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1 Introduction

The nature of the wireless network is intrinsically different from the wired
network because of the shared medium among several transmitters. Such a
restriction requires a form of scheduling algorithm to coordinate access to
the medium, usually in a distributed manner. The conventional approach to
the Medium Access Control (MAC) problem is contention-based protocols
in which multiple transmitters simultaneously attempt to access the wireless
medium and operate under some rules that provide enough opportunities for
the others to transmit. Examples of such protocols in packet radio networks
include ALOHA, MACAW, CSMA/CA, etc.

However, in many of contention-based protocols it is possible that two
or more transmitters transmit their packet simultaneously, resulting in a
collision. The collided packets are considered lost in the conventional ap-
proaches, but Gollakota and Katabi [2] show how to recover multiple collided
packets in a 802.11 system using ZigZag decoding when there are enough
transmissions involving those packets. In fact, they suggest that each col-
lision can be treated as a linearly independent equation of the packets in-
volved. Therefore, the packets are recoverable only if the system of equa-
tions is full rank. ZigZag decoding provides a fundamentally new approach
to handle collisions in a wireless setting without using any central scheduler,
or knowledge about the network topology such as number of neighbors, etc.
In this project, we wish to understand the effects of this new approach to
interference management, in terms of the achievable throughput and delay
for the multiple access communication.

We provide an abstraction of the multiple-access channel when ZigZag
decoding is used at the receiver. We use this abstract model to analyze the
delay and throughput performance of the system in various scenarios.

First, we analyze the scenario when each user has one packet to send.
We characterize upper and lower bounds on the expected time to deliver
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all of the packets. We observe that the mean delivery time of the system
with ZigZag decoding is strictly smaller than for a system with a central-
ized scheduler. Moreover, we provide a connection to matching theory to
characterize the decoding process and the exact expected delivery time.

Second, we analyze the throughput of the system in a scenario where
packets arrive at each sender according to a Bernoulli process. We char-
acterize the stability region1 of the system, and propose acknowledgement
mechanisms to stabilize the queues at the senders. The stability region of
the system with ZigZag decoding is strictly larger than that of the system
with centralized scheduling.

The rest of this report is organized as follows. In Section 2, we present
an abstract model of a system with ZigZag decoding. Section 3 is dedicated
to mean delivery time characterization of the system and its comparison
to centralized scheduling. In Section 4, we characterize the stability region
of the multiple-access channel with ZigZag decoding. Finally, concluding
remarks and extensions are discussed in Section 5.

2 System Model

We consider an n-user multiple-access erasure channel (c.f. Figure 1) where
ZigZag decoding scheme is implemented at the receiver. Time is assumed to
be slotted, and every slot can accommodate one packet transmission. The
assumptions on the erasures are explained below. As mentioned in [2], with
ZigZag decoding, every collision can be thought of as the reception of a
linear equation in the colliding packets. Moreover, ZigZag decoding makes
use of the fact that the lack of exact synchronization between successive
transmissions means that two different collisions will convey two packets
worth of information, even if the set of colliding packets is exactly the same.
We model these facts in the form of the following assumption in our system.
A successful reception is assumed to be an innovative linear combination of
the packets involved in the transmission if and only if not all the packets
involved are already decoded.

Nevertheless, because of the fading nature of the wireless channel, not
all of packet transmissions result in a successful reception. We consider the
following types of erasures to capture reception failures.

1. Link Erasure: Each of the individual links from sender i to the receiver
1The closure of the set of arrival rates for which there exist a service policy such that

the expected length of the queues are uniformly bounded from above as time goes to

infinity.
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Figure 1: Multiple-access channel with n senders

may get erased independently across links and over time with proba-
bility p. If a packet is erased in this manner, then the linear equation
at the receiver does not involve the packet sent from sender i. This
type of erasure is to model the effect of deep fades at the transmitters,
or back-off mechanisms implemented at the senders.

2. Receiver Erasure: At each time slot the receiver can receive the poten-
tially collided transmission with probability 1− pR. This model could
capture the effect of deep fades at the receiver, or mediocre SNR for
one of the transmitters, i.e., the interference is neither weak enough to
be treated as noise, nor is it strong enough to perform ZigZag decoding
successfully.

In the following sections we provide delay and throughput characteriza-
tion of the system when ZigZag decoding is implemented at the receiver.

3 Delivery Time Characterization

Definition 1. Consider a multiple-access channel with n senders each hav-
ing a single packet to transmit (cf. Fig 1). Given a MAC protocol, define
the delivery time, TD, as the time to transmit all packets successfully to the
receiver.

The goal of this section is to provide upper and lower bounds for the
expectation of the delivery time for ZigZag decoding, and to compare it
with contention-based protocols and central scheduling mechanism.

For simplicity of the notations, we also assume that receiver side erasures
do not take place, i.e., pR = 0. The following results will generalize to the
case with pR > 0 as well, if the expected delay bounds are scaled down
by a factor of 1 − pR. The reason is that with the receiver side erasures,
a previously successful reception is now successful only with probability
(1 − pR).
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3.1 Centralized scheduling

We assume that the receiver can send acknowledgments upon receiving a
packet. With centralized scheduling, we assume the following policy. The
channel is initially reserved for sender 1, up to the point when its packet is
acknowledged. At this point, the channel is reserved for channel 2, and so
on. In this setting, the calculation of the expected delivery time is straight-
forward. For each sender, the delivery is complete in the first slot when the
channel from that sender to the receiver is not under erasure. The deliv-
ery time for each sender is thus a geometric random variable, with mean

1
1−p

. This implies that the total expected delivery time under centralized
scheduling policy is given by:

E[TD] =
n

1 − p
.

It is important to note that the performance of centralized scheduling is
an upper bound on the performance of other distributed backoff based ap-
proaches because it ensures that there is no collision. In distributed backoff
based approaches, there is always some probability of a collision. We will
now derive some upper and lower bounds on the delivery time for ZigZag
decoding.

3.2 Bounding the delivery time for ZigZag decoding

Since there are n packets to be delivered, the receiver needs n linearly inde-
pendent equations (also called degrees of freedom) involving these n packets.
We can therefore divide the delivery time into n portions, where the ith por-
tion corresponds to the additional time required to receive the ith degree of
freedom, starting from the time of the previous (i.e. (i − 1)st) innovative
reception.

We define the following notation, for i = 1, 2, . . . n:

Ti = Time of reception of the ith degree of freedom
Xi = Ti − Ti−1 (T0 is assumed to be 0).

Di = Number of packets that have been decoded after the reception
at time Ti−1 (D0 is assumed to be 0).

Note that TD is then given by:

TD = Tn =
n

∑

i=1

Xi (1)
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Due to the assumption outlined in Section 2, every transmission is inno-
vative if and only if it involves at least one of the packets that have not yet
been decoded. Now, it is easily seen that the number of decoded (and hence
undecoded) packets does not change between two successive Ti’s. Thus, af-
ter Ti−1 and before Ti, any transmission will be innovative if and only if
one of the (n − Di) undecoded senders is connected. This happens with a
probability of 1−pn−Di . This leads to our main observation: conditioned on
the number of decoded packets, the time till the next successful innovative
reception is a geometric random variable, with the probability of success
given by

1 − p(# of undecoded pkts)

In other words,

(Xi|Di) ∼ Geom

(

1

1 − pn−Di

)

Using this observation, we have:

E[Xi] = E
[

E[Xi|Di]
]

= E

[

1

1 − pn−Di

]

(2)

Now, it is easy to see that 0 ≤ Di ≤ (i−1). This is because, the number
of decoded packets at Ti−1 cannot exceed the number of received degrees of
freedom, which is (i−1). These bounds give the following bounds on E[Xi]:

1

1 − pn
≤ E[Xi] ≤

1

1 − pn−i+1

Adding the terms of the above inequality for i = 1, 2, . . . n, and substituting
from Equation 1, we get:

n

1 − pn
≤ E[TD] ≤

n
∑

i=1

1

1 − pn−i+1

Intuitively, the lower bound corresponds to the case where Di remains
0 till the very end. Only at slot Tn, it suddenly jumps to n. This means
all the senders remain useful till the end, and hence the delivery happens
faster. This situation could happen when the value of p is small, thereby
allowing almost all users to collide most of the time. On the other hand,
the upper bound corresponds to the case where Di = i− 1. In other words,
every time the rank increases by 1, a new packet is in fact decoded, and the
corresponding sender is therefore useless for the remainder of the time, from
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Figure 2: The delivery time for p = 0.2

an innovation point of view. This happens if p is so high that usually only
one sender transmits, thereby causing immediate decoding.

The simulation plots in Figures 2, 3 and 4 show the actual delivery time,
along with the upper and lower bounds. The delivery time of the centralized
scheduler is also shown for comparison. There are three plots, showing the
delivery time as a function of the number of senders n, for three different
values of p – 0.2, 0.5 and 0.9. It can be seen that the actual value of
the delivery time approaches the lower bound as n increases. This limit is
reached earlier if p is smaller. In particular, even with a 20% loss rate, a
value of n = 3 brings the performance very close to the lower bound.

3.3 Characterizing the decoding process

It is clear from Equation 2 that the expected delivery time depends on
the evolution of the number of decoded packets Di. In this subsection,
we will provide a graph-theoretic characterization of Di, which we hope
will eventually help understand the exact characterization of the expected
delivery delay.

To study the evolution of the decoding process, we will use a bipartite
graph G(t) to represent the receptions of the receiver up to slot t. One
class of vertices in the bipartite graph has n vertices corresponding to the
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Figure 3: The delivery time for p = 0.5
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Figure 4: The delivery time for p = 0.9
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Figure 5: A bipartite graph representation of the receptions

n senders. The other class has t vertices corresponding to the time slots.
An edge in the graph connects a sender vertex to a time slot vertex if the
sender is connected to the receiver (i.e., does not experience an erasure) in
the corresponding slot. Thus, in every slot, a new vertex is added to the
time slot class, and is connected to all the senders who transmitted without
erasure in that slot. Refer to Figure 5 for an example.

We will also use the following matrix representation M(t) of this graph.
The n rows of the matrix correspond to the senders. The t columns corre-
spond to time slots. The entries of the matrix are indeterminate variables.
The matrix has an indeterminate variable xij in row i and column j if the
vertex for sender i is connected to the vertex for slot j. If there is no edge,
then the matrix has a 0 entry. This representation is known as the Ed-
mond’s matrix corresponding to the bipartite graph. All operations on this
matrix are performed viewing its entries as elements of the field of rational
functions involving the xij variables, defined over GF (2) as the base field.

Remark 1. The motivation for using such a matrix is the assumption stated
in Section 2, that a reception is innovative if and only if it involves at least
one undecoded packet. This assumption means that once we know which
packets are mixed in the collision, we do not have to worry about the exact
coefficients used. It is as if the packets are being mixed with coefficients
randomly chosen from a very large finite field, and hence the probability of
linear dependence with what is already known is negligible, as long as at
least one undecoded packet is involved. In the limit, this is essentially like
picking each coefficient to be an independent indeterminate variable, and
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checking for linear dependence over the field of rational functions involving
these variables, with GF (2) as the base field. The following discussion as-
sumes this limiting definition. In other words, the delivery is assumed

to be complete if and only if M(t) has a rank of n over the field of

rational functions.

We will use the following result known as Edmond’s theorem (see The-
orem 7.3 in [6]):

Theorem 1. Let A be the m × m matrix obtained from a bipartite graph
G(U, V, E) with color classes U and V and edge set E as follows:

Aij =

{

xij , (ui, vj) ∈ E
0, (ui, vj) /∈ E

Define the multivariate polynomial Q(x11, x12, . . . xmm) as the determinant
of A. Then, G has a perfect matching if and only if Q is not identically 0.

In our context, this result implies the following corollary, which gives a
graph-theoretic characterization of the delivery time:

Corollary 1. The rank of M(t) is equal to the size of the maximum match-
ing of G(t).

Proof. Suppose G(t) has a maximum matching T of size r. Consider the
submatrix of M(t) with rows corresponding to the those sender vertices and
columns corresponding to those time slot vertices, that are matched by T .
This r × r submatrix has non-zero determinant due to Edmond’s theorem.
Hence, the rank of M(t) is at least r, the size of the maximum matching of
G(t).

For the other direction, suppose G(t) has a rank of r. Then, it has a
collection of r linearly independent rows. Form a new matrix by retaining
only these rows. This matrix also has a rank r, and therefore has r linearly
independent columns. Clearly, the r × r submatrix of G(t) obtained using
only these columns also has a rank r. Using Edmond’s theorem, there
is a perfect matching in the subgraph of the bipartite graph induced by
the corresponding sender and time slot vertices. This means, G(t) has a
matching of size at least r. Thus, the size of the maximum matching is lower
bounded by the rank of M(t). Thus, we have completed the proof.

Now, we are ready to prove the main result of this section, which char-
acterizes the set of decoded packets.
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Figure 6: The matrix operations for the proof of Theorem 2

Theorem 2. A sender’s packet has been decoded if and only if the corre-
sponding sender vertex in G(t) is a part of every maximum matching.

Proof. Consider an arbitrary sender k. Define the indicator vector e(k) by
ei = 0 for all i 6= k and ek = 1. (This is the 1 in the field of rational functions
involving the indeterminate variables xij , over GF (2).)

We now construct the matrix M1(t) by appending e(k) to M(t) as a
new row. Next, we construct the matrix M2(t) by performing row reduction
on M1(t), in order to reduce all entries of column k to 0, except in the
newly added row. (Note, all operations are performed in the field of rational
functions involving the indeterminate variables.)

Since row operations do not change the rank, we have rank(M1(t)) =
rank(M2(t)). Let M3(t) be the matrix obtained by removing the last (new)
row from M2(t). Since the last row is the only row with a non-zero entry
in column k, we have rank(M3(t)) = rank(M2(t)) − 1. The operations are
shown in Figure 6.

It is easily seen that the sender k’s packet has been decoded if and
only if e(k) is in the row space of M(t), i.e., if and only if rank(M(t)) =
rank(M1(t)), which in turn is equal to rank(M2(t)) and hence equal to
rank(M3(t)) + 1, from the above discussion. Now, M3(t) is the Edmond’s
matrix for the bipartite graph obtained by removing sender k’s vertex from
G(t). From Theorem 1, the rank corresponds to the maximum matching
size.

This implies that, sender k’s packet has been decoded if and only if re-
moving the corresponding vertex from G(t) reduces the size of the maximum
matching by 1. Now, this can happen if and only if sender k’s vertex is part
of every maximum matching. Thus, the proof is complete.
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Figure 7: Multiple-access channel with n senders with Bernoulli arrivals

4 Stability Region Characterization

In this section, we consider a scenario when packets arrive at sender i ac-
cording to a Bernoulli processes with rate λi (cf. Figure 7). We assume
that the arrival processes at different senders are independent, and error-
free feedback is available at each time slot. For simplicity of the notations,
we also assume that receiver side erasures do not take place, i.e., pR = 0.
The following results generalize to the case with pR > 0 by scaling the region
down by a factor 1 − pR.

A centralized scheduling policy involves choosing at most one of the
senders for transmission (service) so that any collision is avoided. If the
packet is delivered successfully at the receiver, an acknowledgment is fed
back to the sender and that packet is dropped from the sender’s queue. The
centralized scheduler requires coordination among the senders as well as in-
formation about the queue-length or the arrival rates. However, it does not
have access to channel state before it is realized. Therefore, probability of
packet loss is independently at least p at every time slot, and it is also in-
dependent of the implemented centralized scheduling policy. Thus, we have
the following necessary conditions for the stability region:

n
∑

i=1

λi < 1 − p,

λi ≥ 0, i = 1, . . . , n. (3)

In fact, it can be shown that the above conditions are also sufficient.
The queues can be stabilized by a centralized scheduling policy that selects
the sender with the longest queue for transmission [3]. In summary the
stability region for centralized scheduling policies is a simplex given by (3).
An example of such region for a two-user system is illustrated in Figure 8(a).

Note that the centralized scheduling policy may allocate the media to
a sender whose channel gets erased during the transmission, and hence,
wastes time slots even if there are other senders that are not suffering from
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Figure 8: Stability region of a two-user multiple-access channel with (a)
centralized scheduling (b) ZigZag decoding.

an erasure. However, if the realization of the channel state in the next time
slot is known, such wastes can be avoided by choosing the transmitter from
those that are connected to the receiver. Tassiulas and Ephremides [4] show
that if information about channel state realization is available a priori, the
following set of arrival rates are admissible:

∑

i∈S

λi < 1 − p|S|, for all S ⊆ {1, . . . , n},

λi ≥ 0, i = 1, . . . , n, (4)

where |S| denotes cardinality of set S. The region described in (4) can be
achieved by serving the sender with longest queue-length among those that
are connected to the receiver. Moreover, Tassiulas and Ephremides [4] show
that it is not possible to stabilize the queues for any point outside the region
described in (4). This can be seen as a consequence of Cut-Set bound (cf. [5])
applied to the multiple-access channel. The stability region for a two-user
system is illustrated in Figure 8(b).

In the following, we show how to use ZigZag decoding scheme to achieve
the dominant face of the stability region given in (4) without prior knowledge
about channel state realizations.

Definition 2. The priority-based policy for a multiple-access channel is as
follows. Fix a priority order of the senders with 1 being the highest priority.

• Transmission mechanism: Each sender transmits the head-of-line packet
of its queue at every time slot
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• Acknowledgement mechanism: Upon every reception, the receiver ac-
knowledges the packet from the sender with highest priority among
those packets that are involved in the reception. Consequently, each
acknowledged packet is dropped from the corresponding sender’s queue.

In the following, we show the priority-based policy can achieve vertices
of the stability region given by (4). First, let us provide a simple character-
ization of the vertices of the dominant face of the region.

Lemma 1. There exists a one-to-one correspondence between permutations
of {1, . . . , n} and vertices of the dominant face of the region described in (4).
In particular, for any permutation π, the corresponding vertex is given by

λπi
= (1 − p)pi−1, i = 1, . . . , n.

Proof. See [7].

Theorem 3. Any vertex on the dominant face of the region given by (4)
can be achieved without prior knowledge about channel state realization by
employing ZigZag decoding at the receiver.

Proof. Fix a vertex, V , on the dominant face of the stability region. By
Lemma 1, it corresponds to a permutation π of the senders. Without loss
of generality, assume π = (1, 2, . . . , n). The rate-tuple corresponding to V
is given by

λi = (1 − p)pi−1, i = 1, . . . , n. (5)

Next, we show the priority-based policy defined in Definition 2 can
achieve the vertex V . Let µi be the probability of acknowledging a packet
from sender i at each time slot. Sender i is acknowledged if and only if the
packet sent from i is not erased and all of the packets from senders with
higher priority are erased. By independence of the erasures across links we
obtain

µi = pi−1(1 − p).

Note that an acknowledgement to sender i is equivalent to serving the
queue at sender i by one. Hence, by independence of the erasures across
time, µi is also the service rate of the queue at sender i. Therefore, for the
arrival rates arbitrarily close to that of vertex V (see (5)), the sender side
queues are stable. It remains to show that such policy results in successful
decoding of the packets at the receiver. Note that every successful reception
at the receiver is innovative. Suppose such reception involves k packets from
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k of the senders. In order to decode these k packets, k linearly independent
combination of such packets is required. A sufficient way to construct k
linearly independent equations is to have (k− 1) equations that are linearly
independent, but they do not involve the packet from the sender with the
highest priority. This means that the packet from the sender with highest
priority is not required for decoding to happen, and it can be dropped from
sender’s queue. Finally, the packets sent to the receiver will be eventually
decoded because all of the senders’s queues become empty infinitely often,
i.e., no more degree of freedom is required.

Corollary 2. The dominant face of the stability region described in (4) is
achievable without prior knowledge about channel state realization by em-
ploying ZigZag decoding at the receiver.

Proof. Every point on the dominant face of the stability region can be writ-
ten as a convex combination of the vertices of the dominant face. Moreover,
each vertex can be achieved by a priority-based policy given in Definition
2, corresponding to that vertex. Therefore, every point on the dominant
face can be achieved by time sharing between such policies. Note that the
difference between he policies achieving different vertices is in the acknowl-
edgement mechanism which takes place at the receiver, and no coordination
among the transmitters is necessary.

The priority-based requires knowledge of the arrival rates at the receiver
to tune the acknowledgement mechanism. However, if the queue-length
information at the receiver is available, we can mimic the policy by Tassi-
ulas and Ephremides [4] by acknowledging the sender with longest queue.
Achievability of the stability region in (4) is then a direct consequence of
the results in [4].

5 Conclusions and Extensions

In this project, we have studied the impact of allowing ZigZag decoding on
the throughput and the delay in the context of a collection of senders trans-
mitting data over a multiple-access channel to a single receiver. We have
focused on two situations – the completion time for each sender to deliver
a single packet to the receiver, and the rate region in the case of streaming
arrivals. Our conclusion is that ZigZag decoding achieves significant im-
provements in both the completion time as well as the rate region. Modulo
the implementation constraints, ZigZag decoding is thus a promising new
way to handling interference in wireless networks.
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Figure 9: Generalized wireless network model including multiple-access and
broadcast channels with erasures

Several generalizations of this work are possible. First, as mentioned
before, the above models can be readily extended to the case where there
are both link erasures and receiver erasure.

So far, we have relied on the channel to perform the “linear combina-
tions”. The next step would be to allow the senders themselves to send linear
combinations of the packets that are in the transmission queue. In this case,
the interesting question would be about the coding mechanism at the sender
and the acknowledgement mechanism at the receiver so that delivery time
is minimized. Coding across packets before transmission is particularly in-
teresting if the model is further generalized to multiple receivers (cf. Figure
9), in which a sender can broadcast the packets to the receivers. The goal
would be to characterize the delivery time at each receiver in terms of the
amount of contention and load per receiver. Another interesting question
is the rate region in the case of streaming arrivals, when we have multiple
receivers.
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