Measurement of Gas Sensor Performance

- **Gas sensing materials:**
 1. Sputtered ZnO film (150 nm) (Massachusetts Institute of Technology)
 2. Sputtered SnO₂ film (60 nm) (Fraunhofer Institute of Physical Measurement Techniques)

- **Target gases:**
 \(\text{H}_2, \text{CO}, \text{NH}_3, \text{NO}_2, \text{CH}_4 \)

- **Operating temperature:**
 320 - 460 °C

Mechanisms in Semiconducting Gas Sensor

- **Bulk:** Change in stoichiometry
 \[O_O^- = 2e^- + V_{O^2}^- + \frac{1}{2} \text{O}_2(g) \]

 → *Induce shallow donors: density related to \(\text{PO}_2 \)*)

 \[n^2 [V_{O^2}^-] \text{PO}_2^{1/2} = K_R(T) \Rightarrow \] \[n = (2 K_R(T))^{1/3} \text{PO}_2^{-1/6} \]

 modulate

 Bulk electronic conduction
Resistive Oxygen Sensors Based on SrTiO₃

\[\sigma \propto e^{\frac{E_A}{kT} pO_2^{\frac{1}{m}}} \]

Influence of Dopants on Electrical Conductivity of SrTiO₃

\[\log(\sigma / (\Omega \cdot cm)^{-1}) T = 800 \, ^\circ C \]

Donors: Nb, Ta, Sb, Y, La, Ce, Pr, Nd, Pm, Sm, Gd

Acceptors: Al, Ni, Fe
Temperature Independence: High Acceptor Concentration in SrTiO$_3$

![Graph showing electrical conductivity versus pO_2 for Sr(Ti$_{0.65}$Fe$_{0.35}$)O$_3$ at various temperatures.]

Response times $T / °C$ t_{90} / ms
- 900°C: 6.5
- 800°C: 26
- 750°C: 83
- 700°C: 185

Oxygen Sensor in Thick Film Technology
Mechanisms in Semiconducting Gas Sensor

• Interface - Gas adsorption

\[2e^+ + O_2(g) = 2O(s) \]

→ Induce space charge barrier

modulate

1. Surface conduction

2. Grain boundary barrier
Sensor Configuration

A single 9 mm² chip sensor array with:

- four sensing elements with interdigitated structure electrodes
- heater
- temperature sensor
Resistance Response to Gas Environment

Schematic of Gas Sensor Structure

- ZnO film (150 nm)
- Electrode: Pt(200 nm)/Ta(25 nm) film
- Insulation layer: SiO$_2$ layer (1 µm)
- Substrate: Si wafer

MicroElectroMechanical Systems - MEMS

- Bulk Micromachining
- Surface Micromachining

Micromachining - Application of microfabrication tools, e.g. lithography, thin film deposition, etching (dry, wet), bonding
Gas Sensors and MEMS

- Miniaturization
 - Reduced power consumption
 - Improved sensitivity
 - Decreased response time
 - Reduced cost

- Arrays
 - Improved selectivity

- Integration
 - Smart sensors

Microhotplate
Microhotplate Sensor Platform

NIST Microhotplate Design

Microhotplate Characteristics

- Milli-second thermal rise and fall times
 - programmed thermal cycling
 - low duty cycle
- Low thermal mass
 - low power dissipation
- Arrays
 - enhanced selectivity
Harsh Environment MEMS

- High temperatures
- Oxidation resistant
- Chemically inert
- Abrasion resistant

Wide band gap semiconductor/insulator

Photo Electro-chemical Etching - PEC

Features:

- materials versatility e.g. Si, SiC, Ge, GaAs, GaN, etc.
- precise dimensional control down to 0.1 mm through the use of highly selective p-n junction etch-stops
- fabrication of structures with negligible internal stresses
- fabrication of structures not constrained by specific crystallographic orientations
Photo Electro-chemical Etching - PEC

- Electro-chemical etching

\[\text{Light source} \]
\[\text{electrolyte} \]
\[\text{n-type} \]
\[\text{h}^+ \text{semiconductor} \]
\[\text{h}^+ \]
\[\text{p-type} \]
\[\text{h}^+ \text{h}^+ \text{h}^+ \text{h}^+ \text{semiconductor} \]

- Photo electro-chemical etching

Examples ...

- Arrays of stress free 4.2 µm thick cantilever beams.

- Photoelectrochemically micromachined cantilevers are not constrained to specific crystal planes or directions.

- Similar structures successfully micromachined from SiC by Boston MicroSystems personnel.
Smart Gas Sensor

A Self Activated Microcantilever-based Gas Sensor

1. A device capable of sensing a change in environment and responding without need for a microprocessor.
2. A device has both gas sensing and actuating function by integration of semiconducting oxide and piezoelectric thin films.

Smart Gas Sensor

 - *Microstructure (Nano-Structure) and Composition*
2. Piezoelectric thin films for providing actuating function.
3. Thin film electroceramic deposition methods for integrating with silicon microcantilever beam.
 - *Compatibility with Si micromachining technology*
 - *High performance in chemical environment*
Resonant Gas Sensor

- Resonant Frequency: \(f_R = \frac{1}{2l} \left(\frac{\mu_o}{\rho_o} \right)^{1/2} \)
 where \(l \) = resonator thickness, \(\mu_o \) = effective shear modulus and \(\rho_o \) = density

- Mass change causes shift in resonant frequency: \(\frac{(m_0 - \Delta m)}{m_0} \approx \frac{(f + \Delta f)}{f} \)

Gas Sensor elements :

(I) Active layer interacts with environment
- stoichiometry change translates into mass change

(II) Resonator transduces mass change into resonance frequency change

Choice of Piezoelectric Materials

- Temperature limitations of piezoelectric materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Max Operating Temperature (°C)</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>450</td>
<td>High loss</td>
</tr>
<tr>
<td>LiNbO(_3)</td>
<td>300</td>
<td>Decomposition</td>
</tr>
<tr>
<td>Li(_2)B(_4)O(_7)</td>
<td>500</td>
<td>Phase transformation</td>
</tr>
<tr>
<td>GaPO(_4)</td>
<td>933 (?)</td>
<td>Phase transformation</td>
</tr>
<tr>
<td>La(_2)Ga(_5)SiO(_4) (\text{(Langasite)})</td>
<td>1470 (?)</td>
<td>Melting point</td>
</tr>
</tbody>
</table>

- Choice of Piezoelectric Materials
Design Considerations

- **Bulk conductivity** dependent on temperature and PO$_2$
 → contributes to resonator electrical losses

 Modify bulk conductivity - how?

- **Stability** to oxidation and reduction process
 → limited oxygen non-stoichiometry
 → slow oxygen diffusion kinetics

 Defect chemistry and diffusion kinetics study

- $f_r (T)$: Temperature dependence of resonant frequency
 → need to differentiate from mass dependence

 Minimize @ intrinsic and device-levels

Langasite: Bulk Electrical Properties

- Single activation energy in the temperature range 500 - 900 °C
- Extrapolated room temperature conductivity: $\sigma = 4.4 \times 10^{-18}$ S cm$^{-1}$

 ![Graph of electrical properties](image)

 $\sigma_0 = 2.1$ S cm$^{-1}$
 $E_A = 105$ kJ mol$^{-1}$
Temperature dependence of the resonance frequency (f_R) of a resonator device with different mass loads.

- **Resonator (Langasite) -- H. Seh & H. Fritze**
 - Defect chemistry
 - Oxygen diffusion/exchange studies
 - Bulk conductivity dependence on T and PO$_2$

- **Active Layer (PCO) -- T. Stefanik**
 - Transport-Defect chemistry correlations

- **Gas Sensor --**
 - Add active layer (PCO) using PLD ⇒ nanocrystalline vs microcrystalline
 - Sensor testing