously.

CTElnputFilter -- Keymap and Input Module: The CTEInputFilter class acts as the

filter which catches all input from the user and routes it to the appropriate editing action.

(Note that although this includes Mouse events, they are handled differently because they

must get information through the graphic classes.) The keymap filter must provide access

to both the multi-layered, customizable input command set and the updating functions

which are called at every keystroke. The CTEInputFilter directly associates with a CTE-

TextBuffer which maintains the data being modified.

CTETextDisplay -- Graphics and Text Display Module: The visual classes for the

CTE are basic. They only need display fixed-width font text with several font-sizes.

Although there was initially considerable discussion about supporting many fonts, images,

etc., it makes sense to not support any more visual attributes than are necessary for best

viewing code. In particular, the CTETextDisplay does automatic text formatting of any

code placed inside of it, as well as providing colorization and graphics. The CTETextDis-

play inherits from the CTEInputFilter class in order to pass all of its input events up for

parsing and handling. [This way, the CTETextDisplay can opt to have memory handled by

its parent class, the CTEInputFilter, or to micromanage it, which is what I chose to do in

the final implementation. As always, final implementations can be quite different than

planned designs.]

4.2 The Text Buffer Class

The CTETextBuffer Class is the memory management component of the editor. It does not

specificially provide extensive features, but more importantly it provides the solid founda-

tion necessary for the basic functionality of editing a file efficiently. This class must main-

tain rapid and consistent access to the file being edited, while providing a simple interface

for the visual classes to access.

The fundamental problem with code files is that they are often large. In addition, code

files are rarely accessed individually, but are instead opened in groups. This possibility is a

function of the nature of programming and requires that memory is handled in such a way

as to not overload a machine's resources in this common case.

In order to handle memory access in the editor the right way, I chose to design a

cache-based design. This cache incorporates two design components termed Segments

and the Bubble 1

Figure 4.1: The Text Buffer has a caching system comprised of a list of Segments and a
Bubble.

Text/characters written to the Text Buffer go initially to the "Bubble." The purpose of

the Bubble is to prevent the necessity of memory updates on every keystroke and to allow

sequential text input to be written to memory in chunks. These chunks, however can only

be so large. The Bubble is a small cache which fills up quickly and, when full "pops."

When the Bubble pops, its contents are moved to the currently active Segment.

Segments are larger arrays of characters (text) associated with some segment of the

file being accessed. The Text Buffer maintains a finite list of Segments. Thus, only a por-

1. Emacs has a correlative component to the Bubble termed the Gap.

tion of the file (unless the file is relatively small) is kept in memory at any given time. The

Text Buffer begins by slurping up the first N characters in the file and putting them in one

segment. If the user moves to some portion of the file which is not currently in memory (in

one of the segments), the TextBuffer will slurp up the surrounding portion of that file and

put it in a different segment which does not overlap any of the current segments. Because

there are only a finite total number of segments, one of the segments must be periodically

thrown out in order to make space for a new segment being created. This happens by ran-

dom selection. We could implement a LRU (Least Recently Used) replacement strategy,

but the overhead [in practice] is not worthwhile.1 In this way, the TextBuffer is able to edit

an infinitely large file with efficiency. because edits are generally clustered. The Segments

encapsulate this clustering.

It turns out that the interaction between the file, Segments and Bubble is non-trivial.

As such, this balancing act needs to be isolated from the rest of the program while still

providing some extra functionality which is not necessarily part of the memory manage-

ment (e.g.: searching and replace.) Fundamentally, the Text Buffer provides an interface

for characters or text [character arrays] to be inserted, deleted, and movement to occur.

Movement in the buffer will always pop the Bubble should it be non-empty. In addition,

for complicated movement (especially searches which often will access locations in the

file not currently in memory) there needs to be a way to convey location. In order to encap-

sulate the idea of location in an infinite length file, the Point Class was created.

The Point Class provides an optimized representation for an infinite number which

represents the point in the file that we are editing. Curl does not currently provide large

number support, so this class was a necessary creation. The internal structure is discussed

in the implementation section. The Point Class interface provides a complete set of opti-

1. Ward. Computational Structures. pp. 480-486.

mized arithmetic operators so that various modules of the Curl Code Editor can use the

Point Class to communicate.

4.3 The Input Filter Class

The CTEInputFilter Class directly inherits from the EventHandler class and provides the

flexible editing commands which are one of the main features of the Curl Code Editor.

There are several different ways to approach this portion of the design, however first we

should discuss what is a key sequence.

"A key sequence is a sequence of input events that are meaningful as a unit--as 'a sin-

gle command." ' l The use of multiple keystrokes to access a single command is a common

paradigm for Emacs users (i.e.: C-x C-f is a reasonable command to open a new file.) Con-

sequently the Curl Code Editor should support this style of commands. However, many

users [myself included] find this approach slow, non-intuitive and ultimately strenuous on

the user's hands. With this is mind, we should also support rapid single-key based com-

mands as well as multiple editing modes, as in vi 2. In total, the Input Filter must be able

to handle incoming events and call functions within the Curl Code Editor based upon its

current state, as determined by previous key sequences. With this in mind, we can consider

the creation of the Input Filter Class.

One of the exciting things about writing the Curl Code Editor in Curl is that we have

access to our own code. Readers familiar with the LISP language will recognize the LISP

initiated concept of "the interpretation of code as data and vice-versa." [HJF: LISP] This

means that the Curl Code Editor can edit its own internals. This gives us an interesting

option for optimizing key sequence changes in the input filter. Essentially, once we have a

1. from the Emacs Info page. C-h i: Emacs::Keys::
2. vi is a screen-oriented display editor based on ex and is common to most Unix systems.

coherent data structure to encapsulate key sequences and their corresponding functions,

we can place this structure in a file and allow the user to edit it manually.

Also in the "grand LISP tradition", we will use a list data structure to store the func-

tions and their key sequences. This is nice for several reasons. First, list data structures are

clearly readable. Pairs of items can be put in any order with clear delimiters, curly-brack-

ets in this case separating the groupings. Also, lists work well with non-uniform values. In

this case, each key sequence can be a different length. A list data structure allows us to

simlpy cons [construct] a longer list for more complicated key sequences. Lastly, list data

structures are easy to operate on. For example, we can optimize the key sequence data

structure so that functions that have the same first key stroke can be grouped together eas-

ily. Below is a sample list structure for key sequences. Each entry is a pair. The left half is

a textual representation of a key sequence ("C-x" represents control and the x key

together.) The right half is a symbolic representation of the corresponding function. So, in

this example, to quit, press control-x and then control-c.

key sequence - function symbol

{{"C-x" {"C-k" cte-edit-key-sequences}
{"C-f" cte-open-file}

{"C-c" cte-quit-editor}

{"C-s" cte-save-file}}

{"-" cte-toggle-capitals} single letter command

{"C-a" cte-goto-line-beginning }

{"C-e" cte-goto-line-end)

{"C-k" cte-delete-line}}

In sticking with the Curl gentle-slope philosophy, the key sequences which correspond

with functions should have sane defaults. The need to be able to change the run time envi-

ronment though can be met simply by adding an additional function that does just this.

Although the user will be encouraged to use the editor to edit the cte-keySe-

quences. curl file, temporary changes to the work space can be made in a simple and

clever way. Oftentimes, a user may be uncertain as to how to represent a particular key or

key sequence. It is easier, as well as considerably more intuitive, to refer to a function and

then enter the desired key sequence to be associated with it. The application then has sim-

ply to cons up the key events it received and place them at the appropriate location in the

key sequence data structure.

One final design consideration must be raised with regards to the Input Filter. It is

undesirable to have the same key sequence associated with multiple functions. Although

this cannot be avoided [due to the fact that the user now has access to the actual code of

the editor], the application can handle this situation gracefully by executing only the first

match to an entered key sequence. On the other hand, it is desirable to be able to associate

multiple key sequences with the same function. The list-based keymap data structure han-

dles this easily, but care must be taken that this feature is documented clearly and included

in the function for doing temporary key sequence changes.

4.4 The Text Display Class

The Text Display Class must provide a number of critical functions to the Curl Code Edi-

tor. These include: Clickable Key Words, Parenthesis/Curly Matching, Smart-Tab Inden-

tion, and Colorization. Because these different areas are essentially orthogonal (mutually

independent), I will discuss each need individually in terms of its relationship to the Text

Display Class. The primary function of the Text Display Class, however, is displaying text.

Correctly displaying text can be non-trivial problem. There are a number of design

choices we can make that will simplify this problem. The first choice is to display only

fixed-width text. This effectively turns the screen into an NxM grid of characters. This

simplifies the character display, the process of determining a specific word/character given

an (x,y) pair in screen coordinates, determining screen coordinates from a location in a

file, and cursor movement.

Clickable Key Words: An integrated documentation database is an extremely useful

tool. There are many times when a programmer is unclear about certain sections of code or

details of a particular object which they are using. This occurs most frequencly when edit-

ing another person's code. At such times, quick access to reference information makes the

process of writing and editing code easier, more enjoyable, and generally less painful.

Curl provides, in its run-time environment, access to exactly such a resource.

The implementation of this part of the Text Display Class is straight-forward.

Received mouse-click events are processed to determine the word which was accessed and

then, an appropriate call to the documentation resource is made. If a word is not found, a

beep sounds and function returns to normal. If the word is located, the appropriate docu-

mentation dialogue is displayed. This implementation is clean, because there is no infor-

mation necessary beyond what is directly displayed on the screen.

This feature has one drawback. It limits the use of the mouse in text selection.

Although I personally prefer to touch the mouse as little as possible [and the design of the

editor reflects this preference] many feel it is useful. On the other hand, learning a lan-

guage is incredible pleasurable when you can simple type out those commands which you

are uncertain about and then click them in order with documentation popping up to aid

you. Curl is an object-oriented language, and each class has its own set of specialized

methods. When reading another persons code or designing new modules, the ability to

bring up class method references is remarkably convenient. [Actually, as the editor was

being written, this was one of the first functions to be implemented, because it so greatly

aided the rest of the coding.]

Curly Matching: As already mentioned, Curl is a LISP-ish language. By this, it is

meant that it uses a prefix notation and a singular delimiter character (the curly braces

from which the name of the language derives.) These characteristics result in code that can

be difficult to read and debug, often because of misplaced delimiters. It has become com-

mon practice with such languages to provide for matching the opening and closing

occurences of such delimiters--curly brackets.

The most common way of matching, or balancing, is to move the cursor momentarily

to the site of the previous match. Not only is this slow and inefficient, it can be disruptive

to the user. The Curl Code Editor takes a new approach. Since we are constructing the Text

Display at a low level, we have direct access to the draw method. In order to indicate curly

matching, a colored line can be drawn underneath the current text to provide the program-

mer with the matching information. This type of visualization is fast, intuitive, and less

disruptive than earlier methods.

Figure 4.2: A new way to visualize curly bracket balancing; two examples are shown.

Smart Tab Indention: Another accepted practice when working with LISP-ish code is

to indent each line in such a way that each line begins at an offset based on the information

in that line. This process, taken in combination with the Colorization feature described

below, is often referred to as grinding, specifically "To prettify hardcopy of code, espe-

cially LISP code, by reindenting lines, printing keywords and comments in distinct fonts

(if available), etc." [HJF: grind] Grinding greatly improves the readability of code.

{{curly braces} can e a {problem
without a {go _ dind1 ation of
where q matching} pairs {begin
and w ere} they end.}}

The algorithm we use for tab indention in the Text Display Class is a simple recursive

algorithm for each pair of lines, the second line in the pair being indented with respect to

the first. First, check how many leading spaces there are on the first line. Add to this two

spaces for every unbalanced open curly bracket.

first line {define {function i:int}

1 open curly A{if {> i O}

2 open curlies .{output i " is positive"}

2 open curlies P{output i " is not positive"}

2 open curlies _}

1 open curly }

Figure 4.3: An example of correctly indented Curl Code (notice that each line is indented
depending on how many unbalanced open curlies there are)

This line-by-line algorithm turns out to be the same as counting up the number of

unbalanced open curlies (versus a balanced pair of an open curly and close curly) and

indenting each line accordingly. To do this as a batch job for the entire file, simply remove

all leading whitespace from the first line of the file and then begin counting curlies. For

every open curly, add one to the count. For every close curly, subtract one. Indent each line

by twice the count. This algorithm is restated in the following pseudo-code.

- init: goto first line; delete leading whitespace; set count to 0
- foreach line

- indent line (2 * count) spaces

- foreach (open curly) in line, increment count

- foreach (close curly) in line, decrement count

Colorization: The Text Display Class has a flexible and straightforward colorization

utility. All code is automatically hilighted in the display. The user has the ability to create

their own word sets and corresponding colors or to use those provided. The Text Display

class handles two major areas of formatting. First, comments are set to green, which when

on a white background is readable, but not visually distracting. Secondly, Reserved words

are individually hilighted according to the user's preference.

Like the keyword sequences, the Curl Code Editor uses a list structure to maintain its

reserved word colorization scheme. The default color for reserve words is red. Each word

in the list of reserved words is located in the file and hilighted. Words can be flanked on

each side by any of the following characters: { (open curly), } (close curly), ^j (linefeed),

Am (carriage return), (tab), (space), " (double quotes), and I (comment indicators). This

collection distinguishes the set of all characters which occur syntactically next to key

words but which are not actually a part of them. Here is an example of hilighted code.

Figure 4.4: Hilighted code sample

green

*reserve words: red

As can be seen in the figure, the list structure provides for sophisticated color schemes.

The default color for code text is blue; comments show up in green. In this example, which

corresponds to the default editor behavior, reserved words are hilighted in red and basic

types [int, int8, intl6, char, float, bit, any, void, text,

vector] appear in black. The editor maintains an internal list which contains sets of

reserve words prefaced by a color symbol. Such a list looks like the following.

'{ I begin list of reserved word
black for base types

{
"int" "int8" "intl6"

"char"

"float"

"bit"

"any"
"void"

"text"

"vector"

}
red for reserve words

{
"define"

"let"
"if"

Any words that the user finds relevant can be added easily to this list in addition to

alternative colors. Despite being more visually appealing, grinding is of high value to pro-

grammers. By de-emphasizing comments, they can be ignored when writing code and

hilighted when reading it. Thus, the programmer knows where to look and when. Having

hilighted reserved words proves even more useful. Mistyped reserve words are not a seri-

ous problem as they are easily caught by the debugger, but having them change colors pro-

vides an instant visual cue that decreases compile time bugs and reassures the programmer

about the correctness of his or her code. In addition, highlighted reserve words result in

code that is structurally clearer, because the reserve words are able to serve as both visual

and functional anchor points for the lingual semantics of the written program.

4.5 Miscellaneous Design Considerations

Although most of the major code editing functionality is incorporated in the above classes,

there are a few more design considerations not entirely supported:

File System Accessors: The CTETextBuffer will need to have access to the file sys-

tem. This should be able to be handled simply through file input/output ports.

Code Fragment/Ghost Template Support:* Templates for functions need to be han-

dled carefully so as to be helpful, rather than obnoxious. Since they are essentially just

ghosts (i.e.: they are not ever actually present in the buffer but just visual cues) they do not

affect any of the other classes.

Tutorial Package Support:* The tutorial is really just a file provided with the editor.

There should be two versions, one that is intended to be viewed by the Curl Code Editor

and on to be viewed as a Curl Document (i.e.: in a Curl Browser.)

*features which were later removed from design.

Chapter 5

Implementation

5.1 Implementation Phases

The implementation of the Curl Code Editor came in four major phases. Classes were

implemented from low-level functionality to high-level needs and finally to feature addi-

tion. As the implementation progressed there were several major changes in the design.

One of these was an eventual deactivation of the memory handling facilities. (see below)

Another was the removal of some features.

Two features, the Tutorial Package, and the Ghost Templates were removed from the

design during the implementation phase. The Tutorial Package is not a demonstration of

the strengths of the Curl language. It is a demonstration of a markup language and is

essentially just a convenience. Further, the language changes so rapidly that it would

unfortunately become quickly outdated. For aide in using the Curl Code Editor, there is of

course a help file (see appendices.) The Ghost Template feature was removed because it

resides on the opposite side of the spectrum from the Tutorial Package. It is too difficult.

The Ghost Template feature requires specialized case-by-case parsing of code with

sophisticated semantic interpretation. This greatly increases the code base and slows down

the utility of the editor. With the language constantly changing and the initial absence of

an operational semantic for the Curl language, the feature had to be abandoned. It would

have been nice, but the trade off to having a lean, fast editor is worthwhile.

5.2 Low-level memory handling implementation: CTETextBuffer
The CTETextBuffer encapsulates the memory handling component of the Curl Code Edi-

tor. In doing so, it is divided into two parts. The first the interface or accessors which are

used to interract with the CTETextBuffer class in order to maintain a consistent represen-

tation for the text. The second is the internal portion which actually manages memory. As

described in the design section, the internal memory representation for the CTETextBuffer

maintains three layers of memory, the bubble, the segments and the file.

The Interface: The CTETextbuffer has a simple, but complete set of accessor functions

to create, edit and move within the memory structure. These functions, listed below, are

mostly self-explanatory. In cases where multiple accessors are presented, it is less for con-

venience and more for optimization. The CTEPoint class is a class which represents a

location in a potentially infinite length file.

{init f:text}

{setPoint n:CTEPoint}:CTEPoint

{getPoint} :CTEPoint

{writeChar 1:char}:void

{writeText t:text}:int

{writeTextWLen t:text len:int}:void

{read n:int}:text

{delete n:any} :void

{backspaceCharDelete} :void

{find pattern:text forward?:bool=true movePoint?:bool=false} :CTEPoint

The Bubble: The bubble is represented by a text array and a length indicator which

is a simple int. When characters are written to the CTETextBuffer, they go directly into

the bubble (unless it is a section of text which is larger than the maximum bubble size in

which case it is directed to the active segment.) When the bubble is full, or a movement

event occurs, the bubble pops and its output is flushed to the current active segment at the

position in the segment.

The Segments: The segments are represented internally as a list. The first element of

this list is an array of segments. The next two values indicate which segment is the active

segment and the total number of segments currently in memory. If a maximum number of

segments is reached, then segments are removed according to a random replacement strat-

egy. The segment array is comprised of some number of vectors. The vectors contain the

text array, its size, a dirty bit, and start and end indicators for where in the overal file each

segment is positioned.

mySegments:list

int int

active segs

vector any

Figure 5.1: The Segment Data Structure

Compromise: The internal memory system set up here was created because of an

absence of a robust low level memory management module to handle text arrays for the

Curl language at the start of this thesis. Later, I found that there was in fact a low level

StringBuffer class of which I was not aware. It was not exactly what was needed but could

be adapted to work. I considered using it, but opted to proceed with the CTETextBuffer

class in the hope that it would be efficient and useful. Later though, when I began work on

the CTETextDisplay class, I found that the internal design of the windowing system

required that a copy of the entire text array was kept in the display class. In order to avoid

segment:text

size:int

dirty:bool

start:int

end:int]Lillinl

having two redundant copies of the text around, I disabled the CTETextBuffer class in

order to continue work on the CTETextDisplay class. The CTETextBuffer is not directly

accessed from the CTETextDisplay class, so this does not affect the visual system. The

CTETextBuffer is accessed instead through methods in the parent class of the CTEText-

Display, which is the CTEInputFilter. In order to disable the memory management, all

calls to the super methods in the CTETextDisplay class were commented out or not intro-

duced at all once feature implementation was under way.

This was my compromise to the internal functioning of the Curl windowing sytsem,

the boxes package. The CTETextBuffer specification is still viable and to use it, the pro-

grammer has simply to inherit from the CTEInputFilter class (described next) and handle

memory through the super methods in that class.

5.3 User Input: CTEInputFilter

The CTEInputFilter serves two purposes. First, it acts as an entry point to access the intre-

nal representation of the text. Second and most important, it provides the framework that

makes flexible editing commands, in the form of key sequences, possible. The CTEInput-

Filter accesses the key sequences list structure which resides in the cte-keyse-

quences. curl file and can be edited directly, providing complete control over the

editor's functions.

The CTEInputFilter class inherits from the EventHandler class and overrides the

key-press method to get access to key strokes. Because of this, we cannot actually get

the key stroke but only the event associated with each key stroke. Each event is the int

associated with an ASCII value for the keystroke. This is a bit complicated, because dif-

ferent keys can map to the same ASCII value. This is especially true with control charac-

ters. For example, control-a and control-A, although different key strokes, are

indistinguishable as key events through the event method used by the Curl language. How-

ever, the user may wish to represent a key stroke in the key sequences list as either "C- a"

or "C-A" (both valid representations for that key event.) In order to remedy this situation,

there is a translate method implemented as a large switch statement that returns the correct

key event for each valid string representation used in the key sequences file. Rather than

comparing an ASCII value to each event, the events are compared with values generated

from the key sequences file by the translate function.

Key Sequences: The key sequences are kept in the cte-keysequences .curl file

which is comprised of a large list, the format of which was described in the design section.

The CTEInputFilter class takes each element in this list, translates each string representa-

tion (the first part of each element of the list), and compares it to the received key

sequence. When it finds a match, it checks to see if the second part of that element is a

function symbol. If so, that symbol is placed in a method variable (mySymbol) and

everything is reset. If the second element is a list, then that list is placed in a method vari-

able (myKSList) and searched the next time a key is entered. In this way, the list that is

searched can be setup to allow multi-level commands such as C-x C-c. The pseudo-code

for the above procedure is given here.

- init: set mySymbol to 'null; set myKSList to the key sequence list
- foreach event k
- set i to myKSList
- while (i is not the empty list)

- if (k is the same as translate { car { car i } }) [the string representation in the list i]
- then

- if ({car {cdr {car i} } } is a symbol) [we have found a function symbol]
- then set mySymbol to {car {cdr {car i} I}; reset myKSList
- else set mySymbol to 'null; set myKSList {cdr {car i} } [multi-level list]

- else set i to {cdr i}

For completeness, the key sequence list is augmented by another list in the cte-

keybase. curl file. This is a list of all the possible key strokes that can be entered. This

list merely containts the correlative ASCII value for each key sequence (see appendices.)

The CTEInputFilter does not actually evaluate the symbol that it finds through the

above procedure until later. A method called doFunction is provided for this purpose.

The function is not implemented in the CTEInputFilter class itself, but is intended to be

overridden in the child class. The doFunction method accesses the mySymbol class

variable once it has been set by the above procedure. In this way, the doFunction com-

mand can be used to implement a command history, undo capability or repeat last function

calls. Of these, the last is actually implemented in the Curl Code Editor.

When the user chooses to change key bindings for functions, he or she simply edits the

cte-keysequences. curl file. There is a binding [defaults to C-x C-k] provided to

quickly access this file and open it in the Curl Code Editor for adjustments. It was my

hope to allow changes to this file to be dynamically loaded into the running Curl Code

Editor after they were made. Although the Curl language does have access to its own run-

time environment, this feature could not be implemented. This is unfortunate, because it

requires the user to shut down the editor and restart it each time a new set of key bindings

is introduced. On the other hand, it is still superior to giving the user direct access to the

CTEInputFilter's myKSList class variable. This alternative, though tempting, creates the

possibility that the user could strand themself in their own work environment at a particu-

larly inconvenient time (for example in the middle of a large coding project.)

5.4 Displaying the text: CTETextDisplay

The CTETextDisplay class provides a visualization of the text being edited. This means

that it is responsible for providing not only a clear presentation of that text but also one

that is consistent with the internal representation. In other words, the cursor location must

be consistent with the location at which text is being inserted and so forth. In addition, this

class is responsible for providing supplemental contextual clues to the code such as color

information, indents, curly matching, etc.

Basic Text Display: The CTETextBuffer takes advantage of the multiple-inheritance

features of the Curl language by descending from both the CTEInputFilter class described

above and the CodeText class. The CodeText class is a graphical class which can display

basic text. It requires an internal representation of the text in the form of a text array.

Although this causes redundancy with the memory management system, the trade off is to

disable the more complex memory management and use the display properties of the

CodeText parent class which are straightforward to use and visually appealing. The CTE-

TextDisplay class is associated with a file upon initialization. The contents of this file are

then assigned to the internal text array using the class method set-text. At this point,

we have direct access to the textual representation through accessor functions. The draw

method is heavily hacked to incorporate a cursor, sophisticated text coloring and more.

Key Events: When a key is pressed, the aptly named key-press method is called.

The first thing that this method does is call its parent method in the CTEInputFilter class.

As previously described, that method parses the event and determines the symbol which

corresponds to the desired function. The doFunction method is then passed this func-

tion symbol. The doFunction method does two things. First, it searches through a list

of symbols and calls the appropriate function when found. Then, it records that function

call in the class variable function so that it can be recalled through the repeat com-

mand or perhaps entered into a history list. The only exception to this is if the command

called is the repeat command. This exception avoids the infinite loop which would oth-

erwise result. After the doFunction calls the appropriate procedure, the invalidate

method is called in order to update the display.

Basic Movement: Basic movement in the CTETextDisplay constitutes being able to

move forward, backward, up and down. Once these basic building blocks of movement are

implemented, all other movement functionality can be represented by these. Unfortu-

nately, these four functions are simple in theory, but challenging to implement correctly.

First, let us discuss the functions for moving forward and backward in the file. The

actual movement in the text array is done through the functions goR and goL. These func-

tions take an optional argument which is the number of times to move in the indicated

direction. The default is one character. These functions first test for boundary conditions to

be certain that we are not going beyond the ends of the file. Then, they adjust the current

position in the text array and call the appropriate cursor movement function (either move -

CursorRight or moveCursorLef t.) The cursor is displayed on the screen according

to the value of the class variables cursorx and cursory. Thus, cursor movement sim-

ply increments or decrements the cursorx value. When the boundary of a line is

reached, either at the beginning or end, the cursory value is also adjusted correspond-

ingly. To reiterate, these functions are simple in theory, but tricky to make work correctly.

The functions which move up and down in the file are even more delicate. They are

implemented by calling the goR and goL methods to move to the correct location on the

next or previous line. In order to locate where lines begin and end, two helper functions

are used. These are the chars-till-next-newline and chars-till-prev-

newline methods. Their names are reasonably self-explanatory. By knowing how many

characters lie between the current location and the newline in either direction, we can

know exactly where we are on the current line so that we can correctly position ourselves

when we move. These functions are particularly tricky and if the reader is interested in

them, he or she is directed to the appendices. Suffice it to say that the goLinedown func-

tion, for example, has four distinct cases which must be handled. Basic Movement func-

tions include the following.

{moveCursorRight}:void - move the cursor to the right one

{moveCursorLeft}:void - move the cursor to the left one

{goCharForward}:void - move forward one character

{goR i:int=1}:void - move forward i characters

{goCharBackward}:void - move backward one character

{goL i:int=1}:void - move backward i characters

{goLineDown}:void - move to the next line

{goLineUp}:void - move to the previous line

{chars-till-prev-newline}:int - get thenumber of characters to previous newline
{chars-till-next-newline}:int - get the number of characters till next newline

Basic Editing: Basic editing in the CTETextDisplay is simple. To insert a character,

call the insert-char method (inherited from the CodeText class) and call the move-

CursorRight method to maintain consistency. To backspace delete, call the delete-

char method (inherited from the CodeText class) and call moveCursorLeft. To

delete the character following the cursor, simply move our current location to the right and

call delete-char. There is no need to move the cursor. These methods are listed below.

{insertChar k:char}:void - insert character k at current position
{delPrevChar):void - delete character before current position
{delNextChar}:void - delete character after current position

The Clipboard (Cutting and Pasting): The CTETextDisplay supports basic cut and

paste editing. The class variable clipboard is a text array which is used to store copied

text. Currently, there are two methods which are used to demonstrate the cut and paste

capabilities of the CTETextDisplay. These are delLine and yank. The delLine func-

tion determines the distance to the next newline. It then clips the text from the current

position to that newline. In the case that the preceding command (stored in the function

class variable) was also a delLine call, the text is appended to the current clipboard

rather than replacing it. [This corresponds to the kill-line operation in Emacs.] The yank

command simply inserts the current clipboard at the current position in the file. Together,

these two functions are sufficient to demonstrate the CTETextDisplay's ability to handle

cut and paste editing. Cut and Paste methods include the following.

{delLine}:void - delete from current position to next newline and copy to clipboard
{yank}:void - insert characters from clipboard

Searching: Because of the absence of regexps from the Curl language, we can only

search for normal text strings. The findPattern method will put up a dialogue box

inquiring for a new pattern. This is set to the class variable pattern and then the next-

Pattern method is called. The nextPattern and prevPattern methods move to

the appropriate location in the buffer if the pattern is found. The prevPattern function

is a little obtuse, because matching is done forward, not backward. To remedy this, the

prevPattern function searches from the beginning of the buffer until a match is found

and then continues searching until back at the current location. Then, provided at least one

match was found, the cursor is moved to the position of the last match found. In all of the

above cases, a bell sounds if the pattern is not found and the cursor remains at the current

position. Search methods include the following.

{findPattern}:void - prompt for new pattern and call nextPattern
{nextPattern}:void - search forward from current position for pattern
{prevPattern}:void - search backward from current position for pattern

Miscellaneous Class Methods: A list of ofther methods used in the CTETextDisplay

class is given below. This is not a complete list. The curious reader is referred to the

appendices.

{gotoLineStart}:void - move current location to start of line

{gotoLineEnd}:void - move current location to end of line

{gotoFileStart}:void - move current location to start of buffer

{gotoFileEnd}:void - move current location to end of buffer

{toggleCapital}:void - do uppercase/lowercase switch

{repeat}:void - repeat last command

{help}:void - prompt to save and open help file in buffer

{editKeySequences}:void - prompt to save and open key sequences in buffer

{editReserveWords}:void - prompt to save and open reserve words in buffer

{indent}:void - indent this line; iterative tab indention (see below)

{indentAll}:void - indent entire file; batch tab indention (see below)

{fileSave}:void - save current buffer

{fileOpen}:void - prompt for new file to open

{quitEditor}:void - prompt to save and exit

5.5 Features

There are four major feature implementations that have not yet been discussed. They are

Clickable Key Words, Curly Matching, Smart Tab Indentation and Colorization The code

for these features is in the CTETextDisplay class, however they are discussed here sepa-

rately.

Clickable Key Words: The clickable key words are accessed through the pointer-

press method which is overridden from the EventHandler class. The pointer-press

method first requests that the CTETextDisplay become the recipient of future key events.

Then it looks to see if a key word was pressed. This is done by transforming the pointer

event into the local frame and then passing it off to the goto-word-doc function which

opens a documentation browser if a key word exists at that coordinate. These functions are

available globally as part of the Curl language documentation system.

Curly Matching: The Curly Matching feature operates directly at the level of the

draw routine. It activates on the condition the our current position contains either an open

or close curly bracket. When this is the case, the CTETextDisplay attempts to draw a box

around each of curlies in the balanced pair with a line connecting them. One of these

boxes is at the current cursor position. All that remains is to locate the balancing curly.

Depending on whether the curly we are starting on is an open curly or a close curly,

search forward or backward respectively for the balancing curly. The balancing curly can

be found by keeping a count (initialized to one) during the search and incrementing the

count when a curly of the same type as you started on is found and decrementing the count

on the opposite case. When the count reaches zero, the balancing curly is located. If the

count never gets to zero, then we started on an unbalanced curly.

The search is done by first saving all the values associated with the current position.

The use the goL/goR functions to incrementally search for the balancing curly. When

found, draw the curly matching boxes and restore the position values. Similar to the basic

movement methods for the CTETextDisplay class, this implementation is simple in theory,

but chanllenging to get the implementation to work exactly right.

Smart Tab Indention: Tab Indention is implemented in two separate class methods:

indent and indentAll. Each is a straightforward implementation of the algorithm

discussed in the design section. Although there are a number of tricky places where the

location shuffles around newlines and such, the procedures are exactly those described. It

is particularly simple because it uses available methods such as gotoLineEnd, goto-

LineStart, gotoFileStart, etc. Lastly, the two indention methods are separate.

Although the indentAll method could iterate each line with the indent method, the

former is optimized to use internal methods instead. Thus, two distinct methods are pro-

vided.

Colorization: Like the Curly Matching feature, Colorization is implemented directly

into the draw routine. At this stage, the draw routine must seem like a mess, but it is not.

First, the cursor is drawn at its location on the screen. Next the curly brace references are

put down. At this point, there is no text in the display. Text is added last and written over

the cursor and other indicators for clarity.

The text is written one line at a time from top to bottom. Typically, an entire line is just

dropped onto the canvas, but in order to do the sophisticated coloring desired in the CTE-

TextDisplay class, an extra method is used. This method is the draw-line-of-text

method and is where all of the colorization occurs. This procedure gets passed in a great

deal of information including the vertical position of the line being drawn, the text to put

down, and a swarm of increment values used to space the characters correctly. With this

information, the draw-line-of-text command draws from left to right across the

screen.

This left to right drawing motion is useful because it inherently solves the problem of

how to handle comments. The default text color is set at the start of each line and drawing

commences. But if at any point, the comment character I occurs, the color is reset to the

comment text color and drawing continues. Thus, a line may start out being drawn in blue

but then halfway through (corresponding to where the comment begins) be continued in

green.

Next, the color is reset to the default for reserved words. The reserved words list is

then brought up and iterated over. This list will contain either colors or lists of reserved

words. When a color is encountered, the current color is set to be that color found. When

lists of reserve words are found, each element in the list is compared with the line cur-

rently being drawn. If any of the reserved words are found on that line (surrounded by any

of the valid characters mentioned in the design section and implemented in the check-

Char function) those words are drawn over in the current set color. Thus, the entire line is

drawn once and then in the cases where reserved words occur, those words are repainted

again.

This list structure for reserved words has two side effects. The first is that a reserved

word will ultimately be drawn according to its latest position in the cte-reserved-

words. curl file in the case that it occurs more than one time. The second side effect is

that the larger the number of reserved words, the slower the draw method will be, because

the draw method must go through the entire list of reserved words once per line. The end

result, however is fast enough for utility and looks good.

Chapter 6

Conclusion

6.1 The Curl Code Editor

All told, I am pleased with the final result of this thesis. The Curl Code Editor looks sharp.

It is true to the vision of what I wanted it to be. This is not to say that there are not major

differences between what was initially concieved of and the code base that now resides in

the appendices of this document. However, the editor [which is not simply a result of iso-

lated research and design but drew greatly on my personal experience coding in various

environments] is pleasant to use and remarkably, really does make coding easier. All of the

files herein were formatted with the editor. Also, the code became easier to write as the

editor came on-line, especially with dynamic access to documentation, until finally I was

editing the code for the editor in the editor itself.

6.2 The Curl Language

"Curl is a programming language." This summarizes most of my feelings about working

with Curl. It gets the job done. Its good and bad points mostly balance. The feel of work-

ing with the language is that of a cross between LISP and Java. Curl has the prefix notation

and list-based tendencies of LISP and the object-oriented web-centric trademarks of Java.

Historically, these two languages have tended to rally support in opposing camps--that is

to say that most people who like LISP, dislike Java, and vice versa, but Curl sits squarely

in a moderate position between the two groups.

The Curl programming language has its complement of both good and bad points. I

should prefix the discussion of these points with the statement that during the time I have

worked with Curl, the language has been constantly changing and evolving. Even now, the

most recent version of Curl is incompatible with the code in this document. Regardless,

some comments can be made about the intrinsic qualities of the language. The single big-

gest strength and weakness of Curl is that it runs in its own browser. Because it is intended

to be used on the web, this is bad; it makes Curl code incompatible with what is already

out there. On the other hand, the Curl browser allows the better aspects of the language to

shine, including its platform-independence, access to its own run-time environment [a la

LISP], and extensive documentation. These features are intrinsic to the language and bol-

ster its utility greatly. In addition, the language achieves its gentle-slope philosophy in

practice, and has nice language features including: first-class methods and variables, list

structures, the any type, multiple inheritance, etc. Despite this, the syntaxis sometimes

obscure and there remains no formal language specification. True to a work-in-progress,

both the windowing interface and the overall class hierarchy are in constant flux. But in

the end, Curl is a fully valid language for the future of web design, and it is my hope that

the creation of this editor helps to advocate this position.

6.3 What I Learned

Aside from all the obvious things which are expounded upon in this document, there were

a couple other things I gleaned from my thesis experience. The first is that an excessive

amount of planning is just as bad as none at all. I found myself quite lost in some aspects

of the design. I could not possibly know what to expect, because I forced myself to hold

off on coding. In the end, this turned out to be the wrong approach. Secondly, I found that

there is a great gap between language design theory and practice. Without going into

detail, computer languages are like spoken languages, they evolve through use. Lastly,

there is a great deal to be learned by reading source code.

6.4 Final Thoughts

Keep an open mind; adapt. I found that if I thought I knew where everything was going to

go, I ended up lost and/or heading in the wrong direction. This was true in planning,

designing, coding, managing time, et al.; revaluate; change. Listen.

Appendix A

Code

A.1 cte-constants.curl

Curl Text Editor Files

Jon Heiner

Copyright (c) 1998

Massachussetts Institute of Technology

Laboratory for Computer Science

All Rights Reserved.

MIT MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

MIT SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

File Description:

This file constains in one place the values that are constant

and necessary for the functioning of the curl text editor.

Curl Text Editor Version

(define-constant cte-version:text="alpha"}

name suffix information for the temporary file used to handle editing

of files in the filesystem

(define-constant cte-kYesWeHaveNoFile:text="_ ! YeSwEhAvEnOfIlEz2dAy ***

name suffix information for the temporary file used to handle editing

of files in the filesystem

(define-constant cte-kTempFileSuffix:text="-"}

number of segments (of text) used by the textbuffer

in order to maintain consistent file access.

{define-constant cte-kNumTBSegments:int=8}

the default size of the segments used by the textbuffer when they are cre-

ated.

(define-constant cte-kTBSegmentSize:int=10
2 4 }

the minimum size that segments can be before being flushed

{define-constant cte-kTBSegmentMin:int=128}

the maximum size that segments can be before being flushed

{define-constant cte-kTBSegmentMax:int=2048}

some index constants to be used w/i the segment data structure
{define-constant cte-kSegText:int=0}
{define-constant cte-kSegStart:int=l}
{define-constant cte-kSegEnd:int=2}

{define-constant cte-kSegSize:int=3}

{define-constant cte-kSegDirty:int=4}

I the default number of bits in the "infinite" CTEPoint reference
{define-constant cte-kPointBits:int=128}

the size of the TextBuffer's bubble--our scratch pad
{define-constant cte-kBubbleSize:int=256}

some constants used in the InputFilter for movement & searchs
{define-constant

cte-kNewline:int=10

cte-kReturn:int=13

cte-kQuotes:int=34

cte-kOpenCurly:int=123

cte-kCommentChar:int=124

cte-kCloseCurly:int=125

cte-kEscape:int=129

cte-kWordDelimiter:char=32 Ispace
cte-kSpace:char=32} Ispace

color constants

{define-constant

cte-kCurlyFGColor:symbol='black

cte-kCurlyBGColor:symbol='white}

{define-constant

cte-kCursorFGColor:symbol='yellow

cte-kCursorRimColor:symbol='black}

{define-constant

cte-kGenericTextColor:symbol='blue

cte-kCommentTextColor:symbol='green

cte-kReserveWordTextColor:symbol='red}

A.2 cte-helpfile.curl

* Copyright (c) 1998 MIT LCS -- Jon Heiner *

[This file was written using the Curl Text Editor]

** Welcome to the Curl Text Editor

This editor is intended for use with Curl code. It
provides a number of helpful features to make working
with code fast, easy and efficient. This file is intended

to be opened in the Curl Text Editor. It provides an

overview of all the features the editor provides.

** Getting Help

At anytime while you are working, you can bring up this file

by pressing C-x C-q.

** Movement

The first thing to know is how to move around in a file.

Using the arrow keys, you can position the cursor. Also,

the standard Emacs movement key bindings are provided.

right: C-f (Control & f together) right-arrow-key

left : C-b left-arrow-key

up : C-p up-arrow-key

down : C-n down-arrow-key

Use the following key sequences to move through the

buffer more rapidly:

start-of-line: C-a

end-of-line: C-e

start-of-file: C-/

end-of-file: C-\

** Editing

Use the following key sequences for editing:

delete-previous-character: backspace

delete-next-character: C-h

delete-line: C-k

toggle-capitals: C-t

yank: (paste clipboard) C-y

Also useful is the following key sequence which will repeat

the last command entered:

repeat: C-x . (control-x, followed by period)

** Searching

To use the search function:

prompt-for-search-pattern: C-s

search-forward-for-pattern: C-]

search-backward-for-pattern: C-[

** Working with Files

Use the following commands to save files, open new files, quit, etc.

save-file: C-x C-s

open-file: C-x C-f

quit: C-x C-c

** Code Editing

HILIGHTING: The Curl Text Editor is intended for editing Curl

code. Keywords are automatically hilighted. In order to change

the colors and reserved words, edit the cte-reservewords.curl

file or press C-x C-r

CLICKABLE KEY WORDS: The Curl Text Editor has direct access to

the Curl documentation database. If you are unsure how to use

a particular function, just click on that word. Or even more

useful, you can type out a sequence of commands that you want

to use or learn about, and by clicking on them, bring up the

correlative documentation either for tutorial purposes or as

reference while coding.

AUTOMATED TAB INDENTION: Curl code is much more readable if it

is neatly indented based on the scope of its curlies. By

ressing the TAB key, the line you are on will be correctly

indented based on the code above it. Repeatedly pressing TAB

will move you through a section of code, correctly indenting

(or "grinding") it. Further, by pressing C-z, you can grind

an entire file for readability.

** Changing Key Bindings

all the conrols in this file can be rebound

for more comfortable or sophisticated editing

by the user. Multy-level commands such as C-x C-c

are perfectly fine. To edit the commands, chang

the cte-keysequences file or just press: C-x C-k

A.3 cte-inputfilter.curl

inputfilter.curl

Curl Text Editor Files
Jon Heiner

Copyright (c) 1998

Massachussetts Institute of Technology
Laboratory for Computer Science

All Rights Reserved.

MIT MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

MIT SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

(include "cte-textbuffer.curl"}

{include "cte-keybase.curl"}

(include "cte-keysequences.curl"}

File Description:

This file contains the CTEInputFilter class definition.

The input filter does exactly that: it filters input events from the

user and then sends the appropriate commands to the text buffer and

to the display.

{define-class CTEInputFilter{EventHandler}

i*** define class-fields ***I

Ithe symbol that the input filter determines from key input

protected mySymbol:symbol

internal Key Sequence List used to search the global list

myKSList:list

I this is how we access the internal representation of the text

myTextBuffer:CTETextBuffer

myFile:File

this is how we access the external way the text is viewed

ImyTextDisplay:CTETextDisplay

ImyTextDisplay:CodeText

nope...now the CTEInputFilter class is a parent of the display class

which handles the relationship to the buffer/memory.

*** define class-methods ***I

{define {CTEInputFilter.init f:text t:CTETextDisplay}

{define {CTEInputFilter.init f:text ... }

(set self.myKSList {append gCTEKeySequences gCTEKeyBase)}}

{output {append gCTEKeySequences gCTEKeyBase}})

{output "DEBUG: Init CTEInputFilter - pass "}

override (interesting) EventHandler methods

(define public {CTEInputFilter.key-press e:KeyEvent):void

I{self.myTextDisplay.insert-char e.key}

{output e.key " -- > " (cast char e.key) " (inputfilter)"}

(self.searchKeySequences e.key}
}

(define protected {CTEInputFilter.insertChar key:char}:void

{self.myTextBuffer.writeChar key}

{output "DEBUG: CTEInputFilter.insertChar " key}

}

{define protected {CTEInputFilter.goLineUp}:void towards beginning of

buffer

{letrec pl:CTEPoint={self.myTextBuffer.getPoint}

p2:CTEPoint=(self.myTextBuffer.find cte-kReturn forward?=false

movePoint?=true}

I p3:CTEPoint={self.myTextBuffer.find cte-kReturn forward?=false

movePoint?=false}

p4:CTEPoint={point- pl p2}

{if {point< p4 {point- p2 p3}})

{self.myTextBuffer.setPoint {point+ p3 p4}}

{self.myTextBuffer.setPoint {dec p2}}}}

{output "DEBUG: CTEInputFilter.goLineUp"}

}
{define protected (CTEInputFilter.goLineDown}:void Itowards end of buffer

I {(letrec pl:CTEPoint={self.myTextBuffer.getPoint}

I p2:CTEPoint={self.myTextBuffer.find cte-kReturn forward?=true

movePoint?=true}

I p3:CTEPoint={self.myTextBuffer.find cte-kReturn forward?=true

movePoint?=false}

I p4:CTEPoint={point- p2 pl}

I {if {point< p4 {point- p3 p2))}}

I {self.myTextBuffer.setPoint {point+ p3 p4}}

I (self.myTextBuffer.setPoint {inc p3}}}}

{output "DEBUG: CTEInputFilter.goLineDown"}

}
(define protected {CTEInputFilter.goCharForward}:void

I {self.myTextBuffer.setPoint {inc self.myTextBuffer.getPoint}}

{output "DEBUG: CTEInputFilter.goCharForward"}

}
{define protected {CTEInputFilter.goCharBackward}:void

I {self.myTextBuffer.setPoint (dec self.myTextBuffer.getPoint}}

{output "DEBUG: CTEInputFilter.goCharBackward"}

}
(define protected {CTEInputFilter.gotoLineStart}:void

{output "DEBUG: CTEInputFilter.gotolinestart"}

}
(define protected {CTEInputFilter.gotoLineEnd}:void

{output "DEBUG: CTEInputFilter.gotolineend"}

}
(define protected {CTEInputFilter.gotoFileStart}:void

{output "DEBUG: CTEInputFilter.gotofilestart"}

}
{define protected (CTEInputFilter.gotoFileEnd}:void

{output "DEBUG: CTEInputFilter.gotofileend"}

}
{define protected {CTEInputFilter.gotoNextWord}:void

(self.myTextBuffer.setPoint {inc (self.myTextBuffer.find cte-

kWordDelimiter}}}

(output "DEBUG: CTEInputFilter.gotoNextWord"}

}
{define protected {CTEInputFilter.gotoPrevWord}:void

I (self.myTextBuffer.find cte-kWordDelimiter forward?=false move-

Point?=true}

{self.myTextBuffer.setPoint

{inc {self.myTextBuffer.find cte-kWordDelimiter forward?=false

movePoint?=false}}}

{output "DEBUG: CTEInputFilter.gotoPrevWord"}

}
{define protected (CTEInputFilter.gotoNextCurly}:void

I (self.myTextBuffer.find cte-kOpenCurly}

(output "DEBUG: CTEInputFilter.gotoNextCurly"}

}
{define protected {CTEInputFilter.gotoPrevCurly}:void

I (self.myTextBuffer.find cte-kCloseCurly}

(output "DEBUG: CTEInputFilter.gotoPrevCurly"}

}
(define protected (CTEInputFilter.scrollPageForeward}:void I ** requires

get page size from myDisplay Buffer

(output "DEBUG: CTEInputFilter.scrollPageForward"}

}
{define protected {CTEInputFilter.scrollPageBackward}:void

{output "DEBUG: CTEInputFilter.scrollPageBackward"}

}
(define protected {CTEInputFilter.gotoEndOfWord}:void

I (self.myTextBuffer.setPoint (dec {self.myTextBuffer.find cte-

kWordDelimiter}}}

{output "DEBUG: CTEInputFilter.gotoEndOfWord"}

}
(define protected {CTEInputFilter.gotoStartOfWord}:void

I {self.myTextBuffer.setPoint (inc {self.myTextBuffer.find cte-

kWordDelimiter forward?=false}}}

{output "DEBUG: CTEInputFilter.gotoStartOfWord"}

}
(define protected (CTEInputFilter.gotoTopOfPage}:void ** requires get

page size from myDisplay Buffer

{output "DEBUG: CTEInputFilter.gotoTopOfPage"}

}
(define protected (CTEInputFilter.gotoBottomOfPage}:void

(output "DEBUG: CTEInputFilter.gotoBottomOfPage"}

}
(define protected (CTEInputFilter.delPrevChar}:void

I {self.myTextBuffer.backspaceCharDelete}

(output "DEBUG: CTEInputFilter.delPrevChar"}

}
(define protected {CTEInputFilter.delNextChar}:void

I (self.myTextBuffer.delete 1}

(output "DEBUG: CTEInputFilter.delNextChar"}

}
{define protected {CTEInputFilter.delWord}:void

(output "DEBUG: CTEInputFilter.delWord"}

}

(define protected {CTEInputFilter.delLine}:void

(output "DEBUG: CTEInputFilter.delLine"}

(define protected (CTEInputFilter.delWithinCurlies)}:void

{output "DEBUG: CTEInputFilter.delWithinCurlies"}

}
{define protected {CTEInputFilter.changeWord}:void

{output "DEBUG: CTEInputFilter.changeWord"}

(define protected (CTEInputFilter.changeLine}:void

{output "DEBUG: CTEInputFilter.changeLine"}

{define protected (CTEInputFilter.changeWithinCurlies}:void

(output "DEBUG: CTEInputFilter.changeWithinCurlies"}

}
{define protected (CTEInputFilter.changeChar}:void

{output "DEBUG: CTEInputFilter.changeChar"}

(define protected (CTEInputFilter.findPattern}:void

{output "DEBUG: CTEInputFilter.findPattern"}

}
{define protected {CTEInputFilter.nextPattern}:void

{output "DEBUG: CTEInputFilter.nextPattern"}

}
{define protected {CTEInputFilter.prevPattern}:void

{output "DEBUG: CTEInputFilter.prevPattern"}

}
(define protected {CTEInputFilter.repeat}:void

(output "DEBUG: CTEInputFilter.repeat"}

}
(define protected {CTEInputFilter.undo}:void

{output "DEBUG: CTEInputFilter.undo"}

{define protected {CTEInputFilter.beginMacro}:void

(output "DEBUG: CTEInputFilter.beginMacro"}

}
(define protected (CTEInputFilter.endMacro}:void

{output "DEBUG: CTEInputFilter.endMacro"}

}
(define protected {CTEInputFilter.doMacro}:void

(output "DEBUG: CTEInputFilter.doMacro"}

}
{define protected {CTEInputFilter.bindMacro}:void

(output "DEBUG: CTEInputFilter.bindMacro"}

(define protected (CTEInputFilter.toggleCapital}:void

(output "DEBUG: CTEInputFilter.toggleCapital"}

(define protected (CTEInputFilter.yank}:void

(output "DEBUG: CTEInputFilter.yank"}

{define protected {CTEInputFilter.toggleSpecialChars}:void

(output "DEBUG: CTEInputFilter.toggleSpecialChars"}

}
(define protected (CTEInputFilter.fileSave}:void

{output "DEBUG: CTEInputFilter.fileSave"}

}
{define protected {CTEInputFilter.fileSaveAs}:void

{output "DEBUG: CTEInputFilter.fileSaveAs"}

}
{define protected (CTEInputFilter.fileOpen}:void

{output "DEBUG: CTEInputFilter.fileOpen"}

}
{define protected {CTEInputFilter.quitEditor}:void

{output "DEBUG: CTEInputFilter.quitEditor"}

}

)*** functions used to handle searches through the Key Sequences list struc-

ture ***
(define protected {CTEInputFilter.doFunction f:symbol k:int}:void

{output "DEBUG: CTEInputFilter.doFunction " f}

}

{define private {CTEInputFilter.searchKeySequences k:int}:void

{output "enter Search Key Sequences"}

{let i:list=self.myKSList

{while {not {eq? i '{}}}

{if {= {self.translate {car {car i))}}} k}

{begin

we've found a match. if it is a symbol, we're done. o/w reas-

sign myKSList
{if {eq? symbol {typeof (car {cdr {car i}})))}}

{begin

{output "function found: " {car (cdr {car i))}}

Ithe function is actually called by the child using:

{self.doFunction {car {cdr {car i}}} k}

(set self.mySymbol {car {cdr {car i))}}}

{set self.myKSList (append gCTEKeySequences gCTEKeyBase)}}

}
{begin

{output "cdr car i: " {cdr (car i}})

{set self.myKSList {cdr (car i))}}}

{set self.mySymbol 'null))}}})

{return))}}}

{set i {cdr i}}

{output "no match: " k)

{set self.myKSList {append gCTEKeySequences gCTEKeyBase))

{set self.mySymbol 'null}

}

(define private {CTEInputFilter.translate t:any):int

Isanity check
{if (eq? (typeof t} text)

{begin

{cond

{{= 1 (length t)} {return {cast int {aref t 0}}}} just one char-

acter

{{= 3 (length t}} hopefully a C-

yes, this giant switch statement is ugly, but necessary.

it allows the user to enter C-? type expressions, which is a

nice feature.

{cond

{{text-equal? "C-2" t} (return 0}}

({{text-equal? "C-2" t} (return 0}}

({{text-equal? "C-@" t} {return 0}}

{{text-equal? "C-'" t} {return 0}}

{{text-equal? "C-A" t} {return 1}}

{{(text-equal? "C-a" t} (return 1}}1)

((text-equal? "C-B" t} {return 2}}

{{text-equal? "C-b" t} (return 2}}

{{text-equal? "C-C" t} (return 3}}

((text-equal? "C-c" t} (return 3}}

((text-equal? "C-D" t} {return 4}}

{{text-equal? "C-d" t} (return 4}}

{{text-equal? "C-E" t} (return 5}}

(({{text-equal? "C-e" t} {return 5}}

{{text-equal? "C-F" t} {return 6}}

((text-equal? "C-f" t} {return 6}}

{{text-equal? "C-G" t} (return 7}}

((text-equal? "C-g" t) {return 7}}

((text-equal? "C-H" t} {return 8}}

(({{text-equal? "C-h" t} (return 8}}

{{text-equal? "C-I" t} {return 9}}

((text-equal? "C-i" t) (return 9}}

{{text-equal? "C-J" t} {return 10}}

{{text-equal? "C-j" t} {return 10}}

{{text-equal? "C-K" t) (return 11}}

{{text-equal? "C-k" t) {return 11}}

{{text-equal? "C-L" t} {return 12}}

{{text-equal? "C-I" t} (return 12}}

(({{text-equal? "C-M" t} (return 13}}

(({text-equal? "C-m" t} {return 13}}

((text-equal? "C-N" t} {return 14))}}

{{text-equal? "C-n" t} (return 14}}

{{((text-equal? "C-O" t} (return 15}}

((text-equal? "C-o" t} {return 15}}

((text-equal? "C-P" t} (return 16}}

((text-equal? "C-p" t} (return 16}}

{{text-equal? "C-Q" t} {return 17}}

{{((text-equal? "C-q" t} {return 17}}

((text-equal? "C-R" t} (return 18}}

({text-equal? "C-r" t} (return 18}}

{{text-equal? "C-S" t} (return 19}}

{{text-equal? "C-s" t} (return 19}}

{{text-equal? "C-T" t} (return 20}}

(({{text-equal? "C-t" t} {return 20}}

(({{text-equal? "C-U" t} (return 21}}

(({{text-equal? "C-u" t} (return 21}}

({{text-equal?

{{text-equal?

{{text-equal?

({{text-equal?

((text-equal?

{{text-equal?

(({{text-equal?

({{text-equal?

{{text-equal?

({text-equal?

{{((text-equal?

{{text-equal?

({{text-equal?

{{((text-equal

{{text-equal

(({{text-equal

{{text-equal

{{text-equal

{{text-equal

{{text-equal?

{{text-equal?

(({{text-equal?

((text-equal?

{{((text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

(({{text-equal?

{{((text-equal?

{{((text-equal?

{{((text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

((text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

{{((text-equal?

{{text-equal?

{{text-equal?

((text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

{{text-equal?

(({{text-equal?
}}

"C-V"

"C-v"

"C-W"

"C-w"

"C-X"

"C-x"

"C-Y"
"C-y"

"C-Z"

"C-z"

"C-3 "

"C- ["
"iC-" .

? "C-4" t

? "C-\\"

? "C-\"
? "c-5" t

? "c-]" t

? "C-\}"

"C-6" t}

"C-"II t}"C-" t}

"C-/" t}
"C-7 "11 t}

"C-_" t}"C_#- " t}
"C-#" t}
"C-$" t}

"C-%" t}

"C-&" t}
"C-'" t}

"C-(" t}
"C-)" t}
I"C-*)I t}
"C-+ " t}
"C-," t}
"C--" t}
"C-." t}
"C-0 " t}
"C-1" t}
"C-9" t}
"C-:" t}
"C-;" t}
"C-<" t}

"C-=" t}

"C->" t}

"C-?" t}

"C-8" t}

{return

(return

(return

{return

(return

{return

(return

(return

(return

(return

(return

(return

(return

t}
t}

t}

22}}

22))}}

23))}}

23))}}

24))}}

24}}

25}}

25}}

26))}}

26}}

27}}

27}}

27))}}

(return 28}}

(return 28}}

{return 28}}

(return 29))}}

(return 29}}

{return 29}}

(return 30}}

(return 30}}

{return 30}}

(return 31}}

{return 31}}

(return 31))}}

{return 33}}

{return 34))}}

(return 35))}}

(return 36}}

{return 37}}

{return 38}}

{return 39}}

(return 40}}

{return 41}}

{return 42}}

(return 43))}}

{return 44}}

{return 45}}

{return 46}}

{return 48}}

{return 49}}

(return 57}}

{return 58}}

(return 59))}}

(return 60}}

{return 61}}

{return 62}}

{return 63}}

(return 12711}}

((text-equal? "left-arrow" t} {return 134))}}

{{text-equal? "up-arrow" t} (return 135))}}

{{text-equal? "right-arrow" t} {return 136}}

{{((text-equal? "down-arrow" t} {return 137))}}

}}}

{return -1}

A.4 cte-keybase.curl

Curl Text Editor Key Base

Global Variable: gCTEKeyBase defines a list of all possible base keys

in list form. Symbols preceded with "C-" mean w/ the Control Key.

{define-variable gCTEKeyBase:list}

{set gCTEKeyBase

'{ begin a list for the default functions

{"C-2" cte-value-0}

{"C-a" cte-value-l}

{"C-b" cte-value-2}

{"C-c" cte-value-3}

{"C-d" cte-value-4}

{"C-e" cte-value-5}

{"C-f" cte-value-6}

{"C-g" cte-value-7}

{ "" cte-value-8}

{ "" cte-value-9}

{"C-j" cte-value-10}

{"C-k" cte-value-ll}

{"C-l" cte-value-12}

{"

" cte-value-13}

{"C-n" cte-value-14}

{"C-o" cte-value-15}

{"C-p" cte-value-16}

{"C-q" cte-value-17}

{"C-r" cte-value-18}

{ "C-s" cte-value-19}

{"C-t" cte-value-20}

{"C-u" cte-value-21}

{"C-v" cte-value-22}

{"C-w" cte-value-23}

{"C-x" cte-value-24}

("C-y" cte-value-25}

{"C-z" cte-value-26}

{ "" cte-value-27}

{"C-4" cte-value-28}

{"C-5" cte-value-29}

{"C-6" cte-value-30}

{"C-7" cte-value-311

{ ." cte-value-32}

{"!" cte-value-33}

{ "'" cte-value-34}

{"#" cte-value-35}

{"$" cte-value-36}

{"%" cte-value-37)

{ "&" cte-value-38}

{ '" cte-value-39}

{"(" cte-value-40}

{")" cte-value-41}

{"*" cte-value-42}

{"+" cte-value-43}

{"," cte-value-44}

{"-" cte-value-45}

{"." cte-value-46}

{"/" cte-value-471

{"O" cte-value-48}

{"1" cte-value-49}

{"2" cte-value-50}

{ "3" cte-value-51}

{"4" cte-value-52}

{"5" cte-value-53}

{"6" cte-value-54)

{"7" cte-value-55}

{"8" cte-value-56}

{"9" cte-value-57}

{":" cte-value-58}

{";" cte-value-59}

{"<" cte-value-60}

{"=" cte-value-61}

{">" cte-value-62}

{"?" cte-value-63}

{"@" cte-value-64)

("A" cte-value-65}

("B" cte-value-66}

{"C" cte-value-67}

{"D" cte-value-68}

{"E" cte-value-69}

{"F" cte-value-70}

{"G" cte-value-71}

("H" cte-value-72}

{"I" cte-value-73}

{"J" cte-value-74}

{"K" cte-value-75}

("L" cte-value-76}

("M" cte-value-77}

("N" cte-value-78}

("O" cte-value-79}

{"P" cte-value-80}

("Q" cte-value-81}

{"R" cte-value-82}

("S" cte-value-83}

("T" cte-value-84}

("U" cte-value-85}

("V" cte-value-86}

("W" cte-value-87}

("X" cte-value-88}

{"Y" cte-value-89}

{"Z" cte-value-90}

{"[" cte-value-91}

{"\\" cte-value-92}

{"]" cte-value-93}

{cte-value-94}

{"_" cte-value-95}

(""" cte-value-96}

{"a" cte-value-97}

{"b" cte-value-98}

({"c" cte-value-99}

{"d" cte-value-100}

{"e" cte-value-101}

{"f" cte-value-102}

("g" cte-value-103}

{"h" cte-value-104}

{"i" cte-value-105}

{"j" cte-value-106}

{ "k" cte-value-107}

{"1" cte-value-108}

{"m" cte-value-109}

{("n" cte-value-110}

("o" cte-value-lll}

{"p" cte-value-112}

{"q" cte-value-113}

("r" cte-value-114}

{("s" cte-value-115}

("t" cte-value-116}
{"u" cte-value-117)

{"v" cte-value-118}

{"w" cte-value-119}

{"x" cte-value-120}

("y" cte-value-121}

{"z" cte-value-122}

("'" cte-value-123}

("\I" cte-value-124}

("\}" cte-value-125}

{ "-" cte-value-126}

("C-8" cte-value-127}

{"left-arrow" cte-value-134}

{"up-arrow" cte-value-135}

("right-arrow" cte-value-136}

("down-arrow" cte-value-137}

}}

A.5 cte-keysequences.curl

Curl Text Editor Key Sequences

Global Variable: gCTEKeySequences defines a list of possible key sequences

in list form. Symbols preceded with "C-" mean w/ the Control Key.

{define-variable gCTEKeySequences:list}

{set gCTEKeySequences

'{ begin a new list

{"C-x" {"C-k" cte-edit-key-sequences)

{"C-r" cte-edit-reserve-words}

{"C-f" cte-file-open}

{"C-c" cte-quit-editor)

{"C-q" cte-help}

{"C-s" cte-file-savel

{"." cte-repeat}

{"C-z" fubartest}}

{"C-/" cte-goto-file-start}

("C-\\" cte-goto-file-end}

("C-a" cte-goto-line-start}

{"C-b" cte-go-char-backward}

{"C-d" cte-del-next-char}

{"C-e" cte-goto-line-end}

{"C-f" cte-go-char-forward}

{"C-h" cte-del-previous-char}

{"C-k" cte-del-line}

{"C-n" cte-go-line-down}

{"C-p" cte-go-line-up}

{"C-s" cte-find-pattern}

{"C-t" cte-toggle-capital}

{"C-y" cte-yank}

{"C-z" cte-indent-all}

{"C-]" cte-next-pattern}

("C-[" cte-prev-pattern}

I{"C-*" cte-reload-environment}
("" cte-indent)

{"left-arrow" cte-go-char-backward}

{"up-arrow" cte-go-line-up}

("right-arrow" cte-go-char-forward}

("down-arrow" cte-go-line-down}

and insert those characters we wish to display

te-inert-hr
cte-insert-char}

(" " cte-insert-char}

({"" cte-insert-char}

("'" cte-insert-char}

("#" cte-insert-char}

("$" cte-insert-char}

("%" cte-insert-char}

("&" cte-insert-char}

("'" cte-insert-char}

{("" cte-insert-char}

(")" cte-insert-char}

("*" cte-insert-char}

{"+" cte-insert-char}

("," cte-insert-char}

("-" cte-insert-char}

{"." cte-insert-char}

{ "/" cte-insert-char}

{ "0" cte-insert-char}

{"1" cte-insert-char}

{"2" cte-insert-char}

{"3" cte-insert-char}

{ "4" cte-insert-char}
{"5" cte-insert-char}

{"6" cte-insert-char}

{"7" cte-insert-char}

{"8" cte-insert-char}

{"9" cte-insert-char}

{":" cte-insert-char}

{";" cte-insert-char}

{"<" cte-insert-char}

{"=" cte-insert-char}

{">" cte-insert-char}

{"?" cte-insert-char}

{"@" cte-insert-char}

{ "A" cte-insert-char}
("B" cte-insert-char}

{"C" cte-insert-char}

{ "D" cte-insert-char}
{"E" cte-insert-char}

{"F" cte-insert-char}

{"G" cte-insert-char}

("H" cte-insert-char}

("I" cte-insert-char}

{"J" cte-insert-char}

{"K" cte-insert-char}

{ "L" cte-insert-char}
{"M" cte-insert-char}

("N" cte-insert-char}

("0" cte-insert-char}

("P" cte-insert-char}

("Q" cte-insert-char}

{ "R" cte-insert-char}

("S" cte-insert-char}

("T" cte-insert-char}

("U" cte-insert-char)

("V" cte-insert-char}

("W" cte-insert-char}

("X" cte-insert-char}

("Y" cte-insert-char}

("Z" cte-insert-char}

("[" cte-insert-char}

{"\\" cte-insert-char}

("]" cte-insert-char}

("^" cte-insert-char}

{ "_ cte-insert-char}

(""" cte-insert-char)

("a" cte-insert-char}

("b" cte-insert-char}

{"c" cte-insert-char}

("d" cte-insert-char}

{"e" cte-insert-char}

{"f" cte-insert-char}

{"g" cte-insert-char}

{"h" cte-insert-char}

{"i" cte-insert-char}

{"j" cte-insert-char}

{"k" cte-insert-char}

{"i" cte-insert-char}

{"m" cte-insert-char}

{"n" cte-insert-char}

{"o" cte-insert-char}

("p" cte-insert-char}

{"q" cte-insert-char}

{"r" cte-insert-char}

{"s" cte-insert-char}

{"t" cte-insert-char}

{"u" cte-insert-char}

{"v" cte-insert-char}

{"w" cte-insert-char}

{"x" cte-insert-char}

{"y" cte-insert-char}

{"z" cte-insert-char}

{"'" cte-insert-char}

{"\I" cte-insert-char}

{"\}" cte-insert-char}

{ "" cte-insert-char}

}
} end of file

A.6 cte-point.curl

point.curl

Curl Text Editor Files

Jon Heiner

Copyright (c) 1998

Massachussetts Institute of Technology

Laboratory for Computer Science

All Rights Reserved.

MIT MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

MIT SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

File Description:

This file contains the CTEPoint class definition.

The CTEPoint is basically a number from zero to positive infinity.

It represents location/position in a textbuffer.

Although we would like to represent positive infinity, for practical

reasons, the highest number is an cte-kPointBits bit binary value of

all l's.

for now...just implementing with a basic int

{define-class CTEPoint {}

private myBits:int

{define (CTEPoint.init val:int=0}

(if (< val 0}

{set self.myBits 0}

{set self.myBits val})

(define public (CTEPoint.getValue}:CTEPoint

{return self}

(define public {CTEPoint.setValue val:CTEPoint}:CTEPoint

{if {< val.myBits 0}

{set self.myBits 0}

(set self.myBits val.myBits}}

(return self}

{define public {inc p:CTEPoint):void

{set p.myBits {+ p.myBits 1)}

}

(define public (dec p:CTEPoint}:void

(set p.myBits (- p.myBits 1)}}

}

{define public {point+ pl:CTEPoint p2:CTEPoint}:CTEPoint

{return (new CTEPoint val={+ pl.myBits p2.myBits}}}

}

(define public {point- pl:CTEPoint p2:CTEPoint}:CTEPoint

(return {new CTEPoint val=(- pl.myBits p2.myBits}}}

}

(define public {point-eq? pl:CTEPoint p2:CTEPoint}:int

(return (= pl.myBits p2.myBits}}

(define public {point< pl:CTEPoint p2:CTEPoint}:bool

{return {< pl.myBits p2.myBits}}

}

(define public (point> pl:CTEPoint p2:CTEPoint}:bool

(return {> pl.myBits p2.myBits}}
}

A.7 cte-reservewords. curl

Curl Text Editor

Reserved Words List

the proper form for this list is alternating colors and lists of double-
quoted words.

it is ok to have several lists in a row, or several colors in a row.

the CTE will use the most recent color and go through the lists in order.

if no color is indicated, then the default color for reserved words will be
used

{define-variable gCTEReserveWords: list)

{set gCTEReserveWords

{ begin list of reserved word

grey

{
"Jon Heiner"

"MIT"

"LCS"

"Copyright"

}
red

{

II 96 II

">=

"Buffer"

"Button"

"CheckButton"

"Circle"

"ClickBox"

"DragContainer"

"DragImage"

"Dragee"

"DropTarget"
"EventHandler"

"Exception"

"FileBox"

"FileInputPort"

"FileOutputPort"
" Frame "

"HashTable"

"Hbox"

"IndentedBox"

"InputPor t"
"Line"

"ListBox"

"MenuAction"

"MenuBar"

"OutputPort"

"PopupMenu"

"Port "
"RadioButton"

"RadioButtons"

"Rectangle"

"ScrollBox"

"Selectee"

"StringBuffer"

"SubMenu"

"Table"
"TextField"

"Vbox"

"View"

"abs"

"anchor"

"and"

"any"
" append "
"append! "
"apply"

"apply-method"
"arccosine"

"arcsine"

"arctangent"

"arctangent2 "
"aref"

"array "
"assq"

"big"

"bit"

"bit-and"

"bit-or"
"bit-sll"

"bit-sra"
"bit-srl"

"bit-xor"

"block"

"bold"

"br "

"break"
" cadr "
"car "
"cast"
"catch"

"cddr"

" cdr "
"center"

"char "
"choose"

"choose-randomly"

"choose-sequentially"

"code"

"cond"

"cons "

"cons* "

"continue"

"copy-list"

"cosine"

"define"

"define-class"

"define-constant"

"define-form"

"define-macro"

"define-variable"

"delq! "
"description"

"docref "
"documentstyle"

"dotimes"

"enumerate"

"eq? "
"eqn"

"equal? "
"error"

"eval "
"example"

"exponential"

"file-write-date "

" finally"

"float"
"for "
"format "

"get-buffer"

"get-buffer-of-size"

"get-string-buffer"

"get-string-buffer-of-size"

"hrule"
"if"

" image "

"import "
"include"

"input-var"
"int"

"intl6"

"int8 "
"invoke-method "

"isa"
" italic"

"itemize"

"keyword-supplied?"

"lambda"

"last"

"lastcdr"

"let"

"letrec "

"list"

"list-length"

"loop"

"make-list"

"map "
"map ! "

"match"

"match-prefix"

"max"

"memq"
"min"

"neq? "

"new"

"nobreak"

"not"

"nth"

"nthrest"

"or"

"output"

"paragraph"

"popup-dialogue"

"popup-graphic"

"popup-text-query"

"power"

"print "

"proc "

"quote"

"random"

"release-buffer"

"release-string-buffer"

"require"
"rest-as-list"

"rest-as-vector"

"return"

"reverse"

"reverse! "

"S"

"section"

"set"

"sine"

"sleep"
"small "

"sort-list"

"sort-list! "

"stderr"

"stdout "
"sublist"

"subsection"

"subsubsection"

"subtext"

"symbol "
"tagged-block"

"tagged-loop"

"tangent "
"text "

"text->symbol"

"text-append"

"text-compare"

"text-equal?"

"text-fill"

"text-hash"

"text-pos "
"text-replace"

"text-rpos"

"throw"

"tiny"

"try"

"typeof "
"unless"

"until"

"value"

"vector"

"vector->list"

"verbatim"

"void"

"void?"

"vrule"
"walk"

" when"

"while"

"write"

black for base types

{
" int "

"int8"

" intl6 "

" char "

" float"

"bit"
" any"

"void"

"text "
"vector"

A.8 cte-textbuffer.curl

I textbuffer.curl

Curl Text Editor Files

Jon Heiner

Copyright (c) 1998

Massachussetts Institute of Technology

Laboratory for Computer Science

All Rights Reserved.

MIT MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

MIT SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

{include "cte-constants.curl"}

{include "cte-point.curl"}

File Description:

This file contains the CTETextBuffer class definition.

The text buffer is a datatype abstraction which simulates

a consistent, persistent, rapidly-accessable, infinite-length

array of chars. the accessor methods are extremely straight-

forward and somewhat spartan. The way in which these methods

are used should be obvious, however they are explicitly documented.

{define-class CTETextBuffer {}

I ### define class-fields ###I
myHasAFile?:int a flag which when zero means we are a scratch buffer

myPoint:CTEPoint a number from 0 to positive infinity which

1 represents the current location in the buffer

myBubble:text scratch pad to handle keyboard input.

myBubbleSize:int how much text is in the bubble.

mySegments:list

there are a max of kNumTBSegments they rotate via a Random replacement

strategy. each vector is comprised of

{data:text start:any end:any size:int dirty:bool}

in which text is size cte-kTBSegmentMax,

but with cte-kTBSegmentSize text in it initially.

*** go to end of file for my BIG DISCUSSION ON SEGMENTS ***

myFileIP:InputPort the output and input ports to which this

myFileOP:OutputPort buffer is associated. Note that this file is

updated periodically, so it should be a temp (name-) file.

for saving, flush all segments and then copy the file name- -> name

I I### define class-methods ### I

PUBLIC METHODS/ACCESSORS

(define {CTETextBuffer.init f:text=cte-kYesWeHaveNoFile}

{set self.myPoint (new CTEPoint}}

(set self.myBubble {new text cte-kBubbleSize}}))

{set self.myBubbleSize 0)

I 1.) do something about the filePorts

(if {text-equal? f cte-kYesWeHaveNoFile}
is passed in...

{set self.myHasAFile? 0}

I if no file

(let file:File=(xresolve-filename text} ...if 'file'
does not exist

{set self.myFileIP {file.read-open)) then we get
a big fat error.

(set self.myFileOP (file.write-open)} j this is an
error in file.read-open

{set self.myHasAFile? 1}}} we have a file

I 2.) create the segments data structure (mySegments:{list vector int

int})

(set self.mySegments {cons {new vector cte-kNumTBSegments)

{cons -1

{cons 1 '{}}}}}

3.) if we have a file, then get the first cte-kTBSegmentSize

characters s from the file and put them in a new segment

{if self.myHasAFile?

{begin {set (aref {car self.mySegments} cte-kSegText} allocate

text array

{new text cte-kTBSegmentMax))

{set (aref (car self.mySegments) cte-kSegStart) 0} this segment

starts at the beginning of 'file'

{self.myFileIP.Seek 0 'start} I go to start
of file and read the first

(set {aref {car self.mySegments} cte-kSegEnd} cte-kTBSeg-

mentSize characters (if we can)

{self.myFileIP.ReadText f set the Segment End
variable to how many

{aref {car self.mySegments} cte-kSegText) characters are actu-

ally read

cte-kTBSegmentSize}}

(set {aref {car self.mySegments) cte-kSegSize) set the size

to the end point from above

(aref (car self.mySegments) cte-kSegEnd)}}

{set (aref {car self.mySegments) cte-kSegDirty) false) I set dirty

to false, we haven't changed anything yet

}
{begin (output "ERROR: Curl Text Editors (alpha) must be associated with

files")
{exit))}}

-

-

{define public {CTETextBuffer.setPoint n:CTEPoint}:CTEPoint

{self.popBubble} I "pops"
bubble

{return {self.myPoint.setValue {n.getValue))}}} memory
leak?

}

{define public (CTETextBuffer.getPoint}:CTEPoint

{return {self.myPoint.getValue}}

{define public {CTETextBuffer.writeChar l:char}:void

{self.writeChar2Bubble 11

}

(define public {CTETextBuffer.writeText t:text}:int

(let len:int=(length t}

{self.writeText2Bubble t (length t))}}

{return len))}}

}

{define public {CTETextBuffer.writeTextWLen t:text len:int}:void

{self.writeText2Bubble t len}

}

{define public (CTETextBuffer.read n:int}:text

I tricky
1.) Due to usage patterns, it is likely that a read will

go straight to the segments, so first pop the bubble.

{self.popBubble}

2.) if we can get the text from just one segment, do so...

3.) otherwise, it is easier to flush all the segments, and

4.) read directly from - file

}

{define public (CTETextBuffer.delete n:any}:void

same as read...backspace delete is provided for speed.

(define public {CTETextBuffer.backspaceCharDelete}:void

{if {> 0 self.myBubbleSize}

{set self.myBubbleSize {- self.myBubbleSize 1}}

otherwise, we need to go to segment/filel

}
}

Since there are no regexps, we're really kind of stuck here.

So for now, just take a plain text string.

"pops bubble" if movePoint? is true. returns the point.

{define public {CTETextBuffer.find pattern:text forward?:bool=true move-

Point?:bool=false}:CTEPoint

not implemented...holding for regexps consideration

}

PRIVATE METHODS/SEGMENT & BUBBLE HANDLING

(define private {CTETextBuffer.popBubble}:void

11 if there's nothing in the bubble, do nothing; else...

{if {> self.myBubbleSize 0}

write bubble's text to active segment

{self.write2ActiveSegment self.myBubble self.myBubbleSize}

i and reset the Bubble's Size to zero

{set self.myBubbleSize 0}

optimize writeChar2Bubble by moving it into writeChar

(define private (CTETextBuffer.writeChar2Bubble aKey:char}:void

{let bSize:int={set self.myBubbleSize {+ self.myBubbleSize 1}}

1 write the character to the bubble

{set {aref self.myBubble bSize} aKey}

{if (>= bSize cte-kBubbleSize} if we've filled up the bubble, pop

it.

{self.popBubble}}}

optimize writeText2Bubble by moving it into writeTextWLen

{define private {CTETextBuffer.writeText2Bubble t:text len:int}:void

{if {> len cte-kBubbleSize} 1 if you're just writing LOTS of text, then

{begin (self.popBubble) pop the bubble and

(self.write2ActiveSegment t len) iI write straight to the segment

{let bSize:int={set self.myBubbleSize {+ self.myBubbleSize len}}

{if (>= bSize cte-kBubbleSize} if this fills or surpasses the bubble

but fits in it,

{begin {self.popBubble} THEN pop bubble first...andwrite the

text to empty bubble

(move-text t 0 self.myBubble 0 len))

{move-text t 0 self.myBubble {- bSize len} len))))}}}} careful here

on the locations

(define private (CTETextBuffer.flushSegment index:intl

(let startPos:int= I the segment's START Point in the file-

endPos:int= the segment's END Point in the file-

change:int= the (new size of segment) - (endPos - startPos), pos-

sibly negative

data:text= the segment's text

{self.myFileIP.seek endPos 'start} set read pointer

to after segment

{self.myFileOP.seek (+ endPos change} 'start} set write

pointer to "past" end of segment

I {self.myFileIP.CopyOut self.myFileOP {- {self.myFileIP.Con-

tentLength) endPos)} I shift text

{self.myFileOP.seek startPos 'start) go to start of

segment
(self.myfileOP.writeText data} insert the edit-

ted segment's text

I }I }

{define private (CTETextBuffer.write2ActiveSegment t:text len:int}

}
}

S*** method documentation may be a bit out of date...

{doc setPoint

The stPoint method moves the point (which maintains

location within the buffer) to the location {param n} number

of characters into the buffer.

{enumerate {paragraph arguments: {param n) is a number from 0 to positive

infinity}

(paragraph effects: changes the point location}

{paragraph boundary conditions: (param n)<0: moves point to start

of the buffer; {param n}>buffer size: moves point to end

of the buffer.)

(paragraph returns: the actual point location which is set}

)}}
{doc getPoint

The getPoint method returns the current locaton in the text buffer.

(enumerate (paragraph effects: none, simple accessor)

(paragraph returns: location in text buffer}})

{doc writeChar writeText writeTextWLen

The write method inserts the text t (of length len, optional argument)

at the current point in the textbuffer.

{enumerate: {paragraph arguments: t is a valid array of chars. 1 (letter)

is a char.

if len is used, it MUST be the size of t, it is NOT checked.)

(paragraph effects: adds the text t (char 1) to the current buffer.}

(paragraph boundary conditions: empty arrays are ignored. any valid

array of chars

will work.)

(paragraph returns: an int that is the length of the text added to the

buffer (or void).}

)}}

(doc read

The read method reads {param n} characters from the buffer and

returns them as a text.

(enumerate (paragraph arguments: (param n) is an integer which is the maxi-

mum number

of characters to get back from the buffer, beginning

at the current point.}

{paragraph effects: none, simple accessor)

{paragraph boundary conditions: if (param n} causes us to go beyond the

last character in the file, then only those characters

in the buffer are returned, and the text is not length (param n).}

{paragraph returns: text (array of chars) which corresponds to at most

the (param n} characters following the point.}

}}
(doc delete

The delete method deletes (param n) characters from the buffer beginning at

the point.

(enumerate (paragraph arguments: {param n} the maximum number of characters

to delete)

(paragraph effects: deletes a section of the file beginning at the point.}

(paragraph boundary conditions: if (param n} causes us to go beyond the

last character in the file, then the characters up to

the end of the file are deleted.}

}}

[code size reduced for readability]

*** BIG DISCUSSION ON SEGMENTS ***

IBriefly, the way the TextBuffer works internally is that text/characters written to the
Ibuffer go initially to the "Bubble." This is a small cache which fills up quickly and
Ithen "pops." The TextBuffer has a single bubble which is associated with the currently
"active" Segment at the point in that segment where editing is happening. Thus, moving
Iaround while editing will pop the bubble. So will switching among segments (which happens
Igenerally only when you move around while editing.)

There are a number of segments which are simply "samples" from the file in which the user
is working. The TextBuffer starts off by slurping up the first N characters in the file

land putting them in one segment. If you move to some portion of the file which is not

Icurrently in memory (in one of the segments), the TextBuffer will slurp up that portion
Iof the file and put it in a _different_ segment which DOES NOT overlap any of the current

Isegments. There is a finite total number of segments, however, so periodically one of the

Isegments is thrown out to make space for a new segment to be created. This happens by
random selection. We could implement a LRU (Least Recently Used) replacement strategy,

Ibut the overhead is not worthwhile. [Think about it, it's likely less efficient in practice.]
|In this way, the TextBuffer is able to edit an infinitely large file with efficiency,
Ibecause edits are generally clustered. The segments represent this clustering.

...ON THE mySegments DATA STRUCTURE

ISimply put, mySegments has the type: (list vector int int) (list of anys)
Iwhere the vector has type: (vector text int int int int) (array of anys)
Ispecifics are as follows:

I mySegments:list I I A.) array: 1.) text I I B.) active:int I I C.) segs:int

o=================o 2.) start:int I <0 --> none active II # of segments
I 3.) end:int o==================== o===============0
11 1 14.) size:int I
SI 5.) dirty:bool I

Iactive: gives the index of the currently active segment. -1 if none are active.

Isegs: give the number of structures in the array (the # of segments).
Itext: an array of characters from the file being editing.
Istart: where we began reading from the file when 'text' was created.
lend: where we ended reading from the file when 'text' was created.
Isize: the size of the text as a consequence of edits.

Idirty: whether we have edited text in this segment, or just read.

leof

A.9 cte-textdisplay.curl

cte-textdisplay.curl

Curl Text Editor Files

Jon Heiner

Copyright (c) 1998

Massachussetts Institute of Technology

Laboratory for Computer Science

All Rights Reserved.

MIT MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS

SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

MIT SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF USING,

MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

{include "cte-inputfilter.curl"}

{include "cte-reservewords.curl"}

File Description:

this is the curl text editor visual class

it handles all the code visualization, pretty formatting, etc.

currently, the internals are being handled through the methods

in CodeText which are sufficient for handling arrays of text.

The CTETextDisplay class inherits from the CTEInputFilterClass which han-

dles

all the input coming in from the user. Inherited functionality

is mirrored in all the classes and can be accessed via the super.foo

functions. Currently, this is only used sparingly, but is provided

to make the class more useful/portable.

{define-class CTETextDisplay {CTEInputFilter CodeText}

file:File

file-modified:int have we modified the file

cursorx:int cursor's x position from left [0,end]

cursory:int cursor's y position from top [1,max]

curlymatching:bit for curly matching, see draw method

clipboard:text for yanked text

pattern:text for searching

function:symbol last function

lastkey:int last function

{define public {init f:text ...}

(invoke-method CodeText 'init self "Press C-h for help..." {rest-as-is}}

{invoke-method CTEInputFilter 'init self "Press C-h for help..." {rest-

as-is}} Ithis works?

{self.open-file f}

some control variables...

(set self.file-modified false)

{set self.pattern "pattern"}

{set self.function 'null}

{set self.lastkey 97} I set it to an a
(self.gotoFileStart)

}

{define public {CTETextDisplay.key-press e:KeyEvent}:void

{super.key-press e)

{self.doFunction self.mySymbol e.key}

{self.invalidate)

useful debug stuff

{output e.key)

I{output "current " self.current " cursorx " self.cursorx " cursory

self.cursory)

{output e.key " --> " {cast char e.key))

I{output "current char: " {aref self.txt {self.get-current)}}

{output "get-current: " {self.get-current}}

I{output "chars-till-prev-newline: " {self.chars-till-prev-newline))}}

I{output "chars-till-next-newline: " {self.chars-till-next-newline}}

{define protected {CTETextDisplay.doFunction f:symbol k:int):void

Here, we would have preferred to not use a switch statement.

We would like to have used first-class procedures such that they

are passed as values and later evaluated, or even better to pass

symbols that can then be cast into the correct procedures, but the Curl

semantic does not support this. Consequently, we here take symbols

and "convert" them into procedures...

(cond

(({{eq?

(({{eq?

{{((eq?
of buffer

'null}

'cte-insert-char)

'cte-go-line-up}

(({{eq? f 'cte-go-line-down)

(return}}

{self.insertChar {cast char k}}}

{self.goLineUp}} I towards beginning

(self.goLineDown}} Itowards end of

buffer

{{eq?

{{eq?

{{eq?

(({eq?

(({eq?

{{eq?

{{((eq?

{{eq?

(({{eq? f

requires get page

j{{eq? f
requires get page

{{eq? f

((eq? f

{{((eq? f

{{((eq? f

'cte-go-char-forward}

'cte-go-char-backward}

'cte-goto-next-word)

'cte-goto-prev-word)

'cte-goto-next-curly)

'cte-goto-prev-curly)

'cte-goto-file-start}

'cte-goto-file-end}

'cte-scroll-page-forward)

{self.goCharForward}}))

(self.goCharBackward))}}

(self.gotoNextWord))

(self.gotoPrevWord}}

{self.gotoNextCurly}}

(self.gotoPrevCurly}}))

{self.gotoFileStart))

{self.gotoFileEnd))}}

(self.scrollPageForeward)) I **

size from myDisplay Buffer

'cte-scroll-page-backward} (self.scrollPageBackward}} **

size from myDisplay Buffer

'cte-goto-line-start) {self.gotoLineStart}}

'cte-goto-line-end} (self.gotoLineEnd))

'cte-goto-end-of-word} {self.gotoEndOfWord))}}

'cte-goto-start-of-word} {self.gotoStartOfWord))}

(({{eq? f 'cte-go-to-top-of-page)
get page size from myDisplay Buffer

{{((eq? f 'cte-go-to-bottom-of-page}

requires get page size from myDisplay Buffer

{{eq? f 'cte-del-previous-char)

{{eq? f 'cte-del-next-char)

(({{eq? f 'cte-del-word}

{{eq? f 'cte-del-line)

{{eq? f 'cte-del-within-curlies}

{{eq? f 'cte-change-word}

(({{eq? f 'cte-change-line}

{{(eq? f 'cte-change-within-curliesl

(({eq? f 'cte-change-char}

(({{eq? f 'cte-find-pattern}

{{eq? f 'cte-next-pattern)

((eq? f 'cte-prev-pattern)

{self.gotoTopOfPage)) ** requires

(self.gotoBottomOfPage}} **

{self.delPrevChar}}

(self.delNextChar))

(self.delWord))

{self.delLine))

{self.delWithinCurlies}}

(self.changeWord))}}

{self.changeLine}}))

(}{self.changeWithinCurlies))

(self.changeChar))

{self. findPattern}}))

(self.nextPattern))

(self.prevPattern}}))

{{eq?

(({{eq?

{{((eq?

{{eq?

({{eq?

{(eq?

{{eq?

((eq?

((eq?

((eq?

({eq?

{{eq?

{{eq?

{{eq?

{{eq?

{eq?

(eq?

(eq?
{{eq?

'cte-repeat}

'cte-undo}

'cte-begin-macro}

'cte-end-macro)

'cte-do-macro}

'cte-bind-macro}

'cte-toggle-capital}

'cte-yank}

'cte-indent}

'cte-indent-all)

'cte-toggle-special-chars)

'cte-file-save}

'cte-file-save-as}

'cte-file-open}

'cte-quit-editor}

'cte-edit-key-sequences}

'cte-edit-reserve-words}

'cte-help}

'cte-reload-environment}

{self.repeat}}

{self.undo}}

{self.beginMacro}})

{self.endMacro}}

{self.doMacro)}}

{self.bindMacro}}

{self.toggleCapital}}

{self.yank}}

(self.indent}}

(self.indentAll}}

{self.toggleSpecialChars))}}

(self.fileSave}}

{self.fileSaveAs}}

{self.fileOpen}}

{self.quitEditor))

{self.editKeySequences))}}

(self.editReserveWords}}))

{self.help}}))

{self.reloadEnvironment}}

}
{if (neq? f 'cte-repeat)

(begin

{set self.function f}

{set self.lastkey k)}}

}

cursor movement functions

I always call the cursor movement functions AFTER the actual editing has
been done

also: (CTETextDisplay.chars-till-prev-newline}:int

(CTETextDisplay.chars-till-next-newline):int

(define private (CTETextDisplay.moveCursorRight}:void

{if {= (cast int (aref self.txt {- (self.get-current) 1})) cte-kNewline}
if we have a return...follow it.

(begin

(set self.cursorx 0}

(set self.cursory {+ self.cursory 1}}

}
{begin

{set self.cursorx (+ self.cursorx 1))

}}}

(define private {CTETextDisplay.moveCursorLeft}:void

if cursorx is below 0, then wrap around

{if (> self.cursorx 0)

(begin

(set self.cursorx {- self.cursorx 1}}

}
(begin

{set self.cursory {- self.cursory 1)}

{set self.cursorx (self.chars-till-prev-newline}}

basic movement functions

(define protected (CTETextDisplay.goCharForward}:void

{self.goR}

I{super.goCharForward}

}

{define private {CTETextDisplay.goR i:int=l}:void

{while {> i 0}

{set i {- i 1}}

(if (< (self.get-current} self.length}

(begin

(self.set-current (+ (self.get-current} 1}}

(self.moveCursorRight}

}}}
}

{define protected {CTETextDisplay.goCharBackward}:void

(self.goL}

I(super.goCharBackward}
}

{define protected {CTETextDisplay.goL i:int=l):void

{while (> i 0}

{set i {- i 1}}

{if {> (self.get-current} 0}

{begin

(self.set-current {- {self.get-current} 1))}}

{self.moveCursorLeft)

}})
}

{define protected (CTETextDisplay.goLineDown}:void

(let d:int={(self.chars-till-prev-newline} where we

are from the previous newline

(if {= {cast int (aref self.txt (self.get-current}}} cte-kNewline} I
if we are on a newline

{begin

(self.goR}

I then step forward newline

{if (= {cast int {aref self.txt (self.get-current}}} cte-kNewline}

I if we have another newline

{return}

then we're done

I otherwise...move forward the correct number of characters

{let l:int={+ (self.chars-till-next-newline} 1} I how many char-
acters in this line

(if {< d 1)} if this line is

long enough
(self.goR i=d} I then just go to

the place we were

(self.goR i=l} I otherwise, go

to the end of the line

})}

I second case is that we were not sitting on a newline

{let e:int=(self.chars-till-next-newline} Ihow far to end of this

line

(self.goR i=(+ e 1}} Imove position to that

newline

(set e {+ {self.chars-till-next-newline} 1)}} how many characters in

the next line

{if {> e d} I if the next line is

long enough

{self.goR i={+ d 1}}) then just go to the

place we were

{self.goR i=e} I otherwise, go to the

end of the line

}
I{super.goLineDown)

}

(define protected {CTETextDisplay.goLineUp}:void

{let d:int={self.chars-till-prev-newline} get the

length of the current line

{if {< d 1)} if our

line is just a newline

{begin

{self.goL} then go

left one

{self.goL i={self.chars-till-prev-newline}} I and to

beginning of line, works even for i=O

}
(begin I if we're

not on a newline

(self.goL i=(+ d 1}} I goto prev

newline

{let e:int={self.chars-till-prev-newline} figure

length of previous line

(self.goL i={max 0 {- e d))} I go back

if prev line is longer

I(super.goLineUp}

}

(define protected (CTETextDisplay.gotoLineStart}:void

(self.goL i={self.chars-till-prev-newline}}

}

{define protected {CTETextDisplay.gotoLineEnd):void

{self.goR i={self.chars-till-next-newline}}

}

basic editing

(define protected (CTETextDisplay.insertChar k:char}:void

bad hack, handles returns (perhaps only on this screwy keyboard)

makes things "work." can be switched on keyboard type.

(if {= k cte-kReturn} {set k cte-kNewline)}}

{self.insert-char k}

(self.moveCursorRight}

{set self.file-modified true}

}

{define protected {CTETextDisplay.delPrevChar}:void

I delete the character BEFORE the current position

{self.delete-char}

{self.moveCursorLeft}

{set self.file-modified true}

{define protected {CTETextDisplay.delNextChar}:void

delete the character AFTER the current position

{self.set-current {+ 1 {self.get-current)}}

{self.delete-char}

{set self.file-modified true)

more complex editing
{define protected {CTETextDisplay.delLine}:void

{self.goL}

{let d:int={self.chars-till-next-newline}

{self.goR}

{if {< d 1} {set d 1}}))

{if {eq? self.function 'cte-del-line} handle subsequent delete

lines

{set self.clipboard {text-append self.clipboard {subtext self.txt

{self.get-current) d)}}})

{set self.clipboard {subtext self.txt {self.get-current} d}))

{while {> d 0}

{set d {- d 1}}

{self.delNextChar)}}
}

{set self.file-modified true}

(define protected {CTETextDisplay.yank):void

{output "clipboard: " self.clipboard}

I{super.yank)

{let l:int={length self.clipboard}

k:int=0

{while {< k 1)}

{self.insertChar {cast int {aref self.clipboard k}}}

{set k {+ k 1}}

{set self.file-modified true}

{define protected {CTETextDisplay.repeat}:void

{self.doFunction self.function self.lastkey}

{define protected {CTETextDisplay.toggleCapital}:void

{let c:int={aref self.txt {self.get-current))}}

{if {and {> c 64} {< c 91))}} we have a capital letter

(begin

{self.set-current (+ {self.get-current) 1}}

{self.delete-char} I delete the current letter

{self.insertChar (+ c 32))}} land insert its correlative capital

}

{if {and {> c 96) (< c 123}} we have a lower-case letter

(begin

{self.set-current (+ {self.get-current} 1))}}

{self.delete-char}

{self.insertChar {- c 32}}

{self.goR}

tab indention

(define protected {CTETextDisplay.indent}:void

{self.gotoLineStart}

(if (= self.cursory 1)

(begin special case for if we're on the first line

(while (= {aref self.txt {self.get-current}} cte-kSpace}

{self.delNextChar}})) just delete leading white space

(self.goLineDown}

}
{begin

(let numSpaces:int=0

numCurlies:int=0

I but if we're NOT on the first line

{self.goLineUp} go to start of previous line

(self.gotoLineStart)

I count the number of leading spaces

{while (= {aref self.txt {self.get-current}} cte-kSpace)

(set numSpaces {+ numSpaces 1}}

(self.goR}

count the number of unbalanced open curlies

(let c:int=(aref self.txt (self.get-current}}

(while {!= c cte-kNewline}

(if (= c cte-kCommentChar} ignore anything after

{begin

{self.gotoLineEnd}

{self.goR}

{break))}}}

(if (= c cte-kOpenCurly}

(set numCurlies (+ numCurlies 1}}

(if {= c cte-kCloseCurly}

(set numCurlies {- numCurlies 1}}}}

(self.goR}

(set c (aref self.txt (self.get-current}}}

}

and delete white space

(self.goR}

(while (= (aref self.txt (self.get-current}} cte-kSpace}

{self.delNextChar}}))

I useful debugging

comments

I(output =======

I{output "DEBUG: numSpaces " numSpaces}

{output "DEBUG: numCurlies " numCurlies}
calculate the new offset

{set numSpaces (+ numSpaces {* numCurlies 2}}}

I(output "DEBUG: offset " numSpaces}

insert this many spaces

j{self.goR} at the start of current line

{while (> numSpaces 0}

(self.insert-char cte-kSpace)

(set numSpaces (- numSpaces 1}}}

(self.goLineDown}

(self.gotoLineStart)

}}

I go to next line

}}

(define protected (CTETextDisplay.indentAll}:void

I this is a very straightforward algorithm

(let c:int=0 I curly count

d:int=0 line lenght holder

k:int=0 position holder

{self.gotoFileStart} I first, goto start of file

(while (< {self.get-current} self.length} for whole file

(self.gotoLineStart} goto start of each line

I and delete leading spaces

(while {= {aref self.txt {self.get-current}} cte-kSpace)

(self.delNextChar}}

(let i:int=c I put in 2 spaces for each open curly in the count c

(while {> i 0O

{self.insert-char cte-kSpace}

(self.insert-char cte-kSpace}

(set i (- i 1}}}}

{set d {+ 1 (self.chars-till-next-newline}}} I find this line's length

(while (> d 0) I count number of open curlies on this

line

{set d {- d 1))

(set k (self.get-current}}

(if {= cte-kCloseCurly {aref self.txt k}})

{set c (- c 1)}

{if (= cte-kOpenCurly (aref self.txt k}}

{set c {+ c 1})}

{self.goR}
}

(self.goLineDown)

}}

file movement

{define protected (CTETextDisplay.gotoFileStart}:void

{self.set-current 0}

(set self.cursorx 0}

(set self.cursory 1}

(define protected (CTETextDisplay.gotoFileEnd}:void

I could be more efficient...but this is correct

{while (< {self.get-current} self.length}

(self.goR}}

}

searching

note: {match pattern:text str:text start:int=0 len:int=-l}:int

{define protected {CTETextDisplay.findPattern}:void

get a new pattern

(let f:text={popup-text-query "Search: "}

{if {void? f} (HBell}

(begin

(set self.pattern f}

{self.nextPattern}}}}

}
{define protected {CTETextDisplay.nextPattern}:void

search forward for the current pattern

(let p:int={match self.pattern self.txt start={+ {self.get-current) 1}

len={- self.length (self.get-current}}

{if (< p 0} {HBell} I nothing found

{self.goR i=(- p (self.get-current)}}}}

}
(define protected {CTETextDisplay.prevPattern}:void

search backwards for the current pattern

{let p:int=(match self.pattern self.txt start=0 len=(self.get-current})

q:int

{if {< p 0} (begin {HBell} {return}} I nothing found

{begin

{while (>= p 0}

(set q p}

{set p (match self.pattern self.txt start={+ p 1} len=(-

(self.get-current} p)}}}

{self.gotoFileStart}

{self.goR i=q}

quitting and file stuff

{define protected {CTETextDisplay.quitEditor}:void

(if {and self.file-modified

(eq? 'ok (popup-dialogue "Save File?" ok="Save" cancel="Don't Save"

reset=""}}}))
{self.write-file}}

(if (eq? 'ok {popup-dialogue "Really Quit?" ok="Yes" cancel="No"

reset=""}}
{exit}} II this shouldn't really EXIT...just close window.

}

(define protected (CTETextDisplay.fileSave}:void

(self.write-file)

{set self.file-modified false)

{output "File Saved."}

}

{define private (CTETextDisplay.write-file):void

(let op:OutputPort=(self.file.write-open)

(op.Seek 0 'start)

(op.WriteText (self.get-text}})

}

{define protected (CTETextDisplay.fileOpen}:void

11 save current file?

{if {and self.file-modified

{eq? (popup-dialogue "Save Current File?" ok="Save" cancel="No"

reset=""} 'ok))}}

(self.write-file))}}

Open File

(let f:text={popup-text-query "Open File: "}

(if (void? f} (HBell)

{self.open-file f))}}}

}

(define private (CTETextDisplay.open-file f:text):void

(let u:File

(try (set u {xresolve-filename f}}

(catch (e:Exception) void}}

(if {void? u} {begin (HBell)} (return}))

(set self.file u}

{(letrec ip:InputPort=(self.file.read-open}

t:text={new text {ip.ContentLength}}

(ip.Seek 0 'start}

(ip.ReadText t (ip.ContentLength))}}

{self.set-text t)

(self.gotoFileStart)

(set self.file-modified 1)}}}

{define protected (CTETextDisplay.editKeySequences}:void

I{output "DEBUG: CTETextDisplay.editKeySequences"}

save current file?

{if (and self.file-modified

(eq? {popup-dialogue "Save Current File?" ok="Save" cancel="No"

reset=""} 'ok))}}

(self.write-file}}

Open File
(let f:text="cte-keysequences.curl"

{if (void? f} (HBell)

(self.open-file f))}}}

}

(define protected (CTETextDisplay.editReserveWords}:void

save current file?

(if (and self.file-modified

{eq? (popup-dialogue "Save Current File?" ok="Save" cancel="No"
reset=""} 'ok))

{self.write-file}}

Open File

{let f:text="cte-reservewords.curl"

(if {void? f} (HBell}

{self.open-file f}}}

(define protected (CTETextDisplay.help}:void

save current file?

(if (and self.file-modified

{eq? (popup-dialogue "Save Current File?" ok="Save" cancel="No"
reset="") 'ok))

(self.write-file))

Open File
{let f:text="cte-helpfile.curl"

{if (void? f} {HBell}

{self.open-file f}}}

}
(define protected (CTETextDisplay.reloadEnvironment):void

J(output "DEBUG: CTETextDisplay.reloadEnvironment"}
(let u:File

(try {set u (xresolve-filename "cte.curl"}}))

(catch {e:Exception) void))}}

(if (void? u} (begin (HBell) (return))}

(try {load u curl-env}

(catch {e:Exception)}}

)}}

other functions

(define public {pointer-press e:PointerEvent}:void

(request-key-focus self)

{if (not (isa Text {get-hit e))}}}) (return))

(let r:Text=cast Text (get-hit e))}}

x:int

y:int

(set x y (transform-coordinates self e.x e.y r}}

(goto-word-doc {r.pick-word x y))}}}}

(define public (CTETextDisplay.draw gc:GraphicContext}:void

(let font:FFont=self.font

font-spacing:int=(+ font.ascent font.descent font.letting}

m:text

m-length:int

o:int

y:int
line:int=l

r:FRect=(gc.get-clip-rect}

(set m self.txt}

{set m-length self.length)

(set y font.ascent}

(gc.set-font font)

optimize based on clip rect

NOTE: font method variables

space spacing between words

ascent max height above baseline

descent max descent below baseline

letting extra vertical spacing between lines

S***************** draw the cursor

1helpful debug: (output "ascent " font.ascent " descent " font.descent
" letting " font.letting)

(gc.draw-rect {* self.cursorx font.space)

{- {* self.cursory font-spacing) font.ascent}

{* {+ self.cursorx 1)} font.space)

{* self.cursory font-spacing}

cte-kCursorFGColor cte-kCursorRimColor 1)}

************** draw the curly brace references if necessary

put a box around the current curly and the corresponding

curly with a connecting line

{if {or {= cte-kCloseCurly {aref self.txt (self.get-current}}}

(= cte-kOpenCurly (aref self.txt {self.get-current))))}}

(begin

J{output "DEBUG: curly matching"}

{ let x:int=self.cursorx

y:int=self.cursory

c:int=l

mx:int

my:int

save-cursorx:int=self.cursorx

save-cursory:int=self.cursory

save-current:int={self.get-current}

find the matching curly
{if {= cte-kCloseCurly {aref self.txt {self.get-current}}}

I we have a close curly
(begin

{while {> c 0}

{self.goL}

(let k:int=(self.get-current)

(if (= cte-kOpenCurly {aref self.txt k}}

(set c {- c 1))

{if (= cte-kCloseCurly (aref self.txt k}}

{set c {+ c 1}}}}

{if (< k 1} (break))}} no match

we have an open curly
(let k:int={self.get-current}

e:int={- self.length 1)}

(while {> c 0})

(self.goR)

{set k {self.get-current))

{if {= cte-kCloseCurly {aref self.txt k))}}

{set c {- c 1}}

{if {= cte-kOpenCurly (aref self.txt k))

{set c (+ c 1}}}}

{if {> k e) {break)} I no match

}}}

{set mx self.cursorx})

{set my self.cursory)

draw bounding boxes and connecting lines

{gc.draw-rect ({* x font.space)

{- {* y font-spacing) font.ascent)

(* {+ x 1} font.space)

{* y font-spacing)
cte-kCurlyBGColor cte-kCurlyFGColor 1)

(gc.draw-line {* (+ x 0.5) font.space)

{- {* y font-spacing) font.ascent}

(* {+ mx 0.5} font.space)

{- {* my font-spacing} font.ascent)

cte-kCurlyFGColor 1)

{gc.draw-rect {* mx font.space)

(- {* my font-spacing) font.ascent)

{* {+ mx 1) font.space)

{* my font-spacing)

cte-kCurlyBGColor cte-kCurlyFGColor 1)

restore state

{set self.cursorx save-cursorx)

{set self.cursory save-cursory)

{self.set-current save-current)

{set self.curlymatching false)

}

************** draw the text

(while {and (< o m-length} {<= {- y font.ascent) r.bottom))

{let next-o:int

{set next-o {self.find-newline m o m-length))}}

(if {>= ({+ y font.descent 1) r.top)

(begin

{if {= {aref m o)} #\newline}

(set o (+ o 1)}}

(self.draw-line-of-text gc rymo next-o m-length font.space))}}})

{set line {+ line 1))

{set y (+ y font-spacing))

(set o next-o}}}

}}

(define private (CTETextDisplay.draw-line-of-text gc:GraphicContext r:FRect
y:int m:text o:int next-o:int m-length:int xinc:int):void

I draw method. draw everything in blue, but change the color to green if
there's a comment

I then, redraw over that in red any of the reserved words in the file cte-
reservewords.

{gc.set-color cte-kGenericTextColor}

(let x:int

save-o:int=o

c:char

comment:char={cast char 124}

j:list=gCTEReserveWords
i:list iteration list for the reserved words

w:text

1whitespace characters

reserved:bool=false I are we INSIDE a reserved word

newline:char=(cast char 10} I used to END a line
tab:char={cast char 9}

return:char={cast char 13}

space:char=(cast char 32)

{while {and {< o m-length)

{<= {- x xinc} r.right}}

I{gc.draw-text 0 y m o {- next-o o))}}

{set c {aref m o}}

(if {eq? c comment) {gc.set-color cte-kCommentTextColor}})

{if (eq? c newline) {break}}

{gc.draw-char x y c}

{set x {+ x xinc}})

{set o {+ o 1}}

(gc.set-color cte-kReserveWordTextColor} set the color
for redrawing

now, for each of the reserved words, redraw in color if it is there

note: {match pattern:text str:text start:int=0 len:int=-1}:int

{while {not (eq? j '{}}}))

{if {eq? symbol {typeof {car j}}))}
(gc.set-color {car j}})
{begin

{set i {car j}}
{while (not (eq? i '{}}} j for

all of the reserved words in the list

{set w (car i))}} where
w = each reserved word

(set o save-o} I ie:

o is the beginning of the line

(set x {match w m start=o len={- next-o o))) I check
if w is on this line and assign x=pos

(while {> x 0}) x<0

means it wasn't there, but if it is...

{if (and (self.checkChar (aref m (- x 1)}}}) (self.checkChar
{aref m {+ x {length w)))}}}}})

(gc.draw-text (* ({- x save-o} xinc} y w 0 {length w))

draw over IF it's surrounded correctly

{set o (+ x (length w)}}

trickiest thing is keeping track of o and save-o

{set x {match w m start=o len={- next-o o}}}

}

{set i {cdr i)}}}}

(set j (cdr j}}}

{define private (CTETextDisplay.checkChar c:char}:bool

(let k:int = {cast int c}

(if {or {= k 61} =

{= k 123} I {
(= k 125} I }

(= k 58} I
{= k 10} linefeed C-j

(= k 13} CR C-m

{= k 9} tab

{= k 32} space

{= k 34} I
{= k 124} I
}

(return true)

{return false}

(define private {CTETextDisplay.chars-till-prev-newline}:int

return the number of characters between the current

position and the newline before the current position

(let o:int={self.get-current}

m:text=self.txt

Im-length:int=self.length

{set o (- o 1}}

(while (> o 0}

(set o (- o 1}}

(if {eq? {aref m o} #\newline}

{return {- {- {self.get-current} o} 1}}})) I handles regular lines,

buffered with a newline at start

}

(return (- (self.get-current} o))}} I handles first line of buffer

)}}

(define private {CTETextDisplay.chars-till-next-newline}:int

return the number of characters between the current

position and the newline after the current position

{let o:int=(self.get-current}

m:text=self.txt

m-length:int=self.length

(set o (+ o 1}}

(while (< o m-length}

(if {eq? {aref m o} #\newline}

(break))}}

(set o {+ o 1}}}))

(return (- (- o {self.get-current}}) 1}}

)}}

A.10 run-double-windows.curl

{include "cte.curl"}

{(letrec f2:text="cte-helpfile.curl"

fl:text="samplefile.curl"

cl:CTETextDisplay={new CTETextDisplay fl}

c2:CTETextDisplay=(new CTETextDisplay f2}

sl:ScrollBox=(ScrollBox {new WordPickFrame cl word-picker=goto-word-doc}}

s2:ScrollBox={ScrollBox (new WordPickFrame c2 word-picker=goto-word-doc}}

v:View={new View

{spaced-vbox border-width=2 border-style='black

sl s2}

(browser-view)

curl-window-type="source file"

width=800

height=800}

(v.show)

{request-key-focus cl)

}

A.11 run-with-scrollbar.curl

{include "cte.curl"}

(letrec f:text="cte-helpfile.curl"

c:CTETextDisplay={new CTETextDisplay f}

s:ScrollBox={(ScrollBox {new WordPickFrame c word-picker=goto-word-doc}}

v:View={(new View

s

(browser-view)

curl-window-type="source file"

width=700

height=500}

(v.show)

{request-key-focus c}

}

A.12 run.curl

{include "cte.curl"}

{letrec f:text="samplefile.curl"

c:CTETextDisplay={new CTETextDisplay f}

v:View={new View c

{browser-view}

curl-window-type="source file"

width=900

height=1000}

{v.show}

{request-key-focus c}

}

A.13 samplefile.curl

* Copyright (c) 1998 MIT LCS -- Jon Heiner *

'1234567890-=qwertyuiop[]\asdfghjkl;'zxcvbnm,./ (no return)
-!@#$%^&*()_+qwertyuiop{}IASDFGHJKL:"ZXCVBNM<>? (no return)

(now enter the following characters with the control key down:)
'1234567890-=qwertyuiop[]\asdfghjkl;'z(skip the x!!!)cvbnm,./
-!@#$%^&*()_+QWERTYUIOP{}IASDFGHJKL:"Z(agsain...skip)CVBNM<>?

(now enter the following characters)
esc

backspace
tab
return
space

(now enter)
C-X
C-x

{define {fubar} our sample function
{let x:int=l test for repetition on int int and int

{if {> x 0} I and test for and and for for
{output "hello, world"} this prints stuff

}}}

{{curly braces) can {be {a {problem
without a {good}} indication of
where) {{matching} pairs))}} {begin
and where} they end.))

abs anchor != % Buffer View output define define output

!= % * + - / < <= > >= Buffer Button CheckButton Circle ClickBox

DragContainer DragImage Dragee DropTarget EventHandler Exception
FileBox FileInputPort FileOutputPort Frame HashTable Hbox IndentedBox

InputPort Line ListBox MenuAction MenuBar OutputPort PopupMenu Port
RadioButton RadioButtons Rectangle ScrollBox Selectee StringBuffer
SubMenu Table TextField Vbox View - abs anchor and any append
append! apply apply-method arccosine arcsine arctangent arctangent2
aref array assq big bit bit-and bit-or bit-sll bit-sra bit-srl
bit-xor block bold br break cadr car cast catch cddr cdr center
char choose choose-randomly choose-sequentially code cond cons
cons* continue copy-list cosine define define-class define-constant
define-form define-macro define-variable delq! description docref
documentstyle dotimes enumerate eq? eqn equal? error eval example
exponential file-write-date finally float for format get-buffer
get-buffer-of-size get-string-buffer get-string-buffer-of-size
hrule if image import include input-var int intl6 int8 invoke-method
isa italic itemize keyword-supplied? lambda last lastcdr let letrec
list list-length loop make-list map map! match match-prefix max memq
min neq? new nobreak not nth nthrest or output paragraph popup-dialogue
popup-graphic popup-text-query power print proc quote random
release-buffer release-string-buffer require rest-as-list
rest-as-vector return reverse reverse! s section set sine sleep
small sort-list sort-list! stderr stdout sublist subsection
subsubsection subtext symbol tagged-block tagged-loop tangent
text text->symbol text-append text-compare text-equal? text-fill
text-hash text-pos text-replace text-rpos throw tiny try typeof
unless until value vector vector->list verbatim void void? vrule
walk when while write}

100

References
Texts:

Cornell, Gary & Horstmann, Cay S. (1997). Core Jave: second edition. USA: Sunsoft Press.

Glickstein, Bob. (1997). Writing GNU Emacs Extensions: Editor Cusomization and
Creations with Lisp. Cambridge, MA: O'Reilly & Associates, Inc.

Stallman, Richard M. (July 1996). GNU Emacs Manual; 12th edition. version 19.3. Boston,
MA: Free Software Foundation.

Ward, Stephen A & Halstead, Robert H. (1990). Computational Structures. Cambridge,
MA: MIT Press.

Primary Sources:

Stallman, Richard M. (July 18, 1997.) Manhattan Sammy's Deli.

On-Line:

Byrd and Block Communications, Inc. (September 23, 1997) More Info - Flight of the
Bumblebee. [
esmi970923.html.

(WW Document] URL http://www.earthsky.com/1997/

Carroll, Lewis. (1998). Alice's Adventures in Wonderland. [WWW Document] URL http:
/www.bibliomania.com/Fiction/Caroll/CompleteWorks/index.html.

Peterson, Ivars. (March 3, 1997). Flight of the BumbleBee. [WWW Document] URL http:/
/www.maa.org/mathland/mathland 3 31.html.

Raymond, Eric S. & Steele Jr., Guy L. (July 24, 1996). The Hacker Jargon File. [WWW
Document] (version 4.0.0). URL http://earthspace.net/jargon/j argon toc.html.

Tenniel, Sir John. (1998). The Cheshire Cat. [WWW Image]. http://www.math.umn.edu/
-rudnaya/books/alice23a.gif.

Zetie, Ken. The Strange Case Of The Bumble Bee Which Flew. [WWW Document] URL
httn://users.ox.ac.uk/-zetie/storv/bees.txt.

102

.... r- j

103

