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Abstract

Ferroresonance can induce an undesired over-voltage often accompanied with a phase re-
versal which can damage power distribution transformers and motors and cause injury to

the system operators. Similarly, under some conditions, power distribution transformers
can excite subharmonic frequencies which in turn can damage the transformer winding and
loads connected to the grid lines. While present analysis tools are based on analytical or
experimental investigations, no rigorous systematic way exists to analyze ferroresonance
and subharmonic problems in power distribution transformers.

The purpose of this thesis is to develop a systematic methodology to study ferrores-

onance and subharmonic problems in power distribution transformers, particularly, their

existence, stability, and bifurcations. The methodology proposed for studying the ferrores-
onance problem is the generalized state-space averaging technique. Both single-phase and
three-phase ferroresonance are considered. Appropriate models are developed for the single-
phase and three-phase power distribution transformers which are suitable for the study of

the ferroresonance problem, i.e, low frequency models.

The theory of the incremental-input describing function is revisited and a subtle

flaw in the formulation of the theory is modified to address the stability of general systems,
particularly at synchronous frequency. A generalized Nyquist criterion is presented to assess
the stability of the periodic solutions. The modified incremental-input describing function
theory is applied to single-phase ferroresonance systems.

Thesis Supervisor: Bernard C. Lesieutre
Title: Associate Professor of Electrical Engineering





Dedication

To

my parents

and

my wife





Acknowledgements

I owe much to many people who have contributed considerably to this thesis directly and

indirectly. I would like to take this moment to thank these individuals for their assistance

and encouragement in reaching this point.

First, I must thank profusely my advisor, Bernard Lesieutre; his breath of knowledge,

his willingness to explain issues in details, and his high standards have not only guided my

work to success but also have helped me to grow as a scientist. His interest in and direction

of my thesis have been invaluable throughout this effort.

I have been most fortunate to have the opportunity to work closely with Professor

George Verghese during my graduate work at MIT. He suggested many ideas for mitigating

the problems that arose in my research. I appreciate his constant drilling and motivation

to force me to understand and grasp of the necessary theory. I also thank George for

being a member of my thesis and area exam committees. I would also like to thank the

other members of my thesis committee Professor James Kirtley and Professor Aleksandar

Stankovid for taking the time to review and evaluate my work.

It has been a privilege to have an academic advisor, Professor Munther Dahleh, who

constantly guided me through my academic development at MIT in the last five years. I

am very grateful for his advice and direction.

I would like to thank James Hockenberry who was always willing to spend some time

to proofread my thesis. His patience with my writing was indefatigable.

I am particularly appreciative of my friends and family Thuraya and Ahmed Abdi,

Vahe Caliskan, Ali Farah, Kafi Hassan, James Hockenberry, Abdirahman Ibrahim, Ray

Jalilvand, Kathy Millis, Vivian Mizuno, and Philip Yoon, who provided me with constant

support and encouragement through the years at MIT.

I would like to thank the people and agents who supported me financially the last

five years at MIT: GEM Ph.D. Engineering fellowship, MIT EECS Graduate Alumni Fel-

lowship Fund, Vinto Hayes, GSO Fellowship, EECS Academic & Research Support, and the

Harold E Edgerton Fund. I gratefully acknowledge Peggy Carney for her boundless effort

in administrating my fellowship funds.

Finally, this thesis is dedicated to my wife, my best friend, Suad Mohamed. Without

her constant support and motivation, I could never have achieved all that I have. To her I

owe more than I can ever express.



Acknowledgements



Contents

1 Introduction

1.1 Previous Work on Ferroresonance . . . . . . . . . . . .

1.1.1 Experimental Investigation of Ferroresonance .

1.1.2 Theoretical Investigation of Ferroresonance . .

1.1.2.1 Time Domain Approach . . . . . . . .

1.1.2.2 Frequency Domain Approach . . . . .

1.2 Modeling Ferroresonance .................

1.2.1 Single-Phase Ferroresonance Model . . . . . . .

1.2.2 Three-Phase Ferroresonance Model . . . . . . .

1.3 Contribution of the Thesis ................

1.4 Organization of the Thesis . . . . . . . . . . . . . . . .

2 Modeling Ferroresonance in Power Distribution Networks

2.1 Single-Phase Ferroresonance Model . . . . . . . . . . . . . . .

2.2 Three-phase Ferroresonance Models . . . . . . . . . . . . . .

2.2.1 Balanced Power System Network . . . . . . . . . . . .

2.2.2 One Switch Opened Ferroresonance Model . . . . . . .

2.2.3 Two Switches Opened Ferroresonance Model......

3 Synchronous Incremental-input Describing Function

3.1 Dual-Input Describing Function . . . . . . . . . . . . . . . . .

3.1.1 Condition For Instability . . . . . . . . . . . . . . . .

3.1.2 Existence of Multiple Steady-State Solutions......

3.1.3 Incremental-Input Describing Function Applications .

3.2 Modified Dual-Input Describing Function Analysis .......

23

. . . . . . . . . . 25

. . . . . . . . . . 26

. . . . . . . . . . 28

. . . . . . . . . . 28

. . . . . . . . . . 33

.......... 34

. . . . . . . . . . 35

. . . . . . . . . . 35

. .. .. . .. .. 35

. . . . . . . . . . 36

39

. . . . 39

. . . . 41

. . . . 41

. . . . 44

. . . . 47

51

51

53

55

57

62



Nyquist Stability Analysis Criterion . . . . . . . . . . . . . . ..

Describing Function Analysis ........................

Dual-input Describing Function Analysis ...............

Stability Analysis Using Incremental-input Describing Function .

4 Generalized State-Space Averaging Methodology

4.1 Harmonic Periodic Solutions ...............

4.1.1 Existence of Harmonic Periodic Solutions . . .

4.1.2 Stability of Harmonic Periodic Solutions ...

4.2 Subharmonic Periodic Solutions . . . . . . . . . . . . .

4.2.1 Sub-Synchronous Responses . . . . . . . . . . .

4.2.2 Synchronous Responses .............

4.2.3 Existence of Subharmonic Periodic Solutions .

4.2.4 Stability of Subharmonic Periodic Solutions . .

5 Analysis Tools: Poincard Map, Floquet Theory, and

5.1 Model Formulation for Duffing Oscillator . . . . . . .

5.2 Time Simulations for the Duffing Oscillator . . . . . .

5.3 Generalized State-Space Averaging Method . . . . . .

5.3.1 Harmonic Solutions for Duffing Oscillator . . .

5.3.2 Subharmonic Solutions for Duffing Oscillator .

81

. .. ... . .. .. . 81

. . . . . . . . . . . . 82

. .. .. .. .. .. . 87

. . . . . . . . . . . . 91

. . . . . . . . . . . . 92

. .. .. .. .. .. . 93

. . . . . . . . . . . . 96

. . . . . . . . . . . . 97

GSSA Method 99

. . . . . . . . . . . . 99

. . . . . . . . . . . . 100

. . . . . . . . . . . . 101

. . . . . . . . . . . . 101

. . . . . . . . . . . . 108

5.4 Floquet Theory ..............................

5.4.1 Application of Floquet Theory to Duffing Oscillator . . . . .

5.4.1.1 Harmonic Solutions of Duffing Oscillator . . . . . .

5.4.1.2 Subharmonic Solutions of Duffing Oscillator . . . .

5.5 Poincare M aps ...................... ........

5.5.1 Application of the Poincar6 Map to the Duffing Oscillator . .

3.2.1

3.2.2

3.2.3

3.2.4

Contents

117

119

120

124

126

129



Contents

5.6 Connections Between Poincar6 Map, Floquet Theory, and GSSA . . . . .

6 Applications

6.1 Single-phase Ferroresonance . . . . .

130

133

133

6.1.1 Harmonic Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . 134

6.1.1.1 Line Inductance Variations . . . . . . . . . . . . . . . . . . 134

6.1.1.2 Input Voltage Magnitude Variations . . . . . . . . . . . . . 134

6.1.2 Stability of Harmonic Periodic Solutions . . . . . . . . . . . . . . . . 135

6.1.3 Robustness analysis for the steady-state solutions . . . . . . . . . . . 140

6.2 Three-phase Ferroresonance: All Switches Closed . . . . . . . . . . . . . . . 142

6.2.1 Harmonic Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . 144

6.2.2 Stability of Harmonic Periodic Solutions . . . . . . . . . . . . . . . . 146

6.3 Three-phase Ferroresonance: One Switch Opened . . . . . . . . . . . . . . . 151

6.3.1 Harmonic Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . 153

6.3.2 Stability of Harmonic Periodic Solutions . . . . . . . . . . . . . . . . 155

6.4 Three-phase Ferroresonance: Two Switches Opened . . . . . . . . . . . . . . 160

6.4.1 Harmonic Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . 161

6.4.2 Stability of Harmonic Periodic Solutions . . . . . . . . . . . . . . . . 162

6.5 Switching Simulations ......... . . . . . . . . . . . . . . . . 167

7 Concluding Remarks 177

7.1 Summ ary ..................................... 177

7.2 Suggestions for Future Work ............................ 179

7.2.1 Other Models for the Transformer Core . . . . . . . . . . . . . . . . 179

7.2.2 Simplification of the System Model (DAE) . . . . . . . . . . . . . . 179

7.2.3 MIMO Synchronous Incremental-Input Describing Function . . . . . 180

7.2.4 Methods to Approximate Matrix A . . . . . . . . . . . . . . . . . . . 180

-----------



12 Contents

7.2.5 Investigations of Subharmonic Steady-state Solutions . . . . . . . . . 181

7.2.6 Improvement of Numerical Computations . . . . . . . . . . . . . . . 181

A Appendices 183

A.1 Three-Phase Ferroresonance: Opened One Conductor . . . . . . . . . . . . 183

A.2 Three-Phase Ferroresonance: Opened Two conductors . . . . . . . . . . . . 186

A.3 Synchronous Incremental-Input Describing Function . . . . . . . . . . . . . 188

Bibliography 195



List of Figures

1300-MVA Power transformer (Westinghouse Electric

Ferroresonance: Discontinuous jump amplitude . . .

Ferroresonance: Subharmonic responses . . . . . . .

Ferroresonance: Amplitude-modulated oscillations .

Series nonlinear circuit .................

Graphical solution of ferroresonance circuit [1] . . . .

Nonlinear Feedback System ..............

Parallel high voltage transmission lines . . . . . . . .

Single-phase ferroresonance circuit model: I . . . . .

Corporation)

2.3 Single-phase ferroresonance circuit model: II

Three-phase

Three-phase

Three-phase

balanced power system network: All switches

power system network: One switch opened .

power system network: Two switches opened

3.1 Nonlinear interconnected feedback system . . . . . . . . . . . . . . . . . . .

3.2 Complex Plane . . . ..... .................................

3.3 Single-phase ferroresonance circuit model . . . . . . . . . . . . . . . . . . .

3.4 G(jw) and -N-'(A, €) for R = 0.002 pu, C = 50 pu, and L = 0.021 pu . . .

3.5 Time simulation for R = 0.002 pu, C = 50 pu, and L = 0.021 pu . . . . . . .

3.6 G(jw) and -N-'(A, ¢) for R = 0.002 pu, C = 50pu, and L = 0.023 pu . . .

3.7 Time simulation for R = 0.002 pu, C = 50 pu, and L = 0.025 pu . . . . . ..

3.8 Frequency response of system one . . . . . . . . . . . . . . . . . . . . . . ..

3.9 Frequency response of system two . . . . . . . . . . . . . . . . . . .......

3.10 Frequency response of system three . . . . . . . . . . . . . . . . . . . .....

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.2

. . . . . . 25

. . . . . . 26

. . . . . . 27

...... 29

. . . . . . 30

...... 33

. . . . . . 39

. . . . . . 40

. . . . . . 40

. . . . . . 42

. . . . . . 45

. . . . . . 47

2.4

2.5

2.6

closed

...........



3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5 Eigenvalues of the approximated harmonic system: k = ±7 and

5.6 Approximated harmonic solutions: k =- +11 and 6 = 0.15 . . .

6 = 0.15

Eigenvalues of the approximated harmonic system: k = ±11 and 6 = 0.15

Approximated harmonic solutions: k = ±17 and 6 = 0.15 . . . . . . . . . .

Eigenvalues of the approximated harmonic system: k = +17 and 6 = 0.15

Approximated harmonic solutions: k = ±25 and 6 = 0.15 . . . . . . . . . .

Eigenvalues of the approximated harmonic system: k = ±25 and 6 = 0.15 .

Approximated harmonic solutions: k = ±7 and 6 = 0.22 . . . . . . . . . . .

List of Figures

Frequency response of system four . . . . . . . . . . . .

Nonlinear Element .....................

Frequency response of G(jw) ...............

Loci of G(jw) and at .............

System time simulations at operating point )1 ...

Loci of G(jw) and at (2 ..............

System time simulations at operating point 4D2 . .

Loci of G(jw) and at .............

System time simulations at operating point P3 ......

Series linear LC circuit ...................

Series nonlinear circuit ...................

Harmonic solutions .....................

Subharmonic Solutions ...................

Nonlinear interconnected system [2] . . . . . . . . . . .

Duffing oscillator: Harmonic steady-state response . . .

Duffing oscillator: Subharmonic steady-state response .

Approximated harmonic solutions: k = ±7 and 6 = 0.15

. . . . . . . . . . . 65

. . .. . .. .. . 67

... . .. .. . .. 76

. .. . .. . .. .. 78

. . . . . . . . . . . 78

. . .. .. . .. .. 79

. . .. .. . .. .. 79

.. .. .. . .. .. 80

. . . . . . . . . . . 80

.. . .. .. .. . . 84

.. . .. .. . .. . 91

. .. .. .. . .. . 95

. . . .. . ... . 96

. 99

S. 101

S. 102

S. 103

S. 104

S. 104

5.7

5.8

5.9

5.10

5.11

5.12

105

106

106

107

107

108



List of Figures

Eigenvalues of

Approximated

Eigenvalues of

Approximated

Eigenvalues of

Approximated

Eigenvalues of

Approximated

Eigenvalues of

Approximated

the approximated harmonic system: k = ±7 and 6 = 0.22

harmonic solutions: k = ±11 and 6 = 0.22 . . . . . . . .

the approximated harmonic system: k = ±11 6 = 0.22 . .

harmonic solutions: k = ±17 and 6 = 0.22 . . . . . . . .

the approximated harmonic system: k = L17 6 = 0.22 . .

harmonic solutions: k = ±25 and 6 = 0.22 . . . . . . . .

the approximated harmonic system: k = ±25 6 = 0.22 . .

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

the approximated subharmonic system:

Subharmonic solutions: k = ill± and 6

k = ±7

= 0.22 .

Eigenvalues of the approximated subharmonic system: k = ±11 .

Approximated Subharmonic solutions: k = ±17 and 6 = 0.22 . .

Eigenvalues of the approximated subharmonic system: k = ±17 .

Approximated Subharmonic solutions: k = ±25 and 6 = 0.22 . .

5.27 Eigenvalues of the approximated subharmonic

5.28 Variational system simulations for 0 = [1 0]

5.29 Variational system simulations for i 0 = [0 1]

5.30 Variational system simulations for 0 = [1 0]

5.31 Variational system simulations for io = [0 1]

system: k = ±25 .

109

110

110

111

111

112

112

. . . . 113

. . . . 113

. . . . 114

. . . . 114

. . . . 115

. . . . 115

. . . . 116

. . . . 116

. . . . 122

. . . . 122

. . . . 125

. . . . 126

Steady-state solutions for M = 0.25 pu: Single-phase . . . . . . . . . . . . . 135

Steady-state solutions for L = 0.025 pu: Single-phase . . . . . . . . . . . . . 136

Eigenvalues for curve C1: Single-phase . . . . . . . . . . . . . . . . . . . . . 137

Eigenvalues for curve C2: Single-phase . . . . . . . . . . . . . . . . . . . . . 137

Eigenvalues for curve C3: Single-phase . . . . . . . . . . . . . . . . . . . . . 138

Eigenvalues for point PI: Single-phase . . . . . . . . . . . . . . . . . . . . . 138

Subharmonic solutions: k = ±7 and 6 = 0.22 .

6.1

6.2

6.3

6.4

6.5

6.6



List of Figures

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Eigenvalues for point P2 : Single-phase . . . . . . . . . . . . . .

Time simulations for A(t) case one: Single-phase . . . . . . . .

Time simulations for A(t) case two: Single-phase . . . . . . . .

Steady-state solutions for M = 1.0 pu: All switches closed . . .

Steady-state solutions for 40, 60, and 120 mile transmission line

Eigenvalues of the linearized system: All switches closed . . . .

Simulink block diagram for the system: All switches closed . .

Time simulations for A1 (t): All switches closed . . . . . . . . .

Time simulations for A2 (t): All switches closed . . . . . . . . .

Time simulations for A3 (t): All switches closed . . . . . . . . .

Steady-state solutions for M = 1.0 pu: One switch opened . . .

Steady-state solutions for 60 mile transmission line length: One

Steady-state solutions for 60 mile transmission line length: One

6.20 Eigenvalues for curve C1: One switch opened . . .

6.21 Eigenvalues for curve C4: One switch opened . . .

6.22 Eigenvalues for curve C5: One switch opened . . .

6.23 Eigenvalues for curve C2 : One switch opened . . .

6.24 Eigenvalues for curve C3 : One switch opened . . .

6.25 Simulink block diagram for the system: One switch

6.26 Time simulations for A1 (t): One switch opened . .

6.27 Time simulations for A2(t): One switch opened . .

6.28 Time simulations for A3(t): One switch opened . .

6.29 Steady-state harmonic solutions for M = 1.0 pu: T

6.30 Steady-state solutions for 60 mile transmission lin
opened . . . . . . . . . . . . . . . . . . . . . . . . .

6.31 Eigenvalues for curve C1: Two switches opened . .

139

139

140

145

145

149

149

lengths

. . . . . . . 150

. . . . . . . 150

. . . . . . . 151

. . . . . . . 153

switch opened 154

switch opened 154

. . . . . . . . . . . . . . 155

. . . . . . . . . . . . . . 156

. . . . . . . . . . . . . . 156

. . . . . . . . . . . . . . 157

. . . . . . . . . . . . . . 157

opened . . . . . . . . . 158

. . . . . . . . . . . . . . 158

. . . . . . . . . . . . . . 159

. . . . . . . . . . . . . . 159

wo switches opened . . .

e length: Two switches
. . . . . . . . . . . . . .

162

163

164



List of Figures

6.32

6.33

6.34

6.35

6.36

6.37

6.38

Eigenvalues for curve C2: Two switches opened .

Eigenvalues for curve C3 : Two switches opened .

System time simulations: Two switches opened .

Time simulations for A1 (t):

Time simulations for A2 (t):

Time simulations for A3 (t):

Simulink block diagram for

6.39 Time simulations for AI(t):

6.40 Time simulations for A2(t):

6.41 Time simulations for A3(t):

6.42 Time simulations for AI(t):

6.43 Time simulations for A2(t):

6.44 Time simulations for A3(t):

6.45 Time simulations for A1 (t):

6.46 Time simulations for A2(t):

6.47 Time simulations for A3(t):

6.48 Time simulations for A1 (t):

6.49 Time simulations for A2(t):

6.50 Time simulations for A3(t):

6.51 Time simulations for Ai(t):

6.52 Time simulations for A2(t):

6.53 Time simulations for A3(t):

Two switches opened . . . . . . .

Two switches opened . . . . . . .

Two switches opened . . . . . . .

the system: Switching simulations

S opened solution one . . . . . .

opened

opened

opened

opened

opened

opened

opened

opened

and S2

and S2

and S2

and S2

and S2

and S2

solution one . .

solution one . .

solution Two .

solution Two .

solution Two .

solution Three.

solution Three.

solution three .

opened solution case on

opened solution case on

solution case one . . .

opened solution case tw

opened solution case tw

opened solution case tw

. . . . . . . . 164

. . . . . . . . 165

. . . . . . . . 165

. . . . . . . . 166

. . . . . . . . 166

. . . . . . . . 167

. . . . . . . . 168

. . . . . . . . 169

. . . . . . . . 169

. . . . . . . . 170

. . . . . . . . 170

. . . . . . . . 171

. . . . . . . . 171

. . . . . . . . 172

. . . . . . . . 172

. . . . . . . . 173

e . . . . . . . 173

e . . . . . . . 174

. . . . . . . . 174

o . . . . . . . 175

o . . . . . . . 175

o . . . . . . . 176

7.1 Eigenvalues of approximated system: k = +35 . . . . . . . . . . .

A.1 Open-loop frequency response of the system: w > 0 . . . . . . .

A.2 Open-loop frequency response of the system: -oc < w < oc . . .

180

. . . . 190

. . . . 191



18 List of Figures

A.3 G(jw) and-N loci- ............................. 193
N(A- q5)



List of Tables

5.1 Approximated harmonic Solutions: 3 = 0.15 . . . . . . . . . . . . . . . . . . 123

5.2 Approximated harmonic Solutions: 6 = 0.22 . . . . . . . . . . . . . . . . . . 124

5.3 Approximated subharmonic Solutions: 6 = 0.22 . . . . . . . . . . . . . . . . 126

5.4 Harmonic Solutions: 6 = 0.15 . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Harmonic solutions: 6 -= 0.22 .......................... 131

5.6 Subharmonic Solutions: 6 = 0.22 ........................ 131



List of Tables



List of Symbols

Roman letters

A Jacobian matrix of slowly varying sysytem, see equation (4.27)

B Incremental-input for the nonlinear element, see equation (3.5)

C Linear Capacitance of transmission lines, see equation (2.2)

f(x) Nonlinear vector field, see equation (4.1)

Fk(Xk) Slowly varying vector field, see equation (4.8)

G(s) Linear transfer function, see equation (3.12)

Hk Slowly varying nonlinear vector field, see equation (6.3)

iL(t) Nonlinear inductive current, see equation (2.1)

K 1 Linear constant coefficient term for the transformer core model, see equation (2.1)

K 5 Nonlinear constant coefficient term for the transformer core model, see equation (2.1)

L Linear inductance of transmission lines, see equation (2.2)

L(s) System loop-gain, see equation (3.9)

M Magnitude of the sinusoidal input, v(t)

N(A) Describing function gain, see equation (3.7)

N(A, q) Synchronous incremental-input describing function gain, see equation (3.8)

P(T) Poincare map , see equation (5.39)

Qk-n Jacobian matrix of Fk(Xk), see equation (4.27)

R Linear resistance of transmission lines, see equation (2.2)

r(t) Reference input, see equation (3.4)

v(t) Sinusoidal input voltage, see equation (2.2)

Xk Complex amplitude, see equation (4.3)

Xk (t) Slowly varying complex amplitude, see equation (4.4)

A Input magnitude for the nonlinear element, see equation (3.3)

C Solution curve, page 135
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Chapter 1

Introduction

The dynamics of physical systems, such as, electrical systems, electromechanical systems,

mechanical systems, and systems from other engineering disciplines, can be modeled with

nonlinear differential-algebraic equations or nonlinear differential equations. By studying

the dynamics of these models, we can probe the behavior of these physical systems which

in turn allows us to design or control these systems to perform specific operations.

Some phenomena are essentially nonlinear and can only occur in the presence of a

nonlinearity in the system. These phenomena cannot be described or predicted by linear

dynamical systems. Hence the analysis of nonlinear dynamical systems is more complicated

than that for linear systems. Some of the characteristics of nonlinear systems that cannot

be predicted by linear systems are: finite escape time responses, multiple equilibria, limit

cycle phenomenon, periodic or almost periodic responses, chaos, and multiple modes of

behavior.

One specific example of a nonlinear dynamical system is the power system trans-

mission and distribution network. These systems comprise generators, transmission lines,

power transformers, and loads. In this research, we focus on the nonlinear characteristics

of the power transformers.

The nonlinear characteristics of iron-core power system transformers (example shown

in Fig. 1.1) have been investigated for many years. These devices can induce a high volt-

age due to ferroresonance phenomenon. Ferroresonance is a nonlinear phenomenon which

can induce discontinuous jump amplitude responses, subharmonic responses, or amplitude-

modulated almost-periodic oscillations. The main components that initiate ferroresonance

are a voltage source, a lightly damped system, and a closed-path between the compensator

capacitance or transmission line capacitance and the nonlinear inductance of the transformer

core.

Lightly loaded power transformers are susceptible to overvoltage due to ferroreso-

nance problem. The existence of an overvoltage at the primary terminals of the transformer

can increase the potential difference between the transformer windings and cause corona

phenomena. This phenomenon may lead to the failure of the transformer which can injure

system operators. It might also damage other equipment connected to the system such as,
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Figure 1.1: 1300-MVA Power transformer (Westinghouse Electric Corporation)

lighting arresters, fuses, circuit breakers, and motors. For example, reversal of direction of

rotation of motors under ferroresonance is reported in [3]. Figure 1.2 shows a jump volt-

age during a ferroresonance. The amplitude of the response A(t) jumped from 0.514 pu to

1.197 pu which is an increase of more than 2.3 times.

Besides the overvoltage problem, the responses of submultiple frequencies, known

as subharmonic frequencies, at the transformer terminal can damage the transformer and

equipment connected to the power distribution network. They can also interfere with com-

munication lines close to the network grid. Some examples of subharmonic frequencies are

fo, fo, f fo, where fo is the frequency of the driving signal. These odd-order subharmon-

ics may be increased or quenched by changes in the initial conditions of the state variables.

They can appear in either stable oscillations or transient oscillations. In Fig. 1.3, A(t) is

the response of the transformer while vi(t) is input of the transformer. In this case, the

frequency of the flux A(t) is 1 of the input frequency.

The third behavior of ferroresonance is responses with almost-periodic oscillations

with amplitude-modulation. The frequency of this amplitude-modulation is close to the

frequency of the driving signal. The domain in which these amplitude-modulated oscillations

lie is much smaller than the domain of the harmonic and subharmonic responses. Kumar
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Figure 1.2: Ferroresonance: Discontinuous jump amplitude

and Ertem verified these peculiar oscillations with experimental simulations [4]. Figure 1.4

depicts amplitude-modulated responses under ferroresonance condition.

To unfold the chronological history of ferroresonance, we will review the research

activities on the ferroresonance phenomenon in the last 80 years.

1.1 Previous Work on Ferroresonance

The word ferroresonance was introduced in 1920 by Boucherot [5]. Due to practical interest,

this phenomenon was investigated heavily in the 1930s when it was discovered that a series

line capacitor and the nonlinear inductance of a transformer core can trigger ferroresonance

under some conditions.

Research on the ferroresonance problem has been carried out using two different

approaches. The first one uses experimental investigations, while the second concentrates

on developing models and analytical tools to investigate the behavior of the ferroresonance

phenomenon.
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1.1.1 Experimental Investigation of Ferroresonance

In 1931, Weller noticed that opening a line conductor can result in an abnormal voltage

in a lightly loaded power transformer bank [6]. Clarke conducted an experiment with

a transformer bank made up of three single-phase transformers, a transmission circuit,

fuses, and a three-phase power generator [3]. Similarly, three-phase core type and shell

type transformers were investigated. Clarke noticed for the three-phase transformers if the

power generator is grounded and the transformer is lightly loaded and grounded, there is no

overvoltage across the transformer terminals. On the other hand, if the power generator is

ungrounded and one or two conductors are opened, a high sustained voltage results which

can damage the transformer bank. Furthermore, if the system is loaded, the ferroresonance

overvoltage will be mitigated or eliminated totally.

A rural 14.4/24.9KV distribution system was investigated in [7]. This experiment

investigated six 75KVA transformer banks with switching locations varying from 1500 feet

to 9 miles with no load on the open phases or the banks. The findings of this experiment

are as follows: de-energizing one or two of the phases can excite a sustained overvoltage;

and loading the secondary of the open phase reduced the magnitude of the voltage across
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Figure 1.4: Ferroresonance: Amplitude-modulated oscillations

the primary terminals.

Auer and Schultz used a Transient Network Analyzer (TNA) to investigate the fer-

roresonance overvoltage and subharmonic responses of 14.4/24.9KV grounded-Wye distri-

bution system [8]. Investigating the ferroresonance behavior in a three-phase Wye/Delta

transformer bank using a TNA, Auer and Schultz concluded the following: during switching

of one or two lines, this system induces an overvoltage which can damage lighting arresters,

automatic circuit reclosers, power transformers, cutouts and meters. Furthermore, ground-

ing the primary of the transformer or loading the secondary of the transformer will reduce

the magnitude of the ferroresonance overvoltage. Similar results were found in [9]. Hopkin-

son also found this phenomenon in three-phase Delta/Wye and Wye/Delta configurations

of three-phase transformer banks using a transient network analyzer [10,11]. Smith and

Swanson showed that remotely grounded-Wye/grounded-Wye power transformers energized

from remote locations with single-pole switches result in an overvoltage [12].

Mairs, Stuehm, and Mork [13] implemented experimental investigations on five-

legged core transformers on rural electric power systems. This research uncovered that

the five-legged core type transformers can induce an overvoltage on unexcited phases. This
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ferroresonance is caused by switching of one or two phases during a system fault. To min-

imize or prevent the ferroresonance problem in this type of transformer, the authors gave

the following recommendations: for five-legged transformers, circuit breakers and switches

must be simultaneous three-phase interrupt devices;

Most recently, Mork and Stuehm [14] demonstrated chaotic behavior by varying

the magnitude of the input voltage, the lengths of transmission lines and the transformer

core characteristics. They investigated grounded-Wye to grounded-Wye 75KVA five-legged

wound-core power transformer with voltage rating 12470/7200GY-480/277GY. This exper-

iment showed for different parameters the response of the system is periodic while in other

cases it is chaotic.

1.1.2 Theoretical Investigation of Ferroresonance

The general characteristics of ferroresonance in power system transformers have been known

for some time. However, in order to determine specifically the behavior of such a phe-

nomenon, an analytical treatment is necessary. With such an analysis it is possible to gain

insight helpful for investigating the conditions under which the ferroresonance can occur

and methods to remedy the problem. In the past 82 years, two approaches for analytical

treatments for ferroresonance problem were explored; the time domain and the frequency

domain approaches.

1.1.2.1 Time Domain Approach

Odessey and Weber proposed the first analytical work for this problem in 1938 [1]. This

analysis used a graphical method. Odessey and Weber studied a series circuit consisting of

a sinusoidal input voltage, a capacitor, a resistor, and a saturable-core reactor as shown in

Fig 1.5. The steady-state voltage of the circuit can be denoted as

E = (IR) 2 + EL - 2(1.1)

where I is current of the series circuit, EL = f(I) is the voltage across the nonlinear inductor

which is a function of the current, and w is the angular frequency of the input voltage. Hence,

EL is the volt-ampere characteristic of the nonlinear reactor. Under sinusoidal conditions
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Figure 1.5: Series nonlinear circuit

the following equation holds
I

EL = ± E 2 - (IR) 2 + (1.2)WC
Odessey and Weber found the solution of the above equation by plotting the left and the

right side of the equation. It is clear that the right side of (1.2) has two terms in I: the first

term is an ellipse and the second term is a straight line. Therefore, for particular values

of E, R, and C the circuit will have either three solutions or one solution, as depicted in

Fig 1.6. In the figure, curve B is the voltage across the linear capacitor, curve C is the

voltage across the nonlinear inductor, curve D is E 2 - (IR) 2 , and curve A is the voltage

defined in equation (1.2). Furthermore, for given input magnitude E, C and R the circuit

can have three solutions as shown in the figure at the intersections between curves A and

C at the locations 1, 2, and 3. Using physical insight, Odessey and Weber found that there

are two stable solutions at locations 1 and 2 and one unstable solutions at the location 2. In

a similar circuit topology, Thomson and Riidenberg proposed a generalized method using

a graphical approach in 1939 [15,16]. Both authors considered series and parallel single-

phase circuits. For the series circuit, Thomson [17] generalized this graphical analysis to

include the core parameters, such as, magnetic flux strength H, magnetic flux density B,

the cross sectional area of the core A, and the number of turns of the winding n. If the

critical stability conditions for one reactor are know this method enables one to determine

the critical stability conditions for any other core which has the same grade of iron.

In 1953 this graphical approach was extended to three-phase circuits [9], such as,
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Figure 1.6: Graphical solution of ferroresonance circuit [1]

three-phase power transformers. These authors investigated the existence of ferroresonance

when one or two lines of the network were opened. They deduced from their analysis that, if

one or two lines are opened, the system will experience a high transient voltage and reversal

of phase rotation. Increasing the load or the power factor of the load will increase the ratio

of the capacitor KVA to transformer KVA at which multivalued voltages can occur.

Hayashi proposed a more detailed analysis in the 1950s [18]. In his approach, Hayashi

approximated the nonlinearity of the saturable core by polynomials. He used two types of

polynomials, symmetric and non-symmetric. After the approximation the core, Hayashi

assumed the solution of the differential equation to have the following form in steady-state

i(t) = x sin(wt) + y cos(wt) (1.3)

where w is the frequency of the input signal. After approximating the steady-state solution,
he formulated the variational system. This variational system has similar form to Hill's

equation. The stability of this equation was investigated using Hill's approach [19] which
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uses Floquet exponents to assess the stability of the time-varying variational system.

More recently, Kieny [20] used the series circuit as shown in Fig. 1.2 and applied

the theory of bifurcations. The steady-state solutions of the system were computed using

Newton's method. From these steady-state solutions, the bifurcations diagrams were for-

mulated. For different values of input voltage, the system exhibited both Hopf and pitch

fork bifurcations. The system also exhibited a i subharmonic response.

The critical input voltages at the bifurcation points were computed. To ascertain

the stability of the steady-state branches, the Poincard map and its Jacobian were com-

puted. Then, the stability of the system was assessed by examining the magnitude of the

eigenvalues of the Jacobian matrix of the map. This research extended the understanding

of the ferroresonance problem, particularly for the single-phase series circuits.

A 25MVA 110/44/4KV power auto-transformer was investigated in [21,22]. These

authors designated the nonlinear core with an odd polynomial of the following form

i(t) = a + bq, where n= 11 (1.4)

The first term represents the inverse of the linear inductance of the core while the higher-

order term approximates the saturation of the core. In their research the series circuit

was modified. A damping resistor was connected in parallel with the iron core to simulate

the core loss of the transformer. To simplify the computation of the steady-state solutions

of the nonlinear system, the authors approximated the solution up to the first harmonic

and utilized a similar nonlinear core model as in equation (1.3). The steady-state solution

of the system was computed using the harmonic balance approach. The critical values of

the magnitude input voltage and the capacitance of the capacitor were computed. The

authors pointed out that for some combinations of circuit parameters, ferroresonance can

occur even for an input voltage of very small magnitudes. Plots in flux-capacitance and

flux-input magnitude spaces show jumps of the flux for some critical values of the system

parameters.

Kieny, Le Roy and Sbai [23] computed the steady-state solutions of a series ferrores-

onance circuit using the Gelerkin method. For periodic systems, harmonic balancing and

the Gelerkin method are equivalent. Since the Gelerkin method imposes difficulty in con-

vergence during initialization if the initial condition is not well chosen, the authors used the

pseudo-arclength continuation method. The continuation method finds the solution of the

system at a point in a branch and then approximates a second point in the branch using
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the previous solution as an initial guess. In this research the nonlinear core was represented

as in (1.4) with n = 9. The authors concluded with similar results as previous methods.

However, a higher degree of accuracy was claimed for this method. One drawback of this

method is that it is not applicable to computations of non-periodic steady-state responses,

such as, pseudo-periodic or chaotic steady-state responses which can occur in ferroresonance

systems. Another drawback of this paper is that the investigators never checked the stabil-

ity of the steady-state solutions or even in that matter, the characteristic stability of the

turning points of the bifurcation diagrams.

So far we have only considered a power system with grounded generation. In [24]

the stability domains of three-phase ferroresonance in an isolated neutral network with

grounded-neutral voltage transformer were investigated. This type of topology can occur in

distribution networks in factories and public distribution networks which are temporarily

isolated. The nonlinearity of the iron core was denoted as in equation (1.4) with n = 5.

These authors employed Clarke transformations and decoupled the o component from the

a and 3 components since the three-phase model cannot be reduced into a single-phase

representation. The method of harmonic balance was employed to compute the steady-

state solution of the system. The stability of these steady-state solutions was assessed by

examining the sign of the Jacobian matrix of the harmonic equations. In this research, the

authors computed steady-state solutions with the same frequency as the frequency of the

input fo. Other solutions were computed with frequencies: 3fo, ½fo and 2fo.

In [25] a series circuit which contained a voltage source, capacitor, resistor and

nonlinear iron-core was investigated using the Newton-Raphson scheme. The authors first

discretised the nonlinear differential equation using the trapezoidal rule. To compute the

transient response, the authors solved the nonlinear algebraic equations at n successive

time-steps to obtain the transient response from t = 0 to t = T, where T is the period

of the input signal. Similarly, to compute the steady-state solution, they assumed that

there exists an initial condition such that the transient response is identical to the steady-

state response of the system. Hence, they formulated the Newton-Raphson scheme to find

that initial condition. The authors also compared their results with the results of using

the Hybrid Technique [26]. Around bifurcation points, the authors used the continuation

method, since the Jacobian matrix is singular at the turning points.

Ferroresonance of three-phase oscillations in ungrounded power system networks was

investigated in [27]. These authors used a similar approach and a similar core model as those

in [24]; however, they computed the steady-state response as a boundary value problem.

The system was converted into an autonomous representation by adding two more states
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to the original system. The AUTO software package was used to compute the steady-state

solutions of the system. From these steady-state solutions, the bifurcation diagrams were

generated. The bifurcation parameters used in this system were the magnitude of the input

voltage and the capacitance of the transmission lines, i.e. the zero-sequence capacitance.

1.1.2.2 Frequency Domain Approach

In the frequency domain, the system is formulated in a feedback setting by quasi-linearizing

the nonlinear elements in the system. This linearization depends on steady-state solutions

of the system. Then, using this linearized model, we employ frequency domain techniques to

analyze the stability of the steady-state solutions. In this section, we consider the nonlinear

feedback system shown in Fig 1.7. The series ferroresonance circuit which comprises a

8)

Figure 1.7: Nonlinear Feedback System

resistor, capacitor, and nonlinear inductor can be formulated in a feedback setting as in

Fig. 1.7. X is the flux of the core, R is the input voltage of the transformer, G(s) is the

frequency domain representation of the linear part of the system, N is the representation of

the nonlinearity, Y is the output of the nonlinear element and C is the output of G(s). The

objective of this scheme is to approximate N using the steady-state value of the magnitude

and the phase of the error signal, and then use the frequency domain techniques such as

the Nyquist criterion [28-31] to assess the stability of the feedback system.

In this approach the steady-state solution of the system is computed using the the

describing function method [32-35]. The method used to analyze the stability of the steady-

state solution is based on the theory developed by West, Douce, and Livesley in [36]. This

theory is known as the Incremental-Input Describing Function Analysis. This method as-

sesses the stability of the feedback system by adding the input signal to an incremental

input with the same frequency but different phase and checks the stability of the incremen-

tal system using the Nyquist criterion.
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Swift [37] applied this theory to a single-phase transformer in 1969. He found by

fixing the line capacitance and resistance of the transmission lines and varying the magnitude

of the input voltage and the line inductance of the system, the system can have different

solutions. Some of these solutions are stable while others are unstable. Further application

to this theory, Kumar and Ertem investigated capacitor voltage transformer for existence

of ferroresonance [4] in 1991. In this study, they found harmonic and subharmonic of the

system solutions and also they investigated the corresponding stability of these steady-state

solutions.

In Chapter 3, we will give a detailed explanations in this theory.

1.2 Modeling Ferroresonance

Analyzing ferroresonance requires a model to which we can apply analytical tools in order

to isolate the regions in which ferroresonance can occur for a given system. In general

ferroresonance models can be classified into two categories: single-phase and three-phase

representations. Transformer models, particularly those which can handle low frequency

simulations, are well developed and can be found in [38-42].

Generally, there are three model representations for the nonlinearity of the trans-

former inductance: two-term nonlinear polynomial, pseudo-nonlinear with hysteresis, and

true-nonlinear with hysteresis.

In this research, we employ the two-term polynomial core models given by equa-

tion (1.4), where n can take the values {3, 5, 7, ...}. This model simplifies the complexity

of the system dynamics and it gives results which agree with experimental results for well

behaved systems. Two popular ways to compute the coefficient of the polynomial are given

by [43,44]. The first one uses the least-square curve fitting method while the other one

chooses specific points of the root-mean-square values of the voltage and the current of the

nonlinear core using some optimal rule. In benchmark tests, the second method was more

robust than the least-square method.

Before stating the criterion of the two models of ferroresonance systems, we give some

definitions from [45], written here for easy accessibility. Single-phase ferroresonance is said

to occur if the system can be reduced using Thevenin transformations in the linear part and

then the nonlinear inductance of the transformer is connected in series or if a three-phase

system can be resolved into separate single-phase representations in which ferroresonance
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occurs in the same way as when they are connected in the three-phase system. Furthermore,

the three-phase ferroresonance is said to occur if the three-phases are strongly coupled, i.e.,

if the internal dynamics of the decoupled system differ from the internal dynamics of the

full system.

1.2.1 Single-Phase Ferroresonance Model

There are three possible scenarios for which single-phase ferroresonance can occur [45]:

* A voltage transformer connected to a high-voltage line, which is disconnected but

running alongside another energized line.

* A voltage transformer and the capacitance between hv/mv.

* A voltage transformer and the capacitance constituted by an open circuit breaker.

1.2.2 Three-Phase Ferroresonance Model

In the three-phase ferroresonance, there are two types:

* Voltage transformers connected to a system with an insulated neutral and very low

zero-sequence capacitance.

* An unloaded power transformer, supplied accidentally on one or two phases.

1.3 Contribution of the Thesis

The objective of this research is to develop a systematic tool to analyze ferroresonance in

nonlinear dynamical systems. The single-phase overvoltage or jump phenomenon problem

will be formulated in a control setting with a modified Nyquist criterion. This theory was

introduced by West, Douce, and Livesley, however, there is a subtle error in the theory. In

this research, the theory will be corrected and some examples are presented to prove the

modifications of the theory.

The generalized state-space averaging method is applied to the ferroresonance prob-

lem for the first time to examine the existence and stability of harmonic and subharmonic

Ill
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periodic steady-state solutions. Both single-phase and three-phase ferroresonance are con-

sidered. Additionally, harmonic and subharmonic periodic solutions are examined in terms

of their bifurcations, and the limits of the system parameters are computed to gain an

in-depth insight into the characteristics of ferroresonance phenomenon.

The first published work in this thesis was presented at the 3 1st North American

Power Symposium October, 1999 in San Luis Obispo CA. This paper addresses the single-

phase ferroresonance problem in power transformers [46].

1.4 Organization of the Thesis

The remainder of this thesis is divided into six chapters. Chapter 2 develops the ferrores-

onance models. In this research we are considering two power system topologies that are

prime candidates for the ferroresonance phenomenon. The first scenario is a single-phase

representation of a power system network. The second case is a power system network topol-

ogy with a lightly loaded or insufficient damped three-phase power distribution network with

single-pole switching. In this type of switching, three-phase transformers are vulnerable to

excessive line-to-line or line-to-ground overvoltages. In the three-phase transformer mod-

els, three separate models are considered: all switches closed, one switch opened, and two

switches opened. In all of the models we will formulate a system of nonlinear differential

equations that govern the internal dynamics of the nonlinear dynamical system.

In chapter 3, the Nyquist stability criterion is reviewed and the notion of the describ-

ing function is introduced. Along with this, the theory of the synchronous incremental-input

describing function which was introduced by West, Douce, and Livesley [36] is reviewed.

A sufficient condition for the stability of a nonlinear feedback system with a third-order

memoryless nonlinearity was derived by West, Douce, and Livesley; however, it fails to

address the stability of general systems, particularly at synchronous frequency. Incorrect

mapping regions were chosen to determine the poles that lie in the right-half s-plane of

the closed-loop system. In this research, the theory will be corrected to assess the stability

of nonlinear systems which have odd monomial memoryless nonlinearities. The modified

incremental-input describing function will follow. For further illustrations, we take a single-

phase ferroresonance example and compute the steady-state solution and the stability of the

periodic solutions to see subtle differences between the original incremental-input describing

function and modified one.

Chapter 4 lays the groundwork for the generalized state-space averaging methodol-
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ogy. This method has been shown in [47-51] to be an effective tool to analyze pulse-width

modulated(PWM) switching power converters and oscillations in nonlinear systems. How-

ever, Averaging theory dates to the days of van der Pol and Duffing era [52,19,18,53-55].

The generalized state-space averaging method is a way of representing a periodic signal as

linear combinations of the basis functions ejkwt. The coordinates of this space are slowly-

varying functions of time. If the signal is periodic, then the coordinates are constant;

otherwise they are slowly varying functions compared to the variations of the frequency of

the signal. Hence, this method gives robust results for systems that have responses such as

harmonics, subharmonics, superharmonics, and chaotic behavior.

Poincard and Floquet theory will be introduced in Chapter 5. A forced Duffing

oscillator is analyzed as a benchmark test for Poincar6, Floquet, and the generalized state-

space averaging method, particularly assessing the stability of the periodic solutions of the

oscillator.

Next, in Chapter 6, the generalized state-space methodology is applied to single-

phase and three-phase power transformers to study the existence and stability of harmonic

and subharmonic periodic steady-state responses. The bifurcations of these steady-state

solutions will be investigated to find the limits of the parameters of the system at the

bifurcation points.

Finally, Chapter 7 concludes the thesis with a summary and suggestions for future

work.



1.4 Organization of the Thesis



Chapter 2

Modeling Ferroresonance in Power

Distribution Networks

2.1 Single-Phase Ferroresonance Model

Single-phase ferroresonance can arise in three scenarios as defined in Section 1.2.1. The

first case occurs two high voltage transmission lines run in parallel with different operating

voltages, say 150KV and 75KV, as shown in Figure 2.1. Since line 2 is open at both ends,

3 Lines

Cl

.2o 3 Lines

C.

150KV

75KV

nes

Figure 2.1: Parallel high voltage transmission lines

the capacitance between the two lines induces a voltage across the transformer connected

to line 2. An equivalent circuit is shown in Fig. 2.2 where Ct is the resultant lumped

capacitance between line 1 and 2, v(t) is the resultant voltage across the capacitance between

the lines, C1 is the combination of line capacitance C2 and the compensating capacitance of

the transformer, and L, R and C2 are a 7r model representation of the transmission line. For

single-phase power distribution networks, Fig. 2.3 represents a ferroresonance model where

C1, L and R are the transmission line parameters. All the transformer losses are assumed
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Figure 2.2: Single-phase ferroresonance circuit model: I
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Figure 2.3: Single-phase ferroresonance circuit model: II

to be negligible in this model. The secondary of the transformer is unloaded

neglect the leakage reactance.

and we also

The relation between the current iL(t) and the flux A(t) shown in Fig. 2.3 can be

modeled as

iL(t) = KIA + K5A5 (2.1)

The first term of this equation represents the linear region of the magnetization charac-

teristic curve and its coefficient is related to the linear inductance of the transformer while

the nonlinear term approximates the saturation effect of the core. In this formulation, all

the measured quantities are normalized utilizing the following bases: linear transformer

reactance, rated angular frequency, and the rated voltage of the transformer.

The dynamics of System Fig. 2.3 is governing by the following nonlinear differential

t
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equation:

di(t) d A(t)
L dt + Ri(t) + dt=- v(t) where v(t) = Mcos(t)dtdt (2.2)

it) = dt2

Further simplification of (2.1) and (2.2) yields

d3 A d2A dA 4 dA,
•- + al ý +2 2- +3 a4A +4 a5 5  6Mcos(t) (2.3)

dt3  d ±dt dt

where,

R 1 + L R 20 4R 1
aL = a2 LC a3 C a4 = a5 = 1C and a6- LC (2.4)

In this model we have four parameters R, L, C and M. The values of the first three

parameters depend on the weather and the length of the transmission lines while M depends

on the amplitude of the input voltage. Since the secondary of the transformer is unloaded,

we eliminated the model of the secondary winding from the network diagram.

2.2 Three-phase Ferroresonance Models

For three-phase ferroresonance representations, we outlined two situations in Section 1.2.2.

We consider a lightly loaded three-phase power distribution transformer, a line modeled as

a ir model representation, a balanced positive-sequence generator, and a circuit breaker.

The critical element in this topology is the circuit breaker. We are interested in two cases:

one of the legs of the circuit breaker is opened while the other two are closed; two legs of

the circuit breaker are opened while the third leg is closed.

To gain some insight, first we consider a topology where all the switches are closed.

Then, we will extend our analysis for the other two circumstances.

2.2.1 Balanced Power System Network

Consider the three-phase power system network shown in Fig. 2.4. In this topology, the

system is operating under normal conditions. All the legs of the circuit breaker S1, S2, and

S3 are closed.
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T I?

iL1

El(t)

ZL2

i2

ZL3

i3
Cl'0

Figure 2.4: Three-phase balanced power system network: All switches closed

The 7r model branch 02, L, and R represent the transmission line impedance of the
network, while C, is the equivalent capacitance of 02 and the capacitance of a compensator
across the primary side of the transformer to support the voltage level at the transformer
terminals. All the lines are assumed to have the same line parameters. Furthermore, varying
the length of the transmission will change the line impedance. The three voltages Ei(t),
E2(t), and E 3(t) represent a grounded-Wye connected balanced positive-sequence three-
phase generator. The three nonlinear inductances represent the primary of the ungrounded-

Wye connected three-phase power distribution transformer. All the leakage resistance and
reactance of the transformer are ignored since they are much smaller than the transmission
line reactance and resistance. The secondary side of the transformer is unloaded. Similarly,

the capacitance between the windings of the transformer are disregarded since they are very
small.

To formulate a differential equation that governs the dynamics of this nonlinear
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system, we need to apply Kirchhoff's voltage and current laws. From nodes labeled with

v1, v2, and v3 , the current constraints of the connection are given by

Cdv +iL = i (2.5a)
dt

Cd v2 iL2 2 (2.5b)
dt

d v3

C1 dv + iL3 = i3 (2.5c)
dt

Similarly, computing the voltage drop across El and vi, E 2 and v2, and E3 and v3 we have

the following

dil +Ri + vi El (2.6a)
dt

d i 2

L d + Ri2 + v2 =E 2  (2.6b)
dt

Ldi + Ri 3 + v3 = E3  (2.6c)
dt

Furthermore, calculating the voltage drop across vi and v2, vl and v 3 , and the current

constraint at node 4 yields the following differential equation

dA1  dA3d A dAt + v3 = 0 (2.7a)
dt dt

dA12  dA13d 2 d A3 + v3 = 0 (2.7b)
dt dt

iLI + iL2 + iL3 0 (2.7c)

The relation between the current and the flux linkages of the nonlinear elements

takes the following form:

(2.8)iLi = K1 Ai + K~ where i = 1,2,3 n = 3,5,7,- -- and K 1, Kn ER
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For further simplifications, the system defined in Fig. 2.4 can be denoted as

dvi
dt

d v2

dt
d v3

dt
dil
dt

di 2

dt
di 3

dt
dA1

dt
d A2

dt
KI(A1

aiAj + a2 \ - a3il = 0

alA\22 a 2A -a 3 i2 = 0

aIA3 + a2A - a3 i3 = 0

a 5il + a4v1 =- a4 E1

a 5i2+ a4v2 - a4 E 2

a5i 3 + a4v 3 = a4 E 3

dA3 d vA + v3 = 0
dt

d A3d v2 + v3 = 0
dt

+ A2 + A3) + K1(A +

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

(2.9f)

(2.9g)

(2.9h)
(2.9i)

1 1
a3  - a4 --

C, L
R

and a5- R
L

this is a set of nonlinear differential-algebraic equations (DAE). Hence, we have 9 state

variables where each of the state variable is related to the other states by an algebraic

equation.

2.2.2 One Switch Opened Ferroresonance Model

For the second case, consider the following unbalanced power system network depicted in

Fig. 2.5. In this topology, the system is operating under unbalanced conditions. Switch S1

is open while S2 and 53 are closed.

The relations between the currents and the flux linkages of the nonlinear elements

take the following form:

iLi =KIAj+K nAA where i= 1,2,3 and n = 3,5,7,--- (2.11)

where

K1a = COc
Kn

a2 = Cci (2.10)
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S L R

1 iL1
El (t) r ý2 1- 1l-

R 1?

ZL2

i2
C1

D

V5

iL3

i3

Figure 2.5: Three-phase power system network: One switch opened

To formulate the differential equation that governs the dynamics of this unbalanced

power system network, we need to apply Kirchhoff's voltage and current laws. At nodes

labeled with v1 , v2, V3, and v4, the current constraints of the junctions are given by

d v1

01 dv - iLl +il - 0 (2.12a)dt
Sd v2 L2 - 2 0 (2.12b)

dtd v3

Cdv + iL3 - i3 = 0 (2.12c)
dt

d2 V4 i =0 (2.12d)
dt

Likewise, computing the voltage drop across v, and v4, E2 and v2, and E3 and v3 we

/I
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have the following

Ldit + Rit + v4 - vl = 0 (2.13a)
dit

L- d + Ri2 + V2 = E 2  (2.13b)
dt

Ldi + Ri3 + v3 = E 3  (2.13c)
dt

In addition, the voltage drop across vi and v2, vl and V3, and the current constraint

at node 5 yield the following differential equations

dA12  dA1-- + - + v - v2 = 0 (2.14a)
dt dt

dA3  dA1d + dA + Vt - V3 = 0 (2.14b)dt dt
iLl - iL2 - iL3 = 0 (2.14c)

For further simplifications, the system defined in Fig. 2.5 can be denoted as

dv1 - ajA1 - a2A1 + a3 1 = 0 (2.15a)

drv2 + a1 A2 + a2A2 - a3i2 = 0 (2.15b)
dt

dV3 + alA3 + a2A - a3i3 = 0 (2.15c)

d -V a6 = 0 (2.15d)dt

dil + a5il + a4v4 - a4v 1 = 0 (2.15e)
dt

d i2-i + a5i2 + a4v2 = a4E 2  (2.15f)
dti3
di- + a5i 3 + a4v3 = a4E 3  (2.15g)
dtdA2  dA1
d + + v1 - v2 = 0 (2.15h)dt dt
dA3  dA1d + + vd - v3 0 (2.15i)
dt dtK1( 1 2 -A)+ ( -A-A) (2.15j)

Kj(Aj - 1\2 - A3) + Knz(An An An) =0 (2.15j)
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where

K1  Kn 1 1 R 1a,- •AP2 - a3= 4=- 1 5 = - and a6 =(2.16)
C1  C1  C1  L L C2

Similarly, these are nonlinear differential-algebraic equations (DAE). Hence, we have 10

state variables where each of the state variables is associated to the other states by an

algebraic equation.

2.2.3 Two Switches Opened Ferroresonance Model

Finally, in the third situation, consider the following unbalanced power system network

depicted in Fig. 2.6. In this topology, the system is operating under unbalanced conditions.

Switches S1 and S2 are opened while S3 is closed.

S 4 L R v _
73_

4
A A A T --V

il t Ll

El (t) C2p C1 1

S2 5 L R V2

iL2

i2
E2 (t) IC2/ -N 17

T P

ZL3

i3

Figure 2.6: Three-phase power system network: Two switches opened

I 6

m
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To model the system, we need to formulate the differential equations that govern

the internal dynamics of this unbalanced power system network. Application of Kirchhoff's

voltage and current laws is required. From the nodes labeled with vi, v2, v3 , V4, and v 5 ,

the current constraints of the junctions are given by

dvj
1dvt - iL +ii = 0  (2.17a)

dt
d V2

C d2 - iL2 + i2 = 0  (2.17b)
dt

C-d v 3  iL3 - i3 = 0 (2.17c)
dt

dV4
C2 d• -i 1 =0 (2.17d)

dt
d v5

02 d•- i2 = 0 (2.17e)
dt

Analogously, computing the voltage drop across v, and v4, V2 and v5, and E3 and V 3

we have the following differential equations

di1
Ldil + Ril - vI + v4 = 0 (2.18a)

dt

Ld + Ri2 - V2 + v5 = 0 (2.18b)
dt

Ldi + Ri3 + v3 = E3  (2.18c)
dt

Furthermore, the voltage drop across vi and v3, v2 and v3, and the current constraint

at node 6 yield the following differential equations

dA dA 3
dA- + A + vI - v3 = 0 (2.19a)
dt dt

d A2 +d • + v2 - v 3 = 0 (2.19b)
dt dt

iL3 - iLl - iL2 = 0 (2.19c)



For further simplifications, the system defined in Fig. 2.6 can be denoted as

dvl - a1 ,A - a 2 A' + a3il = 0 (2.20a)
dt

dv 2 - a1 2 - a 2A' + a3i2 = 0 (2.20b)
dt

dv3 + ajA3 + a 2 ' - a3i3 = 0 (2.20c)
dt

d v4 - a6i1 = 0 (2.20d)
dt

d v5 - a6i2 = 0 (2.20e)
dt

dil + a5 i - a4V1 + a4V4 0 (2.20f)
dt

di2 + a5 i2 - a4V2 + a4v5 0 (2.20g)
dt

d i3 + a5i3 + a4v3 a4E3 (2.20h)
dt

d A+ d A3 + VI - V3 = 0 (2.20i)
dt 2  dA3  (2.20j)
d + dA + V2 - V3 = 0 (220j)
dt dt

K (AI + A2 - A3) - Kn(An + A - An) =0 (2.20k)

This model is a nonlinear differential-algebraic equation (DAE). Hence, we have 11 state

variables where each of the state variable is associated to the other states by an algebraic

equation.

These four models (2.3), (2.9), (2.15), and (2.20) will be analyzed using the gen-

eralized state-space averaging method in Chapter 6. Particularly, we will investigate the

equilibrium states of the systems and their stability. Furthermore, we will examine bifur-

cation diagrams of these steady-state solutions.

492.2 Three-phase Ferroresonance Models
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Chapter 3

Synchronous Incremental-input

Describing Function

One approach to simplifying the analysis of a nonlinear system is the optimal quasi-

linearization method which is based on sinusoidal-input describing function analysis. In

this method the nonlinear element is linearized based on a few parameters such as the

magnitude and the frequency of the gain of the nonlinear element. The elegance of the

sinusoidal-input describing function analysis is apparent in a nonautonomous system. The

error of this approximation is a function of the inherent nonlinearity of the system.

For power system distribution networks under ferroresonance conditions, there are

multiple solutions and sub-harmonic oscillations for a given input amplitude, frequency,

and initial state. The input is assumed to be a sinusoidal signal. An intuitive approach to

analyzing the stability of a steady-state solution is to perturb the steady-state solution and

then probe the stability of the incremental system. Such a method is called the synchronous

incremental-input describing function methodology.

The purpose of this section is to show how the ferroresonance problem, particularly,

single-phase ferroresonance problem can be solved using a synchronous incremental-input

describing function. Also in this section we will point out and fix a flaw in the previously

developed theory of the synchronous incremental-input describing function.

3.1 Dual-Input Describing Function

To describe the incremental-input describing function method and to point out a flaw in

the theory, we apply the theory to an example which West, Douce, and Livesley used to

demonstrate their results [36].

Consider the following nonlinear system shown in Fig. 3.1 where G(s) is a strictly

proper rational linear transfer function and N(x) is given by

N(x) = x . (3.1)
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Figure 3.1: Nonlinear interconnected feedback system

Assume the input to the system r(t) is a sinusoidal function of the form

r(t) = M cos(wt + 0) (3.2)

and the steady-state error signal x(t) has the following form

x(t) = A cos(wt + q). (3.3)

To examine the stability of this steady-state solution, suppose an incremental-input is

applied to the system. With the incremental signal, the input of the system will take the

following form

r(t) = Mcos(wt + O) +-ycos(nwt) where y7 < M. (3.4)

Due to the incremental-input, the error signal takes the form

x(t) = Acos(wt + ) + Bcos(nwt) where B < A (3.5)

The output of the synchronous component of the nonlinear element due to this error signal

is given by

y(t) =

= (A cos(wt + q) + B cos(wt))3

3A (A2  2 cos(t ) + 3B A 3

= ( 2 + 2B 2) COs(wt + ) + (2 2  B 2 ) cos(wt) + - cos(3wt + 3¢) + (3.6)4 4 4 (3.6)
B 3  3A 2_B
B cos(3wt) + 4 {cos[3wt + 2q] + cos[wt + 20]} +
3AB 2

4 {cos[3wt + 0] + cos[wt - ]}.

Since G(s) is a low-pass filter only small band of frequencies will pass particularly, the

fundamental frequency of the driving signal. Suppose G(s) only passes the fundamental

s)
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frequency, w component. Hence, the gain of the nonlinear element due to the primary

signal A cos(wt + q) without the incremental-input signal is given by

Y
N(A) Y where B = 0

X (3.7)
3 A2
4

where X and Y are the input-output complex amplitudes of the nonlinear element. In the

nomenclature N(A) is defined as the describing function gain. Similarly, the gain due to

the first order synchronous incremental-input describing function is given by

Y
N(A, 0) =

X
SA2  2  2  (3.8)

B
3 A2 2f+ e.2
4 \

Note that N(A) depends solely upon the amplitude of the input to the nonlinear device

while N(A, ¢) is a function of the input amplitude and a phase angle ¢ which can take on

values in (0, 2r).

To study the stability of this steady-state solution, we will investigate the dynamics

of the incremental system. If the incremental system is stable, then we will conclude that

the steady-state solution is stable since it is robust to incremental disturbance. In the

frequency domain, the Nyquist criterion is an obvious choice to employ for assessing the

stability of the incremental system.

3.1.1 Condition For Instability

To investigate the stability of the steady-state solution of the system shown in Fig. 3.1, the

incremental-input was set to zero and the loop-gain of the system was computed as

3A2
L(jw) = -G(jw) (3.9)4

under the assumption that the linear system attenuates the higher order harmonics. Con-

sider a Nyquist plot of the loop-gain. If we hypothesize that the loop-gain never crosses the

negative real axis, then increasing or decreasing the magnitude of the input signal M will

cause the loop-gain locus to shift closer or further away from the origin without a phase
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shift. Based on the Nyquist criterion, this system is stable in the closed-loop for all values

of A since there are no encirclements of (-1, 0) point. Thus the system is stable for all

non-synchronous incremental inputs.

Suppose a synchronous incremental-input as given in equation (3.3) is applied to the

system where B can be represented by

B = Boeut. (3.10)

where B 0 is the smallest measurable signal. Then, the loop-gain of the incremental system

can be represented at

L(jw) = [ A2 + A2 ej2] G(jw). (3.11)

This loop-gain is independent of the parameter oa. Hence, the stability depends on whether

the incremental loop-gain encloses the (-1, 0) point. With the incremental input magnitude

-y and the angular frequency ws, G(jws) can be written as

G(jws)= X + jy, where X= Re{G(jws)}, Y = Im{G(jws)}. (3.12)

Im

Figure 3.2: Complex Plane
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For this frequency, ws, the incremental loop-gain locus form a circle with a center
at3A2(+ Yanarais32

at ( + jy) and a radius (X2 + y 2) 2. Hence, for the circle to enclose the (-1,0)

point, the distance d between the center of the circle and the (-1, 0) point must be greater

than the radius of the circle R as depicted in Fig. 3.2. For the critical condition, where d

equals to R, This constraint can be written as

A4 _ 16X A 2 + 16 0 (3.13)
9(X 2 + y 2) 27(X 2 + y 2)

Then,

A 2 4
A2  49(X2 + [2X ± X 2 - 3Y 2] (3.14)

A2=9(,X2 .{ 2)

Thus, the condition for instability is given by

Y 1Y < . (3.15)

This constraint says that if the ratio of the imaginary and the real parts of G(jws) is greater

than , the steady-state solution at which the system is operating, is a stable operating

point. Hence, our task is to examine the magnitude of G(jws) to assess the stability of

the system. This approach is simpler than linearizing the system around the steady-state

solution and then using Floquet theory to compute the eigenvalues of the system since the

variational system is a time-variant system.

3.1.2 Existence of Multiple Steady-State Solutions

A steady-state solution of a system can be computed using the describing function method.

Suppose the input to the system depicted in Fig. 3.1 has the form

r(t) = Mcos(wt + 0) (3.16)

and the input to the nonlinear element is given by

z(t) = A cos(wt + €) (3.17)

assuming that all the higher harmonics are attenuated by the linear system G(jw). The

describing function gain of the system is given by
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N(A) = - 3A 2  (3.18)4
The de-sensitivity function of the system can be represented as

[1 + N(A)(X + jY)]A = Me- j o. (3.19)

Separating the above equation into real and imaginary parts yields

[1 + XN(A)]A = M cos(q) (3.20a)

YN(A)A = -Msin(q). (3.20b)

Solving for q in (3.20b), we have

S= - arcsin YN(A)A (3.21)1 M
and substituting q into (3.20a) results in

[(X2 + y 2)N 2 (A) + 2XN(A) + 1]A 2  M 2 . (3.22)

Eliminating N(A) and simplifying further yields

8X 16 2 16M 2  0. (3.23),.,44A +42 - = 0. (3.23)+ 3(X 2 + y 2) 9(X 2 + y 2) 9(X 2 + y 2)

The equation is cubic in A 2, and depending upon the sign of X can have three positive real

solutions or one positive real solution [56]. Applying Sturm's Theorem [57] to (3.23), the

condition to have three positive real roots is given by

Y 1< . (3.24)
-x < 3

Hence, if the condition in (3.24) is satisfied the system depicted in Fig. 3.1 will have three

solutions. One can show that for the three solutions case, two are stable and one is unstable.

On the other hand, if equation (3.24) is not satisfied the system will have only one stable

steady-state solution.

Based on the aforementioned analyses, West, Douce, and Livesley concluded that if

the locus of G(jw) does not cross the negative real axis in the L(jw) plane and the condition
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shown in equation (3.24) is not satisfied, the steady-state solution of the system is stable.

3.1.3 Incremental-Input Describing Function Applications

Swift [37] applied this theory to study the single-phase ferroresonance problem. He exam-

ined the stability of the steady-state solutions and the existence of jump resonance condi-

tions. The circuit model that he used for his study is shown in Fig. 3.3. In this model the

core-loss, leakage resistance, and reactance of the transformer were assumed to be negligi-

ble. The relationship between the current and the flux linkage in the nonlinear core used

iL(t)

Figure 3.3: Single-phase ferroresonance circuit model

in this study is given by

iL(t) = K 1 A + K 5 A5 . (3.25)

The differential equation that relates the input voltage and the flux linkage of the trans-

former can be written

dA di- + L-d + Ri = v(t).
dt dt

The above equation can be mapped into the frequency domain as

A = Go(s)V - G(s)IL, where

R+ Ls 1
G(s) = s(Lcs2 + RCs + 1)' Go(s) = s(Lcs2 + RCs + 1)

(3.26)

(3.27)
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The characteristic equation of the system can be written as

N(A, q)G(jw) = -1 where N(A, q) = U1 + U2 ej 24  (3.28)

where,

U1 = 15+ A4  U2 = 5A 4  (3.29)
2

and A is the amplitude of the flux.

To ascertain the stability of the steady-state solution of the system defined in equa-

tion (3.27), the inverse synchronous incremental gain and the linear system G(jw) are

plotted in the complex plane. If there exists an intersection between these two loci at

the synchronous frequency ws, then the steady-state solution is unstable; otherwise, the

steady state solution is stable. Note that the intersection of these points at the specified

frequency is equivalent to an encirclement of the point (-1, 0) using the Nyquist criterion.

The following example uses the two sets of parameters that Swift used for his study.

EXAMPLE 3.1

Consider the system defined in equation (3.27). Suppose the following parameters are given,

(i) R = 0.002pu, C = 50.Opu, L = 0.021pu, and w = 1.Opu )(3.30)
(ii) R = 0.002pu, C = 50.0 pu, L = 0.025pu, and w, = 1.0Opu

and suppose the nonlinear element has the terminal relationship defined in equation (3.25).

For the first set of data, the magnitude of the input of the system was 0.167 pu.

The magnitude of the steady-state solution of the error signal A that corresponds to this

input was 1.25 pu. To study the stability of this steady-state solution, the incremental

system was formulated and the Nyquist criterion was applied to it. Figure 3.4 depicts

the negative of the inverse incremental gain and the linear system G(jw) locus.

For the given parameters, there is no intersection between the two loci at the operating

frequency w, = 1.0 pu which implies that there exists one stable steady-state solution for

these parameters.

To examine the validity of this result, time simulations were performed using the

dynamic system simulator Simulink [58]. Figure 3.5 shows the time simulation of the sys-

tem for M equal to 0.167 pu. To examine the stability of this solution, a synchronous

incremental-input signal was applied to the system at t = 8000 sec with an amplitude of
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0.022 pu. When the incremental-input was removed at t = 10,000 sec, the steady state

solution attained its original value which confirms the robust stability of this steady-state

solution.

Similarly, for the second set of data, the input magnitude was 0.167 pu and the

corresponding steady-state error magnitude was 0.9 pu. Figure 3.6 shows the plot of the

two loci, the negative inverse of the incremental gain and the linear system locus. In this

plot there exists an intersection between the linear system G(jw) and the negative inverse

of the synchronous incremental-input gain at the operating frequency w, = 1.0 pu. This

indicates that three steady-state solutions exist, one unstable and two stable solutions.

Similarly, time simulations were performed to examine the validity of the results.

Since it is not possible to capture an unstable solution in a physical system or even a

system simulator, we can only hope to see the two stable solutions. The third solution,
the unstable one, can only be observed in the analytical solution. Figure 3.7 depicts the

time simulation of the system. After 8000 sec, an incremental signal with an amplitude of

0.022 pu was applied to the system. The magnitude of the error signal A jumped from 0.9 pu

to 1.5 pu. The incremental signal was removed from the system at t = 10000 sec. However,

the amplitude of the A(t) stayed at 1.5 pu. Clearly, this behavior shows the steady-state

solution moved from one stable solution to another stable solution. This result agrees with

the incremental-input describing function analysis.
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Figure 3.4: G(jw) and -N-'(A, 4) for R = 0.002 pu, C = 50 pu, and L = 0.021 pu
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Figure 3.5: Time simulation for R = 0.002 pu, C = 50 pu, and L = 0.021 pu
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Real
Figure 3.6: G(jw) and -N-(A, 0) for R = 0.002 pu, C = 50 pu, and L = 0.023 pu
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Figure 3.7: Time simulation for R = 0.002 pu, C = 50 pu, and L = 0.025 pu
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3.2 Modified Dual-Input Describing Function Analysis

In this section we demonstrate that there is a flaw in the theory of incremental-input

describing function. Since it is used in industry and research institutions [59,32,4,37], elim-

inating the flaw in the theory, particularly at the synchronous frequency, is necessary. First

the extended Nyquist theory is presented, then the proposed incremental-input describing

function analysis is formulated.

3.2.1 Nyquist Stability Analysis Criterion

In this section, a general overview of the basis for the Nyquist stability criterion for feedback

systems is given. There are different ways to approach guaranteeing the stability of a

feedback system. For a single loop SISO system, the system can be analyzed using the

classical control approach which includes Root Locus, Routh and Hurwitz criterion, Bode

plot, Nichols charts, and Nyquist criterion [28,29,60]. The Nyquist criterion is suitable for a

large class of control systems. Without analytical computation of the input-output map of

the system, the Nyquist criterion determines the relative stability of the closed-loop system.

This criterion is based on Cauchy's Principle of the Argument in complex variables. Before

stating this theorem some preliminary definitions will be stated.

DEFINITION 3.2

If L(s) possesses a derivative at point s = so and at every point in some neighborhood of

So, then L(s) is said to be analytic at so and so is called a holomorphic point.

DEFINITION 3.3

If L(s) is not analytic at point so, but every neighborhood of so contains points at which L(s)

is analytic, then so is called a singular point of L(s), and so is called a meromorphic

point.

Now, let's state Cauchy's Principle of the Argument without a proof, since the proof

of the theorem can be found in [61] and other complex analysis references.

THEOREM 3.4

Suppose L(s) is a meromorphic function within and on a closed curve D and L(s) has

neither poles nor zeros on V, then
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1r
I In{L(s)} ds = Z - P (3.31)

2ri D

where Z and P are the number of zeros and poles respectively, of L(s) contained in the

region bounded by D, each counted as many times as its multiplicity.

Rather than solving the integral equation in (3.31) to find the zeros and poles in

the closed contour D, the mapping theorem can be utilized. If the closed contour D in the

s-plane is mapped into the L(s) plane, the number of encirclements N of the locus L(s)

around (0, 0) is the difference between the numbers of zeros and poles in the closed contour

D.

Thus, to ascertain the stability of the system defined by the open-loop transfer

function L(s), L(jw) is plotted in the complex plane and the number of encirclements N of

the (0, 0) point is equal to Z - P. If the number of encirclements of the point (-1, 0) is zero

and assuming that there are no unstable open-loop poles of L(s), then the system defined by

L(s) is stable in the closed-loop. On the other hand, if jV/] is not equal to zero, given that

there are no unstable open-loop poles of L(s), then the closed-loop of the system defined

by the open-loop function L(s) is unstable. For MIMO systems (multi-input multi-output),

the determinant of the loop-gain can be computed, and the Nyquist stability criterion can

be applied [29].

For instance, suppose the characteristic equation of the system is given by

1 + KG(s) = 0 (3.32)

where G(s) is a stable minimum-phase transfer function and K is a positive constant. To

examine the stability of the system in closed-loop, we determine if a complex number s exits

such that (3.32) is satisfied. We note that s = a +jw, where a and w are real numbers, and

a is the damping factor of the response while w is the angular frequency of the response.

Let's consider four cases for G(s). Suppose the frequency response of G(s) has the form

shown in Fig. (3.8)

By examining the loop-gain of the system shown in Fig. 3.8, the closed-loop system

is stable since the loop-gain locus does not intersect the (-1, 0) point for a = 0. Similarly, if

we fix w at some frequency, say wi, and vary a from zero to +oo, all the loci go to the right

of the point KG(jwl) locus and approach zero since G(jw) is a non-minimum-phase proper

rational transfer function [62]. However, if we vary a from zero to -oc, we will find all the
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I
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Figure 3.8: Frequency response of system one

loci starting from the point KG(jwl) go to the left of that point. Hence, it's possible that

some locus will cross the point (-1, 0). Since the damping factor is negative, the system is

stable in closed-loop.

Next, suppose the loop-gain of the system has the frequency response shown in

Fig. 3.9. This loop-gain cuts the (-1, 0) point for oa = 0. Hence, the response of the system

in closed-loop will have oscillatory terms since at least one of the damping factors is zero.

Therefore, the system is marginally stable.

I
A

-1
R

Figure 3.9: Frequency response of system two

For the third case, suppose the frequency response of the loop-gain of the system is

the one depicted in Fig. (3.10). This loop-gain encloses the (-1,0) point for -- 0, hence,

there exits a positive o and w such that (3.32) is satisfied. Hence, this system is unstable
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in closed-loop.

I

-1

Figure 3.10: Frequency response of system three

Finally, suppose the frequency response of the loop-gain is the one shown in Fig. 3.11.
At w - 1, the frequency response is a circle, hence varying cr from zero to oc will move the

circle to the origin. Therefore, it is possible for some positive a the circle may intersect the

(-1, 0) point which in turn destabilizes the closed-loop system, particularly the inputs with

the frequency wl .

I
A

-1

.w 1

Figure 3.11: Frequency response of system four

The authors of [36] fail to examine variations of a. As shown in Section 3.1, the loop-

gain of the system is a circle for some given angular frequency. Hence, fixing w and varying

a from 0 to oc will move the circle to the origin which in turn can cause an intersection

with the (-1, 0) point.

R

•R



66 Synchronous Incremental-input Describing Function

Therefore, the necessary and sufficient condition for the stability of a loop-gain in a
closed-loop is the loci of the loop-gain does not intersect the (-1, 0) point for all values of
w and for all non-negative values of o.

The synchronous incremental-input describing function can also be applied to sys-

tems with an unstable nonminimum-phase open-loop transfer function. In Appendix A.3,
we give a procedure that the theory can be applied in a large class of systems.

In the following subsections, we will apply the theory of synchronous incremental-
input describing functions to a system to understand this modification. First we will revisit
the describing function analysis in a general setting. Then, presentations of the synchronous
incremental-input describing function analysis and an example will follow.

3.2.2 Describing Function Analysis

To use linear control tools for a limit cycle stability analysis of our system, approximation
of the nonlinear element is required. Under the describing function technique, the input
of the nonlinear element is assumed to be dominated by the fundamental frequency, and
the nonlinearity is approximated by the complex gain of the fundamental frequency. If
other harmonics have a strong influence on the output signal of the nonlinear element, the
nonlinearity can be approximated using a describing function matrix [63,35]. The notion
of describing function will allow us to compute approximate steady-state solutions of the
system. Hence, let us first review the sinusoidal-input describing function theory.

Consider the nonlinear interconnected feedback system shown in Fig. 3.1 where G(s)
is a strictly proper rational transfer function and N(x) is a memoryless nonlinear odd
monomial.

N(x) = kxs, for n can take the values 3,5,7,9,--- (3.33)

Assume the input to the system r(t) is a sinusoidal function of the form:

r(t) = M sin(wt). (3.34)

Furthermore, assume the linear system is low-pass and time-invariant; since the linear

system will attenuate the higher harmonics that the nonlinear device produces [64-66], the
error signal will have a sinusoidal behavior which is synchronous with the driving signal

but with a phase discrepancy. This phase difference depends on the characteristic behavior



3.2 Modified Dual-Input Describing Function Analysis

of the linear system; the faster the system response, the smaller the phase delay between

the input-output map. The describing function theory can be used to linearize a nonlinear

element. This type of linearization is called a sinusoidal-input describing function or optimal

quasi-linearization. Before deriving the input-output map and the harmonic linearization

of the nonlinear element, the sinusoidal-input describing function will be defined.

Definition 1

The sinusoidal-input describing function is the ratio of the complex amplitude of the inter-

ested harmonic of the output map of the nonlinear element to the complex amplitude of the

corresponding input.

To derive the quasi-linearized gain of the nonlinear element, let us consider the

following nonlinear element. The input to this nonlinear device is defined as

x(t) - -* N (x) y(t)

Figure 3.12: Nonlinear Element

x(t) = Asin(wt + 0) (3.35)

where A is the steady-state magnitude of the error signal. The output of the nonlinear

element is then

y(t) = kx(t) n , for n can take the values 3,5,7,9,- --

= k(Asin(wt + 0))'

= kA n sin(wt + 0) 1 - cos(2wt + 20)) 2 (3.36)2

=kAn  sin(wt + () (-1)a cosa(2wt + 20).
a=O

The output of the nonlinear element in Fig. 3.12 due to the first harmonic is given by

y(t) = KICAn sin(wt + 0) where K = k n2 (1 ±/32 (3.37)



68 Synchronous Incremental-input Describing Function

where

n-1

1 2 27r n-
(rrn-1\21= ()2 (1 + cos(4wt+40))(dt

a ,evenb (3.38)
n-1 a-1

o32 2(1 + (cos(4wt + 40))- 2 -I
a,odd

The quasi-linearization of the nonlinear element yields

N(A) = KAn- 1. (3.39)

From equation (3.39), the gain N(A) is a function of the amplitude of the error signal.

Therefore, for a given input magnitude M and frequency w, of the system shown in Fig. 3.1

with the nonlinearity defined in equation (3.33), the steady-state error magnitude can be

computed by finding the de-sensitivity transfer function of the system in Fig. 3.1. Then,

this yields

Aej(wt+O) 1 Met (3.40)
1 + N(A)G(jw)M (3.40)

For further simplifications, we have

Aej 0 = 1 M. (3.41)
1+ N(A)G(jw)

Using Auler's formula, then eliminating 0 in the above equation and solving for A, yields

22 1 M 2

A2n 2X A n+1 A 2  = 0 (3.42)+ K()X2 + y 2) 2 2(X2 + y 2) 2(X2 + y2)

Hence, the roots of the above equation give the solutions of the steady-state magnitude of

the error signal. Depending on the characteristics of the linear system G(jw) and type of

the nonlinearity, either one real positive solution or three real positive solutions of A exist.

The following theorem proves this statement:

THEOREM 3.5

Suppose G(jw) is a strictly proper rational transfer function. Define

fi(A) = KC2(X2 + Y 2)A 2 + 2KCXAn + 1 + A 2 - (M2
(3.43)
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where,

X = Re[G(jw)], Y = Im[G(jw)], (3.44)

and if the following conditions

(i) X < 0

y n- 1 (3.45)
(ii) < <

are satisfied for some w and f( (A1 ) and f, (A2) have different signs for a given M, where

A,1 and A2 are the positive real roots of

f2(A) = nK2(X 2 + y 2)A2(n-1) + (n + 1)KXAn + 1 where A 2 > A 1 > A0 (3.46)

then, there exist three positive real roots of equation (3.43).

Proof From Descartes' theorem [57], the number of positive real roots of fi(A)

cannot exceed the number of sign changes of the coefficients of fl (A). If the following

inequality

2K1X <0 = X X< 0 for K ={k>0:keRx } (3.47)

is satisfied, then the number of sign changes of f (A) and f 1(-A) is equal to 3. First, to

show that one of the real roots is positive, we examine the limits of f, (A). If A goes to

infinity, then f, (A) is a positive number. On the other hand if A goes to zero from the left,

then the sign of fi(A) is negative for some input magnitude M. Since f, (A) changes sign

between zero and infinity, there exists one positive real root of fj (A). Call this positive real

root Ao. Similarly, for f, (A) to have two more distinct positive real roots, there must exist

at least one maximum and one minimum peak of fi (A) where A is greater than Ao. If the

maximum and the minimum values of f, (A) have different signs then clearly equation (3.43)

has three positive real roots. To find these peak values, the derivative of f1 (A) is computed

f 2(A) = 2nK2(X2 + Y2)A2n-1 + 2(n + 1))CXA n + 2A (3.48)

Setting zero to f2(A) yields

nK2(X2 + y)A 2( '- ) + (n + 1)KXAn - 1 + 1 = 0 (3.49)
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Using the quadratic formula, the roots of (3.49) are

A n-1
Ait = 4n2(X2 + 2)- 2(n + 1)KX - P)[ 1]

A2 2(n + 1)]CKX + P)

4nlC2(X 2 + y2)
where P = V/4(n + 1)2K 2X 2 _ 16n]C2 (X 2 + y 2 )

A,1 and A 2 can be guaranteed to have positive real values if the following conditions are

satisfied

(i) - <_Y n-1) • X 2--n (3.51)
(ii) X < 0.

A1 and A2 are the points that lie in the domain of ft (A) where the function takes on

maximum and minimum values. Hence, if f 1 (A1 ) and f 1 (A 2) have different signs, then

equation (3.43) will have three positive real roots. On the other hand, if the two roots of

f2 (A) coincide then fi(A) will have an inflection point. In this case fl(A) will have two

positive real roots and one negative real root. This proves the theorem U

To find the stability of these steady-state solutions, particularly for lightly damped

systems which exhibit the ferroresonance phenomenon for small perturbation around the

steady-state operating point, the synchronous incremental-input describing function can be

employed.

3.2.3 Dual-input Describing Function Analysis

The stability of the perturbed system can be investigated simply by examining the stability

of the synchronous incremental loop gain of the system. Hence, we need to compute the

incremental gain of the system. The synchronous incremental output of the nonlinear device

shown in Fig. 3.1 is

y (t) = (Asin(wt + 0) + B sin(wt))"

a n (3.52)
= ) (Asin(wt + O))n-"(Bsin(wt))a where B <K A.

a=O
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The terms of the output nonlinear element due to the first power of B are given by

y(t) = CAn-'B (n) sin(wt) sinn-l(wt + 9)\1

= Kn- (1)2
1' 1

BA '-1 (8 sin(wt) + -1,2 sin(wt + 20))
2

where /3I and /32 are defined in equation (3.38). Then, by the definition of the
incremental-input describing function, we have the following

N(A, 0) = W1A n - 1 + •W2 An-j 20
2

synchronous

(3.54)

where

W, = Kn (1)n-12 /81, W2 = ]C 2 (-)2

For a given value of A, N(A, 0) is a circle with a center at W1A n- 1 and a radius of W2An- 1

Also the negative of the inverse of N(A, 0) is a circle with a center of and a radiusat w2
at W 2  The following lemma proves this claim.

LEMMA 3.6

(3.56)f - N(A,) -) W, + W2ej20

where W1 and W2 are defined in equation (3.55), and 0 is a random variable that can take
1on values from 0 to 21r, then for a fixed value of the error magnitude A, Wi+W 2

2
7 is a

circle which has a center at ( wv , 0) and radius of .

Proof: Writing e j 2 as sine(0) and cosine(O) using Euler's formula, we have

W, + W2e•j24 W1 + W2 cos(20) + jW2 sin(20)
W, + W2 cos(20) - jW 2 sin(20)
W 2 + 2WW 2 cos(20) + W22

(3.57)

(3.53)

(3.55)



Synchronous Incremental-input Describing Function

The real and imaginary parts of equation (3.57), are

W1 + W2 cos(20)
W? + 2W1W2 cos(20) + W2

2  (3.58)
= W2 sin(20)

v= Wj2 + 2 W W2 cos(20) + W2
2"

Solving for cos(20) and sin(20) from equation (3.58), yields

W, + (W12 2)ucos(20) = - + W2
W2 + 2W1W2U (3.59)

sin(20) = (W? + 2W1 W2 cos(20) + W22)V
W2

Using the identity

sin2 (29) + cos 2 (20) = 1 (3.60)

the following expression is yielded

wu 22 + Wv 2 + 2W - W~U 2 - W~2 = 2

(W? - W2)U 2 + 2WU + (W? - 2W)v = - (3.61)
2W 1  - 1u2 + 2W , -U + V2 -w1
W2 - WW 221- 2 22

Completing the square yields

Wr J )2 2W )2

+ w 1  +v 2  ) (3.62)W12 _ 2 W12 _22

which is a circle with a center at (w 2, 0) and a radius of 2w2 which proves the
lemma. U

3.2.4 Stability Analysis Using Incremental-input Describing Function

To ascertain the stability of the steady-state solution of the system, the incremental-input
describing function is used by examining the characteristic equation of the incremental
system. For completeness, the characteristic equation of the incremental system is given by
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1 + (W1 + W2 )A4' n-G(a + jWs) = 0 for w = ws (3.63)

where, w, is the frequency of the driving signal. To check the stability of this characteristic

equation, the Nyquist criterion can be applied.

For a given a and ws, G(a + ws) can be written as

G(a + •s) = X + jy. (3.64)

Upon substitution we have the following,

1 + (W1 + 1 W2ej20 An-1(X + jy) = 0. (3.65)

The real and imaginary parts of equation (3.65) are given respectively by

1 1- cT)r W n-l s 2
+ W2A n - 1 cos(20) X - IWAn1 Y sin(20) - 0

+ 1W2A'n-1 cos(20) y
(3.66)

+ W2W n-IX sin(20) = 0

From the imaginary part of equation (3.66), the value of 20 can be obtained as follows:

2 2Way20 = - arcsin W(Y
(W2(X2 +2) - arctan ()

If equation (3.67) is substituted into the real part of equation (3.66), the following can be

obtained

8WI X
(4 W12 - W22)(X 2 + •2 ) q + (4W2 - W2)(X2+ 2 =)

q = A n - 1, (n - 1) is a real even number.

The solution of equation (3.68) yields

2 4W2)S2 -2W1X ± W2 x2( 1 2 W y2
(4WW2 22)(xy2 W k22

1 + (W1An - 1

(WAn-I

q2

(3.67)

where

(3.68)

(3.69)

(3.70)

P-
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The necessary and sufficient conditions for equation (3.68) to have two positive real roots

are

(i) X < 0

(ii) < 1 (3.71)
V:4X 4Wf-

If the above conditions are satisfied, the critical values for the error signal magnitude A are

W2 n-1

A= 2 -2W1X ± W2  r 2 +( _ 4 y22 (3.72)•t ( w 2 w)(X2 + y2)2( 4 W12-W2)2 2 W22)

Therefore, if the conditions defined in equation (3.71) are satisfied for a given M and w,

for a equal to zero, then there exist three steady-state solutions of which two are stable;

however, if equation (3.71) is only satisfied for some a greater than zero, then there exists

one unstable steady-state solution; on the other hand, if it is not satisfied for any non-

negative value of a, there exists one stable steady-state solution.

To apply this theory to a problem, the following systematic approach can be followed:

first, compute the incremental-input describing function N(A, 0) using equation (3.54).

Then, the stability of G(jw) can be verified by employing the Nyquist criterion. Finally,

the locus of G(a + jws) and the negative of the inverse of the incremental gain N(A, 0) are

examined. For each given A and ws, it is obvious from equation (3.71) that the upper and

the lower bounds of the nonlinearity envelope of -1are defined by

e(v) - where v E [0, 00]. (3.73)

r-1

Let us apply this theory to an example in order to see how the machinery of the theory

can be applied to physical systems, such as, single-phase and three-phase ferroresonance and

nonlinear lightly damped systems.
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EXAMPLE 3.7

Consider the following system transfer function

P(s)
G(s) = p (s), where

Q(8)
P(s) =584(S4 + 7.288 3 + 725.1782 + 2886.98s + 1.3 x 10")

Q(s) =s6 + 21.5s 5 + 793.4s4 + 1.173 x 104 83 + 1.6 x 105s2 + 1.246 x 1068 + 1.5 x 108.

(3.74)

Suppose the input signal and the nonlinearity for the system shown in figure 2.2 are defined

by

r(t) = 0.39 sin(10t), N(x) = x3 . (3.75)

To investigate the stability of the system for various input amplitudes M, the steps

outlined earlier can be carried out. First, the error magnitude is computed using equa-

tion (3.42). For this input, one solution of the error signal exists, A = 0.5411. Since the

error magnitude is known, the incremental-input describing function can be computed using

equation (3.54). Hence,

N(A, 0) = 3A2 (1 + ej 20) where W1 = W2 = 1. (3.76)

Next, the stability of G(w) is examined using the Nyquist criterion.

Figure 3.13 depicts the frequency response of this open-loop transfer function. It

is clear from this frequency response, that this open-loop system is stable in closed-loop

because there is no encirclement around the critical point (-1, 0).

As shown in the figure, we will consider three different operating points (1, (2,

and %3. By using frequency scaling we will force the system frequency to be 10 at each

operating point. For the first case, suppose the system is operating at 41. To check the

stability of this operating point for small synchronous perturbations, the incremental system

must be examined at that operating frequency. This can be done as shown earlier, namely

by plotting the nonlinearity envelope - N(,I the point G(jl0), and the locus G(a + j10).

Hence, if there is an intersection between the nonlinearity envelope - and the point

G(j10) or the envelope - and the locus Gi (a + j10), the steady-state solution is an
unstable operating point.(A,)

unstable operating point.
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Figure 3.13: Frequency response of G(jw)

Figure 3.14 shows these loci. It is clear from the figure that no intersection exists
between these loci for nonnegative values of a. Therefore, we can conclude that this op-
erating point is stable for small synchronous perturbations. For further verification of this
result, system simulations were performed. Figure 3.15 depicts the time simulation of the
system at this operating point using Matlab. After 100 sec, a perturbation signal -y = 0.002
was applied to the system and then turned off after 20 sec. From the time response, it is
clear that this operating point is stable for small synchronous disturbances, which agrees
with our analysis.

For the second case at I2, the magnitude of the input signal is chosen to be M = 0.80,
and the corresponding error signal magnitude is A = 1.039. As shown in Fig. 3.16, there is
no intersection between the nonlinearity envelope - and the point G (j10). However
there is an intersection between the nonlinearity envelope - and the locus G(a + j1O)
which implies that some positive values of a exist which satisfy equation (3.63). Hence, this
steady-state solution is unstable which implies that 42 is an unstable operating point.

For further verification, the time simulations of the system were performed. Fig-

ure 3.17 shows the time simulation of the system, and it agrees with our analysis. At this

----------
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operating point one unstable solution exists since the inequality (3.71) is not satisfied. At

this operating point, the method in [36] fails to detect the instability of the operating point

02.

At the third operating point, (3, the magnitude of the input signal is M = 0.39,

and the corresponding error magnitudes are A = 0.514, A = 0.691 and A - 1.197. For this

input, there is an intersection between the nonlinearity envelope and the point G(jl0) as

depicted in Fig. 3.18. This implies that the condition defined in (3.71) is satisfied which

implies that three steady-state solutions exist.

To capture the three steady-state solutions and their stability, time simulations were

performed. For the input magnitude M = 0.39, the system responded with a steady-state

solution A = 0.514. At t = 2000 sec, a synchronous incremental-input with an amplitude of

0.0095 was applied to the system in such a way that the system response to be A = 0.691.

However, the response jumped to A - 1.197. After the incremental signal was turned off at

t = 2500 sec, the amplitude of the response persisted at A = 1.197. Figure 3.19 shows the

time simulation of the system. This agrees with our analysis for predicting jump solutions

for small perturbations.
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Figure 3.16: Loci of G(jw) and at C2
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Figure 3.18: Loci of G(jw) and -1at 3NTAat O3
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Chapter 4

Generalized State-Space Averaging

Methodology

Our analysis in this thesis involves the study of periodic steady-state solutions, their sta-

bility characteristics, and how they vary as a function of a parameter. To facilitate this

analysis we perform a variable transformation, motivated by Fourier Analysis, in which the

state variables may be interpreted as slowly-varying Fourier coefficients. In steady-state

they correspond to the Fourier series coefficients of periodic steady-state solutions. This

approach is called the "Generalized State-Space Averaging Method" in the power electronics

literature [47-51].

The generalized state-space averaging method can be employed to investigate har-

monic and subharmonic steady-state periodic solutions and their stability. In the following

sections, we will formulate the generalized state-space averaging methodology as a tool

to compute the harmonic and subharmonic periodic steady-state responses for nonlinear

systems.

4.1 Harmonic Periodic Solutions

The general form of the nonlinear system we consider in this thesis is given by

S= f (x) + g(t) (4.1)

where x E Rýnx is a state vector, f(x) is a nonlinear function of the state variable and g(t)

is a periodic forcing function with period T. Furthermore, the nonlinear vector field f (x)

has a polynomial representation as shown below

f(xi) = Kxi + K 2x4 i= 1,2,... ,n and K 1,K 2 ER (4.2)

where m is an odd number which can take the values of 3, 5, and so on depending on the

model of the transformer core.

Experience with the ferroresonance problem suggests that the steady-state solutions
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of (4.1) will include periodic solutions with insignificant higher harmonic components and

sometimes subharmonic components. These periodic steady-state solutions have a Fourier

series representation

k = oo

X(t) = X eikwt (4.3)
k = -oo

where w is the frequency of the driving signal (or subharmonic if present) and Xk is the

complex Fourier coefficients.

Equation (4.3) satisfies the system equation (4.1) only in periodic steady-state. For

further analysis of the system, and in particular, stability analysis of the periodic solutions,

it is useful to employ the following variable transformation that is motivated by (4.3)

k = oo

x(t) = E Xk(t) eikwt.  (4.4)
k-=-oo

Xk(t) in (4.4) may be considered to be slowly varying Fourier coefficients which can be

defined as follows

Xk(t) = x (r)e-jkwrdr. (4.5)
T tT

The time derivative of (4.4) is

dk = 00 de k td d~ .
zx(t) = 1 [Xk(t) + jkwXk (t) eIWt (4.6)

k= -oo

4.1.1 Existence of Harmonic Periodic Solutions

For systems which exhibit periodic steady-state solutions, (4.1) may be written in terms

of the time-varying harmonic coefficients as

k = -0 k = oo k = oo

Z [ -Xk (t) + jkwXk (t)] =lcwt f ( 1 Xk (t) eikwt) + E Gk ejkwt
k=-oo k= -Co k= - (4.7)

k =- o k = oo

= ~ F(Xk(t)) e k t + k GGkekwt
k-=-oo k-=-oo
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where Fk and Gk take the following form

Fk(Xk) =- E X.. XEmI 2Xm3 Xk-mI-m2-2.-m--1
M1 M2 m7-1

Mi for k = (4.8) i
Gk( =4.8

G 0 for k $ +t-i

where Mr are the amplitudes of the harmonics of the input and ri are the angular frequencies

of the input signal. For instance, if the input is 2 cos(t) + 5 cos(2t), then M1 = 2, M2 = 5,

771 = 1, and 2 = 2.

Factoring out eik t, (4.7) may be expressed as an infinite dimensional system of

nonlinear differential equations

d Xk(t) = -jkwXk(t) + Fk(Xk(t)) + Gk - 00oo < k < 00. (4.9)
dt

Of course in practice we must truncate the number of terms considered in the analysis, and

care must be taken specifically with the initial conditions of (4.9) so that they satisfy the

initial conditions of (4.1) and allow the coefficients to be truly slowly varying. One way to

measure the truncation level is to examine the average power Pk of the truncated solution.

One can increase the level of truncation until the difference of Pk and Pk-1 is acceptable,

where Pk is defined as

k=q

IPk(t) = IjXk(t) 12. (4.10)
k=0

To illustrate the importance of choosing an appropriate initial condition, we consider

the following undriven linear LC circuit with initial conditions i(0) and v(0). The differential

equation the governs the circuit is given by

di
L -d + v = 0 (4.11a)

dt
dv

C -- i =0 (4.11b)
dt

4.1 Harm nic Periodic Solutions



Generalized State-Space Averaging Methodology

Figure 4.1: Series linear LC circuit

The solution of this system takes the form

i(t) = •Ik(t)ejkwt,
k

v(t) = E Vk(t) e '

-oc < k < 00oo
1

and w -=
VC

where Ik (t) and Vk(t) are the time-varying amplitudes of the current and voltage of the

circuit. Then, the time derivatives of (4.12) are given by

d i(t) = d Ik (t) + jkwlk k(t)] kwt
dt kdt

dv(t) dVk(t)=
k

Substituting (4.12) and (4.13) into (4.11) yields the following differential equations

L [Tk(t) +jkw•lk(t)] kw E Z k(t)ekw = 0o

CE [Vk(t) + jkwVk(t)1 kwu - 1 _k (t)ejkwu = 0

-oo < k < 00 and w - 1
1LO_

with the initial conditions

v(t)
i(O) 0

v(0)=zVO

(4.12a)

(4.12b)

+ jkwVk(t)] ej k w t

(4.13a)

(4.13b)

(4.14a)

(4.14b)

SIk (0) = 0
k

EVk (0) = Vo.

(4.15a)

(4.15b)

dt

_vdt
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Factoring by the {eikwt} terms, we have the following set of infinite differential equations
d 1

d 1k(t) = -jkwIk(t) - Vk(t) (4.16a)
dt L

-dVk(t) = -jkwVk(t) + -Ik(t) (4.16b)
dt C

with the initial conditions defined in (4.15). The characteristic equation of the system is

given by

Ak + j2kwPk + (1 - k 2)w2 = 0. (4.17)

The eigenvalues of the system are

P•l,k = j(1 - k)w and P2,k = -j(1 + k)w, for - oo < k < oo. (4.18)

Hence, the solution of the system defined in (4.16) is given by

Vk(t) = ql,ke (1 - k )w t + r72,k e - j (l +k )w t where ?71,k, 72,k EC (4.19a)

Ik(t) = j(1 - k)7,kwCeij (1- k )wt - j(1 + k)r 2 ,kwCe- j (1+k)wt. (4.19b)

It is clear from (4.19) that for some linear combinations of 71,k and 7 2,k, the amplitudes

of the voltage and the current, Vk(t) and Ik(t), contain pure oscillatory terms. Hence, this

amplitude are not constant or slowly varying amplitudes. One way to force amplitude to

be constant or slowly varying is to choose 771,k and 772,k such that

E 7/1,k + 772,k = V0  
(4.20a)

k

(1 - k)>1,k - (1 + k)72,k = 0 (4.20b)
k

are satisfied. We have two equations and we would like to solve for an infinite number of

variables. Therefore, such equations have an infinite number of solutions. Constraining

71,k and 72,k by the following equations, we can force the amplitudes to be slowly varying

variables.

for k = ±1 J2,-1 = 771,1 and 712,1 = - , (4.21)

otherwise 72,±k = -71,=k-

In this scheme, we have 772,-1 = 71,1 = Vo. Hence, by choosing the right initial condition,



we forced the amplitudes to be slowly varying variables relative to the frequency of the
carrier. In this case, the amplitudes are constant, and the solution of the circuit is given by

1 1
v(t) = Aedwt + Ae-iWt

2 2
= Vo cos(wt)

1 1.(.2i(t) = -CwVo- ewt + CwVo1e - jwt (4.22)
j2 j2

= -Vo -sin(wt).
VL

Since the differential equation defined in (4.11) is linear, we can also compute the
solution of the system as follows. We assume the voltage across the capacitor takes the
form

v(t) = K cos(wt + ). (4.23)

This equation has two unknowns, K and q. Under the given initial conditions, we can
compute K and q easily. Hence the voltage across the capacitor and the current through
the inductor take the form

v(t) = Vo cos(wt)
(4.24)

i(t) = -VoVL sin(wt).

This solution agrees with the solution computed earlier in (4.22).

To compute the steady-state solutions of the system defined in (4.9), the time deriva-

tives are set to zero as given here

-jkwXk(t) + Fk(Xk(t)) + Gk = 0 - 00oo < k < 00oo. (4.25)

Hence, the existence of nontrivial solutions of these equations implies the existence of a
harmonic steady-state periodic solution of the system defined in (4.1).

If we apply the generalized state-space averaging method to finite dimensional non-

linear system, for example, a third order system, we end up with an infinite dimensional
system like (4.25). In this approach, one may ask if the problem was needlessly complicated
rather than simplified. We use this complicated model to analyze the system dynamics for

the following reasons. First, the generalized state-space averaged model is much faster to

86 Generalized State-Space Averaging Methodology
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simulate than the full system, particularly for lightly damped systems, because the averaged

variables do not change much within a small time interval; therefore, we can use a large

step size to integrate the system dynamics. Another reason to employ this method is to

assess the stability of the periodic steady-state solution, which is hard to assess for the full

system, since the steady-state solution is periodic. If we linearize the system around the

periodic solution, the Jacobian matrix of the system is not constant; it is time dependent.

Furthermore, the generalized state-space averaging model is an autonomous system while

the full system is a non-autonomous system.

4.1.2 Stability of Harmonic Periodic Solutions

Assessing the stability of the periodic solutions of the system defined in (4.1) requires a

close examination of the evolution of the slowly varying system. One way to ascertain the

stability of the slowly varying amplitudes is to linearize the system and then perform an

eigenvalue analysis. The following theorem will give us conditions for the stability of the

envelope dynamics.

THEOREM 4.1

Suppose the following system

Xk(t) = -jkwXk(t) + Fk(Xk(t)) + Gk where - o < k < o0 (4.26)

has a steady-state solution Xfk. Then, the steady-state solution Xk is stable if the eigenvalues

of A have negative real parts, where

A = -jkw6k,n + Qk-n, where - oo<k<oo and - oo<n<oo (4.27)

and Qk-n is the Jacobian matrix of the vector field FK(Xk(t)). Furthermore, if Iy is an

eigenvalue of A, then pi ± jkw is also an eigenvalue of A.

Proof To prove the theorem, first let us construct the matrix Qk-n, the Jacobian

matrix of the nonlinear function Fk (Xk (t)). -

To gain insight in the form of the Jacobian matrix, suppose the nonlinear function

f(x) defined in (4.1) takes the form

f()= 2 . (.8
(4.28)
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Then, the function Fk defined in (4.25) becomes

(4.29)Fk = EXmXk-m.
m

The Jacobian matrix of the function Fk yields

aFk
Qk-n - aFox

a
_X_ [XmXk-m]

m

- [Xm Xk -m]

=2X{k-n} where -oo<n<oo

(4.30)

and -oo < k < oo.

To see the pattern, let assume further that f(x) takes the form

f (x) = x 3 (4.31)

then, Fk yields

(4.32)Fk = ZZXm1Xm 2 2Xk-m-m-.
M1 M2

In the general monomial case, the Jacobian of Fk(Xk2(t)) is given by
In the general monomial case, the Jacobian of Fk(Xk(t)) is given by

Qk-n = Fk
aXn

(9=EE Xm1 Xm2,Xk-in,-M2
(9nM1 M2

=E m X Xmi2Xk-m-m2

mn

= ZXmi
mI m2

Xm 2 a+aXMaXk-M-M2 + XM1Xk -Im-M2 ax{XM2} +

a
Xm2Xk-mi-m 2 B,{m1

xm, x_•,_i, xz {Xmi, }. (4.33)

The partials are non-zero only when j = k - mi - m2, j = m2 or j = ml, otherwise the

partials are zero. For the case where the partials are non-zero, we have

Qk-n ax - E Xmik-mi-n + 1 XmiXk-n-mi+ EXm2Xk-n-m 2-
a1l ml M2

(4.34)

MEMO
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Since the indexes are dummy variables, changing the index from mi to m2, we have

Qk-n - 3 E XmX{k-n}-m, where - co < n < co and - co < k < co. (4.35)
m

Hence, for the general case where f(x) =-- x + x", Q{k-n} takes the form

Qk-n v . XmXm2 ... .Xm.-2X{k-n}mim 2-...- Mv-2 (4.36)
MI1 M2 mv-2

where -co < n < o0 and -oo < k < co.

It is clear that Q is an infinite dimensional matrix. In matrix form, Q has the

following structure

... Qo Q-1 Q-2 Q-3 -4 Q-5 Q-6 ...

Q1 Qo Q-1 Q-2 Q-3 Q-4 Q-5

Q2 Q1 Qo Q-1 Q-2 Q-3 Q-4

Qk-n Q3 Q2 Q1 Qo Q-1 Q-2 Q-3 (4.37)

Q4 Q3 Q2 Q1 Qo Q-1 Q-2

Q5 Q4 Q3 Q2 Q1 Qo Q-1
.. Q6 Q5 Q4 Q3 Q2 Q1 Qo"

Hence, Q is a Toeplitz matrix. Since Xk = X-k for real systems, Q is also Hermitian [67].

Then, the matrix A takes the following form

Qo + j2w Q-1 Q-2 Q-3 Q-4 .

Q Q+Qo + j Q-1 Q-2 -3
A Q2 Q1 Q0 Q-1 Q-2 (4.38)

Q3 Q2 Q1 Qo-Jw Q-1

Q4 Q3 Q2 Q1 Q0 -- j2w

Similarly, A is a Toeplitz matrix.
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Suppose p is an eigenvalue of A, then

... Qo + j2w Q-1 Q-2 Q-3 Q-4

Q1 Qo + j Q-1 Q-2 -3
Q2 Q1 Q0 Q-1 Q-2

Q3 Q2 Q1 0 Qo w Q-1
Q4 Q3 Q2 Q1 Qo - j2w

V-2

V-1

Vo

V1

V2

V-2

V-1

VOvo0

V1

V2

(4.39)

holds, where [--- , v- 2 ,v-1, v0o, vl, U2, - ]T is a right eigenvector that corresponds to p.
These eigenvectors are infinite since A is an infinite matrix. Define the matrix

A' = A + jwl (4.40)

where I is an identity matrix. The eigenvalues of A' are the eigenvalues of A plus ±jw,

which equal p + jw. If we closely examine A', we can see that A' is equal to A shifted up

or down by one. However, since A is an infinite-dimensional matrix, there is no difference

between A' and A; actually A' = A. This proves that if A has an eigenvalue of p then

p ± jkw is also an eigenvalue of A.

If we set k = 0, the eigenvalues that correspond to the truncated matrix are po,

where po0 is a vector. The dimension of Po depends on the dimension of the system defined

in (4.1). Therefore, the stability of the system can be assessed by examining the eigenvalues

of A when k = 0, since the other eigenvalues differ by ±jkw. We call Po the fundamental

eigenvalues, since these eigenvalues are the bases for the eigenvalues of A. Graphically,

the eigenvalues appear on either the jw-axis or lines parallel to the jw-axis in the complex

plane.

If the system defined in (4.1) is linear, there is no coupling among the harmonics of

matrix A; however, if the system is nonlinear there may be coupling among the harmonics

of A. Therefore, setting k = 0 will not give us Po, there will be errors in the sums. To

decrease these errors, we choose some k = q such that the difference between the average

power of the solution and the truncated solution in one cycle is negligible. For the truncated

system, the eigenvalues will also appear to lie on lines parallel to the jw-axis with some

dispersion at the ends. These dispersions are due to the truncation of A. U

= P
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The fundamental eigenvalues are related to the Floquet exponents as shown in [68,69].

Hence, one can compute the eigenvalues of the system using a time domain approach using

Floquet theory or in the frequency domain invoking the generalized state-space averaging

method. We will elaborate on this subject in Chapter 5.

4.2 Subharmonic Periodic Solutions

An interesting phenomenon in dynamical systems is the possibility of generating a steady-

state periodic solution whose fundamental frequency is a submultiple of the frequency of

the forcing term. For the linear case, if the frequency of the free oscillation is , then

a periodic external input of frequency w can excite the free oscillation in addition to the

driving frequency. But, in general, linear dynamical systems have damping; hence, the free

oscillations will damp out depending upon the time constant of the system. On the other

hand, even if a nonlinear system has some damping it is still possible that an external force

of a given frequency might be able to excite and sustain a subharmonic of lower frequency.

The subharmonic phenomenon occurs in power system networks, particularly, if the

system contains a lightly loaded distribution transformer. The mechanism that induces or

quenches the subharmonic phenomenon depends on the initial state of the system or system

internal parameters. Changing system parameters modifies the system dynamics which in

turn can drive the system into a subharmonic region. Hence, it is possible for the system to

have periodic solutions which oscillate at frequencies which are submultiple of the frequency

of the input signal.

To understand the subharmonic phenomenon, let's take a simple example which we

can solve analytically. Consider the following nonlinear series circuit

C L

I (T(T) 
At

Figure 4.2: Series nonlinear circuit

P-
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where v(t) and i(t) are defined as

v(t)-- 1 cos(3t + 30) and i(t) = KA(t) 3 . (4.41)
3

The differential equation that describes the circuit dynamics is given by

d i(t) 1 F.dA (t) 1L +- fi dt+ d ( =) -1 cos(3t + 30). (4.42)
dt C dt 3

Taking the time derivative of equation (4.42), we have the following

d2 i~) i dAtL +i(t) i + = - sin(3t + 30). (4.43)
dt2  C +  dt 2

In order to investigate the sensitivity of the solutions of equation (4.43) to variations

of initial conditions and system parameters, we compute two independent steady-state so-

lutions. One of these steady-state solutions has the same frequency as the driving signal

while the other solution is 1 of the frequency of the input function. Then we choose some

initial conditions and parameters to steer the system responses to those aforementioned

steady-state solutions.

Let's first investigate the sensitivity of the system response to initial conditions.

4.2.1 Sub-Synchronous Responses

Suppose the steady-state solution of the flux A(t) has this form

A(t) = A, sin(t + 0). (4.44)

Then, the current takes the form

3 1
i(t) = 4KA 1 sin(t + 0) - -KA1 sin(3t + 30). (4.45)

4 ~ 4 1

Substituting equations (4.44) and (4.45) into (4.43), we have the following

9LCKA 1 3 sin(3t + 30) - 3 LCKA13 sin(t + 0) - 1 KA13 sin(3t + 30)+ (4.46a)
4 4 4

3KAI 3sin(t + 6) - CA, sin(t + 6) + C sin(3t + 30) = 0. (4.46b)
4
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Equating the sub-synchronous and synchronous components of (4.46a) and (4.46b) yields

3 3KA3- •
3LCKA1

3 + 3KA 1
3 - CA 1 =0 (4.47a)

4 4
9 LCKA1

3 - 1KA13 + C = 0. (4.47b)4 4

Factoring A1 out in equation (4.47a) and then adding (4.47a) and (4.47b), we have

3(1 - LC) (4.48)
A1  (1-=0 (4.48)

(1 - 9LC)

Suppose we are given the following system parameters: C , L = , and K - 9,

then A, is equal to 1 which simultaneously satisfy both (4.47a) and (4.47b). Hence, the

steady-state response of the flux and the current yield

10
A(t) = - sin(t + 0)

3 (4.49)
1 1 sn3 0

i(t) = - sin(t + 0) - sin(3t + 30)
8 24

with the initial conditions A(0) = 0 and d0_)= L. In this case, we choose 0 to be multiple

of lr.

4.2.2 Synchronous Responses

Now, suppose the steady-state solution of the flux A(t) has this form

A = A2 sin(3t + 30). (4.50)

Then, the current has the steady-state solution

i(t) = 3 KA3 sin(3t + 30) - IKA3 sin(9t + 90). (4.51)

Substituting equations (4.50) and (4.51) into (4.43), we have the following

8 1 LCKA23 sin(9t + 96) - 27LCKA 23 sin(3t + 30) - IKA 23 sin(9t + 90)+ (4.52a)
44 4

3 33KA 2
3 sin(3t + 30) - 9CA 2 sin(3t + 30) + C sin(3t + 30) = 0. (4.52b)

4
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By harmonic balancing for the synchronous components of equation (4.46), we have

27LCKA 23 + 3KA 23 - 9CA 2 + C = 0 (4.53a)
4 481LC 1281LCKA2 - -KA 2

3 - 0. (4.53b)
4 4

Solving for B in (4.53a), we have A 2 =1000 which approximately equal to A 2 ~ where8999 91 _L_
C ,7 L = , and K = 9. This value of A 2 satisfies both both equations in (4.53).

The flux and the current take the following expressions

1
A(t) - sin(3t + 30) (4.54a)

9
1 1

i(t) = sin(3t + 30) - sin(9t + 90) (4.54b)
216000 648000

with the initial conditions A(0) = 0 and d =0) - In this case the fundamental frequency
dt -

of the response is synchronous to the frequency of the input signal. Hence, we call this

solution a synchronous response.

It is clear from this example, that for a given initial condition the steady-state

solution of the flux can have frequencies which are subharmonics or harmonics of the fre-

quency of the input signal. To verify these conclusions, the system defined in (4.43) was

simulated using Simulink [58]. Under the initial condition {A(0) = 0, d(0) 10}, the

steady-state solution of the flux of the core agrees with the values computed earlier as

shown in Fig. 4.3. Since the magnitude of the flux is small in this case, we plotted 3A(t)

to capture the correlation of the frequencies of the signals. Similarly, for the initial condi-

tion {A(0) - 0, dA(0) - } the simulation outcome agrees with the results found earlier as

depicted in Fig. 4.4. It is clear now that if we choose an initial condition and vary system

parameters, such as C, L, or K, the system can respond with signals which are harmonics

or subharmonics of the driving signal.

For large complex nonlinear power systems, some of the methods which can be used

to compute subharmonic periodic steady-state solutions are: perturbation procedures [70],

time transformation methods [71], harmonic balance methods [72], iteration methods [19],

and averaging methods [19]. In this thesis, we use the generalized state-space averaging

method to investigate the steady-state subharmonic periodic solutions and their stability.

To capture the steady-state subharmonic periodic solution with an fth order subhar-
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Figure 4.3: Harmonic solutions

monic, the response of the system can be formulated using a Fourier series representation

X (t) = XP xk(t)ei ',
k-=-oo

nEN (4.55)

where - is the angular frequency of the response x(t) and w is the frequency of the input

signal. Xk (t) is the projection of x(t) defined as

Xkt) x(-r)e-k rd-r. (4.56)

Furthermore, the time derivatives of (4.55) are given by

d-x&•Ct) =
dtn

=-oo

k= -00
XL (M) + jk wXk it t)
dtn njn

(4.57)

Equations (4.55) and (4.57) allow us to separate the carrier from the amplitude of the re-

sponses of nonlinear systems which in turn allow us to study the steady-state amplitudes and

their stability. In the following two sections, we investigate the steady-state subharmonic

periodic solutions and their stability respectively.

4.2 ubharmonic Periodic Solutions
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Figure 4.4: Subharmonic Solutions

4.2.3 Existence of Subharmonic Periodic Solutions

Consider the following nonlinear differential equation

= f (x) + g(t) (4.58)

where f(x) is a nonlinear function of the state variable and g(t) is a forcing function which

is periodic in time with period T, where T = 2 Furthermore, the nonlinear vector field

f (x) has a polynomial representation as shown below

f(xi) = Kjxi + K 2xT and K 1 , K 2 E R (4.59)

Applying (4.55) and (4.57) to (4.58), we have the following system of nonlinear algebraic

equations whose solutions give the steady-state amplitude of (4.58)

-jk-Xk ý (t)+Fk(XkM(t))+Gk=0 where -oo<k<oo (4.60)
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where Fk (Xk (t)) and Gk take the following form

Fk (Xk ) = "L -- Xmi, LXm 27Xm 3 -lXm Xk-m-m2--M-1
M1 M2 ma_1

M__{
Gk - 2

0

for k = ai

for k ± ai.

(4.61)

Hence, existence of nontrivial solutions of these equations implies existence of sub-

harmonic steady-state periodic solutions of the system defined in (4.58).

4.2.4 Stability of Subharmonic Periodic Solutions

The following theorem gives the conditions of the stability of the steady-state subharmonic

periodic solutions of the system defined in (4.58).

THEOREM 4.2

Suppose the following nonlinear differential equation

dX- (t) = -jk Xk (t) + Fk (Xk i(t)) + Gk ,
dt n n

where -oo < k <oo

has a steady-state solution XOk. Then, the steady-state solution Xk! is stable if the eigen-

values of A have negative real parts, where

A= -jk - + Q{k- j } , where - oo < k < oo
nn

and -oo0 < j < oo.

Furthermore, if A has an eigenvalue of 1L, then pi ± jk' is also an eigenvalue of A.

We omit the proof of this theorem since it follows similar reasoning as Theorem 4.1. N

(4.62)

(4.63)
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Chapter 5

Analysis Tools: Poincard Map, Floquet

Theory, and GSSA Method

5.1 Model Formulation for Duffing Oscillator

Consider the following buckled beam with one mode of vibration [2]. As depicted in Fig-

Input re

I \ Sensor

F x ]
S S

Figure 5.1: Nonlinear interconnected system [2]

ure 5.1, the field force induced by the nonuniform permanent magnet overcomes the elastic

force of the beam. Hence the beam bends toward the magnetic poles. Without the influence

of the magnetic force, the beam would be straight assuming there is no external force acting

on the system. The variable x shown in the picture measures the beam displacement, in

particular its tip displacement. The sensor attached to the beam measures the curvature

of the tip of the beam as a function of time, assuming the motion of the beam primarily

contains first mode dynamics.

There are three steady-state solutions for this system. Two positions are when the

beam contacts to either of the magnetic North poles; these equilibria are stable. The third

U
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equilibrium is the midpoint between the two poles; since for small perturbations the beam

leaves this fixed point, we can conclude that this equilibrium is unstable.

Using Newton's second law of motion, we can formulate the system dynamics as the

following nonlinear differential equation which is Duffing's oscillator [2]:

S+ 6d - x + x 3 = M cos(wt) (5.1)

where 6 is the damping of the system which is greater than or equal to zero, and M is the

amplitude of the driving signal. In state-space representation, we have

d
dt = (5.2)
d y = x - 3 - y + M cos(wt).

Without input, M = 0, there are three fixed points for these coupled differential equations,
namely, {0,0}, {-1,0}, and {1,0}. With a simple calculation, we can show {0,0} is an

unstable fixed point while the other two equilibria are stable.

5.2 Time Simulations for the Duffing Oscillator

To understand the dynamics of the Duffing oscillator, first we simulate the system dynamics

for two different initial conditions. For the first case, we choose the following system pa-
rameters: w = 1.0, M = 0.3, and J = 0.15 with an initial condition of {1 1.45}. Figure 5.2

depicts the steady-state response of the displacement and the velocity of the system.

For given these parameters and the initial condition {1 1.45}, the system has a large

amplitude period-one steady-state response. Figure 5.2 depicts the phase plan plot for the

position and the velocity of the response.

For the next case, the system parameters w = 1.0, M = 0.3, and 6 = 0.22 with an

initial condition of [1 0. 72 5]T are chosen. The steady-state response of the displacement

and the velocity of the system is depicted in Fig. 5.3. In this case, the steady-state of the

system has a period of 3T where T is the period of the driving signal.

Based on these observations, we will study the system dynamics, particularly the

stability of these steady-state responses. First, we employ the generalized state-space av-

eraging (GSSA) method by computing approximated steady-state solutions of the system,
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Figure 5.2: Duffing oscillator: Harmonic steady-state response

and then we will examine the stability of the steady-state solution. Next, the methods of

Floquet and Poincard are used to examine the stability of the steady-state solutions.

5.3 Generalized State-Space Averaging Method

Using the GSSA technique, we compute the model of the system and study both harmonic

and subharmonic steady-state responses. First, the harmonic steady-state solutions for

w = 1, M = 0.3 and 6 = 0.15 or 6 = 0.22 are computed. Since we know that for 6 = 0.22

the system has a period-three steady-state response, we will develop a subharmonic model

using the generalized state-space averaging method.

5.3.1 Harmonic Solutions for Duffing Oscillator

Applying the GSSA method to the system (5.2), we obtain the following equations

d Xk(t) = -jkwXk(t) Yk(t), where - < k < oo (5.3a)
dt
dYk (t) = Xk (t) - Fk (Xk) - (6 + jkw)Yk (t) + Gk (5.3b)
dt

1015.3 Generalized State-Space Averaging Method

.

I

.. .. .. . .. . ..I.. . . . . . . . . . .



Analysis Tools: Poincard Map, Floquet Theory, and GSSA Method

1.5

1

0.5

0

-0.5

-2 -1.5 -1 -0.5 0
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Figure 5.3: Duffing oscillator: Subharmonic steady-state response

where Fk and Gk are defined as

Fk(Xk) = E EXmIXm 2 Xk-m3 -m 2-m 31 -00 k < 00

M1 M2 M3

-M  for k= +1

=0 for k - 1

(5.4)

For each given w, 6, and k, there is a corresponding steady-state solution for the
system.

For w = 1, M = 0.3 and 6 = 0.15, we study the effect of truncation at levels of k equal

to 7, 11, 17, and 25. These levels of truncation give us insight into how the approximated
solution improves; the higher the truncation level, the higher the refinement of the solution.
Figure 5.4 depicts the steady-state solution of the system. Invoking Theorem 4.1, we can
compute the stability of the steady-state solution. Figure 5.5 depicts the eigenvalues of
the system. The fundamental eigenvalues of the system at this operating point are y1,2 =
-0.0750 ± jO0.2115. Since the real parts of the fundamental eigenvalues are negative, this
steady-state solution is a stable operating point. Furthermore, since the order of the full
system is two, we expect that there are two fundamental eigenvalues. Recall that ideally
the other eigenvalues are related to the fundamental eigenvalues by ±kw. The dispersed

K. : .
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eigenvalues in the Fig. 5.4 are due to the truncation.

At this truncation level, the steady-state solution of the system (5.2) takes the fol-

lowing form

where X R and X" are

0.5

-0.5

-1.5

k=7

(t) = Xo + 2 1 X R cos(kt) - X sin(kt).
k=-7

the real and the imaginary parties of Xk.

-1 -0.5 0

x(t)
0.5 1 1.5 2

Figure 5.4: Approximated harmonic solutions: k = ±7 and 6 = 0.15

To improve the refinement of the steady-state solution, we need to increase the level

of truncation. Figures 5.6 and 5.7 depict the steady-state solution and the corresponding

eigenvalues for k = ± 11. Increased refinements are shown in Figs. 5.8 to 5.11 which show the

steady-state and corresponding eigenvalues for truncation levels of k = ± 17 and k = ± 25,

respectively.

(5.5)

-2 -1.5
I I I I I
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Figure 5.5: Eigenvalues of the approximated harmonic system: k = ±7 and 6 = 0.15

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Figure

-1.5 -1 -0.5 0 0.5 1 1.5

x(t)
5.6: Approximated harmonic solutions: k = +11 and 6 = 0.15
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Figure 5.7: Eigenvalues of the approximated harmonic system: k =- ±11 and 6 = 0.15

For the second set of simulations, we choose the following parameters: 6 = 0.22,
M = 0.3, and w = 1. Although the full system simulations show for these parameters a
stable subharmonic response, we will here study harmonic responses and their stability. We

examine the subharmonic responses in the next section.

Similar steps are taken to approximate the steady-state solutions. Figures 5.12

and 5.13 depict the steady-state harmonic solution and the corresponding eigenvalues for

k = ±7. The fundamental eigenvalues of the system are pi = 0.8790 and A2 = -1.0990.

Since pl is greater than zero, this operating point is an unstable fixed point, similarly,
Figs. 5.14 to 5.19 show more refined steady-state solutions and the corresponding eigenval-

ues.
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Figure 5.8: Approximated harmonic solutions: k = ±17 and 6 = 0.15
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Figure 5.9: Eigenvalues of the approximated harmonic system: k = +17 and 6 = 0.15
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Figure 5.10: Approximated harmonic solutions: k = +25 and 6 = 0.15
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Figure 5.11: Eigenvalues of the approximated harmonic system: k = ±25 and 6 = 0.15
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Figure 5.12: Approximated harmonic solutions: k = ±7 and 6 = 0.22

5.3.2 Subharmonic Solutions for Duffing Oscillator

Applying the GSSA method to the system (5.2) to formulate the subharmonic steady-state
solution, we have the following

d
~Xka (t)= -jk--X (t) +Yk -4(t), where -oo < k < oo

n n n

ddYk (t) = Xk (t) - ) +jkL-dt n nn nn YkE (t) + Gk.

(5.6a)

(5.6b)

whereFke and GkK are defined as

Fk (Xk K) = mXm XmX{k-m-m 2 -m3
MI M2 m3

for k=±1+

for ký -1

- co <k<oo

(5.7)

For each given w, 6, k and n, there is a corresponding steady-state solution of the

................................... ............ ....... .... ...... ................

........ ...
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Figure 5.13: Eigenvalues of the approximated harmonic system: k = ±7 and 6 = 0.22

system.

We obtain the same truncation levels as for the harmonic cases. We consider
3

subharmonic responses for 6 = 0.22, M = 0.3 and w = 1. Figures 5.20 and 5.21 show the

steady-state solution and the corresponding eigenvalues of the system with truncation level

of k = +7.

The fundamental eigenvalues of this operating point are /1,2 - -0.1100 + j0.1295.

Since the real parts of the eigenvalues are less than zero, this operating point is a stable

fixed point. In this case the approximated steady-state solution takes the following form

k=7

k - C 
s (t _)

= X0 + 2 Xcos - Sin t

k =-7

(5.8)

For further refinements of the approximated solution, Figures 5.22 to 5.27 depict the

steady-state subharmonic solutions and the corresponding eigenvalues.
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Figure 5.14: Approximated harmonic solutions: k = ±11 and 6 = 0.22
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Figure 5.16: Approximated harmonic solutions: k = ±17 and 6 = 0.22
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Figure 5.17: Eigenvalues of the approximated harmonic system: k = +17 6 = 0.22
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Figure 5.18: Approximated harmonic solutions: k = ±25 and 6 = 0.22
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Figure 5.19: Eigenvalues of the approximated harmonic system: k = ±25 6 = 0.22
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Figure 5.20: Approximated Subharmonic solutions: k = ±+7 and 6 = 0.22
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Figure 5.21: Eigenvalues of the approximated subharmonic system: k = ±7
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Figure 5.23: Eigenvalues of the approximated subharmonic system: k = ±11
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Figure 5.25: Eigenvalues of the approximated subharmonic system: k = +17
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Figure 5.26: Approximated Subharmonic solutions: k = ±25 and 6 = 0.22

-0.6 -0.4 -0.2 0.2 0.4 0.6

Real
Figure 5.27: Eigenvalues of the approximated subharmonic system: k = ±25
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5.4 Floquet Theory

The Floquet machinery can be used to analyze the stability of linear time-variant systems.
The theory will not be proven here, but we give some applications and point out the
underlying assumptions. For further reading on Floquet theory see [52,73,74,55,75,69,76].

Given the system

dx
dt = A(t,p)x, with A(t + T,p) = A(t,p) (5.9)

where x e IRnx are state variables, A(x,p) E IRnxn is the system matrix, and p E R]x
are system parameters.

The fundamental solution set of (5.9) is given by the set {xI(t),x 2 (t),... , xn(t)}.-
Then the fundamental matrix solution of (5.9) can be formulated as

D l(t) = X(t) x2(t) ... xn(t)] (5.10)

where ( E Rnx ' is a matrix. Since {xi1(t),X 2 (t),-... , xn(t)} are fundamental solutions
of (5.9), this implies that

d #(t)d = A(t, p) D (t). (5.11)
dt

Using the following transformation t = ± + T, we can write equation (5.9) as

dx (T + T)dx(+T) =A(T + T,p)x(T + T)
dT (5.12)

=A(T,p)x(T + T), since A(T + T,p) = A(T,p).

The fundamental solution set of (5.12) is given by {xi(t + T),x 2(t + T),... ,xn(t + T)}.
For this fundamental solution set, there exists another fundamental solution matrix of (5.9)
which is given by

[xi(t + T) x2(t +T) . xn(t + T).] (5.13)

The fundamental matrix satisfies the differential equation (5.9) which yields

d O(t + T)d(t T)= A(t,p)' (t + T). (5.14)
dt
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Since (5.10) and (5.13) are fundamental matrices of the system, the following equation must

hold,

4I(t + T) = 4I(t)4. (5.15)

Equation (5.15) says that 4(t + T) is a linear combination of 4(t), where T is an n x n

constant matrix. Since equation (5.15) holds for all time t, then for one cycle

O (T) = 4 (0) T.

The matrix T is referred to as the monodromy matrix. Define

4(t) = V(t)P - 1

where P-1 is an n x n constant matrix. Then using

we obtain

4(t + T) = V(t + T)P - 1

0(t)' = V(t + T)P - 1

V(t)P-"• = V(t + T)P -

V(t + T) = V(t)J, where

a simple transformation of variables,

(5.18a)

(5.18b)

(5.18c)
J = P- XP. (5.18d)

If T has independent eigenvectors, then J is a diagonal matrix with diagonal elements Am,

where pm are the eigenvalues of T. Since J is a diagonal matrix, (5.18d) can be written

element wise

vm(t + T) = pmVm(t). (5.19)

Furthermore,

vm(t + NT) = #mVm(t). (5.20)

where the pm are known as characteristic multipliers or Floquet multipliers.

From (5.20), it is clear that as t -+ oo or N -+ co,

Vm (t) -- + 0 if I < 1

Vm(t) -4 00 if Vm > 1.
(5.21)

(5.16)

(5.17)
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If the system has a periodic steady-state solution, there is always one eigenvalue that has
magnitude equal to one. The Floquet exponent, or characteristic exponent, Pm is defined
as

/Am = epmT or Pm= ln(pm). (5.22)

Hence, if the real part of Pm is less than zero, the steady-state solution of the system is
stable. If the real part of Pm is greater than zero, then the steady-state solution is unstable.

In this analysis, the system is linear with periodic coefficients. Suppose the system
is nonlinear, then we need first to find a steady-state solution of the nonlinear system using
harmonic balancing or integrating the differential equation using computer simulations. If
the nonlinear system is linearized around this periodic steady-state solution, the variational
system will take the form as defined in (5.9) to which we can apply Floquet theory to assess
the stability of the steady-state solution.

5.4.1 Application of Floquet Theory to Duffing Oscillator

Consider the following nonlinear dynamical system.

dxd = f(x,p,t) (5.23)

where x(t) E Rn"l is a state vector, f(x,p, t) E Rnx t is a nonlinear vector field, and p are

system parameters.

Suppose (5.23) has a periodic steady-state solution t(t) with period T. Then to
examine the stability of this steady-state solution, we employ the Floquet machinery.

Here we outline the steps to invoke the Floquet analysis to assess the stability of a
nonlinear system with a periodic steady-state solution.

* Given a nonlinear system with steady-state periodic solutions: compute the steady-
state solution t(t) by any method, such as harmonic balance, perturbation method,
or by simulating the system dynamics.

* Linearize the system around this operating point t(t).

* Compute n linearly independent solutions of the linearized system [x1 (t), X2 (t)... , xn(t)]
in one cycle where the length of the cycle is equal to T, given that the system matrix
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has a period of T.

* Form the fundamental matrix solution of the system (D(T), where 4D(T) E R"n.

* Compute the monodromy matrix I using the relationship defined in (5.16) and 4)(0),

which depend, on the initial conditions of the state variables.

* Compute the eigenvalues of T, i.e., {#m}-

1. If for some m, lmI > 1, then the solution t(t) is an unstable solution.

2. If all Ipm < 1 except one equal to 1, then t(t) is a stable solution.

3. If more than one eigenvalue is equal to 1, then we need to perform a nonlinear

analysis to examine the stability of the system, such as using the center manifold

theory.

4. Compute the Floquet exponents Pm using the relationship defined in (5.22) if

needed.

Now we use the Floquet theory to ascertain the stability of the steady-state solutions

of the Duffing oscillator that were computed earlier using the generalized state-space aver-

aging method. Since we approximated the steady-state solutions at four truncation levels,

we will study each case in order to gain insight into the variations of the Floquet multipli-

ers. The Floquet exponents are compared to the fundamental eigenvalues of the generalized

state-space averaging method. Since the system response for different parameters can be

either harmonic or subharmonic periodic solutions, first we will investigate the stability of

the harmonic periodic solutions.

5.4.1.1 Harmonic Solutions of Duffing Oscillator

Choosing the following system parameters w = 1, 6 - 0.15 and M - 0.3, the steady-state

periodic solution of the system takes the following form

k=q

±(t) = Xo + 2 1 X R cos(kt) - X1 sin(kt) (5.24)

k=-q

where q is the truncation level which takes the values 7, 11, 17, and 25. X R and X1 are

the real and the imaginary parts of Xk.



5.4 Floquet Theory 121

Linearizing the system defined in (5.2) around the operating point ±(t), the varia-

tional system is given by

di,
dt (5.25)

= -6 2 +:1 - 3 til
dt

where i(t) is the perturbation around the equilibrium point. Therefore, if the variational
system is stable; then the dynamics of i(t) go to zero in the steady-state, and the steady-
state periodic solution t(t) is a stable operating point. The system matrix of the variational

system is given by

A =[- t2 () . (5.26)= - 31 0 "2

The system matrix is periodic in time with a period of , where T is the period of the2 '1
forcing function. In order to compute T, first, we need to calculate T. Then, T yields

l=2 where (t+ ~)= (t) . (5.27)2527

Hence, to compute the eigenvalues of T, we need to compute the eigenvalues of I, which

are

A[I] = A 2 where A[-] = eigenvalues of [-]. (5.28)

Simulating the variational system (5.25) with two different initial conditions and choosing

the system parameters as w = 1, M = 0.3 and J = 0.15, the monodromy matrix l1 at the
sampling points of 0 and T was computed. Figures 5.28 and 5.29 depict the time simulations

for these initial conditions with the steady-state solutions that correspond to the truncation
level for k = +7. Sampling at the times 0 and Z, from Figs. 5.28 and 5.29 the monodromy

matrix I yields

-0.2294 -1.3767= . (5.29)
0.2135 -0.9018]

The Floquet characteristic multipliers are given by

/1),2 = -0.5656 ± j0.4253. (5.30)
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Time, t(sec)
Figure 5.28: Variational system simulations for xo = [1 0]

Time, t(sec)
Figure 5.29: Variational system simulations for xo = [0 1]
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Using the relation defined in (5.28), the Floquet characteristic multipliers of 1F are

=1,2 = 0.1390 ± j0.4811 (5.31)

and the corresponding the Floquet exponentials are

P1,2 = -0.1101 ± j0.2052. (5.32)

Following similar steps and choosing the steady-state solutions that correspond to
the truncation levels of k = ±11, k = ±17, and k = ±25 we computed the Floquet
characteristics and exponents. Table 5.1 shows those values where w = 1, M = 0.3 and
6 = 0.15.

k Floquet Multipliers Floquet Exponents

0.1424 - j0.6079 -0.0750 - j0.2134

0.1424 + jO.6079 -0.0750 + jO0.2134

11 0.1433 - j0.6077 -0.0750 - jO.2131
0.1433 + j0.6077 -0.0750 + jO0.2131

17 0.1433 - j0.6077 -0.0750 - jO.2131
0.1433 + jO.6077 -0.0750 + jO.2131

25 0.1433 - j0.60777 -0.0750 - j0.2131
0.1433 + j0.6077 -0.0750 + jO.2131

Table 5.1: Approximated harmonic Solutions: 6 = 0.15

Similarly, for the second case, in the harmonic steady-state solutions where w = 1,
M = 0.3 and 6 = 0.22, using similar truncation levels, the corresponding steady-state solu-

tions were used to compute the Floquet characteristics and exponents. Table 5.2 summarizes

the results.
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k Floquet Multipliers Floquet Exponents

7 251.7523 0.8779

0.0010 -1.1004

11 251.7521 0.8799
11

0.0010 -1.1004

17 251.7521 0.8799
0.0010 -1.1004

25 251.7521 0.8799

0.0010 -1.1004

Table 5.2: Approximated harmonic Solutions: 5 = 0.22

5.4.1.2 Subharmonic Solutions of Duffing Oscillator

Finally, for subharmonic solutions the steady-state solutions take the following form

k=q

S(t)= X 0 +2 X cos (t) - X( sin (t).
k = -q

(5.33)

In this case, the subharmonic steady-state solutions that correspond to the system param-

eters w = 1, M = 0.3 and 6 = 0.22 were used to compute the Floquet characteristics and

exponents. The time simulations for the variational system are shown in Figs. 5.30 and 5.31

with truncation level of k = ±7.

Sampling at the time instances 0 and T from Figs. 5.30, and 5.31 the monodromy

matrix ' is computed

S0.3249
00= 60.0368

-0.1255
0.3685

(5.34)

The Floquet characteristic multipliers are given by

Pl = 0.3467 + j0.0644 P2 = 0.3467 + jO.0644. (5.35)

Using the relation defined in (5.28), the Floquet characteristic multipliers of T are

p1 = 0.1160 +j0.0446 /2 = 0.1160 - j0.0446
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0 2 4 6 8 10 12

Time, t(sec)
Figure 5.30: Variational system simulations for Zo = [1 0]

and the corresponding Floquet exponents are

P = -0.1106 + j0.0195 P2 = -0.1106 -jO.0195. (5.37)

Using similar procedures and choosing the subharmonic steady-state solutions that

correspond to the truncation levels of k = ±11, k = +17, and k = -25 we computed the

Floquet characteristics and exponents. Table 5.3 shows these results.

v -- ,IL Ill

125



Analysis Tools: Poincard Map, Floquet Theory, and GSSA Method

Figure 5.3

2 4 6 8 10

Time, t(sec)
1: Variational system simulations for fo = [0 1]

Table 5.3: Approximated subharmonic Solutions: 6 = 0.22

5.5 Poincard Maps

Before introducing Poincard map theory, let us first define the Poincard section [2]. A

Poincar6 section is a hypersurface in the state-space that is transverse to the flow of a given

dynamical system. For instance, in n-dimensional space, a hypersurface is a surface whose

k Floquet Multipliers Floquet Exponents

7 0.1160 + j0.04 4 6 1  -0.1106 + jO.0195
0.1160 - jO.0446 -0.1106 - j0.0195

11 0.0744 + j0.1004 -0.1103 + j0.0495
0.0744 - j0.1004 -0.1103 - j0.0495

17 0.0722 + j0.1010 -0.1107 + j0.0504
0.0722 - j0.1010 -0.1107 - j0.0504

25 0.0711 + j0.1038 -0.1100 + j0.0514
0.0711 - j0.1038 -0.1100 - j0.0514
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dimension is (n - 1). A flow is transverse to a surface if the normal of the surface n(x) and
the flow of the vector field are not orthogonal at points of intersection.

DEFINITION 5.1
A transformation that maps the current intersections of the flow of the vector field and

the Poincare section to the subsequent intersections on the Poincard section is called the

Poincare map.

One advantage of using a Poincard map is it reduces the system dimensions by one
state since the Poincard section is an (n - 1) space. Since a discrete map is less complicated
than a continuous vector field, a Poincard map also mitigates the complexity of the analysis
of the dynamical system. Furthermore, the stability of a periodic solution of a system can
be assessed by studying the evolution of the Poincard map. One disadvantage of Poincard
maps is one must know first a periodic solution of the system analytically or numerically.
Hence, if the system has complicated dynamics, one can integrate the system by using
numerical integration, since finding closed form analytical solution is impossible for higher
order systems. We are only giving a brief introduction of Poincard maps, for further reading
see [77,78,55,79-81,76].

In this study, we use the Poincard maps to assess the stability of nonlinear systems.
To understand the mechanics involved in computations of the stability of periodic solutions
of a dynamical systems, let us consider the following nonlinear dynamical system

dzdx= f (x,t,p) (5.38)
dt

where x e RnxI is a state variable, f(x, t,p) E Rnxl is a nonlinear vector field, and p is a

system parameter.

Suppose this system has a periodic steady-state solution with a period T. Let xo = To,

where TO is a point on the steady-state periodic solution. Then the trajectory initiated from
To at t = to is represented by x(ro, t, to). To construct the Poincard map of this trajectory,
we collect discrete points of the trajectory at an interval of T. Hence, the stroboscopic
points of the trajectory, or the Poincare map, can be represented as

P(T) = x(-r, to + T, to).
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If the steady-state solution of the system (5.38) is periodic, then

x(ro, t + T, to) = Tro P(Tr0) = 0. (5.40)

It is clear that the fixed point of the Poincarx map is a steady-state periodic solution of

the system (5.38). Perturbing the map from the steady-state solution T = TO, we have the

following

8P(To)
P(To + ) = P(To0) + P(T) + h.o.t. (5.41)

where C is the perturbation of the steady-state solution of the map while h.o.t. are the

higher order terms of C, including the quadratic terms. Since the perturbation is small in

amplitude, we can ignore the higher order terms, and the variational system is given by

8P) O(To)
P(r) = T (5.42)

Hence the Poincarx fixed point To is stable if the magnitude of the eigenvalues of {f 9o}

are less than one.

To assess the stability of the steady-state periodic solution of the system (5.38), our

objective is to compute the Jacobian matrix of the map and then examine the magnitude

of the eigenvalues of the Jacobian matrix. If all eigenvalues are inside a unit disc, then

the steady-state periodic solution is stable; otherwise, if some of the eigenvalues have a

magnitude which are greater than one, the steady-state solution is unstable. If some of the

eigenvalues have a magnitude of less than one and some have a magnitude greater one, and

one or more eigenvalues have a magnitude of one, then the linearization of the Poincar6

map cannot give information about the stability of the system; therefore, nonlinear analysis

is required to assess the stability of the solution. Normal forms and the center manifold

theorem are examples of the tools that can be used to analyze such systems.

If we differentiate (5.38) with respect to r, we have

d o(fr, t) Of(x(-, t,p)) x (5.43)(5.43)
dt k - ax 87

Further simplifications yield

d_____ _) ___f_(_(__ tp)x8(T, t)dP(r,t) f- (x(rtP))r (r,t) where r (r,t) = x(rt) (5.44)
dt Ox 9r
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From (5.39), we have

OP(r) Ox(r, to + T, to) = (to + T) (5.45)-- --F(to + T) (5.45)
aT aT

Hence, our problem is reduced to computing a steady-state solution of the sys-
tem (5.38). However, if the system dynamics are nonlinear, the chances of computing
an analytical solution are very small; therefore, we can compute the steady-state solution
employing a computer simulation. Furthermore, using the steady-state solution, we need
to solve the differential equation defined in (5.44), for a given initial condition r(to). For
a given initial condition, we can compute P(to + T) simply by integrating the differential
equation. One easy way to integrate the system is by computer simulation.

5.5.1 Application of the Poincard Map to the Duffing Oscillator

From the generalized state-space model, we computed steady-state solutions for different
truncation levels. Using these steady-state solutions, the variational model of the Poincar6
map can be computed as defined in equation (5.44). For a given steady-state solution e(t),
equation (5.44) takes the following form

d _ 0 1F (r, t). (5.46)
dt 1 - 3 2t) -5

Hence, to find the Jacobian matrix of the Poincard map, we need to compute the solutions
of the system defined in (5.46) for one cycle with a length of T or simply F(to + T). If we
choose to = 0 and 1(0) = I, then we compute J(T) by analytical methods or by simulations.

Using t(t) which corresponds to a truncation level of k = +7, we integrated the system
defined in (5.46) through computer simulations in one cycle and computed F(T), where

[(T) = -0.2294 -1.3767]

( 0.2135 -0.9018_

Hence the eigenvalues of the Jacobian matrix of the Poincar6 map are given by

/1= 0.1390 + j0.4811 /2 = 0.1390 - j0.4811. (5.48)

Since the magnitudes of sI and A2 are less than one, the Poincar6 fixed point is stable which

implies that the steady-state periodic solution :(t) is a stable solution.
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Since equation (5.46) is equivalent to (5.26), the eigenvalues of the Poincare map are

equal to the Floquet characteristic multipliers; therefore, we do not need to compute the

characteristic multipliers.

5.6 Connections Between Poincare Map, Floquet Theory,

and GSSA

In this thesis, steady-state harmonic and subharmonic periodic solutions and their stability

of the Duffing oscillator were investigated. The generalized state-space averaging method

was used to compute the steady-state periodic solutions, and the fundamental eigenvalues

were examined to assess the stability of the periodic solutions. The stability of these steady-

state solutions were also examined by using Floquet theory and Poincar6 maps. Tables 5.4,

5.5, and 5.6 show the fundamental eigenvalues of the generalized state-space averaging

method, the Floquet exponents, and the Poincar6 maps eigenvalues. The eigenvalues of

GSSA and Floquet exponents give same measure. However, the GSSA approach is much

simpler than Floquet theory.

M = 0.3 and w = 1

k GSSA Eigen Floquet Exponents Poincard Map Eigen

7 -0.0750 + j0.2115 -0.0750 + j0.2134 0.1424 + j0.6079
-0.0750 - j0.2115 -0.0750 - j0.2134 0.1424 - jO.6079

-0.0750 + jO.2115 -0.0750 + j0.2131 0.1433 + j0.6077
11-0.0750 - jO.2115 -0.0750 - jO.2131 0.1433 - O.6077
17 -0.0750 - j0.2115 -0.0750 - j0.2131 0.1433 - j0.6077

-0.0750 + jO0.2115 -0.0750 + j0.2131 0.1433 + j0.6077

25 -0.0750 + jO.2115 -0.0750 + j0.2131 0.1433 + j0.6077

S-0.0750 - j0.2115 -0.0750 - j0.2131 0.1433 - jO0.6077

-0.0750 -Table 5 .4: Harmonic Solutions: 6 =0.2131 0.1433 - j0.6077
Table 5.4: Harmonic Solutions: 6 = 0.15
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M = 0.3 and w = 1

k GSSA Eigen Floquet Exponents Poincard Map Eigen

0.8790 0.8779 251.7523
7

-1.0990 -1.1004 0.0010

0.8790 0.8799 251.7521
11

-1.0990 -1.1004 0.0010

0.8790 0.8799 251.7521
17

-1.0990 -1.1004 0.0010

0.8790 0.8799 251.7521
25

-1.0990 -1.1004 0.0010

Table 5.5: Harmonic solutions: 65 = 0.22

M = 0.3 and w = 1

k GSSA F. Eigen Floquet Exponents Poincard Map Eigen

-0.110 + j0.1295 -0.1106 + j0.0195 -0.1160 + jO0.0446
7

-0.110 - j0.1295 -0.1106 - j0.0195 -0.110 - j0.0446

-0.110 + j0.1212 -0.1103 + j0.0495 -0.0744 + jO0.1004
11

-0.110 - j0.1212 -0.1103 - j0.0495 -0.0744 - jO.1004

-0.110 + j0.1299 -0.1107 + j0.0514 -0.0722 + j0.1010
17

-0.110 - j0.1299 -0.1107 - j0.0514 -0.0722 - j0.1010

-0.110 + j0. 1300  -0.1100 + j0.0514 -0.0711 + j0.1038
25

-0.110 - j0.1300 -0.1100 - j0.0514 -0.0711 - j0.1038

Table 5.6: Subharmonic Solutions: 6 = 0.22
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Chapter 6

Applications

6.1 Single-phase Ferroresonance

To apply the generalized state-space averaging methodology to the single-phase ferroreso-

nance model defined in Equation (2.3), we write the equations in state space representation

x=y

y=z (6.1)

z -alz - a2y - a3x - a4x4y - a5 5 + a6M cos(t)

where x is the flux of the transformer core. The dynamics of the slowly varying model are

given by

Xk(t) = -jkwXk(t) +Yk(t) - oc < k < oc

Yk(t) = -jkwYk(t) + Zk(t)

Zk(t) = (a Il + jkw)Zk(t) - a2Yk(t) - a3Xk(t) - a4Hk(Xk(t), Yk(t)) - a5Fk(Xk(t)) + a6Gk

(6.2)

where Hk, Fk, and Gk are defined as

Hk(Xk, Yk) = ZZ Xm Xm2Xm3X M4 •Yk-m••-m 2-m3• 4• - 00o < k < 00
ml m2 M3 M4

Fk(Xk) =" I Xm" Xm 2Xm 3Xm •4Xk-mil-m2-m-•m4 00< •m • c
mI m2 m3 M4 (6.3)

M  for k= ±m
Gk=

10 for k# m

Our task is to examine the existence and stability of steady-state solutions of the slowly

varying system defined in (6.2). If such solutions exist, then the full system (6.1) will have

periodic steady-state solutions and their stability depends on the evolution of the slowly

varying system. Hence, in the following sections we will investigate existence and stability

of harmonic periodic steady-state solutions of the system defined in (6.1) by studying the



slowly varying system (6.2).

6.1.1 Harmonic Periodic Solutions

The equations that govern the fixed point solutions of the slowly varying system are given

by

- jkwXk + Yk = 0 k > 0

- jkwYk + Zk = 0 (6.4)

- (al + jkw)Zk - a2Yk - a3Xk - a4Hk - a5Fk + Gk = 0

The existence of nontrivial solutions of these equations implies existence of periodic

solutions of the system defined in (6.1). Since the system dynamics depend on four param-

eters R, L, C, and M, for each given value of these parameters it is necessary to compute

a corresponding steady-state solution for the full system. In general, one fixes some of the

parameters and then studies the steady-state solutions of the system based on the varia-

tions of other parameters. In the following subsections we will investigate the existence

of harmonic periodic steady-state solutions of the system by varying the transmission line

inductance L and the magnitude of the input voltage M.

6.1.1.1 Line Inductance Variations

In this analysis for each fixed value of M, we take all the possible values of L and examine if

harmonic periodic solution exists. We set the other parameters to R = 0.002 pu, C = 50 pu,

and M = 0.25 pu. The line inductance is varied from 0.00001 pu to 0.05 pu. For the range

L is less than 0.0264, only one flux amplitude in the steady-state solution exists while for L

greater than this value three amplitudes of the flux exist for each given L. The critical value

which corresponds to the bifurcation point is L = 0.0264 pu for M = 0.25 pu. Figure. 6.1

depicts the steady state solution curves for M = 0.25 pu and L taking values from 0.0001 pu

to 0.05 pu.

6.1.1.2 Input Voltage Magnitude Variations

Similarly, for each fixed value of L, we vary all possible values of M and examine the steady-

state solutions of the system. Figure 6.2 depicts the steady-state solutions of the system
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Figure 6.1: Steady-state solutions for M = 0.25 pu: Single-phase

with line inductance set to 0.025 pu and the magnitude of the input voltage M varying from
0 to 0.35 pu. At the locations P1 and P2 in Fig. 6.2 the steady-state solution of the system
can jump from one value to another. In the region between the points P1 and P2 in Fig. 6.2,
the system has multiple steady-state solutions.

6.1.2 Stability of Harmonic Periodic Solutions

The stability of the three steady-state solution curves C1 , C2, and C3 were examined by
computing the eigenvalues of the slowly varying system. The eigenvalues of the solution
curves C1 and C3 in Fig. 6.2 indicate stability while the eigenvalues of the solution curve C2

show instability. Figs. 6.3, 6.4, and 6.5 depict the eigenvalues of the curves CL, C2 , and C3

respectively. Similarly, Figures 6.6 and 6.7 show the eigenvalues of the points P1 and P2

respectively. At these locations, ferroresonance can occur, particularly, the amplitude for
the flux can jump for small perturbations of the amplitude of the input voltage.

To verify the jump amplitudes found in the analysis, we simulated the system dynam-
ics in Matlab. For the first simulation, we chose the following parameters: R = 0.002 pu,

C = 50 pu, L = 0.025 pu, and M = 0.173 pu. For this input, the magnitude of the cor-

pwý



136 Applications

1 ... ........ ... ...... ........ ........... .... .......... ..........................* .......

1 .4 ........... . .. .. . ..... .... .. . ... . .. . . ... .. . . . . ... . . . . . .. .. .. .. .
1.6 -1.4

P2

0.2

0.6 .

0.4-

0.2 C-

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Input magnitude,M(pu)
Figure 6.2: Steady-state solutions for L = 0.025 pu: Single-phase

responding flux amplitude was 0.7754 pu. After 800 sec, we applied a disturbance signal
-y(t) with an amplitude of 0.012 pu to the system, and we removed the disturbance signal
at t = 1000 sec. Due to this disturbance the system response changed slightly, and after
the disturbance vanished the response returned to its original value. This indicates that for
these given parameters ferroresonance cannot occur. Figure 6.8 shows the simulations of
the system for these parameters where A(t) is the flux of the core, v(t) is the input voltage
of the transformer, and y(t) is the disturbance signal.

For the second simulation, the input amplitude was changed to M = 0.1735 pu.

Before the disturbance the amplitude of the flux reached a steady-state value of 0.7754 pu.

As above a disturbance signal was applied to the system with an amplitude of 0.012 pu. Due

to the disturbance the flux magnitude jumped to 1.5099 pu. After the disturbance signal
vanished, the amplitude of the flux persisted at 1.5099 pu. Hence, the system underwent

a ferroresonance phenomenon, particularly, jump amplitude. The amplitude of the flux
increased by 51.35 percent . Figure 6.9 depicts the time simulations of the system under

these conditions.
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6.1.3 Robustness analysis for the steady-state solutions

In general to model the nonlinear characteristics of transformer cores, we run an experiment

and collect the root mean square values of current iL(t) and voltage v(t) of the transformer

primary side. Then, we compute the flux A(t) and fit this data to a curve using the least

squares technique. One general model is

iL = K1 A + K 2A 5 . (6.5)

In this model we ignore any other terms since the coefficients of these terms are very small.

We may still ask how the response of the above model is different than the response

of the following model

iL = KiX + K 2 A5 + 2n+ 5  where a <1. (6.6)

n=1

I I I

ffl "• I I I I I I I I I $
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To examine this issue, we consider the following nonlinear differential equation:

,k = -alxi - a2x2 + a3 cos(t)

2 X3 (6.7)

5 2n+5 wheres3 = a4 x1 - KgX2 - K2 x 2 a 2n + 5  where an < 1
-- n=1 I

The equilibrium state of the system can be computed by finding the roots of the

following equation.

aixi + a2x2 - a3 cos(t) = 0

X3 = 0 (6.8)r m
I Kx K2X5 1:a 2n+5 -0

a4 L - KI2 K2 I 2n+5 0

Suppose for an = 0 that a steady-state solution {1i, 2, x3 } exists. This steady-state

solution is a periodic steady-state solution.

Now we are asking the question: does a steady-state solution exist for small increment

of an?

To answer this question, we apply the implicit function theorem to the system of

equations defined in (6.8). Hence, the incremental relationship between the variables of

Ax1 , Ax 2 , Ax 3, and Aan is given by

( 1 a1 2n 0 L(6.9)AX2 I -- I+5± 2n+4 Em I ±2n÷5Aan_Ax2 1 - (1 +52 + E=1 (2n + 5)anx ) En= "d

The matrix

41 a2 2n4(6.10)1 - (1 + 52 + En +I (2n + 5) ann+4

is the Jacobian matrix of the system at each given steady-state solution. Since this matrix

is periodic, we apply Floquet theory to incremental system and compute the monodromy

matrix. If the magnitudes of the eigenvalues of the monodromy matrix are not equal to one,

1416.1 Single-phase Ferroresonance



then the Jacobian matrix is invertible. As we showed earlier, the Floquet exponents are

equivalent to the fundamental eigenvalues of the generalized state-space averaging model.

As shown in Fig. 6.2, at the locations P1 and P2 there exist zero eigenvalues for the gen-

eralized state-space averaging model. Hence, at these locations there are some Floquet

multipliers that have magnitude equal to one. Therefore, the Jacobian matrix is not invert-

ible at these locations. However, for all other steady-state solutions, the Jacobian matrix is

invertible.

Hence, as long as the Jacobian matrix is invertible there exists a steady-state solution

for small values of a,. This implies that if we compute multiple steady-state solutions of

the system for an = 0, then there still exist multiple solutions of the system for small an.

6.2 Three-phase Ferroresonance: All Switches Closed

Applying the generalized state-space averaging technique to the model defined in (2.9), we

have the following infinite set of nonlinear differential algebraic equations

X1,k = -jkwXl,k - alX7,k - a2Fl,k + a3X4,k (6.11a)
X2,k = -jkwX 2,k - alXs,k - a2F2,k a3X5,k (6.11b)

X3,k = -jkwX 3 ,k - alX9,k - a2F3,k + a3X6,k (6.11c)

X4,k = -(jkw + a5)X4,k + a4Gl,k - a4Xl,k (6.11d)

X5,k = -(jkw + a5)X5,k + a4G2,k - a4X2,k (6.11e)

X6,k = -(jkw + a5)X 6,k + a4G3,k - a4X3,k (6.11f)

X7,k - X9,k = -jkwX 7 ,k + jkwX9 ,k + X1,k - X3,k (6.11g)

X8,k - X9,k = -jkwX8,k + jkwX 9,k + X2,k - X3,k (6.11h)

0 = K,(X 7 ,k + X8,k + X9,k) + K5(Fl,k + F2,k + F3,k) (6.11i)
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where F1,k, F2,k and F3,k are defined as

FL,k (X7,k) = E E X7,mi X7,m2X7,m3X7,M4X7,k-m•-m2-m3-M4
ml M2 m3 M4

F2,k(X,) = X8,mi•X8,m 2X,m•, 8x,m4X8,k-mi-m 2• -m3-m4

ml M2 7M3 M4

F3 ,k (X 9 ,k) = E X9,mEX9,m 2X9,m 3 X9,m,4 X9,i-mi-m 2 -m 3-M4
Ml M2 M3 M4

-oo<k<oo and -oo<mi<oo0

and G1,k, G2,k and G3,k are defined as

G,k =
for k=+ 1

otherwise

(6.12a)

(6.12b)

(6.12c)

(6.13a)

G2,k = 1to
0

G3,k = 1m]

10

for k= +1

otherwise

for k = ±1

otherwise

-oo<k<oo and -oomi_<oo

and

V2, V3  1, 2k 3,k A1, 2, 3k TV2,k V3,k Ii,k 12,k I3,k AI,k A2,k A3,k I

The steady-state response of the system can be computed from the following nonlin-

ear algebraic equations.

(6.13b)

(6.13c)

Xk = Vlk (6.14)
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-jkwX1,k - alX7,k - a2F1,k + a3X4,k = 0 (6.15a)

-jkwX 2,k - alXs,k - a2F2,k + a3X,k = 0 (6.15b)

-jkwX 3,k - alX9,k - a2F3,k + a3X6,k = 0 (6.15c)

-(jkw + a5)X4,k + a4Gl,k - a4Xl,k = 0 (6.15d)

-(jkw + a5)X5,k + a4G2,k - a4X2,k = 0 (6.15e)

-(jkw + as)X6,k + a4G3,k - a4X3,k = 0 (6.15f)

-jkwX 7,k + jkwX9 ,k + X1,k - X3,k = 0 (6.15g)

-jkwX8s,k + jkwX9,k + X2,k - X3,k = 0 (6.15h)

K (X7,k + X8,k + X9,k) + Ks (FI,k + F2,k + F3,k) = 0 (6.15i)

In order to examine the existence of periodic solutions of the system defined in (2.9),

we need to investigate the steady-state solutions of the transformed system. In this thesis

we are investigating the existence of periodic solutions and the stability of the full system.

6.2.1 Harmonic Periodic Solutions

To study the harmonic solutions of the system (2.9), we vary two parameters of the trans-
formed system, the length of the transmission line and the magnitude of the input voltage

M.

Fixing the magnitude of the input voltage M to 1.0 pu, we vary the transmission line

length from 0 to 120 miles. Figure 6.10 shows the magnitude of the flux of phase one versus

the transmission line length. From this figure, it is clear that ferroresonance cannot occur

since there are no multiple steady-state solutions. Initially the system is inductive and as

the transmission line length increases it becomes capacitive which increases the magnitude

of the flux.

Similarly fixing the length of the transmission line to 40, 60, and 120 miles respec-
tively, we vary the magnitude of the input voltage from 0 to 3.0 pu. Figure 6.11 depicts the

magnitude of the flux of phase one versus the magnitude of the input voltage for different

values of transmission line length.



6.2 Three-phase Ferroresonance: All Switches Closed 145

Miles

Figure 6.10: Steady-state solutions for M = 1.0 pu: All switches closed
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6.2.2 Stability of Harmonic Periodic Solutions

For each given steady-state solution of the system (6.11), we need to compute the cor-

responding linearized Jacobian matrix of the system to assess the stability of the system

defined in (2.9). Since the system defined in (6.11) is a differential-algebraic system, we

need to simplify the system dynamics in order to compute the eigenvalues of the system or

use the generalized eigenanalysis method. In this thesis we simplified system dynamics.

To compute the eigenvalues of the system defined in (6.11), we propose the following:

Eliminate X9,k and G3,k from equation (6.11c) using equation (6.11i). Then the simplified

system takes the following form

X1,k = -jkwXl,k - alX7,k - a2Fl,k + a3X4,k

X2,k = -jkwX 2,k - alX8,k - a2F2,k + a 3 Xs,k

X3,k = -jkwX 3,k + al (X7,k + X8,k) + a2(F1,k

-X4,k = -(jkw + as)X4,k + a4Gl,k - a4Xl,k

X5,k = -(jkw + a5)X5,k + a4G2,k - a4X2,k

X6,k = -(jkw + a5)X6,k + a4G3,k - a4X3,k

X7,k - X9,k = -jkwX 7,k + jkwX9,k + X1,k - X3,k

)S,k - )9,k = -jkwX 8,k + jkwXg,k + X2,k - X3,k

Then, the variational system takes the form

QXi,k = JXi,k where Q = I - M and

+ F2,k) + a3X6,k

J = J + P7

where I E Rýxn is the identity matrix, J E C"x" is a complex matrix, and Q e R•x' is a

real matrix. Hence the eigenvalues of the system can be computed by finding the roots of

the following algebraic equation

det(J - QA) = 0 (6.18)

where A's are the eigenvalues of the system. To compute the matrices Ji, M, and 7, we

perform the following steps. Define

(6.16a)

(6.16b)

(6.16c)

(6.16d)

(6.16e)

(6.16f)

(6.16g)

(6.16h)

(6.17)
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Xik = U(Xi,k =0 i = 1, 2, ..-. , 8 (6.19a)Xi~k = U (Xi 9 ) ,k =o

Zk = Ki(X7,k + X8,k + X9,k) + K 2 (Fl,k + F2,k + F3,k) (6.19b)

7= [X1,k X2,k . X8,k] (6.19c)

v [X7,k X8,k X9,k] (6.19d)

Then, let

J, = Jacobian(U, F) and J2 = Jacobian(Z, V) (6.20)

where J, e C n " is a complex matrix and J2 E Wmxm. The dimension of the reduced

system, n and m can be computed from the following equation

n=deg*(2k+l) and m=3*(2k+l) (6.21)

where deg is the order of the system defined in (6.11) and k is the number of harmonics

used for the approximation of the solution. For example, if the system contains 8 first order

differential equations and one algebraic equation, then the degree of the system will be 8

and n and m will be 24 and 9 respectively, if only the first harmonic considered. If we take

up to the seventh harmonics, then n and m will be 120 45.

Now, define

A 1 = J2 (:, 1) J2 (:, 4) -...- J2 (:, n - 2)] (6.22a)

A 2 = J2 (:, 2) J2 (:, 5) -.. J2 (:, n - 1)] (6.22b)

A 3 = J2 (:,3) J2 (:, 6) . J2 (:, n)] (6.22c)

The notation J2(:, i) stands for the i th column of the matrix J2. Then,

X9,k = -A3'AIX 7 ,k - A3'A 2 Xs,k (6.23)
±9,k = -A 3 'AlX7,k - A3 1 A 2X•s,k

Since K 1, the coefficient of the linear term, is not equal to zero, the matrix A 3 is always

invertible. Hence, the left side of the differential equation that represents the reduced system

is given by
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1 0

10

1

0 1

[X1,k 1X2,k

LX8,kJ

0 0
0

0

-A3 A,
-0 -A3VA2

X2,k
2,k (6.24)

Xs,k

Similarly, the right side is

-0
0

0

-jkwA3'Al
-jkwA3'A 2

XI,k]
X2,k (6.25)

X8,kj

then, we have

0 0
0

0

-A3 'At

O -AVA2

and P=

0

0

0
-jkwA3 'A

-jkwA3'A 2

(6.26)

Figure 6.12 shows the eigenvalues of the system for M = 1.0 pu with a 60 mile transmission

line length. The steady-state solution of the system is stable since the real parts of the

eigenvalues of the linearized system are strictly less than zero as shown in the figure. Hence,

if all switches are closed, the system is not vulnerable to ferroresonance for any bounded

external disturbance.

To verify these results, time simulations were performed. Figure 6.12 shows a

Simulink block diagram. Similarly, Figures 6.13, 6.14, and 6.15 depict the flux linkages

Al(t), A2(t), and A3 (t) of the transformer core. In these simulations, the transmission line

length is 60 miles and the magnitude of the input voltage M is 1.0 pu. These simulations

agree with the analytical results found earlier.

X1,k 1XI,k

J X2,k

LXs,kJ

M =

148
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Figure 6.12: Eigenvalues of the linearized system: All switches closed
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Figure 6.13: Simulink block diagram for the system: All switches closed
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6.3 Three-phase Ferroresonance: One Switch Opened
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Figure 6.16: Time simulations for A 3(t): All switches closed

6.3 Three-phase Ferroresonance: One Switch Opened

Applying the generalized state space averaging methodology to the model defined in (2.16),

we have the following infinite dimensional nonlinear differential algebraic equation

X,lk = -jkwXl,k + alXlo,k + a2F3,k - a3X5,k (6.27a)

X2,k = -jkwX 2,k - alXs,k - a2Fl,k + a3X 6,k (6.27b)

)X3,k = -jkwX 3,k - alX9,k - a2F2,k + a3X7,k (6.27c)

X4,k = -jkwX4,k + a6X5,k (6.27d)

X5,k = -(jkw + as)X5,k + a4Xl,k - a4X4,k (6.27e)

X6,k = -(jkw + a5)X6,k + a4G2,k - a4X2,k (6.27f)

X7,k = -(jkw + a5)X7,k + a4G3 ,k - a4X3,k (6.27g)

X8,k + Xl10,k = -jkwXs,k + jkwXlO,k + X2,k - Xl,k (6.27h)

)9,k + X10,k = -jkwX 9,k + jkwXlo,k + X3,k - X1,k (6.27i)

0 = Kl(Xs,k + X9,k - Xlo,k) + K 5 (FI,k + F2,k - F3,k) (6.27j)
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where Fl,k, F2,k and F3 ,k are defined as

F1,k (X8,k) = E E E Xi Xmi X8,m2 X8,m3X8,m4 X8,k-mi -m2 -m3-m4
MI m2 m3 m4

F2,k (X9,k) = E E E X9,mi, X9,m2 X9,m 3 X9,m4, X9,k•• -m2 -m3-m4

m1 m2 M3 M4

F3,k(XiO,k) = E E E X1o,mlX1O,m 2XIo,m3X1o0,m 4 X1O,k-mi-ml2-m3-m 4

mi m2 M3 M4

-oo<k<oo and -oo<mi<oo

G2,k and G3,k are defined as

(6.28a)

(6.28b)

(6.28c)

TM (I ± jV3-)
G2,k - (1 j )

0

--M (1 T- j N3)
G 3 , k -- 

(0

10

for k= - 1

otherwise

for k= 4-1

otherwise

Xk = [Vi V2 V3 V4 I1 12 13 A2 A3] T (6.30)

We set the time derivatives in (6.27) to zero in order to compute the steady-state

solution of the system which gives the following nonlinear algebraic equations

-jkwXl,k + alXlo,k + a2F3,k - a3X5,k = 0

-jkwX 2 ,k - alXs,k - a2Fl,k + a3X6,k = 0

-jkwX 3 ,k - alX9,k - a2F2,k + a3X7,k = 0

-jkwX4,k + a6X5,k = 0

-(jkw + a5)X5,k + a4v1 - a4Xl,k = 0

-(jkw + a5)X6,k + a4G2,k - a4X2,k = 0

-(jkw + a5)X7,k + a4G3,k - a4X3,k = 0

-jkw(X8,k + Xlo,k) + X2,k - X1,k = 0

-jkw(X 9 ,k + Xlo,k) + X3,k - X1,k = 0

K1 (Xs,k + X9,k - Xlo,k) + K5(FI,k + F2,k - F3,k) = 0

(6.31a)

(6.31b)

(6.31c)

(6.31d)

(6.31e)

(6.31f)

(6.31g)

(6.31h)

(6.31i)

(6.31j)

and

(6.29a)

(6.29b)
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6.3 Three-phase Ferroresonance: One Switch Opened

In order to examine the existence of periodic solutions of the system defined (2.15),

we investigate the steady-state solutions of the transformed system. Here we are only

investigating existence of periodic solutions of the system (6.27).

6.3.1 Harmonic Periodic Solutions

To investigate periodic harmonic steady-state solutions of the system defined in (2.15), we

vary two system parameters, the length of transmission lines and the magnitude of the input

voltage M. Varying the length of the transmission will changes the line impedance. Fixing

Figure 6.

10 20 30 40 50 60 70 80

Miles
17: Steady-state solutions for M = 1.0 pu: One switch opened

the magnitude of the input voltage to 1.0 pu, we vary the transmission line length from 0

to 90 miles. Figure 6.17 shows the magnitude of the flux of phase one versus the length

of the transmission line. From this figure, when the transmission line length is less than

46.5 miles, one steady-state solution exists, and three steady-state solutions exist when the

transmission line length is between 46.5 and 51.5 miles. When the transmission line length

is greater than 51.5 miles five steady-state solutions exist. In the regions where the system

has multiple solutions, the system is vulnerable to ferroresonance for small disturbances or

changes of the magnitude of the input voltage.
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Furthermore, fixing the length of the transmission lines to 60 miles, we vary the

magnitude of the input voltage M from 0 to 1.3 pu. Figure 6.18 depicts the magnitude of

the flux of phase one versus the magnitude of the input voltage M while Fig. 6.19 shows

the middle region of Fig. 6.18.

1.4

1.2

1

0.8

0.6

0.4

0.2

. . . . . . . . . . . .. : . . . . . . . . . . . . . .. .. . . .... . . .

. . . . .. . . . . i . . . . . . . . . : . . . . . .. .. . . . . . . . . . .. . . . . . . . . . . . . . ..i . . . . . . . . . . . . . i . . . . . . .

: Cl

0 . . . 0.811.1.

O 0.2 0.4 0.6 0.8 1 1.2 1.4

Input magnitude, M(pu)

Figure 6.18: Steady-state solutions for 60 mile transmission line length: One switch opened

S1l-

2

Input magnitude, M(pu)

Figure 6.19: Steady-state solutions for 60 mile transmission line length: One switch opened
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6.3.2 Stability of Harmonic Periodic Solutions

To assess the stability of each steady-state solution of the system (6.27), we need to formu-

late the variational system which will give the stability criterion of the system around that

operating point. Since the system defined in (6.27) is an differential-algebraic system, we

need to simplify the system dynamics in order to compute the eigenvalues of the system.

Since the derivations for the reduced model is similar to the one we showed in Sec-

tion 6.2, we put all the results in Appendix A.1.

Ascertaining the stability of the system, we computed the steady-state harmonic

solutions of the system and then examined the corresponding eigenvalues of the system.

Figures 6.20, 6.21, 6.22, 6.23, and 6.24 show the eigenvalues of the system for M = 1.0 pu

with a 60 mile transmission line length. In the figures, curves C1, C4, and C5 correspond to

stable steady-state solutions while curves C2 and C3 are unstable steady-state solutions.

-0.0

W0
0
0
0

S00
0
0
0

00.... O.0

0

O 0
0
0
0
00

0.. .0
0
0

7 -0.06 -0.05 -0.04

Real
-0.03

parts
-0.02

O:
0
0
O:
O:
0
0

0.
0:
0:
0:-.0; .....
0:
0:
0:

0
:0

-0.01

Figure 6.20: Eigenvalues for curve C1 : One switch opened

For further verification, a time simulations were performed using Matlab. Figure 6.25

shows Simulink input file block diagram. Figures 6.26, 6.27, and 6.28 depict the flux linkages

Al(t), A2(t), and A 3(t) of the transformer core. In these simulations, the transmission line

length is 60 miles and the magnitude of the input voltage M is 1.0 pu.
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6.3 Three-phase Ferroresonance: One Switch Opened
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Figure 6.23: Eigenvalues for curve C2 : One switch opened
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Figure 6.24: Eigenvalues for curve C3: One switch opened
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line parameter data

Double click here to
load the system data

Figure 6.25: Simulink block diagram for the system: One switch opened

-I

00

Time,t(sec)
Figure 6.26: Time simulations for )A (t): One switch opened
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Time,t(sec)
Figure 6.27: Time simulations for A2 (t): One switch opened

Time,t(sec)
Figure 6.28: Time simulations for A3(t): One switch opened
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6.4 Three-phase Ferroresonance: Two Switches Opened

Formulating the slowly varying system, we apply the generalized state space averaging

methodology to the model defined in (2.20). The transformed system takes the following

form

X1,k = -jkwXl,k + alX9,k + a2Fl,k - a3X6,k

X2,k = -jkwX2,k - aiXio,k - a2F2,k + a3X7,k

X3,k = -jkwX 3 ,k - alXll,k - a2F3,k + a3X8,k

X4,k = -jkwX 4,k + a6X6,k

X5,k = -jkwX 5,k + a6X7,k

X)6,k = -(jkw + a5)X6,k + a4Xl,k - a4X4,k

X7,k = -(jkw + a5)X7,k + a4X2,k - a4X5,k

X),k = -(jkw + a5)X8,k + a4G3,k - a4X3,k

X9,k ± X11,k = -jkwX 9,k - jkwXll,k + X3,k - X1,k

)X10,k + X11,k = -jkwXlo,k - jkwXll,k + X3,k - X2,k

0 = K (X9,k + XIo,k - XII,k) + K 5 (FI,k + F2,k - F3,k)

where F1,k, F2,k and F3,k are defined as

(6.32a)

(6.32b)

(6.32c)

(6.32d)

(6.32e)

(6.32f)

(6.32g)

(6.32h)

(6.32i)

(6.32j)

(6.32k)

F1,k (X9,k) =

F2,k(XIo,k) =

F3,k (X11,k) =

SE X E x9,ml X9,m2X9,m3 X9,m 4X9,k-mi -m2 M-•4
m1 m2 m3 m4

3 5 1 XiO,m XIO,m 2X1O,m3 XIo,m4XIO,k-mi-m2-M3 - M4

ml m2 m3 m4

EE XE ,m Xii,m 2 X11,m3X11,m,4X11,k-mi-m2-m3- M4

M1 M2 M3 m4

G3,k= { M(I=v')
0

for k= +1

otherwise

-co<k<oo and -oo0mi_<c0

(6.33a)

(6.33b)

(6.33c)

(6.33d)
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6.4 Three-phase Ferroresonance: Two Switches Opened

and

[ ]TXi,k = VI,k V2,k V3,k V4,k 1,k 2,k I3,k A1,k A2,k A3,k 10.
(6.34)

To compute the steady-state solutions of the system, we set the time derivatives

in (6.32) to zero which gives the following nonlinear algebraic equations

-jkwXl,k + aiX 9,k + a2Fl,k - a3X6,k = 0 (6.35a)

-jkwX2,k - alX 10,k - a2F2,k + a3X 7,k = 0 (6.35b)

-jkwX 3,k - alXll,k - a2F3,k + a3Xs,k = 0 (6.35c)

-jkwX 4,k + a6X6,k = 0 (6.35d)

-jkwX 5,k + a6 X 7 ,k = 0 (6.35e)

-(jkw + a5)X6,k + a4XI,k - a4 X 4 ,k = 0 (6.35f)

-(jkw + a5)X7,k + a4X2 ,k - a4X5,k = 0 (6.35g)

-(jkw + a5)X 8 ,k + a4G3,k - a4X3,k = 0 (6.35h)

-jkwX 9 ,k - jkwX11 ,k + X 3 ,k - X 1,k = 0 (6.35i)

-jkwXlo,k - jkwXll,k + X 3 ,k - X2,k = 0 (6.35j)

K1 (X 9,k + X10,k - X 11,k) + K5(Fl,k + F2 ,k - F3 ,k) = 0 (6.35k)

In order to examine the existence of periodic solutions of the system defined (2.20),
we investigate the steady-state solutions of the transformed system. Here we are only
investigating existence of periodic solutions of the system (6.15).

6.4.1 Harmonic Periodic Solutions

To investigate periodic harmonic steady-state solutions of the system (2.20), we vary two

system parameters, the length of transmission line and the magnitude of the input voltage

M. Fixing the magnitude of the input voltage to 1.0 pu, we vary the transmission line

length from 0 to 80 miles. Figure 6.29 shows the magnitude of the flux of phase one versus

the length of the transmission line. From this Figure, when the transmission line length

approaches 41 miles, the system is vulnerable to ferroresonance for small disturbances or

changes of the magnitude of the input voltage.
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1.8

1.6

1.4

1.2

0.8

0.6

04&

0 10 20 30 40 50 60 70 80

Miles
Figure 6.29: Steady-state harmonic solutions for M = 1.0 pu: Two switches opened

Fixing the length of the transmission line to 60 miles, we vary the magnitude of the

input voltage of the generation from 0 to 1.7 pu. Figure 6.30 depicts the magnitude of the

flux of phase one versus the magnitude of the input voltage.

6.4.2 Stability of Harmonic Periodic Solutions

To ascertain the stability of each steady-state solution of the system (6.32), we need to

formulate the variational system which will give the stability criterion of the system around

that operating point. Since the system defined in (6.32) is a differential algebraic system,

we need to simplify the system dynamics in order to compute the eigenvalues of the system.

Since the derivations for the reduced model is similar to the one we showed in Sec-

tion 6.2, we put all the results in Appendix A.2.

Hence, the steady-state harmonic solutions of the system were computed and the

corresponding eigenvalues of the system were examined. Figures 6.31, 6.32, and 6.33 show

the eigenvalues of the system for M = 1.0 pu with a 60 mile of transmission line length. In

the figure, curves C1 and C3 correspond to stable steady-state solutions while curve C2 is an
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01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Input magnitude, M(pu)
Figure 6.30: Steady-state solutions for 60 mile transmission line length:
opened

Two switches

unstable steady-state solution.

For further verification, a time simulation were performed using Matlab. Figure 6.34

shows Simulink input file. Figures 6.35, 6.36, and 6.37 depict the flux linkages A (t), A2 (t),

and A3(t) of the transformer core. In these simulations, the transmission line length is 60

miles and the magnitude of the input voltage M is 1.0 pu.
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Figure 6.31: Eigenvalues for curve C1 : Two switches opened
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Figure 6.32: Eigenvalues for curve C2: Two switches opened
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Figure 6.33: Eigenvalues for curve C3: Two switches opened

Phase 3 line parameter oata

Double click here to
load the system data

Figure 6.34: System time simulations: Two switches opened
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Figure 6.35: Time simulations for A1(t): Two switches opened
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Figure 6.36: Time simulations for A2(t): Two switches opened
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1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

Time,t(sec)
Figure 6.37: Time simulations for A3 (t): Two switches opened

6.5 Switching Simulations

To further understand the effect of switching, we simulated the system incorporating the

switching effects. In order to simulate the switching characteristics, we model the switch-

ing devices with timers and switches using Simulink library parts. Figure 6.38 shows the

Simulink model. To capture the three stable steady-state solutions C1, C4 , and C5, we open

the switch S1, at different times, particularly at t = 800 sec, t = 801 sec, and t = 805 sec.

For the first case, we start the system simulation at t = 0 sec, and after 800 sec we

turn the first switch S off. Figures 6.39, 6.40, and 6.41 depict the time simulations of

Ai(t), A2(t), and A3(t), respectively. This solution is on the solution curve C4 for M = 1.0

with a 60 mile transmission line length. However, the amplitudes of the time simulations

and steady-state solution curve C4 do not agree since the amplitude of the time simulation

is 1.07pu and the solution on curve C4 at M = 1.0Opu is 0.97pu. The solution curve C4

was computed by considering harmonics only up to fifth harmonic. When the number of

harmonics was increased to nine the two solutions agreed.

Next, we turn S off at t = 801 sec. Figures 6.42, 6.43, and 6.44 show the time

1676.5 Switching Simulations
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responses of Ai(t), A2(t), and A3 (t) respectively. In this case the solution is on solution

curve C1. Finally, we turn S1 off at t = 805 sec. The time simulations of the system due to

this switching are shown in Figs 6.45, 6.46, and 6.47. From the figures it is clear that this

solution is on curve C5 . Hence, the three time simulations agree with the solutions derived

from the analysis in Section 6.3.

Similarly, to simulate two switching conditions, we open S1 at t = 800 sec and then

open S2 at t = 1500 sec. Figures 6.48, 6.49, and 6.50 show the time simulations of A (t),

A2 (t), and A3 (t). For the final case, we open simultaneously both S, and S2 at t = 800 sec.

Figures 6.51, 6.52, and 6.53 show the time simulation responses of A1(t), 12 (t), and A3 (t).

The results found in these two simulations agree with the solutions derived from the analysis

in Section 6.4.

Phase 3

Figure 6.38: Simulink block diagram for the system: Switching simulations
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Figure 6.39: Time simulations for Ai(t): S opened solution one
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Figure 6.43: Time simulations for A2(t): S1 opened solution Two
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Figure 6.47: Time simulations for A3(t): S opened solution three
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Figure 6.49: Time simulations for A2 (t): S and S2 opened
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Figure 6.51: Time simulations for Az(t): S1 and 5S2 opened solution case two
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Figure 6.53: Time simulations for A3(t): S and S2 opened solution case two
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Chapter 7

Concluding Remarks

7.1 Summary

In Chapter 1, the historical background of ferroresonance was introduced. In that chap-

ter we also highlighted the two approaches used to solve the ferroresonance problem: ex-

perimental investigations and theoretical investigations. The two general models related

to ferroresonance, single-phase and three-phase ferroresonance models, were introduced in

Chapter 2. For the single-phase model, we developed a full model of the single-phase trans-

former including the generation and the transmission line parameters. For the three-phase

models, we developed three models: all circuit breakers closed, one conductor opened and

two conductors opened. The models of these systems were differential-algebraic equations

(DAE).

The theory for the synchronous incremental-input describing function was presented

in Chapter 3. An example was used to prove the theory. This theory was also applied to a

single-phase transformer. This example shows that for different input magnitudes and line

parameters the system can have one solution or multiple solutions. However, a flaw existed

in this theory as previously developed.

To fix the flaw in the theory, we first reviewed the Nyquist criterion. In that chapter

we showed that the necessary and sufficient condition for stability of a loop-gain is that

no intersections between the (-1, 0) point and the frequency response loci of the loop-gain

exist for all values of w and for all non-negative values of a. An example was introduced

to illustrate the flaw and show how the modified incremental-input describing function can

determine the stability of general systems. Time simulations were performed to verify these

results.

In Chapter 4, the theory of the generalized state-space averaging (GSSA) method-

ology was introduced. Harmonic and subharmonic models were presented using the GSSA

method. An example was illustrated to show the mechanics of GSSA for both harmonic

and subharmonic solutions. Furthermore, existence and stability of harmonic and subhar-

monic solutions were addressed. In the chapter, we proposed theorems which guarantee the

stability of harmonic and subharmonic solutions of the system. The relation between the



stability of GSSA model and the full model was also shown.

The Duffing's oscillator was used as benchmark test for GSSA. In Chapter 5 Floquet

theory and the Poincard maps in particular were used to investigate the stability issues.

Both harmonic and subharmonic steady-state solutions were considered. In the Chapter,

We showed that the fundamental eigenvalues of GSSA and Floquet exponents are equal.

We also pointed out the relationship between Floquet multipliers and the eigenvalues of the

Poincard maps.

In Chapter 6, the generalized state-space averaging method was applied to ferrores-

onance models: single-phase models and three-phase models. In the single-phase models,

we computed the harmonic solutions of the system by fixing all parameters and varying the

inductance L of the transmission lines. Similarly, we fixed all parameters and varied the

magnitude of the input voltage M. The stability of these steady-state solutions was exam-

ined. The solution bifurcations were also discussed in the chapter particularly, saddle-node

bifurcations. Furthermore, issues of robustness of the steady-state solution of the system to

a model possible error were addressed. In the chapter, we also point out how the theoretical

results agreed with the time simulations of the systems.

We also showed existence of five harmonic steady-state solutions for the three-phase

opened one conductor model: three stable and two unstable solutions. These stable solutions

were also verified by simulating the full system using Matlab.

Finally, this theory can be applied to different power system network topologies. In

the design process for a new power system network, one can use this theory to study the

conditions under which the system could experience a ferroresonance problem depending on

system parameters, such as, transmission line length or the amplitude of the input voltage.

In existing power system networks, one can also use this theory to study the ferrores-

onance problem, compute critical system parameter values and propose ways to mitigate the

problem. To eliminate one or two opened conductors during a system switching, one can use

circuit breakers that can open the three-phases simultaneously. This approach eliminates

the path through which the energy flows back and forth, i.e., between the transmission line

capacitance and the nonlinear inductance of the transformer core. The choice of the power

transformers can also play an important role. The transformer losses such as eddy current

loss and hysteresis losses can damp the energy that oscillating between the capacitor and

nonlinear inductor. By modifying the transformer core and adding tertiary windings, one

can also mitigate the problem. Furthermore, one can control the loading of the transformer
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using an automatic monitoring system. If the load drops to some critical value, a local

loading can be initiated which will damp the oscillations. Remotely controlled flexible al-

ternating current transmission systems (FACTS) can be used to regulate the transmission

line impedance which in turn can reduce the transmission line capacitance from the critical

value since the critical capacitance is known.

7.2 Suggestions for Future Work

The purpose of this thesis was to solve the ferroresonance problem both single-phase and

three-phase models using the generalized state-space averaging method. Although the ob-

jectives of the thesis were accomplished, there are more tasks that need to be completed:

improvement of the transformer core models, simplification of the DAE model, modification

of the truncation scheme to improve the approximation of the matrix A, computation of

subharmonic steady-state solutions, and improvements to the numerical solutions.

In the frequency domain approach, the synchronous incremental-input describing

function needs improvement particularly, for multi-input multi-output systems.

7.2.1 Other Models for the Transformer Core

Although, in general, there are three model representations for the nonlinearity of the trans-

former cores, odd polynomial representations, pseudo-nonlinear core model with hysteresis,

and true-nonlinear core model with hysteresis, in this thesis, we only investigated the odd

polynomial model. To gain more insight into the characteristics of the ferroresonance prob-

lem, investigations of dynamic models of the transformer core are required; the model we

used in this thesis was a static model.

7.2.2 Simplification of the System Model (DAE)

In Chapter 2, we used ABC coordinates to compute the model of the network. The nonlinear

differential-algebraic equations were coupled which increases the complexity of the model.

Other coordinates may reduce this complexity. The positive, negative, and zero sequence

coordinates may simplify this problem [82,83]. This approach gives three separate uncoupled

models which in turn may simplify the analysis of the system.

7.2 Suggestions for Future Work
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7.2.3 MIMO Synchronous Incremental-Input Describing Function

In Chapter 3, we showed how the synchronous incremental-input describing function is easy

to apply to single-phase systems to assess the stability of a steady-state solution. A large

number of practicing engineers use this method due to its simplicity. One way to increase

the potential of this graphical method is to derive the multi-input multi-output synchronous

incremental-input describing function using the Nyquist multi-input multi-output (MIMO)

stability criterion. It could then be used to investigate the stability of steady-state solutions

for three-phase ferroresonance models. Furthermore, to improve the approximation of the

steady-state solutions, application of the describing function matrix is required.

7.2.4 Methods to Approximate Matrix A

If the matrix A defined in (4.27) is truncated, the eigenvalues of the transformed system

spread out at the end points as shown in Fig. 7.1 where the truncation level is k = ±35.

Decoupled harmonics induce these spreading eigenvalues. If we take all the harmonics, the

eigenvalues will line up along the fundamental eigenvalues of the system.

-0.8 -0.6 -0.4 -0.2 0

real parts
0.2 0.4 0.6

Figure 7.1: Eigenvalues of approximated system: k = +35
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moving average filters, the incorrect eigenvalues will vanish, and the eigenvalues of A 0, the

approximated matrix, will be a proper subset of the eigenvalues of A. These results were

investigated by experimental trials. A rigorous mathematical justification is required. This

approximation will allow us to simulate the generalized state-space averaging model. At

the present time one cannot simulate this system since the eigenvalues of the end points

spread out which in turn can cause some of them to be unstable as shown in Fig. 7.1.

7.2.5 Investigations of Subharmonic Steady-state Solutions

To complete the other portion of the ferroresonance problem, computations of subharmonic

steady-state solutions are required. Here, in this thesis, we only focused on the harmonic

solutions which in general are of the most interest.

7.2.6 Improvement of Numerical Computations

To implement the numerical formulations for the steady-state solutions and eigenvalues

of the system, all symbolic mathematical operations were performed in Maple. After the

equations were generated, the Matlab Optimization Toolbox was used to search numerical

solutions of the system equations. This two-fold method was very slow; for instance, some

simulations took 24 hours or more. A one step method coded in C could improve the

simulation time.

181



7.2 Suggestions for Future Work



Appendix A

Appendices

A.1 Three-Phase Ferroresonance: Opened One Conductor

To assess the stability of each steady-state solution of the system (6.27), we need to formu-

late the variational system which will give the stability criterion of the system around that

operating point. Since the system defined in (6.27) is an differential algebraic system, we

need to simplify the system dynamics in order to compute the eigenvalues of the system.

To compute the eigenvalues of the system defined in (6.27), we propose the follow-

ing simplification procedures. First, eliminate XIo,k and F3,k from equation (6.27c) using

equation (6.27j). Then the reduced system takes the following form

XI,k = -jkwXl,k + alXs,k + alX9,k + a2Fl,k

)2,k = -jkwX 2,k - aX8,k - a2F 2,k + a3X6,k

X3,k = -jkwX3,k - alX9,k - a2F3,k + a3X7,k

-4,k = -jkwX 4,k + a6X5,k

)5,k = -(jkw + a5)X4,k + a4Xl,k - a4X4,k

X6,k = -(jkw + a5)X5,k + a4G2,k - a4X2,k

X7,k = -(jkw + a5)X6,k + a4G3,k - a4X3,k

X8,k + X10,k = -jkwXs,k - jkwXlo,k + X2,k - Xl,k

X9,k + ±10,k = -jkwX 9 ,k - jkwXlo,k + X3,k - X1,k

+ a2F2,k - a3Xs,k (A.la)

(A.1b)

(A.lc)

(A.ld)

(A.le)

(A.1f)

(A.lg)

(A.lh)

(A.li)

Then, the simplified variational system takes the form

(A.2)

where I e ERn' is the identity matrix, JE C x n is a complex matrix, and Q e Rn
x" is a

real matrix. Hence the eigenvalues of the system can be derived from the following algebraic

QXi,k -= JXi,k where Q = I + M and J = J1 - P
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equation

det(J - Qp) = 0 (A.3)

where the p's are the eigenvalues of the system. similarly, to compute the matrices J 1, M,

and P, we take the following steps. Define

Xik = U(Xi,k) X1 i = 1,2,--- 9 (A.4a)
xi~k= U(i~k)Xlo,k=o

Zk = Kg(X8,k + X9,k - X1O,k) + K5(FI,k + F2,k - F3,k) (A.4b)

T = [XI,k X2,k - - X9,k] (A.4c)

V = [X8,k X9,k X10,k] (A.4d)

Then, let

J1 = Jacobian(U, .F) and J2 = Jacobian(Z,V) (A.5)

where JI E CT x n is a complex matrix and J2 E rmxm. The dimension of the reduced

system, n and m can be computed from the following equation

n=deg*(2k+l) and m=3*(2k+l) (A.6)

where deg is the order of the system defined in (A.1) and k is the number of harmonics

used for the approximation of the solution. For example, if the system contains 9 first order

differential equations and one algebraic equation, then the degree of the system will be 9

and n and m will be 27 and 9 respectively, if only the first harmonic considered. If we take

up to the seventh harmonics, then n and m will be 135 and 45 respectively.

Now, define

A1 = [J2(:, 1) J2 (:,4) -- J2(:, n - 2)] (A.7a)

A2  [ 2 (:, [ 2) J2 (:, 5) - J2(:, n - 1) (A.7b)

A3= [J2(:,3) J2(:, 6) J2 (:,) (A.7c)



A.1 Three-Phase Ferroresonance: Opened One Conductor

The notation J2 (:, i) stands for the ith column of the matrix J2. Then,

XlO,k = -A3'AIXs,k - A34 A 2X9,k

X10,k = -A3 AjX8,k - A3 'A 2X 9,k
(A.8)

Since K1 is not zero, the matrix A 3 is always invertible. Hence, the left side of the differential

equation that represent the reduced system is given by

[X1,k1

X2,k

X9,kJ
(A.9)

Similarly, the right side yields

-jkwA3 'A1

-jkwA3 'A 2

X1,k

X2,kJ

_X9,k,

(A.10)

Then, we have

0

and P=

-jkwA3 'A 1

-jkwA3 A 2

(A.11)

F 1,k1
X2,k +

X9,kJ

Xl,kl

X2,k

X9,kJ

L_ - -
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A.2 Three-Phase Ferroresonance: Opened Two conductors

To ascertain the stability of each steady-state solution of the system (6.32), we need to

formulate the variational system which will give the stability criterion of the system around

that operating point. Since the system defined in (6.32) is a differential-algebraic system,

we need to simplify the system dynamics in order to compute the eigenvalues of the system.

To compute the eigenvalues of the system defined in (6.32), we propose the follow-

ing simplification procedure. Eliminate X11,k and F3,k from equation (6.32c) using equa-

tion (6.32k). Then the reduced system takes the following form

X1,k = -jkwXl,k + alX 9,k + a2Fl,k - a3X6,k

X2,k -jkwX 2 ,k + alXlo,k + a2F2,k + a3X7,k

X3,k -jkwX 3,k - alX9,k - alXlo,k - a2FI,k

±4,k = -jkwX 4,k + a6X6,k

±5,k = -jkwX 5,k + a6X7,k

X6,k = -(jkw + a5)X6,k + a4Xl,k - a4X4,k

X7,k = -(jkw + a5)X7,k + a4X2,k - a4X5,k

X8,k = -(jkw + a5)X8,k + a4E 3 - a4X3,k

+ 11,k = -jkwX 9,k - jkwXll,k + X 3 ,k - X1,k

+ Xl11,k - -jkwXlo,k - jkwXll,k + X3,k - X2,k

- a2F2,k + a3X8,k

Then, the simplified variational system takes the form

QXi,k = JXi,k where Q = I+ M and J = J1 - P

(A.12a)

(A.12b)

(A.12c)

(A.12d)

(A.12e)

(A.12f)

(A.12g)

(A.12h)

(A.12i)

(A.12j)

(A.13)

where I e Rc n is the identity matrix, J E Cn x" is a complex matrix, and Q E Rn is a

real matrix. Hence the eigenvalues of the system can be derived from the following algebraic

equation

det(J - Qp) = 0 (A.14)

where the p's are the eigenvalues of the system. To compute the matrices JI, M, and P,

Xý9,k

Xý10,k

Appendices
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A.2 Three-Phase Ferroresonance: Opened Two conductors

we take the following steps. Define

Xk = U(Xi,k)X11,k= i = 1,2,-...- ,10 (A.15a)
Xi~k •-- U X 11,) X,k_ 0

Zk Ki(X 9,k + XIo,k - X11,k) + K2(GI,k + G2,k - G3,k) (A.15b)

S= [X1,k X2,k ... X10,k (A.15c)

V = [X9,k X1O,k X11,k] (A.15d)

Then, let

J, = Jacobian(U, ) and J2 = Jacobian(Z, V) (A.16)

where J1 E Cnxn is a complex matrix and J2 E Imxm. The dimension of the reduced

system, n and m can be computed from the following equation

n-=deg*(2k+l) and m=3*(2k+1) (A.17)

where deg is the order of the system defined in (A.12) and k is the number of harmonics

used for the approximation of the solution. For example, if the system contains 10 first

order differential equations and one algebraic equation, then the degree of the system will

be 10 and n and m will be 30 and 9 respectively, if only the first harmonic considered. If

we take up to the seventh harmonics, then n and m will be 150 and 45 respectively.

Now, define

A1 = [J2 (:, 1) J2 (:, 4) -...- J2 (:, n - 2)] (A.18a)

A2 = [J2(:, 2) J2(:, 5) ... J2 (:, n - 1)] (A.18b)

A3 = [J2(:, 3) J2(:,6) ... J2 (:,n)] (A.18c)

The notation J 2 (:, i) stands for the ith column of the matrix J2. Then,

X11,k = -A3'AIX 9,k - A3 A2XIo,k (A.19)

X1,k = -A31 AX 9,k - A3 'A 2X)10o,k

Since K 1 is not zero, the matrix A 3 is always invertible. Hence, the left side of the differential
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equation that represents the reduced system is given by

Xi,kl
X2,k

X 9,kJ

-A3'A 2 _

X1,k
LX2,k

LX9,k
(A.20)

Similarly, the right side yields

X1,k

J X2,k

.X9,kJ -jkwA3 'A 1

-jkwA3 'A 2

X1,k
X2,k

X9,kJ

(A.21)

Then, we have

and P =

-jkwA3'Al

-jkwA3 A 2

(A.22)

A.3 Synchronous Incremental-Input Describing Function

In Chapter 3, we discussed the theory of the synchronous incremental-input describing

function. In that chapter we only concentrated on stable minimum-phase systems. Recall

that the objective of the synchronous incremental-input describing function is to examine

existence of jump amplitudes. First we compute the stable steady-state solution and then

examine if we perturb the input amplitude or internal system parameters whether the

system will operate at the same steady-state solution or if it will jump to another steady-
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A.3 Synchronous Incremental-Input Describing Function

state solution which is also stable.

The theory can be applied to larger classes of systems. Here we apply the theory to

unstable open-loop non-minimum-phase systems. To ascertain the stability of the system,

we perform two tasks. First, we examine the stability of the steady-state solution. If the

steady-state solution is stable then we further examine if the ferroresonance phenomenon

exists when the input voltage or internal system parameters are disturbed. Otherwise, if

the steady-state solution is unstable, then there is no need to investigate the ferroresonance

problem.

To examine the stability of the steady-state solution of the system, first we compute

the describing function gain N(A), where A is the amplitude of the periodic steady-state

solution. Then, we compute the loop-gain of the system and apply the Nyquist criterion

as outlined in Section 3.2.1. If the system is unstable in closed-loop for a given A, then we

do not need to examine further the existence of jump amplitudes. However, if the system

is stable in closed-loop, then we analyze further the steady-state solution for existence of

jump amplitudes, subharmonic solutions, or amplitude-modulated periodic responses.

Investigating the ferroresonance problem, we need first to compute the gain of the

synchronous incremental-input describing function N(A, q) of the nonlinear element. Sec-

ond, we compute the incremental loop-gain of the system and invoke the modified syn-

chronous incremental-input function theory to assess existence of jump amplitudes, subhar-

monic solutions, or amplitude-modulated periodic responses, as outlined in Chapter 3.

To understand the mechanics of the theory, let us apply it to an example.

EXAMPLE A.1

Suppose we have the following transfer function.

G(s) = (s) whereD (s) (A.23)
N(s) = 9000s 4 + 3100s 3 + 107300s2 + 305800s + 2173500 (A.23)

D(s) = s6 + Us 5 + 198s 4 + 1459s 3 + 10019s2 + 39476s + 23567

Two poles of G(s) lie in the right-half plane, namely, s = 0.0179 ± 9.9744i. Hence,

G(s) is an unstable nonminimum-phase open-loop transfer function. Figure A.1 depicts

the frequency response of the system. Note that P is equal to 2, where P is the number

of open-loop unstable poles as discussed in Chapter 3. Furthermore, suppose N(A) is the
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describing function gain of the system

system yields

for a given A. The characteristic equation of the

1 + N(A)G(s) = 0

DU

40

20

-20

-40

-60

(A.24)
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Real

Figure A.1: Open-loop frequency response of the system: w > 0

To examine the stability of the system in closed-loop, we write Equation (A.24) as

G(Ju here - 00 5 w 5 00.

) = 
N(A), 

w

(A.25)

and then plot the left and the right side of the equation. If the two loci intersect, then

we conclude that the system is unstable in closed-loop. Since A is a positive real number,

N( will always lie in the left-half plane. Therefore, the critical points are - N( for

each given A.

To apply the Nyquist criterion to this loop-gain with the critical points - we

plot the frequency response of G(jw) for both negative and positive frequencies. Figure A.2

6t~ I
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A.3 Synchronous Incremental-Input Describing Function

shows the frequency response of the system for both negative and positive frequencies. The

thicker lines are the positive frequencies while the thinner lines are the negative frequencies.

From the figure, there are three possible critical regions, namely, A, B, and C. Next we

-20

-40

60'-
-•20--20 0 20 40 60 80 100

Real

Figure A.2: Open-loop frequency response of the system: -oo < w _< c00

need to compute N, the number of encirclements of the critical points for each given range

of A.

In region A, K is equal to 1. Hence, the number of zeros Z that lie in the right-half

plane are equal to 3. The system is unstable in closed-loop for some range of amplitudes A.

Next, in region B, K is equal to -1. There is one pole in the right-half plane of the

closed-loop system. Hence, in this region the closed-loop system is unstable for some range

of A.

Finally, in C, K is equal to -2. In this region there are no poles in the right-half

plane of the closed-loop system. Hence, there are some ranges of A for which the system is

stable in closed-loop. Furthermore, A is equal to zero for regions outside of A, B, and C.

Therefore, these regions the closed-lop system is unstable for some range of A.
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Since region C is the only region in which the system can operate, we need to examine

if the system is susceptible to ferroresonance phenomenon in this region. To investigate this,

we compute the synchronous incremental-input gain of the nonlinear element N(A, q) and

then examine the incremental loop-gain of the system. The characteristic equation of the

incremental system is given by

1 + N(A, q)G(s) = 0, where s E C. (A.26)

Furthermore, we can write this as

1
G(a +jws)= - N , a>0 (A.27)N(A,

where w, is the frequency of the input signal.

Hence, if there is an intersection between G(o + ws) and - in region C, we

conclude that the system is susceptible to ferroresonance phenomenon, i.e., jump ampli-

tudes, subharmonic responses, or amplitude-modulated periodic responses. Figure A.3 de-

picts G(w) and the negative inverse of N(A, q). From the figure, it is clear that there

are some input frequencies w, and input amplitudes for which the system can operate un-

der ferroresonance condition. To find these ranges one can use the modified synchronous

incremental-input describing function that we formulated in Chapter 3.
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